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Abstract. We prove that generic elements of braid groups are pseudo-Anosov, in the

following sense: in the Cayley graph of the braid group with n > 3 strands, with respect

to Garside’s generating set, we prove that the proportion of pseudo-Anosov braids in the

ball of radius l tends to 1 exponentially quickly as l tends to in�nity. Moreover, with a

similar notion of genericity, we prove that for generic pairs of elements of the braid group,

the conjugacy search problem can be solved in quadratic time. The idea behind both results

is that generic braids can be conjugated “easily” into a rigid braid.
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1. Introduction

In the recent article [1], S. Caruso proved the following result. For a �xed number

of strands n, consider the ball of radius l and center 1 in the Cayley graph of

the braid group Bn , with generators the simple braids. Then for su�ciently

large l , among the elements of this ball, the proportion of pseudo-Anosov braids

is bounded below by a positive constant which does not depend on l (but it might

depend on n). A key lemma in this paper states that among the rigid braids with

canonical length equal to l , the proportion of pseudo-Anosov braids tends to 1 as

l tends to in�nity.

The aim of the present paper is to prove the following stronger result:

Theorem 5.1. Consider the ball of radius l and center 1 in the Cayley graph

of the braid group Bn , with generators the simple braids. Then the proportion

of pseudo-Anosov braids among the elements of this ball tends to 1 as l tends to

in�nity. Moreover, this convergence happens exponentially fast.

In fact, we shall prove a slightly stronger technical result: in the statement of

the theorem, one can replace “pseudo-Anosov braids” by “braids which admit a

non-intrusive conjugation to a rigid pseudo-Anosov braid.”
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The plan of the article is as follows: in Section 2, we recall some classical

de�nitions. In Section 3, we state the fact that, among braids with a �xed in�mum,

the proportion of those admitting a non-intrusive conjugation to a rigid braids

tends to 1 exponentially quickly as the canonical length tends to in�nity. This fact

will be proven in Section 4, using the notion of a blocking braid. We complete

the proof of the main theorem in Section 5. In Section 6 we prove a related result,

namely that the conjugacy problem in braid groups has generically a fast solution.

Finally, we present some other consequences and conjectures arising from our

results and techniques in Section 7.

2. De�nitions

We recall that the Nielsen–Thurston classi�cation theorem states that every ele-

ment of Bn is exactly one of the following: periodic, or reducible non-periodic, or

pseudo-Anosov. In the context of braid groups, we must use the following de�ni-

tion of periodic: a braid x 2 Bn is periodic if and only if there exist non-zero inte-

gers m and l such that xm D�l , where �D .�1 � � � �n�1/.�1 � � � �n�2/ � � � .�1�2/�1 .

(Geometrically, � corresponds to a half-twist along the boundary of the disk.

The center of Bn is generated by the full twist �2 .)

We will also use some elements of Garside theory, in the classical case of

braid groups, which we recall now. For more details, the reader can consult [6],

or [4] for the general theory.

The group Bn is equipped with a partial order relation 4, de�ned as follows:

x 4 y if and only if x�1y 2 B
C
n , the monoid of positive braids (i.e. only positive

crossings). If x 4 y , we say that x is a pre�x of y . Any two elements x; y 2 Bn

have a unique greatest common pre�x, denoted x ^ y .

Similarly we de�ne < as follows: x < y if and only if xy�1 2 B
C
n . Notice

that x < y is not equivalent to y 4 x . If x < y , we say that y is a su�x of x .

The elements of the set ¹x 2 Bn; 1 4 x 4 �º are called simple braids,

or permutation braids. Throughout this paper, we shall use the set of simple braids

as the generating set of Bn . The ball of radius l and center 1 in the Cayley graph

of Bn with respect to this generating set will be denoted B.l/.

De�nition 2.1 (left-weighting). Let s1 , s2 be two simple braids in Bn . We say

that s1 and s2 are left-weighted, or that the pair .s1; s2/ is left-weighted, if there

does not exist any generator �i such that s1�i and ��1
i s2 are both still simple.

De�nition 2.2 (starting set, �nishing set). Let s 2 Bn be a simple braid.

We call starting set of s the set S.s/ D ¹i; �i 4 sº and �nishing set of s the

set F.s/ D ¹i; s < �iº.
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Remark 2.3. Two simple braids s1 and s2 are left-weighted if and only if S.s2/ �

F.s1/.

Proposition 2.4. Let x 2 Bn . There exists a unique decomposition x D

�px1 � � � xr such that x1; : : : ; xr are simple braids, distinct from � and 1, and

such that the pairs .xi ; xiC1/ are left-weighted for all i D 1; : : : ; r � 1.

De�nition 2.5 (left normal form). In the previous proposition, the writing x D

�px1 � � � xr is called the left normal form of x , p is called the in�mum of x and

is denoted by inf.x/, p C r is the supremum of x and is denoted by sup.x/, and

r is called the canonical length of x , and denoted `c.x/.

