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1. Introduction

A natural question concerning the Nielsen-Thurston classi�cation of braids is:

what is the most likely Nielsen-Thurston type of a “long random braid”? Di�erent

interpretations can be given to this question, but in this paper we shall use the

following setting. We consider the Cayley graph of the braid group Bn (for a �xed

number of strands n), with generators the set of simple braids – this is the standard

generating set when the braid group is studied as a Garside group. A well-known

conjecture since the work of Thurston is as follows.

Conjecture. The proportion of pseudo-Anosov braids among all elements in the

ball of radius l in the Cayley graph converges to 1 as l tends to in�nity.

The best known results going into this direction were, to the best of our knowl-

edge, the classical paper of Fathi [9], and the article of Atalan and Korkmaz [1]

which deals with the case of three-strand braids. The present paper, together with

the article [4], contains a proof of the above conjecture. In this �rst part, we intro-

duce some essential tools needed for the proof in [4], and already prove a result

of independent interest concerning the proportion of rigid pseudo-Anosov braids

(see Corollary 4.9):

Theorem. For su�ciently large l , the proportion of rigid pseudo-Anosov braids

in the ball of radius l in the Cayley graph of Bn is bounded below by a strictly

positive constant which does not depend on l (but might depend on n).
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The proof is in two steps: we shall see that the proportion of so-called rigid

braids is bounded below independently of l , and among rigid braids the proportion

of pseudo-Anosov elements converges to 1.

Another possible interpretation of the original question should be pointed out:

the works of Rivin [14], Maher [13], and Sisto [15] deal with braids obtained by

a long random walk in the Cayley graph. They prove that in this setting, as well,

the probability of obtaining a pseudo-Anosov braid converges to 1 as the length

of the walk tends to in�nity.

Acknowledgments. I would like to thank my Ph.D. advisor Bert Wiest for his

help and guidance, Xavier Caruso for fruitful discussions, and Juan González-

Meneses for his careful reading and constructive comments.

2. De�nitions

Throughout the article, we �x an integer n > 3. All the considered braids will be

braids with n strands.

2.1. Garside structure. A general introduction to Garside theory can be found

in [7]. The reader can also consult [8]. We shall only recall some facts which are

useful for our purposes.

While the group Bn admits the well-known presentation of groups

Bn D
˝

�1; : : : ; �n�1I �i�iC1�i D �iC1�i�iC1 and �i�j D �j �i for ji � j j > 2
˛

;

the monoid of positive braids B
C
n , which is embedded in Bn, is de�ned by the

same presentation, interpreted as a presentation of monoids.

For i < j 6 n, we denote by �ij the element of BC
n de�ned by

�ij D .�i � � � �j �1/.�i � � � �j �2/ � � � .�i�iC1/�i

and we denote by � D �1n 2 B
C
n .

The pair .BC
n ; �/ de�nes what we call a Garside structure on Bn. Without

giving the complete de�nition, here are some properties of such a structure.

The group Bn is endowed with a partial order 4 de�ned by

x 4 y () x�1y 2 B
C
n :

If x 4 y, we say that x is a pre�x of y. Any two elements x; y of Bn have a unique

greatest common pre�x.

We also de�ne < by

x < y () xy�1 2 B
C
n :

Note that x < y is not equivalent to y 4 x.

The elements of the set ¹x 2 Bn; 1 4 x 4 �º are called simple braids.
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Proposition 2.1. The set of simple braids is in bijection with the set Sn of

permutations of n elements, via the canonical projection from Bn to Sn.

De�nition 2.2 (left-weighting). Let s1, s2 be two simple braids in Bn (possibly

s1 D s2). We say that s1 and s2 are left-weighted, or that the pair .s1; s2/ is left-

weighted, if there does not exist any generator �i such that s1�i and ��1
i s2 are both

still simple.

De�nition 2.3 (starting set, �nishing set). Let s 2 Bn be a simple braid.

We call starting set of s the set S.s/ D ¹i; �i 4 sº and �nishing set of s the

set F.s/ D ¹i; s < �iº.

Remark 2.4. Two simple braids s1 and s2 are left-weighted if and only if

S.s2/ � F.s1/.

Remark 2.5. Let s be a simple braid, and � be the permutation associated to s.

Then i 2 S.s/ if and only if �.i/ > �.i C 1/, and i 2 F.s/ if and only if

��1.i/ > ��1.i C 1/.

