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1. Introduction

A metric space .X; d/ is uniformly coarsely proper if there exist N W .0; 1/ �
.0; 1/ ! N and a constant rb > 0 such that for all R > r > rb every open ball
of radius R in X can be covered by N.R; r/ open balls of radius r in X . A subset
� � X is (�-)cobounded if there exists a constant � > 0 such that d.x; �/ < �

for all x 2 X and uniformly locally �nite if there exists N W .0; 1/ ! N such that
the cardinality #.� \ B.x; r// � N.r/ for all 0 < r < 1 and all x 2 X . As
usual B.x; r/ D ¹y 2 X W d.x; y/ < rº. A quasi-lattice in .X; d/ is a cobounded
uniformly locally �nite subset � � X , and .X; d/ is uniformly coarsely proper
if and only if it has a quasi lattice [6, Proposition 3.D.16]. A uniformly coarsely
proper space .X; d/ is now said to be non-amenable if there exist a quasi-lattice
� � X and constants C > 0 and r > 0 such that for any �nite subset F � �

#F � C #@rF

where @rF D ¹x 2 �W d.x; F / < r and d.x; � n F / < rº.
A complete geodesic Gromov hyperbolic Riemannian manifold (or metric

graph) with bounded local geometry and quasi-pole is non-amenable if its Gro-
mov boundary consists of �nitely many connected components of strictly positive
diameter; see [3]. We show more generally that a uniformly coarsely proper hyper-
bolic cone over any bounded metric space with �nitely many uniformly coarsely
connected components each containing at least two points is non-amenable; and
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hence that any uniformly coarsely proper visual Gromov hyperbolic space is non-
amenable if its Gromov boundary consists of �nitely many uniformly coarsely
connected components of strictly positive diameter. The terminology and results
are in detail as follows.

A space .X; d/ is Gromov hyperbolic if it satis�es for some ı 2 Œ0; 1/ the
Gromov product inequality

.xjz/w � min¹.xjy/w ; .yjz/wº � ı

for all x; y; z; w 2 X . The hyperbolic cone over a bounded metric space .Z; d/

containing at least two points is the metric space .H.Z/; �/ where H.Z/ D
Z � Œ0; 1/,

�..x; t /; .y; s// D 2 log
�d.x; y/ C max¹e�t ; e�sºD

e�.sCt/=2D

�

;

and D D diam.Z/. A space .X; d/ is "-coarsely connected for " > 0 if for
every x; y 2 X there exists an "-sequence from x to y in X , by which we mean a
�nite sequence of points x D x0; : : : ; xn D y in X such that d.xi ; xiC1/ � "

for all 0 � i � n � 1. If .X; d/ is "-coarsely connected for all " > 0 we
say that .X; d/ is uniformly coarsely connected; a uniformly coarsely connected

component of .X; d/ is any subset of the form C.x; X/ D
S

¹AW x 2 A � X ,
A uniformly coarsely connectedº. If .X; d/ is compact its uniformly coarsely
connected components are its connected components.

Our main result is the following coarse generalisation of [3, Theorem 3.2].

Theorem A. Let .H.Z/; �/ be the hyperbolic cone over a bounded space .Z; d/.

If .H.Z/; �/ is uniformly coarsely proper and .Z; d/ consists of a �nite union of

uniformly coarsely connected components each containing at least two points then

.H.Z/; �/ is non-amenable.

A space is visual if there exists a basepoint so that every point in the space is
contained in the image of some roughly geodesic ray issuing from it; see Section 2.
This gives the following generalisation of [3, Main Theorem 1.1].

Theorem B. If .X; d/ is a uniformly coarsely proper visual Gromov hyperbolic

space whose Gromov boundary consists of a �nite union of uniformly coarsely

connected components each containing at least two points then .X; d/ is non-

amenable.

Proof. As X is visual Gromov hyperbolic its boundary @X is a bounded metric
space and there exists a rough-similarity f W X ! H.@X/; see [2, Proposition 6.2,
Theorem 8.2].

Since @X consists of �nitely many uniformly coarsely connected components
each containing at least two points H.@X/ is non-amenable by Theorem A since
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uniformly coarsely proper is a quasi-isometry invariant by [6, Corollary 3.D.17].
The claim now follows as non-amenability is a quasi-isometry invariant by [1,
Corollary 2.2]. �

The Gromov boundary of a locally compact compactly generated hyperbolic
group is compact so all of its uniformly coarsely connected components are
connected; and if it consists of �nitely many connected components containing
at least two points, it consists of exactly one connected component containing
these points; see for example [5, Section 2.C].

Corollary C. Let G be a locally compact compactly generated hyperbolic group

whose boundary is connected and contains at least two points. Then G is not

geometrically amenable.

Proof. Suppose G is compactly generated by S � G and write .G; dS / for the
corresponding word metric space noting that it is uniformly coarsely proper;
see Lemma 4. By the characterisation of hyperbolic groups [4, Corollary 2.6]
and the Švarc–Milnor Lemma [6, Theorem 4.C.5] there exists a quasi-isometry
f W .G; dS/ ! .X; d/ where .X; d/ is some proper geodesic Gromov hyperbolic
space. This induces a power-quasisymmetry @f W @G ! @X ; see [2, Theorem 6.5].
Since @f is a homeomorphism @X is connected and contains at least two points
and .X; d/ is non-amenable by Theorem B. In particular .G; dS / is non-amenable.
The claim now follows from [7, Corollary 11.14]. �

1.1. Organisation of the paper. In Section 2, we recall the terminology used
for metric spaces not covered in the introduction and prove some folklore results
claiming no originality whatsoever. Section 3 contains the gist of the paper: here
we cover the hyperbolic cone construction; Cao’s graph approximation; and prove
Theorem A adapting techniques from Cao [3] and Vähäkangas [9].
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2. Basic notions and folklore

A subset N � X in .X; d/ is (�-)separated if there exists a constant � > 0 such
that d.x; y/ � � whenever x; y 2 N are distinct. A maximal �-net in .X; d/ is a
�-separated �-cobounded subset N � X . Note that a maximal �-net N � X ¤ ;
always exists for any � > 0 by Zorn’s lemma.

