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1. Introduction

Let G denote an arbitrary group (multiplicatively written). If S is a subset of G,
we de�ne its square S2 by

S2 D ¹x1x2 j x1; x2 2 Sº:

In the abelian context, G will usually be additively written and we shall rather
speak of the double of S .

In this paper, we are concerned with the following general problem. Suppose
that we are given two real numbers ˛ � 1 and ˇ. While in general, the size of S2

should typically be quadratic in the one of S , we would like to identify those �nite
sets S having the property that

jS2j � ˛jS j C ˇ: (1)

Typically, we may need to add the natural assumption that jS j is not too small.
It is clear that the di�culty in describing S in this problem increases with ˛,
which is related with the doubling constant of S de�ned as jS2j=jS j. When jS j is
large, solving (1) is tantamount to asking for a complete description of sets with
a bounded doubling constant.



586 Freiman, Herzog, Longobardi, Maj, Plagne, and Stanchescu

Problems of this kind are called inverse problems in additive number theory.
During the last two decades, they became the most central issue in a fast growing
area, known as additive combinatorics. Inverse problems of small doubling type
have been �rst investigated by G.A. Freiman very precisely in the additive group
of the integers (see [6], [7], [8], and [9]) and by many other authors in general
abelian groups, starting with M. Kneser [21] (see, for example, [17], [2], [22],
[28], and [16]). More recently, small doubling problems in non-necessarily abelian
groups have been also studied, see [15], [29], and [4] for recent surveys on these
problems and [24] and [34] for two important books on the subject.

There are two main types of questions one may ask. First, �nd the general
type of structure that S can have and how this type of structure behaves when ˛

increases. In this case, very powerful general results have been obtained (leading
to a qualitatively complete structure theorem thanks, notably, to the concepts of
nilprogressions and approximate groups), but they are not very precise quantita-
tively. Second, for a given (in general quite small) range of values for ˛, �nd the
precise (and possibly complete) description of those sets S which satisfy (1). The
archetypal results in this area are Freiman’s 3k � 4, 3k � 3 or 3k � 2 theorems in
the integers (see [6], [7], and [8]). See also for instance [22], [5], [18], [19], [31]
or [32] for other results of this type. In this paper, we investigate problems of the
second type.

Here, for a given non-necessarily abelian group G, we would like to understand
precisely what happens in the case when ˛ D 3. We restrict ourselves to the
already quite intricate case of ordered groups started in papers [10], [12], [13],
[20], and [14].

We recall that if G is a group and � is a total order relation de�ned on the set
G, we say that .G; �/ is an ordered group if for all a; b; x; y 2 G, the inequality
a � b implies that xay � xby. A group G is orderable if there exists an order �

on G such that .G; �/ is an ordered group.
Obviously the group of integers with the usual ordering is an ordered group.

More generally, the class of orderable groups contains all nilpotent torsion-free
groups (see, for example, [23] or [25]). We will come back to nilpotent groups
later in this paper.

In [10], some of us proved that if S is a �nite subset of an orderable group
satisfying jS j � 3 and jS2j � 3jS j � 3, then hSi, the subgroup generated by S , is
abelian. Moreover, if jS j � 3 and jS2j � 3jS j � 4, then S is a subset of a short
commutative geometric progression, that is, a set of the form

Pl.u; t / D ¹u; ut; : : : ; ut l�1º � hu; ti

for some commuting elements u and t of G and l an integer (t will be called
the ratio of the progression and l its length). In particular, hSi is abelian and at
most 2-generated (by which we mean that it is generated by a set having at most 2

elements). Finally, a group was constructed such that for any integer k � 3 there
exists a subset S of cardinality k such that jS2j D 3jS j�2 and hSi is non-abelian.
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In this paper, we continue to study the structure of �nite subsets S of an
orderable group when an inequality of the form (1) with ˛ D 3 holds and improve
drastically our preceding results, both by extending their range of application
and by making them more precise. We particularly concentrate on the size of
a generating set and the structure of hSi, as will be explained in the following
section.

2. New results and the plan of this paper

The present paper is organized as follows.
In Section 3, we consider the case when hSi is abelian. This can be seen as

a continuation of [10] (see Theorem 1.3 there). We �rst obtain a .3k � 3/-type
theorem generalizing Freiman’s classical theorem in the integers.

Theorem 1 (Ordered 3k � 3 Theorem). Let G be an orderable group and S be

a �nite subset of G satisfying jS2j � 3jS j � 3. Then hSi is abelian and at most

3-generated.

Moreover, if jS j � 11, then one of the following two possibilities occurs:

(i) S is a subset of a geometric progression of length at most 2jS j � 1;

(ii) S is the union of two geometric progressions with the same ratio, such that

the sum of their lengths is equal to jS j.

In general, this result cannot be improved. However, it will follow from our
proof that a slightly more detailed result (namely, describing those sets S with
jS j � 10 involved in this statement) can be easily achieved if one employs more
carefully the tools used in our proof. It will be shortly explained how to do this at
the end of our proof. For the sake of simplicity and avoiding technicalities, here
we prefer a cleaner statement.

We can go a step further and formulate also a precise generalized .3k �2/-type
result.

Theorem 2 (Abelian ordered 3k � 2 Theorem). Let G be an orderable group and

S be a �nite subset of G such that jS2j D 3jS j � 2 and hSi is abelian. Then either

jS j D 4 or hSi is at most 3-generated.

Moreover, if jS j � 12, then one of the following two possibilities occurs:

(i) S is a subset of a geometric progression of length at most 2jS j C 1;

(ii) S is contained in the union of two geometric progressions with the same ratio,

such that the sum of their lengths is equal to jS j C 1.
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Again, this result is in general best possible and, again, at the price of increas-
ing the number of sporadic cases and doing a more careful examination of our
proofs, one could replace the assumption jS j � 12 in Theorem 2 by a more precise
list of possible situations. For the sake of clarity, we prefer such a neat statement.

We then investigate the general abelian case. We obtain the following result.

Theorem 3. Let c be an integer, c � 2. Let G be an orderable group and S be a

�nite subset of G such that hSi is abelian. If

jS2j < .c C 1/jS j �
c.c C 1/

2
;

then hSi is at most c-generated.

We obtain for instance the following corollary, corresponding to the case c D 3

above.

Corollary 1. Let G be an ordered group and S be a �nite subset of G such that

hSi is abelian. If jS2j � 4jS j � 7, then hSi is at most 3-generated.

If needed, we could even make this result more precise and give the precise
structure of S by using the results of [30], [31] and [32].

In Section 4, we go back to the general case of non-necessarily abelian groups
and study the maximal number of generators of hSi. When merged with some of
our preceding results, we obtain the following general result.

Theorem 4. Let G be an ordered group and S be a �nite subset of G. Then the

following statements hold.

(i) jS2j � 2jS j � 1.

(ii) If 2jS j � 1 � jS2j � 3jS j � 4, then hSi is abelian and at most 2-generated.

(iii) If jS2j D 3jS j � 3, then hSi is abelian and at most 3-generated.

(iv) Let jS2j D 3jS j � 3 C b for some integer b � 1. Then either jS j D 4,

b D 1, hSi is abelian and at most .b C3/-generated or hSi is at most .b C2/-

generated.

