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Abstract. For every 3=4 � ı; ˇ < 1 satisfying ı � ˇ < 1Cı
2

we construct a �nitely

generated group � and a (symmetric, �nitely supported) random walk Xn on � so that

its expected distance from its starting point satis�es EjXnj � nˇ and its entropy satis�es

H.Xn/ � nı. In fact, the speed and entropy can be set precisely to equal any two nice

enough prescribed functions f; h up to a constant factor as long as the functions satisfy the

relation n
3
4 � h.n/ � f .n/ �

p

nh.n/=log.n C 1/ � n for some  < 1.
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1. Introduction

Let G be an in�nite, �nitely generate group with a �nite symmetric generating set

S , and let Xn be a �nitely supported, symmetric random walk on G for which the

support of X1 generates G. We study the following two quantities:

(1) the rate of escape of the random walk from its starting position EjXnj (where

j � j denotes the word norm with respect to S );

(2) the entropy of the random walk

H.Xn/ D �
X

g2G

P.Xn D g/ log P.Xn D g/

(where 0 log 0 D 0).

Starting with the works of Kesten [17], the rate of escape and the entropy have been

connected to many other properties of the group, including the spectral radius,

return probabilities, isoperimetric properties and volume growth (see e.g. [17, 15,

20]), to the Liouville property ([8, 16, 14, 21]), and to embeddings into Hilbert

space ([3, 19]). This list is far from complete and we refer the reader to [1, 5]

and [13] for further background.
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While for some classes of groups the behaviour of the two quantities are

understood, it is in many cases hard to get good bounds on the entropy and rate

of escape (e.g. for random walks on Grigorchuk’s group). It is an open question

whether the asymptotic behaviours of the rate of escape and the entropy are an

invariant of the group G, or may depend on the choice of the random walk. (And

in the latter case, by how much they can vary.)

The main question we wish to address is the following one.

Question 1. What is the possible joint behaviour of the rate of escape and the

entropy for random walks on groups?

We will be interested in classifying the behaviour up to constants. We write

f � g if f .n/ � cg.n/ for some constant c independent of n, and f � g if

g � f � g. We will therefore study the following variant of the above question.

Question 2. For which functions f and h can one construct a random walk Xn

on a group G for which EjXnj � f .n/ and H.Xn/ � h.n/?

The question of studying the possible behaviours of each of the two quantities

separately has been a long standing open problem since raised by Vershik. There

has been signi�cant progress in recent years, in particular with regards to the rate

of escape. Let us quickly summarize some of the main results in this direction.

It is straightforward that jXnj � n and H.Xn/ � nH.X1/. In the other direction

it is known that EjXnj �
p

n (see [18], who attribute this result to Virág), and

Virág conjectured that for any random walk on a group of exponential growth

H.Xn/ �
p

n. Examples where EjXnj �
p

n (di�usive behaviour) are easy to

come by, and include random walks on nilpotent groups ([15]) as well as many

other examples. In many of these cases entropy is also quite well understood. For

non-amenable groups, and in fact for any non-Liouville random walk we have

ballistic behaviour - EjXnj � H.Xn/ � n ([16]). It took a long time until new

examples (neither di�usive nor ballistic) for behaviour of the rate of escape were

found. Erschler [10] showed that the canonical random walk on the k � 1-times

iterated wreath product of Z satis�es EjXnj � n1�2�k
: Erschler also showed that

it can oscillate between two di�erent powers of n [12], and that it can be arbitrarily

close to n [11]. Recently Brieussel [5] showed that for every a 2 Œ1
2
; 1� there exists

a random walk Xn on a group G for which lim sup
logEjXnj

log n
D a.

The most relevant works, which can be seen as the starting point of this paper,

are the following two results which gave ways to construct random walks on groups

with prescribed entropy or rate of escape behaviour within a given range:

(1) it has been shown in [4] and re�ned in [1] that for any “nice” function h

between n
1
2 and n there is a group G and a random walk Xn on G so that

H.Xn/ � h.n/ ( “nice” in the sense on Theorem 1 below);
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(2) it has been shown in [1] that for any  < 1 and any “nice” function f

between n
3
4 and n there is a group G and a random walk Xn on G satisfying

EjXnj � f .n/.