A function f W X ! X 0 between .X; d/ and .X; d 0/ is a .�; �/-quasi-isometric

embedding if there exist constants � � 1 and � � 0 such that

��1d.x; y/ � � � d 0.f .x/; f .y// � �d.x; y/ C �

for all x; y 2 X , and �-essentially surjective if d.x0; f .X// � � for all x0 2 X 0.
A �-essentailly surjective .�; �/-quasi-isometric embedding f W X ! X 0 is a
.�; �/-quasi-isometry and .X; d/ and .X 0; d 0/ are said to be quasi-isometric.
A .�; �/-quasi-isometry f W X ! X 0 is a .�; �/-rough similarity if

�d.x; y/ � � � d 0.f .x/; f .y// � �d.x; y/ C �

for all x; y 2 X .
Abbreviating “from x to y” by x Õ y, we say that a .1; �/-quasi-isometric

embedding 
 W Œa; b� ! X from a compact interval Œa; b� � R is a �-rough

geodesic x Õ y where x D 
.a/ and y D 
.b/. A .1; �/-quasi-isometric
embedding 
 W Œ0; 1/ ! X is called a �-roughly geodesic ray issuing from 
.0/.
A �-rough geodesic 
 W x Õ y can always be parametrised by d.x; y/.

Lemma 1. Given a �-rough geodesic 
 W Œa; b� ! X x Õ y there exists a

2�-rough geodesic ˇW Œ0; d.x; y/� ! X x Õ y.

Proof. Write R D d.x; y/ and assume without loss of generality that Œa; b� D
Œ0; b�. First assume b < R. Extend 
 to ˇW Œ0; R� ! X by ˇ.t/ D 
.t/ for
0 � t � b and ˇ.t/ D 
.b/ D y for b � t � R. Restricted to 0 � t � b

the function ˇ is trivially a 2�-rough geodesic x Õ y. Next, consider the case
when 0 � s � b < t � R. Now,

d.ˇ.s/; ˇ.t// D d.
.s/; 
.b// � .b � s/ C � � .t � s/ C �:

On the other hand, since 
 is a �-rough geodesic jR � bj � �, in particular since
t � R it follows from R � b � � that t � b � �. As t � b > 0, jt � bj � �, and
so also

d.ˇ.s/; ˇ.t// � js � bj � � D js � t j � jt � bj � � � js � t j � 2�:

Finally, if b � s; t � R, again since R � b � � it follows that 0 � s � b � � and
0 � t � b � �. In particular, jt � sj � jt � bj C jb � sj � 2� and we conclude that
ˇ is a 2�-rough geodesic.
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Next, assume R < b. This time de�ne ˇW Œ0; R� ! X by ˇ.t/ D 
.t/ for
0 � t < R, and ˇ.R/ D 
.b/ D y. We claim that ˇ is a 2�-rough geodesic
x Õ y. Clearly ˇW x Õ y, and since jR � bj � � whenever t < R,

d.ˇ.t/; ˇ.R// � jt � bj C � � jt � Rj C jR � bj C � � jt � Rj C 2�;

and similarly,

d.ˇ.t/; ˇ.R// � jt � bj � � � jt � Rj � jR � bj � � � jt � Rj � 2�;

so ˇ is a 2�-rough geodesic as claimed. �

A space .X; d/ is (�-)roughly geodesic if for every x; y 2 X there exists a
�-rough geodesic 
 W Œ0; d.x; y/� ! X x Õ y, and (�-)visual if there exists o 2 X

such that every point in X is contained in the image of a �-roughly geodesic ray
issuing from o.

We end this section with a few clarifying remarks. A space .X; d/ has bounded

growth at some scale if there exist constants R > r > 0 and N 2 N such that any
open ball of radius R in X can be covered by N open balls of radius r in X ;
see [2]. This is used by Cao in the context of geodesic spaces in [3] and we note
the following.

Lemma 2. If .X; d/ is a length space then it is uniformly coarsely proper if and

only if it has bounded growth at some scale.

Proof. If .X; d/ is uniformly coarsely proper it has bounded growth at some scale.
So suppose .X; d/ has bounded growth at some scale R > r > 0 and cover
B.x; R/ by N open balls B.x1; r/; : : : ; B.xi ; r/; : : : ; B.xN ; r/. Since .X; d/ is
a length space, for each y 2 B.x; 2R � r/ there exists y0 2 B.x; R/ such that
d.y; y0/ � R � r . Thus, for any y 2 B.x; 2R � r/ we can �nd y0 2 B.x; R/ and
xi as above such that

d.xi ; y/ � d.xi ; y0/ C d.y0; y/ � r C R � r D R:

In other words, B.x1; R/; : : : ; B.xN ; R/ cover B.x; 2R � r/, and it follows that
B.x; 2R � r/ can be covered by N 2 balls of radius r . By induction, for any n 2 N,
the ball B.x; .n C 1/R � nr/ can be covered by N nC1 open balls of radius r . �

Being uniformly coarsely proper is an invariant under metric coarse equiva-
lence by [6, Corollary 3.D.17]. For the readers convenience, we give a short proof
for quasi-isometries proving an explicit estimate for the scale as well.