In Sections 5, 6, 7 and 8, we look for a complete description of hSi, if S is
a �nite subset of cardinality � 4 of an orderable group and jS2j D 3jS j � 2.
The �avour of these results is more group-theoretical. Here we brie�y recall for
completeness sake a few standard notations that we shall need. We refer to [27]
for all the group-theoretic complementary notation that the reader may need for
reading this paper.
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If a and b are elements of a group G, their commutator is denoted by

Œa; b� D a�1b�1ab

and the derived subgroup of G, denoted by G0, is simply the subgroup of G

generated by its commutators. More generally, if H and K are two subgroups
of G, we denote by ŒH; K� the subgroup generated by the commutators of the
form Œh; k� for h in H and k in K. With this notation

G0 D ŒG; G�:

We shall also use the classical notation

ab D b�1ab:

If X � G, we use the notation CG.X/ for the centralizer of X in G de�ned as the
subgroup of elements of G commuting with all the elements of X and

Z.G/ D CG.G/

is the center of G. If H is a subgroup of G, then the normalizer of H in G is by
de�nition the subgroup

NG.H/ D ¹g 2 G j g�1Hg D H º;

and it is the largest subgroup of G containing H in which H is normal. Recall
�nally that, if n is a positive integer, a soluble group of length at most n is a group
which has an abelian series of length n that is, a �nite chain

¹1º D G0 � G1 � � � � � Gn D G (2)

of subgroups, such that Gi is a normal subgroup of GiC1 and GiC1=Gi is abelian
for any index 0 � i � n � 1; and a nilpotent group of class at most n is a
group which has a central series of length n of the form (2) such that GiC1=Gi

is contained in the center of G=Gi , for any index 0 � i � n � 1. Soluble groups
of length at most 2 are also called metabelian; they are exactly the groups G such
that G0 is abelian. Nilpotent groups of class at most 2 are exactly the groups G

such that the derived subgroup G0 is contained in the center Z.G/.
In order to state our .3k�2/-type result, we introduce a de�nition. In this paper,

we shall say that an ordered group G is young if one of the following occurs:

(i) G D ha; bi with ŒŒa; b�; a� D ŒŒa; b�; b� D 1,

(ii) G D hai � hb; ci with either cb D c2 or .c2/b D c and c ¤ 1,

(iii) G D ha; bi with ab D a2 and a ¤ 1,

(iv) G D ha; bi with ab2

D aab, Œa; ab� D 1 and a ¤ 1.
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More precisely, we shall speak of an ordered young group of type (j) if the
group satis�es the de�nition (j) in the list above (j being i, ii, iii or iv). Notice that
an ordered young group of type (iii) is a quotient of B.1; 2/, the Baumslag-Solitar
group [1].

Notice also that nilpotent ordered young groups are of type (i). This follows
from the fact that in nilpotent groups the derived subgroup is contained in the set of
all non-generators (see for example [26], Lemma 2.22). Consequently, nilpotent
ordered young groups are of class at most 2.

Moreover, we claim the following.

Lemma 1. An ordered young group is metabelian and a nilpotent ordered young

group is of nilpotency class at most 2.

Proof. This is obvious in case (i), since in this case G is nilpotent of class at
most 2.

So suppose that either (ii) or (iii) or (iv) holds. Write H D< cbi
ji 2 Z > in

case (ii) and H D< abi

ji 2 Z > in cases (iii) and (iv). Then H is normal in G

and G=H is abelian. Thus G0 is contained in H , and since the converse is also
true, it follows that G0 D H . By induction on n it is easy to prove that for every
n 2 N, Œc; cbn

� D 1 in case (ii) and Œa; abn
� D 1 in cases (iii) and (iv). This result

also implies that Œcb�n
; c� D 1 in case (ii) and Œab�n

; a� D 1 in cases (iii) and (iv).
Thus c 2 Z.H/ in case (ii) and a 2 Z.H/ in the other cases, which implies that
H 6 Z.H/. Hence H is abelian and G is metabelian, as claimed. �

Our main result in this paper is the following theorem.

Theorem 5. Let G be an ordered group and let S be a �nite subset of G. If jS j � 4

and jS2j D 3jS j � 2, then hSi is either abelian or young.

Theorem 1, Theorem 5 and Lemma 1 yield the following two corollaries.

Corollary 2. Let G be an ordered group and let S be a �nite subset of G. If

jS j � 4 and jS2j � 3jS j � 2, then hSi is metabelian.

Corollary 3. Let G be an ordered group and let S be a �nite subset of G such that

hSi is nilpotent. If jS j � 4 and jS2j � 3jS j � 2, then hSi is of nilpotency class at

most 2.

Our preceding results show that if jS j � 3 and jS2j � 3jS j � 3, then hSi is
abelian, but, for any integer k � 3, there exist an ordered group G and a subset S

of G of size k with jS2j D 3jS j � 2 and hSi non-abelian [10]. Moreover, we have
proved in Corollary 2 that if jS j � 4 and jS2j � 3jS j � 2, then hSi is metabelian.
It is now natural to ask whether there exist an ordered group G and a positive
integer b, such that for any integer k there is a subset S of G of order k with
jS2j D 3jS j � 2 C b and hSi non-metabelian or more generally non-soluble. We
give a negative answer to this question in Section 9 by proving the following result.
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Theorem 6. Let G be an ordered group and s be any positive integer. If S is

a subset of G of cardinality � 2sC2 such that jS2j D 3jS j � 2 C s, then hSi is

metabelian. Moreover, if G is nilpotent, then hSi is nilpotent of class at most 2.

Our �nal result, Theorem 7, is a constructive result.

Theorem 7. There exists a non-soluble ordered group G such that for any integer

k � 3, there exists a subset S of G of cardinality k such that jS2j D 4jS j � 5 and

hSi D G. In particular, hSi is non-soluble.

Notice that the results of the present paper will be used, as a cornerstone, to
derive the main result of [11] (Theorem 1), that is a complete description of the
structure of S if S is a �nite subset of an orderable group G with jS2j D 3jS j � 2

and hSi is non-abelian.

3. The abelian case: proofs of Theorems 1, 2 and 3

Let S be a �nite subset of an ordered group G and suppose that hSi is abelian.
Since hSi is �nitely generated and ordered (thus torsion-free), it is isomorphic to
some .Zm; C/, for m D m.S/, an integer. In other words, the additive group hSi

is an m-generated group. We may thus make our reasoning in this setting, which
is simpler and was already studied. Notice that in this section we shall always use
the additive notation. In particular, we use the term ‘di�erence’ instead of ‘ratio’
in the description of an arithmetic progression.

The notion of Freiman dimension of the set S will be needed here [8]. Recall
�rst that S is Freiman isomorphic to a set A � Z

d if there exists a bijective
mapping F W S ! A such that the equations g1 C g2 D g3 C g4 and F.g1/ C

F.g2/ D F.g3/ C F.g4/ are equivalent for all g1; g2; g3; g4 2 S (i.e. sums of two
elements of S coincide if and only if their images have the same property).

The Freiman dimension of S is then de�ned as the largest integer d D d.S/

such that S is Freiman-isomorphic to a subset A of Zd not contained in an a�ne
hyperplane of Zd (i.e. A is not contained in a subset of Zd of the form L D aCW ,
where a 2 Z

d and W D Z!1 ˚ � � � ˚ Z!d�1).
We recall immediately the basic inequalities linking m.S/; d.S/ and jS j for a

subset S of some ordered abelian group.

