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the maximal condition on normal subgroups. For each condition, we produce a character-

ization in terms of well-founded descriptive-set-theoretic trees. Using these characteriza-
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therefore, elementary amenability is equivalent to a chain condition. Our characterization

again implies the set of elementary amenable groups is co-analytic and non-Borel. As
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1. Introduction

Chain conditions appear frequently in the study of countable groups. These are

�niteness conditions that forbid certain in�nite sequences of subgroups. An el-

ementary but interesting example of such a condition is the property of being

polycyclic among solvable groups. From a group theory perspective, these �nite-

ness conditions ought to restrict the complexity of the groups, as in the case of

polycyclic groups. From a descriptive set theory perspective, however, the chain

conditions are non-Borel co-analytic statements and therefore either admit “nice”

non-chain-condition equivalent formulations - e.g. polycyclic groups are the sol-

uble groups with each term of the derived series �nitely generated - or describe

large and wild classes. In this work, we explore this tension for four chain condi-

tions in the space of marked groups.

In the space of marked groups, denoted G , we �rst consider three well-known

chain conditions: the minimal condition on centralizers, the maximal condition

on subgroups, and the maximal condition on normal subgroups. We characterize

each of these in terms of well-founded descriptive-set-theoretic trees. This char-

acterization implies the classes in question are large and wild, whereby they do

not admit “nice” characterizations.

Theorem 1.1. Each of the subsets of G de�ned by the minimal condition on

centralizers, the maximal condition on subgroups, and the maximal condition

on normal subgroups are co-analytic and not Borel. This remains true when

restricting to �nitely generated groups.

Our techniques additionally give new ordinal-valued isomorphism invariants

unbounded below the �rst uncountable ordinal in the cases of the minimal condi-

tion on centralizers and the maximal condition on subgroups. The ordinal-valued

isomorphism invariant we obtain in the case of the maximal condition on normal

subgroups is not new and has been considered in the literature; cf. [3]. However,

our approach is new, and we show that this invariant is unbounded below the �rst

uncountable ordinal.

We next consider the set of elementary amenable marked groups. We like-

wise characterize these in terms of descriptive-set-theoretic trees. It follows that

elementary amenability is indeed a chain condition.

Theorem 1.2. For a group K, let Nn.K/ be the intersection of all subgroups of

K of index at most nC 1. Then, a countable group G is elementary amenable if

and only if there is no in�nite descending sequence

K0 � K1 � � � � � Kn � � � �

of �nitely generated subgroups satisfying Kn ¤ ¹1º and KnC1 � ŒKn; Kn� \

Nn.Kn/.
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We remark that it can be the case that Ki D KiC1 for all i 2 N; this

phenomenon occurs for in�nite �nitely generated simple groups. The countability

assumption is also super�uous if one de�nes elementary amenability without

restricting cardinality.

Our characterization gives two new invariants of elementary amenable groups:

the decomposition rank and decomposition degree. We further obtain

Theorem 1.3. The sets of elementary amenable groups and �nitely generated el-

ementary amenable groups are co-analytic and non-Borel in the space of marked

groups.

It is well-known that the set of amenable groups is Borel in the space of marked

groups. Our theorem thus gives a non-constructive answer to an old question

of M. Day [4], which was open until R. I. Grigorchuk [6] constructed groups

of intermediate growth: are all �nitely generated amenable groups elementary

amenable?

Corollary 1.4. There is a �nitely generated amenable group that is not elementary

amenable.

The paper is organized as follows. In Section 2, we discuss the basic properties

of G and introduce concepts from descriptive set theory. In Sections 3, 4, and 5,

we analyze sets of groups satisfying various chain conditions. This introduces our

use of descriptive-set-theoretic trees to study the structure of groups as well as

the ordinal-valued invariants arising from those trees. In Section 6, we use those

same techniques to analyze elementary amenable groups. In Section 7, we prove

the maps used throughout the paper are indeed Borel. Those who are content

to believe that our constructions are Borel can safely skip this section without

missing any group-theoretic content. Finally, Section 8 discusses some questions

arising from this paper not touched upon in earlier sections.

2. Preliminaries

2.1. The space of marked groups. In order to apply the techniques of descrip-

tive set theory to groups, we need an appropriate space of groups. Let F! be the

free group on the letters ¹aiºi2N; so F! is a free group on countably many gener-

ators with a distinguished set of generators. The power set of F! may be naturally

identi�ed with the Cantor space ¹0; 1ºF! DW 2F! . It is easy to check the collec-

tion of normal subgroups of F! , denoted G , is a closed subset of 2F! and hence a

compact Polish space. Each N 2 G is identi�ed with a marked group. That is the

group G D F!=N along with a distinguished generating set ¹fN .ai /ºi2N where

fN WF! ! G is the usual projection; we always denote this projection by fN .
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For a marked group G, we abuse notation and say G 2 G ; of course, we formally

mean G D F!=N for some N 2 G . Since every countable group is a quotient of

F! , G gives a compact Polish space of all countable groups. A sub-basis for this

topology is given by sets of the form

O WD ¹N 2 G j  2 N º;

where  2 F! along with their complements.

Similar reasoning leads us to de�ne the space of m-generated marked groups

as

Gm WD
\

i�m

¹N E F! j ai 2 N º:

This is a closed subset of G and so is a compact Polish space in its own right.

We further let Gfg WD
S

m�1 Gm be the space of �nitely generated marked groups.

As this is an F� subset of G , it is a standard Borel space, with Borel sets precisely

those sets of the form Gfg \ B with B Borel in G ; a standard Borel space is

a Borel space which admits a Polish topology that induces the Borel structure.

We can thus also talk about Borel functions with domain Gfg .

It is convenient to give the marked groupsG D F!=N a preferred enumeration.

To this end, we �x an enumeration  WD .i /i2N of F! . Each G is thus taken to

come with an enumeration fN ./ WD .fN .i //i2N; note the enumeration of G

may have many repetitions. When we write G as G D ¹g0; g1; : : : º, we will

always mean this enumeration. Later in the paper we will work with N
<N, i.e. the

set of �nite sequences of natural numbers. If .s0; : : : ; sn/ DW s 2 N
<N, we will

write ¹gsº for the set ¹gs0 ; : : : ; gsnº. Note that this set may have fewer than nC 1

elements, e.g. if s0 D s1 D � � � D sn, or even if the si are distinct but enumerate

the same element.

We will often discuss quotients of groups or particular subgroups of groups,

and of course we wish to view these as elements of G . A quotient of a marked

group is obviously again a marked group. However, subgroups of marked groups

do not have an obvious marking. The enumeration gives us a preferred way to

select markings for subgroups. If H � F!=N D G 2 G , let �H WF! ! F! be

induced by mapping the generators .ai /i2N of F! as follows:

�H .aj / WD

´

j if fN .j / 2 H;

e else.

We then identifyH withF!= ker.fN ı�H /. In the caseH has a distinguished �nite

generating set ¹gi0; : : : ; ginº, we instead de�ne �H .aij / D ij and �H .aj / D e

for j ¤ ik; this streamlines our proofs later. We often appeal to this convention

implicitly.
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We will consider maps from and on G . A slogan from descriptive set theory

is “Borel = explicit” meaning if you describe a map “explicitly”, i.e. without an

appeal to something like the axiom of choice, it should be Borel. All of the maps

we discuss in the next few sections will be “explicit” in this sense, so we will not

prove they are Borel when we de�ne them, in order to keep the focus on the group-

theoretic aspects of our constructions. We will often use enumerations of groups

in our constructions, but this will not require choice since every marked group

comes with a preferred enumeration. For those who are interested in the details,

we discuss the descriptive-set-theoretic aspects of our constructions in Section 7.

2.2. Descriptive set theory. We are interested in certain types of non-Borel

subsets of G . The following de�nitions and theorems are all fundamental in

descriptive set theory; a standard reference is [11].

De�nition 2.1. Let X; Y be uncountable standard Borel spaces. Then A � Y is

analytic (denoted †11) if there is a Borel set B � X � Y such that projY .B/ D A.

A set C � Y is co-analytic (denoted …1
1) if Y n C is analytic.

Every Borel set is analytic, but any uncountable standard Borel space contains

non-Borel analytic sets. It follows that there are non-Borel co-analytic sets. The

collection of analytic sets is closed under countable unions, countable intersec-

tions, and Borel preimages. It follows the collection of co-analytic sets is closed

under countable unions, countable intersections, and Borel preimages. We remark

that sets de�ned using a single existential quanti�er which ranges over an uncount-

able standard Borel space are often analytic as such quanti�cation can typically

be rewritten as a projection of a Borel set. Thus sets de�ned by using a universal

quanti�er over an uncountable set are often co-analytic.

De�nition 2.2. Let X; Y be standard Borel spaces, and A � X , B � Y .

We say that A Borel reduces to B if there is a Borel map f WX ! Y such that

f �1.B/ D A.

If A Borel reduces to B and B is Borel, analytic, or co-analytic, then so is A.

This gives us a method for proving that sets are, for example, co-analytic simply

by showing they Borel reduce to a co-analytic set. One important example comes

from the space of (descriptive-set-theoretic) trees.

De�nition 2.3. A set T � N
<N of �nite sequences of natural numbers is a tree if

it is closed under initial segments. A sequence x 2 N
N is a branch of T if for all

n 2 N, x � n 2 T . For s 2 T , Ts WD ¹r 2 N
<N j sar 2 T º where “a” indicates

concatenation of �nite sequences.

As with groups, we may identify X � N
<N with an element fX 2 2N

<N

.