Lemma 3. Suppose f W X ! X 0 is a .�; �/-quasi-isometry between .X; d/ and

.X 0; d 0/. If .X; d/ is uniformly coarsely proper for R > r > rb then .X 0; d 0/ is

uniformly coarsely proper for R0 > r 0 > �� C � C rb�.
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Proof. Since f W X ! X 0 is a .�; �/-quasi-isometry, it is has a .�; 3��/-quasi-
isometric coarse inverse gW X 0 ! X where d 0.f .g.y//; y/ � �� for all y 2 X 0;
see [8]. Let R0 > �� C � C rb�. We claim that any B.y; R0/ � X 0 can be covered
by N 0.R0; r 0/ open balls or radius R0 > r 0 > �� C � C rb�. To begin

g.B.y; R0// � B.g.y/; �R0 C 3��/;

and the latter can be covered by N D N.�R0C3��; s/ balls B.x1; s/; : : : ; B.xN ; s/

of radius s > rb as X is uniformly coarsely proper. Choose s D ��1r 0 ���1���.
Now E D f .B.g.y/; �R0 C 3��// is covered by the sets f .B.xi ; s// and as

f .B.xi ; s// � B.f .xi/; �s C �/ D B.f .xi /; r 0 � ��/

the balls B.f .xi/; r 0���/ cover E. Now since d 0.f .g.y//; y/ � �� for all y 2 X 0

B.y; R0/ � ¹x 2 X 0W d 0.x; f .g.B.y; R0//// � ��º � ¹x 2 X 0W d 0.x; E/ � ��º;

and as E is covered by the balls B.f .xi /; r 0���/, the set ¹x 2 X 0W d 0.x; E/ � ��º
is covered by the balls B.f .xi /;r

0/ covering B.y;R/ as well. Letting N 0.R0;r 0/DN

it follows that .X 0; d 0/ is uniformly coarsely proper for R0 >r 0 >��C�Crb�. �

The following appears in the proof of Corollary C.

Lemma 4. If G is locally compact and compactly generated by S then .G; dS / is

uniformly coarsely proper.

Proof. By [7, Proposition 6.6] the word metric space .G; dS / is quasi-isometric
to a connected metric graph .X; d/ of bounded valency implying it has bounded
growth at some scale. Since .X; d/ is geodesic this implies that .X; d/ is uniformly
coarsely proper by Lemma 2. The claim now follows since being uniformly
coarsely proper is a quasi-isometry invariant. �

3. The hyperbolic cone

The original construction of the hyperbolic cone is due to Bonk and Schramm who
introduced in [2] the metric space .Con.Z/; �BS/ over a bounded metric space
.Z; d/ where Con.Z/ D Z � .0; D� for D D diam.Z/ assuming that D > 0, and

�BS..x; t /; .y; s// D 2 log
�d.x; y/ C max¹t; sºp

t s

�

:

We note that .Con.Z/; �BS/ and .H.Z/; �/ are isometric where the isometry from
.Con.Z/; �BS/ to .H.Z/; �/ is given by .x; t / 7! .x; log D � log t /: We use this
observation implicitly when making use of the results in [2].
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3.1. Elementary structure of the hyperbolic cone. For every 0 � r < 1,
single out the following subsets of H.Z/:

Br D Z � Œ0; r/; xBr D Z � Œ0; r�; Sr D Z � ¹rº:

Lemma 5. Let .Z; d/ be a bounded space containing at least two points. Then

(i) the hyperbolic cone .H.Z/; �/ is 2�-roughly geodesic for some � � 0;

(ii) for every x 2 Z the map �x W Œ0; 1/ ! H.Z/ given by �x.r/ 7! .x; r/ is a

geodesic ray in .H.Z/; �/;

(iii) if .Z; d/ is uniformly coarsely connected then H.Z/ n Br is uniformly

coarsely connected.

Proof. (i) The claim follows by Lemma 1 observing that for every x; y 2 H.Z/

there exists a �-rough geodesic 
 W Œa; b� ! H.Z/ x Õ y by [2, Theorem 7.2].

(ii) Fix x 2 Z and let 0 � r � s. The claim follows from observing that now

�.�x.r/; �x.s// D 2 log

�

e�s

e�.sCr/=2

�

D s � r:

(iii) By (ii) we can assume that t D s D r . As .Z; d/ is .D.e"=2 � 1/=er/-
coarsely connected for every " > 0 the space .Sr ; �jSr

/ is "-coarsely connected
for every " > 0 from which the claim follows. �

Let t � 0 and de�ne the projections

�t WH.Z/ �! St by �t .p; s/ D .p; t/

and

hWH.Z/ �! Œ0; 1/ by h.p; s/ D s:

Lemma 6. �t WH.Z/ ! St restricted to H.Z/ n Bt is 1-Lipschitz.

