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1. Introduction

In this article, we study actions of in�nite Coxeter groups on Lorentz spaces.

Vectors in a Lorentz space are partitioned by the light cone into 3 di�erent types:

time-like, light-like and space-like vectors. The time-like and light-like vectors are

used to model the hyperbolic space and its boundary. Group actions on this part

of Lorentz space are well-understood in the framework of hyperbolic geometry.

The present investigation on actions of Coxeter groups takes the entire Lorentz

space, in particular the space-like part, into consideration and reveals behaviors

that did not get noticed previously.

Every Coxeter group has a linear representation as a re�ection group acting

on a real vector space endowed with a canonical bilinear form; see [4] or [15].

The unit basis vectors of the representation space are called simple roots.

The vectors in the orbits of simple roots under the action of the Coxeter group

are called roots. The roots form the root system associated to the Coxeter system.

Every root corresponds to a unique orthogonal re�ecting hyperplane. The set of

re�ecting hyperplanes is called the Coxeter arrangement.

For in�nite Coxeter groups, Vinberg introduced more general representations

using di�erent bilinear forms for the representation space [29]. We use the

notation .W; S/B to denote a Coxeter system .W; S/ associated with a matrix

B that determines the bilinear form used to represent W . We call .W; S/B a

geometric Coxeter system. When the bilinear form has signature .n�1; 1/, where n

is the rank of .W; S/, the representation space is a Lorentz space. In this case, we

say that .W; S/B is a Lorentzian Coxeter system.

Let .W; S/B be a geometric Coxeter system. The Coxeter group W acts linearly

on the representation space V , therefore one may also consider its action on the

corresponding projective space PV . A point of PV is a limit direction of .W; S/B

arising from a base point yx0 2 PV if it is the limit of an injective sequence of

points in the orbit of yx0. When the base point yx0 is the direction of a simple root,

the limit directions arising from yx0 are called limit roots. The notion of limit roots

was introduced and studied in [12]. Properties of limit roots for in�nite Coxeter

systems were investigated in a series of papers. Limit roots lie on the isotropic

cone of the bilinear form associated to the representation space [12, Theorem 2.7].

The convex cone spanned by limit roots is the imaginary cone [10, Theorem 5.4];

see also [16, Lemma 5.8]. The relations between limit roots and the imaginary

cone are further investigated in [11].
For irreducible Coxeter systems, the limit roots arise from the direction of any

root or from any limit root [11, Theorem 3.1]. For Lorentzian Coxeter systems,
the limit roots arise from any time-like direction [13, Theorem 3.3]. This result
is obtained by interpreting the Coxeter group as a Kleinian group acting on the
hyperbolic space, i.e. the time-like part of the projective Lorentz space. Theo-
rem 2.6 of the present paper asserts that the limit roots are the only light-like limit
directions, hence they also arise from any light-like direction.



Limit directions for Lorentzian Coxeter systems 471

Furthermore, the limit roots also arise from the direction of any weight asso-
ciated to the Coxeter system [7, Theorem 3.4]. Theorem 2.4 below summarizes
known results on base points whose orbits under the action of the Coxeter group
accumulate at limit roots. Note that some of the weights and all of the roots are
space-like vectors. By the work of Calabi and Markus [5], the action of an in�nite
group on the space-like part of the projective Lorentz space (also called de Sitter
space) can not be discrete, so there is no reason to expect the accumulation points
of the orbit of a space-like direction to be contained in the light-cone. Existence
of such directions (e.g. roots and space-like weights) motivates us to study limit
directions of Coxeter groups arising from an arbitrary base point yx0 2 PV in
more detail.

Based on the classi�cation of Lorentzian transformations according to their
eigenvalues, our �rst main result introduces a spectral perspective for limit roots
involving in�nite-order elements of the group.

Theorem 1.1. Let E1 be the set of directions of non-unimodular eigenvectors for
in�nite-order elements of a Lorentzian Coxeter system .W; S/B. The set of limit
roots Eˆ of .W; S/B is the closure of E1, that is

Eˆ D E1:

This spectral description provides a natural way to compute limit roots from
the Coxeter group and its geometric action through eigenspaces of in�nite-order
elements. The second author implemented a package in Sage to do such computa-
tions [19, 28]. In the previous articles [12, 11, 13, 7], �gures showed approximations
of the limit roots using roots or weights. In contrast, Figure 1 presents two exam-
ples from our computations that reveal limit roots precisely.

Theorem 1.1 can be derived from the Kleinian group interpretation [13] or from
the minimality of Eˆ under the action of W , see [11]. However, in the hope
of further generalizations to non-Lorentzian Coxeter systems, our proof uses a
di�erent approach. The key of our proof is Theorem 2.6, an interesting result in
its own right, which asserts for Lorentzian Coxeter systems that any light-like limit
direction is a limit root. However, for non-Lorentzian Coxeter systems, there may
be isotropic limit directions that are not limit roots, as shown in Example 3.12.

In Section 2.4, we relate limit roots to the study of in�nite reduced words and
in�nite biclosed sets for Lorentzian Coxeter systems. This suggests a possible
connection between two conjectures through limit roots: a conjecture of Lam and
Pylyavskyy, stating that the limit weak order is a lattice [20, Conjecture 10.3],
and a conjecture of Dyer, stating that the extended weak order is a complete
ortholattice [9, Conjecture 2.5]. The limit weak order extends the usual weak
order to in�nite reduced words, whereas the extended weak order extends the usual
weak order to in�nite biclosed sets. The relations between limit weak order and
extended weak order in general deserve to be explored in more detail.
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(a) Some 30080 limit roots of the geo-

metric Coxeter system with the shown

Coxeter graph. They are obtained from

in�nite-order elements of length 3 and

4 and their conjugates with elements of

length 1 to 9.

(b) Some 28019 limit roots of the geo-
metric Coxeter system with the shown
Coxeter graph. They are obtained from
in�nite-order elements of length 2, 3 and
4 and their conjugates with elements of
length 1 to 5.

Figure 1. Limit roots of two Lorentzian Coxeter systems of rank 4 visualized in the a�ne
space spanned by the simple roots. The vertices of the tetrahedra represent the simple
roots, and the ellipsoids represent the light cone; see context of equation (1) for a detailed
explanation. The Coxeter graphs follow Vinberg’s convention; see Remark 2.2 for a
detailed description.

We propose limit roots as a potential tool for the investigation of boundaries
of Coxeter groups. This idea is supported by some previous studies: on the one
hand, Lam and Thomas [21] proved that blocks of in�nite reduced words induce
a partition of the boundary of the Davis complex; on the other hand, Hosaka [14]
proved that limit points of a Coxeter group arising through elements of in�nite
order are dense in the boundary of the Davis complex. Visibly, Hosaka’s result is
very similar to our Theorem 1.1.

While proving Theorem 1.1, we found space-like limit directions. A referee
of [7] pointed out that space-like limit directions exist by a result of Calabi
and Markus [5]. Our second main result describes the set of limit directions
for Lorentzian Coxeter systems in terms of the projective Coxeter arrangement,
i.e. the in�nite arrangement of re�ecting hyperplanes in the projective represen-
tation space.
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Theorem 1.2. Let EV be the set of limit directions of a Lorentzian Coxeter system
.W; S/B and Lhyp be the union of codimension-2 space-like intersections of the
projective Coxeter arrangement associated to .W; S/B. The set of limit directions
EV is “sandwiched” between Lhyp and its closure, that is

Lhyp ¨ EV � Lhyp:

Figure 2. Some re�ecting hyperplanes in the projective Coxeter arrangement of the uni-
versal Coxeter group of rank 3 associated with a bilinear form where cij D 1:1 whenever
i ¤ j ; see Section 2.1. Codimension-2 space-like intersections are marked with dots.
By Theorem 1.2, the intersections in Lhyp are limit directions. The six intersections in
white are weights.

