Groups Geom. Dyn. 11 (2017), 415-454 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/402 © European Mathematical Society

Locally compact lacunary hyperbolic groups
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Abstract. We investigate the class of locally compact lacunary hyperbolic groups.
We prove that if a locally compact compactly generated group G admits one asymptotic
cone that is a real tree and whose natural transitive isometric action is focal, then G must be
a focal hyperbolic group. As an application, we characterize connected Lie groups and lin-
ear algebraic groups over an ultrametric local field of characteristic zero having cut-points
in one asymptotic cone.

We prove several results for locally compact lacunary hyperbolic groups, and extend the
characterization of finitely generated lacunary hyperbolic groups to the setting of locally
compact groups. We moreover answer a question of Olshanskii, Osin and Sapir about
subgroups of lacunary hyperbolic groups.
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1. Introduction

1.1. Locally compact hyperbolic groups. If G is a locally compact group and
S a compact generating subset, then G can be equipped with the word metric
associated to S. A locally compact compactly generated group is hyperbolic if it
admits some compact generating subset such that the associated word metric is
Gromov-hyperbolic. By [CCMT, Corollary 2.6], this is equivalent to asking that
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the group acts continuously, properly and cocompactly by isometries on some
proper geodesic hyperbolic metric space. Examples of non-discrete hyperbolic
groups include semisimple real Lie groups of rank one, or the full automorphism
group of a semi-regular locally finite tree. We freely use the shorthand hyperbolic
LC-group for locally compact compactly generated hyperbolic group.

Finitely generated hyperbolic groups have received much attention over the
last twenty-five years, and their study led to a rich and powerful theory. On the
other hand, hyperbolic LC-groups have not been studied to the same extent, and
this disparity leads to the natural problem of discussing the similarities and dif-
ferences between the discrete and non-discrete setting. One positive result in this
vein is the extension of Bowditch’s topological characterization of discrete hy-
perbolic groups, as those finitely generated groups that act properly and cocom-
pactly on the space of distinct triples of a compact metrizable space, to the setting
of locally compact groups [CD14]. However it turns out that some hyperbolic
LC-groups exhibit some completely opposite behavior to what happens for dis-
crete hyperbolic groups: while a non-virtually cyclic finitely generated hyperbolic
group always contains a non-abelian free group, some hyperbolic LC-groups are
non-elementary hyperbolic and amenable. It follows from the work of Caprace,
Cornulier, Monod and Tessera that those can be characterized in terms of the dy-
namics of the action of the group on its boundary, and that they coincide with the
class of mapping tori of compacting automorphisms (see Theorem 1.2).

1.2. Lacunary hyperbolic groups. The definition of asymptotic cones of a
metric space makes sense for a locally compact compactly generated group G.
Let s = (s,) be a sequence of positive real numbers tending to infinity, and
® a non-principal ultrafilter. We denote by Precone(G, s) the set of sequences
(gn) in G such that there exists some constant C > 0 so that the word length
of g, is at most Cs, for every n > 1; and equip it with the pseudo-metric
dw((gn), (hn)) = 1im® ds(gu, hyn)/sy. It inherits a group structure by component-
wise multiplication, and the asymptotic cone Cone®” (G, s) of G associated to the
parameters s, @ is the homogeneous space Precone(G, s) / Sublin® (G, s), where
Sublin® (G, s) is the subgroup of sequences at distance d,, zero from the identity.
The group Precone(G, s) can be viewed as a large picture of the group G, and the
action of Precone(G, s) on Cone® (G, s) is inherited from the action of G on itself.
Asymptotic cones capture the large-scale geometry of the word metric on G. In
some sense, the metric space Cone® (G, s) reflects the properties of the group G
that are visible at scale s.

For example if G is a hyperbolic LC-group, then all its asymptotic cones are
real trees. Interestingly enough, thanks to a result of Gromov [Gro93, Dru02],
one can characterize hyperbolicity in terms of asymptotic cones: a locally compact
compactly generated group is hyperbolic if and only if all its asymptotic cones
are real trees. However there exist finitely generated non-hyperbolic groups with
some asymptotic cone a real tree. The first example appeared in [TV0O0], where
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small cancellation theory is used to construct a finitely generated group with
one asymptotic cone a real tree, and one asymptotic cone that is not simply
connected. The systematic study of the class of finitely generated groups with one
asymptotic cone a real tree, called lacunary hyperbolic groups, was then initiated
in [OOS09]. Olshanskii, Osin and Sapir characterized finitely generated lacunary
hyperbolic groups as direct limits of sequences of finitely generated hyperbolic
groups satisfying some conditions on the hyperbolicity constants and injectivity
radii [OOS09, Theorem 3.3]. They also proved that the class of finitely generated
lacunary hyperbolic groups contains examples of groups that are very far from
being hyperbolic: a non-virtually cyclic lacunary hyperbolic group can have all
its proper subgroups cyclic, can have an infinite center or can be elementary
amenable.

Following [OOS09], we call a locally compact compactly generated group
lacunary hyperbolic if one of its asymptotic cones is a real tree. For example
if X is a proper geodesic metric space with a cobounded isometric group action,
and if X has one asymptotic cone that is a real tree, then the full isometry group
G = Isom(X) is a locally compact lacunary hyperbolic group, which has a priori
no reason to be discrete.

By construction any asymptotic cone Cone® (G, s) of a locally compact com-
pactly generated group G comes equipped with a natural isometric action of
the group Precone(G,s). So in particular if G admits one asymptotic cone
Cone®(G, s) that is a real tree, then we have a transitive action by isometries of
the group Precone(G, s) on a real tree. Recall that isometric group actions on real
trees are classified as follows: if the the translation length is trivial then there is a
fixed point or a fixed end, and otherwise either there is an invariant line, a unique
fixed end or two hyperbolic isometries without common endpoint. It turns out
that when G is a hyperbolic LC-group, then for every choice of parameters s and
w, the asymptotic cone Cone” (G, s) is a real tree, and the type of the action of
Precone(G, s) on Cone® (G, s) is inherited from the type of the G-action on itself.
Recall that a hyperbolic LC-group G is called focal if its action on dG has a unique
fixed point. In particular when G is a focal hyperbolic group, then for every scal-
ing sequence s and non-principal ultrafilter w, the asymptotic cone Cone® (G, s) is
a real tree and the action of Precone(G, s) on Cone” (G, s) fixes a unique bound-
ary point. This naturally leads to the question as to whether this phenomenon may
appear when considering non-hyperbolic groups. Our first result shows that this is
not the case. More precisely, we prove the following statement (see Theorem 4.1).

Theorem 1.1. Let G be a locally compact compactly generated group. Assume
that G admits one asymptotic cone Cone® (G, s) that is a real tree and such that
the group Precone(G, s) fixes a unique end of Cone®(G,s). Then G = H x Z or
H xR, where the element 1 € Z or R induces a compacting automorphism of H.
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Recall that an automorphism o € Aut(H) of a locally compact group H is
said to be compacting if there exists a compact subset V' C H such that for every
h € H, for n large enough «”(h) € V. In particular we recover and strengthen
the implication i) = iii) of the following theorem of Caprace, Cornulier, Monod
and Tessera.

Theorem 1.2 ([CCMT, Theorem 7.3]). If G is a locally compact compactly
generated group, then the following statements are equivalent:

i) is a focal hyperbolic group;
ii) is amenable and non-elementary hyperbolic;

iii) is a semidirect product H x Z or H x R, where the element 1 € Z or R
induces a compacting automorphism of the non-compact group H.

Our method is different from that of [CCMT]: indeed the latter makes a crucial
use of amenability, and the fact that quasi-characters on amenable groups are
characters, while we only use geometric arguments at the level of the real tree
arising as an asymptotic cone.

We point out that this strengthening of the result of [CCMT] is definitely not
the main application of Theorem 1.1 for our purpose, and that Theorem 1.1 is a
crucial step in the proofs of both Theorem 1.3 and Theorem 1.5 below.

We call a locally compact compactly generated group G lacunary hyperbolic
of general type if it admits one asymptotic cone Cone® (G, s) that is a real tree
and such that the action of Precone(G, s) has two hyperbolic isometries without
common endpoint. Drutu and Sapir proved that any non-virtually cyclic finitely
generated lacunary hyperbolic group is of general type (see the end of the proof
of Theorem 6.12 in [DS05]). In the locally compact setting, it will follow from
Theorem 1.1 that any lacunary hyperbolic group that is neither an elementary nor a
focal hyperbolic group, is lacunary hyperbolic of general type (see Theorem 5.2).

It is often the case in topological group theory that a given problem can be re-
duced to the case of connected groups and totally disconnected groups, by using
the fact that any topological group decomposes as an extension with connected
kernel and totally disconnected quotient. For instance if one wants to study the
large scale geometry of a given class of compactly generated groups (say that is
stable by modding out by a compact normal subgroup and passing to a cocom-
pact normal subgroup), then this can be reduced to the study of connected and
totally disconnected groups as soon as the identity component of a group in this
class is either compact or cocompact. It is worth pointing out that this process
cannot be applied in generality for hyperbolic LC-groups, because it may happen
that the unit component of a hyperbolic LC-group is neither compact nor cocom-
pact. A typical example is (Q, x R) x Z, where the automorphism of Q, x R is
the multiplication by (p, p~!). However, apart from focal groups, it is true that the
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identity component of a hyperbolic LC-group is either compact or cocompact
[CCMT, Proposition 5.10]. Here we will extend this result to the setting of
lacunary hyperbolic groups in Theorem 5.4.

As a consequence, we will be able to deduce that a locally compact lacu-
nary hyperbolic group is either hyperbolic or admits a compact open subgroup.
Compactly generated groups with compact open subgroups are generally more
tractable than compactly generated locally compact groups. For example they act
geometrically on a locally finite connected graph thanks to a construction due to
Abels recalled in Proposition 2.7. Most importantly for our purpose, the fact that
any finitely generated group is a quotient of a finitely generated free group, admits
a topological extension to the class of compactly generated groups with compact
open subgroups (see Proposition 2.8). This will allow us to extend the character-
ization of finitely generated lacunary hyperbolic groups of Olshanskii, Osin and
Sapir to the locally compact setting (see Proposition 5.5 and Theorem 5.10).

Theorem 1.3. Let G be a compactly generated locally compact group. Then G is
lacunary hyperbolic if and only if

(a) either G is hyperbolic; or

(b) there exists a hyperbolic LC-group G acting geometrically on a locally finite
tree, and an increasing sequence of discrete normal subgroups N, of Gy,
whose discrete union N is such that G is isomorphic to Go/N; and if S is a
compact generating set of Gy and

pn = min{|g|s: g € Npt1 \ Nu},

then Go/ Ny, is 8,-hyperbolic with 6, = o(pn).

1.3. Subgroups of lacunary hyperbolic groups. In [OOS09], the authors ini-
tiated the study of subgroups of finitely generated lacunary hyperbolic groups.
They proved for example that any finitely presented subgroup of a lacunary hyper-
bolic group is a subgroup of a hyperbolic group, or that a subgroup of bounded
torsion of a lacunary hyperbolic group cannot have relative exponential growth.
This prohibits Baumslag-Solitar groups, free Burnside groups with sufficiently
large exponent or lamplighter groups from occurring as subgroups of a finitely
generated lacunary hyperbolic group [OOS09, Corollary 3.21]. These groups are
examples of groups satisfying a law, and the authors ask whether it is possible that
a non-virtually cyclic finitely generated group of relative exponential growth in a
finitely generated lacunary hyperbolic group satisfies a law.