Proposition 2.6. Let x 2 Bn. There exists a unique decomposition x D

�px1 � � � xr such that x1; : : : ; xr are simple braids, distinct from � and 1, and

such that xi and xiC1 are left-weighted for all i D 1; : : : ; r � 1.

De�nition 2.7 (left normal form). In the previous proposition, the writing x D

�px1 � � � xr is called the left normal form of x, p is called the in�mum of x and

is denoted by inf x, p C r is the supremum of x and is denoted by sup x, and r is

called the canonical length of x.

Furthermore, if r > 1, we denote by �.x/ D �px1��p the initial factor of

x (�.x/ D x1 if p is even, �.x/ D �x1��1 if p is odd), and �.x/ D xr its �nal

factor.

A key of the proof will be that every element ˇ of Bn is represented by a

unique normal form word, whose shape determines the distance of ˇ from the

neutral element in the Cayley graph (Lemma 4.7). This allows us to replace the

counting of elements in a ball in the Cayley graph by the much easier counting of

normal form words of bounded length.

De�nition 2.8 (rigidity). A braid x of positive canonical length is said to be rigid

if �.x/ and �.x/ are left-weighted.
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2.2. Braids and mapping class group of the punctured disk

De�nition 2.9 (Mapping class group of the punctured disk). Let Dn be the

closed unit disk in C, with n punctures regularly spaced on the real axis. The

mapping class group of Dn, denoted Mod.Dn/, is the group of homeomorphisms

of Dn, modulo the isotopy relation. We also denote Mod.Dn; @Dn/ the group of

homeomorphisms of Dn �xing pointwise the boundary @Dn of Dn, modulo the

isotopy relation.

The Artin braid group with n strands is isomorphic to the group Mod.Dn; @Dn/.

Recall that the classi�cation theorem of Nielsen and Thurston states that a map-

ping class f 2 Mod.Dn/ is exactly one of the following: periodic, or reducible

non-periodic, or pseudo-Anosov. A braid x 2 Mod.Dn; @Dn/ can be projected on

an element of Mod.Dn/. We call Nielsen-Thurston type of x the Nielsen-Thurston

type of its projection. The de�nition of periodicity is then transformed as follows:

a braid x 2 Bn is periodic if and only if there exist nonzero integers m and l such

that xm D �l , where � D .�1 � � � �n�1/.�1 � � � �n�2/ � � � .�1�2/�1. (Geometrically

� corresponds to the half-twist around the boundary of the disk).

2.3. Round curves and almost round curves. Let us consider a braid as a

mapping class in the mapping class group Mod.Dn; @Dn/.

De�nition 2.10 (curve). We call closed curve in Dn the image of the circle S1 by

a continuous map with values in Dn. The curve is said to be simple if this map is

injective. It is said to be non degenerated if it is neither homotopic to a point, nor

to the boundary of the disk, and it bounds a least two punctures.

In the following, we simply call curve a homotopy class of non degenerate

simple closed curves. We shall use the right action of the mapping class group on

the set of curves.

De�nition 2.11 (round curve). A curve is said to be round if it is represented by

a circle in Dn.

De�nition 2.12 (almost round curve). A curve is said to be almost round if it is

not round, and is the image by a simple braid of a round curve.

3. Properties of the left-weighting graph

De�nition 3.1 (Left-weighting graph). We call left-weighting graph, denote by

Glw , the following �nite oriented graph. The vertices are indexed by the simple

braids except 1 and �, and there is an edge from the vertex x1 to the vertex x2 if

and only if the pair .x1; x2/ is left-weighted.
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We call path a sequence .x1 ! x2 ! � � � ! xl/ such that there is an edge from

the vertex xi to the vertex xiC1, and the length of such a path means the number

of edges in the path.

The objective of this section is to study some properties of the graph Glw ,

especially some asymptotic properties of the number of paths of length l , with l

tending to in�nity. We introduce the following notations, for all l 2 N�.

� N.l/ is the number of paths .x1 ! x2 ! � � � ! xlC1/ of length l in Glw .

� Nı.l/ is the number of loops of length l C 1, with marked base vertex, in

Glw . The quantity Nı.l/ can also be seen as the number of paths of length l ,

such that there is an edge from the last to the �rst vertex.