The hyperplane arrangement Lhyp involved in Theorem 1.2 is in�nite and non-
discrete. The readers are warned not to confuse “union of codimension-2 space-
like intersections” with “set of space-like points on codimension-2 intersections.”
Figure 2 shows part of the Coxeter arrangement of a universal Coxeter group and
some codimension-2 space-like intersections in Lhyp.

While Theorem 1.2 has a combinatorial �avour, a stronger relation holds. The
unimodular subspace of an in�nite-order element is the set of its unimodular
eigenvectors. Let Uhyp be the union of space-like projective unimodular subspaces
of in�nite-order elements, then the set of limit directions satis�es (see Section 4.4)

Uhyp t Eˆ � EV � Uhyp:
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Notably, space-like weights are all limit directions, as marked by white points in
Figures 2 and 12. Moreover, roots may also be limit directions. In Section 4.4,
we discuss the possibility of equalities on either side, and point out certain unex-
plained linear dependencies among limit directions in Uhyp; see Figure 12.

The present paper is organized as follows. In Section 2, we recall the geometric
representations of Coxeter systems, de�ne the notion of limit directions, and
review some results on limit roots. Then we prove that limit roots are the only
light-like limit directions for Lorentzian Coxeter systems, and study the relation
between in�nite reduced words and limit roots. In Section 3, we recall spectral
properties of Lorentz transformations, and prove Theorem 1.1. In the last part of
Section 3, we give an example of non-Lorentzian Coxeter system, for which some
isotropic limit directions are not limit roots. In Section 4, we de�ne and study
the projective Coxeter arrangement, and prove Theorem 1.2. Finally, some open
problems are discussed.

Acknowledgements. The authors would like to thank Christophe Hohlweg, Ivan
Izmestiev and Vivien Ripoll for helpful discussions, and the anonymous referee
for useful comments. The second author is grateful to Christophe Hohlweg for
introducing him to in�nite root systems during Summer 2010 and to Sébastien
Labbé, Vivien Ripoll, and Nicolas Thiery for their help in the implementation of
the Sage package.

2. Limit roots of Lorentzian Coxeter systems

2.1. Lorentzian Coxeter systems. An n-dimensional Lorentz space .V;B/ is
a vector space V associated with a bilinear form B of signature .n � 1; 1/. A
linear transformation on V that preserves the bilinear form B is called a Lorentz
transformation. The group of Lorentz transformations is called Lorentz group and
denoted by OB.V /. In a Lorentz space, a vector x is space-like (resp. time-like,
light-like) if B.x; x/ is positive (resp. negative, zero). The set of light-like vectors
Q D ¹x 2 V j B.x; x/ D 0º forms a cone called the light cone. The following
proposition characterizes the totally-isotropic subspaces of Lorentz spaces.

Proposition 2.1 ([6, Theorem 2.3]). Let .V;B/ be a Lorentz space and x; y 2 Q

be two light-like vectors. Then B.x; y/ D 0 if and only if x D cy for some c 2 R.

Let .W; S/ be a �nitely generated Coxeter system, where S is a �nite set
of generators and the Coxeter group W is generated by S with the relations
.st/ms;t D e, where s; t 2 S , ms;s D 1 and ms;t D mt;s � 2 or D 1 if s ¤ t . The
cardinality jS j D n is the rank of the Coxeter system .W; S/. The Coxeter system
is universal if ms;t D 1 whenever s ¤ t . For an element w 2 W , the length `.w/

of w is the smallest natural number k such that w D s1s2 : : : sk for si 2 S .
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We refer the readers to [4, 15] for more detail. We associate a matrix B to .W; S/

as follows:

Bs;t D
´

� cos.�=ms;t / if ms;t < 1;

�cs;t if ms;t D 1;

for s; t 2 S , where cs;t are chosen arbitrarily with cs;t D ct;s � 1. We call the
Coxeter system .W; S/ associated with the matrix B a geometric Coxeter system
and denote it by .W; S/B.

Remark 2.2. The Coxeter graphs in the current paper follow Vinberg’s conven-
tion that encodes both the Coxeter system .W; S/ and the matrix B . Two vertices
s; t are not connected if Bs;t D 0, connected by a solid edge with no label if
Bs;t D �1=2, by a solid edge with label ms;t if �1=2 > Bs;t � �1, and by a
dotted edge with label �cs;t if Bs;t D �cs;t < �1.

Let V be a real vector space of dimension n, equipped with a basis � D
¹˛sºs2S . The matrix B de�nes a bilinear form B on V by B.˛s; ˛t / D ˛

|

s B˛t

for s; t 2 S . For a vector ˛ 2 V such that B.˛; ˛/ ¤ 0, we de�ne the re�ection �˛

�˛.x/ WD x � 2
B.x; ˛/

B.˛; ˛/
˛ for all x 2 V:

The homomorphism �W W ! GL.V / sending s to �˛s
is a faithful geometric

representation of the Coxeter group W . We refer the readers to [17, Chapter 1]
and [12, Section 1] for more details. In the following, we will write w.x/ in place
of �.w/.x/.

A geometric Coxeter system .W; S/B is of �nite type if B is positive de�nite.
In this case, W is a �nite group, and can be represented as a spherical re�ection
group. A geometric Coxeter system .W; S/B is of a�ne type if the matrix B is
positive semi-de�nite but not de�nite. In this case, the group W can be represented
as a re�ection group in Euclidean space. If the matrix B has signature .n � 1; 1/,
the pair .V;B/ is an n-dimensional Lorentz space, and W acts on V as a re�ection
subgroup of the Lorentz group. In this case, we say that the geometric Coxeter
system .W; S/B is Lorentzian and, by abuse of language, that W is a Lorentzian
Coxeter group. See [7, Remark 2.2] for further discussions on terminologies.

We may also pass to the projective space PV , i.e. the topological space of 1-
dimensional subspaces of V . For a non-zero vector x 2 V n¹0º, let yx 2 PV denote
the line passing through x and the origin. The group action of W on V by re�ection
induces a projective action of W on PV as w � yx D 1w.x/, for w 2 W and x 2 V .
For a set X � V , the corresponding projective set is yX WD ¹yx 2 PV j x 2 Xº.
The projective light cone is denoted by yQ.

Let h.x/ denote the sum of the coordinates of x in the basis �, and call it
the height of the vector x. The hyperplane ¹x 2 V j h.x/ D 1º is the a�ne
subspace a�.�/ spanned by the basis of V . It is useful to identify the projective
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space PV with the a�ne subspace a�.�/ plus a projective hyperplane at in�nity.
For a vector x 2 V , if h.x/ ¤ 0, yx is identi�ed with the vector

x=h.x/ 2 a�.�/: (1)

Otherwise, if h.x/ D 0, the direction yx is identi�ed with a point at in�nity. For
a basis vector ˛ 2 �, the a�ne picture of Ǫ is ˛ itself. In fact, if h.x/ ¤ 0, yx is
identi�ed with the intersection of a�.�/ with the straight line passing through
x and the origin. The projective light cone yQ is projectively equivalent to a
sphere. The a�ne subspace a�.�/ is practical for visualizing PV and developing
geometric intuitions.