We de�ne

Tr WD ¹x 2 2N
<N

j x is a treeº:
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The set Tr is a closed subset of 2N
<N

and so is a compact Polish space. A sub-basis

for the topology on Tr is given by sets of the form

Ot WD ¹T 2 Tr j t 2 T º;

where t 2 N
<N, along with their complements.

There are two subsets of Tr of particular interest to us:

IF WD ¹T 2 Tr j T has a branchº

and WF WD Tr n IF. We call WF the set of well-founded trees and IF the set of

ill-founded trees. One can check that IF is analytic, so WF is co-analytic. The

importance of these sets comes from the following fact.

Theorem 2.4 ([11, Theorem 27.1]). Every analytic set Borel reduces to IF. There-

fore, every co-analytic set Borel reduces to WF.

Thus a set A is co-analytic if and only if it Borel reduces to WF.

We are interested in WF for a second reason. Let ORD denote the class of

ordinals. For any T 2 WF, we can de�ne a function �T WT ! ORD inductively

as follows. If t 2 T has no extensions in T , let �T .t / D 0. Otherwise let

�T .t / D sup¹�T .s/C1 j t ¨ sº. We may then de�ne a rank function �W Tr ! ORD

by

�.T / D

´

�T .;/C 1 if T 2 WF;

!1 else.

For T D ;, we de�ne �.T / D 0. The function � is bounded above by !1, the �rst

uncountable ordinal. Furthermore, this rank function has a special property:

De�nition 2.5. Let X be a standard Borel space and A � X . A function

�WA ! ORD is a …1
1-rank if there are relations �…� , �†�� X � X such that

�…� is co-analytic, �†� is analytic, and for all y 2 A,

x 2 A ^ �.x/ � �.y/ () x �†� y

() x �…� y:

Given any rank function on A, one may use it to de�ne an order �� on A. The

idea of the above de�nition is that if � is a …1
1-rank, then the initial segments of

�� are Borel, and this is witnessed in a uniform way.

Theorem 2.6 ([11, Exercise 34.6]). The function �W WF ! ORD is a …1
1-rank.
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We may use this fact to create other…1
1-ranks in an easy way. LetX be a standard

Borel space. If A � X Borel reduces to WF via f , then the map x 7! �.f .x// is

a …1
1-rank.

The most important fact about …1
1-ranks for this paper is the following

([11, Theorem 35.23]):

Theorem 2.7 (Boundedness Theorem for …1
1-ranks). Let X be a standard Borel

space, A � X co-analytic, and �WA ! !1 be a …1
1-rank. If A is Borel, then

sup¹�.x/ j x 2 Aº < !1.

There is indeed a stronger statement of the Boundedness Theorem; however the

above su�ces for our purposes. Speci�cally, we use the Boundedness Theorem to

show that certain…1
1 sets are not Borel by showing that they come with…1

1-ranks

with images unbounded below !1. This often requires using the following fact

about the ranks of trees, which is immediate from the de�nition.

Lemma 2.8. Suppose S; T are trees and �WS ! T is a map such that

s ¨ t H) �.s/ ¨ �.t/:

(We call such a map monotone.) Then �S .s/ � �T .�.s// for all s 2 S . In

particular �.S/ � �.T /.

3. The minimal condition on centralizers

We wish to show certain chain conditions give rise to sets of marked groups which

are …1
1 and not Borel in G . We begin by looking at the following chain condition.

De�nition 3.1. A subgroupH of G is a centralizer in G ifH D CG.A/ for some

A � G.

De�nition 3.2. A groupG satis�es the minimal condition on centralizers if there

is no strictly decreasing in�nite chain C0 > C1 > � � � of centralizers in G.

We denote the class of countable groups satisfying the minimal condition on

centralizers by MC .

The class MC is large, containing abelian groups, linear groups, and �nitely

generated abelian-by-nilpotent groups; see [1] for further discussion. It is not hard

to check that a group G satis�es the minimal condition on centralizers if and only

if it satis�es the maximal condition on centralizers, but our analysis is easier if we

think about the minimal version of the chain condition.
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Given a group G 2 G , we construct a tree TG � N
<N and associated groups

Gs 2 G for each s 2 TG . Each Gs will be a centralizer in G.

� Put ; 2 TG and let G; WD G D CG.;/.

� Suppose that s 2 TG and Gs D CG.¹gsº/ has already been de�ned. If

CG.¹gsº [ ¹giº/ ¤ CG.¹gsº/, then put sai 2 TG and

Gsai WD CG.¹gsº [ ¹giº/:

Lemma 3.3. The map ˆC W G ! Tr given by G 7! TG is Borel.

Intuitively, Lemma 3.3 holds since our construction is explicit; we delay a rigorous

proof until Section 7.

Lemma 3.4. TG is well-founded if and only if G 2 MC .

Proof. If G 2 MC , then TG contains no in�nite branches by de�nition. If

G … MC , then there is some in�nite A � G such that for all �nite B � A,

CG.A/ ¤ CG.B/. Let a0 < a1 < a2 < � � � be such that A D ¹ga0
; ga1

; : : : º. By

moving to a subsequence if necessary, we may assume that CG.¹ga0
; : : : ; gan

º/ �
CG.¹ga0

; : : : ; ganC1
º/ for all n 2 N. Then .a0; : : : ; an/ 2 TG for all n 2 N, so TG

has an in�nite branch. �

Lemma 3.5. Let H;G 2 G . If H ,! G, then �.TH / � �.TG/.

Proof. Let ˛WH ,! G and let  WN ! N be such that ˛.hk/ D g .k/. We now

de�ne a map �WTH ! N
<N. Let �.;/ D ;. If s 2 TH and s D .s0; : : : ; sn/,

let �.s/ D . .s0/; : : : ;  .sn//. Clearly � is monotone. Further, if s 2 TH , then

Hs D CH .¹hsº/ ,! CG.¹g�.s/º/. Since CG.¹g�.s/º/ \ ˛.H/ Š CH .¹hsº/, we

have that CG.¹g�.s�k/º/ ¤ CG.¹g�.s�.kC1//º/ for all k < jsj. Thus �.s/ 2 TG.

It follows �.TH / � TG , and by Lemma 2.8, �.TH / � �.TG/. �

Corollary 3.6. If G;G0 2 G and G Š G0, then �.TG/ D �.TG0/.

We thus see that �.TG/ is an isomorphism invariant, so it makes sense to talk

about the rank of a groupG with the minimal condition on centralizers, even when

not considering a speci�c marking.

De�nition 3.7. If G has the minimal condition on centralizers, then �.TG/ for

some (any) marking of G is called the centralizer rank of G.

We also mention that the above results, except for Lemma 3.3, work with

arbitrary enumerations of the group G, not just those that can arise from viewing

G as a marked group. Certain enumerations may be easier to use to calculate
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�.TG/, and Corollary 3.6 assures us that using these enumerations will not a�ect

the answer. The same will be true of our later constructions. Of course, in this

paper Lemma 3.3 and analogous results are of central importance, so we will

continue to work with groups as elements of G .

We now argue the centralizer rank is unbounded below !1.

Lemma 3.8. For A;B 2 MC with A nonabelian, A � B 2 MC and �.TB/ <

�.TA�B/.

Proof. It is easy to see A � B 2 MC . Let a 2 A be noncentral. Then

CA�B.¹.a; e/º/ D .A � B/i

for some i 2 TA�B since the centralizer is not all of A � B . Further,

B Š ¹eº � B � CA�B.¹.a; e/º/;

so by Lemma 3.5, �..TA�B/i / D �.T.A�B/i / � �.TB/. The result now follows.

�

Lemma 3.9. Let ¹Aiºi2N be countable groups. If Ai 2 MC for all i 2 N, then

there is a group A 2 MC such that �.TA/ � �.TAi
/ for all i 2 N.

Proof. Let A D �i2NAi . By [12, Corollary 4.1.6], which says that centralizers in

free products are cyclic or centralizers of a conjugate of a free factor, we infer

that A 2 MC . Lemma 3.5 now implies that �.TA/ � �.TAi
/ for all i 2 N,

as desired. �

Lemma 3.10. For all ˛ < !1, there is G 2 MC such that �.TG/ � ˛.

Proof. We prove this inductively. Clearly the lemma holds for ˛ D 0. Suppose

˛ D ˇ C 1 and the lemma holds for ˇ. Let G 2 MC be such that �.TG/ � ˇ and

A 2 MC be nonabelian. Applying Lemma 3.8, we see �.TA�G/ � ˇ C 1.

Suppose ˛ is a limit ordinal. Since ˛ is countable, there is a countable

increasing sequence of ˛i < ˛ such that supi2N ˛i D ˛. LetGi 2 MC be such that

�.TGi
/ > ˛i . Applying Lemma 3.9, there is some G 2 MC such that �.TG/ > ˛i

for all i 2 N. It now follows that �.TG/ � ˛. �

Lemma 3.11. For all ˛ < !1, there is a �nitely generated G 2 MC such that

�.TG/ � ˛.

Proof. Let H 2 MC be a group such that �.TH / � ˛. Then [10, Corollary on

p. 949] implies thatH embeds into a 3-generated groupG 2 MC . By Lemma 3.5,

�.TG/ � �.TH / � ˛ verifying the lemma. �
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We remark that the proof of the result cited in the previous uses nothing more

complicated than free products with amalgamation and is similar to the classical

Higman-Neumann-Neumann embedding result [9].

Theorem 3.12. MC is…1
1 and not Borel in G , and MC \Gfg is…1

1 and not Borel

in Gfg .