Furthermore, if r > 1, we denote by �.x/ D ��p.x1/ the initial factor of

x , where � denotes the conjugation by �, i.e. �.x/ D ��1x�. (In particular

�.x/ D x1 if p is even, �.x/ D �x1��1 if p is odd.) We denote '.x/ D xr the

�nal factor of x .

De�nition 2.6 (rigidity). A braid x of positive canonical length is said to be rigid

if the pair .'.x/; �.x// is left-weighted.

Finally, we mention that at several key points in the present paper we shall

use the article [1], and particularly its asymptotic estimates. For two number

sequences .ul / and .vl/, we say that ul is of the order of vl if the sequences

.ul

vl
/ and . vl

ul
/ are bounded.

3. Non-intrusive conjugations

De�nition 3.1. Let x be a braid with normal form x D �inf.x/x1 � � � � � xl .

A conjugation of x is non-intrusive if the normal form of the conjugated braid

contains the subword x2�d l
5

eC1 � � � xl�2�d l
5

e .

In other words, a conjugation of x is non-intrusive if the middle �fth of the

normal form of x still appears in the normal form of the conjugate. Note that this

relation is non-symmetric: if x can be non-intrusively conjugated to Qx , there is

no reason in general why there should be a non-intrusive conjugation from Qx back

to x .

Example 3.2. Let x be the following braid with 4 strands and of canonical

length 5:

x D �2�3�2�1 � �1�3�2�1 � �1�2�1�3�2 � �3�2�1�3 � �1�3�2�1:
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Its middle �fth consists of the single factor �1�2�1�3�2 . Let Qx be its conjugate

by the last two factors �3�2�1�3 � �1�3�2�1 :

Qx D �3�2�1�3 � �1�3�2�1 � �2�3�2�1 � �1�3�2�1 � �1�2�1�3�2

D � � �1�2�1�3 � �3�1 � �1�3�2�1 � �1�2�1�3�2 (in normal form)

The conjugation from x to Qx is non intrusive, because Qx contains the factor

�1�2�1�3�2 in its normal form.

Notation 3.3. We denote

B
�;l
n D ¹x 2 Bn j inf.x/ D �; `c.x/ D lº

and �
.�;l/
n the proportion, among the elements of B

�;l
n , of braids which admit a

non-intrusive conjugation to a rigid braid.

We observe that for every l 2 N and � 2 Z we have �
.�;l/
n D �

.�C2;l/
n – thus

�
.�;l/
n depends only on n, on l , and on the parity of �.

Proposition 3.4. There exists a constant �R 2 .0; 1/ (which depends on n) such

that �
.�;l/
n > 1 � �l

R .

The aim of the next section is to prove this proposition.

4. Blocking braids and the proof of Proposition 3.4

Notation 4.1. If X and Y are two braids, and if Y is of in�mum 0, then we denote

NFl.X � Y / the word in (left) normal form representing the product X � Y .

We say that X � Y is in normal form if NFl.X � Y / is equal, as a word, to the

normal form of X , followed by the normal form of Y .

If s1 is the last factor of the normal form of X , and s2 is the �rst factor of the

normal form of Y , we are going to denote F.X/ D F.s1/ and S.Y / D S.s2/.

In particular, X � Y is in normal form if and only if S.Y / � F.X/.

Let x be a braid of in�mum � 2 Z, and of canonical length l > 5.

We introduce some more notation. We cut the normal form representative of x

(other than the initial power of �) into �ve pieces of roughly equal size, each of

them in normal form:

P1.x/ D x1 � � � x
d l

5
e
; P2.x/ D x

d l
5

eC1
� � � x

2�d l
5

e
;

P3.x/ D x2�d l
5

eC1 � � � xl�2�d l
5

e;

P 0
4.x/ D x

l�2�d l
5

eC1
� � � x

l�d l
5

e
; P 0

5.x/ D x
l�d l

5
eC1

� � � xl :
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Notice that P1.x/; P2.x/; P 0
4.x/ and P 0

5.x/ have exactly equal length. The word

P3.x/ is the “middle �fth” subword mentioned in the previous section. Finally,

we denote

P4.x/ D ��.P 0
4.x// and P5.x/ D ��.P 0

5.x//:

If there is no ambiguity, we shall simply write Pi instead of Pi .x/. The braid x D

�� � P1 � P2 � P3 � P 0
4 � P 0

5 can always be conjugated to

Qx D �� � P4 � P5 � P1 � P2 � P3

and this writing is almost in normal form: the only place where two successive

letters are not necessarily left-weighted is the transition from the last letter of P5

to the �rst letter of P1 . All other pairs of successive letters are left-weighted, even

'.P3/ followed by �.��P4/ (the last letter followed by the �rst). For this reason

we also have �.P4/ D �.P4 � P5/ and '.P1 � P2/ D '.P2/.