Given a topological space X and a subset Y � X , a point x 2 X is an
accumulation point of Y if every neighborhood of x contains a point of Y di�erent
from x. Let G be a group acting on X , then a point x 2 X is a limit point of G

if x is an accumulation point of the orbit G.x0/ for some base point x0 2 X .
Equivalently, x is a limit point of G, if there is a base point x0 2 X and a
sequence of elements .gk/k2N 2 G such that the sequence of points .gk.x0//k2N

is injective and converges to x as k ! 1. In this case, we say that x is a limit point
of G acting on X arising from the base point x0 through the sequence .gk/k2N.
We now de�ne the main object of study of the present paper.

De�nition 2.3. Limit directions of a geometric Coxeter system .W; S/B are limit
points of W acting on PV . The set of limit directions is denoted by EV . In other
words,

EV D ¹yx 2 PV j there is a yx0 2 PV and an injective sequence .wi � yx0/i2N

in the orbit W � yx0 such that lim
i!1

wi � yx0 D yxº:

2.2. Limit roots. We call the basis vectors in � the simple roots. Let ˆ D W.�/

be the orbit of � under the action of W , then the vectors in ˆ are called roots. The
pair .ˆ; �/ is a based root system. The roots ˆ are partitioned into positive roots
ˆC D cone.�/ \ ˆ and negative roots ˆ� D �ˆC. The depth of a positive root

 2 ˆC is the smallest integer k such that 
 D s1s2 : : : sk�1.˛/, for si 2 S and
˛ 2 �.

Let V � be the dual vector space of V with dual basis ��. If the bilinear form
B is non-singular, which is the case for Lorentz spaces, V � can be identi�ed with
V , and �� D ¹!sºs2S can be identi�ed with a set of vectors in V such that

B.˛s; !t / D ıs;t ;

where ıs;t is the Kronecker delta function. Vectors in �� are called funda-
mental weights, and vectors in the orbit � WD W.��/ are called weights.
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Limit roots were introduced in [12] to study in�nite root systems associated to
in�nite Coxeter groups. They are the accumulation points of the projective roots
ŷ in PV , i.e. limit directions arising from projective roots. In other words, the set
of limit roots is de�ned as follows

Eˆ D ¹yx 2 PV j there is an injective sequence .
i /i2N 2 ˆ

such that lim
i!1

O
i D yxº:

Limit roots are on the isotropic cone ¹yx 2 PV j B.x; x/ D 0º [12, Theo-
rem 2.7(ii)]. The cone over the limit roots is the imaginary cone [10, Theorem 5.4].
Limits roots are also limit directions arising from di�erent base points, as sum-
marized in the following theorem and schematized in Figure 3.

Theorem 2.4. The limit roots of a geometric Coxeter system .W; S/B are the limit
directions arising from [11, Theorem 3.1]

(i) any simple root,

(ii) any limit root,

(iii) any projective root.

Moreover, if .W; S/B is Lorentzian, limit roots are limit directions arising from

(iv) any time-like direction; see [13, Theorem 3.3],

(v) any projective weight; see [7, Theorem 3.4],

(vi) any light-like direction, by Theorem 2.6 of this paper.

Figure 3. Schematic picture showing a limit root P arising from di�erent base points: time-
like direction (T ), light-like direction (S), projective weight (W ), projective root (R) or
another limit root (L). The elliptic-shape is the projective light cone, and the triangle is the
convex hull of the projective simple roots.
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Remark 2.5. In this paper, we require the simple roots to be a basis for a based
root system. However, the linear independence of the simple roots is never used in
the arguments. So the results of this paper are all valid in the more general setting
of [12, 10, 11], where the simple roots only needs to be positively independent but
not necessarily linearly independent.

2.3. Light-like limit directions. By Theorem 2.4, the set of limit roots Eˆ is
contained in EV . The following theorem states that limit roots are the only light-
like limit directions of Lorentzian Coxeter groups.

Theorem 2.6. For a Lorentzian Coxeter system .W; S/B , consider a sequence
.wk/k2N 2 W and a base point x0 2 V . If .wk � yx0/k2N is injective and converges
to a limit direction yx in the projective light cone yQ, then yx is a limit root.

Proof. Choose a sequence of simple roots .˛k/k2N such that .wk � Ǫk/k2N is
an injective sequence of projective roots. Since � is a �nite set, the sequence
.˛k/k2N visits a certain simple root, say ˛ 2 �, in�nitely often. By passing to a
subsequence, we may assume that ˛k D ˛ for all k 2 N. Since PV is compact, by
passing again to a subsequence, we may assume that .wk � Ǫ / converges to a limit
root Ǒ 2 yQ.

Assume that x0 is not light-like, then jh.wk.x0//j tends to in�nity since

0 D B.yx; yx/ D lim
k!1

B.wk � yx0; wk � yx0/ D lim
k!1

B.x0; x0/

h.wk.x0//2
:

While B.wk.˛/; wk.x0// D B.˛; x0/ is constant, the height h.wk.˛// tends to
in�nity (see the proof of [12, Theorem 2.7]). Therefore

B.yx; Ǒ/ D lim
k!1

B.wk � yx0; wk � ˛/ D lim
k!1

B.x0; ˛/

h.wk.x0//h.wk.˛//
D 0:

Since yx and Ǒ are both in the projective light cone, we have yx D Ǒ by Propo-
sition 2.1. The limit direction yx is therefore a limit root. This argument does
not depend on the choice of base point x0 … Q. So if yy 2 yQ is another limit
direction arising from y0 … Q through the same sequence .wk/k2N, we have
yx D yy D Ǒ 2 Eˆ.

If x0 is light-like, it can be decomposed as a linear combination of a time-
like vector x0

0 and a space-like vector x00
0; see Figure 4 for an illustration of

this case. Under the action of the sequence .wk/k2N, the time-like component
.wk � yx0

0/k2N converges to a limit root Ǒ 2 yQ; see [13, Theorem 3.3]. If the space-
like component .wk � yx00

0/k2N does not accumulate at the light cone, the norm of
wk.x00

0/ is bounded because the action of W preserves the bilinear form. In this
case, we have

lim
k!1

wk � yx0 D lim
k!1

wk � yx0
0 D Ǒ 2 Eˆ:
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If the space-like component also converges to the light cone, then its direction
.wk � yx00

0/k2N also converges to the limit root Ǒ. So the sequence .wk � yx0/k2N,
being the direction of a light-like linear combination of the two components, must
converge to the same limit root Ǒ. �

As a consequence, limit directions arising from light-like directions are limit
roots, as mentioned in Theorem 2.4(vi).

Figure 4. Illustration for the proof of Theorem 2.6 in the case where the base point x0 is
light-like.

Corollary 2.7 (of the proof). Limit roots arising from di�erent base points but
through the same sequence are the same.

Therefore, when we talk about limit roots, we need not specify the base points
from which they arise.

Remark 2.8. If the geometric Coxeter system .W; S/B is not Lorentzian, limit
roots are in general not the only limit directions on the isotropic cone. An example
will be given in Example 3.12 of Section 3.3.

