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Abstract. In this paper we describe the stable and unstable leaves for the a�ne �ow

on the space of non-wandering spacelike a�ne lines of a Margulis spacetime and prove

contraction properties of the leaves under the �ow. We also show that monodromies of

Margulis spacetimes are “Anosov representations in non semi-simple Lie groups.”
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1. Introduction

A Margulis spacetime M is a quotient manifold of the three dimensional a�ne

space by a free, non-abelian group acting as a�ne transformations with discrete

linear part. It owes its name to Grigory Margulis, who was the �rst to use these

spaces, in [22] and [23], as examples to answer Milnor’s following question in the

negative.

1 The research leading to these results has received funding from the European Re-
search Council under the European Community’s seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement.
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Question 1. Is the fundamental group of a complete, �at, a�ne manifold virtually

polycyclic? (See [25].)

Since then the study of Margulis spacetimes have been carried out exten-

sively by Abels, Margulis, and Soifer [1] and [2], Charette and Drumm [4],

Charette, Goldman, and Jones [5], Choi and Goldman [6], Danciger, Guéritaud,

and Kassel [7] and [8], Drumm [9] and [10], Drumm and Goldman [11]

and [12], Fried and Goldman [13], Goldman [14], Goldman and Labourie [15],

Goldman, Labourie, and Margulis [16], Goldman and Margulis [17], Kim [20],

and Smilga [26], [27], and [28].

In particular, Fried and Goldman showed in [13] that the fundamental group

�1.M/ of a Margulis spactime does not contain any translation. Moreover, by

combining results of Fried and Goldman in [13] and Mess in [24] we get that a

complete �at a�ne 3-manifold either has a polycyclic fundamental group or is

a Margulis spacetime. In this paper we will only consider Margulis spacetimes

whose linear part does not contain any parabolics, although by work of Drumm

in [10] there exist Margulis spacetimes whose linear part contains parabolics.

Fried and Goldman also showed in [13] that a conjugate of the linear part of the

a�ne action of the fundamental group forms a subgroup of SO.2; 1/ in GL.R3/.

Therefore, a Margulis spacetime comes with a parallel Lorentz metric.

The parallelism classes of timelike a�ne lines of M can be parametrized

by a non-compact complete hyperbolic surface †. Previous works of Charette,

Goldman, and Jones in [5], Goldman and Labourie in [15] and Goldman, Labourie,

and Margulis in [16] showed that the dynamics of M is closely related to that of†.

Jones, Charette, and Goldman showed in [5] that bispiralling a�ne lines in M

exist and they correspond to bispiralling geodesics in †. Moreover, Goldman and

Labourie showed in [15] that spacelike non-wandering a�ne lines inM correspond

to non-wandering geodesics in †. In fact, they constructed an orbit equivalent

homeomorphism ON between Urec†, the space of non-wandering geodesics in †

and UrecM, the space of spacelike non-wandering a�ne lines in M.

The homeomorphism ON gives rise to a metric Anosov structure on UrecM with

respect to the image of the geodesic �ow � on Urec† but in this paper we want

to �nd a metric Anosov structure on UrecM with respect to the a�ne �ow ˆ on

UrecM. We note that the image of the �ow � under ON is not necessarily equal to

ˆ, it only has the same �ow lines. Hence the homeomorphism ON does not help

us directly in our search. In fact, ON ı � ¤ ˆ implies that the stable and unstable

laminations of the metric Anosov structure on UrecM with respect to ˆ are not

the same as the stable and unstable laminations of the metric Anosov structure

on UrecM with respect to ON ı �. However, the central stable and central unstable

laminations (De�nition 2.5), by contrast, are respected by ON.
Moreover, we note that, as UrecM is compact, the stable and unstable lamina-

tions are uniquely determined by the �ow and they are independent of the par-

ticular distance chosen on UrecM, as long as the distances are locally bilipschitz

equivalent with each other.
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In this paper, we �rst chalk out some preliminary notions, in order to prepare

the grounds to explicitly describe the stable and unstable laminations of UrecMwith

respect to ˆ and show that the leaves of the stable lamination contract under the

forward �ow and the leaves of the unstable lamination contract under the backward

�ow.

More precisely, let A be the a�ne three space and UA be the spacelike unit

tangent bundle of A. We can alternatively think of UA as the space of all tuples

.x; `/ where x is a point in A and ` is an oriented spacelike a�ne line containing

x. We denote the lift of UrecM to UA by UrecA. Let .x; `/ be an element of UrecA.

We consider the intersection of the plane perpendicular to ` at x with respect to the

Lorentz metric and the null cone at x. The intersection is the union of two lightlike

a�ne lines. We orient these lightlike a�ne lines by de�ning the part lying in the

upper light cone to be positive. We denote the two oriented lightlike a�ne lines

by `� and `C such that .`�; `; `C/ gives the positive orientation on A. Then the

stable (respectively unstable) lamination through the projection of .x; `/ 2 UrecA

into UrecM is the projection of all the elements .y; `0/ 2 UrecA into UrecM such

that y 2 `C (respectively `�) and `0 is an oriented spacelike a�ne line passing

through y and lying in the a�ne plane generated by ` and `C (respectively `�)

with .`�; `0 C .x � y/; `C/ giving the positive orientation on A.

Theorem 1.1. Let LC and L
� be two laminations of the metric space UrecM as

described above. Then ˆ contracts LC exponentially in the forward direction of
the �ow and contracts L� exponentially in the backward direction of the �ow.

We can contrast this description of stable (respectively unstable) laminations

in UrecM to the corresponding laminations in Urec†: there, the vectors in a leaf

are the vectors perpendicular to a given horocycle, pointing inwards (respectively

outwards).

Moreover, in the last section we provide a natural extension of the de�nition

of Anosov representation given in Section 2.0.7 of [21] and de�ne the appropriate

notion of an Anosov representation in our context replacing manifolds with metric

spaces. Using this de�nition we furthermore prove the following theorem.

Theorem 1.2. Let N be the space of all oriented spacelike a�ne lines in the
three dimensional a�ne Lorentzian space R

2;1 and let L be the orbit foliation
of the �ow ˆ on UrecM. Then .UrecM;L/ admits a geometric .N; SO0.2; 1/ Ë R3/

Anosov structure with respect to the pair of foliations F˙ on N whose leaves at an
oriented spacelike a�ne line ` consist of all possible spacelike a�ne lines `0 with
the following properties.

1. The a�ne line `0 intersects `,

2. Let `0 and ` both pass through a point x and let `˙ be two oriented lightlike
a�ne lines passing through x as mentioned before. Then `0 2 FC (respec-
tively `0 2 F�) if `0 lies in the a�ne plane generated by ` and `C (respec-
tively `�) and .`�; `0; `C/ gives the positive orientation on A.
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In other words, monodromies of Margulis spacetimes are “Anosov representa-

tions in non semi-simple Lie groups.” Here we note that the notion of an Anosov

representation of a discrete group into a transformation group G was �rst intro-

duced by Labourie in [21]. Later, Guichard and Wienhard studied Anosov repre-

sentations into semisimple Lie groups in more details in [19]. In this paper we con-

sider Anosov representations into the non semi-simple Lie group SO0.2; 1/Ë R
3.

Acknowledgments. I would like to express my gratitude towards my advisor

Prof. François Labourie for his guidance. I would like to thank Andrés Sambarino

for the many helpful discussions that we had. I would also like to thank Thierry

Barbot for his careful eye in �nding a gap in a previous unpublished version of this

work. Finally, I would like to thank the referee for the many helpful suggestions.

2. Background

2.1. A�ne geometry. An a�ne space is a set A together with a vector space

V and a faithful and transitive group action of V on A. We call V the underlying

vector space ofA and refer to its elements as translations. An a�ne transformation
between two a�ne spaces A1 and A2 is a map F WA1 ! A2 such that there exists

a linear map L.F /WV1 ! V2 satisfying the following property: for all x in A1

and v in V1,

F.x C v/ D F.x/C L.F /v: (2.1)

Therefore, by �xing an origin O in A, we can represent an a�ne transformation

F from A to itself as a combination of a linear transformation and a translation.

More precisely,

F.O C v/ D O C L.F /v C .F.O/ �O/: (2.2)

We denote .F.O/ � O/ by u.F / and the space of a�ne automorphisms of A by

A�.A/.