� Let w be a path of length k 2 N� in Glw . We denote by N .w/.l/ the number

of paths of length l in Glw that do not pass through w (ie that do not contain

w as a subpath), and N
.w/
ı .l/ the number of loops of length l C1 with marked

base vertex in Glw , that do not pass through w.

Furthermore, if .ul / and .vl/ are two sequences of real numbers, we write

ul D ‚.vl/ if and only if there exist constants c1; c2 > 0 such that for all large

enough l , c1vl < ul < c2vl . We say that ul is of the order of vl .

We also use the usual notations ul � vl when ul is equivalent to vl , that is when

for all " > 0, there exists an integer L such that for all l > L, jul �vl j < "jvl j, and

ul D O.vl / when there exists c2 > 0 such that for all large enough l , ul < c2vl .

We will prove some properties of the left-weighting graph by using the notion

of adjacency matrix. For more details on graph theory and adjacency matrices,

the reader can consult [11]. We recall the following de�nition and proposition,

together with the theorem of Perron-Frobenius.

De�nition 3.2 (adjacency matrix). Let G be an oriented �nite graph, whose

vertices are numbered. We call adjacency matrix of G the matrix whose .i; j /-

entry contains the number of edges from the vertex i to the vertex j .

Proposition 3.3. Let G be an oriented �nite graph and A its adjacency matrix.

Let l 2 N. The .i; j /-entry of the matrix Al contains the number of paths of length

l in G linking the vertex i to the vertex j .

Theorem (Perron-Frobenius). Let A be a matrix such that there exists k 2 N�,

such that all entries of Ak are positive. Then the spectral radius of A is positive,

is a simple eigenvalue of A, and is the unique eigenvalue of maximal module.

Lemma 3.4. Each pair of vertices in Glw is linked by at least one path of length

exactly 5.
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Proof. Let us recall that two simple braids s and t are left-weighted if and only if

S.t/ � F.s/. Let s1 and s2 be two simple braids distinct from 1 and �. There exist

i1 and i2 in ¹1; : : : ; n � 1º such that F.s1/ � ¹i1º and S.s2/ � ¹1; : : : ; n � 1ºn¹i2º.

We will construct some simple braids x1; x2; x3; x4 satisfying:

� S.x1/ D ¹i1º,

� F.x1/ D S.x2/ D ¹bn
2
cº,

� F.x2/ D S.x3/ D ¹1; 3; : : : ; 2bn
2
c � 1º (the set of odd numbers between 1

and n � 1),

� F.x3/ D S.x4/ D ¹1; : : : ; n � 1ºn¹bn
2
cº,

� F.x4/ D ¹1; : : : ; n � 1ºn¹i2º.

Thus, s1 ! x1 ! x2 ! x3 ! x4 ! s2 will be a path of length 5 in the graph

Glw .

Here is how we choose the braids x1; x2; x3; x4. We set x1 D �i1 � � � �b n

2
c.

The simple braid x2 is the braid corresponding to following permutation:

�2 D

�

1 2 � � � bn
2
c bn

2
c C 1 bn

2
c C 2 � � � n

2 4 � � � 2bn
2
c 1 3 � � � 2dn

2
e � 1

�

As to the braid x3, it is equal to Nx2�1;b n
2

c�b n
2

cC1;n, where Nx2 is the simple braid

of permutation ��1
2 . Finally, x4 D ���1

d n

2
e
� � � ��1

i2
is the left complement of

�i2 � � � �d n

2
e. The braids x1 to x4 are represented for n D 6 in Figure 1.

Of course S.x1/ D ¹i1º and F.x1/ D ¹bn
2
cº. For x2, the permutation �2 is in-

creasing on ¹1; : : : ; bn
2
cº and on ¹bn

2
c C 1; : : : ; nº, and we have �2.bn

2
c C 1/ <

�2.bn
2
c/, so S.x2/ D ¹bn

2
cº. On the other hand, ��1

2 .i/ > ��1
2 .i C 1/ if

and only if i is odd, hence F.x2/ D ¹1; 3; : : : ; 2bn
2
c � 1º. The permutation

�3 associated with x3 �rst applies ��1
2 , then reverses the order, on the one

hand, of the elements from 1 to bn
2
c, and on the other hand, of bn

2
c C 1 to n.