Let G be a compactly generated group and s a scaling sequence. For every
subgroup H < G, the set of H-valued sequences of Precone(G, s) is a subgroup
of Precone(G,s), which will be denoted Preconeg(H,s). In particular when
Cone®(G, s) is areal tree, we have an isometric action of the group Preconeg (H, s)
on the real tree Cone® (G, s), and one might wonder what is the type of this action
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in terms of the subgroup H. In Section 6 we carry out a careful study of the
possible type of the action of Preconeg (H, s) on Cone® (G, s), which leads to the
following result.

Theorem 1.4. Let G be a unimodular lacunary hyperbolic group. If H < G is a
compactly generated subgroup of relative exponential growth in G not having Z.
as a discrete cocompact subgroup, then H cannot satisfy a law.

We point out that the unimodularity assumption is essential in Theorem 1.4,
even for lacunary hyperbolic groups of general type. When specified to the setting
of discrete groups, Theorem 1.4 answers a question of Olshanskii, Osin and Sapir
[OOS09, Question 7.2]. This prohibits for example finitely generated solvable
groups from appearing as subgroups of finitely generated lacunary hyperbolic
groups (see Corollary 6.7).

1.4. Asymptotic cut-points. Recall thata point x € X in a geodesic metric space
is a cut-point if X \ {x} is not connected. Finitely generated groups with cut-
points in some asymptotic cone have been studied among others by Drutu, Osin,
and Sapir [DSO5], Drutu, Mozes, and Sapir [DMSIO], or Behrstock [BEnO6].
The property of having cut-points in some asymptotic cone can be seen as a very
weak form of hyperbolicity. In [DSO5], Drutu and Sapir proved that if a finitely
generated non-virtually cyclic group G satisfies a law, then G does not have cut-
points in any of its asymptotic cones. This result does not extend immediately
to locally compact groups, as for instance the real affine group R x R is non-
elementary hyperbolic and solvable of class two. Nevertheless Theorem 1.1 will
allow us to generalize the result of Drutu and Sapir to the locally compact setting,
by proving that a locally compact group satisfying a law does not have cut-points
in any of its asymptotic cones as soon as it is neither an elementary nor a focal
hyperbolic group (see Theorem 4.12).

In cite [DMSI0], Drutu, Mozes, and Sapir studied the existence of cut-points
in asymptotic cones for lattices in higher rank semisimple Lie groups. They
conjectured that such a lattice does not have cut-points in any of its asymptotic
cones, and proved the conjecture in some classical examples. Here we consider
the same problem not for lattices, but for connected Lie groups themselves. More
precisely, we prove the following rigidity result for connected Lie groups and
linear algebraic groups over the p-adics (see Corollary 4.14).

Theorem 1.5. Let G be either a connected Lie group or a compactly generated
linear algebraic group over an ultrametric local field of characteristic zero. If G
has cut-points in one of its asymptotic cones, then G is a hyperbolic group.

1.5. Structure of the paper. In Section 2 we recall the definition of asymptotic
cones and some general facts about group actions on hyperbolic metric spaces and
real trees, and give some background on locally compact groups.
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In Section 3 we establish some preliminary results about the dynamics of group
actions on asymptotic cones.

Section 4 contains the proof of Theorem 1.1, which essentially consists in
two steps. The first one is to prove that any group satisfying the hypotheses of
Theorem 1.1 is a topological semidirect product H xZ or H x R, and this will be
achieved by considering the modular function and using geometric arguments at
the level of the asymptotic cone that is a real tree. The second step in the proof is
to show that the associated action is compacting, and this is again deduced from
the focal dynamics at the level of the asymptotic cone.

The end of Section 4 is devoted to the application of Theorem 1.1 to the study
of locally compact groups with asymptotic cut-points, and in particular it contains
the proof of Theorem 1.5.

In Section 5 we derive from Theorem 1.1 that any locally compact lacunary hy-
perbolic group that is not a hyperbolic LC-group must be lacunary hyperbolic of
general type (see Theorem 5.2). This will allow us to obtain that any locally com-
pact lacunary hyperbolic group is either a hyperbolic LC-group, or has compact
open subgroups. This result is an essential step towards the proof of Theorem 1.3,
which will be given at the end of Section 5.

Finally Section 6 is devoted to the study of the structure of subgroups of la-
cunary hyperbolic groups. We point out that while the main concerns of the pre-
vious sections were non-discrete groups, all the results of Section 6 encompass
the case of discrete groups and are new even in this setting. In the first part of
Section 6 we obtain the interesting result that any quasi-isometrically embedded
normal subgroup of a lacunary hyperbolic group is either compact or cocompact
(see Proposition 6.1). The second part of Section 6 contains the proof of Theo-
rem 1.4.

Acknowledgments. Most of the problems discussed in this paper arose from
discussions with Yves Cornulier. I am very grateful to him for his interest in this
work, his many useful suggestions and his careful reading of the paper. I also
thank Romain Tessera for his interest and useful discussions.

2. Preliminaries

2.1. Asymptotic cones. We start this section by recalling the definition of as-
ymptotic cones. Let @ be a non-principal ultrafilter, i.e. a finitely additive proba-
bility measure on IN taking values in {0, 1} and vanishing on singletons. A state-
ment P(n) is said to hold w-almost surely if the set of integers n such that P(n)
holds has measure 1. For any bounded function f:IN — R, there exists a
unique real number £ such that for every ¢ > 0, we have f(n) € [£ —¢&,£ + ¢]
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w-almost surely. The number £ is called the limit of f along w, and we denote
£ =1im® f(n).

Consider a non-empty metric space (X, d), a base point e € X, and a scaling
sequence s = (s,), i.e. a sequence of positive real numbers tending to infinity.
A sequence (x,) of elements of X is said to be s-linear if there exists a constant
C > 0 so that d(x,,e) < Cs, for all n > 1. We denote by Precone(X, d, s)
the set of s-linear sequences. If @ is a non-principal ultrafilter, the formula
dy(x,y) = lim® d(xy, yn)/sn makes Precone(X, d,s) a pseudometric space, i.e.
d,, satisfies the triangle inequality, is symmetric and vanishes on the diagonal. The
asymptotic cone Cone® (X, d, s) of (X, d) relative to the scaling sequence s and the
non-principal ultrafilter w, is defined by identifying elements of Precone(X, d, s)
at distance d,, zero. More precisely, Cone® (X, d,s) is the set of equivalence
classes of s-linear sequences, where x,y € Precone(X,d,s) are equivalent if
dy(x,y) = 0. We will denote by (x,)® the class of the s-linear sequence (xy).

If two metric spaces X, Y are quasi-isometric, then their asymptotic cones
corresponding to the same parameters s and w are bi-Lipschitz homeomorphic.

Now if G is a locally compact compactly generated group, it can be viewed
as a metric space when endowed with the word metric dg associated to some
compact generating subset S. Since word metrics associated to different compact
generating sets are bi-Lipschitz equivalent, Precone(G, ds, s) does not depend on
the choice of S and will be denoted by Precone(G, s). It inherits a group structure
by component-wise multiplication. For any non-principal ultrafilter w, the set of
s-linear sequences that are at distance d,, zero from the constant sequence (e)
is a subgroup of Precone(G, s), denoted by Sublin®(G,s). The asymptotic cone
Cone®(G, ds, s) is by definition the space of left cosets

Precone(G, s)

Conew(G, dS, S) = m,

endowed with the metric dy, ((gn)®, (hn)®) = lim® ds(gn, hn)/sn. By construc-
tion the group Precone(G, s) acts transitively by isometries on Cone” (G, ds, s).
Note that as a set, Cone® (G, ds,s) does not depend on S. Moreover if Sy, S»
are two compact generating sets, then the identity map is a bi-Lipschitz home-
omorphism between Cone® (G, ds, ,s) and Cone” (G, ds,,s). We will denote by
Cone®(G, s) the corresponding class of metric spaces up to bi-Lipschitz homeo-
morphism.

If H is a subgroup of a locally compact compactly generated group G, then
for every scaling sequence s, we will denote by Preconeg (H, s) the subgroup of
Precone(G, s) consisting of H-valued sequences. Remark that if H is a normal
subgroup of G then Preconeg (H, s) is normal in Precone(G, s), and if H satisfies
a law then Preconeg (H, s) satisfies the same law. These two simple observations
will be used repeatedly throughout the paper.
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2.2. Isometric actions on hyperbolic spaces and real trees

2.2.1. Isometric actions on hyperbolic metric spaces and hyperbolic groups.
Let X be a geodesic §-hyperbolic metric space, and x € X a base-point. Recall
that it means that X is a geodesic metric space such that any side of any geodesic
triangle is contained in the §-neighbourhood of the union of the two other sides.
We define the Gromov product relative to x by the formula 2(y, z), = d(y, x) +
d(z,x) — d(y,z). A sequence (y,) of points in X is called Cauchy-Gromov
if (¥n, Ym)x — 00 as m,n — oco. The relation on the set of Cauchy-Gromov
sequences defined by (y,) ~ (z,) if (¥, zn)x — 00 as n — oo, is an equivalence
relation, and the boundary dX of the hyperbolic metric space X is by definition
the set of equivalence classes of Cauchy-Gromov sequences.

Recall that if ¢ is an isometry of X, then the quantity d(¢"x, x)/n always
converges to some real number /(¢) > 0 as n — oo. When /(¢) = 0, the
isometry ¢ is called elliptic if it has bounded orbits, and parabolic otherwise.
When /(¢) > 0, the isometry ¢ is called hyperbolic. The limit set of ¢, also called
the set of endpoints of ¢, is the subset of dX of Cauchy-Gromov sequences defined
along an orbit of ¢. It is empty if ¢ is elliptic, a singleton if ¢ is parabolic and has
cardinality two if ¢ is hyperbolic.

Now let I be a group acting by isometries on X. Gromov’s classification
[Gro87], which is summarized in Figure 1, says that exactly one of the following
happens:

(1) orbits are bounded, and the action of I" on X is said to be bounded,

(2) orbits are unbounded and I' does not contain any hyperbolic element, in
which case the action is said to be horocyclic;

(3) T has a hyperbolic element and any two hyperbolic elements share the same
endpoints. Such an action is termed lineal;

(4) T has a hyperbolic element, the action is not lineal and any two hyperbolic
elements share an endpoint. In this situation we say that the action is focal;

(5) there exist two hyperbolic elements not sharing any endpoint. Such an action
is said to be of general type.

Now recall that a locally compact compactly generated group G is called
hyperbolic if its Cayley graph is hyperbolic for some (any) compact generating
subset S. The type of G is defined as the type of the action of G on its Cayley
graph. Since horocyclic isometric actions are always distorted (see for example
Proposition 3.2 in [CCMT]), hyperbolic LC-groups are never horocyclic. It is
easily seen that a hyperbolic LC-group is bounded if and only if it is compact, and
hyperbolic LC-groups that are lineal are exactly the locally compact compactly
generated groups with two ends. These two types of hyperbolic LC-groups are
usually gathered under the term of elementary hyperbolic groups.
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Figure 1. Types of actions on hyperbolic spaces.