LetGL.V/ be the general linear group ofV. We consider the semidirect product

GL.V/ Ë V, of the two groups GL.V/ and V, which comes equipped with the

following multiplication rule: for g1; g2 in GL.V/ and v1; v2 in V,

.g1; v1/.g2; v2/´ .g1g2; v1C g1v2/:

Using equation (2.2) we obtain that the map

F 7�! .L.F /; u.F //

de�nes an isomorphism between A�.A/ and GL.V/ Ë V.
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We denote the tangent bundle of A by TA. It is a trivial bundle and is

canonically isomorphic to A�V as a bundle. The a�ne �ow ẑ on TA is de�ned

as follows:

ẑ
t W TA �! TA;

.p; v/ 7�! .p C tv; v/:

2.2. Hyperboloid model of hyperbolic geometry. Let .R2;1; h�j�i/ be the

Minkowski spacetime where the quadratic form corresponding to the metric h�j�i
is given by

Q´

0

@

1 0 0

0 1 0

0 0 �1

1

A: (2.3)

Let SO.2; 1/ denote the group of linear transformations of R
2;1 preserving the

metric h�j�i and SO0.2; 1/ be the connected component containing the identity of

SO.2; 1/. The cross product � associated with this quadratic form is de�ned as

follows:

u� v´ .u2v3 � u3v2; u3v1 � u1v3; u2v1 � u1v2/
t;

where u; v are denoted by .u1; u2; u3/
t and .v1; v2; v3/

t respectively. The cross

product � satis�es the following properties: for all u; v; w in R
2;1,

8

ˆ

<

ˆ

:

u� v D �v � u;

hu j v � wi D detŒu; v; w�;

hu� v j u� vi D hu j vi2 � hu j uihv j vi:
(2.4)

Now for any real number k we de�ne,

S
k ´ ¹v 2 R

2;1 j hv j vi D kº:

We note that S�1 has two components. We denote the component containing

(0; 0; 1)t as H. The quadratic form Q gives rise to a Riemannian metric dH of

constant negative curvature on the submanifold H of R2;1. The space H is called

the hyperboloid model of hyperbolic geometry. Let UH denote the unit tangent

bundle of H. The map

‚W SO0.2; 1/ �! UH;

g 7�! .g.0; 0; 1/t; g.0; 1; 0/t/;
(2.5)

gives an analytic identi�cation between SO
0.2; 1/ and UH. Let Q�t denote the

geodesic �ow on UH Š SO
0.2; 1/. We note that

Q�tg D ga.t/; (2.6)
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where

a.t/´

0

@

1 0 0

0 cosh.t / sinh.t /

0 sinh.t / cosh.t /

1

A: (2.7)

We also note that Q�t is the image of the geodesic �ow on PSL.2;R/ under the

identi�cation of PSL.2;R/ and SO0.2; 1/ given by

‰W PSL.2;R/ �! SO
0.2; 1/;

�

a b

c d

�

7�!

0

B

B

B

B

@

ad C bc ac � bd ac C bd

ab � cd a2 C d2 � b2 � c2

2
a2Cb2�c2�d2

2

ab C cd a2 C c2 � b2 � d2

2
a2Cb2Cc2Cd2

2

1

C

C

C

C

A

:

In particular,

a.t/ D ‰
��

et=2 0

0 e�t=2

��

:

Let dUH be a metric on the unit tangent bundle UH such that the �bers are

orthogonal to the Levi-Civita connection on UH, the unit balls of dUH project

onto the unit balls of dH and each �ber is isometrically preserved by its stabilizer

and has a total length of 2� . We note that this last number is somewhat arbitrary.

Under the identi�cation ‚ the metric dUH is invariant under the left action of

SO
0.2; 1/ and the right action of SO.2/, seen as a maximal compact subgroup of

SO
0.2; 1/.

Let g 2 SO0.2; 1/ Š UH. We recall that the horocycles zH˙
g for the geodesic

�ow Q� passing through the point g are de�ned as follows:

zHC
g ´ ¹h 2 UH j lim

t!1
dUH. Q�tg; Q�th/ D 0º; (2.8)

zH�
g ´ ¹h 2 UH j lim

t!�1
dUH. Q�tg; Q�th/ D 0º:

We note that, under the identi�cation ‚ the horocycle zH˙
g passing through g is

given by gu˙.t /, where u˙.t / are de�ned as follows:

uC.t / WD

0

@

1 �2t 2t

2t 1 � 2t2 2t2

2t �2t2 1C 2t2

1

A D ‰
��

1 2t

0 1

��

; (2.9)

u�.t / WD

0

@

1 2t 2t

�2t 1 � 2t2 �2t2
2t 2t2 1C 2t2

1

A D ‰
��

1 0

2t 1

��

: (2.10)
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Now let � be de�ned as follows:

�W SO0.2; 1/ �! S
1; (2.11)

g 7�! g.1; 0; 0/t;

and also let �˙ be de�ned as follows:

�˙W SO0.2; 1/ �! S
0; (2.12)

g 7�! g
�

0;˙ 1p
2
;
1p
2

�t

:

The map � is called the neutral section and the maps �C(respectively ��) are

called the positive (respectively negative) limit sections. We list a few properties

of the neutral section and the limit sections as follows:

�. Q�tg/ D �.g/; (2.13)

�.hg/ D h�.g/; (2.14)

�˙. Q�tg/ D e˙t�˙.g/; (2.15)

�˙.hg/ D h�˙.g/; (2.16)

�C.guC.t // D �C.g/; (2.17)

��.gu�.t // D ��.g/: (2.18)

where t 2 R and g; h 2 SO0.2; 1/.

Let � be a free, nonabelian subgroup of SO0.2; 1/ with �nitely many genera-

tors. We consider the left action of � on UH. We notice that the action of � being

from the left and the action of a.t/ ( i.e. of the �ow Q�t ) being from the right, the

two actions commute. Furthermore, given a free and proper action of � on UH,

one gets an isomorphism between �nUH and U†, where U† is the unit tangent

bundle of the surface † ´ �nH. We note that the �ow Q� on UH gives rise to a

�ow � on U†.

Let x0 be a point in H. Let �x0 denote the orbit of x0 under the action of �.

We denote the closure of �x0 inside the closure of H in P.R2;1/ by �x0.

We de�ne the limit set of the group � to be the space �x0 X �x0 and denote

it by ƒ1�. We note that the space �x0 X �x0 is independent of the particular

choice of x0. We also know that ƒ1� is compact.

A point g 2 U† is called a wandering point of the �ow � if there exists an �-

neighborhood B�.g/ � U† around g and a real number t0 such that for all t > t0
we have that

B�.g/ \ �tB�.g/ D ;:
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Moreover, a point is called non-wandering if it is not a wandering point.

We note that the geodesic corresponding to a non-wandering point is recurrent

in both directions.

Let Urec† be the space of all non-wandering points of the geodesic �ow � on

U†. We denote the lift of the space Urec† to UH by UrecH. Now if the action of

� on H is free and proper and moreover � contains no parabolics, then the space

Urec† is compact. We note that the subspace UrecH can also be given an alternate

description as follows:

UrecH D ¹.x; v/ 2 UH j lim
t!˙1

Q�1
t .x; v/ 2 ƒ1�º;

where Q�t .x; v/ D . Q�1
t .x; v/;

Q�2
t .x; v//. Furthermore, we note that the space UrecH

can be identi�ed with the space

.ƒ1� �ƒ1� X ¹.x; x/ j x 2 ƒ1�º/ � R:

This identi�cation, however, is not canonical as each R-�ber can be shifted inde-

pendently.

2.3. Metric Anosov property. The de�nitions in this section, which can also be

found in Subsection 3.2 of [3], have been included here for the sake of complete-

ness.

De�nition 2.1. Let X be a topological space. A lamination L of X is an equiva-

lence relation on X such that for all x in X there exist an open neighborhood Ux

of x in X, two topological spaces U1 and U2 and a homeomorphism fx from Ux

to U1 � U2 satisfying the following properties:

1. for all w; z in Ux \ Uy we have p2.fx.w// D p2.fx.z// if and only if

p2.fy.w// D p2.fy.z// where p2 denotes the projection onto the second

factor of a Cartesian product;

2. for all w; z in X we have wLz if and only if there exists a �nite sequence

of points w1; w2; : : : ; wn in X with w1 D w and wn D z, such that wiC1

is in Uwi
, where Uwi

is a product neighborhood of wi and p2.fwi
.wi// D

p2.fwi
.wiC1// for all i in ¹1; 2; : : : ; n� 1º.

The homeomorphism fx is called a chart and the equivalence classes are called

the leaves. We denote the leaf containing x by Lx .

A plaque open set in the chart corresponding to fx is a set of the form

f�1
x .V1 � ¹x2º/ where fx.x/ D .x1; x2/ and V1 is an open set in U1. The

plaque topology onLx is the topology generated by the plaque open sets. A plaque

neighborhood of x is a neighborhood for the plaque topology on Lx .
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De�nition 2.2. A local product structure on X is a pair of two laminations L1,

L2 satisfying the following property: for all x in X there exist two plaque neigh-

borhoods U1, U2 of x, respectively in L1, L2 and a homeomorphism fx from a

neighborhood Wx of x in X onto U1�U2, such that fx de�nes a chart for both the

laminations L1 and L2.

Now let us assume that  t is a �ow on X. A lamination L invariant under

the �ow  t is called transverse to the �ow, if for all x in X, there exists a

plaque neighborhood Ux of x in Lx , a topological space V, a positive � and a

homeomorphism fx from an open neighborhoodWx of x inX ontoUx�V�.��; �/
satisfying the following condition:

 t .f
�1
x .u; v; s// D f�1

x .u; v; sC t /

for u in Ux, v in V and for s; t in the interval .��=2; �=2/. Let L� be a lamination

which is transverse to the �ow  t . We de�ne a new lamination L�;0, called the

central lamination, starting from L� as follows. We say y; z in X belong to the

same equivalence class of L�;0 if for some real number t ,  ty and z belong to the

same equivalence class of L�.

De�nition 2.3. Let .X; d / be a metric space. A lamination L invariant under a

�ow  t is said to contract under the �ow if there exists a positive real number T0

such that for all x in X, the following holds: there exists an open neighbourhood

Wx of x in X such that for any two points y; z in Wx with Ly D Lz , we have

d. ty;  tz/ <
1

2
d.y; z/

for all t > T0.