Proof. Let .p; r/; .q; s/ 2 H.Z/ n Bt and t � s � r . The claim follows observing
that

�.�t.p; r/; �t.q; s// D 2 log
�d.p; q/

e�tD
C 1

�

� 2 log
�d.p; q/

e�sD
C 1

�

D 2 log
�d.p; q/ C max¹e�s; e�rºD

e�sD

�

� 2 log
�d.p; q/ C max¹e�s; e�rºD

e�.sCr/=2D

�

D �..p; r/; .q; s//: �
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Lemma 7. If .p; r/ 2 H.Z/ and ı > 0 then B..p; r/; ı/ � Z � .r � ı; r C ı/:

In particular if x; y 2 B..p; r/; ı/ then jh.x/ � h.y/j < 2ı.

Proof. Let .q; s/ 2 B..p; r/; ı/. The claim follows observing that

jr � sj D �..p; r/; .p; s//

D 2 log
�max¹e�r ; e�sºD

e�.rCs/=2D

�

� 2 log
�d.p; q/ C max¹e�r ; e�sºD

e�.rCs/=2D

�

D �..p; r/; .q; s// < ı: �

3.2. Intrinsic structure of the hyperbolic cone. By Lemma 5 the hyperbolic
cone .H.Z/; �/ is 2�-roughly geodesic for some � � 0 and we �x

L.�/ D 1 C 2� � 1:

De�ne
�r WH.Z/ n Br � H.Z/ n Br �! Œ0; 1�

for all r � 0 by

�r .x; y/ D inf
°

n�1
X

iD0

�.yi ; yiC1/W

x D y0; : : : ; yn D y an L.�/-sequence in H.Z/ n Br

±

:

This replaces dr in [3, Section 3]. An L.�/-sequence x Õ y in H.Z/ n Br is
called an admissible sequence for �r.x; y/.

Lemma 8. If .Z; d/ is a bounded uniformly coarsely connected space containing

at least two points then �r is a metric on H.Z/ n Br .

Proof. By Lemma 5 there exists an admissible sequence x Õ y for any x; y 2
H.Z/ n Br so �r.x; y/ < 1. That �r.x; y/ D 0 if and only if x D y holds as
�r .x; y/ D �.x; y/ if �.x; y/ � L.�/. The rest is clear. �

The following is left as an elementary exercise in analysis.

Lemma 9. For any " > 0 there exists a constant �."/ > 1 such that

1 C e�st � .1 C t /�."/�s

for all s � 0 and all t 2 Œ0; e"�. �
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The following now generalises [3, Lemma 3.1].

Proposition 10. Suppose .Z; d/ is a bounded uniformly coarsely connected space

containing at least two points x; y 2 Z and �x W Œ0; 1/ ! H.Z/, �x.t / D .x; t /,

and �y W Œ0; 1/ ! H.Z/, �y.t / D .y; t /. Then

�rCt.�x.r C t /; �y.r C t // � �.L.�//t�r.�x.r/; �y.r//;

for all r � 0 and all t � 0.

Proof. Without loss of generality suppose t > 0 and let ..pi ; ti//i be an admissible
sequence for �rCt.�x.r C t /; �y.r C t //: Since �r is 1-Lipshitz by Lemma 6, the
sequence ..pi ; r//i is an admissible sequence for �r.�x.r/; �y.r// and

�..pi ; r/; .piC1; r// D 2 log
�d.pi ; piC1/ C e�rD

e�rD

�

D 2 log
�

1 C e�t d.pi ; piC1/

e�.rCt/D

�

� 2 log
�

1 C d.pi ; piC1/

e�.rCt/D

��.L.�//�t

� �.L.�//�1�..pi ; ti/; .piC1; tiC1//

by Lemma 9 since
d.pi ; piC1/

e�.rCt/D
� eL.�/;

observing that

log
�

1 C d.pi ; piC1/

e�.rCt/D

�

� log
�

1 C d.pi ; piC1/

e�.ti CtiC1/=2D

�

� log
�max¹e�ti ; e�tiC1ºD C d.pi ; piC1/

e�.ti CtiC1/=2D

�

� �..pi ; ti/.piC1; tiC1//

� L.�/:

The claim now follows observing that

�r .�x.r/; �y.r// �
n�1
X

iD0

�..pi ; r/; .piC1; r//

� �.L.�//�t

n�1
X

iD0

�..pi ; ti/; .piC1; tiC1//;

and taking the in�mum over all admissible sequences for �rCt.�x.r C t /,
�y.r C t //. �
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The following lemma now replaces [3, Assertion 3.1].

Lemma 11. Suppose .Z; d/ is a bounded uniformly coarsely connected space

containing at least two points. If y D .p; r/ 2 H.Z/ and t � 2L.�/ then

B..p; r C t /; t=.2L.�/// � At=2
y � Œr; r C 2t �

where A
t=2
y D ¹x 2 Sr W �r.y; x/ < t=2º.

Proof. Towards a contradiction, suppose there exists a point

z 2 B..p; r C t /; t=.2L.�/// n At=2
y � Œr; r C 2t �: (1)

Since 2L.�/ � 2, by Lemma 7

r C t=2 � r C t � t=.2L.�// � h.z/ � r C t C t=.2L.�// � r C 3t=2

for all t � 2L.�/. As z … A
t=2
y � Œr; r C 2t �

�r .y; �r.z// � t=2; (2)

for otherwise �r .z/ 2 A
t=2
y and h.z/ < r C 2t which implies that z 2 A

t=2
y � Œr;

r C 2t � after all, contradicting (1). By Proposition 10 we now have

�rCt=2..p; r C t=2/; �rCt=2.z// � �.L.�//t=2�r.y; �r.z// � �.L.�//t=2t=2 (3)

for all t � 2L.�/. Estimating the left-hand side from above we arrive at a
contradiction completing the proof. Towards this,

