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1. Introduction

Any action of a locally compact group G on a measure space .X; �/ where �

is a G-quasi-invariant measure gives rise to a unitary representation, after renor-

malization with the square root of the Radon–Nikodym derivative of the action

1 The author is supported by ERC Grant 306706.
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of G on .X; �/. This unitary representation is called a quasi-regular represen-
tation, and generalizes the standard notion of quasi-regular representations given

by G Õ G=H where H is a closed subgroup of G, and G=H always carries a

G-quasi-invariant measure.

The dynamical properties of the action G Õ .X; �/ can be re�ected in a such

representation.

In the context of fundamental groups of compact negatively curved manifolds,

U. Bader and R. Muchnik prove in [3, Theorem 3] an equidistribution theorem

for some operator-valued measures. This theorem can be thought as a general-

ization of von Neumann’s mean ergodic theorem for quasi-invariant measures for

fundamental groups acting on the Gromov boundary of universal covers of com-

pact negatively curved manifolds endowed with the Patterson–Sullivan measures.

These quasi-regular representations are called boundary representations. It turns

out that the irreducibility of boundary representations follows from this general-

ization of von Neumann’s ergodic theorem. We refer to [4], [3], [11], [12], [14],

and [19] for examples of natural irreducible quasi-regular representations which

are related to the following conjecture.

Conjecture 1. For a locally compact group G and a spread-out probability
measure � on G, the quasi-regular representation associated to a �-boundary
of G is irreducible.

In this paper, we generalize the work of U. Bader and R. Muchnik to a larger

class of discrete groups of isometries of CAT.�1/ spaces containing convex co-

compact groups of isometries of CAT.�1/ spaces with a non-arithmetic spec-

trum and (non-uniform) lattices of Riemannian symmetric spaces of non-compact

type of rank one. Our results are based on the fundamental work of T. Roblin

in [22]. The main tool of this paper is an equidistribution theorem of T. Roblin

(see Subsection 4.3) which is inspired by the ideas of G. Margulis (see [20]),

based on the mixing property of the geodesic �ow. Following the technical ideas

developed in [3] and using Roblin’s equidistribution theorem, we obtain a dy-

namical explanation of irreducibility of boundary representations in the context

of CAT.�1/ spaces: it comes from the mixing property of the geodesic �ow.

Nevertheless this approach does not work in the context of general hyperbolic

groups and we refer to [11], [12], [19] and more recently [14] for di�erent ap-

proaches.

Moreover, we prove two equidistribution results for densities associated with

the Poisson kernel and the square root of the Poisson kernel in CAT.�1/ spaces

with respect to the weak* convergence of the dual space of L1 functions on the

boundary.

Main Results. The Banach space of �nite signed measures on a topological

compact space Z is, by the Riesz representation theorem, the dual of the space
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of the continuous functions C.Z/. The Banach space of bounded linear operators

from the Banach space of continuous functions to the Banach space of bounded

operators on a Hilbert space will be denoted by L.C.Z/;B.H//. Observe that

L.C.Z/;B.H// is isomorphic as a Banach space to the dual of the Banach space

C.Z/ y̋H y̋ SHwhere SH denotes the conjugate Hilbert space of the complex Hilbert

spaceH, and y̋ denotes the projective tensor product. HenceL.C.Z/;B.H//will

be called the space of operator-valued measures.
Let � be a non-elementary discrete group of isometries of .X; d/ a proper

CAT.�1/ metric space (i.e. the balls are relatively compact). We denote by @X

its Gromov boundary, and let xX be the topological space X [ @X endowed with

its usual topology that makes xX compact. Recall the critical exponent ˛.�/ of �:

˛.�/ WD inf
°
s 2 R

�
C

ˇ̌
ˇ

X


2�

e�sd.
x;x/ < 1
±
:

Notice that the de�nition of ˛.�/ does not depend on x. We assume from now on

that ˛.�/ < 1.

The limit set of � denoted by ƒ� is the set of all accumulation points in @X

of an orbit. Namely ƒ� WD �x \ @X , with the closure in xX . Notice that the limit

set does not depend on the choice of x 2 X . Following the notations in [8], de�ne

the geodesic hull GH.ƒ�/ as the union of all geodesics in X with both endpoints

in ƒ� . The convex hull of ƒ� denoted by CH.ƒ�/, is the smallest subset of X

containing GH.ƒ�/ with the property that every geodesic segment between any

pair of points x; y 2 CH.ƒ�/ also lies in CH.ƒ�/. We say that � is convex
cocompact if it acts cocompactly on CH.ƒ�/.

The translation length of an element 
 2 � is de�ned as t .
/ WD inf¹d.x; 
x/,
x 2 Xº. The spectrum of � is de�ned as the subgroup of R generated by t .
/

where 
 ranges over the hyperbolic isometries in �. We say that � has an arith-

metic spectrum if its spectrum is a discrete subgroup of R. We are interested in

discrete groups with a non-arithmetic spectrum because they guarantee the mixing

property of the geodesic �ow (see Subsection 2.2), and this condition is veri�ed

in the following cases: for isometries group of Riemannian surfaces, hyperbolic

spaces and isometries groups of a CAT.�1/ space such that the limit set has a

non-trivial connected component. We refer to [10] and to [22, Proposition 1.6,

Chapitre 1] for more details.

A Riemannian symmetric space X of non-compact type of rank one endowed

with its natural Riemannian metric is a particular case of CAT.�1/ space. The

space X as well as its boundary @X can be described by the quotients X D G=K

and @X D G=Q where G is a non-compact connected semisimple Lie group

of real rank one, K a maximal compact subgroup and Q a minimal parabolic

subgroup of G. A lattice � is a discrete subgroup of G such that the quotient

�nG has �nite volume with respect to the Haar measure. In this case ƒ� D @X

and CH.ƒ�/ D X . If �nG is a compact, we say that � is a uniform lattice and

this is a particular case of convex compact groups. Otherwise we say that � is a

non-uniform lattice.
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The foundations of Patterson-Sullivan measures theory are in the important

papers [21] and [27]. See [6], [7], and [22] for more general results in the context

of CAT.�1/ spaces. These measures are also called conformal densities.
We denote byM.Z/ the Banach space of Radon measures on a locally compact

spaceZ, which is identi�ed with the dual space of compactly supported functions

denoted by Cc.Z/
�, endowed with the norm k�k D sup¹j

R
Z fd�j; kf k1 � 1,

f 2 Cc.Z/º where kf k1 D supz2Z jf .z/j. Recall that 
�� means 
��.B/ D

�.
�1B/ where 
 is in � and B is a borel subset of Z.

We say that � is a �-invariant conformal density of dimension ˛ � 0, if � is a

map which satis�es the following conditions:

(1) � is a map from x 2 X 7! �x 2 M. xX/, i.e. �x is a positive �nite measure

(density);

(2) for all x and y in X , �x and �y are equivalent, and we have

d�y

d�x

.v/ D exp .˛ˇv.x; y//

(conformal of dimension ˛);

(3) for all 
 2 �, and for all x 2 X we have 
��x D �
x (invariant),

where ˇv.x; y/ denotes the horospherical distance from x to y relative to v

(see Subsection 2.1).

If X is a CAT.�1/ space and if � is a discrete group of isometries of X , then

there exists a �-invariant conformal density of dimension ˛.�/ whose support is

ƒ� . A proof can be found in [21] and [27] for the case of hyperbolic spaces and

see [3] and [6] for the case of CAT.�1/ spaces.

A conformal density � gives rise to unitary representations .�x/x2X de�ned

for x 2 X as

�xW� �! U.L2.@X; �x//;

.�x.
/�/.v/ D �.
�1v/ exp
�˛
2
ˇv.x; 
x/

�
;

(1.1)

where � 2 L2.@X; �x/ and v 2 @X .

These representations are unitarily equivalent: the multiplication operator

Uxy WL2.@X; �x/ 3 � 7�! .mxy � �/ 2 L2.@X; �y/

de�ned by the function

mxy.v/ D exp
�

�
˛

2
ˇv.x; y/

�
;

is a unitary operator which intertwines the unitary representations �x and �y .
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The matrix coe�cient

�xW� 3 
 7�! h�x.
/1@X ; 1@X i 2 R
C; (1.2)

where 1@X is the characteristic function of @X , is called the Harish-Chandra
function.

Pick x in X , and a positive real number � and de�ne for all integers n such that

n � � the annulus

Cn.x; �/ D ¹
 2 �jn � � � d.
x; x/ < nC �º:

Assume that Cn.x; �/ is not empty for n � Nx;� where Nx;� denotes some non-

negative integer. Let jCn.x; �/j be the cardinality of Cn.x; �/, let Dy be the unit

Dirac mass centered at a point y 2 X and consider the sequence of operator-valued

measures de�ned for all n � Nx;� as

Mn
x;�WC. xX/ 3 f 7�!

1

jCn.x; �/j

X


2Cn.x;�/

D
x.f /
�x.
/

�x.
/
2 B.L2.@X; �x//:

(1.3)

If f 2 C. xX/, we denote by fj@X
its continuous restriction to the space @X .

Consider also the operator-valued measure Mx de�ned as

Mx WC. xX/3f 7�!

�
Mx.f /W � 7�!

� Z

@X

�
d�x

k�xk

�
1

k�xk
fj@X

�
2B.L2.@X; �x//:

(1.4)

The class C. Let � be a discrete group of isometries of a CAT.�1/ space X .

The boundary possesses a natural structure of metric space and more speci�-

cally the boundary carries a family of visual metric .dx/x2X (see Section 2.1).

Let � D .�x/x2X be a conformal densities of dimension ˛.

Let .Z; d/ be a compact metric measure space with a metric d and a measure�.

We denote by Diam.Z/ the diameter of Z. We say that the metric measure space

.Z; d; �/ is Ahlfors ˛-regular for some ˛ > 0 if there exists a positive constant

C > 0 such that for all z in Z and 0 < r < Diam.Z/ we have

C�1r˛ � �.B.z; r// � Cr˛:

De�nition 1.1. Then we say that � is in C if � is a discrete group of isometries of
a CAT.�1/ space such that

(1) � has non-arithmetic spectrum and

(2) the metric measure space .ƒ� ; dx; �x/ is ˛-Ahlfors regular for some x in X .
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In particular the class C contains the convex cocompact groups of isometries of

a CAT.�1/ space with a non-arithmetic spectrum and the non-uniform lattices in

noncompact semisimple Lie group of rank one acting by isometries on their rank

one symmetric spaces of noncompact type where d is a left invariant Riemannian

metric. Moreover the class C contains groups which are neither convex cocompact

nor lattices, see Remark 3.2.