2.4. In�nite reduced words. Let s1s2 � � � sk be a reduced expression of an ele-
ment wk 2 W . The inversion set inv.wk/ � ˆC is the set of positive roots in
the form of s1 � � � si�1.˛si

/, where 1 � i � k � 1. This set is independent of the
choice of reduced expression for wk [3, Section 1.4]. An in�nite reduced word is
an in�nite sequence w D s1s2 : : : of generators in S such that every �nite pre-
�x wk D s1s2 : : : sk is a reduced expression; see [20, Section 4.2] and [21]. The
inversion set inv.w/ � ˆC of an in�nite reduced word w is the set of positive
roots in the form of wk�1.˛sk

/, k 2 N. To prove the following theorem, we need
the notion of biclosed sets of roots. A subset A of roots in ˆC is closed if for
two roots ˛; ˇ 2 A, any root that is a positive combination of ˛ and ˇ is also in A.
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A subset A is biclosed if both A and its complement in ˆC are closed. Finite
biclosed sets of ˆC are in bijections with the inversion sets of elements of W ;
see [24, Proposition 1.2]. We refer the readers to [18, Chapter 2] for more details
on the relation between biclosed sets and the study of limit roots.

Theorem 2.9. Let w be an in�nite reduced word of a Lorentzian Coxeter system
.W; S/B . The projective inversion set 2inv.w/ of an in�nite reduced word w has a
limit root as its unique accumulation point.

Proof. As a set of positive root, the accumulation points of 2inv.w/ are limit roots.
For the sake of contradiction, assume that 2inv.w/ accumulates at two distinct limit
roots yx and yy . Then for any neighborhood Nx 3 yx and Ny 3 yy , we can �nd two

projective roots Ǫ 2 Nx \ 2inv.w/ and Ǒ 2 Ny \ 2inv.w/. Moreover, there is a
positive integer k > 0 such that ˛ and ˇ are contained in inv.wk/. However, since
the interior of the projective light cone (time-like part) is strictly convex, we can
pick Nx and Ny small enough so that the segment Œ Ǫ ; Ǒ� intersects yQ. In this case,
the re�ections in ˛ and ˇ generate an in�nite dihedral group, so inv.wk/ can not
be �nite and closed at the same time. �

We can therefore associate a unique limit root to each in�nite reduced word w

and denote it by O
.w/.

Corollary 2.10. The limit root O
.w/ arises through the sequence of pre�xes
.wk D s1 : : : sk/k2N of w .

Proof. At least one generator s 2 S appears in w in�nitely many times, so we
can take from inv.w/ an injective subsequence .wk.˛s/k2N/ such that skC1 D s

for all k 2 N. Then O
.w/ is the limit root arising from ˛s through the sequence
.wk/. By Corollary 2.7, the same limit root arises through the same sequence
from any projective root. We then conclude that O
.w/ arises through the sequence
.wk/k2N. �

Consider two in�nite reduced words w and w 0 of a general Coxeter system
.W; S/. In [21], w and w 0 are said to be in the same block if inv.w/ and inv.w 0/

di�er by �nitely many roots, and it is shown that the blocks induce a partition of
the Tits boundary of the Davis complex. If .W; S/ is Lorentzian, Theorem 2.9
and Corollary 2.10 imply that O
.w/ D O
.w 0/ if inv.w/ and inv.w 0/ share in�nitely
many roots. In Figure 5, we show the inversion set of an in�nite Coxeter element
and the corresponding sequence of chambers in the Coxeter complex. The se-
quence of chambers correspond to a geodesic ray in the Cayley graph of .W; S/,
which is the 1-skeleton of the Davis complex. This suggests that limit roots may
be used as a geometric picture for the boundaries of Coxeter groups. For this, it
would be interesting to �nd an equivalence relation on in�nite reduced words such
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Figure 5. The inversion set of the in�nite reduced word .stu/1 represented by the convex
hull of its roots (blue), and the corresponding sequence of chambers (green) inside the Tits
cone. They are disjoint and share a unique point on their boundary: the limit root given
by the dominant eigendirection of stu. The other star shape points correspond to the other
Coxeter elements.

that two words w and w 0 are equivalent if and only if O
.w/ D O
.w 0/. For example,
consider the in�nite reduced words .st/1 and .ts/1 of the in�nite dihedral group
of a�ne type (cs;t D 1). Their inversion sets are disjoint, but they correspond to
a same limit root. In this case, it would make more sense if .st/1 and .ts/1 are
considered as equivalent.

We also notice potential relations between limit roots and two conjectures. On
the one hand, Lam and Pylyavskyy conjectured that the limit weak order, i.e. the
�nite and in�nite inversion sets ordered by inclusion, for the a�ne Coxeter group
QAn forms a lattice; see [20, Conjecture 10.3]. On the other hand, Dyer conjectured

that the extended weak order, i.e. the biclosed sets ordered by inclusion, forms a
complete ortholattice; see [9, Conjecture 2.5]. In view of Theorem 2.9, it seems
reasonable to use the notion of limit roots to unify both conjectures. Namely, one
veri�es that an in�nite inversion set inv.w/ is biclosed in the a�ne and Lorentzian
case, otherwise it would contradict the biclosedness of the inversion set of a certain
�nite pre�x of w . The di�erence between the two conjectures lies in the fact that
there are many biclosed sets that are neither �nite nor co�nite, yet are not in�nite
inversion sets; see [18, Figure 2.11] for an example. The relations between the two
conjectures should be made clear and deserve better attention.
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3. Spectra of elements of Lorentzian Coxeter groups

3.1. Spectra of Lorentz transformations. In a Lorentz space .V;B/, a subspace
U of V is space-like if its non-zero vectors are all space-like, light-like if U

contains some non-zero light-like vector but no time-like vector, or time-like if
U contains some time-like vector. Two vectors x; y 2 V are said to be orthogonal
if B.x; y/ D 0. For a vector x 2 V , we de�ne its orthogonal hyperplane

Hx D ¹y 2 V j B.x; y/ D 0º:

We see that Hx is space-like (resp. light-like, time-like) if and only if x is time-like
(resp. light-like, space-like). For a subspace U of V , its orthogonal companion is
de�ned as

U ? D ¹y 2 V j B.y; x/ D 0 for all x 2 U º:

Note that if U is lightlike, U \ U ? ¤ ; and U C U ? ¤ V .
To study the eigenvalues and eigenvectors of Lorentz transformations, it is

useful to work in the complexi�cation VC D V ˚ iV . A vector z 2 VC can
be written as z D x C iy for x; y 2 V . We call x (resp. y) the real part
(resp. imaginary part) of z, and the vector Nz D x � iy represents its conjugate
vector. If y ¤ 0, we say that z is space-like (resp. light-like, time-like) if the
subspace spanned by x and y is space-like (resp. light-like, time-like). The bilinear
form B on V is viewed as the restriction of a sesquilinear form on VC de�ned by
requiring in addition that

B.�z1; �z2/ D � N�B.z1; z2/

for z1; z2 2 VC and �; � 2 C. Then the action of the Lorentz group OB.V /

naturally extends to VC. Again, two vectors z1; z2 2 VC are orthogonal if
B.z1; z2/ D 0.

Remark 3.1. The bilinear form B associated to V can also be viewed as the
restriction of a bilinear form on VC, as in [26, Chapter III]. This is algebraically
more natural, while a sesquilinear form is geometrically more natural.

A non-zero vector z 2 VC is an eigenvector of a Lorentz transformation
� 2 OB.V / if �.z/ D �z for some � 2 C. An eigenvalue � is unimodular
if j�j D 1, in which case a �-eigenvector z is also said to be an unimodular
eigenvector of �. If x 2 V is an eigenvector of �, we call yx 2 PV an eigendirection
of �.

