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1. Introduction

In 1960’s, R. J. Thompson has initiated a study of �nitely presented simple in�nite
groups. He has discovered �rst two such groups in [25]. They are now known
as the groups V2 and T2. G. Higman has generalized the group V2 to in�nite
family of �nitely presented in�nite groups. One of such families are groups written
VN ; 1 < N 2 Nwhich are called the Higman–Thompson groups. They are �nitely
presented and their commutator subgroups are simple. Their abelianizations are
trivial if N is even, andZ2 if N is odd. K. S. Brown has extended the groups VN to
triplets of in�nite families FN � TN � VN ; 1 < N 2 N, and proved that each of
the groups is �nitely presented ([1]). The Higman–Thompson group VN is known
to be represented as the group of right continuous piecewise linear functions
f W Œ0; 1/ ! Œ0; 1/ having �nitely many singularities such that all singularities of
f are in ZŒ 1

N
�, the derivative of f at any non-singular point is N k for some k 2 Z

and f .ZŒ 1
N

� \ Œ0; 1// D ZŒ 1
N

� \ Œ0; 1/ (cf. [25]). See [2] for general reference on
these groups.

V. Nekrashevych [20] has shown that the Higman–Thompson group VN

appears as a certain subgroup of the unitary group of the Cuntz algebra ON . The
second named author has observed in [17, Remark 6.3] that the subgroup is nothing
but the continuous full group �N of ON , which is also realized as the topological
full group of the associated groupoid. Such full groups have arisen from a study
of orbit equivalence of symbolic dynamics ([8]).

Recently the authors have studied full groups of the Cuntz–Krieger algebras
and full groups of the groupoids coming from shifts of �nite type. The �rst
named author has studied the normalizer groups of the canonical maximal abelian
C �-subalgebras in the Cuntz–Krieger algebras which are called the continuous
full groups from the view point of orbit equivalences of topological Markov shifts
and classi�cation of C �-algebras ([8], [9], etc.), and showed that the continuous
full groups are complete invariants for the continuous orbit equivalence classes
of the underlying topological Markov shifts ([11], more generally [17]). The
second named author has studied the continuous full groups of more general étale
groupoids ([15], [16], [17], etc.), and called them the topological full groups of étale
groupoids. He has proved that if an étale groupoid is minimal, the topological
full group of the groupoid is a complete invariant for the isomorphism class of
the groupoid. He has also shown that if a groupoid comes from a shift of �nite
type, the topological full group is of type F1 and in particular �nitely presented.
He has furthermore obtained that the topological full groups for shifts of �nite
type are simple if and only if its homology group H0.GA/ of the groupoid GA

is 2-divisible, and that its commutator subgroups are always simple. We have
obtained the following results on the group �A for the topological Markov shift
.XA; �A/ de�ned by an irreducible square matrix with entries in ¹0; 1º.
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Theorem 1.1 ([11], [13], [17]). Let A and B be irreducible, not any permutation

matrices with entries in ¹0; 1º. The following conditions are equivalent:

(1) The one-sided topological Markov shifts .XA; �A/ and .XB ; �B/ are contin-

uously orbit equivalent;

(2) the étale groupoids GA and GB are isomorphic;

(3) the groups �A and �B are isomorphic;

(4) the Cuntz–Krieger algebras OA and OB are isomorphic and det.id � A/ D

det.id � B/.

Suppose that A is an N �N matrix and B is an M �M matrix. It is well-known
that the Cuntz–Krieger algebras OA and OB are isomorphic if and only if there
exists an isomorphism ˆ of groups from Z

N =.id � At /ZN to Z
M =.id � B t /ZM

such that ˆ.uA/ D uB where uA and uB are the classes of the vectors Œ1; : : : ; 1�

([24]). Hence the isomorphism classes of the groups �A are completely classi�ed
in terms of the underlying matrices A, so that there exist an in�nite family of
�nitely presented in�nite simple groups of the form �A.

In this paper, we will study representations of the group �A for an irreducible
matrix A with entries in ¹0; 1º as a generalization of the Higman–Thompson
groups VN ; 1 < N 2 N. The group �A has been originally de�ned as the group of
homeomorphisms � on the shift space XA of a topological Markov shift .XA; �/

such that
�

k� .x/
A .�.x// D �

l� .x/
A .x/; x 2 XA; (1.1)

for some continuous functions k� ; l� W XA ! ZC (it is written Œ�A� in the earlier
papers [8], [10]). If the matrix A is the N � N -matrix whose entries are all 1’s,
the group �A coincides with the Higman–Thompson group VN of order N .

We will introduce a notion of A-adic PL (piecewise linear) function which is a
right continuous bijective piecewise linear function on the interval Œ0; 1/ associated
with the matrix A to represent an element of the group �A. Let 1 < ˇ 2 R be the
Perron–Frobenius eigenvalue of A. Let us denote by ZŒ 1

ˇ
; ˇ� the set of ˇ-adic

rationals which is de�ned by

ZŒ
1

ˇ
; ˇ� D

°a0 C a1ˇ C a2ˇ2 C � � � C anˇn

ˇn

ˇ

ˇ

ˇ
a0; a1; : : : ; an 2 Z

±

:

Then the group of A-adic PL functions on Œ0; 1/ is realized as a subgroup of
right continuous bijective piecewise linear functions f on Œ0; 1/ having �nitely
many singularities such that all singularities of f are in ZŒ 1

ˇ
; ˇ�; the derivative

of f at any non-singular point is ˇk for some k 2 Z and f .ZŒ 1
ˇ

; ˇ� \ Œ0; 1// �

ZŒ 1
ˇ

; ˇ� \ Œ0; 1/. See Section 4 for the precise de�nition. We also introduce a
notion of A-adic table in order to represent elements of �A which is a matrix

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�
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with entries in admissible words �.i/; �.i/; i D 1; : : : ; m of the one-sided topo-
logical Markov shift .XA; �A/ satisfying certain properties. We may de�ne an
equivalence relation of the A-adic tables, and a product structure in the set � tab

A

of the equivalence classes of A-adic tables which makes it a group. We will show
the following theorem which is a generalization of a well-known result for the
Higman–Thompson groups. Assume that A is an irreducible and non permuta-
tion matrix with entries in ¹0; 1º.

Theorem 1.2 (Theorem 6.3). There exist canonical isomorphisms of discrete

groups among the continuous full group �A, the group � tab
A of the equivalence

classes of A-adic tables, and the group �PL
A of A-adic PL functions on Œ0; 1/, that

is

�A Š � tab
A Š �PL

A :

Let 1 < ˇ 2 R be the Perron–Frobenius eigenvalue of A. For � 2 �A, we put
d� .x/ D l� .x/�k� .x/, x 2 XA for the continuous functions k� ; l� satisfying (1.1).
We de�ne the derivative D� of � as a real valued continuous function on XA:

D�.x/ D ˇd� .x/; x 2 XA:

We know that D� satis�es the following law of derivative:

D�2ı�1
D D�1

� .D�2
ı �1/; D��1 D .D� ı ��1/�1

for �; �1; �2 2 �A (Proposition 7.9).
The continuous full group �A is isomorphic to the group �PL

A of all A-adic PL
functions on Œ0; 1/ by the above theorem. We will show that � 2 �A is realized as
an A-adic PL function on Œ0; 1/ in the following way, where XA is endowed with
lexicographic order.

Theorem 1.3 (Theorem 7.10). There exists an order preserving continuous sur-

jection �AW XA ! Œ0; 1� from the shift space XA of a one-sided topological Markov

shift .XA; �A/ to the closed interval Œ0; 1� such that for any element � 2 �A, there

exists an A-adic PL function f� and a �nite set S� � XA satisfying the following

properties:

(i) f� .�A.x// D �A.�.x// for x 2 XAnS� ,

(ii) df�

dt
.�A.x// D D� .x/ for x 2 XAnS� .

In [1], K. S. Brown has extended the groups VN ; 1 < N 2 N to triplets
FN � TN � VN of in�nite discrete groups. In the �nal section, we will generalize
the triplet to the triplet FA � TA � �A of in�nite discrete groups.

Throughout the paper, we denote by N and by ZC the set of positive integers
and the set of nonnegative integers, respectively.
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2. Preliminaries

Let A D ŒA.i; j /�Ni;j D1 be an N � N matrix with entries in ¹0; 1º, where 1 < N 2

N. Then A is said to be irreducible if for every pair .i; j /; i; j D 1; : : : ; N , there
exists k 2 N such that Ak.i; j / � 1. If Am D id for some m 2 N, then A is called
a permutation matrix. Throughout the paper, we assume that A is irreducible and
not any permutations. We denote by XA the shift space

XA D ¹.xn/n2N 2 ¹1; : : : ; N ºN j A.xn; xnC1/ D 1 for all n 2 Nº

of the right one-sided topological Markov shift for A. It is a compact Hausdor�
space in natural product topology. The shift transformation �A on XA de�ned
by �A..xn/n2N/ D .xnC1/n2N is a continuous surjection on XA. The topological
dynamical system .XA; �A/ is called the (right one-sided) topological Markov shift
for A. Since A is assumed to be irreducible and not any permutations, the shift
space XA is homeomorphic to a Cantor discontinuum.