The main result of this paper is the following theorem.

Theorem A (equidistribution à la Bader–Muchnik). Let � be in C and let � be
a �-invariant conformal density of dimension ˛.�/. Then for each x in X there
exists � > 0 such that

Mn
x;� �*Mx

as n ! C1 with respect to the weak* topology of the Banach space L.C. xX/,
B.L2.@X; �x///.

With the same hypothesis of the above theorem, we deduce immediately an

ergodic theorem à la von Neumann for the �-quasi-invariant measures �x on @X .

Let x 2 X , and denote by Qx the orthogonal projection onto the subspace of

constant functions of L2.@X; �x/.

Corollary B (ergodicity à la von Neumann). For all x 2 X there exists � > 0

such that
k�xk2

jCn.x; �/j

X


2Cn.x;�/

�x.
/

�x.
/
�! Qx

as n ! C1 with respect to the weak operator topology in B.L2.@X; �x//.

Remark 1.1. Consider an action of Z on a �nite measure space .X; �/ by measure

preserving transformations. Von Neumann’s very well-known ergodic theorem

states, in the functional analytic framework, that the ergodicity of the action is

equivalent to the convergence

1

2nC 1

nX

kD�n

�.k/ �! Q

with respect to the weak operator topology, where � is the quasi-regular repre-

sentation obtained from the action of Z, and where Q is the orthogonal projection

onto the space of constant functions of the space L2.X; �/. This theorem belongs

to the foundation of ergodic theory and remains an important source of inspiration

(see for example [18]).
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With the same hypothesis of Theorem A we have:

Corollary C (irreducibility). For all x 2 X , the representations

�xW� �! U.L2.@X; �x//

are irreducible.

Notice that Corollary C for lattices is well known, see [9] and the method of [14]

applies to the case of convex-cocompact groups. Nevertheless, this approach

based on Roblin’s theorem unify the irreducibility via an ergodic theorem for

quasi-invariant measures and gives precise asymptotic limit of operators for the

groups in the class C. Moreover this approach seems to be the right approach

to prove irreducibility in the more general context of boundary representations

associated with discrete groups with parabolic elements. Note that for some

discrete groups with parabolic elements acting on the hyperbolic space H
n we

obtain obtain the irreducibility of boundary representation (see Remark 3.2). The

approach developped in [14] will not be fruitful whenever the group possesses

parabolic elements since it works only for hyperbolic groups and this stengthens

the dynamical approach of Bader and Muchnik developed here with Roblin’s

equisditribution theorem.

The Poisson kernel. Recall the de�nition of the Poisson kernel in the context of

CAT.�1/ spaces. Let � be a �-invariant conformal density of dimension ˛. First

de�ne

pWX �X � @X 3 .x; y; v/ 7�! p.x; y; v/D exp.ˇv.x; y// 2 R
C: (1.5)

Fix x 2 X a base point and de�ne the Poisson kernel associated to the measure
�x as

P WX � @X 3 .y; v/ 7�! P.y; v/D p˛.x; y; v/ D exp.˛ˇv.x; y// 2 R
C: (1.6)

We follow the notations of Sjögren ([24]) and we de�ne, for � 2 R and

f 2 L1.@X; �x/,

P�f .y/ D

Z

@X

P.y; v/�C1=2f .v/d�x.v/:

Furthermore we denote by �y the measure associated to P0 de�ned as

d�y.v/ D
P.y; v/1=2

P01@X .y/
d�x.v/: (1.7)

Observe that the measure �y is a probability measure. We refer to Subsection 2.2

for the de�nition of the Bowen–Margulis–Sullivan measure occuring in the fol-

lowing statement.
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Theorem D (equidistribution). � Let � be a discrete group of isometries of a
CAT.�1/ space X with a non-arithmetic spectrum. Let � be a �-invariant
conformal density of dimension ˛.�/ the critical exponent of the group. Assume
that � has a �nite Bowen–Margulis–Sullivan measure and assume that there exists
a constant C > 0 such that for all x; y in X we have

k�xk

k�yk
� C:

Then for all x 2 X and for all � > 0 we have

1

jCn.x; �/j

X


2Cn.x;�/

�
x

k�
xk
�*

�x

k�xk

with respect to the weak* convergence of L1.@X; �x/
�.

� Let � be in C, then for all x in CH.ƒ�/ there exists � such that

1

jCn.x; �/j

X


2Cn.x;�/

�
x �* �x

with respect to the weak* convergence of L1.@X; �x/
�.

The method of proofs of Theorem A and Theorem D consists of two steps,

given a sequence of functionals of the dual of a separable Banach space.

Step 1. The sequence is uniformly bounded: existence of accumulation points
(by the Banach–Alaoglu theorem).

Step 2. Identi�cation of the limit using equidistribution theorems (only one
accumulation point).

Structure of the paper. In Section 2 we remind the reader of some standard

facts about CAT.�1/ spaces as well as the de�nition of Bowen–Margulis–Sullivan

measures and Roblin’s equidistribution theorem. We recall also some general

facts about Banach spaces and projective tensor products, and we give a general

construction of operator-valued measures that we investigate in the context of

CAT.�1/ spaces.

In Section 3 we prove uniform boundedness for two sequences of functions,

and we deduce Step 1 of our results.

In Section 4 we use Roblin’s equidistribution theorem to achieve Step 2 of our

main result.

In Section 5 we prove Theorem A, Corollary B and Corollary C.

In Section 6 we prove Theorem D using the dual inequality established in

Section 3.
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2. Preliminaries

2.1. CAT.�1/ spaces. In this section we survey the geometry of CAT.�1/
spaces. We freely rely on [6] where the reader could consult for further details.

A CAT.�1/ space is a metric geodesic space such that every geodesic triangle

is thinner than its comparison triangle in the hyperbolic plane, see [5, Introduc-

tion]. Let .X; d/ be a proper CAT.�1/ space. A geodesic ray of .X; d/ is an

isometry:

r W I �! X;

where I D Œ0;C1/ � R. Two geodesic rays are equivalent if the Hausdor�

distance between their images are bounded, equivalently supt2I d.r1.t /; r2.t // <

C1. If r is a geodesic ray, r.C1/ denotes its equivalence class. The boundary

@X is de�ned as the set of equivalence classes of geodesic rays.

A geodesic segment of .X; d/ is an isometry:

r W I �! X;

where I D Œ0; a� with a < 1.

Fix a base point x. We denote by R.x/ the set of geodesic rays and of geodesic

segments starting at x with the following convention: if r is a geodesic segment

de�ned on Œ0; a�, we set r.t/ D r.a/ for all t > a. Hence we have a natural map

R.x/ �! xX D X [ @X;

r 7�! r.C1/;

which is surjective. The set R.x/ is endowed with the topology of uniform

convergence on compact subsets of Œ0;C1/. By the Arzela-Ascoli theorem,

R.x/ is a compact space. Hence, endowed with the quotient topology, xX is

compact. Notice that the topology on xX does not depend on the choice of x,

see [5, Proposition 3.7 (1), p. 429].

Since the CAT.�1/ spaces are a particular class of general ı-hyperbolic spaces

we have the following inequality: for all x; y; z; t 2 xX

.x; z/t � min¹.x; y/t ; .y; z/tº � ı; (2.1)

see [5, Remarks 3.17 (4), p. 433].
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Let x be inX , and let r be a geodesic ray. By the triangle inequality the function

t 7! d.x; r.t // � t is decreasing and bounded below. Recall that the Busemann

function associated to a geodesic ray r , is de�ned as the function

br .x/ D lim
t!1

d.x; r.t // � t:

Let x and y be inX , and let v be in @X . Let r be a geodesic ray whose extremity

is v, namely r.C1/ D v. The limit limt!1 d.x; r.t //�d.y; r.t// exists, is equal

to br .x/�br.y/, and is independent of the choice of r . The horospherical distance

from x to y relative to v is de�ned as

ˇv.x; y/ D lim
t!1

d.x; r.t //� d.y; r.t//: (2.2)

It satis�es for all v 2 @X , and for all x; y 2 X that

ˇv.x; y/ D �ˇv.y; x/; (2.3)

ˇv.x; y/C ˇv.y; z/ D ˇv.x; z/; (2.4)

ˇv.x; y/ � d.x; y/: (2.5)

If 
 is an isometry of X we have

ˇ
v.
x; 
y/ D ˇv.x; y/: (2.6)

Recall that the Gromov product of two points a; b 2 X relative to x 2 X is

.a; b/x D
1

2
.d.x; a/C d.x; b/ � d.a; b//:

Let v; w be in @X such that v ¤ w. If an ! v 2 @X , bn ! w 2 @X , then

.v; w/x D lim
n!1

.an; bn/x

exists and does not depend on v and w.

Let r be a geodesic ray which represents v. We have

.v; y/x D lim
t!C1

1

2
.d.x; r.t //C d.x; y/ � d.r.t/; y//;

then we obtain

ˇv.x; y/ D 2.v; y/x � d.x; y/: (2.7)
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Besides, if q 2 X is a point of the geodesic de�ned by v and w, then we also

have

.v; w/x D
1

2
.ˇv.x; q/C ˇw.x; q//:

The formula

dx.v; w/ D exp.�.v; w/x/ (2.8)

de�nes a distance on @X (we set dx.v; v/ D 0). This is due to M. Bourdon in

the context of CAT.�1/ spaces, we refer to [6, Théorème 2.5.1] for more details.

We have the comparison formula

dy.v; w/ D exp
�1
2
.ˇv.x; y/C ˇw.x; y//

�
dx.v; w/:

We say that .dx/x2X is a family of visual metrics. A ball of radius r centered

at v 2 @X with respect to dx is denoted by B.v; r/. A ball of radius r centered at

y 2 X is denoted by BX .y; r/.