However, in both of the constructions mentioned above, one could only make

either the rate of escape or the entropy behave in a prescribed way, and not both.

To be more precise, in both the above constructions, once we �xed one quantity

(say the entropy) to behave like some pre-given function, we would get a speci�c

random walk on a group, and that would set the second quantity. When �xing

the rate of escape to be � f .n/ one got that H.Xn/ � f 2.n/
n

log n (this follows

from bounds in Section 3), and when �xing the entropy to be � h.n/ one could

only derive that h.n/ � EjXnj �
p

nh.n/. So it is natural to ask whether one

can control both the rate of escape and the entropy simultaneously. That is which

pairs of speed and entropy functions are (explicitly?) attainable for random walks

on groups. One well-known constraint is that the rate of escape and the entropy

satisfy the “speed-entropy relation” (see e.g. [9] which uses the Varopolous–Carne

bound [21, 7])

H.Xn/ � EjXnj �
p

n.H.Xn/ C 1/:

The main theorem in this paper shows that for nice enough functions in the

range above n
3
4 this is essentially the only constraint.

Theorem 1. For any  2 Œ3=4; 1/ and any functions f; hWRC ! RC satisfying

f .1/ D h.1/ D 1, the log-Lipshitz condition that for all real a; n � 1

a3=4f .n/ � f .an/ � af .n/; a3=4h.n/ � h.an/ � ah.n/

and the relation

h.n/ � f .n/ �

s

nh.n/

log.n C 1/

there is a group � and a random walk Xn on � for which

EjXnj � f .n/; H.Xn/ � h.n/:

Where � .�/ denotes equality (inequality) up to constants depending on  only.

The groups and random walks involved are explicitly stated in the proof of the

Theorem. (See Section 2 for de�nitions).

2. Permutational wreath products and the piecewise mother groups

The groups used in our construction will be permutational wreath products over

the piecewise mother groups that were used in [1]. Even though all properties we
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need from these groups will follow from results in [1], and they could be treated

simply as “black boxes,” we give a brief description of these groups to make the

construction more explicit.

2.1. Piecewise mother groups. Given a bounded sequence m D ¹miºi�1 of in-

tegers mi � 2, we de�neTm, the spherically symmetric rooted tree with degree se-

quence m to be the following graph. The vertex set consists of all �nite sequences

ak : : : a1 where ai 2 ¹0; : : : ; mi � 1º, where the empty sequence � is the root.

The edge set consists of all pairs of vertices of the form ¹ak : : : a1; ak�1 : : : a1º.
We set m� D max mi .

Let Aut.Tm/ be the set of rooted automorphisms of Tm, i.e. automorphisms

�xing the root. We write the action on the right, denoting by x: the action of

 2 Aut.Tm/ on x 2 Tm. The piecewise mother groups Mm will be subgroups

of Aut.Tm/.

Automorphisms  2 Aut.Tm/ can be written as a product

 D h0; : : : ; m1�1i�

where � 2 Sym.m1/ permutes the subtrees of � and i are automorphism of

the subtrees. Thus the i are elements of Aut.T� m/ where T� m is the tree with

the shifted degree sequence � m WD m2; m3; : : : : The natural action of the group

Aut.Tm/ on in�nite strings (the boundary of the tree) : : : a3a2a1 can be de�ned

recursively by

: : : a3a2a1: D .: : : a3a2:a1
/a1:�

Let … be the group of all automorphisms of the form p� D hid; id; : : : ; idi�
with � 2 Sym.m1/. (These simply permute the children of the root according

to � .) Denote by �` the cyclic permutation on ¹0; : : : ; m` � 1º. De�ne the

automorphism ȷ 2 Tm recursively

�` D h�`C1; �`C1; : : : ; �`C1i id

Set k to be the least common denominator of ¹m2; m3; : : :º (Which is a subset of

¹2; : : : ; m�º). Let H be the cyclic group ¹ȷiº0�i<k.

We de�ne the piecewise mother group Mm as the group generated by H

and ….

We will also specify the random walk on Mm. We consider the random walk

Yn on Mm where the step distribution is the even mixture of uniform measures

on … and H . Note that a uniformly chosen element of … acts on in�nite strings

by replacing the �rst digit from the right with a uniform number in 0; : : : ; m1 � 1.