Observation 4.2. Consider the normal form of P4 � P5 � P1 � P2 . If

�.P4 � P5 � P1 � P2/ D �.P4 � P5/ (1)

and

'.P4 � P5 � P1 � P2/ D '.P1 � P2/ (2)

then the braid x is non-intrusively conjugate to Qx (because the normal form of Qx

will contain P3 as a subword), and it is rigid.

Intuitively, the hypothesis of Observation 4.2 is that the given word represent-

ing Qx may not quite be in normal form, but that the modi�cations necessary in

order to transform it into normal form are con�ned inside the word, and do not

touch its extremities (up to a possible appearance of some factors �, and up to

conjugation of the initial factors of Qx by these factors �). See Figure 1.

For instance, in Example 3.2, the hypotheses of Observation 4.2 are satis�ed,

and the conjugate Qx is indeed rigid.

Our aim now is to prove that the proportion of braids x for which the hypothe-

ses of Observation 4.2 are satis�ed tends to 1 when the length of x tends to in�nity.

In order to achieve this, we are going to observe that certain braids “block the chain

reaction of the transformation into normal form,” and that these “blocking braids”

have excellent chances of actually appearing.

Figure 1. The stategy of the proof: this picture takes place in the Cayley graph of Bn .

The braid x lifts to a bi-in�nite path. The picture shows the generic situation: the last

factor of the normal form of P4P5P1P2 coincides with the last factor of P2 , and its initial

factor (except for �) coincides with the �rst factor of P4 .
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We recall that for a simple braid s , the complement @s is the braid @s D s�1�.

We extend this de�nition to arbitrary braids y by the formula

@y D y�1 � �sup.y/:

This is the unique braid such that y � @y D �sup.y/ . If the normal form of y is

�inf yy1 � � � yl then the normal form of @y is Nyl � � � Ny1 , where Nyl�i D ��i .@yl�i/

for i D 0; : : : ; l �1 (i.e. Nyl�i D y�1
l�i

�� D @yl�i if i is even and Nyl�i D � �y�1
l�i

D

��1.@yl�i / if i is odd). In particular, inf.@y/ D 0 and sup.@y/ D `c.y/. We also

calculate, for later reference, that

'.@y/ D �� sup.y/C1.@�.y// (3)

because '.@y/D Ny1 D ��lC1.@y1/D��lC1.@�� inf.y/�.y//D�� inf.y/�lC1.@�.y//.

Now, the normal form representative of P4 � P5 � P1 � P2 is

NFl.P4 � P5 � P1 � P2 / D NFl.P4 � P5 � t / � NFl.t
�1 � P1 � P2/; (4)

where t is the greatest common divisor of P1 � P2 and @.P4 � P5/:

t D .P1 � P2/ ^ @.P4 � P5/:

We also notice that, since P4 � P5 � t � t�1 � @.P4 � P5/D �sup.P4P5/ D �sup.P4P5t/,

the following formula holds:

@.P4 � P5 � t / D t�1 � @.P4 � P5/: (5)

This suggests a way of studying the normal form of P4 � P5 � P1 � P2 in which

P1 � P2 and @.P4 � P5/ play strictly symmetric roles:

Lemma 4.3. Still denoting t D .P1 � P2/ ^ @.P4 � P5/, suppose that

'.t�1 � P1 � P2/ D '.P1 � P2/; (6)

and

'.t�1 � @.P4 � P5// D '.@.P4 � P5//: (7)

Then the hypotheses of Observation 4.2 are satis�ed, and the braid x is non-

intrusively conjugate to a rigid braid.

Proof. Let us suppose that (6) holds. Then so does (2), because

'.P4 � P5 � P1 � P2/
(4)
D '.t�1 � P1 � P2/

(6)
D '.P1 � P2/

Let us now prove the implication from (7) to (1). Assuming (7), we calculate

� sup.P4 �P5�t/�1.@�.P4 � P5 � t //
(3)
D '.@.P4 � P5 � t // D '.t�1 � @.P4 � P5//

(7)
D '.@.P4 � P5// D � sup.P4�P5/�1.@�.P4 � P5//:

Since sup.P4 � P5 � t / D sup.P4 � P5/, this implies �.P4 � P5 � t / D �.P4 � P5/,

i.e. (1). �
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Our aim now is to show that, in most cases, (6) and (7) are indeed satis�ed.

De�nition 4.4. A positive braid ˛ is a blocking braid if there exists an i 2

¹1; : : : ; n � 1º so that for each braid X with inf.X/ D 0 such that X � ˛ is in

left normal form, the only non trivial simple braid which is a su�x of X � ˛ is �i .

In other words, the last factor of the right normal form of X � ˛ must be �i .

Lemma 4.5. Let ˛ be a blocking braid and X be a braid such that inf X D 0 and

such that X � ˛ is in normal form. Let t be a pre�x of X � ˛ . If .�i D/'.X � ˛/ ¤

'.t�1 � X � ˛/ then t D X � ˛ .