If 
 is an isometry of .X; d/, its conformal factor at v 2 @X is

lim
w!v

dx.
v; 
w/

dx.v; w/
D exp.ˇv.x; 


�1x//;

(see [6, Corollaire 2.6.3]).

If x and y are points ofX andR is a positive real number, we de�ne the shadow

OR.x; y/

to be the set of v in @X such that the geodesic ray issued from x with limit point

v hits the closed ball of center y with radius R > 0.

The Sullivan shadow lemma is a very useful tool in ergodic theory of discrete

groups acting on a CAT.�1/ space. See for example [22, Lemma 1.3] for a proof.

Lemma 2.1 (D. Sullivan). Let � be a discrete group of isometries of X. Let
� D .�x/x2X a �-invariant conformal density of dimension ˛. Let x be in X .
Then for R large enough there exists C > 0 such that, for all 
 2 �,

1

C
exp.�˛d.x; 
x// � �x.OR.x; 
x// � C exp.�˛d.x; 
x//:

2.2. Bowen–Margulis–Sullivan measures and Roblin’s equidistribution the-

orem. We follow [22, Chapitre 1. Préliminaires, 1C. Flot géodésique] where the

reader could �nd more details.

In [27], D. Sullivan constructs measures on the unit tangent bundle ofX where

X is the n-dimensional real hyperbolic space, and proves striking results for this

new class of measures. We refer to [27] for more details about these measures.

We recall the de�nitions of these analogous measures in CAT.�1/ spaces.
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Let SX be the set of isometries from R to .X; d/ endowed with the topology

of uniform convergence on compact subsets of R. In other words, SX is the set of

geodesics of X parametrized by R. We have a canonical “projection” from SX to

X , playing the role of the projection from the unit tangent of bundle of a manifold

to the manifold, which associates to u 2 SX a point in X . Indeed, notice this map

in the setting of CAT.�1/ spaces may be not surjective since all the geodesics are

not bi-in�nite.

The trivial �ow on R induces a continuous �ow .gt /t2R on SX , called the

geodesic �ow. For u 2 SX , we will denote by gC1.u/ the end of the geodesic

determined by u for the positive time and g�1.u/ the end of the geodesic for the

negative time. Let @2X be the set @X � @X � ¹.x; x/ j x 2 @Xº. We recall now the

so-called Hopf parametrization in CAT.�1/ spaces and to do so we �x an origin

x 2 X . We have an identi�cation of SX with @2X � R via

u 7�! .g�1.u/; gC1.u/; ˇg�1.u/.u; x//:

Observe that � acts on @2X � R by 
 � .v; w; s/ D .
v; 
w; s C ˇv.x; 

�1x//,

and R acts on @2X � R by translation t � .v; w; s/ D gt ..v; w; s// D .v; w; sC t /.

Notice these actions commute on SX .

Let � be a �-invariant conformal density of dimension ˛. The Bowen–

Margulis–Sullivan measure which is referred to as the BMS measure m on SX

is de�ned as

dm.u/ D
d�x.v/d�x.w/ds

dx.v; w/2˛
�

The measure m is invariant by the action of the geodesic �ow, and observe also

that m is a �-invariant measure. We denote by m� the measure on the quotient

SX=�. More precisely if D is a fundamental domain for the action of � on SX ,

if h is a compactly supported function in Cc.SX=�/ and if Qh denotes the lift of h

in C.SX/ we have
R

D
Qhdm D

R
SX=�

hdm� . Moreover the quantity
R

D
Qhdm does

not depend on the choice of D.

We say that� admits a BMS �nite measure ifm� is �nite. We denote by gt
� the

geodesic �ow on SX=�. We say that gt
� is mixing on SX=� with respect tom� if

for all bounded Borel subsetsA;B � SX=� we have limt!C1m�.A\gt
�.B// D

m�.A/m�.B/.

The assumption of non-arithmeticity of the spectrum of � guarantees that the

geodesic �ow on SX satis�es the mixing property with respect to BMS measures.

We refer to [2, Proposition 7.7] for a proof of this fact in the case of negatively

curved manifold. We refer to [22, Chapitre 3] for a general proof in CAT.�1/
spaces.

In [22, Théorème 4.1.1, Chapitre 4], T. Roblin proves the following theorem

based on the mixing property of the geodesic �ow on SXn� with respect to BMS

measures:
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Theorem 2.1 (T. Roblin). Let � be a discrete group of isometries ofX with a non-
arithmetic spectrum. Assume that � admits a �nite BMS measure associated to a
�-invariant conformal density � of dimension ˛ D ˛.�/. Then for all x; y 2 X

we have

˛e�˛nkm�k
X

¹
2�jd.x;
y/<nº

D
�1x ˝D
y �* �x ˝ �y

as n ! C1 with respect to the weak* convergence of C. xX � xX/�.

2.3. Operator-valued measures

2.3.1. The space of operator-valued measures as a dual space of a Banach

space. We remind to the reader why the Banach space L.C.Z/;B.H// is natu-

rally isomorphic to the dual of the Banach space C.@X/ y̋H y̋ SH where y̋ denotes

the projective tensor product.

Let E and F be Banach spaces with norms k � kE and k � kF . We consider

the algebraic tensor product E ˝alg F . The projective norm of an element g in

E ˝alg F is de�ned by

kgkp WD inf
° X

�nite

keikE kfikF

ˇ̌
ˇ g D

X

�nite

ei ˝ fi

±
:

The projective tensor product is de�ned as the completion of the algebraic tensor

product for the projective norm k � kp, and it is denoted by

E y̋F WD E ˝alg F
kkp
:

Recall also that we have the Banach isomorphism

L.E; F �/ �! .E y̋F /� (2.9)

given by

M 7�! .e ˝ f 7�! M.e/f /:

See [23, p. 24] for more details.

Let h�; �i be the inner product on H which is antilinear on the second variable.

De�ne for � 2 H the map �� 2 H� which satis�es ��.�/ D h�; �i for � 2 H.

The canonical isomorphism between a conjugate Hilbert space and its dual is

given by

SH 3 � 7�! �� 2 H�
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De�ne the map

H ˝ H� 3 � ˝ �� 7�! t�;� 2 B.H/

where

t�;�.�/ D ��.�/� D h�; �i�; for all � 2 H:

Let T r be the usual semi-�nite trace on B.H/ and let T be an operator in

B.H/. Notice that, for all � and � in H,

hT �; �i D T r.T t�;�/: (2.10)

It is well known that we have the isomorphism

H y̋ SH 3 � ˝ � 7�! t�;� 2 L1.H/; (2.11)

where L1.H/ denotes the space of Trace class operators.

Recall that we have also an isomorphism

B.H/ 3 T 7�! T rT 2 L1.H/�; (2.12)

where T rT .S/ D T r.TS/ for all S 2 L1.H/.

Recall that Tn ! T with respect to the weak operator topology if for all � and

� in H we have hTn�; �i ! hT �; �i as n ! C1.

An explicit isomorphism. LetZ be a compact space. The spaceL.C.Z/;B.H//

is a Banach space with the norm kMk D sup¹kM.f /kB.H/ j kf k1 � 1º.

Combining isomorphisms (2.9), (2.11), and (2.12) with the observation (2.10) we

obtain that the map L.C.Z/;B.H// 3 M 7! zM 2 .C.Z/ y̋H y̋ SH/�is a Banach

isomorphism and satis�es, for all .f; �; �/ 2 .C.Z/� H � SH/,

zM.f ˝ � ˝ �/ D T r.M.f /t�;�/ D hM.f /�; �i: (2.13)

2.3.2. General construction of Operator-valued measures. We give in this

section a general construction of “ergodic” operator-valued measures that we are

interested in.

Quasi-regular representations. Let .Y; �/ be a measure space. Consider an

action � Õ .Y; �/ such that � is a �nite �-quasi-invariant measure (i.e. � and


�� are in the same measure class). We denote by

d
��

d�
.y/

the Radon–Nikodym derivative of 
�� with respect to � at a point y, with 
 in �.
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Let H be L2.Y; �/ and for all � 2 H and for all 
 in � de�ne � to be

.�.
/�/.y/ D
�d
��

d�

� 1
2

.y/�.
�1y/:

The representation � W� ! U.H/ is a unitary representation on the Hilbert space

H, and is called a quasi-regular representation. Observe that � is a positive
representation in the sense that � preserves the cone of positive functions.

Notice that � extends to a representation of the group algebra denoted C� by

� WC� 3
X

c

 7�!
X

c
�.
/ 2 B.H/:

De�ne also the following matrix coe�cient

�W� 3 
 7�! h�.
/1Y ; 1Y i 2 R
C;

where 1Y denotes the characteristic function of the measure space Y .

An ergodic operator-valued measure. Let Z be a topological space and con-

sider the space of continuous functions on Z denoted by C.Z/. Consider a family

of linear forms .`
 /
2� on C.Z/�. Assume that � acts isometrically on a metric

space .X; d/. Let x 2 X and � > 0. De�ne for all n � � the annulus

Cn.x; �/ WD ¹n � � � d.
x; x/ < nC �º:

Assume that there exists an integerNx;� that for all n � Nx;� the annulus Cn.x; �/

is not empty. De�ne the sequence of operator-valued measures .Mn
x;�/n�Nx;�

as

Mn
x;�WC.Z/ 3 f 7�!

1

jCn.x; �/j

X


2Cn.x;�/

`
 .f /
�.
/

�.
/

and observe

Mn
x;�.f / D �

� 1

jCn.x; �/j

X


2Cn.x;�/

`
 .f /



�.
/

�
2 B.H/:

Properties. Let T be a bounded operator on a Hilbert space and T � is its adjoint.

Let 1Z and 1Y be the constant functions which are equal to 1 on Z and on Y .

The Banach spaceL1.Y / is a Banach space with its usual norm k�k1. We denote

by L.L1.Y /; L1.Y // the Banach space of operators from L1.Y / to itself with

the norm k � kL.L1.Y /;L1.Y //.

We state some fundamental properties of the sequence .Mn
x;�/n�Nx;�

.
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Proposition 2.1. Let n be in a non-negative integer. Assume that `
 are positive
linera forms (i.e. f � 0 implies `
 .f / � 0 and for all 
 2 �).