Remark 2.4. We note that a lamination ‘contracts under a �ow’ if and only if the

lamination contracts exponentially under the �ow.

De�nition 2.5. A �ow  t on a compact metric space is called metric Anosov, if

there exist two laminations LC and L� of X such that the following conditions

hold:

1: .LC;L�;0/ de�nes a local product structure on X;

2: .L�;LC;0/ de�nes a local product structure on X;

3: the leaves of LC are contracted by the �ow,

4: the leaves of L� are contracted by the inverse �ow.

In such a case we call LC, L�, LC;0 and L�;0 respectively the stable, unstable,

central stable and central unstable laminations.
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2.4. Margulis spacetimes and surfaces. A Margulis spacetime M is a quotient

manifold of the three dimensional a�ne space A by a free, non-abelian group

� which acts freely and properly as a�ne transformations with discrete linear

part. In [22] and [23] Margulis showed the existence of these spaces. Later in [9]

Drumm introduced the notion of crooked planes and constructed fundamental do-

mains of a certain class of Margulis spacetimes. In his construction the crooked

planes give the boundary of appropriate fundamental domains for a certain class

of Margulis spacetimes. Recently, in [7] Danciger, Guéritaud, and Kassel showed

that for any Margulis spacetime one can �nd a fundamental domain whose bound-

aries are given by a union of crooked planes.

If � is a subgroup of GL.R3/ Ë R
3 such that M ´ �nA is a Margulis

spacetime then by a result proved by Fried and Goldman in [13] we get that a

conjugate of L.�/ is a subgroup of SO.2; 1/. Moreover, the image is contained

in the neutral component SO0.2; 1/ only if the underlying hyperbolic surface is

orientable. Therefore, without loss of generality, by restricting � to a subgroup of

index 2, we can take � � G´ SO
0.2; 1/ËR

3 where � is a free non-abelian group

with �nitely many generators. Now it follows from the de�nition of a Margulis

spacetime that L.�/ is a discrete subgroup of SO0.2; 1/. In this article I will only

consider Margulis spacetimes such that L.�/ contains no parabolic elements.

Let M´ �nA be a Margulis spacetime such that L.�/ contains no parabolic

elements. Then the action of L.�/ on H is Schottky i.e. it has a fundamental

domain bounded by geodesics not meeting in H [ @1H. Hence †´ L.�/nH is

a non-compact surface with no cusps.

Now let TM be the tangent bundle of M. As L.�/ � SO
0.2; 1/ we get that each

�ber of TM carries a Lorentzian metric h�j�i. Let

UM´ ¹.X; v/ 2 TM j hv j viX D 1º:

We note that UM Š �nUA where UA´ A � S1. The a�ne �ow ẑ on TA gives

rise to a �ow ˆ on UM.

We recall that a point .X; v/ 2 UM is called a wandering point of the �ow ˆ if

there exists an �-neighborhood B�.X; v/ � UM around .X; v/ and a real number

t0 such that for all t > t0 we have that

B�.X; v/\ˆtB�.X; v/ D ;:

Moreover, a point is called non-wandering if it is not a wandering point. We note

that the a�ne line corresponding to a non-wandering point is recurrent in both

directions. We denote the space of all non-wandering points of the �ow ˆ on UM

by UrecM and the lift of UrecM to UA by UrecA.

In [16] Goldman, Labourie, and Margulis proved the following theorem.
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Theorem 2.6 (Goldman, Labourie, and Margulis). Let � be a non-abelian free
discrete subgroup of G with �nitely many generators giving rise to a Margulis
spacetime and suppose the linear part L.�/ contains no parabolic elements. Then
up to replacing the translational part u by �u there exists a map

N WUrecH �! A

and a positive Hölder continuous function

f WUrecH �! R
>0

such that

1. for all 
 2 � we have f ı L.
/ D f ,

2. for all 
 2 � we have N ı L.
/ D 
N , and

3. for all g 2 UrecH and for all t 2 R we have

N. Q�tg/ D N.g/C
�

t
Z

0

f . Q�sg/ds

�

�.g/:

We call N a neutralised section and �, the neutral section, is as de�ned

in (2.11).

Corollary 2.7. Let g 2 UrecH. Then for all t 2 R there exists a unique s 2 R such
that

N.g/C t�.g/ D N. Q�sg/:

Proof. The result follows from Theorem 2.6.(3) and the fact that f > 0. �

Moreover, using the existence of a neutralised section Goldman and Labourie

proved the following theorem in [15].

Theorem 2.8 (Goldman and Labourie). Let � be a non-abelian free discrete
subgroup of G with �nitely many generators giving rise to a Margulis spacetime
and suppose the linear part L.�/ contains no parabolic elements. Also let Urec†

and UrecM be de�ned as above. Now ifN is a neutralised section, then there exists
an injective map ON such that the following diagram commutes:

UrecH UA

Urec† UM

 !N

 !�  ! �

 !ON

where N ´ .N; �/. Moreover, ON is a Hölder homeomorphism onto UrecM with
N.UrecH/ D UrecA and it is an orbit equivalence (i.e. ON takes full �ow lines to full
�ow lines).
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3. Metric space structure on UrecM

Let M be a Margulis spacetime. In this section, we will de�ne a distance function

d on UrecM such that .UrecM; d / is a metric space. The restriction of any euclidean

metric on A �V to the subspace UrecA, de�nes a distance on UrecA. We call this

distance the euclidean distance on UrecA. In this section we will de�ne a distance

on the space UrecA such that the distance is locally bilipschitz equivalent to any

euclidean distance on UrecA and also is �-invariant, so as to get a distance on the

quotient space UrecM.

The space UrecM is compact as it is homeomorphic to the compact spaceUrec†.

Hence we can choose a pre-compact fundamental domainD of UrecM insideUrecA.

Let B � A be an open euclidean ball containing the closure of D. We choose B

in such a way that for all 
 in a generating set of � we have


B \ B ¤ ;:

It follows from the choice of the open ball B that �B is path-connected.

Let U � B be a larger open ball and let �0 be a smooth function supported on

U and positive on B . Hence 
��
0 ´ �0 ı 
�1 is a smooth function supported on


U and positive on 
B for all 
 2 �. The action of � being proper implies that
P


2� 
��
0 has only �nitely many nonzero terms at any point and hence is well

de�ned and positive on �B . Therefore, the function

�´ �0

P


2� 
��0
W�B �! R

>0

is well de�ned and satis�es the following property:

X


2�


�� D 1:

Moreover, we denote the lift of � from �B to T.�B/ by Q�.

Now we �x a euclidean metric geuc on A � V. We consider the restriction of

geuc on T.�B/ and we denote the distance corresponding to geuc on UrecA by deuc.

De�nition 3.1. We de�ne Qd to be the distance on UrecA corresponding to the

Riemannian metric

g´
X


2�


�. Q�geuc/

on T.�B/.

Lemma 3.2. The distance Qd is �-invariant and is locally bilipschitz equivalent
to deuc.
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Proof. Invariance follows from the fact that

��g D
X


2�

.�
/�. Q�geuc/ D
X


2�


�. Q�geuc/ D g

for all � 2 �.

We note that any two euclidean metrics on A � V are bilipschitz equivalent

with each other. Moreover, the cardinality of the following set

�U ´ ¹
 2 � j 
U \ U ¤ ;º

is �nite. Hence for all 
 in �U the metric geuc isK-bilipschitz equivalent to 
�geuc

for some K > 1. Now from the de�nition of the metric g it follows that at any

point on T.�B/ the metric g D ��g isK-bilipschitz equivalent to the metric ��geuc.

Finally, the fact that any two euclidean metrics on A�V are bilipschitz equivalent

with each other implies that Qd is locally bilipschitz equivalent to deuc. �

Hence Qd gives rise to a distance d on UrecM and the distance Qd is locally

bilipschitz equivalent to any euclidean distance on UrecA.

4. The lamination and its lift

In this section, we will explicitly describe the two laminations of UrecA for the

�ow ẑ on UrecA and show that the laminations are equivariant under the action of

the �ow and the action of �. We will also de�ne the notion of a leaf lift.

LetZ be a point inUrecA. We know from Theorem 2.8 that there exists a unique

g 2 UrecH such that Z D N.g/. Recall that N D .N; �/ where �WUH ! V is the

neutral section (2.11) and N WUrecH! A is the neutralised section (Theorem 2.6).

De�nition 4.1. The positive and central positive partitions of UrecA are respec-

tively given by

L
C
N.g/
´ zLC

N.g/
\ UrecA;

L
C;0

N.g/
´ zLC;0

N.g/
\ UrecA;

where

zLC
N.g/
´ ¹.N.g/C s1�C.g/; �.g/C s2�C.g// j s1; s2 2 Rº;

zLC;0

N.g/
´ ¹.N.g/C s1�C.g/C t�.g/; �.g/C s2�C.g// j t; s1; s2 2 Rº:
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De�nition 4.2. The negative and central negative partitions of UrecA are respec-

tively given by

L
�
N.g/ ´ zL�

N.g/ \ UrecA;

L
�;0

N.g/
´ zL�;0

N.g/
\ UrecA;

where

zL�
N.g/ ´ ¹.N.g/C s1��.g/; �.g/C s2��.g// j s1; s2 2 Rº;

zL�;0
N.g/
´ ¹.N.g/C s1��.g/C t�.g/; �.g/C s2��.g// j t; s1; s2 2 Rº:

As we mentioned in the Introduction, we can alternatively think of UA as the

space of all tuples .x; `/ where x 2 A and ` is an oriented spacelike a�ne line

containing x. We denote the lift of UrecM to UA by UrecA. Let .x; `/ be an element

of UrecA. We consider the intersection of the plane perpendicular to ` at x with

respect to the Lorentz metric and the null cone at x. The intersection is the union of

two lightlike a�ne lines. We orient these lightlike a�ne lines by de�ning the part

lying in the upper light cone to be positive. We denote the two oriented lightlike

a�ne lines by `� and `C such that .`�; `; `C/ gives the positive orientation on A.