A uniform element of H acts by replacing the digit after the �rst non-zero digit

with a uniform number in 0; : : : ; m` � 1 (where l is the position of the digit

replaced). For more on the piecewise mother groups and their action the reader is

referred to [1].
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2.2. Permutational wreath products. Let � be a �nitely generated countable

in�nite group acting on a set S . We single out a “special” point o 2 S . Let �

be a �nitely supported symmetric measure on �. Let ƒ be a �nitely generated

countable (possibly �nite) group. The permutational wreath product ƒ oS � is the

semidirect product of ƒS with � acting on it by permuting the coordinates. The

multiplication rule, for `; `0 2 .ƒS / and g; g0 2 � is

.`; g/.`0; g0/ D .``0g�1

; gg0/

where `0g�1
is de�ned by `0g�1

.s/ D `0.s:g/.

A switch is a random element of ƒ oS � of the form .xL; id�/, with

xL.s/ D
´

idƒ if s 6D o;

L if s D o;

where L is a random element of ƒ chosen from a �xed symmetric �nitely-

supported measure.

We consider the random walk

Xn D
n

Y

iD1

xLiGi
xL0

i

(called the switch–walk–switch random walk) on the permutational wreath prod-

uct. Here the Gi are independent choices from the measure on �, and the Li ; L0
i

are independent choices from the measure on ƒ. We have Xi D .Li ; Yi/ where

Li 2 ƒS and Yi D G1 : : : Gi 2 �.

3. Bounds on EjXnj and H.Xn/ for ƒ oS Mm

In this section we focus on the groups ƒoSMm, where ƒ is in�nite, S is taken to be

the orbit of the all-zero ray under the natural action ofMm, and the “special” point

o is taken to be the all-zero ray. In [1], upper and lower bounds were derived for

the speed and entropy of the switch–walk–switch random walk on permutational

wreath products. When the group action is “signi�cant enough,” as happens for

ƒ oS Mm, these bounds can be stated in terms of the speed and entropy functions

of ƒ and the return probabilities of the random walk o:Yn on S .

Denote by T the �rst return time of o under the walk o:Yn on S . Given a group

ƒ and some random walk Rn D J1 : : : Jn on it, let

N�.n/ D max
k�n

EjRk j;
N
�.n/ D inf

k�n
EjRk j; h.n/ D H.Rn/:
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We extend the de�nitions to R�1 by linear interpolation between the integers.

In the cases we discuss below the choice of random walk on ƒ does not matter,

as long as it is symmetric, �nitely supported and it’s support generates ƒ, and we

therefore leave it unspeci�ed.

The majority of the bounds we give are stated (in a slightly di�erent language)

in [1], while the lower bound on the entropy we will use is a variation on the

lower bound on the speed used there. Heuristically these bounds can be derived

by assuming that the switch moves are the ones making the essential contribution

to both speed and entropy of the walk, and that the switch moves may be analyzed

as if they are evenly distributed on the support of Ln.

Lemma 2. The random walk Xn on the permutation wreath product satis�es for

n � 1

H.Xn/ � nph.1=p/:

for every p � P.T > n/.

Proof. The proof follows closely that of Theorem 9 in [1] in which the bound

EjXnj � np
N
�.1=p/ is proved, and we omit the details. One needs only to replace

all instances of
N
� with h and argue that H.Xn/ � E

�
P

s2S h.#switch moves at s/
�

since the switch moves at the di�erent points at s are independent given the number

of switches made at each point. The implicit constants are absolute (do not depend

on Mm or ƒ). �

Proposition 3. Let ƒ be some in�nite �nitely generated group. Let m D .m`/

be some bounded degree sequence, and consider the switch-walk switch random

walk Xn on ƒ o Mm. For every p � P.T > n/ and for every q �
Pn

iD0 P.T > i/

we have

EjXnj � np
N
�

� 1

p

�

;

EjXnj � q N�
�n

q

�

;

H.Xn/ � nph
� 1

p

�

;

H.Xn/ � q
�

h
�n

q

�

C log.n C 1/
�

:

With the constants depending on m� D max m` only.
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Proof. The third inequality is precisely Lemma 2, and the �rst inequality is stated

as the 1st inequality of Corollary 14 of [1]. For the second (resp. fourth) inequality

one must combine the third (resp. �fth) inequality of Corollary 14 of [1], which

gives general bounds for speed (resp. entropy) on permutational wreath products,

together with Corollary 24 of [1] which shows that for the case of ƒ oS Mm the

terms appearing in this proposition are the dominant ones. The constants involved

can be chosen to depend only on m� D max m`, and this dependence only enters

through the use of Corollary 24. �

4. The extreme cases of the speed-entropy relation

To prove Theorem 1, we will �rst construct two groups and random walks on these

groups, for which the speed and entropy lie (almost) on the extremes of the speed-

entropy relation. That is one random walk X 0
n for which EjX 0

nj � H.X 0
n/ and

one random walk X 00
n for which EjX 00

n j �
q

nH.X 00
n /

log.nC1/
. We will then combine the

two constructions to prove Theorem 1. The “extreme” cases are summed up in the

following theorem:

Theorem 4. For any  2 Œ3=4; 1/ and any function f WRC ! RC satisfying

f .1/ D 1 and the log-Lipshitz condition that for all real a; n � 1

a3=4f .n/ � f .an/ � af .n/

there is a bounded sequence m D .m`/ such that

(1) the switch–walk–switch random walk Xn on Z oS Mm satis�es that

EjXnj � f .n/; H.Xn/ � f 2.n/ log.n C 1/

n

and

(2) the switch–walk–switch random walk Xn on .Z2 o Z/ oS Mm satis�es that

EjXnj � H.Xn/ � f .n/

with constants in both clauses depending on  only.

To prove the Theorem we will use the following Lemma, which combines the

bounds in Proposition 3 with the construction of degree sequences m for which

the �rst return time T of o:Yn can be su�ciently controlled.
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Lemma 5. For any  2 Œ1=2; 1/ and any function gWRC ! RC satisfying

g.1/ D 1 and the log-Lipshitz condition that for all real a; n � 1

a1=2g.n/ � g.an/ � ag.n/

there is a bounded sequence m D .m`/ such that the switch–walk–switch random

walk Xn on ƒ oS Mm satis�es

H.Xn/ � g.n/h
� n

g.n/

�

;

H.Xn/ � g.n/
�

h
� n

g.n/

�

C log.n C 1/
�

and

EjXnj � g.n/
N
�

� n

g.n/

�

;

EjXnj � g.n/ N�
� n

g.n/

�

:

With constants depending on  only.

Proof. Corollary 19 and Lemma 20 of [1] state that one can choose the degree

sequence m D .m`/ so that P.T > n/ � g.n/
n

and
Pn

iD0 P.T > i/ � g.n/, with

constants depending only on  (through the choice of m�). The conclusion now

follows from Proposition 3. �

Proof of Theorem 4. To prove the theorem, we consider the group ƒ oS Mm and

describe several cases for the choice of the group ƒ, using the above Corollary to

bound EjXnj and H.Xn/. De�ne g.n/ D f 2.n/
n

. Note that a function f satis�es

the conditions of the Theorem if and only if g satis�es the conditions of Lemma 5.

(1) To get the �rst clause we take ƒ D Z, which is the choice used in [1] to

construct groups with prescribed speed behaviour. Then N�.n/ �
N
�.n/ �

p
n

and h.n/ � log.n C 1/. We thus get

EjXnj �
p

ng.n/ � f .n/; H.Xn/ � g.n/ log.n C 1/:

(2) To get the second clause we take ƒ D Z2 o Z. We then have

N�.n/ �
N
�.n/ �

p
n

and h.n/ �
p

n. We thus get

EjXnj � f .n/; H.Xn/ � f .n/: �
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Note that if we took ƒ D Z2 (or any other �nite group), we would get (using

similar bounds proved in [1])

g.n/ � EjXnj �
p

ng.n/; H.Xn/ � g.n/:

This was used to get precise entropy behaviour in [1] but does not give any good

control of the speed (at least via known methods).