(1) For all f 2 C.Z/,

.Mn
x;�.f //

� D
� 1

jCn.x; �/j

X


2Cn.x;�/

`
 .f /
�.
/

�.
/

��

D
1

jCn.x; �/j

X


2Cn.x;�/

`
�1.f /
�.
/

�.
/
:

(2) kMn
x;�kL.C.Z/;B.H// � kMn

x;�.1Z/kB.H/.

(3) kMn
x;�.1Z/kL.L1.Y /;L1.Y // � kMn

x;�.1Z/1Y k1.

The proofs are easy and left to the reader.

3. Uniform boundedness

In this section a point x in X is �xed.

3.1. Useful functions. Let � be a �-invariant conformal density of dimension

˛ and let L1.�/ be the Banach space of essentially bounded functions endowed

with its usual norm denoted by k � k1. Let � > 0 and assume that there exists

Nx;� such that jCn.x; �/j > 0 for all n � Nx;�. Consider the sequence of positive
functions F n

x;� de�ned for all n � Nx;� as

F n
x;�W @X 3 v 7�!

1

jCn.x; �/j

X


2Cn.x;�/

exp .˛
2
ˇv.x; 
x//

�x.
/
2 R

C; (3.1)

where �x D h�x.
/1@X ; 1@X i is the Harish-Chandra function de�ned in the intro-

duction. Observe that F n
x;� is nothing but

F n
x;� D Mn

x;�.1 xX/1@X : (3.2)

Consider also the sequence of positive functionsHn
x;� de�ned for all n � Nx;�

as

Hn
x;�W @X 3 v 7�!

1

jCn.x; �/j

X


2Cn.x;�/

exp .˛ˇv.x; 
x//

k�
xk
2 R

C: (3.3)

We shall prove that F n
x;� and Hn

x;� are uniformly bounded in the L1.�/ norm.

The fact that F n
x;� is uniformly bounded is the �rst step in the proof of Theorem A.
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The proof of uniform boundedness for .F n
x;;�/n�Nx;�

consists in two parts:

we shall obtain sharp estimates of Busemann functions on shadows, then use

Ahlfors regularity condition to estimate the Harish-Chandra function �x.

The method of the proof of the uniform boundedness of .F n
x;;�/n�Nx;�

applies

for showing the uniform boundedness of .Hn
x;�/n�Nx;�

with suitable hypothesis.

3.2. Estimates for Busemann functions. These techniques using the hyper-

bolic inequality (2.1) extended to the whole space xX are very powerful. See for

example [8] and [3] where these techniques are used.

Lemma 3.1. Let R > 0 and let v 2 @X . We have, for all y 2 X and for all w in
OR.x; y/,

min¹.w; v/x; d.x; y/º �R � ı � .v; y/x � .v; w/x CRC ı:

Proof. Recall that d.x; y/ � 2R � ˇw.x; y/ � d.x; y/ for all w 2 OR.x; y/.

Hence, by equation (2.7), we have

d.x; y/ �R � .w; y/x � d.x; y/: (3.4)

On one hand, using �rst the hyperbolic property (2.1), then the observation (3.4)

we have

.v; y/x � min¹.v; w/x; .w; y/xº � ı

� min¹.w; v/x; d.x; y/º �R � ı:

On the other hand, using .v; y/x � d.x; y/ we have

.v; w/x � min¹.v; y/x; .y; w/xº � ı

� min¹.v; y/x; d.x; y/ �Rº � ı

� .v; y/x � R � ı: �

Proposition 3.1. Let R > 0 and let n be a non-negative integer such that n � �

and let v 2 @X . There exists qv in X satisfying d.x; qv/ D nC �, such that for all
y in X with n � � � d.x; y/ < nC � and for all w in OR.x; y/ we have

ˇv.x; y/ � ˇw.x; qv/C 2.RC �/C 4ı:

Proof. De�ne qv as the point on the unique geodesic passing through v and x such

that d.x; qv/ D nC �.
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Since .v; y/x � d.x; y/, the right hand side inequality of Lemma 3.1, the

de�nition of qv combined with the hyperbolic inequality (2.1) imply for all w in

OR.x; y/ that

.v; y/x � min¹.v; w/x; d.x; y/º CRC ı

� min¹.v; w/x; d.x; qv/º CRC ı

D min¹.v; w/x; .v; qv/xº CR C ı

� .w; qv/x CRC 2ı:

Since y satis�es n � � � d.x; y/ < n C � and d.x; qv/ D n C � the above

inequality implies

ˇv.x; y/ � ˇw.x; qv/C 2.�CR/C 4ı: �

3.3. Ahlfors regularity and Harish-Chandra functions. Let � be a discrete

group of isometries of a CAT.�1/ space X and let � be a �-invariant conformal

density of dimension ˛. Fix a point x in X and de�ne the function

'xWX 3 y 7�!

Z

@X

exp
�˛
2
ˇv.x; y/

�
d�x.v/: (3.5)

Observe that �x is the restriction of 'x to the orbit �x.

Let Y be a subset of X . We say that 'x satis�es the Harish-Chandra estimates
on Y if there exist two polynomials Q1 and Q2 of degree one such that for all

y 2 Y we have Q1.d.x; y// > 0 and

Q1.d.x; y// exp
�

�
˛

2
d.x; y/

�
� 'x.y/ � Q2.d.x; y// exp

�
�
˛

2
d.x; y/

�
:

(3.6)

Let R > 0 and such that for all x and y in X the shadows OR.x; y/ are not

empty. Pick a pointw
y
x in OR.x; y/. In the context of negatively curved manifolds,

we can think about w
y
x as the ending point of the geodesic passing through x and

y, oriented from x to y.

Lemma 3.2. Let v 2 @X and y 2 X . Let wy
x be a point in OR.x; y/. Then

exp
�˛
2
ˇv.x; y/

�
� exp .˛.ı CR// exp

�
�
˛

2
d.x; y/

� 1

d˛
x .v; w

y
x/
;

and

exp
�˛
2
ˇv.x; y/

�
� exp .�˛.ı CR// exp

�
�
˛

2
d.x; y/

�

�
min

° 1

dx.v; w
y
x/˛

; exp .˛d.x; y//
±�
:
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Proof. We prove the �rst inequality. The right hand side inequality of Lemma 3.1

leads to

.v; y/x � .v; wy
x/x CRC ı:

Combining this inequality with equation (2.7), we have

exp
�˛
2
ˇv.x; y/

�
� exp .˛.ı CR// exp .˛.v; wy

x/x/ exp
�

�
˛

2
d.x; y/

�
:

The de�nition (2.8) of the visual metric completes the proof.

The left hand side of the inequality of Lemma 3.1 gives the other inequality. �

Proposition 3.2. Let � be a �-invariant conformal density of dimension ˛.
Assume that .ƒ� ; dx ; �x/ is Ahlfors ˛-regular. Then there exists Rx > 0 such
that the function 'x satis�es the Harish-Chandra estimates on �xnBX .x; Rx/.

Moreover, if � is convex cocompact there exists Rx > 0 such that the function
'x satis�es the Harish-Chandra estimates on CH.ƒ�/nBX.x; Rx/.

Proof. We �rst prove the right hand side inequality of (3.6) on Y D �x. Let


 2 �, and consider a point w

x
x 2 OR.x; 
x/ \ ƒ� . Consider the ball of @X of

radius exp .�d.x; 
x// with respect to dx centered at w

x
x denoted by

B
 WD B.w
x
x ; exp .�d.x; 
x///:

�x.
/ D

Z

@X

exp
�˛
2
ˇv.x; 
x/

�
d�x.v/

D

Z

B


exp
�˛
2
ˇv.x; 
x/

�
d�x.v/C

Z

@XnB


exp
�˛
2
ˇv.x; 
x/

�
d�x.v/:

Z

B


exp
�˛
2
ˇv.x; 
x/

�
d�x.v/ � �x.B
 / exp

�˛
2
d.x; 
x/

�

� C exp
�

�
˛

2
d.x; 
x/

�
:

The right hand side inequality of Lemma 3.2 implies that

Z

@XnB


exp
�˛
2
ˇv.x; 
x/

�
d�x.v/

� C˛;ı;R exp
�

�
˛

2
d.x; 
x/

� Z

@XnB


1

d˛
x .v; w


x
x /

d�x.v/;

for some positive constant C˛;ı;R > 0.
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Write now
Z

@XnB


1

d˛
x .v; w


x
x /

d�x.v/

D

Z

R

�x

�°
v 2 @X

ˇ̌
ˇ 1

d˛
x

�
v; w


x
x /

> t
±�
dt

D

Z exp ˛d.x;
x/

1=D˛

�x

�°
v 2 @X

ˇ̌
ˇ dx.v; w


x
x / <

1

t1=˛

±�
dt

�

NX

nDp

�x

�°
v 2 ƒ�

ˇ̌
ˇ dx.v; w


x
x / <

1

n1=˛

±�
;

where D denotes Diam.@X/, p the integer part of 1
D˛ and N then integer part of

exp .˛d.x; 
x//C 1. Ahlfors regularity implies that there exists C > 0 such that

�x

�°
v 2 ƒ�

ˇ̌
ˇ dx.v; w


x
x / <

1

n1=˛

±�
�
C

n
:

Hence there exists a constant C 0 > 0 such that
Z

@XnB


1

d˛
x .v; w


x
x /

d�x.v/ � ˛d.x; 
x/C C 0:

Hence,
Z

@XnB


exp
�˛
2
ˇv.x; 
x/

�
d�x.v/

� C˛;ı;R exp
�

�
˛

2
d.x; 
x/

�
.˛d.x; 
x/C C 0/:

Therefore, we have found a polynomial of degree one such that 'x satis-

�es the (right hand side) Harish-Chandra estimates on �x. The left hand side

of Harish-Chandra estimates on �x is analogous by the second inequality of

Lemma 3.2, but the constant term of the polynomial Q1 might be non-positive.

Hence the Harish-Chandra estimates hold only on �xnBX .x; Rx/ for some posi-

tive number Rx.