�rCt=2..p; r C t=2/; �rCt=2.z//

� �rCt=2..p; r C t=2/; .p; r C t // C �rCt=2..p; r C t /; �rCt=2.z//

� t=2 C �rCt=2..p; r C t /; z/ C �rCt=2.z; �rCt=2.z//

� t=2 C �rCt=2..p; r C t /; z/ C 3t=2 � t=2

D 3t=2 C �rCt=2..p; r C t /; z/:

(4)

To estimate �rCt=2..p; r C t /; z/ from above, let 
 W Œ0; �..p; r C t /; z/� ! H.Z/

be a 2�-rough geodesic .p; r C t / Õ z by Lemma 5, �x m 2 N such that m � 1 �
�..p; rCt /; z/ � m, and let xk D 
..k�..p; rCt /; z/=m// for k 2 ¹0; : : : ; mº � N.
We claim that .xk/k is an admissible sequence for �rCt=2..p; r C t /; z/. To begin,
.xk/k is an L.�/-sequence .p; r C t / Õ z of length m since

�.xk; xkC1/ � �..p; r C t /; z/=m C 2� � 1 C 2� D L.�/:
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The sequence is admissible if xk 2 H.Z/ n BrCt=2 for all k 2 ¹0; : : : ; mº. To see
that this is the case, note that if h.xk/ < r C t=2 then �.x0; xk/ > t=2 and

t=2 < �.x0; xk/

� k�..p; r C t /; z/=m C 2�

� �..p; r C t /; z/ C 2�

� t=.2L.�// C 2�

for all t � 2L.�/ which is not possible. Thus,

�rCt=2..p; r C t /; z/ � mL.�/ � .t=.2L.�// C 1/L.�/;

which together with (4) gives that

�rCt=2..p; r C t=2/; �rCt=2.z// � 3t=2 C .t=.2L.�// C 1/L.�/ � 5L.�/t=2

for all t � 2L.�/. Together with (3) this implies that 5L.�/ � �.L.�//t=2 for
all t � 2L.�/ which is impossible. Thus, z as in (1) can not exist and the claim
follows. �

3.3. Cao’s graph structure. In this section we approximate the hyperbolic
cone by a graph structure due to Cao in [3]. Here by a graph we mean a 1-
dimensional abstract simplicial complex � whose 0-simplexes are its vertices and
its 1-simplexes its edges. We write �.0/ for the set of vertices and �.1/ for the set

of edges, and whenever ¹u; vº 2 �.1/ we say that u and v are neighbours and write
u � v. Let N.v/ D ¹uW u � vº. If for some constant c 2 N it holds that #N.v/ � c

for all v 2 �.0/ we say that � has bounded valency (by c).
A graph structure .�X; d�/ on .X; d/ is a pair where �X is a graph with vertex

set �X .0/ D X and d� W X � X ! Œ0; 1� is given by

(1) d�.x; y/ D 0 if and only if x D y,

(2) d�.x; y/ D n if the shortest edge path x Õ y is of length n,

(3) d�.x; y/ D 1 if there is no edge path x Õ y,

where an edge path x Õ y (of length n 2 N) is any �nite sequence x D
x0; : : : ; xn D y of points in X such that xi � xiC1 for all 0 � i � n � 1.

Cao’s graph structure. Suppose .H.Z/; �/ is 2�-roughly geodesic and uni-
formly coarsely proper for R > r > rb and �x ı > 0 and r0 > 0 such that

r0=3 >ı > c.�/.rb C 1/ (�0)

and

�.L.�//r0 >8ıN.10ı; ı=c.�// (�1)
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where c.�/ D 2L.�/ � 2 hold. For i 2 N, let Nir0
D ¹.pi;˛; ir0/W ˛ 2 Iiº be a

maximal ı-net in .Sir0
; �ir0

/ indexed by Ii and write

qi;˛ D .pi;˛; ir0/;

vi;˛ D �ir0Cı.qi;˛/;

A.qi;˛/ D B�ir0
.qi;˛; 3ı/ \ Sir0

;

V .vi;˛/ D A.qi;˛/ � Œir0; .i C 1/r0�:

The graph structure .�H.Z/; d�/ where

�H.Z/.0/ D
[

i2N

�ir0Cı.Nir0
/

and

�H.Z/.1/ D ¹¹u; vºW V.u/ \ V.v/ ¤ ;º

is called Cao’s graph structure and �H.Z/ the Cao graph.

3.4. Basic properties of Cao’s graph structure. We now prove that Cao’s graph
structure approximates the hyperbolic cone.

Proposition 12. Let .Z; d/ be a bounded uniformly coarsely connected space

containing at least two points with uniformly coarsely proper hyperbolic cone

.H.Z/; �/. Then

(i) �H.Z/.0/ is ı=c.�/-separated in .H.Z/; �/;

(ii) �H.Z/.0/ is 2r0-cobounded in .H.Z/; �/;

(iii) .�H.Z/; d�/ is quasi-isometric to .H.Z/; �/;

(iv) �H.Z/.0/ is countable and �H.Z/ has bounded valency by N.10r0; ı=c.�//.