Lemma 2. Let S be a �nite subset of an ordered group G. Assume that hSi is

abelian. Then

m.S/ � d.S/ C 1 � jS j:

Both inequalities are tight as shown by the example

S D ¹.0; 1/; .1; 1/º � Z
2:

Indeed, d.S/ D 1, while hSi D Z
2 and m.S/ D 2 D jS j.
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Proof. By our assumptions, the additive group hSi is isomorphic to .Zm; C/, for
m D m.S/, an integer. Without loss of generality we may assume that

S � Z
m and hSi D Z

m:

Let r be the smallest dimension of a subspace W D Zw1 ˚ � � � ˚ Zwr � Z
m

such that
L D a C W D a C Zw1 ˚ � � � ˚ Zwr

contains S for some a 2 Z
m. Then

r � m D m.S/ � r C 1;

which implies that either r D m � 1 or r D m.
If r Dm � 1, then there is a point a 2 Z

m and a subspace

W D Zw1 ˚ � � � ˚ Zwm�1 � Z
m

such that
S � a C W:

The set S� D S � a D ¹s � a j s 2 Sº is Freiman isomorphic to S by
the trivial correspondence: s $ s � a for all s 2 S and it is contained in
W D Zw1 ˚ � � � ˚ Zwm�1: Let

T W W �! Z
m�1

be the unique linear isomorphism de�ned by

T .w1/ D e1 D .1; 0; : : : ; 0/; : : : ; T .wm�1/ D em�1 D .0; : : : ; 0; 1/:

De�ne A D T .S�/. Using the hypothesis r D m � 1, it follows that the set A is
not contained in an a�ne hyperplane of Zm�1. Therefore d.A/ � m � 1. The sets
A, S� and S are Freiman isomorphic to each other and thus

d.S/ D d.S�/ D d.A/ � m � 1:

If r D m, then the set S is not contained in an a�ne hyperplane of Zm: Thus
d.S/ � m > m � 1: Hence m � d.S/ C 1 in all cases.

We prove now the inequality d C 1 � jS j. Let jS j D k. The set S is
Freiman-isomorphic to a subset A D ¹a0; a1; : : : ; ak�1º � Z

d not contained in an
a�ne hyperplane of Zd . Without loss of generality, we may assume that a0 D 0

(indeed, we may replace A by the translate A � a0 and use d.A/ D d.A � a0/ and
jAj D jA � a0j). The set A is contained in the subspace

W D Za0 C Za1 C � � � C Zak�1 D Za1 C � � � C Zak�1:

If k � d , then m.W / � k � 1 � d � 1 and this contradicts our hypothesis that A

is not contained in an a�ne hyperplane of Zd . Hence k D jAj D jS j � d C 1 as
required. The proof of the lemma is complete. �
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For the proof of the Theorems we shall use Freiman’s theorem (Lemma 1.14
of [8]), stating that for any �nite subset S of a torsion free group with hSi abelian
and with Freiman dimension d , the following lower bound for the cardinality of
S2 holds:

jS2j � .d C 1/jS j �
d.d C 1/

2
: (3)

This inequality was actually proved in Lemma 1.14 of [8] for sets with a�ne di-
mension d . However, if S has Freiman dimension d , then S is Freiman isomor-
phic to some S� � Z

d which has a�ne dimension d and satis�es the equations
jS�j D jS j and j.S�/2j D jS2j. Therefore

jS2j D j.S�/2j � .d C 1/jS�j �
.d C 1/d

2
D .d C 1/jS j �

.d C 1/d

2
:

The proof of the Theorems can now be obtained easily. Notice that by Theo-
rem 1.3 in [10], also the set S of Theorem 1 generates an abelian group.

Proof of Theorems 1 and 2, the common part. Let c D 2 or 3. By our assump-
tions and (3) we obtain

3jS j � c � jS2j � .d C 1/jS j �
d.d C 1/

2
;

where d D d.S/. This yields

.d � 2/jS j �
d.d C 1/

2
� c: (4)

Then, using Lemma 2, we obtain

.d � 2/.d C 1/ �
d.d C 1/

2
� c

and therefore
.d � 1/.d � 2/ � 2.3 � c/: (5)

�

Now, we have to continue separately the study of the cases c D 2 and 3.

Proof of Theorem 1, concluded. Here c D 3, and as mentioned above, hSi is
abelian. Thus (5) implies that either d D 1 or d D 2. Hence by Lemma 2
m.S/ � 3 and hSi is at most 3-generated, as required.

Suppose now that jS j � 11. Since either d D 1 or d D 2, we are
back to the case of the 1- or the 2-dimensional 3k � 3 theorem in the integers.
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If d D 1, such sets are described in Theorem 1.11 in [8] (or see [18]): they
are subsets of an arithmetic progression of length 2jS j � 1 or the union of two
arithmetic progressions with the same di�erence (a remaining case corresponds
to bounded cardinality). If d D 2, such sets are described by Theorem 1.17 in [8]
(or see Theorem B in [31]): they are the union of two arithmetic progressions with
the same di�erence (there are also remaining cases of bounded cardinality).

This is enough to prove Theorem 1. If one wants to be more precise, it is
enough to use the same Theorems 1.11 and 1.17 of [8] quoted above, but in their
precise forms. �

Proof of Theorem 2, concluded. Here c D 2, thus the bound (5) implies that
d D 1; 2 or 3. If d D 3, then by (4), we obtain that jS j � 4 and if d D 1; 2,
then hSi is at most 3-generated by Lemma 2. Hence either jS j D 4 or hSi is at
most 3-generated, as required.

If d D 1, we are back to the 3k � 2 theorem in the integers. Hence it follows
by Theorem 1.13 of [8] (or see the original publication [7]; we notice that in the
original statement of this theorem, there is a missing sporadic case of size 11 which
makes it necessary to have 12 here instead of 11) that if jS j � 12 , then S must
be either a subset of a short geometric progression or a geometric progression
minus its second element, together with an isolated point, or, �nally, a geometric
progression together with another geometric progression of length 3 with the same
ratio and with the middle term missing. The last possibility is missing in Theorem
1.13, as printed in [8]. Thus S satis�es either (i) or (ii).

If d D 2, then the set is of Freiman dimension 2 and its structure is described in
Theorem 1.17 of [8] (or see Theorem B in [31]). This case leads to possibility (ii) in
the statement of Theorem 2. Again, if one wishes to deal with small cardinalities
for S , one simply has to use more precise versions of Freiman’s theorems. �

The proof of Theorem 3 follows the same lines.

Proof of Theorem 3. As above, if d D d.S/, we must have

.c C 1/jS j �
c.c C 1/

2
> jS2j � .d C 1/jS j �

d.d C 1/

2
:

This implies by factorization that

.d � c/jS j <
.c � d/.c C d C 1/

2

from which it follows that one cannot have d � c. Thus d � c � 1 and the
conclusion follows by Lemma 2. �
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4. On the generators of hS i: proof of Theorem 4

We now come back to the general case of non-necessarily abelian groups and start
with a lemma.

Lemma 3. Let G be an ordered group. Let T be a non-empty �nite subset of G

and let t denote its maximal element max T . Let x 2 G be an element satisfying

x > t . If yx; xy 2 T 2 for each y 2 T n ¹tº, then T � ht; xi.