Assume that � is convex cocompact. We shall estimate 'x on CH.ƒ�/. Let

y 2 CH.ƒ�/ and pick a fundamental domain D� � CH.ƒ�/ relatively compact,

and considerD0
� a relatively compact neighborhood of x which containsD� . Then

there exists 
 2 � such that y 2 
D0
� . Thanks to the cocycle identity (2.4) we

have

'x.y/ D

Z

@X

exp
�˛
2
ˇv.x; 
x/

�
exp

�˛
2
ˇv.
x; y/

�
d�x.v/:
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Thanks to the properties of Busemann functions (2.3) and (2.5), observe that

exp
�

�
˛

2
Diam.D0

�/
�
�x.
/ � 'x.y/ � �x.
/ exp

�˛
2

Diam.D0
�/

�

Observe also that

d.x; y/ � Diam.D0
�/ � d.
x; x/ � d.x; y/C Diam.D0

�/

for all y2X such that d.x; y/�Diam.D0
�/. Since 'x satis�es the Harish-Chandra

estimates on �xnBX .x; Rx/ we have the Harish-Chandra estimates of 'x on

CH.ƒ�/nBX.x; R
0
x/ where R0

x D max ¹Rx;Diam.D0
�/º and the proof is done.

�

Remark 3.1. Notice that a slight modi�cation of the �rst part of this proof gives

a geometrical proof of the Harish-Chandra estimates of the „–Harish-Chandra

function in the context of rank one semisimple Lie groups (see [1] and [13]).

It would be interesting to study an analog of Harish-Chandra estimates on CH.ƒ�/

for Harish-Chandra functions associated with geometrically �nite groups with

parabolic elements.

Remark 3.2. In [26, Theorem 2], B. Stratmann and S.-L. Velani prove, in the

context of hyperbolic plane H
n, the so-called Global Measure Formula for geo-

metrically �nite groups with parabolic elements. A conformal density of a geo-

metrically �nite group with parabolic elements is Ahlfors regular if and only if

all the parabolic cusps have the same rank and that rank is equal to the critical

exponent of the group. Hence such geometrically �nite groups belong to the class

C since their spectrum are non-arithmetic.

3.4. Uniform boundedness

Proposition 3.3. Let � be a �-invariant conformal density of dimension ˛.�/
where � is in C. Then there exists � and an integer N such that for all n � N , the
sequence F n

x;� is uniformly bounded in the L1.�/ norm.

Proof. If two sequences un and vn of positive real numbers satisfy

lim
n!1

un=vn D 1

we write un � vn.

We shall prove �rst that Cn.x; �/ is not empty, at least for n large enough. For

a non negative integer n, set

�n.x/ WD ¹
 2 � j d.x; 
x/ < nº:
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Applying Theorem 2.1 to the function 1 xX ˝ 1 xX we obtain as n ! C1

j�n.x/j �
exp.˛n/k�xk2

˛km�k
;

and thus as n ! C1

jCn.x; �/j �
exp.˛n/.2 sinh.˛�//k�xk2

˛km�k
� (3.7)

Hence, for all � there existsNx;� such that for all n � Nx;� we have jCn.x; �/j > 0.

There are two steps.

Step 1. Assume that x is in CH.ƒ�/. Then for all � > 0, there existsN
0

x;�and for

all n � N
0

x;� the sequence F n
x;� is uniformly bounded with respect to the L1.�/

norm.

First of all let Rx be a positive real number such that the Harish-Chandra

estimates hold on CH.ƒ�/nRx. Let � > 0 and let Nx;� be an integer such that for

all n � Nx;� we haveCn;�.x/ � CH.ƒ�/nRx. Let v be inƒ� , then Proposition 3.1

provides qv 2 X with d.x; qv/ D nC �, such that, for all 
 2 Cn;�.x/,

�˛
2
ˇv.x; 
x/

�

�
exp.˛.2.RC �/C 4ı//

�x.OR.x; 
x//

Z

OR.x;
x/

exp
�˛
2
ˇw.x; qv/

�
d�x.w/:

(3.8)

We set for the following computation C0 WD exp.˛.2.RC �/C 4ı//.

Therefore for v 2 ƒ� ,

F n
x;�.v/ D

1

jCn.x; �/j

X


2Cn.x;�/

exp .˛
2
ˇv.x; 
x//

�x.
/

�
C0

jCn.x; �/j

X


2Cn.x;�/

R
OR.x;
x/

exp .˛
2
ˇw.x; qv//d�x.w/

�x.OR.x; 
x//�x.
/

� C
C0

exp .�˛.n� �//jCn.x; �/j

�
sup


2Cn.x;�/

1

�x.
/

�

X


2Cn.x;�/

Z

OR.x;
x/

exp
�˛
2
ˇw.x; qv/

�
d�x.w/

� C
C0

exp .�˛.n� �//jCn.x; �/j

�
sup


2Cn.x;�/

1

�x.
/

�
.m � 'x.qv//;
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where the last inequality follows from the fact that there exists an integer m such

that for all w 2 @X the cardinality of ¹
 2 Cn.x; �/jw 2 OR.x; 
x/º is bounded

by m.

The Sullivan Shadow lemma (for R large enough) implies that there exists

c0 > 0 such that for all n big enough we have

exp .�˛.n� �//jCn.x; �/j � c0:

Since the hypothesis guarantee the Ahlfors regularity of the limit set for the groups

in the class C ([6, Théorème 2.7.5] for convex cocompact groups, the case of

lattices is well known) then Proposition 3.2 implies that there exists C 0 > 0, such

that for qv 2 CH.ƒ�/nRx with d.x; qv/ D nC � we have

�
sup


2Cn.x;�/

1

�x.
/

�
'x.qv/ � C 0:

Hence for x 2 CH.ƒ�/ and for all � > 0, there exists K > 0 and N
0

x;� such

that for all n � N
0

x;� we have

kF n
x;�k1 � K:

Step 2. Assume that x is inXn CH.ƒ�/. There exist �0
x > 0 and an integerN

0

x;�0
x

such that for all n � N
0

x;�0
x

the sequence F n
x;� is uniformly bounded with respect

to the L1.�/ norm.

Fix � > 0 and let x0 be the projection of x in CH.ƒ�/ and set

� WD d.x;CH.ƒ�// D d.x; x0/:

Using the relations (2.4), (2.6), (2.3), and (2.5) we obtain

�x.
/ � exp .˛�/�x0
.
/:

Observe that Cn.x; �/ � Cn.x0; �C 2�/. We have

F n
x;�.v/ D

1

jCn.x; �/j

X


2Cn.x;�/

exp .˛
2
ˇv.x; 
x//

�x.
/

D
1

jCn.x; �/j

X


2Cn.x;�/

E

�x.
/

�
exp .2˛�/

jCn.x; �/j

X


2Cn.x0;�C2�/

exp .˛
2
ˇv.x0; 
x0//

�x0
.
/

D
�

exp .2˛�/
jCn.x0; �C 2�/j

jCn.x; �/j

�
F n

x0;�C2�;
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where

E D exp
�˛
2
ˇv.x; x0/

�
exp

�˛
2
ˇv.x0; 
x0/

�
exp

�˛
2
ˇv.
x0; 
x/

�
;

and the third inequality comes from the relations (2.6) and (2.5). Since

jCn.x0; �C 2�/j

jCn.x; �/j

is bounded above by some constant depending on � and �, we apply Step 1 to

F n
x0;�C2� with x0 and �C 2� to complete the proof. �

Remark 3.3. If for any choice of an origin x the metric measure space .ƒ�; dx;�x/

is Ahlfors regular and if CH.ƒ�/ D X , then the above proposition holds for all

� > 0 independently of the choice of x. These conditions include the case of

lattices in rank one semisimple Lie groups and fundamental groups of compact

negatively curved manifolds.

Remark 3.4. For a proof of this uniform boundedness in the context of hyperbolic

groups we refer to [14, Proposition 5.2].

Proposition 3.4. Let � be �-invariant conformal density of dimension ˛.�/ the
critical exponent of the group and let � be a discrete group of isometries of a
CAT.�1/ space X with a non-arithmetic spectrum with a �nite BMS measure.
Assume that there exists C > 0 such that for all y 2 X we have k�yk=k�xk � C .
For all � > 0, there exists an integer N such that for all n � N the sequence of
functions Hn

x;� is uniformly bounded in the L1.�/ norm.

The proof for Hn
x;� follows the same method and is left to the reader. Notice

that this proof is easier because it does not deal with the Harish-Chandra estimates.

4. Analysis of matrix coe�cients

In this section we �x x as an origin of X .

4.1. Notation. Let � be a discrete group of isometries of X and let � be a �-

invariant conformal density of dimension ˛: Let A be a subset of @X and a > 0

positive real number and de�ne Ax.a/ the subset of @X as

Ax.a/ D ¹vj inf
w2A

dx.v; w/ < exp.�a/º:

We will write A.a/ instead of Ax.a/. Recall that \a>0A.a/ D xA.
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Let R a positive real number and de�ne the cone of base A to be

CR.x; A/ WD ¹y 2 X j there exists v 2 A satisfying Œxv/ \ B.y; R/ ¤ ¿º;

where Œxv/ represents the unique geodesic passing through x with the ending point

v 2 @X . In other words, we have

CR.x; A/ WD ¹y 2 X jOR.x; y/ \ A ¤ ¿º: (4.1)

De�ne bx.y/ the function

bx.y/W @X 3 v 7�! exp
�˛
2
ˇv.x; y/

�
: (4.2)

Notice that 'x.y/ D
R

@X bx.y/.v/d�x.v/.

4.2. Sharp estimates. Assume that 'x satis�es Harish-Chandra estimates on Y.

Lemma 4.1. Let A be a Borel subset of @X and let a > 0. There exists a constant
C0 such that for all y in Y satisfying OR.x; y/ \ A.a/ D ¿, we have

hbx.y/; �Ai

'x.y/
�
C0 exp.a/

d.x; y/
�

Proof. Let y 2 Y and assume that d.x; y/ < a. It is easy to check that

hbx.y/; �Ai

'x.y/
�

exp.a/

d.x; y/
�

Now assume that d.x; y/ � a.

If v 2 A.a/ and w 2 OR.x; y/, since OR.x; y/ \ A.a/ D ¿ we have

dx.v; w/ > exp .�a/.

