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Abstract. The random triangular group �.n; p/ is the group given by a random group pre-

sentation with n generators in which every relator of length three is present independently

with probability p. We show that in the evolution of �.n; p/ the property of collapsing to

the trivial group admits a very sharp threshold.
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1. Introduction

Let P D hS j Ri denote a group presentation, where S is the set of generators
and R is the set of relators. A group generated by a presentation P is called a
triangular group if R consists of cyclically reduced words of length three over
the alphabet S [ S�1, that is if R consists of words of the form abc such that
a ¤ b�1, b ¤ c�1 and c ¤ a�1. Here we consider the random triangular group
�.n; p/ de�ned as a group given by a random triangular group presentation with
n generators and such that each cyclically reduced word of length three over the
alphabet S [ S�1 is present in R independently with probability p D p.n/.

We study the asymptotic properties of the random triangular group when the
number of generators n goes to in�nity. Thus, for a group property P and a
function p.n/, we say that �.n; p.n// has P asymptotically almost surely (a.a.s.),
if the probability that �.n; p.n// has this property tends to 1 as n ! 1.

The notion of the random triangular group was introduced by Żuk [11]. In par-
ticular, he showed that for every constant � > 0, if p � n�3=2��, then a.a.s. �.n; p/

is an in�nite, hyperbolic group, while for p � n�3=2C�, a.a.s. �.n; p/ collapses
to the trivial group (his result is stated for a somewhat di�erent, yet equivalent,
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model of random triangular group). Antoniuk, Łuczak and Świa̧tkowski [2] im-
proved this result from one side and showed that there exists a constant C > 0

such that for p � C n�3=2 a.a.s. �.n; p/ collapses to the trivial group. They also
asked if there exists a constant c > 0 such that for p < cn�3=2 a.a.s. �.n; p/ is
in�nite.

Note that the property that a group is trivial is monotone, i.e. if hS j Ri is trivial
then for any R0 � R the group hS j R0i is trivial as well. Hence, by a well known
argument of Bollobás and Thomason [3], there exists a ‘coarse’ threshold function
for collapsibility i.e. there exists a function �.n/ such that if p.n/=�.n/ ! 0, then
a.a.s. �.n; p/ is non-trivial, whereas for p.n/=�.n/ ! 1 a.a.s. �.n; p/ collapses
to the trivial group. However, the result of Antoniuk, Łuczak and Świa̧tkowski [2]
and their conjecture we have just mentioned suggest that �.n; p/ collapses more
rapidly, i.e. that the collapsibility has a ‘sharp’ threshold. Our main result states
that this is indeed the case.

Theorem 1. Let h.n; p/ denote the probability that �.n; p/ is trivial. There exists

a function Qc.n/ such that for any � > 0,

lim
n!1

h.n; .1 � �/ Qc.n/n�3=2/ D 0 and lim
n!1

h.n; .1 C �/ Qc.n/n�3=2/ D 1:

Unfortunately, the argument we use does not give any information on the
asymptotic behaviour of Qc.n/. Nonetheless we strengthen the conjecture from [2]
and predict that Qc.n/ tends to a limit.

Conjecture. There exists a constant c > 0 such that for every constant � > 0 the

following holds:

(i) if p � .c � �/n�3=2, then a.a.s. �.n; p/ is in�nite and hyperbolic;

(ii) if p � .c C �/n�3=2, then a.a.s. �.n; p/ is trivial.

As we have already remarked it was shown in [2] that

lim sup Qc.n/ < 1 :

Although we cannot verify the conjecture and prove that

lim inf Qc.n/ > 0;

we show however that Qc.n/ cannot tend to 0 too quickly.

Theorem 2. Let ! and p be functions of n such that !.n/ ! 1 as n ! 1, and

p.n/ D n�3=2�!= log1=3 n:

Then a.a.s. �.n; p/ is in�nite, torsion-free, and hyperbolic.
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The structure of the paper is the following. In the next section we prove
Theorem 1. The argument is based on a result of the second author [6] which, up
to our knowledge, has never been used to show that properties of random groups
have sharp thresholds. It states, roughly, that if a property does not admit a sharp
threshold then it is ‘local’, i.e. its probability can be signi�cantly changed by a
local modi�cation of the random structure (see Lemma 3 below). We show that
it is not the case with the collapsibility. In particular, we show that adding to R a
few more specially selected relators a�ects the probability of collapsing less than
a tiny increase of the probability p, which in turn corresponds to adding to R

a small number of random relators. Hence, a local modi�cation of the random
structure cannot have large impact on the probability of the property in question.