Proof. Let ˆC be the Borel map from Lemma 3.3. By Lemma 3.4, ˆ�1
C .WF/ D

MC , and since ˆC is Borel, MC is …1
1. Lemma 3.10 implies the ranks of the

trees in ˆC .MC / are unbounded below !1, so the …1
1-rank on MC given by

G 7! �.ˆC .G// is unbounded below !1. By Theorem 2.7, we conclude that

MC is not Borel. Lemma 3.11 implies the ranks of the trees in ˆC .MC \ Gfg/ are

also unbounded below !1, and by Theorem 2.7, we conclude that MC \ Gfg is

also not Borel. �

4. The maximal condition on subgroups

We next consider a more basic chain condition. Proving the analogue of Lemma 3.9

in this context is more complicated, which is why we present it after the previous

section.

De�nition 4.1. A group G satis�es the maximal condition on subgroups, abbre-

viated by saying a group satis�es max, if there is no strictly increasing chain

H0 < H1 < H2 < � � � of subgroups of G. Equivalently, a group G satis�es

max if all of its subgroups are �nitely generated. We denote the class of groups

satisfying max as Mmax .

Given a group G 2 G , we construct a tree TG � N
<N and associated groups

Gs 2 G for each s 2 TG .

� Put ; 2 TG and let G; WD ¹eº.

� Suppose that s 2 TG and Gs D h¹gsºi has already been de�ned. If h¹gsº [

¹giºi ¤ h¹gsºi, then put sai 2 TG and

Gsai WD h¹gsº [ ¹giºi:

Lemma 4.2. The map ˆM W G ! Tr given by G 7! TG is Borel.

We will prove Lemma 4.2 in Section 7.

Lemma 4.3. TG is well-founded if and only if G 2 Mmax .
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Proof. If G 2 Mmax , then TG contains no in�nite branches by de�nition. If

G … Mmax , then there is some in�nitely generated subgroup H � G. There

is some increasing sequence a0 < a1 < � � � of natural numbers such that H D

hga0
; ga1

; : : :i. We may assume that hga0
; : : : ; gan

i Œ hga0
; : : : ; ganC1

i for all

n 2 N. Then .a0; : : : ; an/ 2 TG for all n 2 N, so TG has an in�nite branch. �

Lemma 4.4. Let H;G 2 G . If H ,! G, then �.TH / � �.TG/.

Proof. Let  WN ! N be such that hk D g .k/. We now de�ne a map

�WTH �! N
<N:

Let �.;/ D ;. If s 2 N
<N and s D .s0; : : : ; sn/, let �.s/ D . .s0/; : : : ;  .sn//.

Clearly � is monotone. Furthermore, if s 2 TH , then Hs Š G�.s/, hence

�.TH / � TG. Lemma 2.8 now implies �.TH / � �.TG/. �

The previous lemma implies �.TG/ is a group invariant.

Corollary 4.5. If G;G0 2 G and G Š G0, then �.TG/ D �.TG0/.

De�nition 4.6. If G has the maximal condition on subgroups, then �.TG/ for

some (any) marking of G is called the subgroup rank of G.

Lemma 4.7. For all groups G 2 Mmax , G � Z 2 Mmax and �.TG/ < �.TG�Z/.

Proof. It is easy to see G � Z satis�es max. For the latter condition, let G D

¹g0; g1; : : :º andG�Z D ¹a0; a1; : : :º. There is some k 2 N such that ak D .eG ; z/

where Z D hzi. Let  WN ! N be de�ned such that a .m/ D .gm; eZ/. The map

�WTG ! N
<N given by .s0; : : : ; sn/ 7! . .s0/; : : : ;  .sn// is clearly monotone,

and further, �.TG/ � .TG�Z/k . By Lemma 2.8, �.TG/ � �..TG�Z/k/ <

�.TG�Z/. �

Lemma 4.8. Let ¹Aiºi2N be countable groups. If Ai 2 Mmax for each i 2 N,

then there is a group A 2 Mmax such that �.TA/ � �.TAi
/ for all i 2 N.

Proof. This is a consequence of [14, Theorem 2] due to A. Y. Olshanskii. This

result gives a 2-generated groupA containing each of theAi such that every proper

subgroup of A is either contained in a conjugate of some Ai , is in�nite cyclic,

or is in�nite dihedral. As every subgroup of each Ai is �nitely generated, every

subgroup ofA is �nitely generated, and soA 2 Mmax . Since eachAi is a subgroup

of A, Lemma 4.4 implies that �.TA/ � �.TAi
/ for all i 2 N as desired. �
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Lemma 4.9. For all ˛ < !1, there is G 2 Mmax such that �.TG/ � ˛.

Proof. The proof is the same as that of Lemma 3.10, with Lemmas 4.7 and 4.8

referenced at the appropriate places. �

Theorem 4.10. Mmax is …1
1 and not Borel in G and Gfg .

Proof. The proof is the same as that of Theorem 3.12 using Lemmas 4.2 and 4.9

where appropriate. The statement is true for Gfg simply because Mmax � Gfg .

�

5. The maximal condition on normal subgroups

Given a group G and a set S � G, we write hhSiiG to denote the normal closure

of S in G. We suppress the subscript G when the group is clear from context.

De�nition 5.1. A group G satis�es the maximal condition on normal subgroups,

abbreviated by saying a group satis�es max-n, if there is no in�nite strictly increas-

ing chain of normal subgroups of G. Equivalently, a group G satis�es max-n if

each of its normal subgroups is the normal closure of �nitely many elements of

G. We denote the class of groups satisfying max-n as Mn.

Given G 2 G , we construct a tree TG � N
<N and associated groups Gs 2 G

for each s 2 TG .

� Put ; 2 TG and let G; WD G.

� Suppose that s 2 TG and Gs D G=hh¹gsºii has already been de�ned. If

hh¹gsº [ ¹giºii ¤ hh¹gsºii, then put sai 2 TG and

Gsai WD G=hh¹gsº [ ¹giºii:

Lemma 5.2. The map ˆMn
W G ! Tr given by G 7! TG is Borel.

We prove Lemma 5.2 in Section 7.

Lemma 5.3. TG is well-founded if and only if G 2 Mn.

Proof. IfG 2 Mn, then TG contains no in�nite branches by de�nition. IfG … Mn,

then there is a normal subgroup N E G such that N D hhga0
; ga1

; : : :ii and

hhga0
; : : : ; gan

ii Œ hhga0
; : : : ; ganC1

ii

for all n 2 N. Thus the sequence .a0; : : : ; an/ is an element of TG for any n 2 N,

so TG has an in�nite branch. �
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Lemma 5.4. If G 2 Mn and f WG � G0, then �.TG/ � �.TG0/ with equality if

and only if f is injective.

Proof. Since G is max-n, ker.f / D hhSii for some �nite S D ¹gs0 ; : : : ; gsnº. We

may assume that n is minimal, so no element of S is in the normal closure of the

others. Setting .s0; : : : ; sn/ DW s 2 N
<N, the minimality of S implies s 2 TG ;

in the case ker.f / D ¹1º, we take s D ;. Let  WN ! N be a map such that

g0
k

D f .g .k//. Then for all i0; : : : ; ik 2 N,

G0=hhg0
i0
; : : : ; g0

ik
iiG0 Š G=hhg .i0/; : : : ; g .ik/; SiiG ;

and the monotone map �WTG0 ! N
<N given by .r0; : : : ; rn/ 7! . .r0/; : : : ;  .rn//

sends TG0 into .TG/s. By Lemma 2.8, �.TG0/ � �..TG/s/ � �.TG/, and the

rightmost inequality is strict if and only if s ¤ ;. �

We conclude this rank is also isomorphism invariant.

Corollary 5.5. If G;G0 2 G and G Š G0, then �.TG/ D �.TG0/.

Recall that a group is hop�an if it is not isomorphic to any of its proper

quotients. The following corollary is easy enough to prove directly, but it follows

immediately from Lemma 5.4 and Corollary 5.5.

Corollary 5.6. If G 2 Mn, then G is hop�an.

Unlike the previous invariants, this rank has appeared before in the literature;

cf. [3].

De�nition 5.7. If G has the maximal condition on normal subgroups, then �.TG/

for some (any) marking of G is called the length of G.

If we were to follow our template from previous sections, we would move on to

analogues of Lemmas 3.8 and 3.9. However, we were unable to prove an analogue

of Lemma 3.9 which would take advantage of Lemma 5.4. Such a result would be

a sort of dual version of the result of Olshanskii cited in the proof of Lemma 4.8.

Speci�cally, the following question is open to the best of the authors’ knowledge:

Question 5.8. Suppose ¹Aiºi2N is a set of normally k-generated max-n groups.

Is there a max-n group A such that A � Ai for all i 2 N?

A positive answer to this question would give us exactly the right analogue of

Lemma 3.9. Lacking this, we will use a construction involving (restricted) wreath

products. Recall the wreath product of H and G is H o G WD H<G Ì G where

H<G denotes the direct sum andG Õ H<G by shift; in the caseG Õ X for some
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set X , we write H oX G WD H<X ÌG. We will see that we can relate �.TH oG/ to

both �.TH / and �.TG/, while Lemma 5.4 alone only gives us information about

how �.TH oG/ and �.TG/ relate.

We will focus on perfect max-n groups with no central factors; let us call the

set of such groups M0
n. A group G is said to have a central factor if there are

normal subgroups L E M in G such that M=L is nontrivial and central in G=L.

Since M0
n � Mn, it is enough for our purposes to show that � is unbounded below

!1 on M0
n and M0

n \ Gfg .

Lemma 5.9. Let S be an in�nite simple group. For all groups G 2 Mn,

G � S 2 Mn and �.TG/ < �.TG�S/. If G 2 M0
n, then so is G � S .