Using the �rst inequality Lemma 3.2 and the above observation, for all w 2
OR.x; y/

hbx.y/; �Ai � exp
�
�
˛

2
d.x; y/

� Z

A.a/

1

d˛
x .v; w/

exp .˛.RC ı//d�x.v/

� exp .˛.RC ı C a//k�kx exp
�
�
˛

2
d.x; y/

�

� exp .˛.RC ı C a//k�kx

'x.y/

Q1.d.x; y//

where the last inequality comes from the left hand side of Harish-Chandra esti-

mates on Y. Since Q1 is a polynomial of degree one, the proof is complete. �
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Now assume that 'x satis�es the left hand side of Harish-Chandra estimates

on Y D �x.

Proposition 4.1. Let  t 2 l1.�/ such that k tk1 � 1, and assume that

lim
t�!C1

 t .
/ D 0;

for all 
 2 �. Then for every Borel subset A � @X we have for all a > 0

lim sup
t�!C1

X


2�

 t .
/
h�x.
/1@X ; �Ai

�x.
/
� lim sup

t�!C1

X


2�

 t .
/D
x.�CR.x;A.a///:

Proof. Let A be Borel subset of @X and let a be a positive number. Let t0 be

another positive real number. Consider the following partition of �:

� D �1 t �2 t �2

with

�1 D ¹
 2 �jd.x; 
x/ � t0º

and

�2 D ¹
 2 �jOR.x; 
x/ \ A.a/ ¤ ¿º \ �c
1

and

�3 D ¹
 2 �jOR.x; 
x/ \ A.a/ D ¿º \ �c
1 :

Since �x is positive, we have that

X

�1

 t .
/
h�x.
/1@X ; �Ai

�x.
/
�

X

�1

 t .
/:

Observe that


 2 �2 () D
x.�CR.x;A.a/// D 1:

Thus X


2�2

 t .
/
h�x.
/1@X ; �Ai

�x.
/
�

X


2�2

 t .
/D
x.�CR.x;A.a///:

Observe that

hbx.
x/; �Ai D h�x.
/1@X ; �Ai:

Since Y D �x we can apply Lemma 4.1 via the above observation and thus,

for all t0 > 0,

X

�3

 t .
/
h�x.
/1@X ; �Ai

�x.
/
�

� X

�

 t .
/
�
C0

exp.a/

t0
:
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Then, since k t k1 � 1, we obtain for all t0 > 0

X

�3

 t .
/
h�x.
/1@X ; �Ai

�x.
/
� C0

exp.a/

t0
:

It follows that, for all a > 0 and for all t > t0

X


2�

 t .
/
h�x.
/1@X ; �Ai

�x.
/

�
X

�1

 t .
/C
X

�

 t .
/D
x.�CR.x;A.a///C C0

exp.a/

t0
:

Since  t .
/ ! 0 as t ! C1, we obtain by taking the lim sup in the above

inequality

lim sup
t!C1

X


2�

 t .
/
h�x.
/1@X ; �Ai

�x.
/

� lim sup
t!C1

X


2�

 t .
/D
x.�CR.x;A.a///C C0

exp.a/

t0
:

This inequality holds for all t0 > 0, so we take t0 ! C1 and the proof is

complete. �

4.3. A consequence of Roblin’s Theorem. If A � @X , we denote by @A its

frontier. We need a consequence of Theorem 2.1 which counts the points of a �-

orbit �x in CR.x; A/ when A is a Borel subset with �x.@A/ D 0. This is based

on the regularity of the conformal densities. We recall that the topology of xX is

compatible with the metric topology de�ned on @X by the visual metrics (see [6,

§1.5]). If O � xX , we denote by xO its closure in xX .

First, observe the following:

Lemma 4.2. Let A be a closed subset of @X . Then CR.x; A/ D CR.x; A/ t A .

Proof. It is easy to check that CR.x; A/[ A � CR.x; A/.

Now, assume that v 2 CR.x; A/ \ @X (otherwise there is nothing to do).

We shall prove that v 2 A. There exists a sequence of yn 2 CR.x; A/ such that

yn ! v with respect to the topology of xX . Since yn is in CR.x; A/, there exists

vn 2 A \ OR.x; yn/ such that .yn; vn/x � d.x; yn/ �R, for all integers n. Thus,

.vn; v/x � min ¹.vn; yn/x; .yn; v/xº � ı

� .yn; v/x �R � ı:

where the last inequality follows from .yn; v/x � d.x; yn/. Since yn ! v,

it follows that .yn; v/x goes to C1, and so vn ! v with respect to dx . Since

A is closed the proof is done. �
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Then we shall give a proof the following corollary:

Corollary 4.1 (extracted from [22, Théorème 4.1.1, Chapitre 4]). Let � be a
discrete group of isometries of X with a non-arithmetic spectrum. Assume that
� admits a �nite BMS measure associated with a �-invariant conformal density
� of dimension ˛ D ˛.�/. Let A;B be two Borel subsets such that �x.@A/ D 0 D

�x.@B/. Then for all � > 0 we have

lim sup
n!C1

1

jCn.x; �/j

X


2Cn.x;�/

D
�1x ˝D
x.�CR.x;A/ ˝ �CR.x;B//�
�x.A/�x.B/

k�k2
x

:

Proof. Let � be a positive real number. We have for, all n large enough,

1

jCn.x; �/j

X


2Cn.x;�/

D
�1x ˝D
x

D
˛km�k exp.�˛.nC �//

jCn.x; �/j˛km�k exp.�˛.nC �//

X


2�nC�.x/

D
�1x ˝D
x

�
˛km�k exp.�˛.n� �//

jCn.x; �/j˛km�k exp.�˛.n� �//

X


2�n��.x/

D
�1x ˝D
x:

The estimation (3.7) for annulii implies as n ! C1

jCn.x; �/j˛km�k exp.�˛.nC �// � 2 sinh.˛�/ exp .�˛�/k�k2
x

and

jCn.x; �/j˛km�k exp.�˛.n� �// � 2 sinh.˛�/ exp .˛�/k�k2
x:

Therefore Theorem 2.1 implies

1

jCn.x; �/j

X


2Cn.x;�/

D
�1x ˝D
x �*
1

k�xk2
�x ˝ �x; (4.3)

with respect to the weak* topology of C. xX � xX/�.

Consider a Borel subset A of @X such that �x.@A/ D 0. We have �x. xA/ D
�x.A/: Thus, by Lemma 4.2 we obtain

�x.CR.x; xA// D �x.A/:

Let � > 0. Since �x is a regular measure there exists an open subset OA of xX

such that

CR.x; xA/ � OA and �x.OA/ � �x.A/C �: (4.4)
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The subset CR.x; xA/ is a compact subset of xX . By Urysohn’s lemma, we can

�nd a compactly supported function fOA
such that

�
CR.x; xA/

� fOA
� �OA

:

Let B be another Borel subset such that �x.@B/ D 0. Let fOB
be the

continuous function given by the above construction. Notice that, for all n,

X


2Cn.x;�/

D
x ˝D
�1x.�Cr .x;A/ ˝ �Cr .x;B//

�
X


2Cn.x;�/

D
x ˝D
�1x.fOA
˝ fOB

/:

The consequence of Roblin’s theorem (4.3) implies

lim sup
n!1

k�xk2

jCn.x; �/j

X


2Cn.x;�/

D
x ˝D
�1x.�CR.x;A/ ˝ �CR.x;B//

� lim sup
n!1

k�xk2

jCn.x; �/j

X


2Cn.x;�/

D
x ˝D
�1x.fOA
˝ fOB

/

D lim
n!1

k�xk2

jCn.x; �/j

X


2Cn.x;�/

D
x ˝D
�1x.fOA
˝ fOB

/

D

Z

@X�@X

.fOA
˝ fOB

/d�x ˝ d�x

� �x.A/�x.B/C �.�x.A/C �x.B//C �2;

where the last inequality follows from (4.4). The above inequality holds for all

� > 0, so the proof is done. �

4.4. An application of Roblin’s equidistribution Theorem. Let � > 0, and let

Nx;� be an integer such that for all n � Nx;� the sequence Mn
x;� is well de�ned.

The purpose of this section is to use Corollary 4.1 for computing the limit of the

sequence of operator-valued measures .Mn
x;�/n�Nx;�

.

We assume that 'x satis�es the left hand side of Harish-Chandra estimates

on �x.

Proposition 4.2. Let A;B; U � @X be Borel subsets such that �x.@A/ D

�x.@B/ D �x.@U / D 0, let yU D CR.x; U / [ U be a borel subset of xX . Then we
have

lim
n�!C1

hMn
x;�.� yU

/�A; �Bi D
�x.U \ B/�x.A/

k�xk2
:
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We need some lemmas to prepare the proof of this proposition.