Then we prove Theorem 2. We follow closely the argument of Ollivier who
in [8] showed that the assertion holds for some function p.n/ D n�3=2Co.1/. This
result was initially stated by Gromov [5] however it seems that Ollivier was the �rst
one who gave a complete proof of this statement. We basically rewrite Ollivier’s
argument (who, following Żuk, used a slightly di�erent model of the random
triangular group) to replace o.1/ in the power by some explicit function.

2. Proof of Theorem 1

As mentioned in the introduction, the tool we use in order to prove the sharpness
of the threshold, as expressed in Theorem 1, is a result from Friedgut [6]. In [6]
the author gives a general necessary condition for a property to have a coarse
threshold, namely that it can be well approximated by a local property. Although
the main theorem in that paper refers to graphs, the proof extends to hypergraph-
like settings where the number of isomorphism types of bounded size is bounded.
This includes random hypergraphs, random SAT Boolean formulae, and also the
model of random groups that we are addressing in the current paper. A di�erent,
but very similar tool that can be used here is Bourgain’s theorem that appears
in the appendix of [6], which has a weaker conclusion, but does not assume the
symmetry of the property in question, such as we have in our current problem.
To make things simpler we will use the “working-mathematicians-version” of
these theorems, as described in Friedgut [7]. We present below the lemma we
will use, stated in terms of the problem at hand, but �rst let us introduce some
notation. For each value of n we denote by S the set Sn of generators, and assume
that Sn � SnC1, so that any �xed relator is meaningful for all su�ciently large
values of n. Next, let �.n; p/ be given by a presentation P D hS j Ri, where R is
random, and let R� be a set of relators. We use the notation

h.n; pjR�/ WD PrŒhS j R [ R�i is trivial�:
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We will use this notation both for R� D R�xed D ¹r1; : : : ; rkº, a �xed set of
cyclically reduced relators of length three, and for R� D R�p, a random set of
relators chosen from Sn with probability �p (in which case the probability is over
both the choice of R and of R�). The following is an adaptation of Theorems 2.2,
2.3, and 2.4 from [7] to the current setting.

Lemma 3. Assume that there exists a function p D p.n/, and constants 0 < ˛,

� < 1, such that there exist in�nitely many values of n for which it holds that

˛ < h.n; p/ < h.n; .1 C �/p/ < 1 � ˛:

Then there exists a �xed ( �nite, independent of n but possibly dependent on ˛

and �) set R�xed D ¹r1; : : : ; rkº of cyclically reduced relators of length three, and

a constant ı > 0 such that for all such n

(i) h.n; pjR�xed/ > h.n; p/ C 2ı and

(ii) h.n; pjR�p/ < h.n; p/ C ı.

We will now see how this lemma, together with the fact that �.n; p/ col-
lapses when p D n�3=2Co.1/ (see either Olliver [8], or Antoniuk, Łuczak and
Świa̧tkowski [2] and Theorem 2) implies Theorem 1.

Proof of Theorem 1. Assume, by way of contradiction, that Theorem 1 does not
hold. Then the assumptions of Lemma 3 are met. Indeed, let pc D pc.n/ be
de�ned so that h.n; pc/ D 1=2. Then speci�cally Theorem 1 does not hold
with the choice of Qc.n/n�3=2 D pc . Hence there exists an �0 > 0 and a
positive constant ˛ < 1=2 such that for in�nitely many values of n either one
has h.n; .1 C �0/pc/ < 1 � ˛, or h.n; .1 � �0/pc/ > ˛. In the �rst case p D pc , ˛,
� D �0 meet the assumptions of Lemma 3, in the latter one can take p D .1��0/pc,
˛, and � D �0=.1 � �0/.