Proof. Write l D jT j and

T D ¹tl ; tl�1; : : : ; t1º; tl < tl�1 < � � � < t1 D t:

We prove by induction on j (1 � j � l) that tj 2 ht; xi.
If j D 1, we have t1 D t 2 ht; xi.
Assume that we have proved that t1; : : : ; tj 2 ht; xi for some j satisfying

1 � j � l � 1. Without loss of generality, we may assume that xtj C1 � tj C1x.
By assumption, we have xtj C1; tj C1x 2 T 2. It follows that tj C1x D tutv for

some tu; tv 2 T . But x > t � tu; tv and tj C1x D tutv � xtj C1, so the ordering
implies that tu; tv > tj C1. Therefore u; v � j , and the induction hypothesis
implies that tu; tv 2 ht; xi. Consequently tj C1 D tutvx�1 2 ht; xi and the inductive
step is completed. Hence T � ht; xi, as required. �

We pass now to the proof of Theorem 4.

Proof of Theorem 4. For parts (i), and (ii), see [10], Theorem 1.1 and Corollary
1.4, respectively. Assertion (iii) follows by our Theorem 1.

Our aim now is to prove part (iv). Suppose that jS j D k and S D ¹x1 < x2 <

� � � < xkº. We argue by induction on k. If jS j D k � b C 2, then the result is
trivial. So suppose that k � b C 3 and that part (iv) of Theorem 4 is true up to
k � 1.

Assume, �rst, that hSi is abelian. If b D 1, then jS2j D 3k � 2 and by
Theorem 2 either jS j D 4 or hSi is at most 3-generated, as required since bC2 D 3.
So assume that b � 2. Since k � b C 3 � 5, we have b � k � 3 and

jS2j � 4k � 6 < 5k � 10:

But 5k �10 D .4C 1/k �4.4C 1/=2, so by Theorem 3 hSi is at most 4-generated,
as required since 4 � b C 2. This concludes the proof of the abelian case.

So assume that hSi is non-abelian and let T D ¹x1; : : : ; xk�1º. If xixk ; xkxi 2

T 2 for all i < k � 1, then it follows by Lemma 3 that T � hxk�1; xki and hence
hSi D hxk�1; xki is at most 2-generated, as required since 2 < b C 2.
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Hence we may assume that xixk (or xkxi / … T 2 for some i < k � 1. Then, by
the ordering in G, we have xixk ; xk�1xk ; x2

k
… T 2, which implies that

jT 2j � jS2j � 3 D 3k � 3 C b � 3 D 3.k � 1/ � 3 C b:

Applying induction, we may conclude that either hT i is abelian and jT j D 4, or
hT i is at most .b C 2/-generated.

If xk 2 hT i, then hT i D hSi and hT i is non-abelian. Hence hT i is at most
.b C 2/-generated and so is hSi, as required.

So assume that xk … hT i. Then xkxi ; xixk … T 2 for all i � k � 1 and x2
k

… T 2

by the ordering in G. Thus

S2 D T 2 P[.xkT [ T xk/ P[¹x2
kº

and since jxkT [ T xk j � k � 1, it follows that

jT 2j � jS2j � k � 3k � 3 C b � .b C 3/ D 3.k � 1/ � 3:

Hence, by Theorem 1.3 in [10], hT i is abelian and since hSi is non-abelian, it
follows that xk … CG.T /. Consequently, by Corollary 1.4 in [10], jxkT [T xk j � k,
which implies that

jT 2j � jS2j � .k C 1/ � 3k � 3 C b � .b C 4/ D 3.k � 1/ � 4:

Hence, by Proposition 3.1 in [10], hT i is at most 2-generated, so hSi is at most
3-generated, as required since 3 � b C 2.

The proof of Theorem 4 is now complete. �

5. The structure of hS i if jS 2j D 3jS j � 2: cardinality 3

In Theorem 5 we assume that jS j � 4. However, for the inductive proof of that
theorem, we need some special results concerning the case when jS j D 3. These
results are proved in the next two propositions.

Proposition 1. Let G be an ordered group. Let x1; x2; x3 be elements of G, such

that x1 < x2 < x3 and let S D ¹x1; x2; x3º. Assume that hSi is non-abelian and

either x1x2 D x2x1 or x2x3 D x3x2.

Then jS2j D 7 if and only if one of the following holds:

(i) S \ Z.hSi/ 6D ;, or

(ii) S is of the form ¹a; ab; bº, where aab D aba.
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Proof. Suppose that jS2j D 7 . Assume �rst that x1x2 D x2x1. The other case
(x2x3 D x3x2) follows by reversing the ordering in G.

If either x2x3 D x3x2 or x3x1 D x1x3, then either x2 2 Z.hSi/ or x1 2

Z.hSi/, respectively, and (i) holds.
So suppose that x2x3 6D x3x2 and x3x1 6D x1x3. It follows that x3 … hx1; x2i.
If x1x3 < x3x1, then x1x3 6D x2x3, x1x3 6D x3x2, x1x3 6D x2

3 and

S2 D ¹x2
1 ; x1x2; x2

2 ; x2x3; x3x2; x2
3 ; x1x3º:

Hence x3x1 D x2x3 and x1 D x
x3

2 . Thus (ii) follows by taking a D x2 and b D x3,
since then x1 D ab. Similar arguments yield also (ii) if x1x3 > x3x1.

Conversely, if either (i) or (ii) holds, then it is easy to verify that jS2j D 7. �

Proposition 2. Let G be an ordered group. Let x1; x2; x3 be elements of G, such

that x1 < x2 < x3 and let S D ¹x1; x2; x3º. Assume that both x1x2 6D x2x1 and

x2x3 6D x3x2 (in particular hSi is non abelian) and jS2j D 7. Then S is of one of

the following forms:

(a) either ¹x; xc; xcxº or ¹x�1; x�1c; x�1cxº for some c 2 G0 satisfying c > 1,

with cx2
D ccx and ccx D cxc;

(b) either ¹x; xc; xccxº or ¹x�1; x�1c; x�1ccxº for some c 2 G0 satisfying c > 1,

with cx2
D ccx and ccx D cxc;

(c) ¹x; xc; xc2º for some c 2 G0 satisfying c > 1, with either cx D c2 or

.c2/x D c.

Moreover, in cases (a) and (b), one has

hSi D ha; bi with ab2

D aab and aab D aba

and hSi is young of type (iv), while in case (c)

hSi D ha; bi; with ab D a2

and hSi is young of type (iii).

Proof. Write T D ¹x1; x2º, then S2 D T 2 P[¹x2x3; x3x2; x2
3º.

First suppose that x1x3 � x3x1. Then x1x3 … ¹x2x3; x3x2; x2
3º, and we have

either x1x3 D x2
2 or x1x3 D x2x1. We distinguish between three cases.

Case 1: x1x3 D x2
2 . In this case x1x3 < x3x1, since otherwise x1 2 CG.x3/,

Œx1; x2
2 � D 1 and then Œx1; x2� D 1, a contradiction. Hence

x3x1 D x2x3: (6)
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Write x1 D x. Then x2 D xc for some c 2 hSi
0

, with c > 1. Moreover, since
x1x3 D x2

2 , we obtain x3 D cxc D xcxc. Hence, by (6), cxcx D xccxc, so

cxcx D c2xc and cx2
cx D .cx/2c. Thus

Œc; cx�x D Œcx; cx2

� D Œcx; .cx/2c.cx/�1� D Œcx; c�.c
x/�1

;

yielding Œc; cx�xcx
D Œcx ; c� D Œc; cx��1. Since G is an ordered group, it follows

that Œc; cx� D 1. Thus cx2

D ccx and (b) holds.