It follows that �3.i/ > �3.i C 1/ if and only if i is odd, and that ��1
3 .i/ >

��1
3 .i C 1/ for all i except i D bn

2
c. So S.x3/ D ¹1; 3; : : : ; 2bn

2
c � 1º and

F.x3/ D ¹1; : : : ; n � 1ºn¹bn
2
cº. Finally, x4 is the left complement of �i2 � � � �d n

2
e,

and thus satis�es S.x4/ D ¹1; : : : ; n � 1ºn¹n � dn
2
eº D ¹1; : : : ; n � 1ºn¹bn

2
cº and

F.x4/ D ¹1; : : : ; n � 1ºn¹i2º. �

Lemma 3.5. The following properties are true.

(i) There exists a constant � such that Nı.l/ � �lC1.

(ii) We have N.l/ D ‚.�l/. In particular, for large enough l , the proportion

Nı.l/=N.l/ is bounded below, independently of l , by a positive constant.

(iii) For all path w, there exists a constant �.w/ < � such that N .w/.l/ D O.�l
.w/

/

and N
.w/
ı .l/ D O.�l

.w/
/.
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x1

x2

x3

x4

i1

i2

Figure 1. Braids x1 to x4

The reader can also consult [6], which contains results and proofs similar to

those of this lemma.

Proof of Lemma 3.5. Let A be the adjacency matrix of the graph Glw . According

to Proposition 3.3, Nı.l/ D tr.AlC1/ and N.l/ D jAl j1, where j � j1 is the sum of

all entries in the matrix.

(i) According to Lemma 3.4, the matrix A5 has positive entries. So we

can apply the Perron-Frobenius theorem to A, and deduce that A has a unique

eigenvalue of maximal module. This value is real and positive, and the asso-

ciated eigenspace has dimension 1. We denote by � this eigenvalue, and by �i

(i D 1; : : : ; nŠ � 3) the others (not necessarily distinct and not necessarily real).

We have tr.AlC1/ D �lC1 C�lC1
1 C� � �C�lC1

nŠ�3, hence Nı.l/ � �lC1 when l tends

to in�nity.

(ii) There exists an invertible matrix P such that PAP �1 is in Jordan normal

form, and we can calculate

jPAlP �1j1 D �l C
X

pi .�i /
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where the pi are some polynomials of degree l . We deduce again the equivalence

jPAlP �1j1 � �l . Furthermore, jPAlP �1j1 D ‚.jAl j1/, so N.l/ D ‚.�l/.

We deduce that Nı.l/=N.l/ D ‚.1/, and in particular, that for large enough l ,

this ratio is bounded below, independently of l , by a positive constant.

(iii) We construct from Glw a graph G
.k/

lw
(where, we recall, k is the length of

the path w) as follows: the vertices in G
.k/

lw
are the paths of length k � 1 in Glw ,

and two paths w1 D .s1 ! � � � ! sk/ and w2 D .t1 ! � � � ! tk/ are linked by

an edge if and only if s2 D t1; s3 D t2; : : : ; sk D tk�1. Thus, the edges of G
.k/

lw

correspond to the paths of length k in Glw . We denote by Ak the adjacency matrix

of G
.k/

lw
.

If s and t are two vertices in Glw , a path of length l > k from s to t in

Glw corresponds to a path of length l � k C 1 from .s ! s2 ! � � � ! sk/ to

.t1 ! � � � ! tk ! t / in G
.k/

lw
for some s2; : : : ; sk�1; t1; : : : ; tk�2. This leads to the

following consequences. As each pair of vertices in Glw is linked by a path of

length 5 (Lemma 3.4), each pair of vertices in G
.k/

lw
is linked by a path of length

exactly k C 4. Furthermore, as the number of paths of length l in Glw is a

‚.�l /, it is the same for the number of paths of length l in G
.k/

lw
. As AkC4

k
has

positive entries, Ak satis�es the hypothesis of the Perron-Frobenius theorem, and

we deduce, as in (ii), that the number of paths of length l in G
.k/

lw
is a ‚.�l

.k/
/

where �.k/ is the spectral radius of Ak. The two asymptotic estimates obtained

ensure that �.k/ D �.

Moreover, avoiding a path of length k in Glw is equivalent to avoiding an

edge in G
.k/

lw
. Let QG

.k/

lw
be the graph obtained from G

.k/

lw
by removing the edge

aw corresponding to w. We denote by QAk its adjacency matrix, and by �.w/ the

spectral radius of this matrix. Then QAk is a non-negative matrix; thus its spectral

radius �.w/ is a (real non-negative) eigenvalue of QAk [12, Theorem 8.3.1].