A word � D .�1; : : : ; �m/ for �i 2 ¹1; : : : ; N º is said to be admissible
for XA if � appears somewhere in some element x in XA. The length of � is
m and denoted by j�j. We denote by Bm.XA/ the set of all admissible words
of length m. For m D 0 we denote by B0.XA/ the empty word ;. We put
B�.XA/ D

S1
mD0 Bm.XA/ the set of admissible words of XA. For two words

� D .�1; : : : ; �m/ 2 Bm.XA/; � D .�1; : : : ; �n/ 2 Bn.XA/, we denote by ��

the word .�1; : : : ; �m; �1; : : : ; �n/. For a word � D .�1; : : : ; �m/ 2 Bm.XA/, the
cylinder set U� � XA is de�ned by

U� D ¹.xn/n2N 2 XA j x1 D �1; : : : ; xm D �mº:

We put

�C
k

.�/ D ¹.�1; : : : ; �k/ 2 Bk.XA/ j .�1; : : : ; �m; �1; : : : ; �k/ 2 BmCk.XA/º;

for k 2 ZC, and

�C
1.�/ D ¹.xn/n2N 2 XA j .�1; : : : ; �m; x1; x2; : : : / 2 XAº

and �C
� .�/ D

S1
kD1 �C

k
.�/ which is called the follower set of �. For two words

�; � 2 B�.XA/, we see that �C
� .�/ D �C

� .�/ if and only if �C
1.�/ D �C

1.�/.
A homeomorphism � on XA is said to be a cylinder map if there exist two

families

�.i/ D .�1.i/; �2.i/; : : : ; �ki
.i// 2 Bki

.XA/; i D 1; : : : ; m;

�.i/ D .�1.i/; �2.i/; : : : ; �li
.i// 2 Bli

.XA/; i D 1; : : : ; m;
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of words such that

U�.i/ \ U�.j / D U�.i/ \ U�.j / D ; for i ¤ j; (2.1)

m
[

iD1

U�.i/ D

m
[

iD1

U�.i/ D XA; (2.2)

�C
� .�.i// D �C

� .�.i// for i D 1; : : : ; m; (2.3)

and

�.�1.i/; �2.i/; : : : ; �li
.i/; xli C1; xli C2; : : : /

D .�1.i/; �2.i/; : : : ; �ki
.i/; xli C1; xli C2; : : : /

(2.4)

for .xli C1; xli C2; : : : / 2 �C
1.�.i// and i D 1; : : : ; m. It is easy to see that the set of

cylinder maps forms a subgroup of the group Homeo.XA/ of all homeomorphisms
on XA.

De�nition 2.1. The continuous full group �A of .XA; �A/ is de�ned as the group
of cylinder maps on XA.

For a cylinder map � 2 �A, de�ne continuous functions k� ; l� W XA ! ZC by

k� .x/ D ki for x 2 U�.i/;

l� .x/ D li for x 2 U�.i/;

so that they satisfy

�
k� .x/
A .�.x// D �

l� .x/
A .x/ for all x 2 XA: (2.5)

Conversely a homeomorphism � satisfying the equality (2.5) for some continuous
functions k� ; l� W XA ! ZC gives rise to a cylinder map (cf. ([11]).

The Cuntz–Krieger algebra OA for the matrix A has been de�ned in [5] as the
universal C �-algebra generated by N partial isometries S1; : : : ; SN subject to the
relations:

N
X

j D1

Sj S�
j D 1; S�

i Si D

N
X

j D1

A.i; j /Sj S�
j ; i D 1; : : : ; N: (2.6)

The algebra OA is known to be the unique C �-algebra subject to the above
relations. For a word � D .�1; : : : ; �k/ with �i 2 ¹1; : : : ; N º, we denote the
product S�1

� � � S�k
by S�. Then S� ¤ 0 if and only if � 2 B�.XA/. Let

C �.S�S�
�I � 2 B�.XA// be the C �-subalgebra of OA generated by the projections

of the form S�S�
�; � 2 B�.XA/, which we denote by DA. It is isomorphic to the

commutative C �-algebra C.XA/ of all complex valued continuous functions on
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XA through the correspondence S�S�
� 2 DA $ �� 2 C.XA/ where �� denotes

the characteristic function on XA for the cylinder set U� for � 2 B�.XA/. We will
identify C.XA/ with the subalgebra DA of OA. It is well-known that the algebra
DA is maximal abelian in OA ([5, Remark 2.18]). We denote by U.OA/ and U.DA/

the group of unitaries in OA and the group of unitaries in DA, respectively. The
normalizer N.OA;DA/ of DA in OA is de�ned by

N.OA;DA/ D ¹u 2 U.OA/ j uDAu� D DAº:

The étale groupoid GA for the topological Markov shift .XA; �A/ is given by

GA D ¹.x; n; y/ 2 XA � ZC � XA j there exist k; l 2 ZCI

n D k � l; �k
A .x/ D � l

A.y/º:

The topology of GA is generated by the sets

¹.x; k � l; y/ 2 GA j x 2 V; y 2 W; �k
A .x/ D � l

A.y/º

for open sets V; W � XA and k; l 2 ZC. Two elements .x; n; y/; .x0; n0; y0/ 2 GA

are composable if and only if y D x0 and the product and the inverse are given by

.x; n; y/ � .x0; n0; y0/ D .x; n C n0; y0/; .x; n; y/�1 D .y; �n; x/:

The unit space G
.0/
A is de�ned by ¹.x; 0; x/ j x 2 XAº, which is identi�ed with

XA. The range map, source map r; sW GA ! G.0/ are de�ned by r.x; n; y/ D

x; s.x; n; y/ D y respectively. A subset U � GA is called a GA-set if r jU ; sjU are
injective. For an open GA-set U , denote by �U the homeomorphism r ı .sjU /�1

from s.U / to r.U /. The topological full group ŒŒGA�� of GA is de�ned by the
group of all homeomorphisms �U for some compact open GA-set U such that
s.U / D r.U / D G.0/ (see [17]). The groupoid C �-algebra C �

r .GA/ of the
groupoid GA is nothing but the Cuntz–Krieger algebra OA and the commutative
C �-algebra C.G

.0/
A / on the unit space G

.0/
A isDA. The topological full group ŒŒGA��

of the étale groupoid GA for the topological Markov shift .XA; �A/ is naturally
identi�ed with the continuous full group �A ([17]).

Lemma 2.2. For � 2 �A, there exist u� 2 N.OA;DA/ and �.i/; �.i/ 2 B�.XA/,

i D 1; : : : ; m such that

(1) u� D
Pm

iD1 S�.i/S
�
�.i/

and

(a) S�
�.i/

S�.i/ D S�
�.i/

S�.i/; i D 1; : : : ; m;

(b)
Pm

iD1 S�.i/S
�
�.i/

D
Pm

iD1 S�.i/S
�
�.i/

D 1I

(2) f ı ��1 D u� f u�
� for f 2 DA.
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Proof. Since � is a cylinder map, there exist two families of words �.1/; : : : ; �.m/

and �.1/; : : : ; �.m/ satisfying (2.1)–(2.4). Hence we have

m
X

iD1

S�.i/S
�
�.i/ D

m
X

iD1

S�.i/S
�
�.i/ D 1; S�

�.i/S�.i/ D S�
�.i/S�.i/; i D 1; : : : ; m:

By putting u� D
Pm

iD1 S�.i/S
�
�.i/

we see that u� belongs to N.OA;DA/ and

satis�es �U�
ı ��1 D u� �U�

u�
� for all � 2 B�.XA/ where �U�

is identi�ed with
S�S�

� ; so that f ı ��1 D u�f u�
� for all f 2 DA. �

As in [8, Theorem 1.2], [15, Proposition 5.6], there exists a short exact sequence

1 �! U.DA/ �! N.OA;DA/ �! �A �! 1

that splits.
It has been proved by the second named author [17] that the homology group

H0.GA/ of the groupoid GA is isomorphic to the K0-group

K0.OA/ D Z
N =.id �At/ZN

of the C �-algebra OA. He has proved that the group �A is simple if and only if
H0.GA/ is 2-divisible. He has also proved that �A is �nitely presented and its
commutator subgroup D.�A/ is always simple. As the group �A is non-amenable
([10], [17]), we see

Theorem 2.3 ([17]). The group �A is a countably in�nite, non-amenable, �nitely

presented discrete group. It is simple if and only if the group Z
N =.id �At/ZN is

2-divisible.

It has been shown that for two irreducible square matrices A and B , the
groups �A and �B are isomorphic if and only if the C �-algebras OA and OB

are isomorphic and det.id �A/ D det.id �B/ ([13]). Hence the family ¹�Aº of
our groups supply us many mutually non-isomorphic countably in�nite, non-
amenable, �nitely presented simple groups.