Case 2: x1x3 D x2x1 and x3x1 2 T 2. In this case x3 D x
x1

2 and x3x1 2

¹x1x2; x2
2º. If x3x1 D x1x2, then x2 D x

x1

3 D x
x2

1

2 , so Œx2
1 ; x2� D 1 and hence

Œx1; x2� D 1, a contradiction. So we may suppose that

x3x1 D x2
2 : (7)

Hence .x3x1/�1x1x3 D x�2
2 x2x1 D x�1

2 x1 and x2 D x1c for some c 2 hSi
0

with c > 1. Moreover, x3 D x
x1

2 D x1cx1 . Write x1 D x; then x2 D xc and

x3 D xcx . Moreover xcxx D xcxc, by (7), hence cx2
D cxc, and arguing as

before Œc; cx� D 1 and (a) holds.

Case 3: x1x3 D x2x1 and x3x1 … T 2. In this case

x1x3 D x2x1; and x3x1 D x2x3:

Write x1 D x. Then x2 D xc for some c 2 hSi
0

with c > 1, x3 D xcx , and
xcxx D xcxcx . Then cx2

D cxcx , hence cx D c2 and (c) holds.

We argue similarly if x3x1 � x1x3. In this case x3x1 … ¹x2x3; x3x2; x2
3º.

If x3x1 D x2
2 , then as before x1x3 ¤ x3x1 and x1x3 D x3x2. Setting x1 D x�1,

x2 D x�1c for some c 2 hSi
0

with c > 1, we obtain that x3 D x�1ccx and we
see that ccx D cxc and (b) holds. If x3x1 D x1x2 and x1x3 D x3x2, then with
x1 D x�1 we obtain that (c) holds. If x3x1 D x1x2 and x1x3 D x2

2 , then with
x1 D x�1, x2 D x�1c for some c 2 hSi

0

with c > 1, we obtain x3 D x�1cx and
we see that (a) holds. �

6. The structure of hS i if jS 2j D 3jS j � 2: two general lemmas

In this section we present two general lemmas which will be useful in the inductive
process entering the proof of Theorem 5, as well as in the study of the special case
jS j D 4 (in the next section).

Lemma 4. Let G be an ordered group. Let S be a �nite subset of G with at least

two elements. Let either m D max S or m D min S and T D S n ¹mº. Then either

hSi is a 2-generated abelian group, or jT 2j � jS2j � 3.
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Proof. Write k D jS j � 2 and let S D ¹x1; x2; : : : ; xkº, with x1 < x2 < � � � < xk.
Moreover, suppose that T D ¹x1; : : : ; xk�1º.

Obviously x2
k
; xk�1xk ; xkxk�1 … T 2, because of the ordering. If xkxk�1 6D

xk�1xk , then the result holds immediately. Therefore suppose that xkxk�1 D

xk�1xk .
If xixk ; xkxi 2 T 2 for each i < k � 1, then, by Lemma 3, T � hxk�1; xki.

Thus hSi D hxk�1; xki and hence hSi is 2-generated and abelian, as required.
If there exists j < k � 1 such that either xj xk … T 2 or xkxj … T 2, then

jT 2j � jS2j � 3, since xj xk and xkxj are both less than xk�1xk D xkxk�1, as
required.

If T D ¹x2; : : : ; xkº, then the result follows from the previous arguments by
reversing the ordering in G. �

Now, we study the case when S D T P[¹yº, where hT i is abelian.

Proposition 3. Let G be an ordered group and let T be a �nite subset of G such

that jT j � 3 and hT i is abelian. Let y 2 G n T . De�ne S D T P[¹yº and assume

that jS2j D 3jS j � 2. Then either hSi is abelian, or there are elements a; c 2 G

such that S is of the form

S D ¹a; ac; : : : ; ack�2; yº

where k D jS j and one of the following holds:

(a) Œa; y� D c or Œy; a� D c; Œc; y� D Œc; a� D 1;

(b) Œa; y� D c or Œa; y� D 1; Œc; a� D 1; .c2/y D c; jS j D 4;

(c) Œa; y� D 1 or Œy; a� D c2; Œc; a� D 1; cy D c2; jS j D 4.

In particular, hSi is either abelian or young of type (i) or (ii). If it is young of

type (ii), then jS j D 4.

Proof. If y 2 CG.T /, then hSi is abelian, as required. So we may assume that
y … CG.T /. Then jyT [ Tyj � k by Proposition 2.4 of [10].

We have
y2 62 T 2

since otherwise, for any t 2 T , Œy2; t � D 1 and hence Œy; t � D 1, thus y 2 CG.T /,
which is not the case.

Similarly,
.yT [ Ty/ \ T 2 D ;:

Hence
S2 D T 2 P[.yT [ Ty/ P[¹y2º;

and therefore

jT 2j 6 jS2j � k � 1 D 3k � 2 � k � 1 D 2k � 3 D 2jT j � 1:
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But by Theorem 1.1 of [10], it is also true that jT 2j � 2jT j � 1, hence jT 2j D

2jT j � 1, and by Corollary 1.4 of [10], T is of the form

T D ¹a; ac; ac2; : : : ; ack�2º;

where ac D ca, and we may assume that c > 1. Moreover jyT [ Tyj D k.
We consider now three cases.

Case 1: ya < ay. In this case

yT [ Ty D ¹ya; ay; acy; ac2y; : : : ; ack�2yº;

with ya < ay < acy < ac2y < � � � < ack�2y. Now consider the elements
yac; yac2 2 yT [ Ty. Since yac < yac2 < yac3 < � � � < yack�2, yac is
less than k � 2 � 1 elements of yT [ Ty and yac2 is less than k � 4 elements of
yT [ Ty. Thus either yac D ay or yac D acy.

If yac D acy, then the only possibility is that yac2 D ac2y. But then
1 D Œy; ac� D Œy; ac2�, yielding Œy; c� D 1 D Œy; a�, a contradiction.

Now suppose that yac D ay, which implies Œa; y� D c. In this case either
yac2 D acy or yac2 D ac2y.

If yac2 D acy, then ayc D acy and Œc; y� D 1. Thus the derived group
hSi0 D hci � Z.hSi/, hSi is of class 2, and (a) holds.

If yac2 D ac2y, then ayc D ac2y and c D .c2/y . Moreover, in this case
k D 4. Indeed, if k > 4, then yac3 2 yT [ Ty and the only possibility is
yac3 D ac3y. But then yac3 D ayc2 D ac3y and c2 D .c3/y D .c2/ycy D ccy ,
yielding cy D yc. Thus yac2 D ayc2, in contradiction to our assumption that
Œa; y� D c and c > 1. Therefore k D 4 and (b) holds.

Case 2: ay < ya. We argue similarly and obtain that either Œy; a� D c, Œc; y� D 1

and .a/ holds, or Œy; a� D c2, cy D c2, jS j D 4 and (c) holds.

Case 3: ay D ya. We have yac ¤ acy, since otherwise Œy; a� D 1 D Œy; c� and
y 2 CG.T /, a contradiction.

Assume �rst yac < acy. Then

yT [ Ty D ¹ya D ay; yac; acy; ac2y; : : : ; ack�2yº;

with ya D ay < yac < acy < ac2y < � � � < ack�2y. Consider the element
yac2. Then yac2 2 yT [ Ty and yac < yac2 < yac3 < � � � < yack�2, so, as
before, we may conclude that either yac2 D acy or yac2 D ac2y.