When dealing with discrete groups, it is a classical result that a finitely gener-
ated non-elementary hyperbolic group is of general type. On the other hand, focal
hyperbolic groups do exist in the realm of non-discrete locally compact groups.
Examples include some connected Lie groups (e.g. R*“!' xR, n > 2, which admits
a free and transitive isometric action on the n-dimensional hyperbolic space H”
fixing a boundary point), or the stabilizer of an end in the automorphism group of
a semi-regular locally finite tree. Beyond the connected and totally disconnected
cases, a simple example of a focal hyperbolic group is (Q, x R) x Z, where the
element 1 € Z acts by multiplication by p on Q, and by p~! on R. Caprace,
Cornulier, Monod and Tessera characterized focal hyperbolic groups as those hy-
perbolic LC-groups that are non-elementary and amenable, and gave a precise
description of the structure of these groups (see Theorem 7.3 in [CCMT]).

2.2.2. Actions on real trees. We now recall some basic facts about real trees
and isometric group actions on these. A metric space is a real tree if it is geodesic
and 0-hyperbolic, or equivalently if any two points are connected by a unique
topological arc. If T is a real tree, a non-empty subset 7’ C T is called a subtree
if it is connected, which is equivalent to saying that 7" is convex. We insist on the
fact that by definition a subtree is necessarily non-empty. A point x € T is said to
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be a branching point if 7' \ {x} has at least three connected components, and the
branching cardinality of x is the cardinality of the set of connected components
of T\ {x}.

If ¢ is an isometry of a real tree T, then the translation length of ¢ is defined
as

lell = inf d(ex, x),
xeT

and the characteristic set Min, of ¢ is the set of points where the translation
length is attained. The following proposition, a proof of which can be consulted in
[CMS8T7], shows that the dynamics of an individual isometry of a real tree is easily
understood.

Proposition 2.1. The characteristic set Miny, is a closed subtree of T which is
invariant by ¢. If ||g|| = 0 then ¢ is elliptic and Miny, is the set of fixed points of
@; and if ||¢|| > 0 then Min,, is a line isometric to R, called the axis of ¢, along
which ¢ translates by ||¢|.

If T is a group acting by isometries on a real tree 7', an invariant subtree 7" is
called minimal if it does not contain any proper invariant subtree. When this holds
we also say that the action of T on 7" is minimal, or that I" acts minimally on 7".
Since a real tree is a hyperbolic metric space, the classification of isometric group
actions on hyperbolic spaces recalled in the previous paragraph holds, and the five
possible types of actions may occur for groups acting on real trees. However if
the action of I" on 7' is minimal, then this action cannot be bounded unless 7 is
reduced to a point, is never horocyclic, and is lineal if and only if 7" is isometric
to the real line.

The following lemma is standard, see Proposition 3.1 in [CM87].

Lemma 2.2. Suppose that T is a group acting on a real tree. If T' contains some
hyperbolic element, then the union of the axes of the hyperbolic elements of T is
an invariant subtree contained in any other invariant subtree.

A simple but useful consequence is the following result.

Lemma 2.3. Let I be a group acting minimally on a real tree T, and let A <« T
be a normal subgroup containing some hyperbolic element. Then the action of A
on T is minimal as well, and every point of T lies on the axis of some hyperbolic
element of A.

Proof. Let T’ be the union of the axes of the hyperbolic elements of A, which is
a minimal A-invariant subtree by the previous lemma. To prove the statement, it
is enough to prove that 7/ = T. But this is clear because the condition that A
is a normal subgroup of I" implies that 7" is also a I'-invariant subtree, and by
minimality of the action of " on 7', one must have 7" = T'. O



426 A. Le Boudec

2.3. Locally compact groups. We now aim to recall some structural results
about locally compact compactly generated groups that will be needed later. As it
is often the case, we will deal separately with connected and totally disconnected
groups.

2.3.1. Connected locally compact groups. The material of this paragraph is
classical. It is an illustration of how the solution of Hilbert’s fifth problem can be
used to derive results about connected locally compact groups from the study of
connected Lie groups.

Proposition 2.4. Every connected locally compact group has a unique maximal
compact normal subgroup, called the compact radical, and the corresponding
quotient is a connected Lie group.

Proof. See Theorem 4.6 of [MZ55]. O

If G is a topological group, we denote by G° the connected component of
the identity. It is a closed characteristic subgroup of G, and the quotient G/G°,
endowed with the quotient topology, is a totally disconnected group.

Corollary 2.5. Every locally compact group G has a compact subgroup K that
is characteristic and contained in G°, such that the quotient G°/ K is a connected
Lie group without non-trivial compact normal subgroup.

Proof. Take K the compact radical of G°. Being characteristic in the character-
istic subgroup G°, it is characteristic in G. O

The following result will be used in Section 4.2.

Corollary 2.6. Every connected-by-compact locally compact group is quasi-
isometric to a compactly generated solvable group.

Proof. Clearly it is enough to prove the result for a connected locally compact
group G. Modding out by the compact radical of G, we may assume by Propo-
sition 2.4 that G is a connected Lie group, and the result now follows from the
classical fact that any connected Lie group has a (possibly non-connected) co-
compact solvable Lie subgroup. |

2.3.2. Locally compact groups with compact open subgroups. Recall that if
G is alocally compact totally disconnected group, then according to van Dantzig’s
theorem, compact open subgroups of G exist and form a basis of identity neigh-
bourhoods. In this section we will deal with the slightly more general class of
groups, namely the class of groups G having compact open subgroups. Note that
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by van Dantzig’s theorem, this is equivalent to saying that G is a locally compact
group with a compact identity component.

The following result, originally due to Abels, associates a connected locally
finite graph to any compactly generated locally compact group with a compact
open subgroup.

Proposition 2.7. Let G be a compactly generated locally compact group having
a compact open subgroup. Then there exists a connected locally finite graph X on
which G acts by automorphisms, transitively and with compact open stabilizers
on the set of vertices.

Recall that the construction consists in choosing a compact open subgroup K,
and a compact generating subset S of G that is bi-invariant under the action of
K. We take G/K as vertex set for the graph X, and two different cosets g1 K and
g2 K are adjacent if there exists s € S*! such that g, = g;s. The resulting graph
is connected and locally finite. The action of G on X is vertex-transitive, and the
stabilizer of the base-vertex is the compact open subgroup K. The graph X is
called the Cayley—Abels graph of G associated to the compact open subgroup K
and compact generating subset S.

In some sense, the following result is a topological analogue of the fact that
any finitely generated group is a quotient of a finitely generated free group. The
result is not new (see for example [CH, Proposition 8.A.15]), but the proof we give
here is different from the one in [CH].

Proposition 2.8. Let G be a compactly generated locally compact group having a
compact open subgroup. Then there exists a compactly generated locally compact
group Gqo acting on a locally finite tree, transitively and with compact open
stabilizers on the set of vertices;, and an open epimorphism nw: Gy — G with
discrete kernel.

Proof. Let K be a compact open subgroup of G, and S a K-bi-invariant compact
symmetric generating subset of G containing the identity. Note that this implies
that K C S. We let Rk s be the set of words of the form 5152k~ Y, with 51,5, € S
and k € K, when the relation s;5, = k holds in the group G. We denote by Gy
the group defined by the abstract presentation Gy = (S | Rk.,s). Note that by
construction, the group Gy comes equipped with a natural morphism =: Gy — G,
which is onto since S is a generating subset of G.

We claim that Gy admits a commensurated subgroup isomorphic to the sub-
group K of G. Indeed, let K¢ be the subgroup of Gy generated by K C S (here
K is seen as a subset of the abstract generating set S). To prove that Ky is isomor-
phic to K, it is enough to prove that Ky intersects trivially the kernel of =. But
this is clear, because by construction all the relations in G of the form k1k, = k3
are already satisfied in Gy, so the map = induces an isomorphism between Ky
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and the subgroup K of G. Now it remains to prove that Ky is commensurated in
Go. Since by definition S generates Gy, it is enough to prove that the subset S
commensurates Ko in Gy. Being compact and open in G, the subgroup K is com-
mensurated in G. Therefore for every s € S there exists a finite index subgroup
K < K such that sK®)s~! < K. This can be rephrased by saying that for every
k® e K©, there exists k € K such that sk®)s~! = k. But now using twice the
set or relators Rk, s, it is not hard to check that these relations hold in G as well,
which implies that the subgroup Ky is commensurated in Go. This finishes the
proof of the claim.

Now if we equip Ko with the pullback topology under the restriction of the map
Tk, = Ko 5 K, we obtain a group topology on Gy turning Ky into a compact
open subgroup [Bou7l, Chapter 3]. Note that by construction the epimorphism
w: Go — G is open and has a discrete kernel (because the latter intersects trivially
the open subgroup Kj).

To end the proof of the proposition, we need to construct a locally finite tree
on which Gy acts with the desired properties. Let us consider the Cayley—Abels
graph X of Gy associated to Ky and S. The action of Gy on X is transitive and
with compact open stabilizers on the set of vertices, so the only thing that needs to
be checked is that X is a tree, i.e. X does not have non-trivial loops. To every loop
in X can be associated a word s . .. s, so that the relation 51 ...s,k = 1 holds in
Gy for some k € K. This means that in the free group over the set S, we have a
decomposition of the form

N
-1y, —1
S1...5.k = H w; (si,18:,2k; w;

i=1

with s; 15 2k 1 e Rk.s. Now remark that in X, any loop indexed by a word of
the form s; 15; 2k; ! € Rk s is nothing but a simple backtrack, and it follows that
we have a decomposition of our original loop as a sequence of backtracks. This
implies that X is a tree and finishes the proof. O

3. Preliminary results on asymptotic cones

This section gathers a few lemmas that will be used in the sequel. As we have
seen earlier, any asymptotic cone of a locally compact compactly generated group
comes equipped with a natural isometric group action. The next lemma describes
to what extent this data varies for instance when modding out by a compact normal
subgroup or passing to a cocompact normal subgroup. We point out that in the
second statement, the assumption that 77 (G) is normal in Q is essential (think of
R x R inside SL;(RR)).



Locally compact lacunary hyperbolic groups 429

Lemma 3.1. Consider a proper homomorphism with cocompact image w: G — Q
between locally compact compactly generated groups. Then for every scaling se-
quence s and non-principal ultrafilter w, the induced map at the level of asymptotic
cones 7:Cone® (G, s) — Cone®(Q,s) is a bi-Lipschitz homeomorphism.

If we assume in addition that Cone®(G,s) (and hence Cone®(Q,s)) is a
real tree and that 7w(G) is normal in Q, then the actions of Precone(G,s) on
Cone® (G, s) and of Precone(Q, s) on Cone”(Q,s) have the same type.

Proof. Since the homomorphism 7 has compact kernel and cocompact image,
it is a quasi-isometry. Therefore the map 7 defined by 7((g,)?) = (7w (gn))®
is a bi-Lipschitz homeomorphism, which is equivariant under the actions of
Precone(G, s).

It follows that Cone® (Q, s) is areal tree if and only if Cone® (G, s) is areal tree.
When this is so and when 7(G) is supposed to be normal in Q, if Precone(G, s)
stabilizes some finite subset in the boundary of Cone® (G, s), then the same holds
for the group Precone(Q,s). The converse implication being clear, the proof is
complete. O

Recall that a metric space (X, d) is coarsely connected if there exists a con-
stant ¢ > O such that for any x,y € X, there exists a sequence of points
X = Xg,X1,...,X, = y suchthat d(x;, x;+1) < cforeveryi =0,...,n— 1.