3. Realization of OA on L2.Œ0; 1�/

The Higman–Thompson group VN ; 1 < N 2 N is represented as the group of right
continuous piecewise linear bijective functions f W Œ0; 1/ ! Œ0; 1/ having �nitely
many singularities such that all singularities of f are in ZŒ 1

N
�, the derivative

of f at any non-singular point is N k for some k 2 Z and f .ZŒ 1
N

� \ Œ0; 1// D

ZŒ 1
N

� \ Œ0; 1/. In order to represent our group �A as a group of piecewise linear
functions on Œ0; 1/, we will represent the algebra OA on the Hilbert space H of
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the square integrable functions L2.Œ0; 1�/ on Œ0; 1� with respect to the Lebesgue
measure in the following way. We note that the essentially bounded measurable
functions L1.Œ0; 1�/ act on H by left multiplication.

Since A is irreducible and not any permutations, its Perron–Frobenius eigen-
value written ˇ is greater than one. By Ruelle’s Perron-Frobenius theory for
Markov chains, there uniquely exists a faithful Borel probability measure ' on
XA satisfying the equality

Z

x2XA

g.x/d'.�A.x// D ˇ

Z

x2XA

g.x/d'.x/; g 2 C.XA/ (3.1)

(see [22]). Under the identi�cation between C.XA/ and the C �-subalgebra DA of
OA, the probability measure ' on XA is regarded as a continuous linear functional
on DA, which is still denoted by '. Let �AWDA ! DA be the positive operator
de�ned by �A.g/ D

PN
iD1 S�

i gSi for g 2 DA. Since the characteristic function
�� on XA for the cylinder set of an admissible word � 2 B�.XA/ is regarded as
the projection S�S�

� in DA, the identity (3.1) implies

'.�A.g// D ˇ'.g/; g 2 DA; (3.2)

so that the equality

N
X

j D1

A.i; j /'.Sj S�
j / D ˇ'.SiS

�
i /; i D 1; : : : ; N (3.3)

holds. Put pj D '.Sj S�
j /; j D 1; : : : ; N: The equality (3.3) means that the

vector

� p1

:::
pN

�

is a unique normalized positive eigenvector for the Perron–Frobenius

eigenvalue ˇ. For i; j D 1; 2; : : : ; N , put pij D '.SiSj S�
j S�

i / so that

pij D
1

ˇ2
'.S�

j S�
i SiSj / D

1

ˇ2
A.i; j /'.S�

j Sj / D
1

ˇ
A.i; j /pj :

We set for i; j D 1; 2; : : : ; N ,

p.0/ D 0; p.i/ D

i
X

kD1

pk ; q.0; 0/ D q.i; 0/ D 0; q.i; j / D

j
X

kD1

pik

and de�ne the intervals Ii ; Iij in Œ0; 1/ by

Ii D Œp.i � 1/; p.i//; (3.4)

Iij D Œp.i � 1/ C q.i; j � 1/; p.i � 1/ C q.i; j //: (3.5)
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The latter interval Iij is empty if A.i; j / D 0. We set

l.Ii / D p.i � 1/; r.Ii / D p.i/;

l.Iij / D p.i � 1/ C q.i; j � 1/; r.Iij / D p.i � 1/ C q.i; j /;

so that

Ii D Œl.Ii /; r.Ii//; Iij D Œl.Iij /; r.Iij //:

Lemma 3.1. Keep the above notations.

(i) Œ0; 1/ D
FN

iD1 Ii : disjoint union.

(ii) Ii D
FN

j D1 Iij : disjoint union.

Proof. (i) is clear.

(ii) Let Ni D Max¹j D 1; : : : ; N j A.i; j / D 1º: As we have

q.i; Ni/ D

Ni
X

kD1

pik D
1

ˇ

Ni
X

kD1

A.i; k/pk D pi ;

the equality p.i � 1/ C q.i; Ni / D p.i/ holds so that r.Ii;Ni
/ D r.Ii/. As the

intervals Iij ; Iij 0 are disjoint for j ¤ j 0, one easily sees that Ii D
FNi

j D1 Iij D
FN

j D1 Iij . �

We de�ne right continuous functions fA; g1; : : : ; gN in the following way. The
function fAW Œ0; 1/ ! Œ0; 1/ is de�ned by

fA.x/ D ˇ.x � l.Iij // C l.Ij / for x 2 Iij

so that fA is linear on Iij with slope ˇ and fA.Iij / D Ij . We set

Ji D
[

j D1;:::;N
A.i;j /D1

Ij :

The function gi W Ji ! Ii for each i D 1; : : : ; N is de�ned by

gi .x/ D
1

ˇ
.x � l.Ij // C l.Iij / for x 2 Ij with A.i; j / D 1

so that gi is linear on Ij for A.i; j /D1 with slope 1
ˇ

and gi .Ij /DIij ; gi .Ji /DIi .
The following lemma is direct.
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Lemma 3.2. For i D 1; : : : ; N , we have

(i) fA.gi .x// D x for x 2 Ji ,

(ii) gi .fA.x// D x for x 2 Ii .

For a measurable subset E of Œ0; 1/, denote by �E the multiplication operator
on H of the characteristic function of E. De�ne the bounded linear operators TfA

,
Tgi

; i D 1; : : : ; N on H by

.TfA
�/.x/ D �.fA.x//; .Tgi

�/.x/ D �Ji
.x/�.gi .x//; for � 2 H; x 2 Œ0; 1/:

The following lemma is straightforward:

Lemma 3.3. Keep the above notations. We have

(i) T �
fA

D 1
ˇ

PN
iD1 Tgi

;

(ii) T �
fA

TfA
D 1

ˇ

PN
iD1 �Ji

;

(iii) T �
gi

Tgi
D ˇ�Ii

for i D 1; : : : ; N and hence
PN

iD1 T �
gi

Tgi
D ˇ1,

(iv) Tgi
T �

gi
D ˇ�Ji

for i D 1; : : : ; N:

We de�ne the operators si ; i D 1; : : : ; N on H by setting

si D
1

p

ˇ
T �

gi
; i D 1; : : : ; N:

By the above lemma, we have

Proposition 3.4. The operators si ; i D 1; : : : ; N are partial isometries such that

sis
�
i D �Ii

; s�
i si D �Ji

; i D 1; : : : ; N:

Hence they satisfy the relations

N
X

j D1

sj s�
j D 1; s�

i si D

N
X

j D1

A.i; j /sj s�
j ; i D 1; : : : ; N:

Therefore the correspondence Si ! si ; i D 1; : : : ; N gives rise to an isomorphism

from the Cuntz–Krieger algebra OA onto the C �-algebra C �.s1; : : : ; sN / on H .
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4. A-adic PL functions

By Proposition 3.4, we may represent OA on H by identifying Si with si for
i D 1; : : : ; N . In this section, we will de�ne PL (piecewise linear) functions on
Œ0; 1/ associated to the topological Markov shift .XA; �A/. For � D .�1; : : : ; �n/ 2

Bn.XA/, de�ne

l.�/ D
X

�2Bn.XA/

���

'.S�S�
� /; r.�/ D l.�/ C '.S�S�

�/

where � � � means �1 D �1; : : : ; �k D �k and �kC1 < �kC1 for some k: Put the
interval

I� D Œl.�/; r.�//:

The following lemma is clear.

Lemma 4.1. For each n 2 N we have

(i) I� \ I� D ; for �; � 2 Bn.XA/ with � ¤ �,

(ii)
S

�2Bn.XA/ I� D Œ0; 1/.

For � D .�1; : : : ; �n/ 2 Bn.XA/, we note that the following equalites hold

'.S�S�
�/ D

1

ˇn
'.S�

�S�/ D
1

ˇn
'.S�

�n
S�n

/ D
1

ˇn

N
X

j D1

A.�n; j /pj : (4.1)

For i; j D 1; : : : ; N with A.i; j / D 1, we apply (4.1) for � D i; .i; j / so that

l.i/ D
X

j <i

'.Sj S�
j / D

i�1
X

j D1

pj D p.i � 1/;

r.i/ D l.i/ C '.SiS
�
i / D p.i � 1/ C pi D p.i/

and

l.i; j / D
X

.�1;�2/�.i;j /

'.S�1
S�2

S�
�2

S�
�1

/

D
X

.�1;�2/�.i;j /

p�1�2

D

i�1
X

�1D1

N
X

�2D1

p�1�2
C

j �1
X

�2D1

pi�2

D

i�1
X

�1D1

N
X

�2D1

A.�1; �2/
1

ˇ
p�2

C q.i; j � 1/

D p.i � 1/ C q.i; j � 1/;
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r.i; j / D l.i; j / C '.SiSj S�
j S�

i /

D p.i � 1/ C q.i; j � 1/ C pij

D p.i � 1/ C q.i; j /:

Hence we see that

Œl.i/; r.i// D Œp.i � 1/; p.i// D Ii ;

the interval de�ned in (3.4);

Œl.i; j /; r.i; j // D Œp.i � 1/ C q.i; j � 1/; p.i � 1/ C q.i; j // D Iij ;

the interval de�ned in (3.5).

