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{0, 1} as a generalization of Higman—Thompson groups Vy,1 < N € IN. We will show
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1. Introduction

In1960’s, R. J. Thompson has initiated a study of finitely presented simple infinite
groups. He has discovered first two such groups in [25]. They are now known
as the groups V, and 7,. G. Higman has generalized the group V, to infinite
family of finitely presented infinite groups. One of such families are groups written
Vn,1 < N € N which are called the Higman—Thompson groups. They are finitely
presented and their commutator subgroups are simple. Their abelianizations are
trivial if NV is even, and Z, if N is odd. K. S. Brown has extended the groups Vx to
triplets of infinite families Fy C Ty C Vn,1 < N € NN, and proved that each of
the groups is finitely presented ([1]). The Higman—Thompson group Vy is known
to be represented as the group of right continuous piecewise linear functions
f:10,1) — [0, 1) having finitely many singularities such that all singularities of
f arein Z[%], the derivative of f at any non-singular point is N* for some k € Z
and f(Z[x]N[0.1)) = Z[#] N[0, 1) (cf. [25]). See [2] for general reference on
these groups.

V. Nekrashevych [20] has shown that the Higman—-Thompson group Vy
appears as a certain subgroup of the unitary group of the Cuntz algebra Oy . The
second named author has observed in [17, Remark 6.3] that the subgroup is nothing
but the continuous full group I'y of Oy, which is also realized as the topological
full group of the associated groupoid. Such full groups have arisen from a study
of orbit equivalence of symbolic dynamics ([8]).

Recently the authors have studied full groups of the Cuntz—Krieger algebras
and full groups of the groupoids coming from shifts of finite type. The first
named author has studied the normalizer groups of the canonical maximal abelian
C*-subalgebras in the Cuntz—Krieger algebras which are called the continuous
full groups from the view point of orbit equivalences of topological Markov shifts
and classification of C*-algebras ([8], [9], etc.), and showed that the continuous
full groups are complete invariants for the continuous orbit equivalence classes
of the underlying topological Markov shifts ([11], more generally [17]). The
second named author has studied the continuous full groups of more general étale
groupoids ([15], [16], [17], etc.), and called them the topological full groups of étale
groupoids. He has proved that if an étale groupoid is minimal, the topological
full group of the groupoid is a complete invariant for the isomorphism class of
the groupoid. He has also shown that if a groupoid comes from a shift of finite
type, the topological full group is of type Fo, and in particular finitely presented.
He has furthermore obtained that the topological full groups for shifts of finite
type are simple if and only if its homology group Hy(G4) of the groupoid G4
is 2-divisible, and that its commutator subgroups are always simple. We have
obtained the following results on the group I'4 for the topological Markov shift
(X4, 04) defined by an irreducible square matrix with entries in {0, 1}.
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Theorem 1.1 ([11], [13], [17]). Let A and B be irreducible, not any permutation
matrices with entries in {0, 1}. The following conditions are equivalent:

(1) The one-sided topological Markov shifts (X4,04) and (Xp,op) are contin-
uously orbit equivalent,

(2) the étale groupoids G4 and G are isomorphic;
(3) the groups 'y and U'g are isomorphic;

(4) the Cuntz—Krieger algebras Oy and Op are isomorphic and det(id — A) =
det(id — B).

Suppose that 4 is an N x N matrix and B is an M x M matrix. It is well-known
that the Cuntz—Krieger algebras O4 and Op are isomorphic if and only if there
exists an isomorphism @ of groups from Z" /(id — A")Z"N to ZM /(id — B")ZM
such that ®(u4) = up where uy and up are the classes of the vectors [1, ..., 1]
([24]). Hence the isomorphism classes of the groups I'4 are completely classified
in terms of the underlying matrices A, so that there exist an infinite family of
finitely presented infinite simple groups of the form Ty4.

In this paper, we will study representations of the group I'4 for an irreducible
matrix A with entries in {0, 1} as a generalization of the Higman—Thompson
groups Vy,1 < N € IN. The group I'4 has been originally defined as the group of
homeomorphisms 7 on the shift space X4 of a topological Markov shift (X4, o)
such that

crj’(x)(r(x)) = ai’(x)(x), x € Xy, (1.1)

for some continuous functions k¢, /;: X4 — Z4 (it is written [oy4] in the earlier
papers [8], [10]). If the matrix A is the N x N-matrix whose entries are all 1’s,
the group I'4 coincides with the Higman—Thompson group Vy of order N.

We will introduce a notion of A-adic PL (piecewise linear) function which is a
right continuous bijective piecewise linear function on the interval [0, 1) associated
with the matrix A to represent an element of the group I'4. Let 1 < 8 € R be the
Perron—Frobenius eigenvalue of A. Let us denote by Z[%, B] the set of S-adic
rationals which is defined by

1 ap+arp+axf’ + -+ anp"

zl=. Bl = | p
B B

Then the group of A-adic PL functions on [0, 1) is realized as a subgroup of

right continuous bijective piecewise linear functions f on [0, 1) having finitely

many singularities such that all singularities of f are in Z[%, B], the derivative

of f at any non-singular point is ¥ for some k € Z and f(Z[%,,B] Nn[o, 1)) c

Z[%, Bl N [0,1). See Section 4 for the precise definition. We also introduce a
notion of A-adic table in order to represent elements of 'y which is a matrix

[M(l) w2 - M(m)}
v(l) v(@) --- v(m)

ao,al,...,anGZ}.
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with entries in admissible words v(i), u(i),i = 1,...,m of the one-sided topo-
logical Markov shift (X4, 04) satisfying certain properties. We may define an
equivalence relation of the A-adic tables, and a product structure in the set F}fb
of the equivalence classes of A-adic tables which makes it a group. We will show
the following theorem which is a generalization of a well-known result for the
Higman-Thompson groups. Assume that A is an irreducible and non permuta-
tion matrix with entries in {0, 1}.

Theorem 1.2 (Theorem 6.3). There exist canonical isomorphisms of discrete
groups among the continuous full group T4, the group I'Iflab of the equivalence
classes of A-adic tables, and the group F}ZL of A-adic PL functions on [0, 1), that
is

Iy = TP =it

Let 1 < B € R be the Perron-Frobenius eigenvalue of A. For t € T4, we put
d(x) = I;(x) —k;(x), x € X4 for the continuous functions k., [; satisfying (1.1).
We define the derivative D, of t as a real valued continuous function on X4:

D.(x) = B4 x e Xy
We know that D, satisfies the following law of derivative:
Deiyor, = Dy - (D, 011), Dyt = (Deot™H)7!

for 7, 71, 5 € 'y (Proposition 7.9).

The continuous full group T4 is isomorphic to the group I'f- of all A-adic PL
functions on [0, 1) by the above theorem. We will show that T € T4 is realized as
an A-adic PL function on [0, 1) in the following way, where X4 is endowed with
lexicographic order.

Theorem 1.3 (Theorem 7.10). There exists an order preserving continuous sur-
Jection pa: X4 — [0, 1] from the shift space X 4 of a one-sided topological Markov
shift (X4, 04) to the closed interval [0, 1] such that for any element © € Ty, there
exists an A-adic PL function f; and a finite set S; C X4 satisfying the following
properties:

(i) fr(pa(x)) = pa(z(x)) for x € X4\Sx,
(i) Y= (pa(x)) = Do(x) for x € X4\S:.

In [1], K. S. Brown has extended the groups Vy,1 < N € N to triplets
Fy C Ty C Vy of infinite discrete groups. In the final section, we will generalize
the triplet to the triplet F4 C T4 C 4 of infinite discrete groups.