Lemma 3.2. Let (X, d) be a coarsely connected non-empty metric space. If (X, d)
is unbounded, then so are all its asymptotic cones.

Proof. Let e € X be a base point, s a scaling sequence and w a non-principal
ultrafilter. We prove the stronger statement that for every £ > 0, there exists a
point in Cone® (X, d, s) at distance exactly £ from the point (e)“.

Since (X, d) isunbounded, forevery n > 1 there is a point x,, € X atdistance at
least £s, from the base point e. Now by coarse connectedness, x, can be chosen
to be at distance at most £s,, + ¢ from e, where ¢ > 0 is the constant from the
definition of coarse connectedness. By construction, the sequence (x,) defines a
point (x,)® € Cone”(X, d, s) that is at distance ¢ to the point (e)®. O

Lemma 3.3. Let G be a compactly generated locally compact group, and H a
closed compactly generated subgroup of G. Then for any asymptotic cone of G,
the following statements are equivalent:

i) H is compact,
ii) Preconeg (H,Ss) fixes the point (¢)® € Cone® (G, s);
iii) Preconeg (H,s) has a bounded orbit in Cone® (G, s).

Proof. The implications i) = ii = iii) are trivial. Let us prove iii) = i) by
proving the contrapositive statement.
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Since H is a closed compactly generated subgroup of G, the metric space
(H,dg) is coarsely connected [CH, Proposition 4.B.8]. So if H is assumed not
to be compact, it follows from Lemma 3.2 that none of the asymptotic cones of
(H, dg) are bounded. But the asymptotic cone of H with the induced metric from
G can be naturally identified with the orbit under Preconeg (H, s) of the point
(e)® € Cone®(G,s). So it follows that Preconeg (H, s) has one unbounded orbit,
and since the action is isometric, every orbit must be unbounded. O

Remark 3.4. We illustrate the failure of Lemma 3.3 when H is not compactly
generated. Let G = I, (¢)) x; Z, where I, ((¢)) is the field of Laurent series over
some finite field I, and let H be the subgroup generated by (+7*7,0), n > 1,
where o, = 22". Then for any scaling sequence s such that o, << s, << 0541
(take for example s, = 232"7") and for any non-principal ultrafilter o, the group
Preconeg (H,s) fixes the point (e)® € Cone®(G,s), whereas H is clearly not
compact.

Lemma 3.5. Let G be a compactly generated locally compact group, and let
N be a closed normal subgroup of G. Assume that N is not cocompact in
G. Then for every asymptotic cone Cone® (G, s), there exists a bi-Lipschitz ray
y:[0, +00[— Cone® (G, s) such that for every t > 0,

dw(y(t),Cn) > ct

for some constant ¢ > 0, where Cy is the orbit of the point (¢)® under
Preconeg (N, s).

Proof. Since the group G/ N is non-compact, it has an infinite quasi-geodesic ray,
that can be lifted to a quasi-geodesic ray p: [0, +o0o[— G such that for every ¢ > 0,
dg(p(t), N) > ct for some constant c. Now we easily check that for every non-
principal ultrafilter @ and scaling sequence s, the w-limit of the quasi-geodesic
ray p in Cone” (G, s) is a bi-Lipschitz ray satisfying the required property. O

Corollary 3.6. Let G be a compactly generated locally compact group, and let
N be a closed normal subgroup of G. If for some parameters w, s the action of
Preconeg (N, s) on Cone® (G, s) is cobounded, then N is cocompact in G.

When G is a compactly generated group with an asymptotic cone Cone® (G, s)
that is a real tree and such that the action of Precone(G, s) is of general type, the
five types of actions on real trees may happen for the action of Preconeg (H, S)
on Cone®(G,s), where H is a subgroup of G. However the situation is more
restrictive under the additional assumption that H is a normal subgroup.

Lemma 3.7. Let G be a locally compact compactly generated group. Assume
that G admits an asympiotic cone Cone® (G, s) that is a real tree and such that the
action of Precone(G, s) is of general type. Then for any normal subgroup N of G,
the action of Preconeg (N, s) on Cone® (G, s) is either bounded or of general type.
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Proof. If the group Preconeg (N, s) preserves a finite subset in the boundary of
Cone® (G, s), then this finite subset is also preserved by Precone(G, s) because
Preconeg (N, s) is normal in Precone(G, s). By assumption this does not happen,
so it follows that the action of Preconeg (N, s) on Cone® (G, s) is either bounded
or of general type. |

We point out that it may happen that the group Preconeg (N, s) fixes the point
(e)® € Cone”(G,s) even if N is non-compact. Indeed, if G is a non-virtually
cyclic finitely generated lacunary hyperbolic group with an infinite center Z (such
groups have been constructed in [OOS09]), then the action of the abelian group
Preconeg (Z, s) cannot be of general type, and therefore must have a fixed point.

Let (X,d) be a non-empty metric space, and let xo € X. Recall that an
isometry ¢ of X is hyperbolic if the limit as n — oo of d(¢" x¢, x¢)/n is positive.
If G < Isom(X) is a subgroup of the isometry group of X, we can endow G with
the pseudo-metric d, (g.h) = d(gxo, hxo). Note that for every scaling sequence
s and non-principal ultrafilter @, the group Precone(G, dx,,s) admits a natural
action on the asymptotic cone Cone” (X, d, s).

The following lemma says that if X is a geodesic hyperbolic metric space
and G < Isom(X), in many cases the type of the action of Precone(G, dx,,S)
on Cone® (X, d, s) is the same as the type of the action of G on X. Note that both
situations of statement (b) may happen (see Remark 3.4).

Lemma 3.8. Let X be a geodesic hyperbolic metric space, and xo € X. If G is a
subgroup of the isometry group of X, then

(a) if the action of G on X is either bounded, lineal, focal or of general type,
then for every asymptotic cone of X, the action of Precone(G, dx,,s) on
Cone® (X, d,s) has the same type;

(b) ifthe action of G on X is horocyclic, then the action of Precone(G, dx,, S) on
Cone® (X, d,s) is either bounded or horocylic.

Proof. We start by making the easy observation that if g € G is a hyperbolic
element, then for every asymptotic cone Cone® (X, d, s) of X, the element (g*7) €
Precone(G, dx, ., s) is a hyperbolic isometry of Cone”(X,d,s), and the axis of
(g®) is the asymptotic cone of any geodesic line in X between the two endpoints
of g.

(a) The statement is obvious for bounded and lineal actions, and follows from
the previous observation for actions of general type. Let us give the proof in the
case when the action of G on X is focal. Let y € G be a hyperbolic element.
Since any two hyperbolic elements of G share an endpoint, upon changing y into
its inverse, we may assume that (y*xo) € 9X is the unique boundary point that
is fixed by G. This implies (see [GH90, Chap.7 Cor.3] or [BH99, Part III.H,
Lemma 3.3]) that there exists some constant ¢ > 0 such that for every g € G,
we have d(gy¥xo,y*x0) < cd(gxo.xo) for every integer k > 1. It follows
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that for every element (g,) € Precone(G, dy,.S), there exists some constant
C > 0 such that d(g,y"Ixo, y*nlxq) < Cs, foreveryt > Oandn > 1.
This implies that, if we let &:[0, +0o[— Cone”(X, d,s) be the ray defined by
£(1) = (y¥ndxy)®, in the real tree Cone® (X, d, s) the distance between g - £(f)
and £(¢) is uniformly bounded, which means that the two rays g - £ and & represent
the same end of Cone® (X, d,s). Combined with the fact that Precone(G, dy,, s)
contains hyperbolic elements not having the same endpoints (because G already
does), this implies that the action of Precone(G, d, ., s) on Cone” (X, d, s) is focal.

(b) We assume that the action of Precone(G, dy,,s) on Cone®(X,d,s) is
not bounded, and we prove that it is horocylic. Let (g,x0)® be a point of
Cone®(X, d, s) such that dy,((x0)®, (gnx0)®) = £ > 0, and let y, be a geodesic
in X between x¢ and g,xo. Call m, the mid-point of y,. Recall that since the
action of G on X is horocylic, for every ¢ > 0 there exists some constant ¢’
such that the intersection in X between any c-quasi-geodesic and any G-orbit lies
in the union of two c-balls. This implies that w-almost surely the ball or radius
£s, /3 around m, in X does intersect the orbit Gxy. Therefore the mid-point of
the unique geodesic in Cone® (X, d, s) between (xo)® and (g, x0)® is at distance at
least £/3 from any point in the Precone(G, dy,, s)-orbit of (x¢). In particular this
proves that Precone(G, dy, ., s) cannot preserve a geodesic line in Cone® (X, d, s),
and therefore does not have any hyperbolic isometry. |

4. Focal lacunary hyperbolic groups

4.1. Focal lacunary hyperbolic groups are focal groups. This section is de-
voted to the proof of Theorem 1.1. We call a locally compact compactly generated
group focal lacunary hyperbolic if it admits one asymptotic cone Cone® (G, s) that
is a real tree, and such that the action of Precone(G, s) on Cone® (G, s) is focal.
According to Lemma 3.8, any focal hyperbolic group is a focal lacunary hyper-
bolic group. The rest of this section will be devoted to the proof of the following
converse implication.

Theorem 4.1. Any focal lacunary hyperbolic group admits a topological semidi-
rect product decomposition H x 7, or H x R, where the element 1 € Z or R acts
on H as a compacting automorphism.

Recall that an automorphism o € Aut(H) of a locally compact group H is
called compacting if there exists a compact subset V' C H, called a pointwise
vacuum set for «, such that for every & € H, there exists an integer n¢ > 1 such
that «” (h) € V for every n > ny. Note that « € Aut(H ) is compacting if and only
if some positive power of « is compacting.

The idea of the proof of Theorem 4.1 is to deduce a contracting dynamics at
the level of the group from a focal dynamics at the level of one asymptotic cone.
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The first step in the argument is to prove that a focal lacunary hyperbolic group
is a topological semidirect product H x Z or H x R. This will be achieved in
Corollary 4.5.

Recall that if G is a locally compact group endowed with the word metric
associated to some compact generating subset, a cyclic subgroup (g) is said to be
undistorted if the left multiplication by g is a hyperbolic isometry of (G, ds), i.e.
if the limit of |g"|s/n is not zero. A sufficient condition for (g) to be undistorted
is the existence of a continuous homomorphism f: G — Z such that f(g) # 0.

The following result provides a criterion for a normal subgroup of a focal
lacunary hyperbolic group to be cocompact.

Lemma 4.2. Let G be a focal lacunary hyperbolic group, and N a closed normal
subgroup containing an undistorted element. Then N is cocompact in G.

Proof. We denote by C = Cone® (G, s) an asymptotic cone of G that is a real tree
and such that the action of Precone(G, s) on C is focal. Let &: [0, +00[— C be the
ray emanating from (e)® representing the end of C that is fixed by Precone(G, s).
Since the group N contains an undistorted element, it follows that the group
Preconeg (N, s) acts on C with a hyperbolic element &, whose translation length
will be denoted by £. Without loss of generality, we may assume that (e)®
belongs to the axis of 4. Indeed, if (g,)® is a point on the axis of 4 and if we
denote by g = (gu), then g~ 'hg is hyperbolic and contains (¢)® on its axis.
Since Preconeg (N, s) is normal in Precone(G, s), the element g~!hg remains in
Preconeg (N, s), and the claim is proved. Now since the action of Precone(G, s)
on C is supposed to be focal, the axis of 47 must contain the entire ray £.