Proof. (i) Suppose v 2 �H.Z/.0/ where v D �ir0Cı.q/ for q 2 Nir0
. By

Lemma 11

B.v; ı=c.�// � Aı=2
q � Œh.q/; h.q/ C 2ı�;

and
.Aı=2

q � Œh.q/; h.q/ C 2ı�/ \ .Aı=2
p � Œh.p/; h.p/ C 2ı�/ D ;

if q 2 Nir0
and p 2 Njr0

are distinct points since Nir0
is a maximal ı-net in

.Sir0
; �ir0

/ and r0 > 3ı by (�0). Hence �.u; v/ � ı=c.�/ if u and v are distinct
vertices in the Cao graph. The claim now follows.
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(ii) Let z 2 H.Z/, i 2 N such that ir0 � h.z/ < .i C 1/r0, and q 2 Nir0
such

that �ir0
.�ir0

.z/; q/ � ı. Now

�.z; �H.Z/.0// � �.z; �ir0Cı.q//

� �.z; �ir0
.z// C �.�ir0

.z/; �ir0Cı.q//

� r0 C �i0r0
.�ir0

.z/; q/ C �.q; �ir0Cı.q//

� r0 C ı C ı < 2r0

since r0 > 3ı by (�0). The claim now follows.

(iii) By (ii) it su�ces to show that the inclusion .�H.Z/.0/; d�/ ,! .H.Z/; �/

is a quasi-isometric embedding. Explicitly, we prove that

1

8r0

�.u; v/ � d�.u; v/ < 3r0�.u; v/ (5)

for all u; v 2 �H.Z/.0/. We begin by proving the right-hand side of (5). Let
u; v 2 �H.Z/.0/ be distinct vertices, 
 W Œ0; r� ! H.Z/ a 2�-rough geodesic
u Õ v where r D �.u; v/ which exists by Lemma 5, and m 2 N such that
m � 1 < r � m. Now,

�.
.kr=m/; 
..k C 1/r=m// � r=m C 2� � 1 C 2� D L.�/

for every k 2 ¹0; : : : ; m � 1º � N. For each k 2 ¹0; : : : ; mº � N choose
qi.k/;˛.k/ 2 Ni.k/r0

such that �i.0/Cı.qi.0/;˛.0// D u, �i.m/Cı.qi.m/;˛.m// D v,
and

i.k/r0 � h.
.kr=m// < .i.k/ C 1/r0;

�i.k/r0
.qi.k/;˛.k/; �i.k/r0


.kr=m// < ı;

and write vi.k/;˛.k/ D �i.k/r0Cı.qi.k/;˛.k// as usual. Let i0 D min¹i.k/; i.k C 1/º.
Since the restriction of �i0r0

to H.Z/ n Bi0r0
is 1-Lipschitz by Lemma 6,

�.�i0r0

.i.k/r=m/; �i0r0


.i.k C 1/r=m// � L.�/

so �i0r0
.�i0r0


.i.k/r=m/; �i0r0

.i.k C 1/r=m// � L.�/: Choose p; q 2 Ni0r0

such that

�i0r0
.p; �i0r0


.i.k/r=m// < ı;

�i0r0
.q; �i0r0


.i.k C 1/r=m// < ı;

and note that by Lemma 6 and (�0)

�ir0
.p; q/ � �i0r0

.p; �i0r0

.i.k/r=m//

C �i0r0
.�i0r0


.i.k/r=m/; �i0r0

.i.k C 1/r=m//

C �i0r0
.�i0r0


.i.k C 1/r=m/; q/

< ı C L.�/ C ı < 3ı:
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Thus p 2 A.q/ so �i0r0Cı.p/ 2 V.�i0r0Cı.q// and

d�.�i0r0Cı.p/; �i0r0Cı.q// � 1;

giving

d�.vi.k/;˛.k/; vi.kC1/;˛.kC1//

� 1 C d�.vi.k/;˛.k/; �i0r0Cı.p// C d�.�i0r0Cı.q/; vi.kC1/;˛.kC1//:

However, since ji.k/ � i.k C 1/j � 1

�i.k/r0
.
.kr=m// 2 V.vi.k/;˛.k// \ V.�i0r0Cı.p//;

�i.kC1/r0
.
.i.k C 1/r=m// 2 V.vi.kC1/;˛.kC1// \ V.�i0r0Cı.q//;

so d�.vi.k/;˛.k/; �i0r0Cı.p// � 1 and d�.vi.kC1/;˛.kC1/; �i0r0Cı.q// � 1, and
altogether

d�.vi.k/;˛.k/; vi.kC1/;˛.kC1// � 3:

Finally

d�.u; v/ �
m�1
X

kD0

d�.vi.k/;˛.k/; vi.kC1/;˛.kC1//

� 3m � 3.r C 1/

D 3�.u; v/ C 3

� 3.1 C c.�/=ı/�.u; v/

< 3r0�.u; v/

as �.u; v/ � ı=c.�/ by (i) which gives the the right-hand side of (5). To prove
the left-hand side of (5) let u; v 2 �H.Z/.0/ be two vertices. Without loss of
generality, assume that d�.u; v/ D n 2 N n ¹0º is realised by the edge path
u D x0; : : : ; xn D v. Since xi � xiC1 it follows that V.xi / \ V.xiC1/ ¤ ;
where diam.V .xi// < 4r0 for all 0 � i � n � 1. Thus �.xi ; xiC1/ < 8r0 for all
0 � i � n � 1 and

�.u; v/ �
n�1
X

kD0

�.xi ; xiC1/ < 8r0n D 8r0d�.u; v/;

which gives the left-hand side of (5) and the claim follows.