Proof. It is easy to see that G � S 2 Mn, and since G is a quotient of G � S ,

Lemma 5.4 implies �.TG/ < �.TG�S/. If G is perfect, then G � S is perfect,

so for the last statement we need only to check that if G has no central factors,

then G � S has no central factors. Suppose that L;M E G � S give a central

factor. Let � WG � S ! G be the usual projection. Since G has no central factors,

�.M/ D �.L/. Thus MS D LS , so M D L.S \ M/. Since S has no central

factors, S \M D S \L. We conclude thatM D L, wherebyG�S has no central

factors, a contradiction. �

Lemma 5.9 allows us to �nd a group inM0
n with rank greater than a given group

in M0
n. However, we also need to be able to �nd a group in M0

n with rank greater

than a countable family of groups from M0
n. We begin by looking at properties of

the ranks of wreath products.

Lemma 5.10. Suppose H and G are groups satisfying max-n. Then �.TH oG/ �

�.TG/C �.TH /.

Proof. For each h 2 H de�ne fh 2 H<G by

fh.g/ D

´

h if g D e;

e else.

LetH D ¹h0; h1; : : :º and let  WN ! N be a map such that fhi
D g .i/. We now

de�ne a monotone �WTH ! N
<N. Put �.;/ D ;. For non-empty s 2 TH , de�ne

� by

.s0; : : : ; sk/ 7�! . .s0/; : : : ;  .sk//:

We argue � maps TH into TH oG by induction on the length of s 2 TH . As the

base case is immediate, say s 2 TH and sak 2 TH . By construction, it is the case

that hh¹hsº [ ¹hkºiiH ¤ hh¹hsºiiH . For all t 2 TH , hh¹g�.t/ºiiH oG D hh¹ht ºii
<G
H ,

hence

hh¹g�.s/º [ ¹g .k/ºiiH oG ¤ hh¹g�.s/ºiiH oG :

We conclude that �.sak/ 2 TH oG, so � maps TH into TH oG.
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Now if s D .s0; : : : ; sn/ 2 TH is a terminal node, then hh¹hsºiiH D H . In this

case .H o G/=hh¹g�.s/ºiiH oG Š G, so �.TG/ D �..TH oG/�.s// by Corollary 5.5.

The desired result now follows. �

In general,H oG need not be max-n. A theorem of P. Hall provides a su�cient

condition for this.

Theorem 5.11 (Hall, [7, Theorem 4]). Let H and G be groups satisfying max-n.

If H has no central factors, then H oG satis�es max-n.

Our next lemma allows us to iterate wreath products and remain in M0
n.

Lemma 5.12. If G and H have no central factors, then H o G has no central

factors.

Proof. Suppose L E M gives a central factor of H o G. Let � WH o G ! G

be the usual projection. Since G has no central factors, it must be the case that

�.L/ D �.M/, so LH<G D MH<G . Thus, M D L.H<G \M/, and it su�ces

to showH<G \M � L. SinceH has no central factors, it follows similarly to the

proof of Lemma 5.9 thatHF \M D HF \L for all �nite F � G. We conclude

that H<G \M � L verifying the lemma. �

It is easy to see the wreath product of two perfect groups is perfect, so using

Theorem 5.11 and Lemma 5.12, the classM0
n is closed under wreath products. With

the following fact from the literature, we are equipped to prove the desired lemma.

Lemma 5.13 ([5, Lemma 3.6]). Suppose A;B are countable groups and form

G D A o B . If N E G meets B non-trivially, then ŒA; A�<B � N .

Lemma 5.14. Let ¹Aiºi2N be countable groups. If Ai 2 M0
n for all i 2 N, then

there is a group A 2 M0
n such that �.TAi

/ � �.TA/ for all i 2 N.

Proof. For each n, putGn WD An o .� � � oA0/. By making the natural identi�cation,

we may assume Gn � GnC1 for all n and form A WD
S

n2NGn. (Alternatively,

one may take the direct limit.)

Consider N E A. Certainly, N \ Gn is non-trivial for some n. Fix such an n

and take k > n. We now seeN \Gk E Gk D Ak oGk�1 is a normal subgroup that

meetsGk�1 non-trivially. Applying Lemma 5.13, ŒAk; Ak�
<Gk�1 � N \Gk. Since

Ak is perfect, we have that A
<Gk�1

k
� N . It now follows that A=N is isomorphic

to a quotient of Gn.

Suppose .Ni /i2N is an increasing sequence of normal subgroups of A. By the

previous paragraph,A=N0 is a quotient ofGn for some n, and Theorem 5.11 implies

that each Gn is a max-n group. Letting � WA ! A=N0 be the usual projection,

it is thus the case that �.Ni / D �.Nj / for all su�ciently large i and j . Therefore,

Ni D Nj for all su�ciently large i and j , and A satis�es max-n.



664 Ph. Wesolek and J. Williams

For each n and k > n, de�ne

Lkn WD Ak oGk�1
.� � � oGnC2

.AnC2 oGnC1
A
<Gn

nC1 //

and put Ln WD
S

k>nL
k
n. We see Ln E A and A=Ln Š Gn. By Lemmas 5.10

and 5.4, �.TAn
/ � �.TGn

/ � �.TA/ for all n.

We �nally verify A is perfect and has no central factors. That A is perfect is

immediate. It follows from Lemma 5.12 and induction that eachGn has no central

factors. Since any factor of A is a factor of Gn for some n, A has no central

factors. �

Lemma 5.15. For all ˛ < !1, there is G 2 M0
n such that �.TG/ � ˛.

Proof. The proof is the same as that of Lemma 3.10, with Lemmas 5.9 and 5.14

referenced at the appropriate places. �

The groups given by Lemma 5.15 are not, in general, �nitely generated. For

�nding �nitely generated examples another result of Hall is needed.

Lemma 5.16 (Hall, [8, Theorem 4]). Let H be a countable group. Then there

exists a short exact sequence

¹eº �! M �! G �! Z �! ¹eº

where G is 2-generated, ŒM;M� D ŒH;H�<Z, and there is t 2 G so that the

conjugation action of t on ŒM;M� is by unit shift.

It is useful to sketch Hall’s construction of G. Let ¹hiºi2N listH and form the

unrestricted wreath productHZ Ì Z. De�ne � 2 HZ by

�.i/ WD

´

hn if i D 2n;

e else,

and let t be a generator for Z in HZ Ì Z. The desired group is then G WD ht; �i.

The subgroupM equals hg�g�1 j g 2 Gi.

We point out a consequence of the construction for later use. Suppose H is

perfect and h 2 H . Taking fh 2 ŒH;H�<Z D H<Z as de�ned in Lemma 5.10, the

construction of G implies hhfhiiG D hhhii<ZH .

Corollary 5.17. For each ˛ < !1, there is a �nitely generated group G 2 Mn

with �.TG/ � ˛.

Proof. Fix ˛ < !1 and apply Lemma 5.15 to �nd a group H 2 M0
n with

�.TH / � ˛. We now apply Lemma 5.16 to �nd a 2-generated group G with a

short exact sequence

¹eº �! M �! G �! Z �! ¹eº

where ŒM;M� D ŒH;H�<Z D H<Z.
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The groupG=ŒM;M� is a �nitely generated metabelian group, hence it satis�es

max-n by [7, Theorem 3]. On the other hand, any normal subgroup of G that lies

in ŒM;M� D H<Z is shift-invariant because G contains an element that acts by

shift on ŒM;M�. Since H o Z is max-n, it follows that H<Z is max-G; that is to

sayH<Z has the maximal condition on subgroups invariant under the conjugation

action by G. We conclude the group G is max-n.

It remains to compute a lower bound for �.TG/. Using again the notation from

Lemma 5.10, �nd  WN ! N such that for each k 2 N we have fhk
D g .k/.

Since hhfhiiG D hhhii<ZH , we may argue as in Lemma 5.10 to conclude that

˛ � �.TH / � �.TG/. That is to say, we can de�ne a monotone �WTH ! TG
and by Lemma 2.8 conclude that ˛ � �.TH / � �.TG/. �

Theorem 5.18. Mn is…1
1 and not Borel in G , and Mn \Gfg is…1

1 and not Borel

in Gfg .

Proof. This follows from Theorem 2.7, Lemma 5.2, and Corollary 5.17. �

6. Elementary amenable groups

Perhaps surprisingly, the property of being elementary amenable may also be char-

acterized by well-founded trees. This in turn gives a chain condition equivalent to

elementary amenability.

6.1. Preliminaries. We study the collection of elementary amenable groups.

This class is typically de�ned as follows:

De�nition 6.1. The collection of elementary amenable groups, denoted EG, is

the smallest collection of countable groups such that

(i) EG contains all �nite groups and countable abelian groups;

(ii) EG is closed under group extensions;

(iii) EG is closed under countable increasing unions;

(iv) EG is closed under taking subgroups;

(v) EG is closed under taking quotients.

Our results here require an embedding result, which is based on a gener-

alization of Lemma 5.16. The result is more or less implicit in the work of

B. H. Neumann and H. Neumann [13]. We include a proof for completeness; the

proof we give is due to D. Osin from a mathover�ow.org post.
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Proposition 6.2 (Hall; Neumann and Neumann). Suppose K 2 EG. Then there

exists H 2 EG and a short exact sequence

¹eº �! M �! G �! Z �! ¹eº

where G is 2-generated, G 2 EG, ŒM;M� D ŒH;H�<Z, and K embeds into

ŒH;H�.

Proof. In view of Lemma 5.16, it su�ces to produceH 2EG so thatK ,! ŒH;H�.

To this end, form the unrestricted wreath product KZ Ì Z and for each k 2 K,

de�ne

fk.n/ D

´

e if n � 0;

k if n > 0:

Letting t WD .e; 1/ 2 KZ Ì Z, we claim H WD ht; fkW k 2 Ki has the desired

properties.