Throughout the paper, we denote by IN and by Z the set of positive integers
and the set of nonnegative integers, respectively.
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2. Preliminaries

Let A = [A(, j)]fYJ.:l be an N x N matrix with entries in {0, 1}, where 1 < N €
IN. Then A4 is said to be irreducible if for every pair (i, j),i,j = 1,..., N, there
exists k € IN such that A¥(i, j) > 1. If A = id for some m € IN, then A4 is called
a permutation matrix. Throughout the paper, we assume that A is irreducible and
not any permutations. We denote by X4 the shift space

X4 ={(xp)nenx € {1,...., NN | A(xp, xnq1) = 1 foralln € N}

of the right one-sided topological Markov shift for A. It is a compact Hausdorff
space in natural product topology. The shift transformation o4 on X4 defined
by 04((xn)nen) = (Xn+1)nen is a continuous surjection on X4. The topological
dynamical system (Xy4, 04) is called the (right one-sided) topological Markov shift
for A. Since A is assumed to be irreducible and not any permutations, the shift
space X4 is homeomorphic to a Cantor discontinuum.

A word u = (U1,...,um) for p; € {1,..., N} is said to be admissible
for X4 if u appears somewhere in some element x in X4. The length of u is
m and denoted by |u|. We denote by B,,(X4) the set of all admissible words
of length m. For m = 0 we denote by Bog(X4) the empty word ¥. We put
B«(Xy4) = Ufn":O B, (X4) the set of admissible words of X4. For two words
w = (U1,---s tm) € Bu(Xa),v = (v1,...,vy) € By(X4), we denote by uv
the word (w1,..., m,v1,...,Vy). Foraword u = (u1,..., um) € Bn(X4), the
cylinder set U,, C X4 is defined by

Uy ={(xn)new € Xa | X1 = 1, ... X = ).

We put

T () ={(n.....m) € Bi(Xa) | (1o om0 M) € Bgr(Xa)),

for k € 7, and
F;(M) = {(xn)ne]N € X4 | (//vly.-.,/Lm,Xl,Xz,...) € XA}

and ' (u) = Uz=; T} (1) which is called the follower set of 4. For two words
w,v € Bi(X4), we see that Tf () = T'f (v) if and only if TE (1) = TL(v).

A homeomorphism 7 on X4 is said to be a cylinder map if there exist two
families

(i) = (i) pal). ot (D) € By (Xa), i = Lo...om,
v(i) = (v1(i),v2().....v;(0)) € By, (Xa), i=1,...,m,
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of words such that

Uv(i) N Uv(j) = Uu(i) N UH«(J') =@ fori # ], 2.1

m m
U Uviy = U Uiy = Xa, (2.2)

i=1 i=1
(@) = TF(u@)) fori =1,...,m, (2.3)

and
T(vl(l.)’ vz.(i)7 A '.7 vll (i)7 XIl_l—.l’ xll+2’ .. ') (2'4)
= (/’Ll(l)’ I’LZ(Z)’ ) :u“ki (l)’xli+lvxli+2’ .. )

for (x7, 11, x1,42....) € TE(v(i)) andi = 1,...,m. Itis easy to see that the set of

cylinder maps forms a subgroup of the group Homeo(X4) of all homeomorphisms
on Xy4.

Definition 2.1. The continuous full group T'4 of (X4, 04) is defined as the group
of cylinder maps on Xg4.

For a cylinder map t € I'4, define continuous functions k., [;: X4 — Z4 by
k:(x) =k; forxe UM(i)’
l,(x) =1 forxe Uv(i)a

so that they satisfy
ok Iz (x) = 0" (x) forall x € Xy. 2.5)

Conversely a homeomorphism t satisfying the equality (2.5) for some continuous
functions k., /;: X4 — Z4 gives rise to a cylinder map (cf. ([11]).

The Cuntz—Krieger algebra O4 for the matrix A has been defined in [5] as the
universal C *-algebra generated by N partial isometries St, ..., Sy subject to the
relations:

N N
D OSSE=1 SFSi=)_AG.j)S;Sf. i=1...N. (26
j=1

Jj=1

The algebra O4 is known to be the unique C*-algebra subject to the above
relations. For a word u = (u1,..., ur) with u; € {1,..., N}, we denote the
product S, -+ S, by S,. Then S, # 0 if and only if © € Bi«(X4). Let
C* (S, i € B«(X4)) be the C*-subalgebra of O4 generated by the projections
of the form S, S/j, W € Bi(Xy4), which we denote by D4. It is isomorphic to the
commutative C *-algebra C(X4) of all complex valued continuous functions on
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X4 through the correspondence SMS; € Dy < xu € C(Xy) where x, denotes
the characteristic function on X4 for the cylinder set U, for u € B«(X4). We will
identify C(X4) with the subalgebra D4 of O4. It is well-known that the algebra
D4 is maximal abelian in Oy ([5, Remark 2.18]). We denote by U(Oy4) and U(Dy4)
the group of unitaries in 04 and the group of unitaries in D4, respectively. The
normalizer N(O4, D4) of Dy in Oy is defined by

N(O4,Da) = {u € U(Oyg) | uDau™ = Da}.
The étale groupoid G4 for the topological Markov shift (X4, 04) is given by
Gg={(x,n,y) € X4 xZy x X4 | there existk,l € Z;
n=k—1 of(x) = o4}
The topology of G4 is generated by the sets
{(x,k—1,y)€Ga|x eV,yeW, as(x)=04(»)}

for open sets V, W C X4 and k,l € Z. Two elements (x,n, y), (x',n’,y') € G4
are composable if and only if y = x’ and the product and the inverse are given by

(‘x’n’ y) : (‘x/’n/’ y/) = (‘x’n —"_n/’ y/)’ (‘x’n’ y)_l = (y’_n’x)'

The unit space G is defined by {(x,0,x) | x € X4}, which is identified with
X4. The range map, source map r,s: G4 — G© are defined by r(x,n,y) =
x,8(x,n,y) = y respectively. A subset U C G4 is called a G4-setif r|y, s|y are
injective. For an open G4-set U, denote by wy the homeomorphism 7 o (s|y) ™!
from s(U) to r(U). The topological full group [[G4]] of G4 is defined by the
group of all homeomorphisms 7y for some compact open G4-set U such that
s(U) = r(U) = G© (see [17]). The groupoid C*-algebra C*(G4) of the
groupoid G4 is nothing but the Cuntz—Krieger algebra O4 and the commutative
C*-algebra C (Gflo)) on the unit space Gflo) is D4. The topological full group [[G4]]
of the étale groupoid G4 for the topological Markov shift (X4, 04) is naturally
identified with the continuous full group T4 ([17]).

Lemma 2.2. For v € Ty, there exist u; € N(O4,Dy) and (i), v(i) € B«(Xy),
i =1,...,msuch that

M ue = 3L Sui) Sy and
@ Sy0Sv0 = SppSuw. T =1oom,
®) X1 S Sy = izt SuoSip = 1

(2) fot ™' =u,fut for f € Da.
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Proof. Since t is a cylinder map, there exist two families of words (1), ..., u(m)
and v(1),...,v(m) satisfying (2.1)—(2.4). Hence we have

m m
ZSV(i)S:(i) = Zsu(i)SZ(i) =1L SioSo =SipSuw, i=1....m.

i=1 i=1

By putting u, = Y /., Su()Sy;y we see that ur belongs to N(Oy, Dy) and
satisfies yy, o 1 =y, xu,uy for all n € Bi«(X4) where xy, is identified with

SpSy.sothat f ot~ = u, fu} forall f € Dy. |
Asin [8, Theorem 1.2], [15, Proposition 5.6], there exists a short exact sequence
1—UDy) — N(O4,Dy) — T4 —1

that splits.
It has been proved by the second named author [17] that the homology group
Hy(G4) of the groupoid G4 is isomorphic to the Ky-group

Ko(Oy) = ZV /(id —A"Z"

of the C*-algebra O4. He has proved that the group I'4 is simple if and only if
Hy(Gy) is 2-divisible. He has also proved that ['4 is finitely presented and its
commutator subgroup D(I['4) is always simple. As the group I'4 is non-amenable
([10], [17]), we see

Theorem 2.3 ([17]). The group T4 is a countably infinite, non-amenable, finitely
presented discrete group. It is simple if and only if the group Z.N /(id —A")ZN is
2-divisible.