Lemma 4.2. For � D .�1; : : : ; �m/ 2 Bm.XA/, we have

fA.I�/ D I�2����m

and hence

f m�1
A .I�/ D I�m

.D Œl.�m/; r.�m///:

Proof. The algebra OA is represented on H by identifying Si with si for i D

1; : : : ; N . We then see

S�S�
� D �I�

and �A.S�S�
�/ D �fA.I�/:

Since S�
�1

S�1
� S�2

S�
�2

, we have

�A.S�S�
�/ D S�

�1
S�1

S�2
� � � S�m

S�
�m

� � � S�
�2

S�
�1

S�1

D S�2
� � � S�m

S�
�m

� � � S�
�2

so that �I�2����m
D �fA.I�/: �

Lemma 4.3. For � D .�1; : : : ; �m/ 2 Bm.XA/, � D .�1; : : : ; �n/ 2 Bn.XA/,

the condition S�
�S� D S�

� S� implies

r.�/ � l.�/

r.�/ � l.�/
D ˇn�m: (4.2)

Proof. Since r.�/ � l.�/ D '.S�S�
�/ D 1

ˇm '.S�
�S�/ and similarly r.�/ � l.�/ D

1
ˇn '.S�

� S�/; the condition S�
�S� D S�

� S� implies (4.2). �
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Lemma 4.4. For � D .�1; : : : ; �m/ 2 Bm.XA/, � D .�1; : : : ; �n/ 2 Bn.XA/, the

following �ve conditions are equivalent:

(i) �C
� .�/ D �C

� .�/,

(ii) S�
�S� D S�

� S�,

(iii) S�
�m

S�m
D S�

�n
S�n

,

(iv) f m
A .I�/ D f n

A .I�/,

(v) fA.I�m
/ D fA.I�n

/.

Proof. For � D .�1; : : : ; �m/ 2 Bm.XA/, the identites

�f m
A

.I�/ D �fA.I�m / D �A.S�m
S�

�m
/ D S�

�m
S�m

D S�
�S�

hold. They imply the desired assertion. �

De�nition 4.5. (i) For a word � 2 B�.XA/, an interval Œx1; x2/ in Œ0; 1/ is said to
be an A-adic interval for � if x1 D l.�/ and x2 D r.�/.

(ii) A rectangle I � J in Œ0; 1/ � Œ0; 1/ is said to be an A-adic rectangle if both
the intervals I; J are A-adic intervals for some words � 2 Bn.XA/; � 2 Bm.XA/,
respectively such that

I D Œl.�/; r.�//; J D Œl.�/; r.�//;

and
f n

A .I / D f m
A .J /:

(iii) For two partitions

0 Dx0 < x1 < � � � < xm�1 < xm D 1;

0 Dy0 < y1 < � � � < ym�1 < ym D 1

of Œ0; 1/, put

Ip D Œxp�1; xp/; Jp D Œyp�1; yp/ for p D 1; 2; : : : ; m:

The partition Ip � Jq ; p; q D 1; : : : ; m of Œ0; 1/ � Œ0; 1/ is said to be an A-adic

pattern of rectangles if there exists a permutation � on ¹1; 2; : : : ; mº such that the
rectangles Ip � J�.p/ are A-adic rectangles for all p D 1; 2; : : : ; m.

For an A-adic pattern of rectangles above, the slopes of its diagonals

sp D
y�.p/ � y�.p/�1

xp � xp�1

; p D 1; 2; : : : ; m;

are said to be rectangle slopes.
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De�nition 4.6. A piecewise linear function f on Œ0; 1/ is called an A-adic PL

function if f is a right continuous bijection on Œ0; 1/ such that there exists an
A-adic pattern of rectangles Ip � Jp; p D 1; 2; : : : ; m where Ip D Œxp�1; xp/,
Jp D Œyp�1; yp/; p D 1; : : : ; m with a permutation � on ¹1; 2; : : : ; mº such that

f .xp�1/ D y�.p/�1; f�.xp/ D y�.p�1/C1; p D 1; 2; : : : ; m;

where f�.xp/ D limh!0C f .xp � h/; and f is linear on Œxp�1; xp/ with slope
y�.p/�y�.p/�1

xp�xp�1
for p D 1; 2; : : : ; m.

Lemma 4.7. The composition of two A-adic PL functions and the inverse function

of an A-adic PL function are also A-adic PL functions.

By the above lemma, the set of A-adic PL functions forms a group under
compositions of functions.

De�nition 4.8. We denote by �PL
A the group of A-adic PL functions.

The following proposition is immediate by de�nition of A-adic PL functions.

Proposition 4.9. An A-adic PL function naturally gives rise to an A-adic pattern

of rectangles, whose rectangle slopes are the slopes of the A-adic PL function.

Conversely, an A-adic pattern of rectangles gives rise to an A-adic PL function

by taking its diagonal lines of the rectangles.

5. A-adic Tables

For two words � D .�1; : : : ; �m/ 2 Bm.XA/; � D .�1; : : : ; �n/ 2 Bn.XA/ with
U�\U� D ;, we write � � � if �1 D �1; : : : ; �k D �k and �kC1 < �kC1 for some
k: Nekrashevych in [20] has introduced a notion of table to represent elements of
the Higman–Thompson group VN . We will generalize the Nekrashevych’s notion
to a notion of A-adic table in order to represent elements of the continuous full
group �A.

De�nition 5.1. An A-adic table is a matrix T

T D

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�

for �.i/; �.i/ 2 B�.XA/; i D 1; : : : ; m such that

(a) �C
� .�.i// D �C

� .�.i//; i D 1; : : : ; m,

(b) XA D
Fm

iD1 U�.i/ D
Fm

iD1 U�.i/: disjoint unions.
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Since the words �.i/; i D 1; : : : ; m satisfy U�.i/ \ U�.j / D ; for i ¤ j ,
we may reorder them such as �.1/ � �.2/ � � � � � �.m/. As the above two
conditions (a) and (b) are equivalent to the conditions (a) and (b) in Lemma 2.2 (1)
respectively, we have

Lemma 5.2. For an element � 2 �A, let words �.i/; �.i/; i D 1; : : : ; m and the

unitary u� D
Pm

iD1 S�.i/S
�
�.i/

satisfy the conditions (1) and (2) in Lemma 2.2.

Then the matrix

T D

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�

is an A-adic table.

The A-adic table T above is called a representation of � . It is also called that
T represents � .

For an A-adic table T D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

and i D 1; 2; : : : ; m, let �.i; j / 2

B�.XA/; j D 1; : : : ; ni be a family of (possibly empty) words satisfying the
following three conditions:

(i) �.i; 1/ � �.i; 2/ � � � � � �.i; ni/;

(ii) �.i; j / 2 �C
� .�.i// for j D 1; : : : ; ni ,

(iii) U�.i/ D
Sni

j D1 U�.i/�.i;j /:

Since �C
� .�.i// D �C

� .�.i//, one has �.i; j / 2 �C
� .�.i// and

U�.i/ D

ni
[

j D1

U�.i/�.i;j /:

Put

�.i; j / D �.i/�.i; j /; �.i; j / D �.i/�.i; j /; j D 1; : : : ; ni ; i D 1; : : : ; m:

(5.1)

Then the 2 � m matrix
�

�.1; 1/ � � � �.1; n1/ �.2; 1/ � � � �.2; n2/ � � � �.m; 1/ � � � �.m; nm/

�.1; 1/ � � � �.1; n1/ �.2; 1/ � � � �.2; n2/ � � � �.m; 1/ � � � �.m; nm/

�

is an A-adic table, which is called an expansion of T . Let us denote by � the
equivalence relation in the A-adic tables generated by the expansions. This means
that two A-adic tables

T D

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�

; T 0 D

�

�0.1/ �0.2/ � � � �0.m0/

�0.1/ �0.2/ � � � �0.m0/

�

;

are equivalent and written T � T 0 if there exists a �nite sequence T1; T2; : : : ; Tk

of A-adic tables such that T D T1; T 0 D Tk and Ti is an expansion of TiC1,
or TiC1 is an expansion of Ti .
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Lemma 5.3. For �; � 0 2 �A, let T; T 0 be A-adic tables representing �; � 0 respec-

tively. Then � D � 0 if and only if T � T 0.