Now, let R�xed be the set of relators guaranteed by Lemma 3, and let Z WD

¹z1; z2; : : : ; z`º be the set of all generators involved in R�xed and all of their
inverses. Let Rstrong be the following relation: z1 D z2 D � � � D z` D e, where e

is the identity. Clearly

h.n; pjRstrong/ � h.n; pjR�xed/:

Next, consider the graph G D .V; E/, where V D .S [ S�1/ n Z, and E consists
of all pairs xy such that there is a relator in R which involves x; y and an element
of Z (implying x D y�1, since all elements in Z are set by Rstrong to be equal
to the identity). The probability that a given pair xy forms an edge is less than
6`p, and these events are independent, so G can be coupled with the Erdős-Rényi
random graph G.2n � `; q/ with q D O.n�3=2Co.1//. Elementary �rst moment
estimates imply that a.a.s. G has fewer than n0:6 non-trivial components each of
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them consisting of at most two edges. Indeed, the expected number of connected
subgraphs with exactly 3 edges is bounded by

.2n/3q3 C 16.2n/4q3 D O.n�0:5/;

hence by Markov’s inequality a.a.s. there are no such subgraphs and isolated
edges and paths of length two are the only non-trivial components. Moreover,
the expected number of edges in G can be bounded by

.2n/2q D O.n0:5/;

and again by Markov’s inequality a.a.s. there are at most n0:6 of them. Let R0 be
the set of relators in R that are disjoint from Z. Slightly abusing the notation we
will also use E to denote the set of relators ¹xyW ¹x; yº 2 Eº. We have

h.n; pjRstrong/ D PrŒhS n Z j R0 [ Ei is trivial� C o.n�0:4/; (1)

where the o.n�0:4/ accounts for the case where there exists in R a relator involving
two elements of Z. Note that both E and R0 are random.

Now let us consider the e�ect of R�p. First let us choose arbitrarily a set M ,
jM j D m D bn1:9c, of pairs of generators ¹a; bº, a; b 2 S [ S�1. De�ne a graph
G0 D .V 0; E 0/ with V 0 D .S [S�1/nZ and E 0 consisting of all pairs xy such that
R�p includes two relators of the form abx and aby�1, where ¹a; bº 2 M . Note
that the existence of such two relators clearly implies that x D y�1. Let X denote
the number of paths of length two in G0 D .V 0; E 0/. It is easy to see that for the
expectation of X we have

EX � 0:5.2n/3m2.�p/4 D 4n3n3:8n4.�3=2Co.1// D 4n0:8�o.1/ � 4n0:75:

It is also easy to check that the standard deviation of X is also of order O.n3m2p4/,
so from Chebyshev’s inequality we infer that a.a.s. the number of such paths is
larger than 3n0:75. On the other hand, let Y be the number of pairs of paths which
share at least one vertex. The expectation of Y is dominated by the number of
pairs which share one edge and is bounded from above by

EY � .2n/4m3.�p/6 D 16n4n5:7n6.�3=2Co.1// D 16n0:7Co.1/:

Thus, from Markov’s inequality, a.a.s. the number of such pairs is of order smaller
than n0:75. Consequently, a.a.s. G0 D .V 0; E 0/ contains at least n0:75 � n0:6

disjoint paths of length two.
Now

h.n; pjR�p/ D PrŒhS n Z j R0 [ E 0i is trivial� � o.n�0:4/ ; (2)

where the term o.n�0:4/ accounts for the fact that even if the group generated
by S n Z collapses there are the generators in Z to account for. However, if all
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generators in S n Z are set to be equal to the identity it su�ces that for each
element z 2 Z there will be in R a relator involving z and two elements of S n Z.
The probability of this event is at least as large as 1�o.n�0:4/ as n tends to in�nity.

We have shown that G0 contains at least n0:1 edge-disjoint subgraphs isomor-
phic to the graph spanned by the edges of G, i.e. there is a coupling which shows
that E 0 � E. Thus, the equations (1) and (2) contradict the items 1 and 2 in the
conclusion of Lemma 3. Consequently, the hypothesis of the lemma cannot hold,
and the property in question must have a sharp threshold. �

3. Proof of Theorem 2

In order to show Theorem 2 we need to introduce a number of somewhat technical
de�nitions. Let P D hS j Ri be a group presentation. A van Kampen diagram

with respect to the presentation P is a �nite planar 2-cell complex D given with
an embedding D � R

2 and satisfying the following conditions.

� D is connected and simply connected.

� For each edge e and one of its orientations we assign a generator s 2 S .
If we change the orientation of e to the opposite one, we replace the generator
s by s�1.