Let us now prove that the action of Preconeg (N, s) on C is cocompact. Ac-
cording to Corollary 3.6, this finishes the proof of the proposition. Let x be a
point of C. We will prove that the Preconeg (N, s)-orbit of x in C intersects the
segment joining (e)® and £(£). According to Lemma 2.3, there exists some hyper-
bolic element y € Preconeg (N, s) whose axis contains x. But since the action of
Precone(G, s) on C is focal, the axis of y intersects £ along an infinite ray, and by
translating along the axis of y, there exists some n € Z so that y = y"x belongs
to £. But now since the axis of & contains the ray ¢ and since / translates along
its axis by an amount of £, we can find m € Z so that /"y remains in £ and is at
distance at most £ from (e)®. |

Remark 4.3. Actually the same proof works with the only assumption that N is
a closed normal subgroup such that Preconeg (N, s) acts on C with a hyperbolic
element. This will be used in the proof of Proposition 4.6.

Recall that if G is a locally compact group and p a left-invariant Haar measure
on G, for every g € G there exists a unique positive real number Ag(g) such that
w(Ug™ 1) = Ag(g)u(U) for every Borel subset U. The function Ag: G — R is
called the modular function of G, and is a continuous group homomorphism.
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The following proposition, which is a crucial step in the argument, consists
in obtaining an estimate on the modular function of a focal lacunary hyperbolic
group. In the proof, we take advantage of an idea appearing in the end of the proof
of Theorem 6.12 in [DS05].

Lemma 4.4. Let G be focal lacunary hyperbolic group, and C = Cone® (G, s) an
asymptotic cone of G that is a real tree and such that the action of Precone(G, s)
is focal. Let £:[0, +oo[— C, £ — (£,(£))%, be the geodesic ray emanating from
(e)? representing the end of C that is fixed by Precone(G, s). Then there exist some
constants ¢ > 0, p > 1, such that for every £ > 0, we have

ot < Ag(Ea(0))

w-almost surely.

Proof. First note that for every £ > 0, the element (§,({)) € Precone(G, s) sends
the point (e)® to £(€) by definition. But since the action of Precone(G,s) on C
is supposed to be focal, the image of the geodesic ray & by (§,({)) eventually
coincides with &. It follows that (§,(€)) - £ is exactly the infinite subray of &
emanating from &(€). In particular for every k > 1, (§,(¢)) - &(k€) = E((k + 1)0),
and by a straightforward induction we obtain £(k{) = (&,(£)*)®.

Let S be a compact generating subset of G, and denote by Bg(r) the closed
ball of radius » > 0 around the identity with respect to the word metric associated
to S. Let £ > 0, and (g,) € Precone(G, s) such that |g,| < {s, for every n > 1.
The image of the point (e)® under such an element (g,) is at distance at most ¢
from (e)®. The action being focal, it follows from this observation that the two
rays (g») - £ and £ intersect along an infinite subray of £ containing the point &(¢).

Now let us assume for a moment that the element (g ) is either elliptic or has
the fixed end of C for attractive endpoint. Since the translation length of (g,) is at
most £, it follows from the above observation that (g,) - £(£) is at distance at most
£/2 from either & () or £(2¢). This implies that w-almost surely

s (8nn D). En(0),E0(0) = S

where ds (g, {h, k}) is by definition the minimum between ds (g, #) and ds (g, k).
This inequality can be reformulated by saying that w-almost surely

6n € 6al0) B (5tn) £ (07 UG (0" Bs(30sn) -0

Now if the element (g,) is a hyperbolic isometry having the fixed end of C for
repulsive endpoint, then we can apply the previous argument to (g;;!).
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So we have proved that for every £ > 0, w-almost surely the ball of radius £s,
around the identity in G lies inside

6 (0) - Bs (3051 £ (0)”"
U607 Bs (350 ) & (07"

U 0)- B (Gt50) & (07

Now if we let u be a left-invariant Haar measure on G, then for every £ > 0,
w-almost surely

pBs(tsn) < 2B (3050) 607" ) + u(Bs (3050) -n(072).
Dividing by u(Bs(2¢s,/3)), we obtain

p(Bs(Lsn))
2 (os(2)

We claim that the Haar measure p is not right-invariant. Let us argue by con-
tradiction and assume that u is right-invariant, which implies that the right-hand
side of the last inequality is constant equal to 3. Then for every £ > 0, w-almost
surely w(Bs({sy)) < 3u(Bs(2¢s,/3)). Now since every point of the real tree C
is a branching point, spheres of any given radius in C are infinite, and it is not
hard to see that this establishes a contradiction with the above inequality on the
growth function of G. So pu cannot be right-invariant, i.e. G is non-unimodular.
In particular the group G has exponential growth, and we easily deduce that the
left-hand side of the above inequality is at least c;**” for some constants ¢; > 0,
a > 1, and the conclusion follows with ¢ = \/c1/3 and p = /. |

< 2A6(Ea(0) + Ag(Ea(0) = 3A6(£a(0))*.

Corollary 4.5. If G is a focal lacunary hyperbolic group, then G admits a
topological semidirect product decomposition H x 7. or H x R, where H is the
kernel of the modular function of G.

Proof. Let H be the kernel of the modular function Ag: G — ]Rj_. Assume that
we have proved that the image of Ag is a closed non-trivial subgroup of R% . Then
the image of Ag is either discrete and infinite cyclic, or topologically isomorphic
to R. In the first case we easily have G = H xZ, and in the other case we use the
fact that any quotient homomorphism from a locally compact group to the group
R is split, and deduce that G = H x R.
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So we should prove that the image of Ag is closed and non-trivial. According
to Lemma 4.4, we can choose some &,(f) = y € G such that Ag(y) > 1. Let
us consider the subgroup N = H x (y) of G generated by H and y. Since H
contains the derived subgroup of G, the subgroup N is normal in G, and being
the preimage by Ag of the discrete subgroup of R generated by Ag(y), N is a
closed subgroup.

Since Ag(y) # 1, the cyclic subgroup generated by y is undistorted in G,
and therefore we are in position to apply Lemma 4.2, which implies that N is a
cocompact subgroup of G. Hence A induces a homomorphism from the compact
group G/N to R} /Ag(N), which necessarily has a closed image. Being the
preimage in R of this closed subgroup, the image of Ag is closed. O

So we have proved that any focal lacunary hyperbolic group is either of the form
H x7Z or H x R. We must now prove that the associated action is compacting.
The first step towards this result is the following proposition, which says that a
focal lacunary hyperbolic group satisfies in some sense a weak local contracting
property.

If H is a subgroup of a compactly generated group G, we denote by Bg, g (r)
the closed ball of radius » > 0 in H around the identity, where H is endowed with
the induced metric from G.

Proposition 4.6. Let G be a focal lacunary hyperbolic group. Assume that G
admits a topological semidirect product decomposition G = H x{ty). Then there
exist t € {to,t;'} and infinitely many N > 1 such that

tN . Be.g(2N)-t™N c Bg.g(N).

Proof. Let us denote by C = Cone”(G,s) an asymptotic cone of G that is a
real tree and such that the action of Precone(G,s) on C is focal. Observe that
the element (z;") € Precone(G,s) is hyperbolic, and its axis is the image of

the map R — Cone”(G,s), x — (t, Lxsnlyo - One of the two ends of this axis
must be the end of C that is fixed by Precone(G, s), so there is ¢ € {f9,; '} such
that the ray emanating from (e)® representing the fixed end of C is the image of
£:]0, +00[— Cone®(G,s), x > (t~Lxsnlyo,

We claim that Preconeg (H, s) cannot fix a point in C. Indeed, if the set of fixed
points of Preconeg (H, s) is not empty, then it is a subtree of C that is invariant by
Precone(G, s) since H <G. But Precone(G, s) acts transitively on C, so we deduce
that the set of fixed points of Preconeg (H,s) is the entire C. It follows that the
action of Preconeg (H, s) on C is trivial, and this implies that the asymptotic cone
C is a line, which contradicts the fact that the action of Precone(G, s) on C is focal.
On the other hand, if Preconeg (H,s) contains some hyperbolic isometry, then
according to Remark 4.3 the conclusion of Lemma 4.2 holds and the subgroup
H is cocompact in G, which is a contradiction. So the action of Preconeg (H, s)
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on C must be horocyclic. It follows that if (%,) is a sequence in H such that
|hn|s < 24s, for every n > 1 (which implies that the distance in Cone® (G, s)
between (¢)® and (h,)® is at most 2£), then the element (/) fixes £([£, +o¢[). In
particular if |h,|s < 2s, for every n > 1, then (%) fixes the point £(1) = (¢ ~57)%,

and we have
d(hyt=Sn =5 15 hy,t —5n

Sn Sn

li =0.
So for every h, € Bg, g (2s,), w-almost surely we have |t h,t ™" |s < s,, which
is equivalent to saying that w-almost surely ¢ - Bg g (2s,) -t " C Bg,u(sn). O

Corollary 4.7. Let G be a focal lacunary hyperbolic group with a topological
semidirect product decomposition G = H x (to). Then there exist t € {to,15 "},
an integer ng > 1 and a compact symmetric subset K C H containing the identity
such that

i) (K,t"0) = H x (t"0);
ii) "0 . K?.t7" C K.

Proof. Let t coming from Proposition 4.6, and Ny > 1 an integer such that
Bg.m (Ny) together with ¢ generate the group G. According to Proposition 4.6,
there exists N; > Ny such that

tN . B u(2N1) -t ™' C Bg,u(Ny).
If we set
Ni—1
Ki= |J " Bou(Np)-t7",
i=0

then K; is a compact subset of H and by construction conjugating by ¢ sends K;
into itself because

t- K-tV c KUt B g (Ny) -tV C K.

In particular the sequence of compact subsets (t™" - K; - t"),>0, is increasing.
A fortiori the same holds for the sequence of subgroups (7" - (K1) - t")»>0, and
it follows that the subgroup they generate is nothing but their union. But now
by assumption K; and ¢ generate G, so this increasing union of subgroups is the
entire subgroup H. This observation implies in particular that for every noy > 1,
the subgroup generated by K; and "0 is equal to H x (¢"°).

Now we let no be an integer satisfying the conclusion of Proposition 4.6 and
so that Bg,g(no) contains K;, and we check that K = Bg g (no) satisfies the
conclusion. It follows from the last paragraph that the subgroup generated by K
together with ¢"0 is equal to H x (¢"°) because K contains K;. Besides it is clear
that K? C Bg,m(2n9), so the inclusion 10 - K2 . t~"0 C K follows immediately
from the conclusion of Proposition 4.6. |
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The following result provides a sufficient condition on a group G = H x (t)
so that the conjugation by the element ¢ induces a compacting automorphism of
the group H.

Proposition 4.8. Let G = H x (t) be a locally compact group such that there is
some compact symmetric subset K C H containing the identity so that

(a) S = K U {t} generates the group G,
(b) t-K?*-t7' C K.

Then the automorphism of H induced by the conjugation by t is compacting.

Proof. We check that for every h € H, we have t"ht™ € K eventually. The
hypotheses imply that H is generated by the increasing union of compact sets
t~" - K - t", so that every element of H lies inside t ™" - K X 47 for some integers
n,k > 0. The latter being included in 1% . K - t**¥ thanks to (b), the proof is
complete. |

We are now able to prove the main result of this section.