Proof. Let s D t�1 � X � ˛ be the braid such that t � s D X � ˛ (of course, t � s is

not in normal form as written). Let us suppose (to obtain a contradiction) that s

is nontrivial. Then '.s/ is a nontrivial simple braid which is a su�x of s and so

of t � s D X � ˛ . Yet, by hypothesis, the only nontrivial simple braid which is a

su�x of X � ˛ is �i . So '.X � ˛/ D '.s/: contradiction. �

Lemma 4.6. Let ˛ be a blocking braid and let X; Y be braids such that inf X D

inf Y D 0 and such that X � ˛ � Y is in normal form. Let t be a pre�x of X � ˛ � Y .

If '.t�1 � X � ˛ � Y / ¤ '.X � ˛ � Y /, then the normal form of t contains the normal

form of X � ˛ as a pre�x.

Proof. Let t1 D t ^ .X � ˛/. We claim, and will prove below, that '.t�1
1 � X � ˛/ ¤

'.X � ˛/. By applying Lemma 4.5 to t1 , we deduce that X � ˛ is a pre�x of t .

It remains to show that the normal form of X � ˛ is even the beginning of the

normal form of t : indeed, t is a pre�x of X � ˛ � Y and so .X � ˛/�1t is a pre�x of

Y . In particular, S..X � ˛/�1t / � S.Y / � F.˛/, the last inclusion coming from

the fact that X � ˛ � Y is in normal form. So X � ˛ � NFl..X � ˛/�1t / is in normal

form, which implies what we wanted.

Here is now the proof of our claim. We suppose, for a contradiction, that

'.t�1
1 � X � ˛/ D '.X � ˛/. This means that NFl.t

�1
1 � X � ˛/ � Y is in normal form.

Since t�1
1 t ^t�1

1 X �˛ D 1, we can deduce that we also have t�1
1 t ^t�1

1 X �˛ �Y D 1.

Then, as t�1
1 t left-divides t�1

1 X �˛ �Y , we have t�1
1 t D 1, or in other words t D t1 .

Thus t is a pre�x of X �˛ such that '.t�1 �X �˛/ D '.X �˛/.Then NFl .t
�1 �X �˛/�Y

is in normal form, and hence '.t�1 � X � ˛ � Y / D '.X � ˛ � Y /. This contradicts

the hypothesis of the Lemma. �

Lemma 4.7. Blocking braids exist.

Proof. Here is such a construction: denoting by �i;j the positive half-twist

involving the strands i; i C 1; : : : ; j , let

˛ D �1;n�1�n�1 � �1;n�2�n�1�n�2 � �1;n�3�n�2�n�3 � �1;n�4�n�3�n�4 � � �

�1�2�1�4�3 � �1�3�2 � �2:
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For example with 6 strands (see Figure 2):

˛ D �1�2�3�4�1�2�3�1�2�1�5 � �1�2�3�1�2�1�5�4 � �1�2�1�4�3 � �1�3�2 � �2:

It is a braid word which is in left normal form, but also in right normal form.

We observe that the starting set of ˛ is S.˛/ D ¹1; : : : ; n � 2º and its �nishing set

is F.˛/ D ¹2º. If X � ˛ is in (left) normal form, then F.X/ � ¹1; : : : ; n � 2º and

so F.X/ D ¹1; : : : ; n � 2º. This implies that X � ˛ is also in right normal form.

So the only simple factor which can be extracted by the right from X � ˛ is �2 , as

we wanted. �

Figure 2. Example of a blocking braid with 6 strands. The crosses indicate the starting and

�nishing sets.

In order to prove that blocking braids are almost certain to occur just where we

need them, we will use the following lemma, which results from Lemma 3.5 and

Remark 3.6 in [1].

Lemma 4.8. Let a1 , a2 , a3WN ! N be functions with a1 C a3 and a2 non-

decreasing and tending to in�nity, and such that a1.l/ C a2.l/ C a3.l/ D l .

For each braid x of in�mum � 2 Z and of canonical length l , of normal form

��x1 � � � xl , denote by P.x/ D xa1.l/C1 � � � xa1.l/Ca2.l/ (so P.x/ is a part of the

normal form of x of length a2.l/).

Let w be a �xed braid. Then the proportion of braids x 2 B
�;l
n such that the

normal form of P.x/ contains that of w as a subword tends exponentially quickly

to 1 when l tends to in�nity.

Proof of Proposition 3.4. We recall that we have to prove that the proportion,

among the braids x in B
�;l
n , of braids for which one of the two hypotheses,

(6) or (7), of Lemma 4.3 is not satis�ed, tends exponentially quickly to 0 as l tends
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to in�nity. In fact, we shall only prove that braids not satisfying hypothesis (6) are

rare. Since the operation of taking the complement @WB
0;2d l

5
e

n ! B
0;2d l

5
e

n is a

bijection, we have a completely analogue situation for hypothesis (7).