(iv) For n 2 N let

Cn D ¹B.v; ı=c.�//W v 2 �H.Z/.0/ and h.v/ � nr0 C ıº

so
�H.Z/.0/ �

[

n2N

[

Cn:
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We claim that #Cn < 1 for every n 2 N from which the claim then follows.
By Lemma 7 for any z 2 S0 and n 2 N

[

Cn � B.z; nr0 C ı=c.�/ C ı C diam.Snr0Cı=c.�/Cı// � B.z; 5.n C 2/r0/

using (�0) together with

diam.Snr0Cı=c.�/Cı/ � 2 log
�D C e�.nr0Cı=c.�/Cı/D

e�.nr0Cı=c.�/Cı/D

�

D 2 log.enr0Cı=c.�/Cı C 1/:

Let R.n/ D 5.n C 2/r0. Since R.n/ > rb by (�0) and .H.Z/; �/ is uniformly
coarsely proper B.z; R.n// is covered by N.R.n/; ı=c.�// balls of radius ı=c.�/

and #Cn � N.R.n/; ı=c.�// by part (i) and it follows that �H.Z/.0/ is countable.
To see that �H.Z/ has bounded valency note that if v � u then d�.v; u/ � 1 and
by inequality .5/ above �.v; u/ � 8r0: In particular

B.u; ı=c.�// � B.v; 9r0 C ı=c.�//;

and B.v; ı=c.�// \ B.v; ı=c.�// D ; by part (i) if v and u are distinct vertices in
the Cao graph. Once again, since .H.Z/; �/ is uniformly coarse proper

#N.v/ � N.9r0 C ı=c.�/; ı=c.�// � N.10r0; ı=c.�//

from which the claim follows. �

The following lemma now replaces [3, Assertion 3.2].

Lemma 13. Let .Z; d/ be a bounded uniformly coarsely connected space contain-

ing at least two points with uniformly coarsely proper hyperbolic cone .H.Z/; �/.

Then for any i 2 N and any q 2 Sir0

#V.i; q/ � N.10ı; ı=c.�//

where V.i; q/ D ¹vi;˛ 2 �H.Z/.0/W �ir0
.qi;˛; q/ < 4ıº.

Proof. Suppose vi;ˇ 2 V.i; q/. As A
ı=2
qi;ˇ

� A.qi;ˇ / and � � �ir0

B.vi;ˇ ; ı=c.�// � A.qi;ˇ/ � Œir0; ir0 C 2ı� � B.q; 10ı/

by Lemma 11. By Proposition 12 the balls B.vi;˛; ı=c.�// and B.vi;ˇ ; ı=c.�//

are disjoint if vi;˛ ¤ vi;ˇ . Thus #V.i; q/ � N.10ı; ı=c.�// since .H.Z/; �/ is
uniformly coarsely proper and ı=c.�/ > rb. �
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We use this to �nd a uniform upper bound for the downward �ow in the Cao
graph.

Proposition 14. Let .Z; d/ be a bounded uniformly coarsely connected space

containing at least two points with uniformly coarsely proper hyperbolic cone

.H.Z/; �/. Let v 2 �H.Z/.0/ and

N �.v/ D ¹w 2 �H.Z/.0/W w � v and h.w/ D h.v/ � r0º:

Then

#N �.v/ � N.10ı; ı=c.�//

for all v 2 �H.Z/.0/.

Proof. Fix vi;˛ 2 �H.Z/.0/. If i D 0 then N �.vi;˛/ D ; so assume i � 1 and
let vj;ˇ 2 N �.vi;˛/. Then j D i � 1 and V.vi;˛/ \ V.vi�1;ˇ / ¤ ;. In particular,
there exists y 2 A.qi;˛/ such that �ir0

.qi;˛; y/ < 3ı and

�.i�1/r0
.�.i�1/r0

.y/; �.i�1/r0
.qi;˛// � �.L.�//�r0�ir0

.y; qi;˛/

< 3ı�.L.�//�r0

< ı

by Proposition 10 and (�1). As y 2 V.vi�1;ˇ /

�.i�1/r0
.qi�1;ˇ ; �.i�1/r0

.qi;˛//

� �.i�1/r0
.qi�1;ˇ ; �.i�1/r0

.y// C �.i�1/r0
.�.i�1/r0

.y/; �.i�1/r0
.qi;˛//

< 3ı C ı D 4ı;

so qi�1;ˇ 2 V.i � 1; �.i�1/r0
.qi;˛// and so #N �.vi;˛/ � N.10ı; ı=c.�// by

Lemma 13. �

The following gives a uniform lower bound for the upward �ow in the Cao
graph.

Proposition 15. Let .Z; d/ be a bounded uniformly coarsely connected space

containing at least two points with uniformly coarsely proper hyperbolic cone

.H.Z/; �/. Let v 2 �H.Z/.0/ and N C.v/ D ¹w 2 �H.Z/.0/W w � v and h.w/ D
h.v/ C r0º. Then

2N.10ı; ı=c.�// � #N C.v/

for all v 2 �H.Z/.0/ with h.v/ > ı.
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Proof. Let vi;˛ 2 �H.Z/.0/ such that ı < h.vi;˛/ D ir0 C ı. Now i � 1 and

diam�ir0
.Sir0

/ � diam�.Sir0
/

� 2 log
�D C e�ir0D

e�ir0D

�

D 2 log
�

eir0 C 1
�

� 2ir0

� 2r0

> 6ı

by (�0). Fix m D 2N.10ı; ı=c.�// and let k 2 ¹0; : : : ; mº � N. Now, for all
0 � k=m � 1 there exist xk=m 2 Sir0

such that

k=m � " � �.qi;˛; xk=m/ � k=m C "

for any 0 < " < 1=.4m/ since .Sir0
; �jSir0

/ is uniformly coarsely connected. In
particular if k1=m ¤ k2=m, say k1 > k2, then