Proof. Let T; T 0 be the matrices

T D

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�

; T 0 D

�

�0.1/ �0.2/ � � � �0.m0/

�0.1/ �0.2/ � � � �0.m0/

�

:

Suppose that T 0 is an expansion of T . We write T 0 as

�

�.1; 1/ � � � �.1; n1/ �.2; 1/ � � � �.2; n2/ � � � �.m; 1/ � � � �.m; nm/

�.1; 1/ � � � �.1; n1/ �.2; 1/ � � � �.2; n2/ � � � �.m; 1/ � � � �.m; nm/

�

where �.i; j / and �.i; j / are words for �.i; j / as in (5.1). The homeomorphisms
� and � 0 on XA are induced by the unitaries uT and uT 0 de�ned by

uT D

m
X

iD1

S�.i/S
�
�.i/ and uT 0 D

m0
X

iD1

S�0.i/S
�
�0.i/

such as f ı ��1 D Ad.u� /.f / and f ı � 0�1
D Ad.u� 0/.f / for f 2 C.XA/ D DA:

As

S�.i/S
�
�.i/ D

ni
X

j D1

S�.i/S�.i;j /S
�
�.i;j /S

�
�.i/ D

ni
X

j D1

S�.i;j /S
�
�.i;j /;

we have

u� D

m
X

iD1

S�.i/S
�
�.i/ D

m
X

iD1

S�.i;j /S
�
�.i;j / D u� 0

so that � D � 0.
Conversely, suppose that � D � 0. Let

K 0 D Max¹j�0.i/j j 1 � i � m0º; L0 D Max¹j�0.i/j j 1 � i � m0º:

There exist admissible words �.i; j / 2 B�.XA/; j D 1; : : : ; ni ; i D 1: : : : ; m such
that

(a) �.i; 1/ � �.i; 2/ � � � � � �.i; ni/;

(b) �.i; j / 2 �C
� .�.i//,

(c) j�.i/�.i; j /j � K 0; j�.i/�.i; j /j � L0;

(d) U�.i/ D
Fni

j D1 U�.i/�.i;j /; U�.i/ D
Fni

j D1 U�.i/�.i;j /:
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Put

�.i; j / D �.i/�.i; j /; �.i; j / D �.i/�.i; j /; j D 1; : : : ; ni ; i D 1; : : : ; m;

and

T � D

�

�.1; 1/ � � � �.1; n1/ �.2; 1/ � � � �.2; n2/ � � �

�.1; 1/ � � � �.1; n1/ �.2; 1/ � � � �.2; n2/ � � �

� � � �.m; 1/ � � � �.m; nm/

� � � �.m; 1/ � � � �.m; nm/

�

:

Hence T � is an expansion of T . We will compare T � and T 0. Put

Fk D ¹.i; j / j �.i; j / � �0.k/º; k D 1; : : : ; m0:

Since j�.i; j /j � K 0, j�.i; j /j � L0, one has

�0.k/ D
[

.i;j /2Fk

�.i; j /:

Since j�.i; j /j � j�0.k/j, there exist �0.k; .i; j // 2 B�.XA/ such that

�.i; j / D �0.k/�0.k; .i; j // for .i; j / 2 Fk :

As � D � 0, we have

�.�U�.i;j /
/ D �U�.i/�.i;j /

D �U�.i;j /
D � 0.�U�.i;j

/ D �U�0.k/�0.k;.i;j //

so that
�.i; j / D �0.k/�0.k; .i; j // for .i; j / 2 Fk :

This implies that T � is an expansion of T 0 to prove that T is equivalent to T 0. �

We denote by ŒT � the equivalence class of an A-adic table T . For � 2 �A,
denote by T� an A-adic table representing � . The preceding lemma says that its
equivalence class ŒT� � does not depend on the choice of T� representing � . An
A-adic table

�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

presenting � 2 �A is said to be reduced if it has a
minimal length m in the set of A-adic tables presenting � . Recall that for a word
�D .�1; : : : ; �k/ 2 B�.XA/; we write �C

1 .�/D ¹j 2 ¹1; : : : ; N º j A.�k; j /D 1º:

The following lemma is obvious.

Lemma 5.4. For an A-adic table T D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

and i D 1; : : : ; m,

let �C
1 .�.i// D ¹˛i1; ˛i2 ; : : : ; ˛ini

º such that ˛i1 < ˛i2 < � � � < ˛ini
: Put the

words

�.i; 1/ D �.i/˛i1; �.i; 2/ D �.i/˛i2; : : : ; �.i; ni/ D �.i/˛ini
;

�.i; 1/ D �.i/˛i1 ; �.i; 2/ D �.i/˛i2 ; : : : ; �.i; ni / D �.i/˛ini
:
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Then the A-adic table T 0
i obtained from T by replacing �.i/ with �.i; 1/; : : : ,

�.i; ni/, and �.i/ with �.i; 1/; : : : ; �.i; ni/ such that

T 0
i D

�

�.1/ � � � �.i � 1/ �.i; 1/ � � � �.i; ni/ �.i C 1/ � � � �.m/

�.1/ � � � �.i � 1/ �.i; 1/ � � � �.i; ni/ �.i C 1/ � � � �.m/

�

is equivalent to T .

For an A-adic table T D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

, de�ne the range depth R.T / and
the domain depth D.T / by

R.T / D Max¹j�.i/j j 1 � i � mº; D.T / D Max¹j�.i/j j 1 � i � mº:

By using the above lemma recursively, we know the following lemma.

Lemma 5.5. Let

T D

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�

be an A-adic table.

(i) For a positive integer M � D.T /, there exists an A-adic table

T 0 D

�

�0.1/ �0.2/ � � � �0.m0/

�0.1/ �0.2/ � � � �0.m0/

�

such that

T 0 � T and ¹�0.i/ j i D 1; : : : ; m0º D BM .XA/:

(ii) For a positive integer M � R.T /, there exists an A-adic table

T 00 D

�

�00.1/ �00.2/ � � � �00.m00/

�00.1/ �00.2/ � � � �00.m00/

�

such that

T 00 � T and ¹�00.i/ j i D 1; : : : ; m00º D BM .XA/:

Let T1; T2 be two A-adic tables. Take M such that M � D.T1/; R.T2/. By the
preceding lemma, there exist A-adic tables

T 0
1 D

�

�0
1.1/ �0

1.2/ � � � �0
1.p/

�0
1.1/ �0

1.2/ � � � �0
1.p/

�

; T 0
2 D

�

�0
2.1/ �0

2.2/ � � � �0
2.q/

�0
2.1/ �0

2.2/ � � � �0
2.q/

�

such that T 0
1 � T1 and T 0

2 � T2 and

j�0
1.1/j D � � � D j�0

1.p/j D j�0
2.1/j D � � � D j�0

2.q/j D M:
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Hence we have p D q D jBM .XA/j. One may reorder �0
1.i/; �0

2.i/ such as

�0
1.1/ � �0

1.2/ � � � � � �0
1.p/; �0

2.1/ � �0
2.2/ � � � � � �0

2.q/

so that

�0
1.1/ D �0

2.1/; �0
1.2/ D �0

2.2/; : : : ; �0
1.p/ D �0

2.q/:

De�ne the product T 0
1 ı T 0

2 by the A-adic table

T 0
1 ı T 0

2 D

�

�0
1.1/ �0

1.2/ � � � �0
1.p/

�0
2.1/ �0

2.2/ � � � �0
2.p/

�

:

It is easy to see that T 0
1 ı T 0

2 is an A-adic table. It is straightforward to see that
the equivalence class ŒT 0

1 ı T 0
2� does not depend on the choice of representatives

T 0
1 of ŒT 0

1� and T 0
2 of ŒT 0

2�. Hence one may de�ne the product ŒT1� ı ŒT2� by the
equivalence class ŒT 0

1 ı T 0
2� of the product T 0

1 ı T 0
2.

For an A-adic table T D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

, de�ne an A-adic table

T �1 D

�

�.1/ �.2/ � � � �.m/

�.1/ �.2/ � � � �.m/

�

:

The identity table denoted by I is de�ned by

I D

�

1 2 � � � N

1 2 � � � N

�

where the two rows of I denote the list of the ordered symbols ¹1; 2; : : : ; N º D

B1.XA/.

Lemma 5.6. Keep the above notations.

(i) The equivalence class ŒI � of I is the unit of the product operations in the

equivalence classes of the A-adic tables.

(ii) If T � T 0, then T �1 � T 0�1
.

Since T �1 ı T � I and T ı T �1 � I , the class ŒT �1� of T �1 is the inverse of
ŒT � in the equivalence classes of the A-adic tables.

De�nition 5.7. Denote by � tab
A the group of the equivalence classes of A-adic

tables.

Therefore we have

Proposition 5.8. The correspondence � 2 �A ! ŒT� � 2 � tab
A gives rise to an

isomorphism of groups.
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Proof. Let �; � 0 2 �A. By Lemma 5.3, � D � 0 if and only if ŒT� � D ŒT� 0 �.
It is direct to see that for �1; �2 2 �A, the equivalence class ŒT�1ı�2

� of an A-adic
table T�1ı�2

representing the composition �1 ı �2 is the product ŒT�1
� ı ŒT�2

� of the
classes ŒT�1

�; ŒT�2
�. Hence the correspondence � 2 �A ! ŒT� � 2 � tab

A gives rise to
an isomorphism of groups. �

6. Isomorphisms among �A , � tab
A

and �PL
A

In the preceding section, we have shown that the two groups �A, � tab
A are isomor-

phic. In this section, we will show that these two groups are isomorphic to the
group �PL

A of A-adic PL functions.