It has been shown that for two irreducible square matrices A and B, the
groups ['4 and I'p are isomorphic if and only if the C*-algebras O4 and Op
are isomorphic and det(id —A) = det(id —B) ([13]). Hence the family {I'4} of
our groups supply us many mutually non-isomorphic countably infinite, non-
amenable, finitely presented simple groups.

3. Realization of O4 on L2([0,1])

The Higman—-Thompson group Vyy, 1 < N € INis represented as the group of right
continuous piecewise linear bijective functions f:[0,1) — [0, 1) having finitely
many singularities such that all singularities of f are in Z[%], the derivative
of f at any non-singular point is N* for some k € Z and f(Z[%] Nno, 1)) =
Z[%] N [0, 1). In order to represent our group I'4 as a group of piecewise linear
functions on [0, 1), we will represent the algebra O4 on the Hilbert space H of
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the square integrable functions L2([0, 1]) on [0, 1] with respect to the Lebesgue
measure in the following way. We note that the essentially bounded measurable
functions L°°([0, 1]) act on H by left multiplication.

Since A is irreducible and not any permutations, its Perron—Frobenius eigen-
value written § is greater than one. By Ruelle’s Perron-Frobenius theory for
Markov chains, there uniquely exists a faithful Borel probability measure ¢ on
X4 satisfying the equality

/ ¢(N)de(o4(x) = B / ¢Wdp(x). geCXy) (D)
x€Xy xeXy

(see [22]). Under the identification between C(X4) and the C*-subalgebra Dy of
04, the probability measure ¢ on X4 is regarded as a continuous linear functional
on Dy, which is still denoted by ¢. Let A4: D4 — D4 be the positive operator
defined by A4(g) = ZIN=1 S*gS; for g € Dy. Since the characteristic function
X on X4 for the cylinder set of an admissible word € By« (X4) is regarded as
the projection S, S in Dy, the identity (3.1) implies

¢(Aa(g)) = Bp(g), g € Da, (3.2)

so that the equality

N
D AG eSS = Be(SiSF), i=1,....N (3.3)

Jj=1

holds. Put p; = ¢(S;S7).,j = 1....,N. The equality (3.3) means that the
P

Vector[ :
PN

eigenvalue B. Fori, j = 1,2,..., N, put pjj = ¢(S;S;S;S) so that

] is aunique normalized positive eigenvector for the Perron—Frobenius

1

1
Pij = ,32 -

1
5 ﬁA(i,j)Pj-

O(STS!8i8)) = g3 AW J)e(S]S)) =

Wesetfori,j =1,2,...,N,

i J
pO) =0, p()=Y pr. q0.0)=¢G.0)=0, qi.j)=)_ pi
k=1 k=1

and define the intervals I;, I;; in [0, 1) by
Lij=[pG -1 +qG j—1,pG—1)+qGj)). (3.5)
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The latter interval I;; is empty if A(i, j) = 0. We set

I(I;) = p(i = 1), r(1;) = p(D),

I(Li;) = plG =) +qG,j—1), rlij) =pi -1 +q(@.Jj),
so that

i = [I(1;), r (1),  Lij = [[(Lij), r(Ii)).
Lemma 3.1. Keep the above notations.
(i) [0.1) = X, I: disjoint union.

(i) 1; = |_|;-V=1 1;j: disjoint union.

Proof. (i) is clear.
(ii) Let N; =Max{j =1,...,N | A(i, j) = 1}. As we have

N; N;
. ’ AN
g, N) =Y pix =7 ) AG.k)pr = pi,
k=1 ’8k=1

the equality p(i — 1) + ¢g(i, N;) = p(i) holds so that r(/; n;) = r(l;). As the

intervals I;;, I;;» are disjoint for j # j’, one easily sees that /; = |_|§v;'1 Iij =

N
Lli=1 Zij- O

We define right continuous functions f4, g1, . .., gn in the following way. The
function f4:[0,1) — [0, 1) is defined by

Ja(x) = B(x —I(Lij)) + I(Ij) forx € I;j

so that f4 is linear on /;; with slope B and f4(/;;) = I;. We set

The function g;: J; — [; foreachi = 1,..., N is defined by
1
p

so that g; is linear on /; for A(i, j) =1 with slope % and g;(1;)=1;j, gi(J;))=1,.
The following lemma is direct.

gi(x) = —=(x—1I1(;))+1(;;) forxel; with A(i,j) =1
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Lemma 3.2. Fori =1,..., N, we have
(i) fa(gi(x)) = x for x € Ji,
(i) gi(fa(x)) = x for x € I;.

For a measurable subset E of [0, 1), denote by y g the multiplication operator
on H of the characteristic function of E. Define the bounded linear operators T¥,,
Te,,i=1,...,NonH by

(T, ) (x) = §(fa(x)),  (Tg;§)(x) = x7;(x)E(gi(x)), for§ e H,x €0, 1).

The following lemma is straightforward:

Lemma 3.3. Keep the above notations. We have
W T} =420, T,
(i) T, Ty, = § Yot 200
(ii) TJTg, = By, fori =1.....N and hence Y;_, T} Ty, = Bl,
(v) Tg, Ty, = Bxs, fori =1,...,N.
We define the operators s;,i = 1,..., N on H by setting

1

VB

— * H—
si=—=Tg. i=1...N.

By the above lemma, we have

Proposition 3.4. The operators s;,i = 1,..., N are partial isometries such that
sis; = . S;si= x5, i=1,...,N.

Hence they satisfy the relations

N N
E 8jS; =1, s/s5 = E A(l,])Sij, i=1,...,N.
ji=1 j=1

Therefore the correspondence S; — si,i = 1,..., N gives rise to an isomorphism
from the Cuntz—Krieger algebra Oy onto the C*-algebra C*(sy,...,sy) on H.
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4. A-adic PL functions

By Proposition 3.4, we may represent O4 on H by identifying S; with s; for
i =1,...,N. In this section, we will define PL (piecewise linear) functions on
[0, 1) associated to the topological Markov shift (X4, 04). For u = (i1,..., 4n) €
B, (Xy4), define

Iw =Y eSSH, r(w) =1 +¢e(SuSy)
veB, (X4)
V<

where (© < v means vy = [1,...,Vr = U and vgig < g+ for some k. Put the
interval

Ly = 1), r ().
The following lemma is clear.

Lemma 4.1. For each n € IN we have
(i) I,N1, =0 for p,v € B,(X4) with u # v,
(11) UMEBH(XA) 1 = [0, 1)
For u = (u1,..., un) € By(X4), we note that the following equalites hold
1 1
" "
Fori,j =1,..., N with A(i, j) = 1, we apply (4.1) for u =i, (i, j) so that

1 N
P(SuS)) = —p(SkSy) = <p(S:,,Su,,)=WZA(un,j>pj. (4.1)
j=1

i—1
10) =) o(S;S)) =) pj=pli—1),
j<i j=1

r(i) =16G) + ¢(SiS7) = pli = 1) + pi = p(i)

and

1G.7) =Y @(Su, 2S5, S
(w1,m2)=<(@,7)

= ZPMIMZ

(w1,m2)=<(@,7)

i—1 N Jj—1
Z Z Puipr + Z Pius

u1=1p2=1 m2=1
i—1 N 1

= 30 Y A g5 + 6. D)
n1=1pz=1

pi—1)+q@, j—1),
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r(i. j)=1G.j) + ¢(SiS; S} S7)

=pi—-1D+qGj—1+pi
=pi =1 +qG@.J).