Lemma 4.3. Let B;U � @X be Borel subsets such that �x.@B/ D �x.@U / D 0,
let yU D CR.x; U /[U be a borel subset of xX satisfying U \B.b/ D ¿, for some
b > 0. Then we have

lim sup
n!C1

hMn
x;�.� yU

/1@X ; �Bi D 0:

Proof. For all n � Nx;�,

hMn
x;�.� yU

/1@X ; �Bi D
1

jCn.x; �/j

X


2Cn.x;�/

D
x.� yU
/
h�x.
/1@X ; �Bi

�x.
/

D
X


2�

 n.
/
h�x.
/1@X ; �Bi

�x.
/
;

where the inequality follows from the fact that �x is positive, and where

 n.
/ WD
1

jCn.x; �/j
�Cn.x;�/.
/D
x.� yU

/:

Proposition 4.1 implies that

lim sup
n!C1

hMn
x;�.� yU

/1@X ; �Bi � lim sup
n!C1

X


2�

 n.
/D
x.�. yU /
/D
x.�CR.x;B.b///

D lim sup
n!C1

1

jCn.x; �/j

X


2Cn.x;�/

D
x.� yU\CR.x;B.b//
/

� lim sup
n!C1

1

jCn.x; �/j

X


2Cn.x;�/

D
x.�CR.x;U \B.b///

Note the general fact @.A \ B/ � @A [ @B . Corollary 4.1 implies that

lim sup
n!C1

hMn
x;�.� yU

/1@X ; �Bi �
�x.U \ B.b//

k�xk
�

By hypothesis U \ B.b/ D ¿ thus we have

lim sup
n!C1

hMn
x;�.� yU

/1@X ; �Bi D 0: �

Lemma 4.4. Let yU be a Borel subset of xX and let A be a Borel subset of @X .
We have

lim sup
n!C1

hMn
x;�.� yU /�A; 1@Xi

� lim sup
n!C1

1

jCn.x; �/j

X


2Cn.x;�/

D
�1x.� yU
/D
x.�CR.x;A.a///:
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Proof. We have, for all n � Nx;�,

hMn
x;�.� yU

/�A; 1@Xi D
X


2�

 n.
/
h�x.
/1@X ; �Ai

�x.
/
;

with

 n.
/ D
1

jCn.x; �/j
�Cn.x;�/.
/D
�1x.� yU

/:

Applying Proposition 4.1 to  n de�ned above we obtain that

lim sup
n!C1

hMn
x;�.� yU

/�A; 1@X i

� lim sup
n!C1

1

jCn.x; �/j

X


2Cn.x;�/

D
�1x.� yU
/D
x.�CR.x;A.a///: �

Lemma 4.5. Let A;B; U � @X be Borel subsets such that �x.@A/ D �x.@B/ D

�x.@U / D 0 and let yU D CR.x; U /[U be a Borel subset of xX with �x.@U / D 0.

lim sup
n!C1

hMn
x;�.� yU

/�A; �Bi �
�x.U \ B/�x.A/

k�xk2
�

Proof. Let a > 0 and b > 0, and consider A.a/ and B.b/ such that �x.@B.b// D

0 D �x.@A.a//. Let B.b/c D @XnB.b/. Set cU1 D yU \ CR.x; B.b// and
cU2 D yU \ xX=CR.x; B.b//. Let U1 D cU1 \ @X and U2 D cU2 \ @X and notice that

U1 D U \ B.b/ and U2 D U \ @X=B.b/. Observe that U2 \ B.b/ D ¿. Since
yU D cU1 t cU2,

hMn
x;�.� yU

/�A; �Bi D hMn
x;�.�bU1

/�A; �Bi C hMn
x;�.�bU2

/�A; �Bi

� hMn
x;�.�bU1

/�A; 1@Xi C hMn
x;�.�bU2

/1@X ; �Bi:

Applying Lemma 4.3 to the second term and Lemma 4.4 to the �rst term of the

right hand side above inequality, we obtain

lim sup
n!C1

hMn
x;�.� yU

/�A; �Bi

� lim sup
n!C1

1

jCn.x; �/j

X


2Cn.x;�/

D
�1x.�bU1
/D
x.�CR.x;A.a///:

Since �x.@U1/ D 0 D �x.@A.a//, Roblin’s Corollary 4.1 leads to

lim sup
n!C1

hMn
x;�.� yU

/�A; �Bi �
�x.U \ B.b//�x.A.a//

k�xk2
:

Because the above inequality holds for all a; b > 0 but at most countably many

values of a and b, we obtain the required inequality. �
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Proof of Proposition 4.2. By Lemma 4.5 it is su�cient to prove that

lim inf
n!C1

hMn
x;�.� yU

/�A; �Bi D
�x.U \ B/�x.A/

k�xk2
�

If W is a Borel subset of @X (or xX), we set W 0 D W and W 1 D @XnW
(or W 1 D xXnW ). We have

1 D hMn
x;�.1 xX/1@X ; 1@X i

D hMn
x;�.� yU 0 C � yU 1/�A0 C �A1 ; �B0 C �B1i

D
X

i;j;k

hMn
x;�.� yU i /�Aj ; �Bki

D hMn
x;�.� yU

/�A; �Bi C
X

i;j;k¤.0;0;0/

hMn
x;�.� yU i /�Aj ; �Bki:

Then

1 � lim inf
n!C1

hMn
x;�.� yU

/�A; �Bi C
X

i;j;k¤.0;0;0/

lim sup
n!C1

hMn
x;�.� yU i /�Aj ; �Bk i

� lim sup
n!C1

hMn
x;�.� yU

/�A; �Bi C
X

i;j;k¤.0;0;0/

lim sup
n!C1

hMn
x;�.� yU i /�Aj ; �Bki

�
1

k�xk2

X

i;j;k

�x.U
i \ Bk/�x.A

j /

D 1;

where the last inequality comes from Lemma 4.5. Hence the inequalities of the

above computation are equalities, so

lim inf
n!C1

hMn
x;�.� yU

/�A; �Bi D
�x.U \ B/�x.A/

k�xk2
D lim sup

n!C1

hMn
x;�.� yU

/�A; �Bi

and the proof is done. �

5. Conclusion

5.1. Standard facts about Borel subsets of measure zero frontier. Let us

recall two standard facts of measure theory that we state as lemmas:

Lemma 5.1. Assume that .Z; d; �/ is a metric measure space. Then the �-al-
gebra generated by Borel subset with measure zero frontier generates the Borel
�-algebra.
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Let �A be the characteristic function of a Borel subset A of @X . We state

another useful lemma (see [3, Appendix B, Lemma B.2 (1)] for a proof):

Lemma 5.2. Assume that .Z; d; �/ is a metric measure space where � is Radon
measure. Then the closure of the subspace spanned by the characteristic functions
of Borel subset having zero measure frontier is

Span¹�A such that �.@A/ D 0º
L2

D L2.Z; �/:

5.2. Proofs

Proof of Theorem A. Let � be a �-invariant conformal density of dimension

˛.�/, where � in C. Since for all x 2 X , the metric measure space .ƒ� ; dx; �x/ is

Ahlfors ˛-regular Proposition 3.2 ensures that the Harish-Chandra estimates hold

on �x. Hence Proposition 3.3 and 4.2 are available. The sequenceMn
x;� is de�ned

for n � Nx;� for some integer Nx;�.

There are two steps.

Step 1. .Mn
x;�/n�Nx;�

is uniformly bounded.

First of all, observe that Mn
x;�.1 xX / is self-adjoint (see Proposition 2.1 (1)). Note

that Mn
x;�.1 xX / preservesL1.@X; �x/, and by duality it preserves alsoL1.@X; �x/.

Combining Proposition 3.3 with the fact that Mn
x;�.1 xX /1@X D F n

x;�, we have

that the sequence .Mn
x;�.1 xX //n�Nx;�

, with Mn
x;�.1 xX/ viewed as operators from

L1.@X; �x/ to L1.@X; �/, is uniformly bounded. Riesz–Thorin interpolation

theorem implies the sequence .Mn
x;�.1 xX //n�Nx;�

, with Mn
x;�.1 xX/ viewed as oper-

ators inB.L2.@X; �x//, is uniformly bounded. Then Proposition 2.1 (2) completes

Step 1.

Step 2. Computation of the limit of .Mn
x;�/n�Nx;�

.

By the Banach–Alaoglu theorem, Step 1 implies that .Mn
x;�/n�Nx;�

has accu-

mulation points. Let M1
x be an accumulation point of .Mn

x;�/n�Nx;�
with respect

to the weak* topology of L.C. xX/;B.L2.@X; �x///. Let yU D CR.x; U / [ U

be Borel subset of xX with U be a Borel subset of @X such that �x.@U / D 0.

It follows from Proposition 4.2 and from the de�nition (1.4) of Mx that for all

Borel subsets A;B � @X with �x.@A/ D �x.@B/ D 0 we have that

hM1
x .� yU

/�A; �Bi D
�x.U \ B/�x.A/

k�xk2
D hMx.� yU

/�A; �Bi:
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The above equality holds for all open balls BX.x; r/ of X , namely

hM1
x .�BX.x;r//�A; �Bi D

�x.BX.x; r/ \ B/�x.A/

k�xk2

D hMx.�BX .x;r//�A; �Bi

D 0:

Since the open balls ¹BX .x; r/; x 2 X; r > 0º of X together with the subsets
yU D CR.x; U / [ U , with U Borel subsets of @X such that �x.@U / D 0 generate

the Borel �-algebra of xX , Carathéodory’s extension theorem implies that for all

f 2 C. xX/ and for all Borel subsets A;B � @X satisfying �x.@A/ D �x.@B/ D 0

we have

hM1
x .f /�A; �Bi D hMx.f /�A; �Bi:

Lemma 5.2 combined with the above equality imply that the operators M1
x and

Mx regarded as functionals of .C. xX/ y̋L2.@X; �x/ y̋L2.@X; �x//
� (see (2.13)) are

equal on a dense subset of C. xX/ y̋L2.@X; �x/ y̋L2.@X; �x/. We deduce that Mx

is the unique accumulation point of the sequence .Mn
x;�/n�Nx;�

. �

Proof of Corollary B. Apply the de�nition of weak� convergence to 1 xX ˝�˝� for

all �; � 2 L2.@X; �x/, and observe that k�k2
xMx.1 xX / is the orthogonal projection

onto the space of constant functions. �

Proof of Corollary C. Since .�x/x2X are unitarily equivalent, it su�ces to prove

irreducibility for some �x with x in X . Theorem A shows that the vector 1@X is

cyclic for the representation �x. Moreover, Corollary B shows that the orthogonal

projection onto the space of constant functions is in the von Neumann algebra

associated with �x. Then, a standard argument (see for example [14, Lemma 6.1])

completes the proof. �

Remark 5.1. The hypothesis � is convex cocompact or a lattice in a rank one
semisimple Lie group guarantees the Ahlfors regularity of the limit set, that

implies the Harish-Chandra estimates of 'x on CH.ƒ�/ and on �x. In other

words, the proof of irreducibility of boundary representations for a geometrically

�nite group with a non-arithmetic spectrum is reduced, by this approach, to the

Harish-Chandra estimates of 'x for each x 2 X on CH.ƒ�/nBX .x; Rx/ and on the

orbit �xnBX .x; Rx/ for some Rx > 0. And this approach should apply to some

geometrically �nite groups which are neither convex cocompact and nor lattices.