The commutator Œt�1; fk�.n/ D k when n D 0 and equals e otherwise, hence

K embeds into ŒH;H�. Furthermore, f 2 H \KZ if and only if there is Nf > 0

such that f .n/ D e for all n � �Nf and f .n/ D f .Nf / for all n � Nf . The map

 WH \KZ ! K by f 7! f .Nf / is thus a homomorphism with ker. / D K<Z.

As K 2 EG, the groupH \KZ is elementary amenable, and sinceH=H \KZ is

abelian, we concludeH 2 EG. The groupH thus satis�es the required properties

verifying the proposition. �

6.2. Decomposition trees. We now de�ne a tree associated to a marked groupG.

Just as in the previous sections, we will see that this tree being well-founded or

not gives group-theoretic information about G, in this case characterizing being

an elementary amenable group.

Let G 2 G . For n � 0, put Rn.G/ WD hg0; : : : ; gni and for k � 1, de�ne

Sk.G/ WD ŒG; G�\
\

Nk.G/

where Nk.G/ WD ¹N E G j jG W N j � k C 1º. For each l � 1, we now de�ne a

tree T l .G/ � N
<N and associated groups Gs 2 G as follows.

� Put ; 2 T l .G/ and let G; WD G.

� Suppose we have s 2 T l .G/ and Gs. If Gs ¤ ¹eº, put san 2 T l .G/ and

Gsan WD SjsjCl.Rn.Gs//.

We call T l .G/ the decomposition tree of G with o�set l . This tree is always

non-empty, and if s 2 T l .G/ is terminal, then Gs D ¹eº. As composition of

functions is associative, we obtain a useful observation:

Observation 6.3. For s 2 T l.G/, T l.G/s D T jsjCl.Gs/, and for each r 2

T jsjCl .Gs/, .Gs/r D Gsar as marked groups. This implies, in particular, that

if T l .G/ is well-founded, then so is T jsjCl .Gs/.
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Lemma 6.4. For each l � 1, the map ˆl W G ! Tr given by G 7! T l.G/ is Borel.

As usual, we postpone the proof of this lemma to Section 7.

Lemma 6.5. Let G;H 2 G and H ,! G. Then for all l � k � 1,

�.T l.H// � �.T k.G//:

In particular, for G;G0 2 G , if G Š G0, then

�.T l .G// D �.T l .G0//

for all l � 1.

Proof. We induct on �.T k.G// simultaneously for all k. If �.T k.G// D 1,

then G D ¹eº, so H D ¹eº. Suppose the lemma holds for all G and k with

�.T k.G// � ˇ. Suppose that f WH ! G is an embedding and �.T k.G// D ˇC1.

For all n � 0, there is some k.n/ so that f .Rn.H// � Rk.n/.G/. It follows that

f .Hn/ � Gk.n/ for all n � 0 since SlC1.Gk.n// � SkC1.Gk.n//. By the inductive

hypothesis and Observation 6.3,

�.T l .H// D sup
n2N

¹�.T lC1.Hn//º C 1 � sup
n2N

¹�.T kC1.Gk.n///º C 1 � �.T k.G//

completing the induction. �

Corollary 6.6. For G 2 G , T l .G/ is well-founded for some l � 1 if and only if

T l .G/ is well-founded for all l � 1.

Proof. Suppose G 2 G is so that T l.G/ is well-founded. In view of Lemma 6.5,

T k.G/ is well-founded for all k � l . For n � l , take s 2 T n.G/ with jsj D l ; if no

such s exists then T n.G/ is plainly well-founded. There is an injection Gs ,! G,

so applying Lemma 6.5 once again,

�.T nCjsj.Gs// � �.T nCjsj.G//:

By choice of s, n C jsj � l , hence �.T nCjsj.G// < !1. Since T n.G/s D

T nCjsj.Gs/, we conclude T n.G/s is well-founded for each s of length l . The tree

T n.G/ is therefore well-founded, and the corollary follows. �

De�ne W WD
S1
lD1.ˆ

l /�1.WF/; that is, W is the collection of marked

groups so that some decomposition tree is well-founded. By Corollary 6.6,

every decomposition tree of a group in W is well-founded; that is to say, W D
T1
lD1.ˆ

l /�1.WF/.

Lemma 6.5 shows the rank of a decomposition tree is independent of the

marking. We thus de�ne
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De�nition 6.7. The decomposition rank of G 2 W is de�ned to be

�.G/ WD min
k2!

�.T k.G//

for some (any) marking of G. The decomposition degree is de�ned to be

deg.G/ WD min¹k j �.G/ D �.T k.G//º

for some (any) marking of G.

Corollary 6.8. If G;H 2 G and H ,! G, then �.H/ � �.G/.

Remark 6.9. The decomposition rank in a fairly straightforward manner tracks

the number of extensions and unions applied to produce the group. The decom-

position degree, on the other hand, is currently mysterious. It somehow tracks the

size of the �nite groups “appearing” in the construction of an elementary amenable

group. We do not consider the decomposition degree further as it is tangential to

our goal. We do study the decomposition rank in detail.

We now show that W � EG and W enjoys the same closure properties as EG,

so that in fact EG D W.

Theorem 6.10. If G 2 W, then G 2 EG.

Proof. We induct on �.G/. For the base case, if �.G/ D 1, then G D ¹eº and

G 2 EG. Suppose the theorem holds for all ˛ < ˇ and �.G/ D �.T l .G// D ˇ.

Consider Ri .G/. Since Ri .G/ is �nitely generated, NlC1.Ri .G// is �nite, so

jŒRi.G/; Ri.G/� W Gi j < 1:

We infer Ri .G/=Gi is �nite-by-abelian and, therefore, elementary amenable.

On the other hand, Observation 6.3 gives �.T 1Cl .Gi // D �.T l .G/i /. Hence,

�.T 1Cl .Gi// < ˇ, and we conclude that Gi 2 EG from the inductive hypothesis.

As EG is closed under group extensions and countable increasing unions,Ri .G/ 2

EG for all i 2 !, whereby G 2 EG. �

The family W also has the same closure properties as EG. Lemma 6.5 already

shows W is closed under taking subgroups. The other closure properties require

several lemmas.

Lemma 6.11. W contains all �nite groups and all abelian groups.

Proof. If G is abelian, then �.T 1.G// � 2. If G is �nite with size m, then

�.Tm.G// � 2. �
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We next consider increasing unions.

Lemma 6.12. If G D
S

i2NHi with eachHi 2 W, then G 2 W.

Proof. For each i 2 N, let ˛i WD �.T 1.Hi// < !1. Since each Rn.G/ is �nitely

generated, there is some mn 2 N such that Rn.G/ � Hmn
. By Lemma 6.5,

�.T 1.Gn// � �.T 1.Hmn
// D ˛mn

. We conclude �.T 1.G// � supi2N.˛mi
/C 1 <

!1, and thereby, G 2 W. �

In our construction, given G and k � 1, we are particularly interested in the

Gi associated with i 2 T k.G/. We will see their decomposition rank is related to

that of G in a simple way; this observation is necessary for showing W is closed

under taking extensions and quotients.

Lemma 6.13. Suppose G 2 W is non-trivial and deg.G/ D k. Then

sup
i2!

�.Gi /C 1 � �.G/

where Gi is the subgroup of G associated to i 2 T k.G/. In particular, �.Gi / <

�.G/ for all i 2 N.

Proof. By construction, for all i 2 N,

�.T kC1.Gi //C 1 D �.T k.G/i /C 1

� �.T k.G//:

Hence,

sup
i2N

�.Gi /C 1 D sup
i2N

¹min
l2N

�.T l .Gi //º C 1

� sup
i2N

¹�.T kC1.Gi //º C 1

D �.T k.G//

D �.G/

as desired. �

The inequality in Lemma 6.13 may be strict; for example, consider Symf in.N/, the

group of �nitely supported permutations of N. We also point out that Lemma 6.13

does not hold for choices of k such that �.T k.G// ¤ �.G/.

We next show that W is closed under extensions. We will �rst prove a weaker

statement. This approach is inspired by [16].
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Lemma 6.14. Suppose that N 2 W, B is �nite or abelian, and there is a short

exact sequence

1 �! N �! G �! B �! 1:

Then G 2 W.

Proof. Suppose �rst that B is abelian. Thus, ŒG; G� � N , so for any l � 1 and all

n 2 T l .G/, Gn � N . It follows from Lemma 6.5 that for all n 2 N,

�.T lC1.Gn// � �.T lC1.N // < !1:

Appealing to Observation 6.3, we infer �.T l .G// < !1, so G 2 W.

Suppose that B is �nite and jG W N j D k. For all n 2 T k.G/, Gn � N , so as

above, T k.G/ is well-founded. Hence, G 2 W . �

Lemma 6.15. Suppose the groupG is the extension of a groupB 2 W by a group

N 2 W. Then G 2 W. The family W is thus closed under group extensions.

Proof. We �rst establish the following claim.

Claim. If N 2 W and B is �nite-by-abelian, then the extension of B by N is

in W.

Proof of claim. Suppose that B is the extension of an abelian group A by a �nite

group F . Let F0 be the preimage of F in G. ThenG=F0 Š B=F Š A, soG=F0 is

abelian. Since F0 is the extension of the �nite group F byN , Lemma 6.14 implies

that F0 2 W. Applying Lemma 6.14 a second time, G 2 W. 4

We now prove the lemma by induction on ˇ D �.B/. If ˇ D 1, then

B D ¹eº and the induction claim holds trivially. Suppose the result holds for

all ı < ˇ. First, assume that B is �nitely generated, say deg.B/ D l , and form the

decomposition tree T l .B/. By �nite generation, there is some m 2 N such that

for all k � m, Rk.B/ D B , so Bk D ŒB; B�\
T

Nl .B/. We now considerK E G

the preimage of Bk under the projection map. The group K is the extension of

Bk by N , and �.Bk/ < �.B/ by Lemma 6.13. The inductive hypothesis therefore

implies K 2 W. On the other hand, G=K is �nite-by-abelian, so G 2 W by our

claim.