Now, the number of paths of length l � k C 1 in G
.k/

lw
is a O.�l

.w/
/: indeed,

as in (ii), there exists an invertible matrix Q such that jQ QAl�kC1
k

Q�1j1 is a

sum of polynomials of degree l � k C 1 in the eigenvalues of QAk . As these

eigenvalues are, in module, not greater than the spectral radius �.w/, we deduce

that jQ QAl�kC1
k

Q�1j1 D O.�l�kC1
.w/

/ D O.�l
.w/

/, and then, that N .w/.l/ D

j QAl�kC1
k

j1 D O.�l
.w/

/.

As for the number of loops of length l C1 with marked base point in Glw , their

number is not greater than the number of paths of length l , and so we have also

N
.w/
ı .l/ D O.�l

.w/
/.

It remains to prove that �.w/ < �.

Given two vertices w1 D .s1 ! � � � ! sk/ and w2 D .t1 ! � � � ! tk/ of

G
.k/

lw
, there always exists a path of length l0 D 2k C 9 in G

.k/

lw
from w1 to w2

passing through the edge aw : indeed, it su�ces to go with a path of length k C 4
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until the starting vertex of aw , to go through the edge aw , and to go again with

a path of length k C 4 until w2. This means that there are strictly more paths of

length l0 from w1 to w2 in G
.k/

lw
than in QG

.k/

lw
. That is to say, all the entries of the

matrix A
l0

k
� QA

l0

k
are positive. Let " > 0 be such that A

l0

k
� . QA

l0

k
C "I / has still

only positive entries (where I is the identity matrix). The spectral radius of A
l0

k

is �l0 , the one of QA
l0

k
C "I is �

l0

.w/
C ". Recall that the spectral radius of a matrix

B is the limit of kBkk
1

k when k tends to in�nity, where k � k is any matrix norm.

By choosing for k �k, for example, the in�nity-norm, we deduce that, as the entries

of A
l0

k
are all greater than those of . QA

l0

k
C "I /, we have �l0 > �

l0

.w/
C ", and thus

� > �.w/. �

Remark 3.6. By similar arguments, we obtain �ner results, on the number of

paths that do not contain w in a more localized area of the path. More precisely,

if ˇ is a path of length l , and if a1, a2, a3 are functions of l taking values in N,

with a1 C a3 and a2 nondecreasing functions that tends to in�nity when l tends

to in�nity, and such that a1.l/ C a2.l/ C a3.l/ D l , we can cut the path ˇ into

three path ˇ1, ˇ2 and ˇ3 of respective lengths a1.l/, a2.l/ and a3.l/. The number

of paths ˇ of length l whose “middle part” ˇ2 does not contain the path w is a

‚.�
a2.l/

.w/
�a1.l/Ca3.l// D ‚.�

a2.l/

.w/
�l�a2.l//.

4. Genericity of pseudo-Anosov braids

4.1. Proportion of rigid braids

Proposition 4.1. Let l 2 N�. Among the braids ˇ such that inf ˇ D 0 and

sup ˇ D l , the proportion of rigid braids is bounded below independently of l

by a positive constant.

Proof. According to the unicity of the left normal form of a braid, the set of all

braids ˇ such that inf ˇ D 0 and sup ˇ D l is in bijection with the set of paths

of length l in the left-weighting graph Glw . The set of rigid braids of in�mum 0

and supremum l is in bijection with the set of paths of length l , for which there is

an edge from the last to the �rst vertex. Hence, the proposition is a corollary of

Lemma 3.5, (ii). �

4.2. Proportion of non pseudo-Anosov braids with in�mum 0. The aim of

this section is to show that, among the rigid braids of some �xed in�mum and

canonical length l , the proportion of non pseudo-Anosov braids tends to 0 when

l tends to in�nity. For this, we can use the following theorem, due to González-

Meneses and Wiest [10] (Theorem 5.16):
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Theorem 4.2. Let ˇ be a non-periodic, reducible braid which is rigid. Then there

is some positive integer k 6 n such that one of the following conditions holds:

(1) ˇk preserves a round curve, or

(2) inf.ˇk/ and sup.ˇk/ are even, and either �� inf.ˇk/ˇk or ˇ�k�sup.ˇk/ is a

positive braid which preserves an almost round curve whose corresponding

interior strands do not cross.