6. Some remarks about equidistribution results

6.1. Dirac–Weierstrass family. Let � be a discrete group of isometries of X .

Consider .dx/x2X a visual metric on @X , and let � be a �-invariant conformal

densitiy of dimension ˛. We �x x 2 X and we follow [17, Chapter 2, §2.1, p. 46],

and adapt the de�nition of a Dirac–Weierstrass family to the density �.
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De�nition 6.1. A Dirac–Weierstrass family .K.y; �//y2X with respect to �x , is a
continuous map KWX � @X 3 .y; v/ 7! K.y; v/ 2 R satisfying

(1) K.y; v/ � 0 for all v 2 @X and y 2 X ,

(2)
R

@X K.y; v/d�x.v/ D 1 for all y 2 X ,

(3) for all v0 2 @X and for all r0 > 0 we have

Z

@XnB.v0;r0/

K.y; v/d�x.v/ �! 0 as y �! v0:

A Dirac–Weierstrass family yields an integral operator K

KWL1.@X; �x/ 3 f 7�! Kf 2 C.X/

de�ned as

Kf WX 3 y 7�!

Z

@X

f .v/K.y; v/d�x.v/ 2 C:

6.2. Continuity. Let f be a function on @X . We de�ne the function xKf on xX

as the following:

xKf W xX 3 y 7�! xKf .y/ D

´
Kf .y/ if y 2 X;

f .y/ if y 2 @X:
(6.1)

Thus, xK is an operator which assigns a function de�ned on xX to a function

de�ned on @X .

Proposition 6.1. If f is a continuous functions on @X , the function xK.f / is a
continuous function on xX .

Proof. Observe �rst that since K is a continuous function on X the function xKf

is on X .

Let v0 be in @X and let � > 0. Since f is continuous, there exists r > 0 such

that

jf .v0/ � f .v/j <
�

2
;

whenever v 2 B.v0; r/. Besides, by (3) in De�nition 6.1, there exists a neighbor-

hood V of vo such that for all y 2 V we have

Z

@XnB.v0;r/

K.y; v/d�.v/ �
�

4kf k1
�
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We have, for all y 2 V,

j xKf .v0/ � xKf .y/j �

Z

B.v0;r/

jf .v0/ � f .v/jK.y; v/d�x.v/

C

Z

@XnB.v0;r/

jf .v0/ � f .v/jK.y; v/d�x.v/

�
�

2
C 2kf k1

Z

@XnB.v0;r/

K.y; v/d�x.v/

� �:

Hence, xKf is a continuous function on xX . �

6.3. Examples of Dirac–Weierstrass family. Let R > 0, and consider for each

y 2 X a point w
y
x 2 OR.x; y/. We start by a lemma:

Lemma 6.1. Let v0 be in @X . Then dx.v0; w
y
x / ! 0 as y ! v0.

Proof. Let yn be a sequence of points of X such that yn ! v0. Apply the right

hand side inequality of Lemma 3.1 to get

.v0; w
yn
x /x � .v0; yn/x �R � ı:

Since yn ! v0, we have .v0; yn/x goes to in�nity, and thus dx.v0; w
y
x / ! 0 as

y ! v0. �

Proposition 6.2. Assume that there exists a polynomialQ1 (at least of degree 1)
such that for all y 2 X with d.x; y/ large enoughQ1.d.x; y// > 0 and

Q1.d.x; y// exp
�

�
˛

2
d.x; y/

�
� P01@X.y/:

Then �P.y; :/1=2

P01@X.y/

�
y2X

is a Dirac–Weierstrass family.

Proof. Let B.v0; r0/ the ball of radius r0 at v0 in @X with respect to dx .

Let � > 0. SinceQ1 is a polynomial at least of degree one, there exists R0 > 0

such that for all y satisfying d.x; y/ > R0 we have

Cr0;˛;ık�xk

Q1.d.x; y//
< �

where Cr0;˛;ı D 2˛ exp .˛.ı CR//=r˛
0 is a positive constant.
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Lemma 6.1 yields a neighborhood V of v0 such that dx.v0; w
y
x / � r0=2 for all

y 2 V . We have, for all v in @XnB.v0; r0/,

dx.v; w
y
x/ � dx.v; v0/ � dx.v0; w

y
x /

� r0 � dx.v0; w
y
x /

�
r0

2
:

We set VR0 D V \XnBX.x; R
0/. Combining Lemma 3.2 with the above inequality

we obtain, for all y 2 VR0 ,

Z

@XnB.v0 ;r0/

P
1
2 .y; v/

P01@X .y/
d�x.v/

�

Z

@XnB.v0;r0/

exp .˛.ı C R// exp .�˛
2
d.x; y//

d˛
x .v; w

y
x/.P01@X .y//

d�x.v/

� Cr0;˛;ı

Z

@XnB.v0;r0/

exp .�˛
2
d.x; y//

Q1.d.x; y// exp .�˛
2
d.x; y//

d�x.v/

D Cr0;˛;ı

Z

@XnB.v0 ;r0/

1

Q1.d.x; y//
d�x.v/

�
Cr0;˛;ı�x.@X/

Q1.d.x; y//

� �:

It follows that

Z

@XnB.v0 ;r0/

P
1
2 .y; v/

P01@X .y/
d�x.v/ �! 0 as y ! v0: �

Besides, the same method proves the following proposition:

Proposition 6.3. Assume that there exists a constant C > 0 such that

k�xk

k�yk
� C;

for all y 2 X . The normalized Poisson kernel

�P.y; :/
k�yk

�
y2X

is a Dirac–Weierstrass family.
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6.4. Equidistribution theorems extended to .L1/�. Theorem 2.1 of T. Roblin

has for immediate consequence:

Theorem 6.2 (T. Roblin). Let � be a discrete subgroup of isometries of X with a
non-arithmetic spectrum. Assume that � admits a �nite BMS measure associated
to a �-invariant conformal density � of dimension ˛ D ˛.�/. Then for each
x 2 X and for all � > 0 we have as n goes to in�nity:

1

jCn.x; �/j

X

Cn.x;�/

D
�1x �*
�x

k�xk

with respect to the weak* topology of C. xX/�.

We view Theorem D as new new equidistribution theorem, where the weak*

convergence is not on the dual of the space of continuous functions but rather on

the dual of space of L1 functions on the boundary.

Proof of Theorem D. Let x in X and � > 0, and considerNx;� such that n � Nx;�

implies jCn.x; �/j > 0. We give a proof for the densities .�x/x2X . For all

n � Nx;�, we denote by �n
x;� the following measure

�n
x;� D

1

jCn.x; �/j

X


2Cn.x;�/

�
x

k�
xk
:

Step 1. The sequence of measures .�n
x;�/n�Nx;�

is uniformly bounded.

Since the dual space of L1.@X; �x/ is L1.@X; �/ we have, for n � Nx�,

kHn
x;�k1 D sup

kf k1�1

²ˇ̌
ˇ̌
Z

@X

Hn
x;�.v/f .v/d�x.v/

ˇ̌
ˇ̌
³

D sup
kf k1�1

²ˇ̌
ˇ̌ 1

jCn.x; �/j

X


2Cn.x;�/

�
x

k�xk
.f /

ˇ̌
ˇ̌
³

D k�n
x;�k.L1/� :

Hence Proposition 3.4 completes Step 1.

Step 1. Computation of the limit of .�x
n/n�Nx;�

.
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By the Banach–Alaoglu theorem, .�n
x;�/n�Nx;�

has accumulation points.
Denote by �1

x such accumulation point. Let f 2 C.@X/, Proposition 6.3 com-
bined with Proposition 6.1 de�ne xPf as a continuous function on xX (as in (6.2) in
Subsection 6.1), where P is associated with the normalized Poisson kernel de�ned
as in Proposition 6.3. We have, for all n � Nx;�,

�n
x;�.f / D

1

jCn.x; �/j

X


2Cn.x;�/

�
x.f /

k�
xk

D
1

jCn.x; �/j

X


2Cn.x;�/

P.f /.
x/

D
1

jCn.x; �/j

X


2Cn.x;�/

D
x.xP.f //:

Applying Roblin’s theorem 6.2 by taking the limit in the above inequality, we obtain
for all f 2 C.@X/

�1
x .f / D �x.xP.f // D

�x.f /

k�xk
:

Since C.@X/ is dense L1.@X; �x/ with respect to the L1 norm, we deduce that
.�n

x;�/n�Nx;�
has only one accumulation point which is �x , and the proof is done.

The proof concerning .�x/x2X follows the same method, and uses 'x D P0 in
order to have available Proposition 6.2 for � in C. Indeed, since the lower bound
of the Harish-Chandra estimates holds a priori only on CH.ƒ�/nBX.x; Rx/ we
rather use Proposition 6.2 with CH.ƒ�/ D CH.ƒ�/[ƒ� instead of xX D X[@X .
If f is a continuous function on ƒ� , the function P0f on CH.ƒ�/ de�ned as

P0f W CH.ƒ�/ 3 y 7�! P0f .y/ D

´
P0f .y/ if y 2 CH.ƒ�/;

f .y/ if y 2 ƒ� ;
(6.2)

is continuous on CH.ƒ�/. �

Remark 6.1. We may ask if an analogous theorem of Theorem 2.1 dealing with

�x instead of the Dirac mass holds (assuming k�xk D 1 for simplicity)? More

precisely, do we have

1

jCn.x; �/j

X


2Cn.x;�/

�
�1x ˝ �
x �* �x ˝ �x

with respect to the weak* convergence of L1.@X � @X; �x ˝ �x/
� (for some �)?

The answer is negative because a duality argument combined with Banach-

Steinhaus theorem would imply that the sequence of functions

GnW .v; w/ 7�!
1

jCn.x; �/j

X


2Cn.x;�/

exp.˛ˇv.x; 

�1x// exp.˛ˇw.x; 
x//
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is uniformly bounded with respect to the L1.�/ norm. It is easy to see that this

is impossible by evaluating Gn at .v; w/ 2 OR.x; 

�1x/ � OR.x; 
x/ for some


 2 Cn.x; �/. We obtain the same answer to the same question dealing with �x by

considering the sequence of functions

.v; w/ 7�!
1

jCn.x; �/j

X


2Cn.x;�/

exp.˛
2
ˇv.x; 


�1x// exp.˛
2
ˇw.x; 
x//

�2
x.
/

�
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