� Each 2-cell c is assigned a relator r 2 R, the number of edges on the boundary
of c is equal to the length of the relator r .

� For each 2-cell c there is a vertex v such that the word read from v in some
direction of the boundary of the cell is the relator r 2 R assigned to c.

For a van Kampen diagram D the size of the diagram, denoted by jDj, is
the number of faces (2-cells) of D. The boundary of D, denoted by @D, is the
boundary of the complement of D in R

2 and j@Dj denotes its size, that is the
number of edges in @D. The boundary word is any word read from some vertex in
@D in one of the directions around the boundary. In particular, the length of this
word is precisely j@Dj.

A van Kampen diagram is said to be reduced if there is no pair of cells c and
c0 sharing at least one edge e, which are assigned the same relator r , and are such
that if we read the word r on the boundaries of c and c0 the edge e has the same
orientation and corresponds to the same letter in the relator with respect to the
starting point. A van Kampen diagram is said to be minimal if it is reduced and
no other reduced van Kampen diagram with smaller number of faces has the same
boundary word.

Let � be the group given by a presentation P D hS j Ri. In order to
verify whether � is hyperbolic it is enough to consider minimal reduced van
Kampen diagrams with respect to the presentation P and to show that they ful�ll
a certain geometric condition. In particular, it is known that a group generated by
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a presentation P D hS j Ri is hyperbolic if and only if there exists a coe�cient
ı > 0 such that every minimal reduced van Kampen diagram D with respect
to the presentation P satis�es the linear isoperimetric inequality jDj � ıj@Dj

(cf. [1]).
However, verifying that every reduced van Kampen diagram satis�es a certain

isoperimetric inequality may turn out fairly hard since it requires showing that this
inequality holds for all of them. At this point, the so called local to global princi-

ple for hyperbolic geometry (or Cartan–Hadamard–Gromov–Papasoglu theorem)
(cf.[9]) comes to an aid. This principle states that it is enough to verify the isoperi-
metric inequality for a �nite family of van Kampen diagrams.

Theorem 4 (Cartan–Hadamard–Gromov–Papasoglu). Let P D hS j Ri be a

triangular group presentation. Assume that for some integer K > 0 every minimal

reduced van Kampen diagram D with respect to P and of size K2=2 � jDj �
240K2 satis�es the inequality

jDj �
K

200
j@Dj:

Then for every minimal reduced van Kampen diagram with respect to P the

following isoperimetric inequality is true

jDj � K2j@Dj:

Following Ollivier [8], in order to simplify the veri�cation of the isoperimetric
condition for van Kampen diagrams, we introduce a k-labeled decorated abstract

van Kampen diagram (davKd). For simplicity, we do it only for groups with
triangular presentations. A k-labeled davKd is a �nite planar 2-cell complex yD

given with an embedding yD � R
2 and satisfying the following conditions:

� yD is connected and simply connected,

� each 2-cell c is a triangle with a label i from ¹1; : : : ; kº, with a marked vertex
on its boundary and an orientation at this vertex,

� for all i 2 ¹1; : : : ; kº and for any 2-cell c labeled by i , starting from the
marked vertex and going around according to prescribed orientation at this
vertex, the edges of c get abstract labels i1; i2; i3.

Now, let P D hS j Ri be a triangular presentation and consider a one-to-one
map �W ¹1; : : : ; kº ! R which assigns relators to faces of yD. Let �1.i/; �2.i/; �3.i/

be the generators appearing on the �rst, second and third position of the relator
�.i/ respectively. Then � induces a map Q�W ¹irº1�i�k;1�r�3 ! S which assigns
to each abstract label ir a generator from S , namely Q�.ir/ D �r.i/. The map � is
called a ful�llment map, if additionally whenever there is an edge with two abstract
labels ir , js , then Q�.ir/ D Q�.js/. We say that a given davKd yD is ful�llable
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with respect to the presentation P D hS j Ri if there exists a ful�llment map
�W ¹1; : : : ; kº ! R for yD.

A davKd is said to be reduced if there is no pair of faces sharing at least one
edge, which are assigned the same label i and have opposite orientations, and such
that the common edge gets the same abstract label ir from both faces. A davKd
is said to be minimal if there is no other davKd with smaller number of faces and
having the same boundary word (with respect to the abstract labels of edges).