5. Proof of Theorem 1

Proof. By Theorem 4 clause .1/ there is a sequence m0 D .m0
`
/ so that the switch–

walk–switch random walk X 0
n on � 0 D Z oS 0 Mm0 satis�es

EjX 0
nj � f .n/; H.X 0

n/ � f 2.n/

n
log.n C 1/

By Theorem 4 clause .2/ there is a sequence m00 D .m00
`
/ so that the switch–walk–

switch random walk X 00
n on � 00 D Z oS 00 Mm00 satis�es

EjX 00
n j � h.n/; H.X 00

n / � h.n/

Note that the relation h.n/ � f .n/ �
q

nh.n/
log.nC1/

implies that

max.EjX 0
nj; EjX 00

n j/ � f .n/; max.H.X 0
n/; H.X 00

n // � h.n/:

De�ne � D � 0 � � 00 and let Xn D .X 0
n; X 00

n / be a random walk on � de�ned

by making an independent step of the switch–walk–switch random walk in each

coordinate every step. We claim �; Xn satisfy the requirements of the Theorem.

Indeed, both speed and entropy clearly satisfy

max.EjX 0
nj; EjX 00

n j/ � EjXnj � EjX 0
nj C EjX 00

n j;
max.H.X 0

n/; H.X 00
n // � H.Xn/ � H.X 0

n/ C H.X 00
n /:

Therefore

EjXnj � max.EjX 0
nj; EjX 00

n j/ � f .n/;

and

H.Xn/ � max.H.X 0
n/; H.X 00

n// � h.n/:

With all constants depending on  only. �
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6. Conjectures and open questions

As in the previous parts of this paper, by a random walk on a group we mean

a random walk with a symmetric �nitely supported step measure on an in�nite

�nitely generated group. In order to make the conjectures and questions more

concise, we will focus on speed and entropy functions of the form nˇCo.1/ and

nıCo.1/ respectively. In this case, ˇ and ı are called the speed and entropy

exponents of the walk.

In [1] it was conjectured that all speed exponents between 1
2

and 1 are attainable.

We would like to further generalize this conjecture to claim that when both the

speed and entropy exponents are above 1
2
, essentially the only constraint on the

joint behaviour is the speed-entropy relation:

Conjecture 3. For any 1
2

� ˇ � 1 and any 1
2

� ı � 1 satisfying ı � ˇ � 2ı � 1

there exists a group G and a (symmetric �nitely supported) random walk Xn on

G satisfying EjXnj � nˇ and H.Xn/ �� nı , where �� denotes equality up to

polylog factors.

When the entropy exponent drops below 1
2
, things are less clear. It is con-

jectured that one must move to the realm of sub-exponential growth, where even

examples of speed exponents above 1
2

are not known. Relaxing the precision re-

quired, we therefore ask:

Question 4. For what values of 0 � ı � 1
2

and 1
2

� ˇ � 1 does there exist a

random walk Xn on a group G such that EjXnj � nˇCo.1/ and H.Xn/ � nıCo.1/?

The groups we considered are permutational wreath products by piecewise

mother groups. It is still an open question to �nd the speed or entropy behaviour

for the piecewise mother groups themselves, even in the case of when the degree

sequence m is constant. In fact, this is open on any of the classical automaton

groups (except perhaps the lamplighter group); we will skip the de�nition of these

groups but they can be found in, for example [2].

Problem 5 ([1], Problem 32). Find the asymptotic behaviour the speed exponent

or the entropy exponent in any of the following groups: Grigorchuk’s group,

Basilica group, Hanoi towers group, piecewise mother groups.

As mentioned in the introduction, beside the rate of escape and the entropy

there are several other quantities related to groups and random walks on groups

that have been extensively studied and have many connections with geometric

and analytic properties of the groups involved. Among the most notable examples

are the volume growth of the group, the return probabilities of the random walk

and the Hilbert compression exponent of the group (See [19] for de�nition).
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The question studied in this paper can be seen as a case of the more general

question regarding the possible joint behaviour of these quantities. One possible

formulation is as follows.

Question 6. For which tuples .˛; ˇ; ; ı; �/ does there exist a group G with Hilbert

compression exponent ˛, volume growth en�Co.1/
and a random walk Xn on that

group with

EjXnj D nˇCo.1/; P.Xn D id/ D e�nCo.1/

; H.Xn/ D nıCo.1/‹

There are many known relations between the di�erent quantities (see e.g. the

references in Section 1), but very few constructions allowing to control more than

one of them simultaneously. For more on the various exponents and their relations

we refer the reader to [13].

Remark 6. After the appearance of the preprint of this paper, Conjecture 3 was

proved by Jeremie Brieussel and Tiayni Zheng in [6].
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