Then the lamination LC (respectively L�) through .x; `/ 2 UrecA is the collection

of all elements .y; `0/ 2 UrecA such that the following two conditions hold:

1. y 2 `C (respectively `�),

2. `0 is an oriented spacelike a�ne line passing through y and lying in the a�ne

plane generated by ` and `C (respectively `�) with .`�; `0C.x�y/; `C/ giving

the positive orientation on A.

Moreover, the lamination LC;0 (respectively L�;0) through .x; `/ 2 UrecA is the

collection of all elements .y; `0/ 2 UrecA such that the following two conditions

hold:

1. y 2 .z � x/C `C (respectively .z � x/C `�) for some z 2 `,
2. `0 is an oriented spacelike a�ne line passing through y and lying in the a�ne

plane generated by ` and `C (respectively `�) with .`�; `0C.x�y/; `C/ giving

the positive orientation on A.

Lemma 4.3. Let g; h be two points in UH. Then the following four properties are
equivalent:

1. h 2
S

t2R
zHC

Q�t g
where zHC is as de�ned in (2.8),

2. �.h/ � �.g/ D �h�.h/ j ��.g/i�C.g/,

3. �.h/ � �.g/ 2 R�C.g/,

4. �C.h/ D c�C.g/ where c 2 R
>0.
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Proof. 1 H) 2. Let h be a point of
S

t2R
zHC

Q�t g
. Hence there exist real numbers

s; t such that h D ga.t/uC.s/. Therefore, we get

�.h/ D ga.t/uC.s/

 

1

0

0

!

D ga.t/
 

1

2s

2s

!

D ga.t/
  

1

0

0

!

C
 

0

2s

2s

!!

D �.g/C 2sga.t/
 

0

1

1

!

D �.g/C 2setg

 

0

1

1

!

D �.g/C 2
p
2 set�C.g/:

(4.1)

Moreover, we notice that

h�.h/ j ��.g/i D h�.g/C 2
p
2 set�C.g/ j ��.g/i

D 2
p
2 set h�C.g/ j ��.g/i

D �2
p
2 set :

(4.2)

Hence combining equations (4.1) and (4.2) we get

�.h/ � �.g/ D �h�.h/ j ��.g/i�C.g/:

2 H) 3. Property 3 follows directly from Property 2.

3 H) 4. Let g; h be two points in UH satisfying

�.h/ D �.g/C b�C.g/

for some b 2 R. Using the de�nition of � and �C we observe that the above

equation is equivalent to the following equation,

h

 

1

0

0

!

D guC
� b

2
p
2

�

 

1

0

0

!

:
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We know that the only elements of SO0.2; 1/ �xing the vector .1; 0; 0/t are of the

form a.t/ for some real number t . Hence there exists t 2 R such that

h D guC
� b

2
p
2

�

a.t/:

Therefore,

�C.h/ D 1p
2
guC

� b

2
p
2

�

a.t/

 

0

1

1

!

D et

p
2
guC

� b

2
p
2

�

 

0

1

1

!

D et

p
2
g

 

0

1

1

!

D et�C.g/:

Hence we obtain Property 4 by noting that et is positive.

4 H) 1. Let �C.h/ D c�C.g/ where c 2 R
>0. Hence

h

 

0

1

1

!

D g
 

0

c

c

!

D ga.log.c//

 

0

1

1

!

and we get that a.� log.c//g�1h �xes the vector .0; 1; 1/t. Therefore, there exists

t 2 R such that a.� log.c//g�1h D uC.t / i.e.

h D ga.log.c//uC.t /

and we obtain h 2
S

t2R
zHC

Q�t g
. �

Corollary 4.4. Let g; h be two points in UH such that h is in
S

t2R
zHC

Q�t g
. Then

h�.g/ j ��.h/i�C.h/ D �h�.h/ j ��.g/i�C.g/:

Proof. In Lemma 4.3 Property 4 is symmetric in g and h, hence so must be

Property 2: the result follows. �

De�nition 4.5. For all g in UrecH we de�ne,

H
˙
g ´ zH˙

g \ UrecH:
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Proposition 4.6. The following equations are true for all g in UrecH,

1:L
C;0

N.g/
D
°

N.h/
ˇ

ˇ

ˇ
h 2

[

t2R

H
C
Q�t g

±

;

2:L
�;0

N.g/
D
°

N.h/
ˇ

ˇ

ˇ h 2
[

t2R

H
�
Q�t g

±

:

Proof. We start by de�ning a function

F WUrecH � UrecH �! R;

.g; h/ 7�! detŒN.g/ �N.h/; �.g/; �.h/�;

where N WUrecH ! A is the neutralised section as mentioned in Theorem 2.6.

Using equation (2.13) and Theorem 2.6.(3) we get that

F. Q�sg; Q�th/ D F.g; h/ (4.3)

for all s; t 2 R. Again using equation (2.14) and Theorem 2.6.(3) we get that the

neutralised sectionN and the neutral section � are equivariant under, respectively,

the a�ne and linear action of �. Hence for all 
 in � we have

F.L.
/g; L.
/h/ D detŒN.L.
/g/ � N.L.
/h/; �.L.
/g/; �.L.
/h/�
D detŒL.
/.N.g/ �N.h//; L.
/�.g/; L.
/�.h//�
D detŒL.
/� detŒN.g/ �N.h/; �.g/; �.h/�
D detŒN.g/ �N.h/; �.g/; �.h/�
D F.g; h/:

(4.4)

Now for a �xed real number c0 we consider the space

K´ ¹.g1; g2/ j dUH.g1; g2/ 6 c0º � UrecH � UrecH:

Compactness of Urec† implies that K� , the projection of K in �n.UrecH�UrecH/,

is compact, where the � action on UrecH � UrecH is diagonal. Now continuity of

F implies that F is uniformly continuous on K� . We note that F vanishes on the

diagonal of UrecH � UrecH.

Let g and h be two points in UrecH such that h 2
S

t2R H
C
Q�t g

. Then �C.h/

and �C.g/ are collinear by Lemma 4.3.(4), and there exists t 2 R such that

dUH. Q�tCsg; Q�sh/ ! 0 as s ! 1: hence F.g; h/ D 0 by uniform continuity.

Now the �rst desired property, namely

N.g/ �N.h/ 2 span.�.g/; �C.g//

can be obtained as follows:
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1. if �.g/ D �.h/ then h D Q�tg for some real number t and N.g/ � N.h/ 2
span.�.g/; �C.g// by Theorem 2.6.(3);

2. if �.g/ ¤ �.h/ then span.�.g/; �.h// D span.�.g/; �C.g// by Lemma 4.3

and span.�.g/; �.h// contains N.g/ �N.h/ due to F.g; h/ D 0.
The second desired property, namely

�.g/ � �.h/ 2 R�C.g/;

also follows from Lemma 4.3.

Conversely let W 2 L
C;0
N.g/

. By Theorem 2.8 we know that there exists h 2
UrecH such that W D N.h/ D .N.h/; �.h//. Now the choice of W implies that

there exists some real number s2 such that

�.h/ D �.g/C s2�C.g/:

Using lemma 4.3.(3) we get that h 2
S

t2R
zHC

Q�t g
. Therefore, h is in

[

t2R

H
C
Q�t g
D
�

UrecH \
[

t2R

zHC
Q�t g

�

and we have

L
C;0
N.g/
�
°

N.h/
ˇ

ˇ

ˇ h 2
[

t2R

H
C
Q�t g

±

:

Similarly, the other equality follows. �

Let g; h 2 UH. We say

g � h if and only if h D ga.t/

where t is some real number. We notice that

@1H � @1H X� D UH= �

where � denotes the diagonal. We recall the de�nition of the neutral section �

and notice that for any g 2 UH Š SO
0.2; 1/ and any t 2 R we have

�.ga.t// D �.g/:

Hence the map � from UH to the unit quadric S1 of R2;1 gives rise to a map

�W @1H � @1H X� �! S
1:

Lemma 4.7. Let g; h 2 UH and .g�; hC/ 2 @1H � @1H X � be such that
��.g/ 2 g� and �C.h/ 2 hC. Then

�.g�; hC/ D ��.g/� �C.h/

h��.g/ j �C.h/i :
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Proof. We know that @1H � @1H X � D UH= �. Hence there exists g1 2 UH
such that ��.g1/ 2 g� and �C.g1/ 2 hC. Therefore,

�.g�; hC/ D �.g1/

D g1

 

1

0

0

!

D �1
2
g1

  

0

�1
1

!

�

 

0

1

1

!!

D �
 

1p
2
g1

 

0

�1
1

!!

�

 

1p
2
g1

 

0

1

1

!!