Our aim is to show that for a function f D f .n/ D != log1=3 n, where ! D

!.n/ ! 1 and p D n�3=2�f , a.a.s. all minimal reduced van Kampen diagrams
D with respect to the random presentation in �.n; p/ satisfy the isoperimetric
inequality with a coe�cient ı D ı.n/ D .200=f /2. But to do it, it is enough to
verify this inequality for all minimal reduced k-labeled davKd’s, so we show that
the following statement holds.

Lemma 5. Let ! D !.n/ ! 1, ! < log log n, f D f .n/ D != log1=3 n, and

p D p.n/ D n�3=2�f . Then a.a.s. for each minimal reduced k-labeled davKd yD,

ful�llable with respect to �.n; p/, we have

j yDj � .200=f /2j@ yDj:

In particular, a.a.s. each minimal reduced van Kampen diagram D with respect

to �.n; p/ satis�es the linear isoperimetric inequality

jDj � .200=f /2j@Dj:

Proof. Let f D f .n/ D != log1=3 n. From Theorem 4 it is enough to show that
a.a.s. each given davKd yD of size at most j yDj � 240.200=f /2 satis�es the linear
isoperimetric inequality with the coe�cient 1=f . We do it in two steps. First, we
show that for any davKd yD with size bounded by j yDj � 240.200=f /2 one of the
following two possibilities holds:

(i) yD satis�es the isoperimetric inequality with the coe�cient 1=f ;

(ii) the probability that yD is ful�llable by �.n; p/ is bounded from above by
n�f =2.

Using this dichotomy, we then show that the probability that there is a bounded
size ful�llable davKd yD not satisfying the isoperimetric inequality in question
goes to 0 with n ! 1. Hence, a.a.s. all su�ciently small ful�llable davKd’s
satisfy this inequality.

Let yD be a davKd with m D j yDj faces having k distinct labels and with l1
internal edges and l2 D j@ yDj boundary edges. If each face is assigned a di�erent
label, i.e. each cell of yD corresponds to a di�erent relator, the probability that yD
is ful�llable is bounded above by nl1Cl2pm. This is in fact a rather easy case and
showing that for all diagrams with di�erent labels and ful�llable in �.n; p/ a.a.s.
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an isoperimetric inequality holds with a coe�cient 1=f is rather straightforward.
Indeed, assume that for a given yD the isoperimetric inequality does not hold, that
is f m D f j yDj > j@ yDj D l2. Notice also that 3m D 2l1 C l2 � 2l1 C 1 as there is
at least one edge in the boundary of yD. Then the probability that yD is ful�llable is
bounded by nl1Cl2pm D nl1Cl2n.�3=2�f /m � n�1=2. Moreover, as we will show
later, the number of di�erent davKd’s yD with j yDj � 240.200=f /2 is of order much
smaller than n1=2, hence a.a.s. there are no such diagrams which are ful�llable and
at the same time do not satisfy the isoperimetric inequality.

The main challenge is to deal with diagrams where some of the labels may
appear more than once. On one hand, this reduces the number of distinct relators
used to ful�ll the diagram. On the other hand, this also imposes some restrictions
on the generators used in this assignment. To control the in�uence of these two
factors we follow an approach of Ollivier from [8]. To this end let mi denote the
number of faces labeled with i . Without loss of generality we may assume that
m1 � m2 � � � � � mk . We want to count the probability that yD is ful�llable with
respect to the random presentation given by �.n; p/. We introduce an auxiliary
graph G D G. yD/ which captures all the constraints resulting from the structure of
the davKd. The vertices of the graph G are the abstract labels ¹irº1�i�k;1�r�3 and
two vertices ir , js are adjacent if there is an edge in yD carrying labels ir and js.
We also de�ne a family of induced subgraphs G1 � G2 � � � � � Gk of G, where
Gl is a subgraph of G induced by vertices ¹irº1�i�l;1�r�3. Let us remark that
the main reason why this approach to davKd is so convenient is the fact that G

contains no loops if and only if davKd is reduced.
Now, the number of connected components in the graph G is the total number

of distinct generators which can appear in relators used in the ful�llment map �

for yD. In some sense, this gives us the number of degrees of freedom we have while
choosing relators for the ful�llment map. Indeed, if two vertices are adjacent in G,
then the corresponding abstract labels in yD are mapped by Q� to the same generator.
Therefore, if we denote the number of connected components in the graph G by C ,
then we obtain the estimate