The following proposition gathers some basic facts about eigenvectors.
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Proposition 3.2. Let � be a Lorentz transformation and z be a �-eigenvector of
�, then

(i) Nz is an eigenvector of � with eigenvalue N�,

(ii) z is an eigenvector of wk, k 2 N, with eigenvalue �k ,

(iii) z is an eigenvector of w�1 with eigenvalue ��1,

(iv) let ' 2 OB.V /, then '.z/ is an eigenvector of '�'�1 with eigenvalue �.

Proposition 3.3. Let z1 and z2 be �- and �-eigenvectors of � 2 OB.V /, respec-
tively. If � N� ¤ 1, then B.z1; z2/ D 0.

Proof. Since w preserves the bilinear form, we have

B.z1; z2/ D B.�.z1/; �.z2// D � N�B.z1; z2/:

So B.z1; z2/ D 0 because � N� ¤ 1. �

In the following propositions, we classify Lorentz transformations into three
types. Such a classi�cation is present in many references, often in the language of
Möbius transformations or hyperbolic isometries; see for instance [2, Chapter 4,
Theorem 1.6], [25, Section 4.7], [17, Proposition 4.5.1] and [27, Section 7.8]. Our
formulation is adapted from [26, Chapter III], which deals with Lorentz space
and is suitable for our use. See also discussions in [6, Section 3.3] for a geometric
insight.

Proposition 3.4 ([26, Section 3.7]). Lorentz transformations are partitionned into
three types:

� elliptic transformations are diagonalizable, and have only unimodular eigen-
values;

� parabolic transformations have only unimodular eigenvalues, but are not
diagonalizable;

� hyperbolic transformations are diagonalizable and have exactly one pair of
simple, real, non-unimodular eigenvalues, namely �˙1 for some j�j > 1.

Proposition 3.5 ([26, Section 3.7-3.9]). The two non-unimodular eigendirections
of a hyperbolic transformation are light-like, while its unimodular eigenvectors
are all space-like.

Proposition 3.6 ([26, Section 3.10]). The Jordan form of a parabolic transforma-
tion � contains a unique Jordan block of size 3, corresponding to the eigenvalue
" D 1 or �1. The .n�2/-dimensional real subspace U� spanned by eigenvectors of
� is light-like. The 1-dimensional light-like subspace of U� is an "-eigendirection.
The minimal polynomial f .x/ such that f .�/ annihilates U ?

� is .x � "/2.
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3.2. Spectral interpretation of limit roots. Let .W; S/B be a Lorentzian Cox-
eter system. In this section, we consider the limit directions arising through se-
quences in the form of .wk/k2N for some w 2 W . We say that w is an elliptic
(resp. parabolic, hyperbolic) element of W if its corresponding transformation
�.w/ is an elliptic (resp. parabolic, hyperbolic) transformation.

Theorem 3.7. Let .W; S/B be a Lorentzian Coxeter system, then an element
w 2 W is of �nite order if and only if w is an elliptic Lorentz transformation.

Proof. Assume that wk D e for some k < 1. Since the minimal polynomial of w

divides xk �1, its roots are all distinct and unimodular. Hence w is diagonalizable
with only unimodular eigenvalues, i.e. w is elliptic. For the sake of contradiction,
assume that w is an elliptic element but of in�nite order. So the eigenvalues of
w are all unimodular but are not all roots of unity. Let the sequence .wk/k2N act
on a simple root ˛ 2 �. We conclude from Kronecker’s theorem that ˛ is a limit
point of W acting on the Lorentz space. This contradicts the discreteness of the
root system [17, Lemma 1.2.5]. �

Consequently, whenever w is of in�nite order, it is either parabolic or hyper-
bolic. Then Theorem 1.1 follows directly from the fact that the set of limit roots
equals the limit set of the Coxeter group regarded as a Kleinian group acting on
the hyperbolic space [13, Theorem 1.1]. For the relation between �xed points and
limit sets of Kleinian groups; see for instance [22, Lemma 2.4.1(ii)].

However, we provide here a di�erent proof for the following reasons. First,
in our proof of Theorem 3.8 and 3.10, the behavior of in�nite-order elements will
be analysed in detail. This will be useful in the proof of Theorem 1.2. Second,
Calabi and Markus [5] proved that a group acting discretely on the space-like part
of PV must be �nite. In fact, as shown by Theorem 1.2, limit directions arising
from an arbitrary space-like base point is not necessarily light-like. Therefore,
one should regard the fact that limit roots lie on the light cone as an unusual
phenomenon. As mentioned in the introduction, our proof tries to rely minimally
on hyperbolic geometry, in the hope of a deeper insight and further generalizations
to non-Lorentzian in�nite Coxeter systems. In particular, concepts involved in the
statement of Theorem 1.1 are all well-de�ned for general in�nite Coxeter systems.
The non-Lorentzian cases are discussed in detail in Section 3.3.

For a Lorentzian Coxeter group W , we denote by W1 the set of elements
of in�nite order, by Wpar the set of parabolic elements, by and Whyp the set of
hyperbolic elements. Then W1 D Wpar t Whyp. Given an element w 2 W1, the
.n � 2/-dimensional real subspace spanned by unimodular eigenvectors of w is
called the unimodular subspace of w, and denoted by Uw .
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Theorem 3.8. The light-like eigendirection yx of a parabolic element w 2 Wpar is
a limit root of W .

Figure 6. The dynamics of a parabolic element as described in the proof of Theorem 3.8.

Proof. Let x be the light-like eigenvector of w with eigenvalue " D 1 or �1.
By Proposition 3.6, there are two vectors e1; e2 … Uw such that

w.e2/ � "e2 D e1; w.e1/ � "e1 D x:

By Proposition 3.6, we know that x 2 U ?
w \ Uw , e1 2 U ?

w , while e2 … U ?
w C Uw .

Let y 2 V be a real vector, it can be decomposed into

y D ax C be1 C ce2 C yı (2)

where yı 2 Uw n U ?
w , or 0 if x, e1 and e2 span V . Under the action of wk, we

have
wk.y/ D akx C bke1 C cke2 C wk.yı/: (3)

where the coe�cients

ak D a"k C bk"k�1 C c
�

k
2

�

"k�2;

bk D b"k C ck"k�1;

ck D c"k :
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The term wk.yı/ has bounded norm since yı is contained in the unimodular
subspace Uw . As long as y … Uw , we have b ¤ 0 or c ¤ 0, then bk D o.ak/

and ck D o.bk/, i.e. ak dominates bk and ck , and bk dominates ck , as k tends
to in�nity. Consequently, the direction of the sequence .wk.y//k2N converges
to the direction of x. That is, yx is a limit direction arising from yy through the
sequence .wk/k2N.

Since � spans the vector space V , there is a simple root ˛ … Uw . Using ˛ as
the base point, we conclude that yx is a limit root. The dynamics of a parabolic
element is illustrated in Figure 6. �

Remark 3.9. We see in the proof that the sequence .wk.y//k2N is asymptotically
tangent to U ?

w as k tends to in�nity, in the sense that the coe�cient for the
component e1 2 U ?

w dominates the components that are not in U ?
w (e2 and yı).

Theorem 3.10. Let w 2 Whyp be a hyperbolic element. The two light-like
eigendirections of w are limit roots and the projective unimodular subspace yUw

is contained in the set of limit directions of W .

Figure 7. The dynamics of a hyperbolic element as described in the proof of Theorem 3.10.