�ir0
.xk1=m; xk2=m/ � �.xk1=m; xk2=m/

� �.xk1=m; qi;˛/ � �.qi;˛; xk2=m/

� k1=m � " � .k2=m C "/

� .k1 � k2/=m � 2"

� 1=m � 2"

> 1=.2m/;

as 0 < " < 1=.4m/. For each k 2 ¹0; : : :mº let yk D �.iC1/r0
.xk=m/. As

previously for k1 > k2,

�.iC1/r0
.yk1

; yk2
/ D �.iC1/r0

.�.iC1/r0
.xk1=m/; �.iC1/r0

.xk2=m//

� �.L.�//r0�ir0
.xk1=m; xk2=m/

� �.L.�//r0

2m

D �.L.�//r0

4N.10ı; ı=c.�//

> 2ı

by Lemma 10 and (�1). Now for each yk choose qk 2 N.iC1/r0
such that

�.iC1/r0
.yk; qk/ < ı
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noting that �.iC1/r0Cı.qk/ � vi;˛ since yk 2 V.�.iC1/r0Cı.qk// \ V.vi;˛/.
Moreover, �.iC1/r0Cı.qk1

/ ¤ �.iC1/r0Cı.qk2
/ whenever k1 > k2 since

�.iC1/r0
.qk1

; qk2
/ � �.iC1/r0

.yk1
; yk2

/ � �.iC1/r0
.yk1

; qk1
/

� �.iC1/r0
.qk2

; yk2
/

> 2ı � 2ı

D 0:

Thus ¹0; : : : mº ! N C.vi;˛/ for k 7! �.iC1/r0Cı.qk/ is an injection and
#N C.vi;˛/ � 2N.10ı; ı=c.�// for i � 1 proving the claim. �

3.5. Non-amenability of the hyperbolic cone. Let .H.Z/; �/ be uniformly
coarsely proper, let

R
�H.Z/.0/ D ¹f W �H.Z/.0/ �! Rº;

and let

�WR�H.Z/.0/ �! R
�H.Z/.0/

be the graph Laplacian given by

�f .v/ D 1

#N.v/

�

X

w�v

f .w/
�

� f .v/:

Lemma 16. Let .Z; d/ be a bounded uniformly coarsely connected space contain-

ing at least two points with uniformly coarsely proper hyperbolic cone .H.Z/; �/.

If there exist a Lipschitz function f W �H.Z/.0/ ! R and C > 0 such that

�f .v/ > C for every v 2 �H.Z/.0/ then .H.Z/; �/ is non-amenable.

Proof. By Proposition 12 the assumptions in [3, Proposition 2.3] hold so the
Cheeger constant of �H.Z/ is strictly positive, equivalently, .�H.Z/; d�/ is
non-amenable. The claim follows as .H.Z/; �/ and .�H.Z/; d�/ are quasi-
isometric. �

Theorem A. Let .H.Z/; �/ be the hyperbolic cone over a bounded space .Z; d/.

If .H.Z/; �/ is uniformly coarsely proper and .Z; d/ consists of a �nite union of

uniformly coarsely connected components each containing at least two points then

.H.Z/; �/ is non-amenable.
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Proof. First suppose .Z; d/ is uniformly coarsely connected and contains at least
two points. Since jh.vi;˛/ � h.vj;ˇ /j D jir0 C ı � jr0 � ıj � ji � j jr0 � r0

whenever vi;˛ � vj;ˇ it follows that h is r0-Lipschitz on �H.Z/.0/. Moreover,
if i � 1

�h.vi;˛/

r0

D 1

#N.vi;˛/r0

X

vj;ˇ�vj;˛

.h.vj;ˇ / � h.vi;˛//

D #N C.vi;˛/ � #N �.vi;˛/

#N.vi;˛/

� 2N.10ı; ı=c.�// � N.10ı; ı=c.�//

N.10r0; ı=c.�//

� 1

N.10r0; ı=c.�//

> 0

by Lemma 14 and Lemma 15 where #N.vi;˛/ � N.10r0; ı=c.�// for all vi;˛ 2
�H.Z/.0/ by Lemma 12. If i D 0 we have N �.vi;˛/ D ; and the same lower
bound holds for �h. Thus .H.Z/; �/ is non-amenable by Lemma 16.

Now suppose that .Z; d/ is a �nite union of uniformly coarsely connected
components Z D Z1 t � � � t Zn where each component Zi contains at least
two points. To see that .H.Z/; �/ is non-amenable let � D �1 t � � � t �n �
H.Z/ be a quasi-lattice in .H.Z/; �/ such that �i � H.Zi / is a quasi-lattice in
.H.Zi /; �jH.Zi //, and let F � � be any �nite set and write Fi D F \ H.Zi / so
that F D F1 t� � �tFn. By the �rst part of the proof each .H.Zi /; �jH.Zi // is non-
amenable, so for some constants Ci > 0 and ri > 0 the isoperimetric inequality
#Fi � Ci#@ri

Fi holds and hence

#F D #F1 C � � � C #Fn � C1#@r1
F1 C : : : Cn#@rn

Fn � C #@rF

for C D max¹C1; : : : ; Cnº and r D max¹r1; : : : ; rnº. The claim now follows. �
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