Let us also state the following theorem of Bernadete, Gutierrez, and Nitecki

(Theorem 5.7 in [2]) as given in [3] (Theorem 1). We we recall that Bn acts on the

right on the set of curves.

Proposition 4.3. Let x 2 Bn, seen as a mapping class in Mod.Dn; @Dn/, with

left normal form x D �px1 � � � xr . Let C be a round curve in Dn. If x.C/ is round,

then �px1 � � � xm.C/ is round for all m D 1; : : : ; r .

Notation 4.4. In what follows we shall use the following two braids, written in

normal form as follows:


1 D �1�3 � � � �2b n

2
c�1 : �1�3 � � � �2b n

2
c�1�2�4 � � � �2d n

2
e�2 (length 2),


2 D �2;n�1 : �1 : �1�2 � � � �n�1 : �n�1 (length 4).

(See Figures 2 and 3.)

Proposition 4.5. A rigid braid whose normal form contains both 
1 and 
2 as

subwords is pseudo-Anosov.

Proof. Let us study a rigid braid ˇ, denoting inf.ˇ/ D � and the canonical length

of ˇ as l .

First, we remark that there is no periodic rigid braid except �� . Indeed, if a

braid ˇ is rigid and has canonical length at least 1, then its left normal form is of

the shape

ˇ D ��s1s2 � � � sl

where .si ; siC1/ (i D 1; : : : ; l � 1) and .sl ; ���s1/ are left-weighted. Therefore,

the normal form of a power of this braid is of the shape

ˇk D �k�s
.1/
1 s

.1/
2 � � � s

.1/

l
s

.2/
1 s

.2/
2 � � � s

.2/

l
� � � � � � s

.k/
1 s

.k/
2 � � � s

.k/

l

where s
.j /
i D � .k�j /�.si /, which is never a power of � when l > 1.

Let us now deal with the possibility that ˇ might be reducible. According to

Theorem 4.2, there are three possible cases.
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Figure 2. A braid sending no round curve to a round curve

Figure 3. A braid where each pair of strands crosses in some factor, and does not cross in

some other factor

The �rst case correspond to the case (1) of the theorem. A power of ˇ preserves

a round curve. The rigidity of ˇ implies that the normal form of a power of

ˇ contains the normal form of ˇ (except the initial factors �) as a subword.

According to Proposition 4.3, we deduce that there exists a round curve whose

image by ˇ is still a round curve.

The second case is the case where a k-th power of ˇ is such that �� inf.ˇk/ˇk D

��k�ˇk preserves an almost round curve whose interior strands do not cross.

If the normal form of ˇ is ��s1s2 � � � sl , then, as before, ��k�ˇk has normal form

��k�ˇk D s
.1/
1 s

.1/
2 � � � s

.1/

l
s

.2/
1 s

.2/
2 � � � s

.2/

l
� � � � � � s

.k/
1 s

.k/
2 � � � s

.k/

l

This word has two strands that never cross, and hence so does the word s1s2 � � � sl

representing ���ˇ.

Let us look at the third case. This time, it is the braid ˇ�k�sup.ˇk/ D

ˇ�k�k.lC�/ which has two strands that do not cross. Note that this braid has

in�mum 0 and supremum k � l . Therefore in the braid

�k�l � .ˇ�k�k.lC�//�1 D ��k�ˇk

(whose normal form was given in the previous paragraph) there are two strands

which cross in every single factor. (This is because two strands in a simple braid s



544 S. Caruso

cross if and only if the corresponding strands in �s�1 do not cross.) Hence the

same is true for the word s1s2 � � � sl representing ���ˇ: it has two strands which

cross in every factor.

Now, a braid ˇ whose normal form contains 
1 cannot send any round curve to

a round curve. The reason for this is that no round curve is sent to a round curve by

this sequence of two simple braids (see Figure 2), and according to Proposition 4.3,

this is also the case for the whole braid ˇ. Similarly, a braid containing 
2 cannot

contain two strands that do not cross at all, or that cross in every single factor

(see Figure 3). This completes the proof. �

We now restrict our attention temporarily to the case of braids with in�mum 0.

Lemma 4.6. The number of braids of in�mum 0 and supremum l , which are rigid

and pseudo-Anosov, is a ‚.�l/, where � is the constant of Lemma 3.5.

Proof. Let us denote by � the set of rigid braids of in�mum 0 and supremum l .