Hence we see that

[1(@D).r(D) = [p(i = 1. p@)) = I,
the interval defined in (3.4);
G j).r@.j)=[pi—D+qGj—-1.p( =1 +4qG ) = L,

the interval defined in (3.5).

Lemma 4.2. For u = (i1, ..., m) € Bm(X4), we have

fa (Iu) = Lseopm

and hence
S ) = L (= [Hm). 7 (itm))).

Proof. The algebra Oy is represented on H by identifying S; with s; for i =
1,..., N. We then see

SuSy =1, and  Aa(SuS%) = Xfar)-

. * *
Since S}, Su, = Su,S,,,, we have

AA(SMS;) = S;:lSMISMz'“SU'mS;:m ---SZZSZISM

= S;Lz"'SH«mSZm S:Z
so that Xy = Xfalp)- -

Lemma 4.3. For u = ((1,...,m) € Bm(X4), v = (v1,...,vn) € By(Xa),
the condition S| Sy, = S;'S, implies

r(p) —1I(p)
r(v) —1(v)

Proof. Since r(p) —1(1) = ¢(S,.S)) = ﬂmep(S:Su) and similarly (v) —I(v) =
g79(S;Sy), the condition S35, = S5, implies (4.2). a

= prm, 4.2)
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Lemma 4.4. For u = ((1,..., m) € Bu(Xq), v = (v1,...,v,) € B, (Xy), the
Jollowing five conditions are equivalent:

(i) TF(p) =TFW),
(i) S;Su = S;S,
(i) Sj, Sum = Sy, Svp
(iv) fAm(IM) = f,f(lv)y
V) fall,) = fa(ly,).
Proof. For p = (1,..., 4m) € Bm(X4), the identites

XI) = Xfalum) = 24(SunS,,) = Si Sum = SiSu
hold. They imply the desired assertion. O

Definition 4.5. (i) For a word v € B.(X4), an interval [xy, x3) in [0, 1) is said to
be an A-adic interval for v if x; = [(v) and x, = r(v).

(ii) A rectangle I x J in [0, 1) x [0, 1) is said to be an A-adic rectangle if both
the intervals 1, J are A-adic intervals for some words v € B, (X4), it € B (Xy),
respectively such that

I =[W),rW), J=[w),rw)),

and

fAd) = f{"(J).
(iii) For two partitions
0=x9<x1 <+ <Xp—o1 <Xy =1,
O=yo<yi < <yma<ym=1
of [0, 1), put

Iy = [xp—1.%p), Jp =[Vp-1,yp) forp=12,....m.

The partition I, x J4, p,g = 1,...,m of [0,1) x [0, 1) is said to be an A-adic
pattern of rectangles if there exists a permutation o on {1, 2, ..., m} such that the
rectangles I, x J,(p) are A-adic rectangles forall p = 1,2,...,m.

For an A-adic pattern of rectangles above, the slopes of its diagonals

_ Yop) ~ Vo(p)—1

Sp p=12....m,

are said to be rectangle slopes.
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Definition 4.6. A piecewise linear function f on [0, 1) is called an A-adic PL
function if f is a right continuous bijection on [0, 1) such that there exists an
A-adic pattern of rectangles I, x J,,p = 1,2,...,m where I, = [xp_1,Xp),
Jp = [Vp-1.¥p), p = 1,...,m with a permutation o on {1, 2, ..., m} such that

f(xp—l) = Yo(p)-1- f—(xp) = Yo(p-1)+1, P = 1,2,...,m,

where f_(xp) = lim,_ o4 f(xp, —h), and f is linear on [x,—;, x,) with slope
Yo "o )=l for p = 1,2 m
po— 2, .., m.

Lemma 4.7. The composition of two A-adic PL functions and the inverse function
of an A-adic PL function are also A-adic PL functions.

By the above lemma, the set of A-adic PL functions forms a group under
compositions of functions.

Definition 4.8. We denote by I'{" the group of A-adic PL functions.
The following proposition is immediate by definition of A-adic PL functions.

Proposition 4.9. An A-adic PL function naturally gives rise to an A-adic pattern
of rectangles, whose rectangle slopes are the slopes of the A-adic PL function.
Conversely, an A-adic pattern of rectangles gives rise to an A-adic PL function
by taking its diagonal lines of the rectangles.

5. A-adic Tables

For two words u = ((1,..., Um) € Bm(X4q),v = (v1,...,v,) € By(X4) with
U.,NU, =0, wewrite u < vif uy =vy,..., ux = vg and fg4+1 < V41 for some
k. Nekrashevych in [20] has introduced a notion of table to represent elements of
the Higman—Thompson group V. We will generalize the Nekrashevych’s notion
to a notion of A-adic table in order to represent elements of the continuous full
group T'4.

Definition 5.1. An A-adic table is a matrix T

T _ [u(l) n@ - u(m)]
v(d) v@) - v(m)
for (i), v(i) € B«(X4),i = 1,...,m such that
(@) TS (v(@) =T (u@).i =1,....m,
() X4 =1L, Uvsy = LI'Z, Uuq): disjoint unions.
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Since the words v(i),i = 1,...,m satisfy U,y N U,y = @ fori # j,
we may reorder them such as v(1) < v(2) < --- < v(m). As the above two
conditions (a) and (b) are equivalent to the conditions (a) and (b) in Lemma 2.2 (1)
respectively, we have

Lemma 5.2. For an element t© € T4, let words (i), v(i),i = 1,...,m and the
unitary u; = y ;o S w(@)Syy satisfy the conditions (1) and (2) in Lemma 2.2.

Then the matrix
Tz[u(l) 12y - u(m)]
v(l) v(@2) --- v(im)

is an A-adic table.

The A-adic table T above is called a representation of t. It is also called that
T represents t.

For an A-adic table T = [‘]f((ll)) “f(%) - ‘]f((n';‘g] andi = 1,2,....m,letn(i,j) €

B.«(X4),j = 1,...,n; be a family of (possibly empty) words satisfying the
following three conditions:

(i) nG@, 1) <n@,2) <---<ni,n;),
(i) n(G,j) e TFw@)) forj =1,....n;,
(i) Uvey = UjZ; Uniynag)-
Since T} (v(i)) = ') (u(i)), one has (i, j) € T'F (u(i)) and

n;
Uniy = U UGonG.j)-

j=1
Put
v, j) =v@nG. j). p@.j)=pn@nGj). j=L....on,i=1....m.
Then the 2 x m matrix oD
[u(l,l) coou(Lny) w1 - w2,n) e p(m, 1) e u(m,nm)}
v(l,1) --- v(l,ny) v(2,1) --- v(2,np) --- v(im,1) --- v(m,ngy)

is an A-adic table, which is called an expansion of T. Let us denote by ~ the
equivalence relation in the A-adic tables generated by the expansions. This means
that two A-adic tables

o (D) w@ o)) ) WQ) e p O
v(l) v(@) - v(m) ]’ V(D) V(@2 e V(mY) ]
are equivalent and written T ~ T if there exists a finite sequence Ty, T», ..., Tk

of A-adic tables such that 7 = T;,7’ = Ty and T; is an expansion of T;41,
or T4+ is an expansion of T;.
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Lemma 5.3. Fort,t’ € Ty, let T, T' be A-adic tables representing t, t’ respec-
tively. Thent = t' ifand only if T ~ T'.