If B is not �nitely generated, then B D
S

n2NRn.B/, and �.Rn.B// � �.B/

for all n 2 N. Letting Cn be the preimage in G of Rn.B/, the previous paragraph

implies Cn 2 W. Since G D
S

n2N Cn, Lemma 6.12 ensures that G 2 W. �
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Finally, we show that W is closed under quotients.

Lemma 6.16. If G 2 W and L E G, then G=L 2 W.

Proof. We argue by induction on �.G/. As the base case is immediate, suppose the

lemma holds up to ˇ and letG be such that �.G/ D ˇC1. In view of Lemma 6.12,

we may assumeG is �nitely generated, soRn.G/ D G for all suitably large n. Say

k D deg.G/ and let Gn be the subgroup corresponding to n 2 T k.G/.

By the inductive hypothesis and Lemma 6.13, GnL=L Š Gn=Gn \ L 2

W for each n. On the other hand, G=Gn � .G=L/=.GnL=L/. Therefore,

.G=L/=.GnL=L/ is �nite-by-abelian and so is in W . It now follows from

Lemma 6.15 that G=L 2 W . �

Combining Lemmas 6.5, 6.11, 6.12, 6.15, and 6.16, we obtain the following

corollary.

Corollary 6.17. If G 2 EG, then G 2 W.

We thus produce a characterization of elementary amenable groups.

Theorem 6.18. Let G be a marked group. Then the following are equivalent:

(1) G 2 EG;

(2) T l .G/ is well-founded for all l � 1;

(3) T l .G/ is well-founded for some l � 1.

We can rephrase this to have the form of a chain condition independent of

the marking. This corollary may thus be taken to be a de�nition of elementary

amenability.

Corollary 6.19. For a groupK, let Nn.K/ be the intersection of all subgroups of

K of index at most nC 1. Then, a countable group G is elementary amenable if

and only if there is no in�nite descending sequence

K0 � K1 � � � � � Kn � � � �

of �nitely generated subgroups satisfying Kn ¤ ¹1º and KnC1 � ŒKn; Kn� \

Nn.Kn/.

Proof. Suppose G 2 G and there is an in�nite descending sequence

K0 � K1 � � � � � Kn � � � �

as in the statement. Form T 1.G/, the decomposition tree of G with o�set 1. We

now proceed by induction to build s0 ¨ s1 ¨ � � � with si 2 T 1.G/ and jsi j D i
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such that Ki ,! Gsi . The base case is immediate: set s0 D ;. Suppose we have

de�ned sn, so Kn ,! Gsn . Since Kn is �nitely generated, there is Rm.Gsn/ such

that Kn ,! Rm.Gsn/. It follows that KnC1 ,! Gsa

n m. Setting snC1 D sa
n m, we

have veri�ed the inductive claim. The tree T 1.G/ thus has an in�nite branch, so

by Theorem 6.18, G … EG.

Suppose there are no in�nite descending sequences as in the statement and

form T 1.G/. Let s0 ¨ s1 ¨ � � � with si 2 T 1.G/ and jsi j D i . In view

of Theorem 6.18, it su�ces to show s0 ¨ s1 ¨ � � � terminates, since then

T 1.G/ is well-founded. By construction, the sequence of associated subgroups

Gs1 � Gs2 � � � � is produced from a sequence of �nitely generated subgroups

K0 � K1 � � � � with Ki � Gsi and Gsi D ŒKi�1; Ki�1� \ Ni�1.Ki�1/ for all

i � 1. The sequence .Ki/i2N must terminate by hypothesis, so the sequence

s0 ¨ s1 ¨ � � � terminates. �

This chain condition has the interesting property that the de�nition of Kn
changes with n. As far as we are aware, there are no widely-studied chain

conditions de�ned in this way.

Remark 6.20. François Le Maître remarked to us that Corollary 6.19 can be

proved without appealing to decomposition trees. Via C. Chou’s characterization

of elementary amenable groups [2, Proposition 2.2], one shows that the class of

groups which satisfy the chain condition contains EG. Conversely, for a group

outside of EG, one builds an in�nite chain by induction.

6.3. EG is not Borel. We now study the descriptive-set-theoretic properties of

EG. We show that on EG the decomposition rank is unbounded below !1.

Lemma 6.21. For every K 2 EG, there is L 2 EG with �.K/ < �.L/.

Proof. Let G 2 EG be as given by Proposition 6.2 for K and form L WD G o Z.

Let k D deg.L/ and take Li to be the subgroup of L corresponding to i 2 T k.L/.

Since L is �nitely generated, we may �nd n such that L D Rn.L/.

We now consider Ln. The group ŒL; L� D ŒRn.L/; Rn.L/� certainly contains

ŒM;M� D ŒH;H�<Z. On the other hand, if N E L has index k C 1, there is

n 2 Z n ¹0º so that n 2 N , hence applying Lemma 5.13, ŒG; G� � N . We deduce

that ŒH;H�<Z � Ln. The group K thus embeds into Ln, and Lemma 6.8 implies

�.K/ � �.Ln/. Appealing to Lemma 6.13, we conclude �.K/ < �.L/ proving the

lemma. �

Our next lemma follows immediately from Corollary 6.8 by taking the direct

sum.

Lemma 6.22. Let ¹Aiºi2N be countable groups. If Ai 2 EG for all i 2 N, then

there is A 2 EG with �.A/ � �.Ai / for all i 2 N.
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Lemma 6.23. For all ˇ < !1, there is G 2 EG such that �.G/ � ˇ.

Proof. The proof is the same as that of Lemma 3.10, with Lemmas 6.21 and 6.22

referenced at the appropriate places. �

Lemma 6.24. For each ˇ < !1, there is a �nitely generated G 2 EG such that

�.G/ � ˇ.

Proof. Let H 2 EG be a group such that �.H/ � ˇ. Proposition 6.2 implies

that H embeds into a 2-generated group G 2 EG. By Corollary 6.8, �.G/ �

�.H/ � ˇ. �

Theorem 6.25. EG is a non-Borel…1
1 set in G , and EG \Gfg is a non-Borel…1

1

set in Gfg .

Proof. This follows from Theorem 2.7, Lemma 6.4, and Lemma 6.24 along with

the facts that �.G/ � �.T 1.G// and that � ıˆ1 is a …1
1-rank on EG. �

Let AG � G denote the class of countable amenable groups. Via Theo-

rem 6.25, we now may give a non-constructive answer to an old question of

Day [4], which was open until Grigorchuk [6] constructed groups of intermediate

growth: is it the case that every amenable group is elementary amenable?

Corollary 6.26. There is a �nitely generated amenable group that is not elemen-

tary amenable.

Proof. It is well-known that AG is Borel; see Lemma 7.5 for a proof. The set

AG \Gfg is thus Borel. On the other hand, Theorem 6.25 gives that EG \Gfg is

not Borel. We conclude that EG \Gfg ¨ AG \Gfg . �

6.4. Further observations. By a result of Chou [2, Proposition 2.2], the class

of elementary amenable groups is the smallest class of countable discrete groups

that satis�es (i),(ii), and (iii) of De�nition 6.1. Chou’s theorem suggests a natural

ranking of elementary amenable groups di�erent than our decomposition rank.

Indeed, after [16], we introduce the following notations.

� G 2 EG0 if and only if G is �nite or abelian.

� Suppose EG˛ is de�ned. Put G 2 EGe˛ if and only if there exists N E G

such that N 2 EG˛ and G=N 2 EG0. Put G 2 EGl˛ if and only if

G D
S

i2NHi where .Hi/i2N is an �-increasing sequence of subgroups

of G with Hi 2 EG˛ for each i 2 N. Set EG˛C1 WD EGe˛ [ EGl˛ .

� For � a limit ordinal, EG� WD
S

ˇ<� EGˇ .
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By a result of Osin [16, Lemma 3.2],
S

˛<!1
EG˛ is closed under group

extension. It now follows from Chou’s theorem that EG D
S

˛<!1
EG˛ . One

may then de�ne for G 2 EG

rk.G/ WD min¹˛ j G 2 EG˛º:

We call rk.G/ the construction rank of G.

We now compare � and rk and in the process mostly recover a theorem of

Olshanskii and Osin.

Proposition 6.27. For G 2 EG, rk.G/ � 3�.G/.

Proof. We induct on �.G/ for the proposition. For the base case, if �.G/ D 1,

then G D ¹eº, and the inductive claim obviously holds. Suppose the proposition

holds up to ˇ. Say �.G/ D ˇ C 1 and deg.G/ D k. Then �.Gi / � ˇ for each Gi
associated to i 2 T k.G/, and applying the inductive hypothesis, rk.Gi / � 3�.Gi /.

On the other hand, Ri.G/=Gi is �nite-by-abelian; say it is an extension of the

group A by the group F . Letting F0 be the inverse image of F in Ri .G/ under the

usual projection, rk.F0/ � rk.Gi/C 1, and Ri .G/=F0 Š A. Hence,

rk.Ri .G// � .rk.Gi /C 1/C 1 � 3�.Gi /C 2:

We conclude

rk.G/ � sup
i2N

.3�.Gi /C 2/C 1 � 3.ˇ C 1/ D 3�.G/:

This �nishes the induction. �

Bounding � from above by rk involves a bit more work. We begin with a general

lemma for well-founded trees.