Proof of Theorem 4.1. Let G be a focal lacunary hyperbolic group. According to
Corollary 4.5, the group G admits a topological semidirect product decomposition
of the form H Xy Z or H X4y R. To conclude we need to prove that the action
of o (resp. «(1)) on H is compacting. For the sake of simplicity we denote (1)
by « as well.

We claim that upon changing « into its inverse, there is some positive power
of o satisfying the hypotheses of Proposition 4.8. In the case when G = H x4 Z
this follows directly from Corollary 4.7. When G = H x4 R, the subgroup
H %41y Z is normal and cocompact in G, and therefore focal lacunary hyperbolic
as well by Lemma 3.1, so that Corollary 4.7 can also be applied.

Consequently Proposition 4.8 implies that some positive power of « is com-
pacting, and it follows that « is compacting as well. |

4.2. Application to locally compact groups with asymptotic cut-points. Re-
call that in a geodesic metric space X, a point x € X is a cut-point if X \ {x} is
not connected. In a sense, the property of having cut-points in asymptotic cones
can be seen as a very weak form of hyperbolicity. Examples of finitely gener-
ated groups with cut-points in all their asymptotic cones include relatively hyper-
bolic groups [DS05, Theorem 1.11] or mapping class groups of punctured surfaces
[BEn06, Theorem 7.1]. Actually relatively hyperbolic groups and mapping class
groups are examples of the so-called acylindrically hyperbolic groups, and it is
proved in [S1s13] that any acylindrically hyperbolic group has cut-points in all its
asymptotic cones.
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Recall that a law is a non-trivial reduced word w(xy, ..., x,) in the letters
X1,...,Xn. A group G is said to satisfy the law w(x1, ..., x,) ifw(gy, ..., gn) =1
in G for every g1,...,8n» € G. Examples of groups satisfying a law are solvable
groups or groups of finite exponent. In [DSOS5, Theorem 6.12], Drutu and Sapir
proved that if a finitely generated group G satisfies a law, then G does not have cut-
points in any asymptotic cone, unless G is virtually cyclic. However, this result
does not hold in the realm of locally compact groups. For example for every local
field KK, the affine group IK x IK* is a non-elementary hyperbolic LC-group and is
solvable of class two.

We will extend the result of Drutu and Sapir to locally compact compactly
generated groups in Theorem 4.12 below, by proving that if G is a group satisfying
a law that is neither an elementary hyperbolic group nor a focal hyperbolic group,
then G does not have cut-points in any of its asymptotic cones. Before doing this,
let us derive the following consequence of Theorem 4.1.

Proposition 4.9. Let G be a locally compact lacunary hyperbolic group. If G
satisfies a law then G is hyperbolic.

Proof. Let Cone” (G, s) be an asymptotic cone of G that is a real tree. Note that
since the group G satisfies a law, the same holds for the group Precone(G, s).
Clearly we can assume that Cone” (G, s) is not a point. If Cone”(G,s) is a line,
then by Lemma 5.1 the group G is elementary hyperbolic. So we may assume
that Cone® (G, s) is not a line, and it follows that the action of Precone(G,s)
on Cone®(G,s) is either focal or of general type. But it cannot be of general
type, because otherwise this would imply that Precone(G,s) contains a non-
abelian free subgroup [CM87, Theorem 2.7], which is a contradiction with the
fact that Precone(G, s) satisfies a law. Therefore the action of Precone(G, s) on
Cone®(G, s) is focal, and it follows from Theorem 4.1 that G is a focal hyperbolic
group. O

Remark 4.10. Since the properties of being lacunary hyperbolic and of being
hyperbolic are invariant under quasi-isometries, Proposition 4.9 still holds for
groups quasi-isometric to a group satisfying a law.

Although it is not stated explicitly in these terms, the following result can be
derived from the work of Drufu and Sapir. For an introduction to the concept of
tree-graded spaces, we refer the reader to [DS05].

Proposition 4.11 (Drutu and Sapir). Let G be a locally compact compactly gen-
erated group satisfying a law. If C = Cone® (G, s) is an asymptotic cone of G with
cut-points, then C must be a real tree.
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Proof. Since by assumption C has cut-points, it follows from Lemma 2.31 of
[DS05] that C is tree-graded with respect to a collection of proper subsets. Assume
by contradiction that C is not a real tree. Then we can apply Proposition 6.9 of
[DSO05] to the action of Precone(G, s) on C, and we obtain that Precone(G, s) con-
tains a non-abelian free subgroup. On the other hand since the group G satisfies
a law, Precone(G, s) cannot contain a non-abelian free group. Contradiction. [

The following theorem generalizes to the realm of locally compact compactly
generated groups the aforementioned result of Drutu and Sapir about finitely
generated groups satisfying a law.

Theorem 4.12. Let G be a locally compact compactly generated group satisfying
a law. If G has cut-points in one of its asymptotic cones, then G is either an
elementary or a focal hyperbolic group.

Proof. We let C be an asymptotic cone of G with cut-points. Since the group G
satisfies a law, it follows from Proposition 4.11 that C is a real tree. Therefore G is
lacunary hyperbolic, and the conclusion then follows from Proposition 4.9. O

Since the property of having cut-points in one asymptotic cone is a quasi-
isometry invariant, the following result follows immediately from the contraposi-
tive of Theorem 4.12.

Corollary 4.13. Let G be a compactly generated group that is quasi-isometric to
a group satisfying a law. If G is not a hyperbolic group then G does not have
cut-points in any of its asymptotic cones.

In particular since connected-by-compact locally compact groups, or com-
pactly generated linear algebraic groups over an ultrametric local field of char-
acteristic zero, are quasi-isometric to a solvable group, we deduce the following
result.

Corollary 4.14. Let G be a locally compact compactly generated group. Assume
that G is either connected-by-compact, or a linear algebraic group over an ul-
trametric local field of characteristic zero. If G is not a hyperbolic group then G
does not have cut-points in any of its asymptotic cones.
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Note that by Corollary 3 of [CTI], we have a complete description of con-
nected Lie groups or linear algebraic groups over a non-Archimedean local field of
characteristic zero that are non-elementary hyperbolic. For example in the case of
a connected Lie group, G is either isomorphic to a semidirect product N x(K xR),
where N is a simply connected nilpotent Lie group, K is a compact connected Lie
group and the action of R on N is contracting; or the quotient of G by its maxi-
mal compact normal subgroup is isomorphic to a rank one simple Lie group with
trivial center. So it follows from Corollary 4.14 that if a connected Lie group is
not of this form, then it does not have cut-points in any of its asymptotic cones.

Remark 4.15. Here is another proof of Corollary 4.14 when G is a connected-
by-compact locally compact group. Argue by contradiction and assume that G
admits one asymptotic cone C with cut-points. Since G is quasi-isometric to
a solvable group, according to Proposition 4.11 the asymptotic cone C must be
a real tree. Now since connected-by-compact groups are compactly presented
(see for example [CH, Proposition 8.A.16]), the group G must be hyperbolic by
Corollary 5.9 below. Contradiction.

5. Structural results for locally compact lacunary hyperbolic groups

5.1. Identity component in lacunary hyperbolic groups. Recall that a locally
compact compactly generated group G is lacunary hyperbolic of general type if it
admits one asymptotic cone Cone® (G, s) that is a real tree and such that the action
of Precone(G, s) on Cone® (G, s) is of general type. It turns out that, apart from
the case of hyperbolic LC-groups, every lacunary hyperbolic group is of general
type. This will be proved in Theorem 5.2 below.

It is proved in [DSOS, Proposition 6.1] that if a finitely generated group G
has one asymptotic cone that is a line, then G is virtually infinite cyclic. The
following lemma is an extension of this result to coarsely connected metric groups.
In particular it encompasses the case of a closed compactly generated subgroup
H of a locally compact compactly generated group G, where H is endowed with
the induced word metric from G.

Lemma 5.1. Let (I',d) be a group equipped with a coarsely connected left-
invariant metric. If (I, d) admits one asymptotic cone that is quasi-isometric to
the real line, then I admits an infinite cyclic cobounded subgroup.

Proof. If C = Cone®(T,d,s) is an asymptotic cone of (T',d) that is quasi-
isometric to the real line, the action of Precone(T", d,s) on C is lineal. Therefore
Precone(I, d,s) contains some hyperbolic element y = (y,), and there exists
£ > 0 such that the £-neighbourhood of the (y)-orbit of the point (e)® is the
entire C.



44?2 A. Le Boudec

For every n > 1, we let I';, be the subgroup of I' generated by y,. We claim
that w-almost surely, I' is contained in the (¢ + 1)s,-neighbourhood of I';,. Let us
argue by contradiction and assume that w-almost surely there exists x, € I" such
that d(x,, ) = (£ + 1)s,. Since (I', d) is coarsely connected, we can assume
that d(x,, [,) < (£ + 1)s, + ¢ for some constant ¢ > 0. Upon multiplying x, on
the left by an element of I',,, we can moreover assume that d(x,, [,) = d(x,, e),
which implies that the sequence (x,) defines a point x € C. But by construction,
w-almost surely d(x,, y}) > (£+1)s, forevery i € Z, so the point x is at distance
atleast ({4 1) from any point in the () )-orbit of the point (¢)®. Contradiction. O

Theorem 5.2. Let G be a locally compact lacunary hyperbolic group. Then
exactly one of the following holds:

(a) G is either an elementary or a focal hyperbolic group;

(b) for every asymptotic cone Cone®(G,Ss) that is a real tree, the action of
Precone(G, s) on Cone® (G, s) is of general type.

Proof. Let C = Cone” (G, s) be an asymptotic cone of G that is a real tree. By
homogeneity C can be either a point, a line, or such that every point is branching
with the same branching cardinality. The case when C is a point is trivial, as
it easily implies that the group G is compact. If C is a line then G must have an
infinite cyclic discrete and cocompact subgroup by Lemma 5.1. So we may assume
that C is neither a point nor a line. This implies that if the action of Precone(G, s)
on C is not of general type, then it is focal, and by Theorem 4.1 this implies that G
is focal hyperbolic. O

We now aim to establish some structural results about locally compact lacunary
hyperbolic groups. Since any topological group naturally lies into an extension
with a connected kernel and a totally disconnected quotient, it is natural to wonder
what can be said about the identity component of a locally compact lacunary
hyperbolic group. Recall that even for hyperbolic LC-groups, it may happen that
the identity component is neither compact nor cocompact. Take for example the
semidirect product (R x Q,) % Z, where the action of Z is by multiplication by 1/2
on R and by p on Q,. However, if G is a hyperbolic LC-group of general type, it
follows from [CCMT, Proposition 5.10] that the identity component of G is either
compact or cocompact. We will extend this result to lacunary hyperbolic groups
in Theorem 5.4 below.

Recall that if G is a locally compact group, the Braconnier topology is a
Hausdorff topology on the group Aut(G) of topological automorphisms of G. For
an introduction to this topology, see for example [CMI11, Appendix IJ.
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Lemma 5.3. Let G be a o-compact locally compact group, and N < G a closed
normal subgroup with trivial center and finite outer automorphism group. Assume
moreover that the group Inn(N) of inner automorphisms of N is closed in Aut(N).
Then G has a finite index open subgroup that is topologically isomorphic to the
direct product of N with its centralizer in G.