Proof. Let T, T’ be the matrices

T:[u(l) 12y - u(m)] T/:[M’(l) we - u’(m/)}
v(l) v(@) - vim) |’ V() V@R - vm) |’

Suppose that 7" is an expansion of 7. We write 7’ as

[u(l,l) ceop(ny) p(2,1) - pn@2.n2) -eo o p(m,l) .- u(m,nm)}
v(l,1) --- v(l,ny) v(2,1) --- v@2,n) --- v(im,1) --- v(m,ngy)

where (i, j) and v(i, j) are words for n(i, j) as in (5.1). The homeomorphisms
7 and v/ on X4 are induced by the unitaries u7 and up: defined by

m m’
ur =3 SuSyqy and ur =Y S S
i=1

i=1

suchas for™! = Ad(u;)(f) and f ot/ ~' = Ad(uyp)(f) for f € C(X4) = Da.
As

Su Sy = D SuiySn.nSy.iySvwy = D Sut.nSoi.jy:
j=1 =t
we have
m m
e =2 Suw Sl = D Sut.i) S, = v
i=1 i=1

sothat t = 7/.
Conversely, suppose that t = /. Let

K' =Max{V'()||1<i<m'}, L =Max{|f/(@)||1<i<m}.

There exist admissible words n(i, j) € B«(X4),j =1,...,n;,i = 1....,msuch
that

@) n@. 1) <n(,2) <--- <0, ni),

(b) n(i, j) € T} (v(i)),

© [v@n@, )l =K', |n@n, j)l = L,

@ Uvey = LI7Z) Uvionai,iys Uny = LIFZ ) Unimin-
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Put

V(Z’J):V(l)rl(l’])’ N(l’]):li(l)n(l’])’ j=1,,n,,l=1,,m,

and
n_[u(l,l) o w(lng) w2, e p(2,n2)
v, - v(ny) v D - v(2,n2)
pm, 1) - u(m,nm)}
v(im,1) - v(m,ny) |

Hence T is an expansion of 7. We will compare 7" and T'. Put
Fe =G, j) | vG@. j)<vk)}, k=1....m

Since |v(i, j)| = K', |u(i, j)| = L', one has
v'(k) = Jva. ).

(,))eF

Since |v(i, j)| = |v'(k)|, there exist ' (k, (i, j)) € B«(X4) such that

v(i, j) =v'(k)n' (k.. j)) for (i, )) € Fr.

As T = t/, we have

_ _ _ _
T(XUvi. ) = XUsimi sy = XUuiy =T X0vi.5) = XUsriomwsniin

so that
u(i, j)=wkn'tk. @, j)) for (i, j) € Fy.
This implies that 77 is an expansion of 7" to prove that 7 is equivalentto 77. O

We denote by [T] the equivalence class of an A-adic table 7. For t € Ty,
denote by 7, an A-adic table representing t. The preceding lemma says that its
equivalence class [T;] does not depend on the choice of T, representing . An
A-adic table [ #2) - M) yresenting T € Ty is said to be reduced if it has a

v(1) v(2) - v(m)
minimal length m in the set of A-adic tables presenting t. Recall that for a word

p=C(11, ..., kk) € Bx(Xa), we write I';7 () ={j € {l.....N} | A(ux. j)=1}.
The following lemma is obvious.

Lemma 5.4. For an A-adic table T = ["f((ll)) "f(%) - ’lf((r'n"))] andi = 1,...,m,
let Ff’(u(z’)) = {di; iy, ..., &, } such that o, < i < -+ < @, . Put the

words
p@. 1) =p@e, p@.2)=pl@d, ... pln)=p@d,,
v(i, 1) = v, v@.2) =v(@)ay,, ..., v(.n)=v()a,.
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Then the A-adic table T, obtained from T by replacing (i) with u(i,1),...,
w(i,n;), and v(i) with v(i, 1), ...,v(i, n;) such that

T/:|:M(1) ceeopw(@ =1 pG, 1) e op@iong) p@+1) - M(m)i|
i v(l) - v@i—=1 v@, 1) - v@i,n) vi+1) - vim)

is equivalent to T.

For an A-adic table T = [‘58)) ’j(%) N l:((Z)) ], define the range depth R(T') and
the domain depth D(T') by

R(T) =Max{|u()[ |1 =i =m}, D(T)=Max{[v(i)|] |1 =i =<mj.

By using the above lemma recursively, we know the following lemma.

Lemma 5.5. Let
= |rD @ e p(m)
v(d) v(@) - vim)
be an A-adic table.
(i) For a positive integer M > D(T), there exists an A-adic table

T/:[/ﬂ(l) W@ - //(m/)]
Vi) (@2 e (m)

such that
T'~T and @) |i=1,....,m'} = By (Xy).
(ii) For a positive integer M > R(T), there exists an A-adic table

T//:[u”(l) W) u”(m”)]
V(1) V'(2) - V(m")

such that

T"~T and {u"G)|i=1,....m"} = By (X4).

Let Ty, T, be two A-adic tables. Take M such that M > D(Ty), R(T,). By the
preceding lemma, there exist A-adic tables

T/:[M’l(l) Hy2) - M’l(p)} T/:[M’z(l) H5(2) - //v/z(Q)j|
PDi® vi@ e ovi(p) 2 e (@) - va(9)

such that 7] ~ Ty and T ~ T and

Wi == Wi = (D] = = us(@)| = M.
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Hence we have p = g = |By(X4)|. One may reorder v (i), u5(i) such as

V(1) < v (2) <+ <vi(p), pH(1) < pH(2) < -+ < py(q)

so that
vi() =pp(1), vi@) =p32). ... vi(p) = pa(q)-
Define the product 7| o T, by the A-adic table
(@@ e u/(p)}
T o T! = PL/1( 1 1 '
1202 [vz(l) %32 e V5(p)

It is easy to see that 7| o T, is an A-adic table. It is straightforward to see that
the equivalence class [T o 7] does not depend on the choice of representatives
T| of [T{] and T, of [T,]. Hence one may define the product [7}] o [T>] by the
equivalence class [T} o T3] of the product T} o T}.

For an A-adic table T = ["f((ll)) “f(%) - ’lf((r’n”)) ], define an A-adic table

T_lz[v(l) vQ) v(m)]

pd) w2 .- plm)
The identity table denoted by [/ is defined by
1 2 .- N
1_[1 2 ... N}

where the two rows of I denote the list of the ordered symbols {1,2,..., N} =
B1(X4).

Lemma 5.6. Keep the above notations.

(i) The equivalence class [I] of I is the unit of the product operations in the
equivalence classes of the A-adic tables.

(i) If T ~ T, then T~ ~ T'"".

Since T"'oT ~ T and T o T™! ~ I, the class [T '] of T~! is the inverse of
[T] in the equivalence classes of the A-adic tables.

Definition 5.7. Denote by I‘}f‘b the group of the equivalence classes of A-adic
tables.

Therefore we have

Proposition 5.8. The correspondence t € Ty — [T¢] € F}f‘b gives rise to an
isomorphism of groups.
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Proof. Let t,7" € T4. By Lemma 5.3, t = ¢’ if and only if [T;] = [T].
It is direct to see that for 7, 7, € T'4, the equivalence class [T7,01,] of an A-adic
table 77,0, representing the composition 7y o 75 is the product [T, ] o [T7,] of the
classes [T4,]. [T,]. Hence the correspondence t € I'y — [T%] € Fjlab gives rise to
an isomorphism of groups. |

6. Isomorphisms among I'4, T''** and I **

In the preceding section, we have shown that the two groups I'4, I‘jlab are isomor-
phic. In this section, we will show that these two groups are isomorphic to the
group TH" of A-adic PL functions.