D ���.g1/� �C.g1/:

We notice that the image of �˙ is the upper light cone. Hence ��.g1/; �
�.g/ 2 g�

and �C.g1/; �
C.h/ 2 hC implies that there exist c1; c2 2 R

>0 such that ��.g1/ D
c1�

�.g/ and �C.g1/ D c2�
C.h/. Therefore, using

h��.g1/ j �C.g1/i D
1

2
hg1.0;�1; 1/t j g1.0; 1; 1/

ti D �1;

we obtain

�.g�; hC/ D ���.g1/� �C.g1/ D
��.g/� �C.h/

h��.g/ j �C.h/i : �

Corollary 4.8. Let g; h 2 UH and .g�; hC/ 2 @1H � @1H X � be such that
��.g/ 2 g� and �C.h/ 2 hC. Then

h�.h/ j �.g�; hC/i D 1:

Proof. Using Lemma 4.7 and equation (2.4) we get that

h�.h/ j �.g�; hC/i D h�.h/ j �
�.g/� �C.h/i

h��.g/ j �C.h/i D h�
�.g/ j �C.h/� �.h/i
h��.g/ j �C.h/i :

Moreover,

�C.h/� �.h/ D
 

1p
2
h

 

0

1

1

!!

�

 

h

 

1

0

0

!!

D 1p
2
h

  

0

1

1

!

�

 

1

0

0

!!

D 1p
2
h

 

0

1

1

!

D �C.h/:

Hence h�.h/ j �.g�; hC/i D 1: �
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Now let g be a point in UrecH. We note that for g 2 UrecH the points

g˙ ´ lim
t!˙1

�. Q�tg/ 2 ƒ1�

where � is the projection from UH onto H. We observe that @1H X ¹gCº
is homeomorphic to R. Given any g 2 UH, let Vg� be a connected open

neighborhood of g� and VgC be a connected open neighborhood of gC in @1H

such that

cl.Vg�/ \ cl.VgC/ D ;:
We consider Ug˙ ´ Vg˙ \ ƒ1� and let Ug be the open subset of UrecH

corresponding to the open set Ug� � UgC � R. Now we de�ne the following

continuous map,

Ng WUg �! A;

h 7�! N.h/ �
˝

N.h/ �N.g/ j �.g�; hC/
˛

�.h/:

Lemma 4.9. Let g 2 UrecH and let the map Ng be de�ned as above. Then for all
h 2 Ug and t 2 R,

Ng.ha.t// D Ng .h/:

Proof. For any real number t we have

Ng .ha.t// D N.ha.t//� hN.ha.t//�N.g/ j �.g�; hC/i�.ha.t//

D Ng .h/C .1� h�.h/ j �.g�; hC/i/
�

t
Z

0

f .ha.s//ds

�

�.h/

where f is as mentioned in Theorem 2.6. Now using Corollary 4.8 we conclude

that, for all h 2 Ug and t 2 R,

Ng.ha.t// D Ng .h/: �

We recall that @1H� @1HX� D UH= �. Therefore, by Lemma 4.9 the map

Ng WUg ! A gives rise to a map

Ng WUg� � UgC �! A:

Lemma 4.10. Let g 2 UrecH. Then for any h˙ 2 Ug˙ and t 2 R,

.Ng.h
�; hC/C t�.h�; hC/; �.h�; hC// 2 N.UrecH/ D UrecA:

Proof. Let h 2 UrecH be such that �˙.h/ 2 h˙. We recall that by de�nition

Ng.h
�; hC/C t�.h�; hC/ D Ng.h/C t�.h/

D N.h/C .t � hN.h/ �N.g/ j �.g�; hC/i/�.h/:
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Hence by Corollary 2.7 there exists t1 2 R such that

Ng.h
�; hC/C t�.h�; hC/ D N.ha.t1//:

Now we conclude by observing that �.h�; hC/ D �.ha.t1//. �

Finally, using Lemma 4.10 we de�ne the following continuous map:

…g WUg� � UgC �R �! UrecA;

.h�; hC; t / 7�! .Ng.h
�; hC/C t�.h�; hC/; �.h�; hC//:

Furthermore, for a neighborhoodUN.g/ � UrecA of a point N.g/ 2 UrecAwe de�ne

another continuous map as folows:

qN.g/WUN.g/ �! .ƒ1� �ƒ1� X�/ �R;

N.h/ 7�! .h�; hC; hN.h/ �N.g/ j �.g�; hC/i/;

where h˙ ´ lim
t!˙1

�. Q�th/.

Proposition 4.11. Let g 2 UrecH andqN.g/, …g be de�ned as above. ThenqN.g/

is a local homeomorphism with its inverse given by …g .

Proof. Using Lemma 4.10 we get that there exists h 2 UrecH such that

Ng .h
�; hC/C t�.h�; hC/ D N.h/ (4.5)

Now by the de�nition of Ng we have

Ng.h
�; hC/ D Ng.h/ D N.h/ � hN.h/ �N.g/ j �.g�; hC/i�.h/: (4.6)

Hence by comparing the two equations (4.5) and (4.6) we get that

t D hN.h/ �N.g/ j �.g�; hC/i:
Therefore,

qN.g/ ı…g.h
�; hC; t / D qN.g/.Ng .h

�; hC/C t�.h�; hC/; �.h�; hC//

D qN.g/.N.h/; �.h//

D .h�; hC; hN.h/ �N.g/ j �.g�; hC/i/
D .h�; hC; t /:

and

…g ı qN.g/.N.h//

D …g.h
�; hC; hN.h/ �N.g/ j �.g�; hC/i/

D .Ng.h
�; hC/C hN.h/ �N.g/ j �.g�; hC/i�.h�; hC/; �.h�; hC//

D .N.h/; �.h// D N.h/:
Finally, we conclude by noting that the two maps qN.g/ and …g are continuous.

�
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Proposition 4.12. Let LC (respectively L�) be as de�ned in De�nition 4.1. Then
LC (respectively L�) is a lamination of UrecA.

Proof. Let g 2 UrecH and let Ug be a neighborhood of g in UrecH. We will

show that the equivalence relation LC on UrecA satis�es Properties 1 and 2 of

De�nition 2.1 for the local homeomorphismsqN.g/ D …�1
g , from UN.g/ D N.Ug/

to its image Ug� � .UgC �R/ � .ƒ1� �ƒ1� X�/ �R.

Property 1. Let h1; h2 2 Ug and let p0 be the projection from Ug� � UgC � R

onto R. We notice that to prove Property 1 it is enough to prove that if hC
1 D hC

2

then

p0 ı qN.g/.N.h2// � p0 ı qN.g/.N.h1//

is independent of g.

Suppose hC
1 D hC

2 . Then h2 2
S

t2R
zHC

Q�t h1

and by Proposition 4.6 we have

N.h2/ D N.h1/C s1�C.h1/C t1�.h1/

for some real numbers s1; t1. Hence we obtain

p0 ı qN.g/.N.h2// � p0 ı qN.g/.N.h1// D hN.h2/ � N.h1/ j �.g�; hC
1 /i

D hs1�C.h1/C t1�.h1/ j �.g�; hC
1 /i

D t1

by Corollary 4.8. As desired, t1 does not depend on g.

Property 2. Let pC;0 be the projection from Ug� � UgC � R onto UgC � R and

let ¹N.hi/ºi2¹1;2;:::;nº be a sequence of points such that for all i 2 ¹1; 2; : : : ; n� 1º
the following two conditions hold:

1. N.hiC1/ 2 UN.hi /,

2. pC;0 ı qN.hi /.N.hi// D pC;0 ı qN.hi /.N.hiC1//.

Hence we have

´

hC
i D hC

iC1;

0 D hN.hi / �N.hi / j �.h�
i ; h

C
i /i D hN.hiC1/ � N.hi / j �.h�

i ; h
C
iC1/i:

(4.7)

Moreover, hC
i D hC

iC1 implies that hiC1 2
S

t2R
zHC

Q�t hi

. Now using Lemma 4.3.(4)

and Proposition 4.6 we get

�C.hiC1/ D ci�
C.hi /;

N.hiC1/ D N.hi /C si�C.hi/C ti�.hi /;
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for some real numbers ci ; si and ti . Hence, by (4.7),

0 D hsi�C.hi /C ti�.hi / j �.h�
i ; h

C
iC1/i;

D hsi�C.hi /C ti�.hi / j �.h�
i ; h

C
i /i

D ti ;

and we have L
C
N.hi /
D L

C
N.hiC1/

. Therefore, we conclude that

L
C
N.h1/

D L
C
N.hn/

:

Now we show the other direction. Let h 2 UrecH be such that N.h/ 2 L
C
N.g/

. Using

Proposition 4.6 we get that hC D gC. Let Vg� be a connected bounded open

neighborhood of g� in @1H X ¹gCº containing the point h� and let VgC be a

connected open neighborhood of gC in @1H X ¹g�º such that the intersection

VgC \ Vg� is empty. We denote the sets Vg˙ \ ƒ1� respectively by Ug˙ and

the open subset of UrecA corresponding to the open set Ug� � UgC �R by UN.g/

i.e.