We also denote by E1 � � the subset of the braids that do not contain, in their

normal form, the normal form of 
1 as a subword. We denote by E2 � � the

subset of the braids that do not contain, in their normal form, the normal form of


2 as a subword.

According to Lemma 3.5, with the same notations, the cardinality #.�/ is

equivalent to �lC1.

Still from Lemma 3.5, we also have estimates #.E1/ D O.�l
.
1/

/ where

�.
1/ < � and #.E2/ D O.�l
.
2/

/ where �.
2/ < �. Thus the cardinality of the

set E1 [ E2, whose cardinality is less than c.�l
.
1/

C �l
.
2/

/ for a suitable constant

c > 0, and this set contains all rigid braids of in�mum 0 and supremum l which

are non pseudo-Anosov.

As �.
1/ < � and �.
2/ < �, the number of braids of in�mum 0 and

supremum l which are rigid and pseudo-Anosov, is still of the order of �l . �

4.3. Arbitrary in�mum. Let us consider the Cayley graph of the braid group,

with generators the simple braids. The following lemma, which is an immediate

consequence of Lemma 3.1 in [5], gives the possible left normal forms for a braid

that is at distance l from the neutral element in this graph.

Lemma 4.7. A braid ˇ is at distance l from the neutral element in the Cayley

graph if and only if the left normal form of ˇ has one of the following shapes:

(i) ˇ D ��ls1 � � � sk, k 2 ¹0; : : : ; l � 1º,

(ii) ˇ D ��ks1 � � � sl , k 2 ¹0; : : : ; lº,

(iii) ˇ D �ks1 � � � sl�k , k 2 ¹1; : : : ; lº.
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The following theorem is a generalization of the results previously obtained in

the particular case of a zero in�mum.

Theorem 4.8. For large enough l , among all braids at distance l from the neutral

element in the Cayley graph, the proportion of rigid pseudo-Anosov braids is

bounded below by a positive constant.

Proof. First, let us make a remark: a braid ˇ is pseudo-Anosov if and only if

�2ˇ is pseudo-Anosov. The same is true when we replace “pseudo-Anosov” by

“rigid.” Thus, a braid with left normal form �ps1 � � � sr with p even is pseudo-

Anosov (respectively rigid) if and only if s1 � � � sr is.

According to Lemma 4.6, there exists a constant c1 > 0 such that for all

large enough l , the number of rigid pseudo-Anosov braids of the form s1 � � � sl

is bounded below by c1�l . Consequently, the number of rigid pseudo-Anosov

braids of the form ��ks1 � � � sl with k 2 ¹0; : : : ; lº and k even is bounded below

by c1
l
2
�l .

Furthermore, let us bound above the total number of braids at distance l from

the neutral element. According to Lemma 3.5, there exists a constant c2 such that

the number of braids with normal forms of the shape s1 � � � sk is bounded above by

c2�k . So:

(i) the number of braids with normal form ��ls1 � � � sk (0 6 k < l) is bounded

above by c2.1 C � � � C �l�1/,

(ii) the number of braids with normal form ��ks1 � � � sl (0 6 k 6 l) is bounded

above by c2l�l ,

(iii) the number of braids with normal form �ks1 � � � sl�k (0 < k 6 l) is bounded

above by c2.1 C � � � C �l�1/.

As c2.1 C � � � C �l�1/ � c2

��1
�l , if we replace c2 by an even larger constant, we

can suppose that, in the cases (i) and (iii), the number of braids is bounded above

by c2

��1
�l . Finally, the proportion of rigid pseudo-Anosov braids among all braids

at distance l from the neutral element is bounded below by

c1
l
2
�l

c2

��1
�l C c2l�l C c2

��1
�l

D
c1

2c2

�
1

1 C 2
l.��1/

>
c1

2c2

�
1

1 C 2
��1

> 0;

which completes the proof. �

Corollary 4.9. For large enough l , in the l-ball of the Cayley graph, the pro-

portion of rigid pseudo-Anosov braids is bounded below independently of l by a

positive constant.
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Proof. The number of braids in the k-sphere is of the order of k�k , and the l-ball

is the union of the k-spheres for k 6 l . We deduce that the number of braids in

the l-ball is of the order of l�l , that is to say, of the order of the number of braids

in the l-sphere. So the proportion of rigid pseudo-Anosov braids remains of the

order of a constant. �
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