Pr. yD is ful�llable/ � nC pk :

A similar argument works for the graphs Gl , which correspond to a partial assign-
ment, namely we assign relators to faces bearing labels 1; : : : ; l . Let Cl denote the
number of connected components in Gl . Then

Pr. yD is ful�llable/ � nCl pl D nCl �l.3=2Cf /;

therefore putting
dl D Cl � l.3=2 C f /

we get the estimate
Pr. yD is ful�llable/ � nmin dl :



888 S. Antoniuk, E. Friedgut, T. Łuczak

Thus, if for some l we have dl < �f =2, then

Pr. yD is ful�llable/ � n�f =2:

On the other hand, we claim that in the case of min dl � �f =2, the diagram
yD satis�es the isoperimetric inequality with the coe�cient 1=f . Indeed, as was
observed by Ollivier [8] (see p. 613) one gets that

j@ yDj � 3j yDj.1 � 2d/ C 2

kX

lD1

dl .ml � mlC1/;

where the parameter d is the density of the random triangular group, which in our
notation is equal to 1=2 � f =3. Thus

j@ yDj � 2f j yDj C 2

kX

lD1

dl .ml � mlC1/:

Next, observe that ml � mlC1 � 0 for every l and
P

ml D j yDj. Hence, if
min dl � �f =2, then

j@ yDj � 2f j yDj � f

kX

lD1

.ml � mlC1/ � f j yDj;

and we arrive at the desired isoperimetric inequality

j yDj �
1

f
j@ yDj: (3)

To complete our argument we use the local to global principle. In our case
the coe�cient K from Theorem 4 is equal to 200=f . We need to show that
the probability that there exists a diagram of size at most 240.200=f /2 violating
the isoperimetric inequality (3) tends to 0. If this is the case, then the random
presentation in the �.n; p/ model a.a.s. meets the assumptions of the local to
global principle, hence a.a.s. each diagram satis�es the isoperimetric inequality
with the coe�cient .200=f /2.

First, we need to count the number of all possible davKd’s with precisely m

faces. To do this we take the number of all possible triangulations of a polygon
which consist of exactly m triangles, and then for each triangle we choose the
orientation in 2 ways, the starting point in 3 ways and the label of this face in m

ways.
A triangulation of a polygon with m triangles has at most mC2 vertices. Thus,

the number of such triangulations is bounded from above by the number of distinct
triangulations t .N / of a 2-dimensional sphere with N vertices, where N � mC3,
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which in turn we bound from above by ˛m for some absolute constant ˛ > 0

(see Tutte [10]). Hence, the total number of davKd’s with exactly m faces can be
bounded by ˛m � 6m � mm=mŠ � ˇm, where ˇ > 0 is an appropriate constant.
Therefore, the probability that a ful�llable davKd of size at most 240.200=f /2

violates the isoperimetric inequality (3) is at most

X

m�240.200=f /2

ˇmn�f =2 � ˇ


f 2 n�f =2;

for some constant  > 0. It is easy to verify that the right hand side of this
inequality tends to 0 as n ! 1 provided f D f .n/ D != log1=3 n. Hence,
a.a.s. for every davKd yD with j yDj � 240.200=f /2 ful�llable in �.n; p/ the
isoperimetric inequality holds with a coe�cient 1=f and so the assertion follows
from Theorem 4. �

Proof of Theorem 2. As the group properties in question are monotone decreas-

ing, it is enough to consider p.n/ D n�3=2�!= log1=3 n with ! < log log n. Observe
�rst that a.a.s. �.n; p/ is aspherical, i.e. there exists no reduced spherical van
Kampen diagram with respect to the random presentation �.n; p/. Indeed, such
a spherical reduced van Kampen diagram has zero boundary, which violates the
isoperimetric inequality proved in Lemma 5. Since �.n; p/ is aspherical, it is
torsion-free (see, for instance, Brown [4], p. 187). Consequently, a.a.s. �.n; p/ is
an in�nite, hyperbolic group. �

Let us conclude with a remark that in order to show the conjecture we have to
prove Theorem 2 with �.n/ D O.1= log n/ instead of �.n/ D !=.log n/1=3. Such
an improvement seems to require a new approach and, perhaps, a stronger version
of Theorem 4.
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