Lemma 6.1. For an A-adic table T = [;:((11)) “f(%) - ;:((Z)) |, there exist an A-adic

pattern of rectangles whose rectangle slopes are

(D)=l (D)] v (@)|—=u ) [v(m)|—|p(m)]
ﬁ ’ 18 ) L] 18 ’

and an A-adic PL function fr having these rectangle slopes such that

fT(Iv(i)) = IM(i)’ i = 1,2, o, m. (61)

Conversely, for an A-adic PL function f with the A-adic pattern of rectangles
Ip x Jopy.-p = 1,2,...,m and a permutation o on {1, ..., m}, there exists an

A-adic table Ty = [;:((11)) “f(%) - ;:((Z)) | such that

Iy =Ly Jop) =lup). pP=12.....m.

Proof. We are assuming the ordering such as v(1) < --- < v(m). Since X4 is a
disjoint union X4 = |_|;”=1 U,y there exists a permutation o9 on {1,2,...,m}
such that u(og(1)) < w(oo(2)) < --- < u(op(m)). Put

xi =Ilw@ + 1)), yi=Iluloe@@+1)), i=01,....m—1
so that xo = yo = 0 and

Ip =[xp=1.%p), Jp=[p-1.Yp), P=12,....m

where x,, = ym = 1. Define the permutation ¢ := oy on {1,2,...,m}.
We note that r(v(i)) = I(v(i + 1)),r(n(oo(i))) = l(u(oo(@ + 1))) fori =
1,...,m—1. Then the rectangles I, x J5(p), p = 1,2, ..., m are A-adic rectangles

by Lemma 4.4 such that

Yo) = Yop)—1 _ r((p)) = (1(p))
Xp = Xp-1 r(w(p)) = 1(v(p))
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We then have
1
r((p)) —1(p)) = (p(SV(P)S:(p)) = WQD(S:(p)Sv(p))

and similarly

D = 10D = S (S )

As the condition T';f (v(p)) = T} (u(p)) implies SyiSvm = SpipSum»
we have _
Yo(p) — Yo(p)—1 _ I3|v(p)|—|u(p)|’ p=12,....m.
Xp — Xp—1
By Proposition 4.9, one immediately knows that the associated A-adic PL function
denoted by fr with the above A-adic pattern of rectangles satisfies condition (6.1).
The converse implication is straightforward from Lemma 4.4. O

We may directly construct an A-adic PL function f7 from an A-adic table

T = [*;((11)) “g)) - *;gn”g] as follows. Put x; = [(v(i + 1)), 5 = I(u(i + 1)) and

fr(x;) = yi,i =0,1,...,m — 1. Define fr(x) on [x;—1, x;) as a linear function
; =G (— rE)=Iw@) _ Yi—Ji— : :

with slope glV®I=Ik®l(= EOTe = v fori =1,2,...,m. Itis easy

to see that the function fr is an A-adic PL function. Let us denote by : the A-adic

PL function defined by ¢(x) = x, x € [0, 1). The following lemma is direct.

Lemma 6.2. For two A-adic tables Ty, T», we have
(i) Th is equivalent to T, if and only if fr, = fr, as functions. Hence we may
write fr as fir),
(i) firjotral = fim1 © fira)
(iii) ¢ = fin.

We reach the main result of the paper.

Theorem 6.3. There exist canonical isomorphisms of discrete groups among the
continuous full group T4, the group Flflab of the equivalence classes of A-adic
tables, and the group F}ZL of A-adic PL functions on [0, 1), that is

~ Ttab ~ 1PL

In particular, the continuous full group T4 for a topological Markov shift (X4, 04)
is realized as the group of all A-adic PL functions on [0, 1).

Proof. By Proposition 5.8, we have an isomorphism from the continuous full
group I'y to the group I‘jlab of the equivalence classes of A-adic tables.
By Lemma 6.1 and Lemma 6.2, the correspondence [T] € I'?®® — fr e Tt
yields an isomorphism. |
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7. A realization of I'y as A -adic PL functions

521

In this section, we will construct a continuous surjection of the shift space X4 onto
the interval [0, 1] which yields a representation of elements of the continuous full
group T4 to the group I'}T of A-adic PL functions. For x = (x;)ien € X4 and

n € Z4, consider the word (x1,...,x,) € B,(X4) and set
Li(x)=1(x1,...,xn), 1n(x)=r(x1,...,%5).

Lemma 7.1. For x = (x;)ieny € X4 and n € Z., we have
(1) In(x) < lpt1(x) < rpg1(x) < ra(x),

(i) [rn(x) = In ()] < .

Proof. (i) For u = (u1,...,4n) € Bu(X4), the condition u© < (xq,..

implies puj < (x1,...,Xn, Xp4+1) for all j with A(u,, j) = 1 so that

n(x) =Y o(SuS%)

MEBR(X4)
=X 5eeesXn)

= ZA(un,J)Z 0(SiSyj)

=1 WEB,(X4)
=X 50 Xn)

<> e(SS))
vEB;+1(Xa)
V=<(X15.ees Xn,Xn4-1)

= Int1(x).

We note that
L1 (%) = 1n(X) + Y @(Sxyoxnj Saysnj)

J<Xn41
so that

Fnt1(x) = lnp1(x) + @(Sx,- “XnXn41 S; ann+l)

= 1(X) + D 0(Sxyoxni Sk j)

J=<Xn+1
N
< 1n () + D @(Sx 1w 1S5,y )
j=1
= ln (x) + QD(lewxn S;l"'xn)

= rp(x).

-1xn)

(7.1
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(ii) By the equality r,(x) = ln(x) + ¢(Sx,-x, Sx,..x,,) With

w(le xn x1 xn ,3" ZA(xn,])p], Zp] _1

we have |r,(x) — [,(x)| < ﬂin O

Lemma 7.2. For x = (x;)iex € X4 and n € Zy, we have
@) Li(x) =lhs1(x)ifandonly if xp1q =Min{j = 1,...,N | A(x,, j) =1},
(i) rp(x) = rpp1(x) ifandonly if xy41 =Max{j = 1,...,N | A(x,, j) = 1}.

Proof. (i) By (7.1), one sees that I, 41(x) = [,,(x) if and only if

Z O(Sxyxnj Sty ) = 0.

J<Xn+1

Since the state ¢ on Dy is faithful, the latter condition is equivalent to the condition
that there does not existany j = 1,..., N suchthat j < x,4+; and A(x,, j) = 1.
Hence we have the desired assertion.

(ii) is similar to (i). O
Forawordw = (w1, ...,w,) € B,(X4), letusdenote by wmin = (wi)ien € X4

(resp. Wmax = (@;)ienw € X4) its minimal (resp. maximal) extension to a right
infinite sequence in X4, which is defined by setting

w; = w; (resp. »; = w;)
fori =1,...,n,and

C_L)n_l,-k - Min{j = 1727-'-7N | A(C_L)n_l'_k_l,j) = 1}’
(resp. W4 = Max{j =1,2,...,N | A(®Opyk-1,7) = 1})

for k = 1,2,.... By Lemma 7.2, one has [(w) = l,4+x(®min) and r(w) =
Fu+k (Omax) for all k& € IN. For the two symbols 1, N € B;(X4), we may consider
the elements 1min, Nmax in X4 so that we obtain the following lemma.

Lemma 7.3. [,(1pmin) = 0, 7, (Nmax) = 1 foralln € IN.