Proof. From Proposition 3.4, the element w possesses a light-like eigenvector x

which is non-unimodular. By replacing w with w�1 if necessary, we may assume
that the eigenvalue � corresponding to x is greater than 1 in absolute value. Let
x� be an eigenvector of w with eigenvalue ��1. Since w is diagonalizable, there
exists an eigenbasis of VC consisting of x, x� and n � 2 unimodular eigenvectors
of w. Then any real vector y 2 V can be decomposed into

y D aCx C a�x� C yı; (4)

where yı 2 Uw is orthogonal to x and x�. By Proposition 3.2ii, we have

wk.y/ D aC�kx C a���kx� C wk.yı/:
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Using y as the base point, three cases are possible.

Case 1. aC ¤ 0, so y … Hx� . The coe�cient jaC�k j diverges to in�nity while
the coe�cient ja���k j tends to 0. Besides, the term wk.yı/ has a bounded
norm since yı 2 Uw . Therefore, as k tends to in�nity, the direction of the
sequence .wk.y//k2N converges to the direction of x. So yx is a limit direction
arising from yy through the sequence .wk/k2N.

Case 2. aC D 0 and yı ¤ 0, so y 2 Hx� but yy ¤ yx�. Again, the coe�cient
ja���kj tends to 0, so yı 2 Uw is an accumulation point of the set ¹wk.y/ j
k 2 Nº by Kronecker’s theorem. Consequently, yyı 2 Uw is a limit direction
arising from yy through some subsequence of .wk/k2N.

Case 3. aC D 0, yı D 0 and a� ¤ 0, so yy D yx�. The sequence of vectors
.wk.y// converges to 0, while the direction of wk �yy remains yx� for all k 2 N.
The sequence .wk �yx/ visits only one point inPV , so no limit direction arises.

Since � spans the vector space V , there is a simple root ˛ … Hx� . Using ˛ as
the base point, we conclude from Case 1 that yx is a limit root. The dynamics of a
hyperbolic element is illustrated in Figure 7. �

For a Lorentzian Coxeter system .W; S/B , let Epar (resp. Ehyp) be the set of
light-like eigendirections of elements in Wpar (resp. Whyp). We now prove the fol-
lowing theorem, which is equivalent to Theorem 1.1 since E1 DEhyp t Epar. It can
be derived from the minimality of Eˆ under the action of W [11, Theorem 3.1(b)].
We provide here a self-contained proof using the results in Section 2.3.

Theorem 3.11. For a Lorentzian Coxeter system .W; S/B, the set of light-like
eigenvectors Epar (if not empty) and Ehyp are dense in the set of limit roots Eˆ.

Proof. We �rst prove that Ehyp is not empty. Since the group is in�nite, the set
of limit root Eˆ is not empty. Let yx be a limit root, since � spans V , there is a
simple root ˛ 2 � such that B.˛; x/ ¤ 0, and the re�ection in ˛ gives a limit root
yy di�erent from yx. As in the proof of Theorem 2.9, we may take two projective
roots Ǫ and Ǒ respectively close to yx and yy , such that the segment Œ Ǫ ; Ǒ� intersect
the light cone at two points. Then the product of the re�ections in ˛ and ˇ give
an hyperbolic element in W .

Let O
 2 Eˆ be a limit root obtained from an injective sequence . O
k/i2N of
projective roots. By passing to a subsequence, we may assume that O
 is obtained
from an injective sequence .gk.˛//i2N, where ˛ is a �xed simple root in � and
gk 2 W .

Let yz 2 Ehyp be a light-like eigendirection of a hyperbolic element w 2 Whyp.
By Proposition 3.2iv, gk � yz is a light-like eigendirection of the hyperbolic element
gkwg�1

k
. So the sequence .gk � yz/k2N is a sequence of limit roots in Ehyp.

By compactness, we may assume that .gk � yz/ converges. By Theorem 2.6, its
limit is a limit root.
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The last step consists of applying Corollary 2.7 to the sequence .gk � yz/k2N to
prove that O
 is the limit. For this, it remains to prove that the sequence contains
in�nitely many distinct points. By [12, Proposition 2.15] and [7, Remark 2.3],
we may assume that the Lorentzian Coxeter system .W; S/B is irreducible, so W

acts irreducibly on the representation space V ; see [15, Proposition 6.3] and [29,
Lemma 14]. Using this irreducible action, we can �nd a basis b1; : : : ; bn of V in
the orbit W.z/. By the injectivity of the sequence gk , there exists a basis vector
bi such that .gk � ybi/k2N contains an injective subsequence. Taking this bi as the
vector z above �nishes the proof.

The same arguments work, mutatis mutandis, for parabolic elements. �

(a) The 12 light-like eigendirections of
parabolic elements of length smaller or
equal to 6.

(b) The 126 light-like eigendirections of
hyperbolic elements of length smaller or
equal to 6.

Figure 8. Light-like eigendirections of some elements of the rank-3 universal Coxeter group
of a�ne type, seen in the a�ne space spanned by the simple roots.

Examples of light-like eigendirections of parabolic and hyperbolic elements
are illustrated in Figure 8 for the rank 3 universal Coxeter group of a�ne type.
Observe that their number and distribution are quite di�erent.

Hosaka [14] proves that, if a Coxeter group acts geometrically on a CAT(0)
space (e.g. Davis complex), then the limit points of W arising through .wk/k2N,
w 2 W1, is dense in the boundary of X . The similarity between Hosaka’s result
and Theorem 1.1 gives another motivation for further investigations on the relation
between limit roots and the boundaries of Coxeter groups, as we discussed in
Section 2.4.

3.3. Non-Lorentzian Coxeter systems. The density of Ehyp in Eˆ can also
be derived from a result of Conze and Guivarc’h [8]. In that paper, a linear
transformation is said to be proximal if there exists a simple eigenvalue which
is strictly greater than any other eigenvalue in absolute value. This is the case
for hyperbolic transformations of Lorentzian Coxeter systems. An eigenvector
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with this eigenvalue is called dominant eigenvector, so Ehyp is in fact the set of
dominant eigendirections. By [8, Proposition 2.4], Ehyp is the only minimal set
of the action of W . Then by [11, Theorem 3.1(b)], this set is Eˆ. For a non-
Lorentzian in�nite Coxeter system .W; S/, it remains true that the set of dominant
eigendirections is dense in the set of limit roots. It is proved in [17, Section 6.5]
that an element w 2 W is proximal if it is not contained in any proper parabolic
subgroup of W .

However, an arbitrary element w of in�nite order is not necessarily proximal,
even if w has non-unimodular eigenvalues. Let � denotes the eigenvalue of w with
largest absolute value, it is possible that the geometric multiplicity of � is not 1.
The real subspace U spanned by �-eigenvectors of w is totally isotropic, meaning
that B.x; y/ D 0 for any x; y 2 U . Then any direction yx in yU is an isotropic
limit direction, but only those in conv.�/ are limit roots. Therefore, Theorem 1.1
and 2.6 do not generalize to other in�nite Coxeter systems.

Example 3.12. In Figure 9, we show an example inspired by [12, Example 5.8]
and [10, Example 7.12 and 9.18]. It is the Coxeter graph of an irreducible Coxeter
group, associated with a non-degenerate bilinear form of signature .3; 2/. The
element s1s2s4s5 is of in�nite order with a simple eigenvalue 1, and two non-
unimodular eigenvalues 7 ˙ 4

p
3 each of multiplicity 2. Any direction in the

2-dimensional (7 C 4
p

3)-eigenspace is a limit direction.

Figure 9. The Coxeter graph of a non-Lorentzian irreducible Coxeter group for which the
limit roots are not the only limit directions on the isotropic cone.

4. Coxeter arrangement and limit directions

In this section, we characterize the set of limit directions of a Lorentzian Coxeter
system in terms of the Coxeter arrangement in projective space.