By Lemma 4.8, the proportion of braids x such that P2.x/ contains a blocking

braid tends to 1 exponentially quickly. Among these braids, look at those for which

'.P4 � P5 � P1 � P2/ ¤ '.P1 � P2/

holds, or in other words

'.t�1 � P1 � P2/ ¤ '.P1 � P2/; where t D .P1 � P2/ ^ @.P4 � P5/

For those braids, by Lemma 4.6, the normal form of t must contain that of P1 as

a pre�x, and in particular P1 4 t . (Intuitively, the factor P1 must be completely

“eaten” during the transformation of P4 � P5 � P1 � P2 into normal form, possibly

creating some new factors �.) Thus

P1 D P1 ^ �d l
5

e
4 t ^ �d l

5
e

4 .@.P4 � P5// ^ �d l
5

e D @P5

So P1.x/ must be a pre�x of @P5.x/. Yet, the proportion of braids x for which

this is the case is negligible:

Lemma 4.9. The proportion, among all elements of B
�;l
n , of braids x 2 B

�;l
n such

that P1 is a pre�x of @P5 decreases exponentially quickly to 0 when l tends to

in�nity.

Proof. We decompose @P5 in two parts of length d l
10

e and d l
5
e � d l

10
e: @P5 D

Q1 � Q2 . As before, according to Lemma 4.8, the proportion of braids x 2 B
�;l
n

such that Q2 contains a blocking braid tends exponentially quickly to 1 (more

precisely, according to [1], the number of braids for which this is not the case is of

the order of �l� l
10 �

l
10 for two constants 1 < � < �, while the cardinality of B

�;l
n

is of the order of �l ).

We now show the following: if x satis�es the condition of the lemma that

P1 is a pre�x of @P5 , and if Q2 contains a blocking braid, then the normal

form of P1 contains that of Q1 as a pre�x. For that, it su�ces to prove that

'.P �1
1 @P5/ ¤ '.@P5/ and to apply Lemma 4.6.

Let us recall that P1 and @P5 have the same length d l
5
e. To simplify the

notations, let us denote by k D d l
5
e, and by P1 D y1 � � � yk and @P5 D z1 � � � zk

the normal forms. The condition of the lemma is that y1 � � � yk is a pre�x of

z1 � � � zk . Let us suppose for a contradiction that '.P �1
1 @P5/ D '.@P5/, i.e. that

'.y�1
l

� � � y�1
1 z1 � � � zk/ D zk . This means that

NFl.y
�1
k � � � y�1

1 z1 � � � zk/ D NFl.y
�1
k � � � y�1

1 z1 � � � zk�1/ � zk
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and in particular that y�1
k

� � � y�1
1 z1 � � � zk�1 is a positive braid, i.e. that y1 � � � yk

is a pre�x of z1 � � � zk�1 . This is impossible, as y1 � � � yk is a longer braid than

z1 � � � zk�1 .

We deduce that, if Q2 contains a blocking braid, under the condition that P1

is a pre�x of @P5 , then the normal form of P1 contains that of Q1 as a pre�x.

A braid x satisfying these conditions is thus determined by at most l � d l
10

e

factors, since the d l
10

e factors of Q1 are determined by the �rst factors of P1 .

So the proportion of such braids is, still according to [1], of the order of �� l
10 .

Finally, among all braids of B
�;l
n , the proportion of elements such that P1 is

a pre�x of @P5 decreases exponentially quickly to 0 with l . This completes the

proof of Lemma 4.9. 4

Alternative proof of Lemma 4.9. We recall that P1 and @P5 have the same length

d l
5
e. To simplify the notations, we denote by k D d l

5
e, and by P1 D y1 � � � yk and

@P5 D z1 � � � zk the normal forms. Assume that y1 � � � yk is a pre�x of z1 � � � zk

– our aim is to show that this decreases substantially the number of possible words

y1 � � � yk .

For i D 1; : : : ; k � 1, the braid y1 � � � yi should be a pre�x of z1 � � � zi . Denote

by ıi the positive braid y�1
i � � � y�1

1 z1 � � � zi . As yiC1yiC2ıiC2 D ıiziC1ziC2 , it

follows that yiC1yiC2 is a divisor of ıiziC1ziC2 ; moreover, this last braid does not

contain any �-factor (because if it did, then so would @P5 D y1 � � � yiıiziC1 � � � zk .)

This enforces a strong restriction on the possible factors yiC1 � yiC2 , beyond the

obvious requirement that yi � yiC1 � yiC2 should be in normal form.

We will now use the fact (which we leave to the reader as an amusing exercise)

that in every positive braid whose normal form contains exactly two factors, both

di�erent from �, there is a pair of strands that do not cross. In each divisor of

such a braid the corresponding strands do not cross either. Let us apply this fact

to the �rst two factors of ıiziC1ziC2 : there exists a pair of strands, the r th and

the s th, that do not cross, and hence do not cross in yiC1yiC2 , either. Let t be an

element of F.yi /. We can then construct a braid in normal form yiC1 � yiC2

such that S.yiC1/ D ¹tº and where the r th and s th strands cross. (This is

an easy exercise - for example, in B6 if t D 1, r D 4 and s D 6, we can

choose yiC1 � yiC2 D �1�2�3 � �3�4�5 ; if t D 3, r D 1, s D 6, we choose

yiC1 � yiC2 so that yiC1 D �3�2�1�4�3�2�5�4�3 ). This choice for yiC1 and yiC2

is therefore forbidden by the hypothesis that P1 is a pre�x of @P5 , even though

y1 � � � yi � yiC1 � yiC2 is in normal form.