If yac2 D acy, then ya D ay implies that yc2 D cy. Thus cy D c2.
Moreover, in this case jS j D 4, since otherwise yac3 2 T 2 and either yac3 D

ac2y, yc3 D c2y yielding the contradiction c3 D .c2/y D c4, or yac3 D c3ay

yielding the contradiction cy D yc. Therefore (c) holds.
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If yac2 D ac2y, then ayc2 D ac2y and Œc2; y� D 1. But then Œc; y� D 1, again
a contradiction.

If acy < yac, then arguing similarly we obtain .c2/y D c, jS j D 4 and (b)
holds.

We now prove the ‘in particular’ part of our statement.
If (a) holds, then hSi is young of type (i).
If (b) holds and Œa; y� D 1, then hSi is young of type (ii).
If (b) holds and Œa; y� D c, then Œac2; y� D cc�1 D 1, .c2/y D c, Œac2; c� D 1

and again hSi is young of type (ii).
If (c) holds, and Œa; y� D 1, we have hSi D hai � hc; yi, with cy D c2, and

again hSi is young of type (ii).
Finally, if (c) holds and Œy; a� D c2, then Œy; c� D c�1, thus Œy; ac2� D 1 and

again hSi D hac2i � hc; yi in a young groups of type (ii). �

7. The structure of hS i if jS 2j D 3jS j � 2: cardinality 4

In this section, we study the special case of Theorem 5 when S has cardinality 4
and prove several lemmas.

Lemma 5. Let G be an ordered group. Let x1; x2; x3; x4 be elements of G,

such that x1 < x2 < x3 < x4 and let S D ¹x1; x2; x3; x4º. Suppose that

jS2j D 10 D 3jS j � 2. If x3 2 Z.hx2; x3; x4i/, then either hx2; x3; x4i or

hx1; x2; x3i is abelian.

Proof. We have x2x3 D x3x2 and x3x4 D x4x3.
If x2x4 D x4x2, then the result holds.
We may therefore restrict ourselves to the case where x2x4 6D x4x2, and

assume that x2x4 < x4x2 (we argue similarly in the symmetric case).
Let T D ¹x1; x2; x3º. We �rst notice that

x4x2 … T 2:

Indeed, if x4x2 2 T 2, then the only possibility is x4x2 D x2
3 . But then x2x4 D

x4x2, a contradiction.
Obviously x2x4 … ¹x4x2; x3x4; x2

4º. If also x2x4 … T 2, then

jT 2j � 10 � 4 D 6 D 3jT j � 3;

and by Theorem 1.3 of [10] T is abelian, as required.
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Thus we may assume that x2x4 2 T 2 and it follows that

x2x4 2 ¹x3x1; x3x2; x2
3º:

If x2x4 D x3x2 D x2x3, we obtain the contradiction x4 D x3. If x2x4 D x3x1,
then x1 2 hx2; x3; x4i, which implies that x1x3 D x3x1. But then x2x4 D x1x3,
in contradiction to the ordering in S . Finally, if x2x4 D x2

3 , then x2x4 D x4x2,
again a contradiction. �

Lemma 6. Let G be an ordered group. Let x1; x2; x3; x4 be elements of G

such that x1 < x2 < x3 < x4 and let S D ¹x1; x2; x3; x4º. Suppose that

jS2j D 10 D 3jS j � 2. If x2x3 D x3x2, then either hx2; x3; x4i or hx1; x2; x3i

is abelian.

Proof. If x3x4 D x4x3, then the result follows from Lemma 5. So we may assume
that

x3x4 6D x4x3:

Write T D ¹x1; x2; x3º. If jT 2j < 7, then Theorem 1.3 of [10] implies that
¹x1; x2; x3º is abelian, as required. Hence we may assume that jT 2j D 7. Then

S2 D T 2 P[¹x3x4; x4x3; x2
4º:

We assume now that
x2x4 � x4x2;

the symmetric case being similar.
We �rst notice that

x4x2 … T 2;

since otherwise x4x2 2 T 2 and the only possibility is x4x2 D x2
3 . But then

x3x4 D x4x3, a contradiction. Hence

x4x2 D x3x4

and in particular x2x4 6D x4x2. Moreover, x2x4 6D x4x3 since x2x4 < x4x2 <

x4x3. Hence x2x4 2 T 2 and x2x4 2 ¹x3x1; x3x2; x2
3º.

If x2x4 D x3x2 D x2x3, then x3 D x4, a contradiction.
If x2x4 D x2

3 , then x2x4 D x4x2, a contradiction.
Hence the only possibility is

x2x4 D x3x1; (8)

which implies that
x1x4 < x2x4 D x3x1 < x4x1: (9)
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If x4x1 … T 2, then x4x1 D x3x4 D x4x2, a contradiction. Thus x4x1 2 T 2 and
we have

x4x1 2 ¹x1x2; x2
2 ; x2x3 D x3x2; x1x3; x2

3º:

Because of (9), the only possibility is

x4x1 D x2
3 : (10)

Now, from (8) we get x1x�1
4 D x�1

3 x2 2 CG.x3/, and by (10) also x4x1 D x2
3 2

CG.x3/. Thus x2
1 2 CG.x3/ and x1x3 D x3x1 D x2x4, a contradiction. �

Lemma 7. Let G be an ordered group. Let x1; x2; x3; x4 be elements of G,

such that x1 < x2 < x3 < x4 and let S D ¹x1; x2; x3; x4º. Suppose that

jS2j D 10 D 3jS j � 2.

If x1x2 D x2x1 and x3x4 D x4x3, then hSi is either abelian or young of type

(i), (ii), or (iii).

Proof. Assume that hSi is non-abelian and let us prove that it is young of type (i),
(ii), or (iii). Let T D ¹x1; x2; x3º.

By Lemma 4, jT 2j � 7. If hT i is abelian, then by Proposition 3 hSi is young
of type (i) or (ii), as required. So assume that hT i is non-abelian. Then Theorem
1.3 of [10] implies that jT 2j D 7 and Proposition 1 applies.

Suppose that x1 2 Z.hT i/. Since jT 2j D 7 D jS2j � 3, it is impossible that
x1x4; x2x4; x3x4; x2

4 … T 2. Hence x4 2 hT i, which implies that x1x4 D x4x1.
Thus hx1; x3; x4i is abelian and, by Proposition 3, hSi is young of type (i) or (ii),
as required.

If x2 or x3 2 Z.hx1; x2; x3i/, then x2x3 D x3x2 and the result follows by
Lemma 6 and Proposition 3.