4.1. Projective Lorentzian Coxeter arrangement. Let .W; S/B be a Lorentzian
Coxeter system and .ˆ; �/ be the associated root system. The linear subspaces H


orthogonal to a positive root 
 2 ˆC is time-like and �xed by the re�ection �
 .
The projective Coxeter arrangement is the set of projective subspaces

H D ¹ yH
 j 
 2 ˆCº:
Clearly, H is invariant under the action of W . For a linear subspace U of V , the
set

H
U D ¹ yH \ yU j yH 2 H º
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is a projective hyperplane arrangement in yU . The connected components of the
complement of a projective arrangement are called chambers. Let I be the set
of non-empty intersections of the hyperplanes in H , including the projective
hyperplanes themselves. Then the chambers of H , together with the chambers
of H

I for all I 2 I, are called cells of H . The projective space PV is therefore
decomposed into cells, and we denote the set of cells by †.

For two cells C; C 0 2 †, we say that C 0 is a face of C if C 0 2 xC , and write
C 0 � C . This de�nes a partial order on †. The support of a cell C is de�ned as

supp.C / D
\


2ˆC

C2 yH


yH
 ;

while the support of a chamber of H is PV . The dimension of a cell is de�ned as
the dimension of its support. The codimension of a cell is de�ned similarly. Cells
of dimension 0 are called vertices. Cells of positive dimensions are open in their
supports. A cell is said to be space-like (resp. light-like, time-like) if its support
is a space-like (resp. light-like, time-like) projective subspace. So chambers of
H are time-like cells of codimension 0. Chambers of H

H for H 2 H are called
panels, and they are time-like cells of codimension 1.

For any chamber C of H that contains light-like directions, the projective Tits
cone T is the union of the orbit W �C . T is invariant under the action of W . In the
Lorentzian case, T is the projective cone over the set of weights �, and contains
the projective light cone yQ [23, Corollary 1.3].

Remark 4.1. A Lorentzian hyperplane arrangement is in�nite and not discrete.
Unlike �nite hyperplane arrangements, the union of hyperplanes in a Lorentzian
hyperplane arrangement is in general not a closed set.

4.2. Unimodular subspaces. Let ˛; ˇ 2 ˆ be two positive roots. If the segment
Œ Ǫ ; Ǒ� intersect the projective light cone yQ transversally (i.e. B.˛; ˇ/ < �1), then
�˛�ˇ is a hyperbolic transformation. If the segment Œ Ǫ ; Ǒ� is tangent to yQ (i.e.
B.˛; ˇ/ D �1), then �˛�ˇ is a parabolic transformation. In either case, we know
from [12, Section 4] that the limit roots of the subgroup generated by �˛ and �ˇ are
the points in yQ \ Œ Ǫ ; Ǒ�. By Theorem 3.10, these are the light-like eigendirections
of �˛�ˇ 2 W1. The unimodular subspace of �˛�ˇ is clearly H˛ \ Hˇ . We de�ne

Lhyp D
[

˛;ˇ2ˆC

B.˛;ˇ/<�1

yH˛ \ yHˇ ; Lpar D
[

˛;ˇ2ˆC

B.˛;ˇ/D�1

yH˛ \ yHˇ :

Furthermore, we de�ne the unions of projective unimodular subspaces for
parabolic, hyperbolic, and in�nite-order elements

Upar D
[

w2Wpar

yUw ; Uhyp D
[

w2Whyp

yUw ; U D Upar [ Uhyp D
[

w2W1

yUw :
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We have clearly Lhyp � Uhyp and Lpar � Upar. The following theorem concerns
a reversed inclusion.

Theorem 4.2. The projective unimodular subspace yUw of an element of in�nite
order w 2 W1 is included in Lhyp. In other words,

U � Lhyp:

Proof. We set a natural map ƒ from the set of distinct pairs of light-like direc-
tions to the set of codimension-2 projective subspacesof yV , both equipped with the
induced Grassmanian topology. This map sends a pair of distinct light-like direc-
tions .yx; yy/ 2 yQ2 to the codimension-2 projective subspace ƒ.yx; yy/ WD yHx \ yHy

and a direct veri�cation shows that this map is continuous. For a hyperbolic
element w 2 Whyp, let .yx; yy/ be its two non-unimodular eigendirections, then
ƒ.yx; yy/ D yUw . Since yx and yy are limit roots, we can �nd two sequences of roots
.˛k/k2N and .ˇk/k2N such that Ǫk converges to yx and Ǒ

k converges to yy . The
sequence of segments Œ Ǫk ; Ǒ

k� eventually intersect the projective light cone yQ at
two limit roots, say yxk and yyk . These two limit roots determine a unimodular
projective subspace yUk D ƒ.yxk ; yyk/ 2 Lhyp. The two sequences of limit roots
.yxk/k2N and .yyk/k2N converge to yx and yy respectively. By the continuity of ƒ,
yUk converges to yUw as k tends to in�nity. See Figure 10 for an illustration.

Figure 10. Illustration for the proof of Theorem 4.2 in the case of hyperbolic elements at
step k.



492 H. Chen and J.-Ph. Labbé

For a parabolic element w 2 Wpar, let yx 2 yUw be the light-like eigendirection
of w, then yUw C yU ?

w D yHx is the codimension-1 hyperplane that is tangent to yQ
at yx. See Figure 11 for an illustration. Let Wx 3 w be the stabilizer subgroup of yx.
It is generated by re�ections in the positive roots on Hx [10, Lemma 1.10]

ˆx D ¹
 2 ˆC j B.
; yx/ D 0º � Hx:

Since the restriction of B on Hx is positive semi-de�nite with a radical of dimen-
sion 1, Wx is an irreducible a�ne Coxeter group, and yx is the only limit root;
see [12, Corollary 2.16]. Furthermore, we claim that ˆx 6� Uw , otherwise we have
U ?

w � Uw and Hx � Uw , which is not possible.
Since yx 2 conv. ŷ

x/, we can �nd two positive roots ˛; ˇ 2 Hx on di�erent
sides of U w , so they have opposite signs for the coe�cient b in the decomposi-
tion (2). Recall that, under the action of .wk/k2N, the coe�cients bk dominates ck

in equation (3) as k tends to in�nity. Therefore, the sequences . Ǫk D wk � Ǫ /k2N

and . Ǒ
k D wk � Ǒ/k2N not only converge to yx, but are also asymptotically tangent

to yU ?
w at yx; see Remark 3.9.

Since the simple roots � spans V and the Coxeter group W is Lorentzian, there
is a simple root ı such that the segment Œ Oı; yx� intersects yQ at two points (including
yx itself). We now construct two sequences of projective roots . Ǫ 0

k
D wk�˛ � Oı/k2N

and . Ǒ 0
k

D wk�ˇ � Oı/k2N. Both sequences converge to yx and are asymptotically

tangent to OU ?
w at yx. The sequence of segments Œ Ǫ 0

k
; Ǒ 0

k
� eventually intersect yQ at

two limit roots, say yxk and yyk, which determine a unimodular projective subspace
Uk D ƒ.yxk ; yyk/ 2 Lhyp. The two sequences of limit roots .yxk/k2N and .yyk/k2N

both converge to yx, and are asymptotically tangent to yU ?
w at yx. So yUk converges to

the orthogonal companion of yU ?
w , which is yU ??

w D yUw , as k tends to in�nity. �

4.3. Limit directions. By Theorem 3.10, we have Lhyp � Uhyp � EV . Notably,
while limit roots arise from projective roots and projective weights, it is possible
for a projective root to be a limit direction, and space-like projective weights are
all limit directions.