Since there is such a restriction for every value of i between 1 and k � 2 (and

this for every possible braid @P5 ), the set of braids for which P1 is a divisor of

@P5 has a lower rate of exponential growth than that of all braids. This implies

Lemma 4.9. 4
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The proof of Proposition 3.4 is now complete. Let us summarize again: among

the braids x 2 B
�;l
n , “generic” ones (a proportion which tends exponentially

quickly to 1 as l tends to 1) contain a blocking braid in their P2.x/-segment

(and, symmetrically, in @P4.x/). For such a braid containing a blocking braid in

P2 and in @P4 , the only way to avoid being non-intrusively conjugate to a rigid

braid is that, in the process of transforming P4P5 � P1P2 into normal form

� either P1 is completely absorbed into P5 , possibly creating some new fac-

tors �

� or, symmetrically, P5 is completely absorbed into P1 .

As seen in Lemma 4.9, generically this does not happen (it only happens to a

proportion of braids which tends exponentially quickly to 0). �

5. Pseudo-Anosov braids are generic

Theorem 5.1. Consider the ball B.l/ of radius l and center 1 in the Cayley graph

of the braid group Bn , with generators the simple braids. Then the proportion of

pseudo-Anosov braids among the elements of this ball tends to 1 as l tends to

in�nity. Moreover, this convergence happens exponentially fast.

Several key points of the proof come directly from [1].

Lemma 5.2. There exists a constant �pA (which depends on n) such that, among

the braids in B
�;l
n , the proportion of those that can be non-intrusively conjugated

to a rigid pseudo-Anosov braid is at least 1 � �l
pA ( for su�ciently large l ,

independently of �).

Proof. Proposition 4.5 of the paper [1] explains how two theorems, one due to

González-Meneses and Wiest, the other to Bernardete, Guttierez and Nitecki, can

be used to prove that the normal form of a rigid braid which is not pseudo-Anosov

satis�es some extremely restrictive conditions. More precisely, there are two

words in normal form, one of length 2, the other of length 4, with the following

property: if the normal form of a rigid braid contains both of these words as

subwords, then the braid is pseudo-Anosov.

Let us consider the proportion, among the elements x of B
�;l
n , of braids which

contain in their middle �fth P3.x/ the two subwords mentioned in the previous

paragraph. It follows from Lemma 4.8 that this proportion tends to 1 exponentially

quickly: there exists a constant �M (which depends on n) such that this proportion

is at least 1 � �l
M . (The index M in the notation �M comes from the word

“middle.”)
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We now look at the intersection of two subsets of B
�;l
n .

(1) The braids in B
�;l
n which can be non-intrusively conjugated to a rigid braid.

(2) The braids x in B
�;l
n which contain, in their middle �fth P3.x/, the two

subwords mentioned previously, which stop rigid braids from being reducible

or periodic. (We insist that this second subset may well contain reducible

braids, but none that are rigid and reducible.)

The braids belonging to this intersection are all pseudo-Anosov (in fact they

are conjugate to rigid pseudo-Anosov braids). Moreover, for l > 0, the proportion

of elements of B
�;l
n which belong to the �rst subset is at least 1 � �l

R by Propo-

sition 3.4, and for the second subset the proportion is bounded below by 1 � �l
M .

Hence the proportion of elements belonging to the intersection of the two is at

least 1 � �l
R � �l

M . Thus for any �pA larger than max.�R; �M /, we have the

desired result. This concludes the proof of Lemma 5.2. �

Proof of Theorem 5.1. We are going to use three ingredients.

Firstly, we recall from [1] that there exists a number � > 1 (which depends

on n) with the property that jB
�;k
n j D ‚.�k/, meaning that the sequences jB

�;k
n j

�k

and �k

jB
�;k
n j

stay bounded as k tends to in�nity.

Secondly, as in [1] (Section 4.3), we observe that B.l/, the ball of radius l and

center 1 in the Cayley graph of Bn , is the disjoint union

B.l/ D

l
[

kD0

l�k
[

�D�l

B
�;k
n

(This observation hinges on the fact that braids in so-called mixed normal form

are geodesics, which is proven in [3].)

Thirdly, Lemma 5.2 ensures that among the elements of every B
�;k
n , the

proportion of braids not admitting a non-intrusive conjugation to a rigid pseudo-

Anosov braid is an O.�k
pA/, for a certain number �pA with 0 < �pA < 1.