Lemma 6.1. For an A-adic table T D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

, there exist an A-adic

pattern of rectangles whose rectangle slopes are

ˇj�.1/j�j�.1/j; ˇj�.2/j�j�.2/j; : : : ; ˇj�.m/j�j�.m/j;

and an A-adic PL function fT having these rectangle slopes such that

fT .I�.i// D I�.i/; i D 1; 2; : : : ; m: (6.1)

Conversely, for an A-adic PL function f with the A-adic pattern of rectangles

Ip � J�.p/; p D 1; 2; : : : ; m and a permutation � on ¹1; : : : ; mº, there exists an

A-adic table Tf D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

such that

Ip D I�.p/; J�.p/ D I�.p/; p D 1; 2; : : : ; m:

Proof. We are assuming the ordering such as �.1/ � � � � � �.m/. Since XA is a
disjoint union XA D

Fm
j D1 U�.j /, there exists a permutation �0 on ¹1; 2; : : : ; mº

such that �.�0.1// � �.�0.2// � � � � � �.�0.m//. Put

xi D l.�.i C 1//; yi D l.�.�0.i C 1///; i D 0; 1; : : : ; m � 1

so that x0 D y0 D 0 and

Ip D Œxp�1; xp/; Jp D Œyp�1; yp/; p D 1; 2; : : : ; m

where xm D ym D 1. De�ne the permutation � WD ��1
0 on ¹1; 2; : : : ; mº.

We note that r.�.i// D l.�.i C 1//; r.�.�0.i/// D l.�.�0.i C 1/// for i D

1; : : : ; m�1. Then the rectangles Ip �J�.p/; p D 1; 2; : : : ; m are A-adic rectangles
by Lemma 4.4 such that

y�.p/ � y�.p/�1

xp � xp�1

D
r.�.p// � l.�.p//

r.�.p// � l.�.p//
:
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We then have

r.�.p// � l.�.p// D '.S�.p/S
�
�.p// D

1

ˇj�.p/j
'.S�

�.p/S�.p//

and similarly

r.�.p// � l.�.p// D
1

ˇj�.p/j
'.S�

�.p/S�.p//:

As the condition �C
� .�.p// D �C

� .�.p// implies S�
�.p/

S�.p/ D S�
�.p/

S�.p/,
we have

y�.p/ � y�.p/�1

xp � xp�1

D ˇj�.p/j�j�.p/j; p D 1; 2; : : : ; m:

By Proposition 4.9, one immediately knows that the associated A-adic PL function
denoted by fT with the above A-adic pattern of rectangles satis�es condition (6.1).

The converse implication is straightforward from Lemma 4.4. �

We may directly construct an A-adic PL function fT from an A-adic table
T D

�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

as follows. Put xi D l.�.i C 1//; Oyi D l.�.i C 1// and
fT .xi / D Oyi ; i D 0; 1; : : : ; m � 1. De�ne fT .x/ on Œxi�1; xi / as a linear function
with slope ˇj�.i/j�j�.i/j.D r.�.i//�l.�.i//

r.�.i//�l.�.i//
D Oyi � Oyi�1

xi �xi�1
/ for i D 1; 2; : : : ; m. It is easy

to see that the function fT is an A-adic PL function. Let us denote by � the A-adic
PL function de�ned by �.x/ D x; x 2 Œ0; 1/. The following lemma is direct.

Lemma 6.2. For two A-adic tables T1; T2, we have

(i) T1 is equivalent to T2 if and only if fT1
D fT2

as functions. Hence we may

write fT as fŒT �,

(ii) fŒT1�ıŒT2� D fŒT1� ı fŒT2�,

(iii) � D fŒI �.

We reach the main result of the paper.

Theorem 6.3. There exist canonical isomorphisms of discrete groups among the

continuous full group �A, the group � tab
A of the equivalence classes of A-adic

tables, and the group �PL
A of A-adic PL functions on Œ0; 1/, that is

�A Š � tab
A Š �PL

A :

In particular, the continuous full group �A for a topological Markov shift .XA; �A/

is realized as the group of all A-adic PL functions on Œ0; 1/.

Proof. By Proposition 5.8, we have an isomorphism from the continuous full
group �A to the group � tab

A of the equivalence classes of A-adic tables.
By Lemma 6.1 and Lemma 6.2, the correspondence ŒT � 2 � tab

A ! fT 2 �PL
A

yields an isomorphism. �
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7. A realization of �A as A-adic PL functions

In this section, we will construct a continuous surjection of the shift space XA onto
the interval Œ0; 1� which yields a representation of elements of the continuous full
group �A to the group �PL

A of A-adic PL functions. For x D .xi /i2N 2 XA and
n 2 ZC, consider the word .x1; : : : ; xn/ 2 Bn.XA/ and set

ln.x/ D l.x1; : : : ; xn/; rn.x/ D r.x1; : : : ; xn/:

Lemma 7.1. For x D .xi /i2N 2 XA and n 2 ZC, we have

(i) ln.x/ � lnC1.x/ � rnC1.x/ � rn.x/;

(ii) jrn.x/ � ln.x/j � 1
ˇn .

Proof. (i) For � D .�1; : : : ; �n/ 2 Bn.XA/, the condition � � .x1; : : : ; xn/

implies �j � .x1; : : : ; xn; xnC1/ for all j with A.�n; j / D 1 so that

ln.x/ D
X

�2Bn.XA/
��.x1;:::;xn/

'.S�S�
�/

D

N
X

j D1

A.�n; j /
X

�2Bn.XA/
��.x1;:::;xn/

'.S�j S�
�j /

�
X

�2BnC1.XA/
��.x1;:::;xn;xnC1/

'.S�S�
� /

D lnC1.x/:

We note that
lnC1.x/ D ln.x/ C

X

j <xnC1

'.Sx1���xnj S�
x1���xnj / (7.1)

so that

rnC1.x/ D lnC1.x/ C '.Sx1���xnxnC1
S�

x1���xnxnC1
/

D ln.x/ C
X

j �xnC1

'.Sx1���xnj S�
x1���xnj /

� ln.x/ C

N
X

j D1

'.Sx1���xnj S�
x1���xnj /

D ln.x/ C '.Sx1���xn
S�

x1���xn
/

D rn.x/:
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(ii) By the equality rn.x/ D ln.x/ C '.Sx1���xn
S�

x1���xn
/ with

'.Sx1���xn
S�

x1���xn
/ D

1

ˇn

N
X

j D1

A.xn; j /pj ;

N
X

j D1

pj D 1;

we have jrn.x/ � ln.x/j � 1
ˇn : �

Lemma 7.2. For x D .xi /i2N 2 XA and n 2 ZC, we have

(i) ln.x/ D lnC1.x/ if and only if xnC1 D Min¹j D 1; : : : ; N j A.xn; j / D 1º,

(ii) rn.x/ D rnC1.x/ if and only if xnC1 D Max¹j D 1; : : : ; N j A.xn; j / D 1º.

Proof. (i) By (7.1), one sees that lnC1.x/ D ln.x/ if and only if
X

j <xnC1

'.Sx1���xnj S�
x1���xnj / D 0:

Since the state ' onDA is faithful, the latter condition is equivalent to the condition
that there does not exist any j D 1; : : : ; N such that j < xnC1 and A.xn; j / D 1.
Hence we have the desired assertion.

(ii) is similar to (i). �

For a word ! D .!1; : : : ; !n/ 2 Bn.XA/, let us denote by !min D .
x
!i/i2N 2 XA

(resp. !max D .x!i/i2N 2 XA) its minimal (resp. maximal) extension to a right
in�nite sequence in XA, which is de�ned by setting

x
!i D !i .resp. x!i D !i /

for i D 1; : : : ; n, and

x
!nCk D Min¹j D 1; 2; : : : ; N j A.

x
!nCk�1; j / D 1º;

.resp. x!nCk D Max¹j D 1; 2; : : : ; N j A.x!nCk�1; j / D 1º/

for k D 1; 2; : : : . By Lemma 7.2, one has l.!/ D lnCk.!min/ and r.!/ D

rnCk.!max/ for all k 2 N. For the two symbols 1; N 2 B1.XA/, we may consider
the elements 1min; Nmax in XA so that we obtain the following lemma.

Lemma 7.3. ln.1min/ D 0; rn.Nmax/ D 1 for all n 2 N.