Lemma 6.28. Suppose T is a well-founded tree. Then

�.T / � sup
jsjDk

�.Ts/C k:

Proof. We argue by induction on jsj. For the base case, jsj D 1,

�.T / D �T .;/C 1 D sup
i2T

.�T .i/C 1/C 1 D sup
i2N

�.Ti/C 1:

Supposing the lemma holds up to length k,

�.T / � sup
jsjDk

�.Ts/C k � sup
jsjDk

. sup
sai2T

�.Tsai /C 1/C k � sup
jsjDkC1

�.Ts/C k C 1

completing the induction. �
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Proposition 6.29. For G 2 EG,

�.T 1.G// � !.rk.G/C 1/:

In particular, �.G/ � !.rk.G/C 1/.

Proof. We argue by induction on rk.G/. For the base case, rk.G/ D 0, G is either

�nite or abelian. There is thusm � 1 such that every element of T 1.G/ has length

at most m. It follows that �.T 1.G// is �nite, which proves the base case.

Suppose the lemma holds up to ˛ and rk.G/ D ˛ C 1. Let us consider �rst

the case that the construction rank is given by a countable increasing union; say

G D
S

n2! Hn with rk.Hn/ � ˛ for each n. Since Ri .G/ is �nitely generated,

there is n.i/ for which Gi � Hn.i/. We apply the inductive hypothesis and

Lemma 6.5 to conclude

�.T 2.Gi// � �.T 1.Gi // � !.˛ C 1/:

Hence,

�.T 1.G// D sup
i2!

�.T 2.Gi //C 1 � ! � ˛ C ! C 1 � !.˛ C 2/;

verifying the hypothesis in this case.

We now consider the case rk.G/ is given by a group extension. Suppose

H E G is such that rk.H/ D ˛ and rk.G=H/ D 0. If G=H is abelian, Gi � H for

each i . Hence, rk.Gi / � ˛, and the desired result follows just as in the increasing

union case. Suppose G=H is �nite. We may �nd k such that for all s 2 T 1.G/

with jsj D k, Gs � H . Applying the inductive hypothesis and Lemma 6.5,

�.T kC1.Gs// � �.T 1.Gs// � !.˛ C 1/:

Lemma 6.28 now implies

�.T 1.G// � sup
jsjDk

�.T 1.G/s/C k � !.˛ C 1/C k � !.˛ C 2/:

This completes the induction, and we conclude the proposition. �

As a corollary to Lemma 6.24 and Proposition 6.29, we obtain a less detailed

version of a theorem from the literature.

Corollary 6.30 (Olshanskii, Osin [15, Corollary 1.6]). For every ordinal ˛ < !1,

there is G 2 EG \Gfg such that ˛ � rk.G/. The function rkW EG \Gfg ! ORD is

thus unbounded below !1.

Proof. Suppose for contradiction ˛ < !1 is such that rk.G/ < ˛ for all G 2 EG.

By Proposition 6.29, �.G/ � !.˛ C 1/ < !1 for all G 2 EG, contradicting

Lemma 6.24. �
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In our proof of Theorem 6.25, we use that � ıˆ1 is a …1
1-rank. It is natural to

ask if � itself is a …1
1-rank. This is indeed the case.

Theorem 6.31. The decomposition rank is a …1
1-rank on EG.

Proof. Each of the ranks �l WD � ıˆl is a…1
1-rank on EG where ˆl is as de�ned

in Lemma 6.4. Let �…
l

� G � G and �†
l

� G � G be the relations given by �l as a

…1
1-rank. We now consider the following relations:

�…� WD
[

N2N

\

l�N

�…l and �†� WD
[

N2N

\

l�N

�†l :

Since co-analytic and analytic sets are closed under countable unions and inter-

sections, �…
�

is co-analytic and �†
�

is analytic. To conclude � is a…1
1-rank, it thus

remains to show for H 2 EG,

G 2 EG ^ �.G/ � �.H/ () G �†� H

() G �…� H:

Suppose G 2 EG and �.G/ � �.H/. Letting M WD max¹deg.G/; deg.H/º,

we see that �.T k.G// � �.T k.H// for all k � M via Lemma 6.5, hence

�k.G/ � �k.H/ for k � M . We conclude that G �…
�
H and G �†

�
H .

Conversely, suppose G �…
�
H and G �†

�
H and let M � 0 be such that

G �…
k
H and G �†

k
H for all k � M . Immediately, G 2 EG. For each k � M ,

we further see �k.G/ � �k.H/, and taking k D max¹deg.G/; deg.H/;M º,

�.G/ D �k.G/ � �k.H/ D �.H/:

Therefore, � is a …1
1-rank. �

Propositions 6.27 and 6.29 combine to give us

�.G/ � !.rk.G/C 1/ � !.3�.G/C 1/;

so rk is closely related to a …1
1-rank. Given this close relationship, it is natural

to ask whether or not rk is a …1
1-rank. We suspect, however, that rk is not a …1

1-

rank as the sets rk�1.˛/ are likely analytic and non-Borel for suitably large ˛; in

fact, we suspect rk�1.3/ is analytic and non-Borel. Indeed, if EG˛ is Borel and

uncountable, then EGe˛ is de�ned by quantifying over EG˛ . We thus expect EGe˛
to be analytic and, barring some clever argument, non-Borel. (We remark that one

can make such a clever argument in the cases of EGe0 and EGe1, but it does not seem

to work beyond that.) We do not pursue this question further as it is tangential to

the aim of this work and somewhat technical.
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7. Borel functions and sets

In previous sections we made claims that certain maps and sets were Borel, and

from this and the Boundedness Theorem 2.7, we concluded that certain subsets

of G were not Borel. A slogan from descriptive set theory is “Borel = explicit”

meaning if you describe a map or set without an appeal to something like the

axiom of choice or quantifying over an uncountable space, it should be Borel.

As the maps and sets from previous sections are “explicit” in this sense, we were

content to state they were Borel without further proof. To those not as familiar

with descriptive set theory, we o�er this section to verify our previous claims.

Recall that G D ¹N E F!º and that we identify N with the group F!=N .

We make frequent use of the usual projection from F! toF!=N and always denote

this projection by fN . Every countable group is identi�ed with an element of G ; in

fact, a given groupG corresponds to many distinct elements of G as there are many

di�erent surjections of F! ontoG. We �x an enumeration .i /i2N for F! , and this

gives rise to an enumeration of G in the obvious way. Let us also enumerate the

generators for F! as .ai /i2N. Recall �nally that

Gfg D
[

n2N

¹N E F! j for all k � n ak 2 N º:

This is an F� subset of G . In particular, its Borel sets as a Borel space are precisely

those sets of the form B \ Gfg where B � G is Borel.

7.1. Borel functions. The sub-basic open sets of G are those of the form O D

¹N j  2 N º and their complements. The Borel �-algebra on G is thus generated

by the O , so in order to show a map  W G ! G is Borel, we need only to check

that  �1.O / is Borel for all  2 F! .

We begin with the easier examples of Borel maps.

Lemma 7.1. For each ı 2 F! , there is a Borel mapQı W G ! G such that ifN 2 G

with F!=N Š G, then F!=Qı.N / Š G=hhfN .ı/ii.

Proof. Since G=hhfN .ı/ii Š F!=hhN; ıii, the map Qı.N / WD hhıiiN meets our

requirements. We need only check that it is Borel. For this,

Q�1
ı .O / D ¹N 2 G j  2 hhıiiN º

D ¹N 2 G j there exists g 2 hhıii such that g�1 2 N º

D
[

g2hhıii

¹N 2 G j g�1 2 N º

which is open, so we have veri�ed the lemma. �
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We can now easily prove Lemma 5.2.

Proof of Lemma 5.2. By repeated composition, we may de�neQsW G ! G for all

s 2 N
<N n ¹;º so that

Qs.N / D hhsiiN I

we de�ne Q; WD id. The previous lemma ensures these maps are Borel.

Now suppose t 2 N
<N is of the form vai with v 2 N

<N and i 2 N and

consider the basic open set Ot WD ¹T 2 Tr j t 2 T º of Tr. We see that

ˆ�1
Mn
.Ot / D ¹N 2 G j Qv.N / ¤ Qt .N /º;

which is Borel. The map ˆMn
is thus Borel. �

Lemma 7.2. For each n � 0, there is a Borel map RnW G ! G such that if N 2 G

with F!=N Š G, then F!=Rn.N / Š hg0; : : : ; gni.

Proof. Let �nWF! ! F! be induced by mapping the generators .ai /i2N as

follows:

�n.ai / D

´

i 0 � i � n;

e otherwise.

Suppose that N 2 G with F!=N D G. The function fN ı �nWF! ! hg0; : : : ; gni

is then a surjection. We thus de�ne Rn to be the map sending N to ker.fN ı �n/.

Since F!= ker.fN ı �n/ Š hg0; : : : ; gni, this works as intended.

As  2 ker.fN ı �n/ () �n./ 2 ker.fN /, we conclude that

R�1
n .O / D ¹M 2 G j �n./ 2 M º;

which is the open set O�n./. The map Rn is thus Borel. �

The above proof works for subgroups generated by any �xed collection of

elements of G; that is to say, the same proof shows the maps G 7! Gs de�ned

in Section 4 are Borel, so as before, we get Lemma 4.2 as a corollary.

We now move on to proving Lemma 3.3; this follows from the next lemma. Its

proof is more involved than the previous two.

Lemma 7.3. For each s 2 N
<N n ¹;º, there is a Borel map Cs W G ! G such that

if N 2 G with F!=N Š G, then F!=Cs.N / Š CG.¹gsº/.