In this part, we prove the other inclusion of Theorem 1.2, namely that EV �
Lhyp. We will need the following two lemmas.

Lemma 4.3 (Selberg’s lemma, [25, Section 7.5]). Every �nitely generated sub-
group G of GL.n;C/ has a torsion-free normal subgroup of �nite index.

Lemma 4.4. Let G be a group acting on a vector space X , and H be a subgroup
of G of �nite index. Then the set of limit points of H is equal to the set of limit
points of G.
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Figure 11. Illustration for the proof of Theorem 4.2 in the case of parabolic elements at
step k.

Proof. A limit point of H is a limit point of G. Conversely, let x 2 X be a limit
point of G arising from a base point x0 2 X through the sequence .gk/k2N 2 G.
Since H is of �nite index, by passing to a subsequence if necessary, we may
assume that the sequence .gk/k2N is contained in a single coset of H . That is,
there is a sequence .hk/k2N 2 H and a �xed element g 2 G such that gk D hkg

for all k 2 N. Then x is a limit point of H arising from the point g.x0/ through
the sequence .hk/k2N. �

Theorem 4.5. The set of limit direction of a Lorentzian Coxeter system is included
in Lhyp,

EV � Lhyp:

Proof. Assume that some yx … Lhyp is a limit direction. By Selberg’s lemma,
there exists a subgroup of W of �nite index whose only element of �nite order
is the identity. By Lemma 4.4, the limit direction yx arises through a sequence of
in�nite-order elements. By the de�nition of limit point, for any neighborhood N

of yx, there is in�nitely many elements w 2 W1 such that .w � N / \ N ¤ ¿.
We claim that yx is not in the Tits cone T . If yx is in the interior of T , there is a

neighborhood N of yx such that .w � N / \ N D ¿ for any element w 2 W1; see [1,
Exercise 2.90]. If yx is on the boundary of T , the stabilizer of yx is in�nite, so there
is an element w 2 W1 such that yx 2 yUw � Lhyp, contradicting our assumption.
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Let C 2 † be the cell of H containing yx. Since yx … Lhyp, C does not intersect
Uw for any w 2 W1. We now prove that .w �C /\C D ¿ for any element w 2 W1.

Assume that w 2 W1 is an element of in�nite order such that .w �C /\C ¤ ¿.
As H is invariant under the action of W , we must have w � C D C . Since
C \ yUw D ¿, there must be a vertex v of xC such that v … yUw . From the proof of
Theorem 3.8 and 3.10, we see that the sequence .wk � v/k2N converges to a light-
like eigendirection of w. Because C is invariant under the action of w, the vertex
v must be itself a light-like eigendirection of w. We then claim that v is the only
vertex of C that is not in yUw . Otherwise, if u … yUw is another vertex of C , then
u 2 yQ and the segment Œu; v� is inside the light cone yQ, so yx 2 C is in the interior
of the Tits cone T , which has been proved to be impossible. Moreover, w must be
hyperbolic; otherwise if w is parabolic, we have C � yUw � Lhyp, contradicting
our assumption.

To summarize, we have proved that w is hyperbolic, and C is in the projective
subspace spanned by the unimodular subspace yUw and a light-like eigendirection
v of w. From the proof of Theorem 3.10, we know that C is in the light-like
subspace yHv. We now prove that this situation is again not possible.

Let WC be the stabilizer subgroup of C . It is generated by re�ections in the
positive roots ˆC D ¹
 2 ˆC j C � H
º. These roots lie on the orthogonal
companion of supp.C /, which is light-like and tangent to yQ at v. The restriction
of the bilinear form B on the subspace spanned by ˆC is positive semi-de�nite,
so WC is an a�ne Coxeter group. We then conclude that there is an element
w0 2 Wpar such that C 2 yUw 0 � Lhyp, contradicting our assumption.

We have proved that .w � C / \ C D ¿ for all w 2 W1. Since yx 2 C and C is
open in supp.C /, we have found a neighborhood N of yx such that .w �N /\N D ¿

for all w 2 W1. Therefore, yx can not be a limit direction. �

4.4. Open problems on limit directions. We proved that the set EV of limit
directions is located between the set Lhyp and its closure. In fact, by Theorem 3.10
and Section 4.2, a stronger result can be obtained:

Uhyp t Eˆ � EV � Uhyp:

Figure 12 shows some unimodular eigenvectors for in�nite order elements for
the same geometric Coxeter system as in Figure 2. Many of the eigenvectors are
not in the intersections of the Coxeter arrangement, but can be approximated by
intersections. Interestingly, the eigenvectors seem to obey certain linear depen-
dences which are not present in the hyperplane arrangement. For example, the
unimodular eigenspaces of the elements ststu; stu; sutu; tusu; tsu and t stsu lie
on a hyperplane which is not a re�ecting hyperplane. It would be interesting to
study these linear dependences of unimodular eigenvectors in relation with the
structure of the Coxeter group.
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Figure 12. The a�ne representation of some space-like limit directions of the universal
Coxeter group of rank 3 associated with a bilinear form where cij D 1:1 whenever i ¤ j ,
same as in Figure 2. The generators of the Coxeter group are s, t and u, while ˛s ; ˛t and ˛u

in the �gure are the corresponding simple roots. The dots are unimodular eigenvectors of
hyperbolic elements of length � 5. The six eigenvectors marked in white are also weights.
Some unimodular eigenspaces are labeled by the corresponding hyperbolic elements. The
dotted lines show some linear dependences between limit directions veri�ed with Sage.

Problem 4.6. Prove or disprove the following equalities:

EV D Uhyp t Eˆ; (5)

EV D Uhyp: (6)

Only one of the equality may be true. In fact, in the case where Eˆ D yQ (see
for instance Figure 5 and Figure 8 of [12] and Figure 8 of the present paper), Uhyp

is the union of countably many codimension-2 subspaces, while Uhyp consists of
all space-like and light-like directions, so Uhyp is a proper subset of Uhyp. Then
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equation (6) would imply counterintuitively that every non-time-like direction is
a limit direction.

In the boundary @.Uhyp/ D Uhyp n Uhyp, we know that the limit roots Eˆ �
@.Uhyp/ are limit directions. Since every limit direction in Uhyp arises through
a sequence of the form .wk/k2N for w 2 W1, equation (5) is equivalent to the
following conjecture

Conjecture 4.7. Every space-like limit direction arises through a sequence of the
form .wk/k2N for w 2 W1.

To prove equation (6), it su�ces to prove that Ex is closed. Let Ex be the set
of limit directions arising from a �xed base point yx 2 PV . Since Ex is the set
of accumulation points of W � yx, it is clear that EV is closed and invariant under
the action of W . In particular, Ex D Ey if yx and yy lie in a same orbit of W , i.e.
yx D w � yy for some w 2 W . However, the set of limit directions, being the in�nite
union

EV D
[

yx2PV

Ex D
[

yx2PV=G

Ex;

may not be closed in general.
Since the set of limit roots Eˆ is a minimal set of W , we have Eˆ � Ex for

all yx 2 PV . In Section 2, we have seen that Ex D Eˆ if yx is a time-like, light-
like, projective root or a projective weight. Using the argument in the proof of
Theorem 4.5, we can prove that Ex D Eˆ if yx is in the Tits cone T . De�ne the
set Fˆ D ¹yx 2 PV j Ex D Eˆº.

Problem 4.8. Is Fˆ a closed set?
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