For two sequences x D .xn/n2N; y D .yn/n2N 2 XA, we write x � y if
x1 D y1; : : : ; xn D yn; xnC1 < ynC1 for some n 2 ZC. Hence XA becomes
an ordered space such that 1min (resp. Nmax) is minimum (resp. maximum).
Recall that for a word � 2 B�.XA/, denote by I� the interval Œl.�/; r.�//,
so that NI� D Œl.�/; r.�/�.
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Proposition 7.4. There exists an order preserving surjective continuous map

�AW XA ! Œ0; 1� such that

�A.1min/ D 0; �A.Nmax/ D 1; �A.U�/ D NI�; for � 2 Bn.XA/:

Proof. For x D .xi /i2N 2 XA, there exists an element

lim
n!1

ln.x/.D lim
n!1

rn.x//

in Œ0; 1� which we denote by �A.x/. It satis�es the inequalities ln.x/ � �A.x/ �

rn.x/ for all n 2 N. By the above lemma, we have

�A.1min/ D lim
n!1

ln.1min/ D 0; �A.Nmax/ D lim
n!1

rn.Nmax/ D 1:

We will next show that �AW XA ! Œ0; 1� is surjective. For t 2 Œ0; 1�, we may assume
that t < 1 because �A.Nmax/ D 1. For n 2 N, by Lemma 4.1 (ii), one may �nd a
word �.n/ 2 Bn.XA/ such that t 2 I�.n/ . The �rst n-symbols of �.nC1/ coincide
with �.n/ so that the sequence ¹�.n/ºn2N of words de�nes a right in�nite sequence
xt D .xn/n2N of XA such that .x1; : : : ; xn/ D �.n/. Since l.�.n// � t � r.�.n//

and jr.�.n// � l.�.n//j < 1
ˇn , one sees that �A.xt / D limn!1 l.�.n// D t so that

�AW XA ! Œ0; 1� is surjective.
For � 2 Bn.XA/ and x 2 U�, one sees that l.�/ D ln.x/ � �A.x/ �

rn.x/ D r.�/ so that �A.x/ 2 Œl.�/; r.�/�. Hence we have �A.U�/ � NI�.
As �A.XA/ D Œ0; 1� and Œ0; 1/ D

F

�2Bn.XA/ I� is a disjoint union for a �xed
n 2 N, one has I� � �A.U�/ so that �A.U�/ D NI�. This also shows that �A is
order preserving. �

We will represent A-adic PL functions on Œ0; 1� by using the surjection
�AW XA ! Œ0; 1�. For � 2 �A, let T� D

�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

be its reduced repre-
sentation. Let C� be the �nite subset of Œ0; 1� de�ned by

C� D ¹l.�.i// j i D 2; 3; : : : ; mº.D ¹r.�.i// j i D 1; 2; : : : ; m � 1º/:

Then the A-adic PL function f� associated with the A-adic table T� is continuous
and linear on Œ0; 1/ except C� . We de�ne a �nite subset S� of XA by

S� D ¹�.i/min 2 XA j i D 1; 2; : : : ; mº

so that �A.S� / D C� .

Proposition 7.5. For � 2 �, we have f� .�A.x// D �A.�.x// for all x 2 XAnS� .
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Proof. Since XA is a disjoint union
FM

iD1 U�.i/, for x 2 XAnS� we may take
�.i/ D .�.i/1; : : : ; �.i/li

/ such that x 2 U�.i/. We write

x D .�.i/1; : : : ; �.i/li
; xli C1; xli C2; : : : /:

As x 62 S� , the function f� is continuous at x. It then follows that

f� .�A.x// D f� . lim
n!1

r.�.i/1; : : : ; �.i/li
; xli C1; : : : ; xli Cn//

D lim
n!1

f� .r.�.i/1; : : : ; �.i/li
; xli C1; : : : ; xli Cn//

D lim
n!1

r.�.i/1; : : : ; �.i/ki
; xli C1; : : : ; xli Cn/

D �A.�.x//: �

We will next de�ne the derivative of � 2 �A. For � 2 �A, let l� ; k� be
ZC-valued continuous functions on XA satisfying (2.5).

Lemma 7.6. For � 2 �A, de�ne d� W XA ! Z by setting

d� .x/ D l� .x/ � k� .x/; x 2 XA:

Then d� does not depend on the choice of the functions l� ; k� satisfying (2.5).

Proof. Let l 0
� ; k0

� W XA ! ZC be another continuous functions such that

�
k0

� .x/

A .�.x// D �
l 0
� .x/

A .x/; x 2 XA: (7.2)

For x D .xi /i2N 2 XA, the identities (2.5) and (7.2) ensure us that there
exist words .�1.x/; : : : ; �k� .x/.x// 2 Bk� .x/.XA/ and .�0

1.x/; : : : ; �0
k0

� .x/
.x// 2

Bk0
� .x/.XA/ such that

�.x/ D .�1.x/; : : : ; �k� .x/.x/; xl� .x/C1; xl� .x/C2; : : : /

D .�0
1.x/; : : : ; �0

k0
� .x/

.x/; xl 0
� .x/C1; xl 0

� .x/C2; : : : /:

For any n > k� .x/; k0
� .x/, by taking the nth coordinates of the above sequences,

we see that
xn�k� .x/Cl� .x/ D xn�k0

� .x/Cl 0
� .x/:

Put d 0
� .x/ D l 0

� .x/ � k0
� .x/ and K.x/ D Max¹k� .x/; k0

� .x/º, so that

�
K.x/Cd� .x/
A .x/ D �

K.x/Cd 0
� .x/

A .x/:

Suppose that d� .x/ ¤ d 0
� .x/ for some x 2 XA. The above equality implies that

x is an eventually periodic point. As the functions K; d� ; d� 0 are all continuous,
all elements of some neighborhood of x are eventually periodic. Since the set of
non-eventually periodic points is dense in XA, we have a contradiction and hence
d� D d 0

� . �
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Lemma 7.7. For �; �1; �2 2 �A, we have

(i) d�2ı�1
D d�1

C d�2
ı �1:

(ii) d��1 D �d� ı ��1:

Proof. (i) For �i 2 �A, take continuous functions k�i
; l�i

W XA ! ZC such that

�
k�i

.x/

A .�i .x// D �
l�i

.x/

A .x/; i D 1; 2; x 2 XA

so that
�

k�2
.�1.x//

A .�2.�1.x/// D �
l�2

.�1.x//

A .�1.x//; x 2 XA:

It then follows that

�
k�1

.x/

A .�
k�2

.�1.x//

A .�2.�1.x//// D �
l�2

.�1.x//

A .�
k�1

.x/

A .�1.x///

D �
l�2

.�1.x//

A .�
l�1

.x/

A .x//;

so that
�

k�1
.x/Ck�2

.�1.x//

A .�2 ı �1.x// D �
l�1

.x/Cl�2
.�1.x//

A .x/:

Hence we have

d�2ı�1
.x/ D ¹l�1

.x/ C l�2
.�1.x//º � ¹k�1

.x/ C k�2
.�1.x//º

D d�1
.x/ C d�2

.�1.x//:

(ii) By (2.5), we have

�
k� .��1.x//
A .x/ D �

l� .��1.x//
A .��1.x//; x 2 XA

so that
d��1.x/ D k� .��1.x// � l� .��1.x// D �d� .��1.x//: �

De�nition 7.8. For an element � 2 �A, the derivative D� of � is de�ned by a real
valued continuous function D� on XA:

D� .x/ D ˇd� .x/; x 2 XA; (7.3)

where ˇ is the Perron–Frobenius eigenvalue of the matrix A.

The derivative D� of � is regarded as an element of DA. Recall that ' stands
for the continuous linear functional on DA for the unique probability measure on
XA satisfying (3.1). The following proposition shows that D� satis�es the law of
derivatives.
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Proposition 7.9. For �; �1; �2 2 �A, we have

(i) '.D�/ D 1:

(ii) D�2ı�1
D D�1

� .D�2
ı �1/:

(iii) D��1 D .D� ı ��1/�1:

Proof. (i) Suppose that � is given by an A-adic table T D
�

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

�

so that u� D
Pm

iD1 S�.i/S
�
�.i/

, S�
�.i/

S�.i/ D S�
�.i/

S�.i/ and
Pm

iD1 S�.i/S
�
�.i/

D
Pm

iD1 S�.i/S
�
�.i/

D 1: Recall that the positive operator �AWDA ! DA is de�ned by

�A.f / D
PN

iD1 S�
i f Si for f 2 DA. It then follows that

�
j�.i/j
A .u�S�.i/S

�
�.i/u

�
� / D �

j�.i/j
A .S�.i/S

�
�.i// D S�

�.i/S�.i/ D S�
�.i/S�.i/

so that

�
j�.i/j
A .u�S�.i/S

�
�.i/u

�
� / D �

j�.i/j
A .S�.i/S

�
�.i//; i D 1; : : : ; m:

As ' ı �A D ˇ' on DA, we have

'.u� S�.i/S
�
�.i/u

�
� / D ˇj�.i/j�j�.i/j'.S�.i/S

�
�.i//; i D 1; : : : ; m: (7.4)

Since d� .x/ D l� .x/ � k� .x/ D j�.i/j � j�.i/j for x 2 U�.i/, the derivative D� is
expressed as

D� D

m
X

iD1

ˇj�.i/j�j�.i/jS�.i/S
�
�.i/

so that by the equality (7.4) one obtains that

'.D� / D

m
X

iD1

ˇj�.i/j�j�.i/j'.S�.i/S
�
�.i// D

m
X

iD1

'.u� S�.i/S
�
�.i/u

�
� / D '.1/ D 1:

(ii), (iii) By the previous lemma, we have

D�2ı�1
D ˇd�2ı�1 D ˇd�1 � ˇd�2

ı�1 D D�1
� D�2

ı �1;

D��1 D ˇ�d� ı��1

D ŒD� ı ��1��1: �

As the function f� is linear on the interval I�.i/ D Œl.�.i//; r.�.i/// with slope
ˇj�.i/j�j�.i/j; we may summarize the above discussions in the following theorem.