So we may assume that Z.hx1; x2; x3i/ \ ¹x1; x2; x3º D ;. Similarly, we may
assume that hx2; x3; x4i is non-abelian, j¹x2; x3; x4º2j D 7 and Z.hx2; x3; x4i/ \

¹x2; x3; x4º D ;. Hence Proposition 1 implies that

¹x1; x2; x3º D ¹a; ab; bº and ¹x2; x3; x4º D ¹c; cd ; dº;

for some a; b; c; d 2 G satisfying aab D aba, ccd D cd c. Therefore

ŒŒa; b�; a� D ŒŒab; b�; ab� D 1 and ŒŒc; d �; c� D ŒŒcd ; d �; cd � D 1:

Since Œx1; x3� 6D 1 and Œx1; x2� D 1, we have x3 D b, x2 2 ¹a; abº and thus
ŒŒx2; x3�; x2� D 1. Similarly, since Œx2; x4� 6D 1 and Œx3; x4� D 1, we have x2 D d ,
x3 2 ¹c; cdº and thus ŒŒx3; x2�; x3� D 1. It follows that hx2; x3i is nilpotent of class
2. Moreover, a; b 2 hx2; x3i and c; d 2 hx2; x3i, so hSi D hx2; x3i is 2-generated
and nilpotent of class 2. Therefore hSi is young of type (i), as required. �
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Lemma 8. Let G be an ordered group. Let x1; x2; x3; x4 be elements of G,

such that x1 < x2 < x3 < x4 and let S D ¹x1; x2; x3; x4º. Suppose that

jS2j D 10 D 3jS j � 2 and hSi is non-abelian.

If x1x2 D x2x1, then hSi is young.

Proof. If x3x4 D x4x3, then the result follows from Lemma 7. Thus we may
suppose that x3x4 6D x4x3.

If x2x3 D x3x2, then the result follows by Lemma 6 and Proposition 3. Thus
we may also assume that x2x3 6D x3x2. Moreover, Lemma 4 and Theorem 1.3
in [10] imply that j¹x2; x3; x4º2j D 7. Therefore hx2; x3; x4i satis�es the hypothe-
ses of Proposition 2 and hence it is young.

Since j¹x2; x3; x4º2j D 7 and x2
1 … ¹x2; x3; x4º2, it follows that

x1x2; x1x3; x1x4 … ¹x2; x3; x4º2

is impossible. Hence x1 2 hx2; x3; x4i and hSi D hx2; x3; x4i is young, as
required. �

8. The structure of hS i if jS 2j D 3jS j � 2: proof of Theorem 5

Now we can prove Theorem 5.

Proof. Write S D ¹x1; x2; : : : ; xk�1; xkº, x1 < x2 < � � � < xk , and de�ne

T D ¹x1; x2; : : : ; xk�1º;

and

V D ¹x2; : : : ; xk�1; xkº:

We argue by induction on k.
We start with the basic case k D 4. By Lemma 4, either hSi is abelian, as

required, or jT 2j � 7. Similarly, by considering the order opposite to <, we may
suppose that jV 2j � 7.

If either T or V is abelian, then, by Proposition 3, hSi is either abelian or young
of type (i) or (ii), as required. So, from now on, we may assume that T and V are
non-abelian and jT j D jV j D 7 by Theorem 1.3 in [10].

If x1x2 D x2x1, then by Lemma 8, hSi is a young group, as required. So we
may suppose that x1x2 6D x2x1 and, by Lemma 6, also x2x3 6D x3x2. Thus hT i

satis�es the hypotheses of Proposition 2 and hence hT i is young. Moreover, one
of the elements x1x4; x2x4; x3x4 2 T 2, so hSi D hT i is also young.
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Now we move to the inductive step. So suppose that k > 4 and that the result
is true for k � 1. Moreover, suppose that hSi is non-abelian. Then

jT 2j � 3k � 2 � 3 D 3.k � 1/ � 2

by Lemma 4. We may assume that the equality holds, since otherwise hT i is
abelian by Theorem 1.3 in [10] and the result follows from Proposition 3. Hence,
by induction, hT i has the required structure.

Now consider the k elements x1xk ; x2xk ; : : : ; xk�1xk; x2
k
. If one of them is

in T 2, then xk 2 hT i, hence hSi D hT i has the required structure. On the other
hand, if x1xk; x2xk ; : : : ; x2

k
… T 2, then S2 � T 2 P[¹x1xk ; : : : ; x2

k
º and, in view of

k > 4,
jT 2j � jS2j � k D 2k � 2 � 3.k � 1/ � 3 D 3jT j � 3:

Therefore T is abelian by Theorem 1.3 in [10] and the result follows from Propo-
sition 3. �

9. On the structure of hS i if jS 2j � 3jS j � 2 C s and jS j is large

We start with the following lemma.

Lemma 9. Let G be an ordered group. Suppose that a; b; c 2 G such that

Œa; c� D 1 and let T be a subset of G satisfying T � ¹a; ac; ac2; : : : ; achº for

some positive integer h. Moreover, let b 2 G n T such that jT b \ bT j � 2. Then

ha; b; ci is metabelian. Moreover, if G is nilpotent, then ha; b; ci is nilpotent of

class at most 2 .

Proof. Since jT b \ bT j � 2, there exist r 6D l , s; t 2 Z such that .acr/b D acs,
.acl /b D act . Suppose , without loss of generality, that r < l . Then

.acrcl�r /b D acs.cl�r /b D act ;

which implies that .cl�r/b D ct�s . Write l � r D m, t � s D n. Then .cm/b D cn,
so Œ.cm/b; c� D 1 and Œcb; c� D 1.

Now we claim that the subgroup C D hcbj
j j 2 Zi is abelian.

Obviously it su�ces to prove that Œc; cbj
� D 1 for any integer j . From

.cm/b D cn we get easily by induction that .cmi

/bi

D cni

for any positive integer
i .

Indeed, suppose that .cmi�1

/bi�1

D cni�1

. Then we have

.cmi

/bi

D ...cmi�1

/bi�1

/m/b D ..cni�1

/m/b D ..cm/b/ni�1

D cni

:

Therefore Œ.cbi
/mi

; c� D 1 for each positive integer i , and hence Œcbi
; c� D 1. This

result also implies that Œc; cb�i
� D 1 for each positive integer i . Thus Œc; cbj

� D 1

for every integer j and the claim follows.
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Obviously b 2 NG.C /. We claim that also a 2 CG.C /. We need only to show
that if v is an integer, then abv

2 CG.c/.
We show �rst that ab 2 CG.c/. Indeed, since a 2 CG.c/ and .acr /b D acs , it

follows that

ab.cb/r D acs D .acs/c D .ab.cb/r /c D .ab/c.cb/r ;

which implies that .ab/c D ab, as required.
Suppose, by induction, that abv

2 CG.c/ for some positive integer v. Since
.acr /bvC1

D ..acr/b/bv
D .acs/bv

, we have

abvC1

.cr/bvC1

D .acs/bv

D ..acs/bv

/c D .abvC1

.cr/bvC1

/c D .abvC1

/c.cr/bvC1

:

Hence also abvC1

2 CG.c/. It follows that abv

2 CG.c/ for each positive integer
v.

Similarly, from .acs/b�1
D acr , we get that ab�1

2 CG.c/ and by induction
ab�v

2 CG.c/ for each positive integer v.
Hence a 2 CG.C / � NG.C /. Thus C is normal in ha; b; ci, and obviously

ha; b; ci=C is abelian. Hence ha; b; ci is metabelian.
If G is a torsion-free nilpotent group, then .cm/b D cn implies that cb D c.

In fact, we can argue by induction on the nilpotency class d of G. The result is
obvious if d D 1, that is if G is abelian. By induction we have cbZ.G/ D cZ.G/,
since G=Z.G/ is torsion-free of class d � 1 (see for example 5.2.19 of [27]). Thus
cb D cz for some z 2 Z.G/ and we have cn D .cb/m D .cz/m D cmzm, which
implies that cn�m 2 Z.G/. If n � m 6D 0, then c 2 Z.G/, and obviously cb D c

in this case. If m D n, then Œcm; b� D 1 and Œc; b� D 1, since G is an ordered
group. Hence C � Z.ha; b; ci/ and ha; b; ci is nilpotent of class at most 2, as
required. �

Lemma 9 has the following useful Corollary.