Proof. If we let C be the centralizer of N in G, we want to prove that the subgroup
NC is open in G, has finite index and is topologically the direct product of N
and C. Since N is a closed normal subgroup of G, the action of G by conjugation
on N yields a continuous map G — Aut(N) [HR79, Theorem 26.7]. Being
the preimage of the closed finite index subgroup Inn(N) of Aut(N) under this
map, the subgroup NC is a closed finite index (and hence open) subgroup of G.
It follows that NC is a o-compact locally compact group, and we deduce that the
natural epimorphism N x C — NC is a quotient morphism between topological
groups. Since it is clearly onto, and injective because N has trivial center, it is an
isomorphism of topological groups. |

Theorem 5.4. Let G be a locally compact lacunary hyperbolic group of general
type. Then G° is either compact or cocompact in G.

Proof. According to Corollary 2.5 there exists a compact characteristic subgroup
W of G contained in G° such that G°/W is a connected Lie group without
non-trivial compact normal subgroups. Now by Lemma 3.1, the group G/ W is
lacunary hyperbolic of general type as well, so the proof can be reduced to the case
when G° is a connected Lie group without non-trivial compact normal subgroups.

Let C = Cone®(G, s) be an asymptotic cone of G that is a real tree and such
that the action of Precone(G, s) on C is of general type. According to Lemma 3.7,
the action of Preconeg (G°, s) on C is either bounded or of general type. Since G°
is compactly generated, if the action of Preconeg (G°, s) on C is bounded then G°
is compact by Lemma 3.3. So we may assume that this action is of general type
and we will prove that G° is cocompactin G.

We denote by R the non-connected solvable radical of G°, that is its largest
normal solvable subgroup. It is a closed, compactly generated subgroup of G°,
and being characteristic in the normal subgroup G°, the subgroup R is normal
in G. We will prove that R is reduced to the identity. For the same reason as
above, the action of Preconeg (R, s) on C must be either bounded or of general
type. However it cannot be of general type because otherwise Preconeg(R,S)
would contain a non-abelian free subgroup (see Theorem 2.7 in [CM87]), which
is clearly impossible because Preconeg (R, s) is a solvable group. Therefore the
action of Preconeg (R, s) on C is bounded, and by Lemma 3.3 this implies that R
is a compact subgroup. But G° is assumed not to contain any non-trivial compact
normal subgroup, so R must be trivial.
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It follows that G° is a semisimple Lie group with trivial center, and conse-
quently G° has finite outer automorphism group. So we are in position to apply
Lemma 5.3, and we obtain that G admits a finite index open subgroup decompos-
ing as a topological direct product G’ = G° x Q. Now since G’ has finite index
in G, Cone”(G’,s) ~ Cone®(G°, s) x Cone”(Q,s) is areal tree. This implies that
either Cone”(G°,s) or Cone”(Q,s) is a point, that is either G° or Q is compact.
But by assumption G° is not compact so Q must be compact, and the conclusion
follows. |

As a consequence of this result, we deduce the following property for locally
compact lacunary hyperbolic groups.

Proposition 5.5. If G is a locally compact lacunary hyperbolic group, then either
G is hyperbolic or G has a compact open subgroup.

Proof. According to Lemma 5.1, if G is not an elementary hyperbolic LC-group,
then G must be either focal lacunary hyperbolic or lacunary hyperbolic of general
type. If G is focal lacunary hyperbolic then G is focal hyperbolic by Theorem 4.1.
Now if G is lacunary hyperbolic of general type, then according to Theorem 5.4
the identity component G° is either compact or cocompact in G. In the latter case
G must be hyperbolic (see Remark 4.10), and in the former G has a compact open
subgroup by van Dantzig’s theorem. |

5.2. Characterization of lacunary hyperbolic groups

5.2.1. Cartan-Hadamard theorem. This paragraph consists of a recall of a
Cartan—Hadamard type theorem due to Gromov, and its application to lacunary
hyperbolic groups due to Kapovich and Kleiner, stated for topological groups
rather than discrete ones.

Let (X, d) be a non-empty geodesic metric space, xo € X a base point and
¢ > 0. A c-loop based at x¢ is a sequence of points xg = x1,X2,...,X, = Xp
such that d(x;, xj+1) < cforeveryi = 1,...,n— 1. Two c-loops are said to be c-
elementarily homotopic if one of them can be obtained from the other by inserting
a new point, and c-homotopic if they are the extremities of a finite sequence of
c-loops such that any two consecutive terms are c-elementarily homotopic. Recall
that X is c-large scale simply connected if any c-loop based at x¢ is c-homotopic
to the trivial loop.

The following result can be deduced from [BH99, Part III.H Lemma 2.6].

Proposition 5.6. There exists some universal constant C > 0 so that every
geodesic §-hyperbolic metric space is C6-large scale simply connected.
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The following result appears as a large scale analogue of Cartan—Hadamard
Theorem in metric geometry. The idea of this local-global principle goes back to
[Gro87], but the version we use here is inspired from Theorem 8.3 of the Appendix
of [OOS09] (see also Chapter 8 of [Bow9l]).

Theorem 5.7. There exist some constants c1,cz,c3 > 0 such that the following
holds: every geodesic, c-large scale simply connected metric space X with the
property that there exists some R > cyc such that every ball in X of radius R is
c2 R-hyperbolic; is ¢z R-hyperbolic.

Kapovich and Kleiner [OOS09, Appendix] observed that geodesic metric
spaces with one asymptotic cone that is a real tree fulfill the assumption of local
hyperbolicity appearing in Theorem 5.7, which yields the following corollary.

Corollary 5.8. Let (X,d) be a homogeneous, geodesic, c-large-scale simply
connected metric space. If X is lacunary hyperbolic then X is hyperbolic.

Proof. Let e € X be a base point, s a scaling sequence and  a non-principal
ultrafilter such that Cone® (X, d, s) is a real tree. Then w-almost surely, the ball
or radius s, in X around e is §,-hyperbolic, with §, = o(s,). But since X is
homogeneous, every ball in X or radius s, is 6,-hyperbolic. Now for some large
enough n we have s, > cjc and §, /s, < ¢z, so it follows from Theorem 5.7 that
X is hyperbolic. U

Since for a locally compact compactly generated group, compact presentability
can be characterized in terms of large scale simple connectedness (see for example
[CH, Proposition 8.A.3]), we obtain the following result, which is the topological
counterpart of [OOS09, Theorem 8.1] by Kapovich and Kleiner.

Corollary 5.9. Any compactly presented group that is lacunary hyperbolic is a
hyperbolic group.

5.2.2. Characterization of locally compact lacunary hyperbolic groups. We
are now able to generalize to the locally compact setting the structural theorem
of Olshanskii, Osin, Sapir [OOS09] for finitely generated lacunary hyperbolic
groups.

Theorem 5.10. Let G be a compactly generated locally compact group with a
compact open subgroup. Then the following assertions are equivalent:

(a) G is lacunary hyperbolic;

(b) There exists a scaling sequence s such that for every non-principal ultrafilter
w, the asymptotic cone Cone® (G, s) is a real tree;
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(c) There exists a hyperbolic LC-group Gy acting on a locally finite tree, tran-
sitively and with compact open stabilizers on the set of vertices, and an in-
creasing sequence of discrete normal subgroups Ny, whose discrete union N
is such that G is topologically isomorphic to Go/N; and if S is a compact
generating set of Gy and

pn = min{|g|s: g € Npt1 \ Nu},

then Go/ Ny, is 8,-hyperbolic with 6, = o(pn).

The proof of the implication iii) = ii) is similar to the one for discrete groups,
so we choose not to repeat it here and refer the reader to [OOS09, p.16]. The
implication ii) => i) being trivial, we only have to prove i) = iii).

Proof of i) => iii). Let G be a lacunary hyperbolic group with a compact open
subgroup. We let Gy and 7: Go — G be as in Proposition 2.8. Recall that Gy
is a locally compact compactly generated group acting geometrically on a locally
finite tree and 7 is an open morphism from Gy onto G with discrete kernel N. Let
o be a non-principal ultrafilter and s a scaling sequence such that Cone® (G, s) is
a real tree. Choose a compact open subgroup K of Gy intersecting N trivially,
and a K-bi-invariant compact generating set S of Gy. For every k > 1, let Ny be
the normal subgroup of G, generated by elements of N of word length at most
dy with respect to S, and set Gy = Go/Ng. Note that since s is an increasing
sequence tending to infinity, by construction (Ng) is an increasing sequence of
normal subgroups of Gy whose union is N. This can be rephrased by saying that
we have an infinite sequence of locally compact groups and quotient morphisms

Go Gy Grpg —» -+

whose direct limit is topologically isomorphic to the group G. Observe that the
injectivity radius of the map Gy — G is larger than dy, and a fortiori the same
holds for the injectivity radius of the map Gy — Gg41.

For every k > 1, we push the pair (K, §) in G and in G, and we denote by Xj
(resp. X) the Cayley—Abels graph of Gy (resp. G) with respect to this compact
open subgroup and compact generating set. By abuse of notation, we still denote
by K the image of the subgroup K in G¢. To the above sequence of groups and
epimorphisms corresponds an infinite sequence of coverings of graphs

Xo Xi Xig1 —> - .

Note that the map X — X is injective on the ball By, (K, d) of radius dj around
the vertex K.

Now since G is quasi-isometric to its Cayley—Abels graph X, their asymptotic
cones Cone®(X,s) and Cone® (G, s) are bi-Lipschitz homeomorphic. It follows
that Cone® (X, s) is a real tree, and therefore w-almost surely the ball of radius dj
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in X is &g -hyperbolic with 6 = o(d}). By the above observation on the injectivity
radius of the map Xy — X, the same is true in X. According to Proposition 5.6,
the ball By, (K, di) is O(8x)-large scale simply connected. But by construction of
the group Gy, any loop in X} is built from loops of length at most dg, so it follows
that the entire graph X} is Cy-large scale simply connected, with C, = O(8).

Now let us pick a sequence (Ag) such that §p << Ap << di. If we let
1, ¢2, c3 be the constants from Theorem 5.7, then w-almost surely Ay > ¢1Cy
and Ay > 8 /c2. So we are in position to apply Theorem 5.7, which implies that
w-almost surely Xy is c3 Agx-hyperbolic.

Now as observed earlier, the injectivity radius px of Gy — Gy satisfies
Pr = di. Since Ap = o(dy), we clearly have Ay = o(pg). It follows that @
almost surely, the graph X (and a fortiori the group Gy ) is o(px)-hyperbolic, and
the conclusion follows. O

The next proposition establishes some stability properties of the class of locally
compact lacunary hyperbolic groups. We note that, as observed in [OOS09],
the class of finitely generated lacunary hyperbolic groups is not stable under free
product.

Proposition 5.11. The class of locally compact lacunary hyperbolic groups is
stable under taking

(a) a semidirect product with a compact group,
(b) an HNN-extension over some compact open subgroup,

(c) an amalgamated product with a hyperbolic LC-group over some compact
open subgroup.