UN.g/ ´ …g.Ug� � UgC �R/:

Now we consider the chartqN.g/WUN.g/ ! Ug� � UgC �R and notice that

pC;0 ı qN.g/.N.g// D .gC; 0/:

Since N.h/ 2 L
C
N.g/

, using the de�nition of LC
N.g/

we get

hN.h/ �N.g/ j �.g�; gC/i D 0:

But gC D hC, therefore,

hN.h/ �N.g/ j �.g�; hC/i D 0

and we �nally have

pC;0 ı qN.g/.N.g// D pC;0 ı qN.g/.N.h//:

Therefore, we conclude that LC de�nes a lamination with plaque neighborhoods

given by the images of the open sets Ug� for g� in ƒ1� X ¹gCº.
Similarly, L� also de�nes a lamination of UrecA. �

Proposition 4.13. Let L�;0 (respectively LC;0) be as de�ned in De�nition 4.2.
Then L�;0 (respectively LC;0) is a lamination of UrecA. Moreover, it is the central
lamination corresponding to the lamination L� (respectively LC).



762 S. Ghosh

Proof. Let g 2 UrecH and let Ug be a neighborhood of g in UrecH. We will

show that the equivalence relation L�;0 on UrecA satis�es Properties 1 and 2 of

De�nition 2.1 for the local homeomorphismsqN.g/ D …�1
g , from UN.g/ D N.Ug/

to its image

Ug� � .UgC � R/ � .ƒ1� �ƒ1� X�/ � R:

1. Let g1; g2 2 UrecH and let h1; h2 2 Ug1
\ Ug2

. Moreover, let p� be the

projection from Ug� � UgC � R onto Ug� . We see that

p� ı qN.g1/.N.h1// D p� ı qN.g1/.N.h2//

if and only if

p� ı qN.g2/.N.h1// D p� ı qN.g2/.N.h2//:

Indeed, both left-hand sides are h�
1 and both right-hand sides are h�

2 .

2. Let ¹N.hi/ºi2¹1;2;:::;nº be a sequence of points such that for all i 2 ¹1; 2; : : : ;
n � 1º the following two conditions hold:

1. N.hiC1/ 2 UN.hi /,

2. p� ı qN.hi /.N.hi // D p� ı qN.hi /.N.hiC1//.

Hence for all i 2 ¹1; 2; : : : ; n� 1º we have

h�
i D h�

iC1:

Now using Proposition 4.6 we get that

L
�;0

N.hi /
D L

�;0

N.hiC1/

for all i in ¹1; 2; : : : ; n� 1º. Hence

L
�;0

N.h1/
D L

�;0

N.hn/
:

Now we show the other direction. Let h 2 UrecH such that N.h/ 2 L
�;0
N.g/

. Using

Proposition 4.6 we get that h� D g�. Let VgC be a connected bounded open

neighborhood of gC in @1H X ¹g�º containing the point hC and let Vg� be a

connected open neighborhood of g� in @1H X ¹gCº such that VgC \ Vg� is

empty. We denote the sets Vg˙ \ƒ1� respectively by Ug˙ , the open subset

of UrecH corresponding to the open set Ug� �UgC �R by Ug and the open set

N.Ug/ around N.g/ by UN.g/. Now we consider the chart

qN.g/WUN.g/ �! Ug� � UgC � R

and notice that

p� ı qN.g/.N.g// D g� D h� D p� ı qN.g/.N.h//:

Therefore, we conclude that L�;0 de�nes a lamination with plaque neighbor-

hoods given by the image of the open sets UgC �R for gC in ƒ1� X ¹gCº.
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Now the fact thatL�;0 is the central lamination corresponding to the lamination

L� follows from De�nition 4.2.

Similarly, LC;0 also de�nes a lamination of UrecA. �

Theorem 4.14. The laminations .LC;L�;0/ and .L�;LC;0/ de�ne a local product
structure on UrecA.

Proof. Using Propositions 4.11, 4.12, and 4.13 we get that .LC;L�;0/ de�nes a

local product structure on UrecA.

Similarly, .L�;LC;0/ also de�nes a local product structure on UrecA. �

Proposition 4.15. The laminations L˙ and L˙;0 are equivariant under the action
of � on UrecA.

Proof. Let Z 2 UrecA be such that Z D N.g/ for some g 2 UrecH and W 2 L
C
Z .

Therefore, there exist real numbers s1, s2 such that

W D .N.g/C s1�C.g/; �.g/C s2�C.g//:

Now for all 
 2 � we have


Z D 
N.g/ D N.L.
/g/

and


W D 
.N.g/C s1�C.g/; �.g/C s2�C.g//

D .
N.g/C s1L.
/�C.g/; L.
/�.g/C s2L.
/�C.g//

D .N.L.
/g/C s1�C.L.
/g/; �.L.
/g/C s2�C.L.
/g//:

Hence 
W 2 zLC

Z . Moreover, UrecA is invariant under the action of �. Therefore,


W 2 L
C

Z and we get that for all 
 in �,

L
C

Z D 
L

C
Z :

Similarly, L� is also equivariant under the action of � on UrecA.

Now let W 2 L
C;0
Z . Hence there exist real numbers s1, s2, s3 such that

W D .N.g/C s1�C.g/C s2�.g/; �.g/C s3�C.g//:

Notice that for all 
 2 � we have


W D 
.N.g/C s1�C.g/C s2�.g/; �.g/C s3�C.g//

D .
N.g/C s1L.
/�C.g/C s2L.
/�.g/; L.
/�.g/C s3L.
/�C.g//

D .N.L.
/g/C s1�C.L.
/g/C s2�.L.
/g/; �.L.
/g/C s3�C.L.
/g//:
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Hence 
W 2 zLC;0

Z . Moreover, UrecA is invariant under the action of �. Therefore,


W 2 L
C;0

Z and we get that for all 
 in �,

L
C;0

Z D 
L

C;0
Z :

Similarly, L�;0 is also equivariant under the action of � on UrecA. �

Proposition 4.16. The laminations L˙ and L˙;0 are equivariant under the �ow
ẑ on UrecA.

Proof. Let Z 2 UrecA be such that Z D N.g/ for some g 2 UrecH and

W 2 L
C
N.g/
D L

C
Z :

Hence there exist real numbers s1, s2 such that

W D .N.g/C s1�C.g/; �.g/C s2�C.g//:

Now using Corollary 2.7 we get that for any t 2 R there exists s 2 R such that

ẑ
tN.g/ D N.ga.s//:

We denote ga.s/ by gs and using equation (2.15) we obtain that

ẑ
tW D ẑ t .N.g/C s1�C.g/; �.g/C s2�C.g//

D .N.g/C s1�C.g/C t .�.g/C s2�C.g//; �.g/C s2�C.g//

D .N.gs/C .s1 C t s2/e�s�C.gs/; �.gs/C s2e�s�C.gs//:

Therefore, for any real number t we have

ẑ
tW 2 zLC

N.ga.s//
D zLC

ẑ
t Z
:

Moreover, the invariance of UrecA under ẑ implies that ẑ tW 2 L
C
ẑ

t Z
. Hence for

any real number t we get that

L
C
ẑ

t Z
D ẑ tL

C
Z :

Similarly, L� is also equivariant under the �ow ẑ on UrecA.

Now let W 2 zLC;0

N.g/
D L

C;0
Z . Hence there exist real numbers s1, s2, s3 such

that

W D .N.g/C s1�C.g/C s2�.g/; �.g/C s3�C.g//:

We denote ga.s/ by gs and using equation (2.15) we obtain that

ẑ
tW D ẑ t .N.g/C s1�C.g/C s2�.g/; �.g/C s3�C.g//

D .N.g/C s1�C.g/C s2�.g/C t .�.g/C s3�C.g//; �.g/C s3�C.g//

D .N.gs/C .s1 C t s3/e�s�C.gs/C s2�.gs/; �.gs/C s3e�s�C.gs//:
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Therefore, for any real number t we have

ẑ
tW 2 zLC;0

N.ga.s//
D zLC;0

ẑ
t Z
:

Moreover, the invariance of UrecA under ẑ implies that ẑ tW 2 L
C;0

ẑ
t Z

. Hence for

any real number t we get that

L
C;0

ẑ
t Z
D ẑ tL

C;0
Z :

Similarly, L�;0 is also equivariant under the �ow ẑ on UrecA. �

De�nition 4.17. We respectively denote the projections of L˙;L˙;0 on the space

UrecM by L
˙;L˙;0.

Now we de�ne the notion of a leaf lift. We will use this notion to estimate the

distance Qd on UrecA in terms of the norm on the tangent space at any given point.

We de�ne the leaf lift as follows.

The positive leaf lift is the map

iC
N.g/
W zLC
N.g/
�! TN.g/UA;

.N.g/C s1�C.g/; �.g/C s2�C.g// 7�! .s1�
C.g/; s2�

C.g//;

where we identify TN.g/UA with TN.g/A� T�.g/S
1. Similarly, the negative leaf lift

is the map

i�
N.g/W zL�

N.g/ �! TN.g/UA;

.N.g/C s1��.g/; �.g/C s2��.g// 7�! .s1�
�.g/; s2�

�.g//:

5. Contraction properties

In this section we will �rst show that the lamination LC is a stable lamination and

the lamination L� is an unstable lamination for the a�ne �ow ẑ on .UrecA; Qd/.
In fact, we will prove that the leaves of the lamination LC contract in the forward

direction of the a�ne �ow. Similarly, it will follow that the leaves of the lamination

L� contract in the backward direction of the a�ne �ow. Moreover, we will show

that .UrecM; d / admits a metric Anosov structure with respect to the a�ne �ow ˆ

on UrecM and its stable (respectively unstable) lamination is given by the projection

of the lamination LC (respectively L�) on UrecM.