These ingredients together imply that the total number of braids in B.l/ which

cannot be non-intrusively conjugated to a rigid pseudo-Anosov braid is a

O..2l C 1/ C 2l � .� � �pA/1 C .2l � 1/ � .� � �pA/2

C � � � C .2l � l C 1/ � .� � �pA/l/:

Moreover, the �rst two ingredients imply that B.l/ contains at least jB
0;l
n j D ‚.�l/

elements. Therefore, the proportion in B.l/ of elements which cannot be non-

intrusively conjugated to a rigid pseudo-Anosov braid is a

O
�2l C 1

�l
C

2l � �pA

�l�1
C

.2l � 1/ � �2
pA

�l�2
C : : : C

.2l � l C 1/ � �l
pA

1

�

6 O
�

.l C 1/ � .2l C 1/ �
�

max
� 1

�
; �pA

��l�
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and thus, for any " > 0, a

O
��

max.
1

�
; �pA/ C "

�l�

:

Choosing " so small that max. 1
�

; �pA/ C " < 1 yields the result. �

6. Fast solutions to the conjugacy problem

The aim of this section is to prove that “generically, the conjugacy problem in Bn

can be solved in quadratic time.” First we recall a standard method for solving

the conjugacy problem in braid groups. In order to decide whether two given

braids x1 and x2 are conjugate, one calculates a certain �nite subset SC.xi / of

the conjugacy class of xi , for i D 1; 2. We shall not need the precise de�nition

of this subset, called the “sliding circuit set” SC.x/ of a braid x , we only need to

know two things about it:

� the set SC.x/ depends only on the conjugacy class of x , and it is always

non-empty;

� if the conjugacy class of x contains a rigid braid, then SC.x/ consists

precisely of the rigid conjugates of x , see [7].

Now in order to decide whether x1 and x2 are conjugate, it su�ces to test if

an arbitrarily chosen element of SC.x1/ is contained in SC.x2/.

Our aim is to show that for a “generic” element x of Bn , we can calculate the

set SC.x/ in polynomial time.

Remark 6.1. We remark that for a rigid braid xr , the set of rigid conjugates

SC.xr / contains at least the orbit of xr

� under � , i.e. under conjugation by �, and

� under cyclic permutation of the factors other than �.

This orbit has at most 2 � `c.xr / elements. We will see later that for a “generic”

braid, the set of rigid conjugates contains exactly one such orbit.

Theorem 6.2. Let n > 2. There exists an algorithm which takes as its input a

braid x 2 Bn , whose running time is O.`c.x/2/, and which outputs

(1) either a rigid conjugate of x , equipped with a certi�cate that the set of rigid

conjugates of x contains only its orbit under the action of � and under cyclic

permutation of the factors (other than �),

(2) or the answer “I don’t know.”

Among the elements in the ball of radius l and center 1 in the Cayley graph of Bn ,

the proportion of braids in case (2) tends to 0 exponentially fast as l tends to

in�nity.
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Remark 6.3. We insist that the bound on the running time of the algorithm in

Theorem 6.2 is valid for any �xed number n of strands – we are not controlling

the running time as a function of n.

Proof. As in Section 4, we cut the braid x into 5 pieces P1 , P2 , P3 , P 0
4 and P 0

5 ,

and we denote P4 D � inf x.P 0
4/ and P5 D � inf x.P 0

5/. We denote P12 D P1 �P2 and

P45 D P4 �P5 . (In fact, in order to describe the algorithmic procedure, it would be

su�cient to cut the braid into only 3 pieces, but for explaining why the algorithm

works it is more convenient to retain the notation of the previous sections.) Then

we execute the following operations.

(1) Calculate NFl.P45P12/.

(2) Test whether �.P45P12/ D �.P45/. If this is false, answer “I don’t know” and

stop. If it is true, continue.

(3) Test whether '.P45P12/ D '.P12/. If this is false, answer “I don’t know”

and stop. If it is true, continue.

(4) Test whether P3 contains in its normal form the subword .���1
2 / � �1 . If this

is false, answer “I don’t know” and stop. If it is true, continue.

(5) Output �inf xP45P12P3 .

Tests (2) and (3) check whether the conditions of Observation 4.2 hold for the

braid x . If they do, then the braid y D �inf xP45P12P3 is indeed a rigid conjugate

of x , and moreover there is a non-intrusive conjugation of x to y . Let us now

suppose that x passes the test (4). Since the conjugation is non-intrusive, y also

contains the subword .���1
2 / ��1 . After a further cyclic permutation of the factors

of y , we obtain a rigid braid z with �.z/ D �1 and '.z/ D .���1
2 /, or possibly

�.z/ D �n�1 and '.z/ D ���1
n�2 .

We claim that under these circumstances the set SC.z/ consists only of the

single orbit de�ned in Remark 6.1. The proof of this claim is essentially the same

as the proof of Lemma 2.4 in[2]: it su�ces to prove that conjugating z by any

strict pre�x of �.z/ or of @'.z/ never yields an element of SC.z/. That, however,

is a tautology: neither �.z/ D �1 or �n�1 , nor @'.z/ D �2 or �n�2 have any strict

pre�xes!