For two sequences x = (Xp)neN, Y = (Vn)nen € X4, we write x < y if
X1 = Y1r.eesXn = Yn>Xn+1 < Yn4+1 for some n € Z,. Hence X4 becomes
an ordered space such that 1y, (resp. Nmax) is minimum (resp. maximum).
Recall that for a word u € B«(X4), denote by I, the interval [/(n),r(w)),

so that 7, = [I(), r(w)].
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Proposition 7.4. There exists an order preserving surjective continuous map
pa: X4 — [0, 1] such that

pA(Imin) =0,  pa(Nmax) = 1. pa(Uy) = Iy, for p € Bu(X4).
Proof. For x = (x;)iew € X4, there exists an element
lim [,(x)(= lim r,(x))
n—oo n—>oo

in [0, 1] which we denote by p4(x). It satisfies the inequalities /,(x) < pq(x) <
ry(x) for all n € IN. By the above lemma, we have

PA(lmin) = 1im ;(Imin) =0,  pa(Nmax) = lim 7, (Nmax) = 1.
n—00 n—00

We will next show that p4: X4 — [0, 1] is surjective. For ¢ € [0, 1], we may assume
that ¢t < 1 because pq4(Nmax) = 1. For n € IN, by Lemma 4.1 (ii), one may find a
word 1" € B, (X4) such that 7 € . The first n-symbols of p®+1) coincide
with £ so that the sequence {1}, i of words defines a right infinite sequence
X; = (Xp)nen of X4 such that (xq,...,x,) = u™. Since [(u™) <t < r(u®™)
and |r(u™) —I(n™)| < ﬂi,,, one sees that pg(x;) = lim,_ o (™) = 1 so that
p4: X4 — [0, 1] is surjective.

For p € B,(X4) and x € U,, one sees that I(n) = [,(x) < pa(x) <
rn(x) = r(u) so that ps(x) € [l(n),r(n)]. Hence we have pq(U,) C I_M.
As pa(X4) = [0,1] and [0, 1) = UMEBn(XA) I, is a disjoint union for a fixed
n € N, one has I, C pa(U,) so that ps(U,) = I,,. This also shows that py is
order preserving. O

We will represent A-adic PL functions on [0, 1] by using the surjection

pa: X4 — [0,1]. Fort € Ty, let T, = [‘]féll)) ‘]f(%) - “f((r'n”))] be its reduced repre-

sentation. Let C; be the finite subset of [0, 1] defined by
C:={{(v(@) |i=2,3,....mi(={rwv@) |i =12,....m—1}).

Then the A-adic PL function f; associated with the A-adic table 7% is continuous
and linear on [0, 1) except C;. We define a finite subset S; of X4 by

S:={w(@)mne Xa|i=12,...,m}
so that p4(S7) = Cr.

Proposition 7.5. For t € T, we have f;(p4(x)) = pa(t(x)) for all x € X4\ S.
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Proof. Since X4 is a disjoint union |_|i1‘i1 U,ay, for x € X4\S: we may take
v(i) = (v(@)1....,v(i);) such that x € U,). We write

X =), V(@)1 X415 X420 -4 ).

As x € Sq, the function f; is continuous at x. It then follows that

Je(pa(x)) = fe(lim rw(), .o V(s Xp415 -5 X40))

= nll)ngo f-[(r(V(i)l, cees v(i)liaxl,'-i-h cee sxl,--f—n))
= nll)ngor(ﬂ(l)ly cee /’L(i)kiy-xli-f-ls s 7xll~+n)
= pa(z(x)). O

We will next define the derivative of T € T'y. For t € Ty, let I, k; be
Z.4-valued continuous functions on X4 satisfying (2.5).

Lemma 7.6. For t € I'y, define d,: X4 — 7 by setting
dr(x) = Iz(x) —k:(x), x € X4.
Then d does not depend on the choice of the functions I, k. satisfying (2.5).

Proof. Letl., k.: X4 — Z be another continuous functions such that

T° T
aj;(x)(r(x)) = ojf(x)(x), x € Xy4. (7.2)
For x = (xi)ien € X4, the identities (2.5) and (7.2) ensure us that there

exist words ((1(x), ..., ik, (x)(X)) € Bk, (x)(Xa) and (u}(x),.. .,,u;c,r(x)(x)) €
Bk‘/[ (x) (XA) such that

T(x) = (1(X)s v oy My (o) (X) s X1 ()15 Xl () 425+ - +)
= (1 (s My oy () X2 )1 X2 ()25 - - -

For any n > k.(x), k’(x), by taking the nth coordinates of the above sequences,
we see that

Xn—ke (X)+lr (x) = Xn—kf (0)+1 (x)
Put d/(x) = I.(x) — k. (x) and K(x) = Max{k.(x),k.(x)}, so that

Uf(x)-i-dt(X)(x) — Of(x)-i‘dé(x)(x)‘

Suppose that d;(x) # d.(x) for some x € X4. The above equality implies that
x is an eventually periodic point. As the functions K, d;, d,/ are all continuous,
all elements of some neighborhood of x are eventually periodic. Since the set of
non-eventually periodic points is dense in X4, we have a contradiction and hence
d. =d.. O
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Lemma 7.7. For t, 11, 15 € ['4, we have
(i) drzorl = drl + drz °11.
(i) d,-1 = —d, ot}

Proof. (i) For 1; € T'4, take continuous functions k., , I;;: X4 — Z such that

kr (x) Iz (x) .
T @) =0 V), i=1,2,x€ X4
so that kf2 (11 (x)) lrz (1 ()
(r2(t1(x))) = (t1(x)), x € Xa.
It then follows that
kr x) , ke, (r1(x)) lr (1 (x), ke (%)
P00, () = 0,2 (0, (11(x))
Iy (T (%), 17y (%)
= UAZ : Al (x)),
so that key () +ke, (71 (x)) lf1 () +z, (71 ()
oy (potni(x)) = (x).

Hence we have

drzon (X) = {lrl (X) + lfz (Tl (X))} - {kl’l (X) + kTZ (TI (X))}
= drl (X) + drz(fl (X))

(ii) By (2.5), we have

—1 -1
O:T(T (x))(x) _ Ujf(r (x))(f—l(x))’ X € Xy

so that
di1(x) = ke (x7' (%)) — l(r7 (%)) = —d (x 7' (x)). ]

Definition 7.8. For an element t € T4, the derivative D, of 7 is defined by a real
valued continuous function D, on X4:

Do(x) = BT™ . x e Xy, (1.3)

where f is the Perron—-Frobenius eigenvalue of the matrix A.

The derivative D, of 7 is regarded as an element of Dy4. Recall that ¢ stands
for the continuous linear functional on D4 for the unique probability measure on
X4 satistying (3.1). The following proposition shows that D, satisfies the law of
derivatives.
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Proposition 7.9. For t, 11, 12 € I'4, we have
(i) ¢(Dr) = 1.

(ii) Dr20r1 = D‘cl : (Drz 0 11).

(iii) D,—1 = (Dyotr )7L,

Proof. (i) Suppose that 7 is given by an A-adic table T = [‘jéll)) ‘]f(%) N ‘\f((:n")) ]

so that ur = 372, Su®S)4) SiaySum = SyaySve and 3, Sui Sy =
Z?Ll Sv(i)S:‘(l.) = 1. Recall that the positive operator A4: D4y — D, is defined by

Aa(f) =N S*fS; for f € Da. It then follows that
Aliu(i)l(”rsv(i)sj(i)”:) = ALM(i)l(Su(i)S;(i)) = S:(i)SM(i) = S:(i)SV(i)
so that
MO e Suiy Sryut) = A NSoi Siay). i=1....m.
As ¢ o A4 = By on Dy, we have
O SyiySayus) = BrOTIDly(S,6)S%). i=1.....m. (7.4)

Since d;(x) = [z (x) — k(x) = |v(i)| — |n(@)| for x € U, ), the derivative D is

expressed as
m

D, =Y prO-Olg o gx
i=1

so that by the equality (7.4) one obtains that

m m
o(D) =Y BrOIOlys, 6 Sx) =D 0 Sui Siayut) = (1) = 1.

i=1 i=1
(ii), (iii) By the previous lemma, we have

Drzorl = ﬁdrzotl = ﬁdr] 'ﬁdfzoﬂ — l)r1 . l)_[2 o1,

D 1 = ﬂ_dfor_l = [Dr o ‘E_l]_l. |

T

As the function f is linear on the interval 1,y = [[(v(i)), 7 (v(i))) with slope
BOI=-IOI e may summarize the above discussions in the following theorem.