Proof. The statement (a) is trivial. Let us prove (b). Let G be a lacunary
hyperbolic group, K, L two compact open subgroups, ¢: K — L a topological
isomorphism, and G’ = HNN(G, K, L, ¢) the corresponding HNN-extension.
We want to prove that G’ is lacunary hyperbolic. If G is hyperbolic then there
is nothing to prove because since K, L are compact, the group G’ is hyperbolic
as well. Otherwise G has a compact open subgroup by Proposition 5.5, and we
let Go be a hyperbolic LC-group and (N,) an increasing sequence of discrete
normal subgroups as in Theorem 5.10. There exists an integer 79 > 1 such that
for every n > ny, the group G, has subgroups isomorphic to K and L, which
we still denote by K and L by abuse of notation. Let us form the HNN-extension
G, = HNN(G,, K, L, ¢). Since G, is §,-hyperbolic and K, L are compact, the
group G, is 8, -hyperbolic. Moreover since K, L have bounded diameter in G,
we have §;, = O(8,). Now the epimorphism «,: G, —> G4 naturally extends to
a,: G, — G, by mapping the stable letter to itself, and the injectivity radius
p., of o is equal to the injectivity radius p, of o,. Since by assumption p, << 8,
we have p), << &, and the fact that G’ is lacunary hyperbolic follows from the
implication iii) = i) in Theorem 5.10.
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The case (c) of an amalgamated product with a hyperbolic LC-group over some
compact open subgroup is analogous, and relies on the fact that the amalgamated
product of two hyperbolic LC-groups over some compact open subgroup remains
hyperbolic, with a control on the hyperbolicity constant in terms of the hyperbol-
icity constants of the two groups and the diameter of the compact subgroup. O

Example 5.12. Here is a construction providing examples of locally compact
lacunary hyperbolic groups with a non-discrete topology. Let I' be a discrete
lacunary hyperbolic group, and G a hyperbolic LC-group with some compact
open subgroup U. Let us consider the semidirect product H = (xg/yI') x G,
where G acts on the free product *g,yI" by permuting the factors according to
the natural action of G on G/ U, and the topology on H is such that the subgroup
G is open. Equivalently, H can be defined as the topological amalgamated product
of I' x U with G over the subgroup U. It follows from the statements (a) and (c)
of Proposition 5.11 that the group H is lacunary hyperbolic. Note that the group
H may be far from discrete, because for example H is non-unimodular as soon as
G is.

6. Subgroups of lacunary hyperbolic groups

In this section we carry on the investigation started in [OOS09] of groups that may
appear as subgroups of lacunary hyperbolic groups.

6.1. Quasi-isometrically embedded normal subgroups. It is a classical re-
sult that if G is a hyperbolic LC-group, and N a compactly generated quasi-
isometrically embedded normal subgroup of G, then N must be either compact or
cocompactin G. The following proposition, which is new even for discrete groups,
is a generalization of this result to the realm of lacunary hyperbolic groups.

Proposition 6.1. Let G be a locally compact lacunary hyperbolic group, and N a
closed normal subgroup of G. Assume that N is compactly generated and quasi-
isometrically embedded in G. Then N is either compact or cocompact in G.

Proof. We let C = Cone®(G, s) be an asymptotic cone of G that is a real tree,
and we denote by Cx the Preconeg (N, s)-orbit of (e)® € Cone”(G,s). Since N
is compactly generated and quasi-isometrically embedded in G, the subset Cy is
a subtree of C that is clearly invariant by Preconeg (N, s).

First assume that Preconeg (N, s) acts on C with some hyperbolic element.
Then we are in position to apply Lemma 2.3, which implies that Cy must be the
entire C. The fact that N is cocompact in G then follows from Corollary 3.6.
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We now have to deal with the case when Preconeg (N, s) does not have any
hyperbolic element. We claim that the action of Preconeg (N, s) on C cannot
be horocyclic. Indeed otherwise the action of Preconeg (N, s) on the subtree Cy
would be horocylic as well, which is impossible since a transitive isometric action
on a real tree cannot be horocyclic. This implies that if Preconeg (&, s) does not
contain any hyperbolic element then Preconeg (¥, s) must have a fixed point, and
by Lemma 3.3 this forces the subgroup N to be compact. O

6.2. Subgroups satisfying a law. The goal of this paragraph is to exhibit some
obstruction for a given group to be a subgroup of a lacunary hyperbolic group.
Recall that if G is a compactly generated group endowed with a compact
generating set S, and if H is a subgroup of G, we denote by Bg g(n) the
intersection between H and the ball in G of radius n > 1 around the identity.
If u is a left-invariant Haar measure on G, a measurable subgroup H is said
to have relative exponential growth in G if there exists p > 1 such that p" <
w(Bg,m(e,n)) for every n > 1. Note that this condition implies that the subgroup
H has positive Haar measure, and hence is open in G. If H; is an open subgroup
of G, the restriction to H; of a Haar measure on G is a Haar measure on H;, so if
H, is a subgroup of H; of relative exponential growth in H;, then H, has relative
exponential growth in G. For example a compactly generated open subgroup of
exponential growth has relative exponential growth in the ambient group.

Proposition 6.2. Let G be a unimodular lacunary hyperbolic group, and H < G
a subgroup of relative exponential growth in G. If C = Cone®(G,s) is an
asymptotic cone of G that is a real tree, then the action of Preconeg(H,Ss) on
C cannot have a fixed point or be horocyclic.

Proof. We shall prove that the action of Preconeg (H,s) on C cannot be horo-
cyclic. The case of an action with a fixed point can be ruled out with the same
kind of arguments, and is actually easier.

Let S be a compact generating set of G, and p a left-invariant Haar measure
on G. We argue by contradiction and assume that the action of Preconeg (H, S)
on C is horocyclic, and denote by &: [0, +o0o[— C the ray emanating from (e)®
representing the end of C that is fixed by Preconeg (H,s). Then every element
(hn) € Preconeg(H,s) such that |h,|s < s, fixes the point £(1/2) = (&,)?,

that is ielh 1,
Sn Sn

This means that for every ¢ > 0, w-almost surely the element §,; Y1, €, has length
at most &s,,, which is equivalent to saying that h, belongs to &, - Bg (e, &s,) - &, 1.
So for every ¢ > 0, w-almost surely

Bg.m(e,sn) C - Bgle, esn) - £,
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Combined with the fact that G is unimodular, we obtain that w-almost surely

(Bg,m (e, sn)) < u(En - Bg(e,esn) - &, ") = n(Bg e, esp)) < o

for some constant o > 1. This implies that

lim inf log j1(Bg,u(e,5n)) _

n—o00 Sn

07

which is a contradiction with the fact that H has relative exponential growth
inG. d

Let us derive the following consequence of Proposition 6.2, which recovers
Theorem 3.18 (c) of [OOS09], and generalizes it to the setting of unimodular
locally compact lacunary hyperbolic groups.

Corollary 6.3. Let G be a unimodular lacunary hyperbolic group, and H < G
a subgroup of finite exponent. Then H cannot have relative exponential growth
in G.

Proof. For any scaling sequence s, the group Preconeg (H, s) has finite exponent
as well. It follows that for any asymptotic cone Cone® (G, s) that is a real tree, the
action of Preconeg (H, s) on Cone® (G, s) must have a fixed point or be horocyclic,
and H cannot have relative exponential growth in G according to Proposition 6.2.

O

We point out that both Corollary 6.3 and Proposition 6.2 fail without the
assumption that the group is unimodular. Actually the corresponding statements
at the level of groups rather than asymptotic cones already fail for hyperbolic LC-
groups of general type. Take for example the amalgamated product of Z/27Z x
F,[¢] and I, ((2)) %; Z over the compact open subgroup I, [¢]. The resulting group
is hyperbolic of general type and non-unimodular. Having relative exponential
growth in the open subgroup F,((¢)) x Z, the finite exponent subgroup I, ((?))
has relative exponential growth in the ambient group. To see why the conclusion
of Proposition 6.2 fails, note that the action of I, ((#)) on the quasi-isometrically
embedded subgroup I, (#)) ¥ Z is horocylic, so its action on the entire group must
be horocyclic as well.

Proposition 6.4. Let G be a unimodular lacunary hyperbolic group. If H is
a subgroup of relative exponential growth in G, and if C = Cone®(G,s) is an
asymptotic cone of G that is a real tree, then the action of Preconeg (H,s) on C
cannot be focal.
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Proof. The argument will be a slight modification of the beginning of the proof
of Lemma 4.4. Assume that &: [0, +o0o[— C is a geodesic ray starting at (e)®
representing and end of C that is fixed by Preconeg (H, s). Let us fix some k > 1,
and consider k + 1 points £(1) = x©@ x® . x® = g£(2) dividing the interval
[£(1),&(2)] into k segments of equal length. For every (h,) € Preconeg(H,s)
such that |h,|s < s, for every n > 1, upon changing (h,) in (h,)~!, there exists
some point x¥) such that the distance in C between (h,,) - £(1) and x@ is at most
1/2k. This implies that w-almost surely, the distance in G between h,£, (1) and
x is at most s/ k.
So for every k > 1, w-almost surely

BG,H(e,sn) C LkJ (x,(f) . B(;<e, %) . %‘n(l)_l)il,
i=0
and certainly
n(Bg,u (e, sn)) < é2u<xr(li) . Bg (6, %) 'En(l)_1>
=2k + Dp(Ba(e. 7)) < 2(k + D™/

for some constant « > 1. Now since H has relative exponential growth in G,
we obtain that there exists p > 1 such that for every k > 1, w-almost surely
p* < 2(k + Da®/*. This implies that p < «!/* for every k > 1, which
contradicts the fact that p > 1. O

Proposition 6.5. Let G be a unimodular lacunary hyperbolic group, and H < G
a compactly generated subgroup of relative exponential growth in G. Assume that
H does not have a cyclic cocompact subgroup. Then for any asymptotic cone
C = Cone® (G, s) of G that is a real tree, the action of Preconeg (H,s) on C is of
general type.

Proof. We carry out a case-by-case analysis of the possible type of the action of
Preconeg (H, s) on C, and prove that other types of actions all lead to a contradic-
tion.

If Preconeg (H, s) fixes a point in C then Lemma 3.3 implies that H is compact,
which is a contradiction with the fact that H has relative exponential growth. Now
assume that the action of Preconeg (H, s) on C is lineal. Since H is compactly gen-
erated, the metric space (H, dg) is coarsely connected [CH, Proposition 4.B.8].
So we are in position to apply Lemma 5.1 to obtain that H admits an infinite
cyclic cocompact subgroup, which is again a contradiction. Finally, it follows
from Proposition 6.2 that the action of Preconeg (H, s) on C cannot be horocylic,
and according to Proposition 6.4 it cannot be focal either.
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We immediately deduce the following result.

Corollary 6.6. Let G be a unimodular lacunary hyperbolic group. If H < G isa
compactly generated subgroup of relative exponential growth in G not having Z.
as a discrete cocompact subgroup, then H cannot satisfy a law.

When specified to finitely generated groups, Corollary 6.6 answers Ques-
tion 7.2 in [OOS09]. As an example, we deduce the following result.

Corollary 6.7. Any finitely generated solvable subgroup of a finitely generated
lacunary hyperbolic group is virtually cyclic.

Proof. Let H be a finitely generated solvable group that is a subgroup of a finitely
generated lacunary hyperbolic group G. Assume that H has exponential growth.
Then H has relative exponential growth in G, and according to Corollary 6.6 the
group H must be virtually cyclic, contradiction. Therefore the solvable group
H does not have exponential growth, and we deduce that H must be virtually
nilpotent [M1L68, WoL68]. In particular H is finitely presented and therefore
must be a subgroup of a hyperbolic group [OOS09, Theorem 3.18 (a)], and the
conclusion follows from the fact that any finitely generated virtually nilpotent
subgroup of a hyperbolic group is virtually cyclic. |
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