This proves that the algorithm only gives the answers described in Theo-

rem 6.2.

Let us now study the complexity of this algorithm. calculating the normal

form NFl.P45P12/ has computational complexity O.`c.P45P12/2/ D O.`c.x/2/,

see to [6]. The tests (2) and (3) are carried out in constant time, and test (4) in

linear time. Thus the total complexity of the algorithm is indeed O.`c.x/2/.

Finally, we have to prove that the proportion of braids for which the algorithm

answers “I don’t know” tends to zero exponentially fast as l tends to in�nity. This

is a consequence of the properties shown in Section 4: the proportion of braids

in the ball of radius l and center 1 in the Cayley graph satisfying the hypotheses
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of Observation 4.2 (i.e. tests (2) and (3)) goes to 1 exponentially quickly as l

goes to in�nity. According to Lemma 4.8, the same is true for the proportion of

braids passing test (4). In summary, the proportion of braids failing one of the

tests (2), (3), or (4), and thus generating an answer “I don’t know,” tends to zero

exponentially quickly. �

Remark 6.4. In practice, test (4) should be replaced by “test whether P3 contains

in its normal form a subword of the form .���1
j / � �i , i ¤ j .” This would not

change the algorithm’s O.`c.x/2/ complexity, and it would further increase the

proportion of braids for which the algorithm outputs a rigid conjugate, rather than

answering “I don’t know.”

7. Further consequences and questions

7.1. Balls containing only pseudo-Anosov braids

Corollary 7.1. For every positive integer l , there exists a vertex x in the Cayley

graph of Bn such that the ball of radius l centered in x contains only pseudo-

Anosov elements.

Proof. Let us suppose, on the contrary, there is some number l such that the

whole Cayley graph is covered by l -balls around non pseudo-Anosov elements.

This would mean that together, the l -balls centered on the non pseudo-Anosov

elements in B.R/, the R-ball with center 1; cover the .R � l/-ball B.R � l/, for

arbitrarily large R . (Notice that they would not necessarily cover the whole R-ball

B.R/, because points that are l -close to its boundary might be covered by l -balls

that are centered outside B.R/.) We deduce that

#.ˇ 2 B.R/; ˇ non pseudo-Anosov/ � #.B.l// > #.B.R � l//

and therefore

#.ˇ 2 B.R/; ˇ non pseudo-Anosov/

#.B.R//
>

1

#.B.l//
�
#.B.R � l//

#.B.R//
:

When l is �xed and R tends to in�nity, the right hand side remains bounded below

by a positive number, because the braid group is of exponential growth. This is in

contradiction with Theorem 5.1. �

We are grateful to Alessandro Sisto for pointing this corollary out to us.

We have since learned from Saul Schleimer that this result was actually already

known to certain specialists: it can also be proven by studying the action of Bn

on Thurston’s compacti�cation of Teichmüller space.
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7.2. The closure of a generic braid is a hyperbolic link

Theorem 7.2. Consider the ball B.l/ of radius l and center 1 in the Cayley

graph of the braid group Bn , with generators the simple braids. Then, among the

elements of this ball, the proportion of braids whose closure is a hyperbolic link

tends to 1 as l tends to in�nity.

Proof. A theorem of T. Ito [9] states that a pseudo-Anosov braid x which in

Dehornoy’s total order of the braid group [5] does not satisfy ��4 < x < �4 , has

the property that its closure is a hyperbolic link. Thus by our main theorem 5.1,

it su�ces to prove that, among the elements of B.l/, the proportion of braids lying

between ��4 and �4 in Dehornoy’s order tends to 0 as l tends to in�nity.

In order to do so, we recall that if a braid x satis�es �j �1 < x < �j , then

�x satis�es �j < �x < �j C1 . Now the l -ball in Bn is the disjoint union

B.l/ D

l
[

kD0

[

x2B
0;k
n

®

�ix j � l 6 i 6 l � k
¯

We conclude with the observation that, among the 2l � k C 1 elements �ix , with

�l 6 i 6 l � k , there are at most eight lying between ��4 and �4 . �

7.3. Questions. It would be useful to extend our results to a much more general

framework. From our proof, it is not even clear that Theorem 5.1 remains true if we

replace Garside’s generators with any other �nite generating set, or if we replace

Bn by a �nite index subgroup (e.g. the pure braid group), or by its commutator

subgroup, which is the kernel of the homomorphism Bn ! Z sending every Artin

generator to 1.

For a start, one could try to adapt our arguments to the setting of general

mapping class groups, equipped with Hamenstädt’s bi-automatic structure [8].

We conjecture that the analogue, for our notion of “genericity,” of the main

result of Sisto [10] holds. Speci�cally, let G be a nonelementary group, equipped

with a �nite generating set and acting on a ı -hyperbolic complex, where at

least one element of G acts weakly properly discontinuously (WPD). Then we

conjecture that the proportion of elements in the l -ball of the Cayley graph of G

with a WPD action tends to 1 exponentially quickly as l tends to in�nity.
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