Theorem 7.10. There exists an order preserving continuous surjection
p4: X4 — [0, 1] from the shift space X4 of a one-sided topological Markov shift
(X4,04) to the closed interval [0, 1] such that for any element v € Ty, there
exists a finite set S; C X4 such that the corresponding A-adic PL function f;
for T satisfies the following properties:
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(@) fr(pa(x)) = pa(r(x)) for x € X4\S-,

(i) Y= (pa(x)) = De(x) = B for x € X4\Se,

where d;(x) = [;(x) — k(x) for the continuous functions k;,l;: X4 — Z+
satisfying oﬁt(x)(r(x)) = oif(x)(x),x € X4 and B is the Perron—Frobenius

eigenvalue of A.

8. Generalizations of other Thompson groups

R. J. Thompson has defined finitely presented infinite subgroups F» and 75 of V,
which satisfy F, C T, C V,. K. S. Brown [1] has extended the subgroups F>, T»
of V to the family Fy C Ty C Vy of finitely presented subgroups Fy, Tn of Viy
such that T is a group of piecewise linear homeomorphisms f:[0, 1] — [0, 1]
on the unit circle having finitely many singularities such that all singularities of f
are in Z[%], the derivative of f at any non-singular point is N* for some k € Z,
and Fy is a subgroup of Ty consisting of piecewise linear homeomorphisms
f:10,1] — [0, 1] on the unit interval.

In this section, we generalize the groups F,Tn for 1 < N € IN to Fy4, T4 for
irreducible square matrices A with entries in {0, 1} by using the techniques of the
preceding sections.

Recall that an element © € I'y4 is represented as a cylinder map given by two
families p(i),v(i),i = 1,..., m of words satisfying (2.1)—(2.4). We may assume
that the words v(i),i = 1,...,m are ordered such as v(1) < v(2) < --- < v(m).
We define further properties for t € I'4 as follows. 7 € I'4 is said to be

(i) order preserving if one may take the words w(i),i = 1, ..., m such as

(1) < p(2) < -+ < p(m),

(ii) cyclic order preserving if one may take the words p(i),i = 1,...,m such as

plk) < plk 41) <o < p(m) < p(1) < pw(2) <= < pulk=1)
for some k € {1,2,...,m}.

If 7 is order preserving, it is cyclic order preserving. It is easy to see that the set
of order preserving cylinder maps forms a subgroup of I'4, and the set of cyclic
order preserving cylinder maps forms a subgroup of I'4y. We denote them by Fy
and by T4 and call them the order preserving continuous full group and the cyclic
order preserving continuous full group, respectively.
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In Definition 4.5 (ii), if one may take o such as
ok)<ok+1)<---<om)<o(l)<o)<---<ok—1) (8.1)

for some k € {l,...,m}, the A-adic pattern of rectangles is said to be A-adic
cyclic order preserving pattern of rectangles. If in particular one may take o such
as 0 = id, the A-adic pattern of rectangles is said to be A-adic order preserving
pattern of rectangles.

In Definition 4.6, if one may take o such as (8.1) for some k € {1,...,m},
an A-adic PL function f is called a cyclic order preserving A-adic PL function.
If in particular, one may take o = id, f is called an order preserving A-adic PL
function.

It is easy to see that the set F /f L of order preserving A-adic PL functions and
the set TEL of cyclic order preserving A-adic PL functions form subgroups of the
group of the A-adic PL functions. Hence we have subgroups of inclusion relations:

Fy- c Ty- c ik

The following proposition is immediate by definition of order preserving (resp.
cyclic order preserving) A-adic PL functions.

Proposition 8.1. An A-adic order preserving (resp. cyclic order preserving)
PL function naturally gives rise to an A-adic order preserving (resp. cyclic
order preserving) pattern of rectangles, whose rectangle slopes are the slopes
of the A-adic PL function. Conversely, an A-adic order preserving (resp. cyclic
order preserving) pattern of rectangles gives rise to an A-adic order preserving
(resp. cyclic order preserving) PL function by taking its diagonal lines of the
corresponding rectangles.

In Definition 5.1, let T = [;;((11)) ‘]f(%) N ‘lfén”;)) ] be an A-adic table such that
v(l) < v(2) <--- < v(m). Then T is said to be
(i) order preserving if (1) < u(2) < --- < u(m),

(ii) cyclic order preserving if

pk) < plk +1) <o <pulm) < (1) < p(2) <= < pk =1
forsome k € {1,2,...,m}.
If T is order preserving, it is cyclic order preserving. These two properties of
A-adic tables are closed under taking expansions of A-adic tables respectively.
We see that the set F jab of the equivalence classes of order preserving A-adic
tables and the set T}f‘b of the equivalence classes of cyclic order preserving A-adic

tables form subgroups of ij‘b, respectively. Hence we have subgroups of inclusion
relations:
F[;ab C Tjab C F[aab
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We further see the following:

Lemma 8.2. Foratable T, let fr be the associated A-adic PL function. Then T
is order preserving (resp. cyclic order preserving) if and only if the function fir
is order preserving (resp. cyclic order preserving).

‘We thus have:

Proposition 8.3. There exist canonical isomorphisms of discrete groups among
the order preserving (resp. cyclic order preserving) continuous full group Fy
(resp. Ty), the group F fb (resp. Tjab) of the equivalence classes of order
preserving (resp. cyclic order preserving) A-adic tables and the group F }f L (resp.
T/f LY of the order preserving (resp. cyclic order preserving) A-adic PL functions
on [0, 1), that is

~ ptab ~ PL ~ 7tab ~ PL

Proof. The isomorphisms in Proposition 5.8 and Theorem 6.3 among 4, ij‘b
and I‘}:L preserve the orders of words, so that its restrictions yield desired isomor-
phisms. |

In [1], K. S. Brown had extended the Higman—Thomson group Vy to infinite
families Fy, C Tn, C Vy, for N = 2,3,...,r € N where Vy; = Vy and
Fyi1 = Fn,Ty1 = Tn. Let Ay be the N x N matrix whose entries are all 1’s.
Then our groups Fy4,, T4y, Va, for the matrix Ay are nothing but the Brown’s
triple Fy,1, Tn,1, Va1 for r = 1, respectively. Let Ay, be the r x r block matrix
whose entries are N x N matrices such that

0 ... ... 0 Ay
In 0 ... ... 0
. .
© Iy 0 0
0 ... 0 1y 0

where 1 denotes the identity matrix of size N. Since there exists an isomorphism
from the Cuntz—Krieger algebra Oy, , for the matrix Ay, to the tensor product
Oay ® M, (C) such that Dy, , = Day ® D, where D, is the commutative
C *-algebra of the diagonal elements of the r x r full matrix algebra M, (C), our
groups Fa, ,.Tay ,» Vay , for the matrix Ay, are nothing but the Brown’s triple
Fny,Tnr, VN, (see [18], [19]). Since det(id — An,,) = 1 — N, the classification
of the Higman-Thompson groups Vy,, corresponds to that of the C *-algebras
On ® M, (C) through Theorem 1.1 (see [24, Corollary 6.6], [21]).

In [18], generalization of higher dimensional analogue of Thomson like groups
are studied from the view point of étale groupoids.
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