Now we start with the following construction whose raison d’être will be

apparent in Proposition 5.2.
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Proposition 5.1. There exists a �-equivariant map Z 7! k � kZ from UrecA into
the space of euclidean metrics on R

3 � R
3 such that for all positive integers n,

there exists a positive real number tn satisfying the following property: if t > tn,
Z 2 UrecA and W 2 zLC

Z then

kiC
ẑ

t Z
. ẑ tW / � iCẑ

t Z
. ẑ tZ/k

ẑ
t Z

6
1

2n
kiCZ .W / � i

C
Z .Z/kZ:

Proof. Let g 2 UrecH. We note that the tangent space TN.g/UA is a �ve dimen-

sional vector space but it embeds naturally in TN.g/.A � V/ Š R
3 � R

3 as a

hyperplane. Now let h�j�iN.g/ be a positive de�nite bilinear form on the tangent

space TN.g/.A �V/ satisfying the following properties:

1: h.�˛.g/; 0/ j .�ˇ .g/; 0/iN.g/ D h.0; �˛.g// j .0; �ˇ .g//iN.g/ D ı˛ˇ ;

2: h.�˛.g/; 0/ j .0; �ˇ .g//iN.g/ D h.0; �˛.g// j .�ˇ .g/; 0/iN.g/ D 0:

where ı˛ˇ is the Kronecker delta function with ˛; ˇ in ¹:;C;�º. We de�ne the

map k � k˘ as follows:

kXkN.g/ ´
q

hX j XiN.g/;

where X is in TN.g/.A � V/. Now by equations (2.14), (2.16), and Theorem 2.6

we get that k � k˘ is �-equivariant, i.e.

k
Xk
N.g/ D kXkN.g/:

Let Z ´ N.g/ and W 2 zLC
Z . Hence there exist real numbers s1 and s2 such that

W D .N.g/C s1�C.g/; �.g/C s2�C.g//:

Therefore, we get that

kiCZ .W / � i
C
Z .Z/kZ D k.s1�

C.g/; s2�
C.g//kZ D

q

s2
1 C s2

2 : (5.1)

Moreover, for any t 2 R, by Corollary 2.7 there exists t1 2 R such that

ẑ
tZ D ẑ tN.g/ D N.ga.t1//: (5.2)

Therefore, we get that

kiC
ẑ

t Z
. ẑ tW / � iCẑ

t Z
. ẑ tZ/k ẑ

t Z

D k..s1 C t s2/�C.g/; s2�
C.g//kN.ga.t1//

D e�t1k.�C.ga.t1//; 0/kN.ga.t1//

q

.s1 C t s2/2 C s2
2

6 e�t1
p
2.1C jt j/

q

s2
1 C s2

2 :

(5.3)
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Furthermore, by equation (5.2) and Theorem 2.6.(3) we have

t D
t1
Z

0

f .ga.s//ds:

Now compactness of Urec† implies that f is bounded on UrecH by some constant

k 2 R
>0. Moreover, if t 2 R

>0 then by positivity of f we have t1 2 R
>0 and

t 6

t1
Z

0

kds D kt1:

Let c be a constant which is bigger than max¹1; 2kº. Then for t 2 R
>0 we get that

.1C jt j/e�t1 D .1C t /e�t1 6 ce� t
2k : (5.4)

Now by combining equation (5.1), inequalities (5.3) and (5.4) we obtain

kiC
ẑ

t Z
. ẑ tW / � iCẑ

t Z
. ẑ tZ/k

ẑ
t Z

6
p
2ce� t

2k kiCZ .W / � i
C
Z .Z/kZ

when t is positive. Hence for any positive integer n, there exists tn 2 R such that

if t > tn, Z 2 UrecA and W 2 L
C
Z then

kiC
ẑ

t Z
. ẑ tW / � iCẑ

t Z
. ẑ tZ/k

ẑ
t Z

6
1

2n
kiCZ .W / � i

C
Z .Z/kZ: �

Proposition 5.2. Let Qd be a �-invariant distance on UrecA which is locally
bilipschitz equivalent to a euclidean distance on UrecA and let k � k˘ be the �-
equivariant map from UrecA to the space of euclidean metrics on R

3 � R
3 as

constructed in the proof of Proposition 5.1. Then there exist positive constants K
and ˛ such that for any Z 2 UrecA and for anyW 2 L

C
Z , the following statements

are true:

1. if Qd.W;Z/ 6 ˛, then kiCZ .Z/ � i
C
Z .W /kZ 6 K Qd.W;Z/;

2. if kiCZ .Z/ � i
C
Z .W /kZ 6 ˛, then Qd.W;Z/ 6 KkiCZ .Z/ � i

C
Z .W /kZ .

Proof. Since � acts cocompactly on UrecA, Qd is �-invariant and k � k˘ is �-

equivariant, it su�ces to prove the above assertion for Z in a compact subset

D of UrecA, where D is the closure of a suitably chosen fundamental domain.

We can de�ne a euclidean distance dZ on UrecA, uniquely using the euclidean

metric k�kZ onR
3�R3, by taking the embedding ofUrecA inA�V. We notice that

for anyZ in UrecA and for anyW in L
C
Z , dZ.W;Z/ is equal to kiCZ .W /�i

C
Z .Z/kZ.
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Now, any two euclidean distances are bilipschitz equivalent with each other and

by our hypothesis, Qd is locally bilipschitz equivalent to a euclidean distance.

Therefore, in particular, Qd is locally bilipschitz equivalent with dZ for Z in D,

that is, there exist constants KZ depending on Z, and open sets UZ around Z,

such that the distances dZ and Qd are KZ bilipschitz equivalent with each other

on UZ .

Let C.X;Y / for any X and Y in D, be a constant such that the distances dX

and dY are C.X;Y / bilipschitz equivalent with each other. It follows from the

construction of the norm k � k˘, as done in Proposition 5.1, that we can choose

the constants C.X;Y / in such a way that C.X;Y / vary continuously in .X; Y /. As D

is compact it follows that C.X;Y / is bounded above by some constant C . Hence,

for all X and Y in D, dX and dY are C bilipschitz equivalent with each other.

Now we consider the open cover of D by the open sets UZ . As D is compact,

there exist points Z1; Z2; : : : ; Zn in D such that UZ1
; UZ2

; : : : ; UZn
covers D.

There exists a real number ˇ > 0, called a Lebesgue number for this covering

with respect to the distance Qd , such that for any Z in D, the open Qd -ball of radius

ˇ around Z, denoted by B Qd
.Z; ˇ/, lies inside UZj

for some j 2 ¹1; 2; : : : ; nº.
Also, let K0 be the maximum of KZ1

; KZ2
; : : : ; KZn

. Hence Qd and dZj
are

K0 bilipschitz equivalent with each other on B Qd
.Z; ˇ/. As dZ and dZj

are C

bilipschitz equivalent with each other, it follows that Qd and dZ are CK0 bilipschitz

equivalent with each other on B Qd
.Z; ˇ/. Moreover, we note that the constants ˇ,

C , K0 and hence also CK0, do not depend on Z. Therefore, Qd and dZ are CK0

bilipschitz equivalent with each other on B Qd
.Z; ˇ/, for all Z in D.

As any two distances dX and dY , for allX , Y inD are C bilipschitz equivalent

with each other, without loss of generality we can choose a point X in D and

consider the distance dX . We note that the set ¹B Qd
.Z; ˇ/WZ 2 Dº is an open

cover of D. Let ˇ1 be a Lebesgue number for this cover for the metric space

.D; dX/. Therefore, the open ball BdX
.Y1; ˇ1/ for any Y1 inD, lies inside an open

ball B Qd
.Y2; ˇ/ for some point Y2 in D. Now, as Qd and dZ are CK0 bilipschitz

equivalent with each other on the ball B Qd
.Z; ˇ/ for all Z in D, it follows that Qd

and dX are CK0 bilipschitz equivalent with each other on the ballBdX
.Y2; ˇ1/. As

Y2 was chosen arbitrarily we have that Qd and dX are CK0 bilipschitz equivalent

with each other on the ball BdX
.Y; ˇ1/, for all Y in D.

Moreover, we know that dX and dZ are C bilipschitz equivalent with each

other. Therefore, we get that Qd and dZ are CK0 bilipschitz equivalent with each

other on the ball BdZ
.Y; ˇ1

C
/, for all Y in D. In particular, we get that, Qd and dZ

are CK0 bilipschitz equivalent with each other on the ball BdZ
.Z; ˇ1

C
/. Finally,

we set ˛ to be min¹ˇ1

C
; ˇº and K to be CK0 to get that for any Z in UrecA and W

in L
C
Z ,

1. if Qd.W;Z/ 6 ˛, then kiCZ .Z/ � i
C
Z .W /kZ 6 K Qd.W;Z/,

2. if kiCZ .Z/ � i
C
Z .W /kZ 6 ˛, then Qd.W;Z/ 6 KkiCZ .Z/ � i

C
Z .W /kZ . �



Anosov structures on Margulis spacetimes 769

Theorem 5.3. Let L˙ be two laminations on UrecA as de�ned in De�nitions 4.1

and 4.2 and let Qd be the �-invariant distance, as de�ned in De�nition 3.1. Under
these assumptions, for the distance Qd on UrecA we have that

1: L
C is contracted in the forward direction of the a�ne �ow,

2: L
� is contracted in the backward direction of the a�ne �ow.