Theorem 7.10. There exists an order preserving continuous surjection

�AW XA ! Œ0; 1� from the shift space XA of a one-sided topological Markov shift

.XA; �A/ to the closed interval Œ0; 1� such that for any element � 2 �A, there

exists a �nite set S� � XA such that the corresponding A-adic PL function f�

for � satis�es the following properties:
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(i) f� .�A.x// D �A.�.x// for x 2 XAnS� ,

(ii) df�

dt
.�A.x// D D� .x/ D ˇd� .x/ for x 2 XAnS� ,

where d� .x/ D l� .x/ � k� .x/ for the continuous functions k� ; l� W XA ! ZC

satisfying �
k� .x/
A .�.x// D �

l� .x/
A .x/; x 2 XA and ˇ is the Perron–Frobenius

eigenvalue of A.

8. Generalizations of other Thompson groups

R. J. Thompson has de�ned �nitely presented in�nite subgroups F2 and T2 of V2

which satisfy F2 � T2 � V2. K. S. Brown [1] has extended the subgroups F2; T2

of V2 to the family FN � TN � VN of �nitely presented subgroups FN ; TN of VN

such that TN is a group of piecewise linear homeomorphisms f W Œ0; 1� ! Œ0; 1�

on the unit circle having �nitely many singularities such that all singularities of f

are in ZŒ 1
N

�, the derivative of f at any non-singular point is N k for some k 2 Z,
and FN is a subgroup of TN consisting of piecewise linear homeomorphisms
f W Œ0; 1� ! Œ0; 1� on the unit interval.

In this section, we generalize the groups FN ; TN for 1 < N 2 N to FA; TA for
irreducible square matrices A with entries in ¹0; 1º by using the techniques of the
preceding sections.

Recall that an element � 2 �A is represented as a cylinder map given by two
families �.i/; �.i/; i D 1; : : : ; m of words satisfying (2.1)–(2.4). We may assume
that the words �.i/; i D 1; : : : ; m are ordered such as �.1/ � �.2/ � � � � � �.m/:

We de�ne further properties for � 2 �A as follows. � 2 �A is said to be

(i) order preserving if one may take the words �.i/; i D 1; : : : ; m such as

�.1/ � �.2/ � � � � � �.m/;

(ii) cyclic order preserving if one may take the words �.i/; i D 1; : : : ; m such as

�.k/ � �.k C 1/ � � � � � �.m/ � �.1/ � �.2/ � � � � � �.k � 1/

for some k 2 ¹1; 2; : : : ; mº.

If � is order preserving, it is cyclic order preserving. It is easy to see that the set
of order preserving cylinder maps forms a subgroup of �A, and the set of cyclic
order preserving cylinder maps forms a subgroup of �A. We denote them by FA

and by TA and call them the order preserving continuous full group and the cyclic
order preserving continuous full group, respectively.
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In De�nition 4.5 (ii), if one may take � such as

�.k/ < �.k C 1/ < � � � < �.m/ < �.1/ < �.2/ < � � � < �.k � 1/ (8.1)

for some k 2 ¹1; : : : ; mº, the A-adic pattern of rectangles is said to be A-adic

cyclic order preserving pattern of rectangles. If in particular one may take � such
as � D id, the A-adic pattern of rectangles is said to be A-adic order preserving

pattern of rectangles.
In De�nition 4.6, if one may take � such as (8.1) for some k 2 ¹1; : : : ; mº,

an A-adic PL function f is called a cyclic order preserving A-adic PL function.
If in particular, one may take � D id, f is called an order preserving A-adic PL

function.
It is easy to see that the set F PL

A of order preserving A-adic PL functions and
the set T PL

A of cyclic order preserving A-adic PL functions form subgroups of the
group of the A-adic PL functions. Hence we have subgroups of inclusion relations:

F PL
A � T PL

A � �PL
A :

The following proposition is immediate by de�nition of order preserving (resp.
cyclic order preserving) A-adic PL functions.

Proposition 8.1. An A-adic order preserving (resp. cyclic order preserving)

PL function naturally gives rise to an A-adic order preserving (resp. cyclic

order preserving) pattern of rectangles, whose rectangle slopes are the slopes

of the A-adic PL function. Conversely, an A-adic order preserving (resp. cyclic

order preserving) pattern of rectangles gives rise to an A-adic order preserving

(resp. cyclic order preserving) PL function by taking its diagonal lines of the

corresponding rectangles.

In De�nition 5.1, let T D
h

�.1/ �.2/ ��� �.m/
�.1/ �.2/ ��� �.m/

i

be an A-adic table such that

�.1/ � �.2/ � � � � � �.m/. Then T is said to be

(i) order preserving if �.1/ � �.2/ � � � � � �.m/,

(ii) cyclic order preserving if

�.k/ � �.k C 1/ � � � � � �.m/ � �.1/ � �.2/ � � � � � �.k � 1/

for some k 2 ¹1; 2; : : : ; mº.

If T is order preserving, it is cyclic order preserving. These two properties of
A-adic tables are closed under taking expansions of A-adic tables respectively.
We see that the set F tab

A of the equivalence classes of order preserving A-adic
tables and the set T tab

A of the equivalence classes of cyclic order preserving A-adic
tables form subgroups of � tab

A , respectively. Hence we have subgroups of inclusion
relations:

F tab
A � T tab

A � � tab
A :
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We further see the following:

Lemma 8.2. For a table T , let fT be the associated A-adic PL function. Then T

is order preserving (resp. cyclic order preserving) if and only if the function fŒT �

is order preserving (resp. cyclic order preserving).

We thus have:

Proposition 8.3. There exist canonical isomorphisms of discrete groups among

the order preserving (resp. cyclic order preserving) continuous full group FA

(resp. TA), the group F tab
A (resp. T tab

A ) of the equivalence classes of order

preserving (resp. cyclic order preserving) A-adic tables and the group F PL
A (resp.

T PL
A ) of the order preserving (resp. cyclic order preserving) A-adic PL functions

on Œ0; 1/, that is

FA Š F tab
A Š F PL

A ; TA Š T tab
A Š T PL

A :

Proof. The isomorphisms in Proposition 5.8 and Theorem 6.3 among �A, � tab
A

and �PL
A preserve the orders of words, so that its restrictions yield desired isomor-

phisms. �

In [1], K. S. Brown had extended the Higman–Thomson group VN to in�nite
families FN;r � TN;r � VN;r for N D 2; 3; : : : ; r 2 N where VN;1 D VN and
FN;1 D FN ; TN;1 D TN . Let AN be the N � N matrix whose entries are all 1’s.
Then our groups FAN

; TAN
; VAN

for the matrix AN are nothing but the Brown’s
triple FN;1; TN;1; VN;1 for r D 1, respectively. Let AN;r be the r � r block matrix
whose entries are N � N matrices such that

2

6

6

6

6

6

6

4

0 : : : : : : 0 AN

1N 0 : : : : : : 0

0
: : :

: : :
:::

:::
: : : 1N 0 0

0 : : : 0 1N 0

3

7

7

7

7

7

7

5

where 1N denotes the identity matrix of size N . Since there exists an isomorphism
from the Cuntz–Krieger algebra OAN;r

for the matrix AN;r to the tensor product
OAN

˝ Mr .C/ such that DAN;r
D DAN

˝ Dr , where Dr is the commutative
C �-algebra of the diagonal elements of the r � r full matrix algebra Mr.C/, our
groups FAN;r

; TAN;r
; VAN;r

for the matrix AN;r are nothing but the Brown’s triple
FN;r ; TN;r ; VN;r (see [18], [19]). Since det.id � AN;r / D 1 � N , the classi�cation
of the Higman–Thompson groups VN;r corresponds to that of the C �-algebras
ON ˝ Mr .C/ through Theorem 1.1 (see [24, Corollary 6.6], [21]).

In [18], generalization of higher dimensional analogue of Thomson like groups
are studied from the view point of étale groupoids.
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