Corollary 4. Let G be an ordered group and let S be a �nite subset of G of �nite

size > 3. Let m D max S and T D S n ¹mº. Suppose that jS2j D 3jS j C b for

some b � jS j � 6. If m … hT i and m … CG.T /, then hSi is metabelian and if G is

nilpotent, then hSi is nilpotent of class at most 2.

Proof. Set jS j D k and m D xk . Since xk … hT i and xk D max S , we have the
partition

S2 D T 2 P[.xkT [ T xk/ P[¹x2
kº:

Moreover jxkT [ T xk j � k by Proposition 2.4 of [10]. Hence

3k C b D jT 2j C 1 C jxkT [ T xk j � jT 2j C 1 C k;

and
jT 2j � 2k C b � 1 � 2k C k � 6 � 1 D 3.k � 1/ � 4:
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Thus, by Corollary 1.4 of [10], there exist elements a; c in G, with ac D ca, such
that T � ¹a; ac; : : : ; achº for some positive integer h.

Furthermore, jT 2j � 2jT j � 1 D 2k � 3 by Theorem 1.1 in [10]. Therefore

jxkT [ T xk j D jS2j � jT 2j � 1 � .4k � 6/ � .2k � 3/ � 1 D 2k � 4

and

jxkT \ T xk j D 2jT j � jxkT [ T xk j � 2.k � 1/ � .2k � 4/ D 2:

Thus Lemma 9 applies. Hence hSi � ha; c; xki is metabelian and and if G is
nilpotent, then hSi is nilpotent of class at most 2, as required. �

Finally, in order to prove Theorem 6, we shall use the following easy conse-
quence of Lemma 4.

Lemma 10. Let G be an ordered group and let x1 < � � � < xk be elements of G.

Let S D ¹x1; : : : ; xkº, with k � 2 and suppose that jS2j � 3jS j C b for some

integer b. Then for any integer i , 1 � i < k, either hx1; : : : ; xiC1i is abelian, or

j¹x1; : : : ; xiº
2j � 3i C b.

Proof. Notice that if b � �3, then hSi is abelian by Theorem 1.3 in [10]. Thefore
we may assume that b � �2.

Our proof is by induction from i D k � 1 down to k D 1. If i D k � 1, then
hx1; : : : ; xiC1i D hSi. Hence, by Lemma 4, either hSi is abelian, or

j¹x1; : : : ; xiº
2j � jS2j � 3 � 3k � 3 C b D 3.k � 1/ C b;

as required.
So assume that 1 � j < k � 1 and that the Lemma holds for i D j C 1.

Moreover, suppose that hx1; : : : ; xj C1i is non-abelian. Then hx1; : : : ; xj C2i is
nonabelian and by our assumptions j¹x1; : : : ; xj C1º2j � 3.j C 1/ C b. It follows
then by Lemma 4 that

j¹x1; : : : ; xj º2j � j¹x1; : : : ; xj C1º2j � 3 � 3j C b;

as required. Therefore the Lemma holds for 1 � i < k, as required. �

We can now prove Theorem 6.

Proof of Theorem 6. Write S D ¹x1; : : : ; xkº, with x1 < � � � < xk , T D

¹x1; : : : ; xtº, V D ¹xtC1; : : : ; xkº, with jT j D jV j D k=2 if k is even, and
jT j D .k � 1/=2, jV j D .k C 1/=2, if k is odd. Then t D jT j � 2sC1 and
v D jV j � 2sC1.

We claim that either hT i or hV i is metabelian (and nilpotent of class at most 2
if G is nilpotent). We shall prove this claim by induction on s.
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The claim is obvious if either hT i or hV i is abelian. So suppose that both are
non-abelian. Then, by Lemma 10, jT 2j � 3t � 2 C s and also jV 2j � 3v � 2 C s,
by considering the ordering opposite to <.

Moreover, because of the ordering, T 2 \ V 2 D ; and xtxtC1; xtC1xt …

T 2 [ V 2. If xt xtC1 D xtC1xt , then by Lemma 3 there exists xj < xt such
that either xj xtC1 or xtC1xj is not in T 2, since hT i is not abelian. Obviously also
xj xtC1; xtC1xj … V 2. Therefore, in any case S2 n .T 2 [ V 2/ � 2.

Now, if

jT 2j � 3t � 2 C
s C 1

2

and

jV 2j � 3v � 2 C
s C 1

2
;

then
jS2j � 3k � 4 C s C 1 C 2 D 3k C s � 1;

a contradiction.
If s D 1, then this contradiction implies that either jT 2j � 3t � 2 or jV 2j �

3v � 2 and by Corollaries 2 and 3 either hT i or hV i is metabelian (and nilpotent
of class at most 2 if G is nilpotent), as claimed.

So suppose that s � 2, and that our claim holds for all smaller values of s.
By the above contradiction, we must have either

jT 2j � 3t � 2 C
s

2

or
jV 2j � 3v � 2 C

s

2
:

Moreover
t � 2sC1 � 2

s
2

C2

and similarly v � 2
s
2

C2, since s � 2. Hence, by induction, either hT i or hV i is
metabelian (and nilpotent of class at most 2 if G is nilpotent), as claimed. The
proof of the claim is complete.

Suppose, without loss of generality, that hT i is metabelian (and nilpotent of
class at most 2, if G is nilpotent). Let X D ¹x1; : : : ; xj º � T be a subset of
S maximal under the condition that hXi is metabelian (and nilpotent of class at
most 2, if G is nilpotent). If X D S , then we have the result.

So suppose that X is a proper subset of S . Under this assumption we shall
reach a contradiction, thus concluding the proof of the Theorem. Because of
the maximality of X , xj C1 … hXi and xj C1 … CG.X/. Hence, if we write
W D ¹x1; : : : ; xj C1º and w D jW j, then jW 2j � 3w � 2 C s, by Lemma 10.
Moreover s � 2 � w � 6, since w � t C 1 � 2sC1 C 1 � s C 4. Therefore
Corollary 4 applies, and hW i is metabelian (and nilpotent of class at most 2, if G

is nilpotent), a contradiction. �
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Finally we can prove our �nal statement.

Proof of Theorem 7. Let G D hai � hb; ci, where hai is an in�nite cyclic group
and hb; ci is a free group of rank 2. Then G is a direct product of two orderable
groups and therefore it is an orderable group. Let k be an integer � 3 and de�ne
S D ¹a; ac; : : : ; ack�2; bº. Write T D ¹a; ac; : : : ; ack�2º. Then b … CG.T /, so in
particular b … hT i. Hence S2 D T 2 P[.bT [T b/ P[¹b2º. We also have ab D ba and
baci D abci 6D acj b for any i 6D j , since hb; ci is free. Hence jbT \ T bj D 1,
which implies that

jbT [ T bj D k � 1 C k � 1 � 1 D 2k � 3:

Since S2 D T 2 P[.bT [ T b/ P[¹b2º, it follows that

jS2j D 2.k � 1/ � 1 C 2k � 3 C 1 D 4k � 5:

Obviously hSi D ha; b; ci D G. In particular, hSi is not soluble. �
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