Proof. Let k � k˘ be the �-equivariant map from UrecA to the space of euclidean

metrics on R
3 � R

3 as constructed in the proof of Proposition 5.1 and let K and

˛ be as in the Proposition 5.2 for the distance Qd . We choose a positive integer n

such that

K

2n
< 1 ,

K2

2n
6
1

2
:

Let tn be the constant as in Proposition 5.1 for our chosen n. Also letZ be in UrecA

and W be in L
C
Z , so that Qd.W;Z/ 6 ˛. Then using Proposition 5.2 we get

kiCZ .W / � i
C
Z .Z/kZ 6 K Qd.W;Z/: (5.5)

Furthermore, using Proposition 5.1 we get that for all t > tn,

kiC
ẑ

t Z
. ẑ tW / � iCẑ

t Z
. ẑ tZ/k ẑ

t Z
6
1

2n
kiCZ .W / � i

C
Z .Z/kZ: (5.6)

Hence it follows that

kiC
ẑ

t Z
. ẑ tW / � iC

ẑ
t Z
. ẑ tZ/k ẑ

t Z
6
K˛

2n
6 ˛:

Now again using Proposition 5.2 we get

Qd. ẑ tW; ẑ tZ/ 6 KkiC
ẑ

t Z
. ẑ tW / � iCẑ

t Z
. ẑ tZ/k

ẑ
t Z
: (5.7)

Hence combining the inequalities (5.5), (5.6), and (5.7) we obtain

Qd. ẑ tW; ẑ tZ/ 6
K2

2n
Qd.W;Z/ 6

1

2
Qd.W;Z/; (5.8)

for all t > tn. Therefore, LC is contracted in the forward direction of the a�ne

�ow.

Similarly, L� is contracted in the backward direction of the a�ne �ow. �
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Finally, we consider what happens in the quotient, i.e. UrecM. Let Z 2 UrecA

and � be a positive real number. Then we de�ne,

L
˙
� .Z/´ L

˙
Z \ B Qd

.Z; �/;

and

K�.Z/´ …Z.L
C
� .Z/ � L

�
� .Z/ � .��; �// � UrecA

where…Z is the local product structure atZ de�ned by the stable and the unstable

leaves.

We know that there exists a positive real number �0 such that for any non

identity element 
 in � and for Z 2 UrecA we have,


.K�0
.Z// \K�0

.Z/ D ;:

Proof of Theorem 1.1. Let us �x ˛ as in Proposition 5.2 and let �1 be from the open

interval
�

0;min
®

˛; �0

2

¯�

. Now let z be any point of UrecM and let Z be a point in

UrecA in the preimage of z. Our choice of �1 gives us that the inequality (5.8)

holds for the a�ne �ow on UrecA for the points in the chart K�1
.Z/. Hence the

inequality (5.8) also holds for the a�ne �ow on UrecM for points in the chart which

are in the projection of K�1
.Z/.

Therefore, LC, the projection of LC in UrecM, is contracted in the forward

direction of the a�ne �ow on UrecM.

Similarly, L�, the projection of L� in UrecM, is contracted in the backward

direction of the a�ne �ow on UrecM. �

6. Anosov representations

In this section we de�ne the notion of an Anosov representation in the context of

the non-semisimple Lie group G´ SO
0.2; 1/ Ë R

3.

6.1. Pseudo-Parabolic subgroups. Let X be the space of all a�ne null planes.

We observe that G acts transitively on X. Hence for all P 2 X we have

X D G:P Š G=StabG.P /:

De�nition 6.1. If P 2 X then we de�ne

PP ´ StabG.P /:

We call PP a pseudo-parabolic subgroup of G.



Anosov structures on Margulis spacetimes 771

Let V.P / denote the vector space underlying a null plane P , let v0 ´ .1; 0; 0/t

and v˙
0 ´ .0;˙1; 1/t and let C be the upper half of the isotropic cone S0 X ¹0º.

Now we consider the space

N´ ¹.P1; P2/ j P1; P2 2 X; V.P1/ ¤ V.P2/º

and de�ne the following map onto the unit quadric S1 of R2;1:

vWN �! S
1;

.P1; P2/ 7�! v.P1; P2/;

where v.P1; P2/ 2 V.P1/ \ V.P2/ \ S
1 is such that if v1 2 V.Q1/ \ C and

v2 2 V.Q2/\C then .v1; v.Q1; Q2/; v2/ gives the same orientation as .v�
0 ; v0; v

C
0 /.

We observe that

v.P1; P2/ D �v.P2; P1/:

Proposition 6.2. The spaceN is the unique open G orbit inX�X for the diagonal
action of G on X �X.

Proof. Let .P1; P2/ and .Q1; Q2/ be two arbitrary points in N. We consider

the vector v.P1; P2/ 2 S
1 corresponding to the point .P1; P2/ and the vector

v.Q1; Q2/ 2 S
1 corresponding to the point .Q1; Q2/. Now as SO0.2; 1/ acts

transitively on S1 we get that there exist g 2 SO0.2; 1/ such that

v.Q1; Q2/ D gv.P1; P2/:

We choose X.Q1; Q2/ 2 Q1 \Q2 and X.P1; P2/ 2 P1 \ P2 and observe that

.e; X.Q1; Q2/ �O/ ı .g; 0/ ı .e; X.P1; P2/ �O/�1P1 D Q1;

.e; X.Q1; Q2/ �O/ ı .g; 0/ ı .e; X.P1; P2/ �O/�1P2 D Q2;

where e is the identity element in SO0.2; 1/. Therefore, N is an open G orbit in

X�X. Now asN is dense in X�X andX�X is connected, the result follows. �

Let N be the space of oriented spacelike a�ne lines. We think of N as the

space UA= � where .X; v/ � .X1; v1/ if and only if .X1; v1/ D ẑ t .X; v/ for

some t 2 R. We denote the equivalence class of .X; v/ by Œ.X; v/�. Now we

consider the following map:

{0WN �! N;

.P1; P2/ 7�! Œ.X.P1; P2/; v.P1; P2//�

where X.P1; P2/ is any point in P1\P2. We observe that {0 gives a G-equivariant

map.
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Let us denote the plane passing through X with underlying vector space gen-

erated by the vectors w1 and w2 by PX;w1;w2
. Now we consider another map

{WUA �! N;

.X; v/ 7�! .PX;v;v� ; PX;v;vC/

where v˙ 2 C such that hv˙ j vi D 0 and .v�; v; vC/ gives the same orientation

as .v�
0 ; v0; v

C
0 /. We observe that { is a G-equivariant map. Now as PXCtv;v;vC D

PX;v;vC andPXCtv;v;v� D PX;v;v� we get that the map { gives rise to a map, which

we again denote by {,

{WN �! N:

Moreover, we observe that { ı {0 D Id and {0 ı { D Id.

6.2. Geometric Anosov structure. Geometric Anosov structures were �rst in-

toduced by Labourie in [21]. In this subsection we give an appropriate de�nition

of the geometric Anosov property and show that .UrecM;L/ admits a geometric

Anosov structure.

Let .P�; PC/ 2 N be such that PC ´ P
O;v0;v

C
0

and P� ´ PO;v0;v�
0

.

We denote StabG.P
˙/ respectively by P˙. We note that the pair X˙ ´ G=P˙

gives a pair of continuous foliations on the space N whose tangential distributions

E˙ satisfy

TN D E
� ˚ E

C:

De�nition 6.3. We say that a vector bundle E over a compact topological space

whose total space is equipped with a �ow ¹'t ºt2R of bundle automorphisms is

contracted by the �ow as t ! 1 if for any metric k � k on E, there exist positive

constants t0, A and c such that for all t > t0 and for all v in E we have

k't .v/k 6 Ae�ctkvk:

De�nition 6.4. Let L denote the orbit foliation of UrecM under the �owˆ. We say

that .UrecM;L/ admits a geometric .N;G/-Anosov structure if there exists a map

F WAUrecM �! N

such that the following conditions hold:

1. for all 
 2 � we have F ı 
 D 
 ı F ;

2. for all t 2 R we have F ı ẑ t D F ;

3. by the �ow invariance, the bundlesF˙ ´ F �
E

˙ are equipped with a parallel

transport along the orbits of ẑ . The bundle FC (respectively F �) gets

contracted by the lift of the �ow ẑ t as t ! �1 (respectively t !1).
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Proof of Theorem 1.2. Let us de�ne a map F as follows:

F WAUrecM �! N;

.X; v/ 7�! Œ.X; v/�:

We note that the map F is clearly �-equivariant and is also invariant under the

�ow ẑ . Now we observe that

T{.Œ.X;v/�/G=P
� Š R.0; vC/˚ R.vC; 0/

and

T{.Œ.X;v/�/G=P
C Š R.0; v�/˚R.v�; 0/;

where vC; v� 2 C such that hv˙ j vi D 0 and .v�; v; vC/ gives the same

orientation as .v�
0 ; v0; v

C
0 /.

Now using Proposition 5.1 we notice that FC gets contracted by the lift of the

�ow ẑ t as t ! �1 and F � gets contracted by the lift of the �ow ẑ t as t !1.

Moreover, as UrecM is compact we get that the convergence is independent of the

particular distance choosenonUrecM, as long as the distances are locally bilipschitz

equivalent to each other. �
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