Proof. Suppose that N 2 G and F!=N Š G. De�ne �N WF! ! F! by

�N .aj / WD

´

j if fN .j / 2 CG.¹fN .s/º/;

e else.
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The map fN ı�N WF! ! CG.¹gsº/ is then a surjection, so CsWN 7! ker.fN ı�N /

works as intended. In order to check it is Borel, we introduce the set

Sj WD ¹N 2 G j �N .aj / D j º:

Since fN .j / 2 CG.¹fN .s/º/ () Œj ; si � 2 N for each 0 � i � jsj � 1,

Sj D ¹N 2 G j Œj ; si � 2 N for each 0 � i � jsjº;

which is an open set.

We now �x a word ı D ı.a0; : : : ; am/ 2 F! and consider the pre-image under

Cs of the basic open set Oı . Our notation ı.a0; : : : ; am/ indicates the word ı

only uses the letters appearing in the parentheses. We may evaluate �N .ı/ by

substituting in the images of a0; : : : ; am, so �N .ı/ D ı.x0; : : : ; xm/ for some

Nx WD .x0; : : : ; xm/ 2 � WD
Qm
iD0¹i ; eº that depends on N . The set of N 2 G

such that �N .ı.a0; : : : ; am// D ı. Nx/ for some �xed Nx is the Borel set

S Nx WD
\

xj Dj

Sj \
\

xkDe

S ck :

Since ı 2 ker.fN ı �N / () �N .ı/ 2 kerfN D N , we now see that

C�1
s .Oı/ D ¹N 2 G j �N .ı/ 2 N º

D
[

Nx2�

.¹N 2 G j ı. Nx/ 2 N º \ S Nx/

which is Borel. �

We next show the maps Sk from Section 6 are Borel. The main idea is the

same as in previous lemma.

Lemma 7.4. For each k � 1, there is a Borel map SkW Gfg ! G such that if

F!=N D G, then

F!=Sk.N / Š ŒG; G� \
\

Nk.G/

where

Nk.G/ WD ¹M E G j jG W M j � k C 1º:

Proof. Suppose N 2 Gfg and G Š F!=N . Similarly to the previous lemma,

we de�ne �N WF! ! F! by

�N .ai / WD

´

i if fN .i / 2 ŒG; G�\
T

Nk.G/;

e else.

De�ne SkW Gfg ! G by N 7! ker.fN ı �N /; this map behaves as desired.

We claim this map is also Borel.
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De�ne

Nk WD ¹M 2 Gfg j jF! W M j � k C 1º:

If N 2 Gfg , then the collection of index-� kC 1 subgroups of F!=N is precisely

¹MN=N j M 2 Nkº. Therefore,

fN .i / 2 ŒG; G�\
\

Nk.G/ () i 2 ŒF! ;F!�N \
\

M2Nk

MN:

As in the previous lemma, we may de�ne

Si WD ¹N 2 Gfg j �N .ai / D iº

D
°

N 2 Gfg

ˇ

ˇ

ˇ i 2 ŒF! ;F!�N \
\

M2Nk

MN
±

D
[

ı2ŒF! ;F! �

°

N 2 Gfg

ˇ

ˇ

ˇ ı
�1i 2 N º \

\

M2Nk

[

ı2M

¹N 2 Gfg j ı�1i 2 N
±

:

The last set is Borel since Nk is countable. Given Nx WD .x0; : : : ; xm/ 2 � WD
Qm
iD0¹i ; eº, we de�ne as before S Nx.

Fixing a word ı D ı.a0; : : : ; am/ 2 F! , we now consider the pre-image of the

basic open set Oı . We see

S�1
k .Oı/ D ¹N 2 G j �N .ı/ 2 N º

D
[

Nx2�

.¹N 2 G j ı. Nx/ 2 N º \ S Nx/

which is Borel. �

Using Lemma 7.2 and 7.4, we build Borel maps ‰ls W G ! G for each l 2 N

and s 2 N
<N. For s D ;, put ‰l; D id . Supposing we have de�ned ‰ls , de�ne

‰lsan by

‰lsan.N / WD SjsjCl ı Rn.‰
l
s.N //:

It follows that if s 2 T l .G/ with G D F!=N , then F!=‰
l
s.N / D Gs. If

s … T l .G/, then F!=‰
l
s.N / D ¹eº.

Proof of Lemma 6.4. Fixing s 2 N
<N and l 2 N,

.ˆl /�1.Os/ D ¹N 2 G j s 2 T l .F!=N/º:

If s D ;, then .ˆl /�1.Os/ D G which is plainly Borel. Else, say s D ran, so

.ˆl/�1.Os/ D ¹N 2 G j ran 2 T l.F!=N/º

D ¹N 2 G j .F!=N/r ¤ ¹eºº

D .‰lr /
�1.G n ¹eº/;

which is Borel. �
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7.2. Borel sets. Recall that AG denotes the class of countable amenable groups.

Lemma 7.5 (folklore). The set AG is Borel in G , and therefore, AG \Gfg is Borel.

Proof. Amenable groups are characterized by Følner’s property: a countable

group G is amenable if and only if for every �nite F � G and every n � 1,

there is a �nite non-empty subset K � G such that

jxK�Kj

jKj
�
1

n

for all x 2 F where � denotes the symmetric di�erence.

Letting Pf .F!/ be the collection of �nite subsets of F! , we infer

AG D
\

F 2Pf .F!/

\

n�1

[

K2Pf .F!/

\

x2F

°

N 2 G

ˇ

ˇ

ˇ

jfN .x/fN .K/�fN .K/j

jfN .K/j
�
1

n

±

:

It thus su�ces to show

� WD
°

N 2 G

ˇ

ˇ

ˇ

jfN .x/fN .K/�fN .K/j

jfN .K/j
�
1

n

±

is Borel. It is easy to see requiring jfN .K/j D m and jfN .x/fN .K/�fN .K/j D l

is Borel, hence

� D
[

l
m

� 1
n

¹N j jfN .x/fN .K/�fN .K/j D l and jfN .K/j D mº

is Borel. The set AG is thus Borel. �

8. Further remarks

Our results likely give tools to study groups enjoying some of the other chain

conditions in the literature. Perhaps more interestingly, our results suggest new

questions concerning elementary amenable groups and groups with the minimal

condition on centralizers, maximal condition on subgroups, and maximal condi-

tion on normal subgroups.

Most immediately, one desires a better understanding of the various rank

functions. In the case of max groups, there are no in�nite subgroup rank two

groups, the in�nite groups with subgroup rank 3 are Tarski monsters, and Z has

rank!C1. In the case of max-n, examples of �nite rank groups are easy to produce

and understand; however, trans�nite rank examples are somewhat mysterious.

Following Olshanskii and Osin, cf. [15, Corollary 1.6], we ask:
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Question 8.1. For which ordinals ˛ is there an in�nite group in MC (Mmax ;Mn)

such that the centralizer rank (subgroup rank, length) is ˛?

In a di�erent direction, showing a set is non-Borel in G demonstrates there is

no “simple” de�nition of the class. Our techniques give a way to determine if a

subset of G (or of a Borel subset of G ) given by a chain condition is not Borel and

hence to determine if it does not admit a “simple” characterization. In the setting

of max-n groups, there is a particularly intriguing question along these lines. By

an old result of Hall, a two-step solvable group is max-n if and only if it is �nitely

generated; this is certainly a Borel condition. On the other hand, no such nice

characterization of three-step solvable groups with max-n is known. We thus ask:

Question 8.2. Is the set of max-n three-step solvable marked groups Borel?

In a similar vein, there is another class of amenable groups de�ned in the

same way as the elementary amenable groups except one allows all groups of

subexponential growth in the de�nition instead of only �nite groups and abelian

groups. This class is often called the class of subexponentially amenable groups.

Question 8.3. Is the set of subexponentially amenable marked groups co-analytic

and non-Borel?

We also arrive at new questions with a descriptive-set-theoretic �avor.

De�nition 8.4. Let Y be a uncountable Polish space. A setA � Y is…1
1-complete

if A is …1
1 and for all B � X with X an uncountable Polish space and B co-

analytic, B Borel reduces to A.

The idea is that …1
1-complete sets are as complicated as they possibly could

be; Theorem 2.4 says that WF � Tr is …1
1-complete.

Question 8.5. Are any of MC ;Mmax ;Mn; or EG …1
1-complete?

Note that for a positive answer it su�ces to show that WF (or some other

…1
1-complete set) Borel reduces to these sets. Under an extra set-theoretic as-

sumption known as †11-Determinacy, every …1
1 set which is not Borel is in fact

…1
1-complete. We do not expect that extra set-theoretic assumptions should be

necessary to prove any of the sets are …1
1-complete; we mention this as evidence

that the positive answer is indeed the correct one. It is worth noting the question

is a problem in group theory. For example, in the case of EG one must devise

a method of building a group from a tree so that well-founded trees give rise to

elementary amenable groups and ill-founded trees give rise to non-elementary-

amenable groups.



Chain conditions and descriptive set theory 683

Acknowledgments. We would like to thank Alexander Kechris and Andrew

Marks for helpful mathematical discussions. We also thank François Le Maître

for his insightful remarks.

J. Williams was partially supported by NSF Grant 1044448, Collaborative

Research: EMSW21-RTG: Logic in Southern California.

References

[1] R. M. Bryant, Groups with the minimal condition on centralizers. J. Algebra 60

(1979), no. 2, 371–383. Zbl 0422.20022 MR 0549936

[2] C. Chou, Illinois J. Math. 24 (1980), no. 3, 396–407. Zbl 0439.20017 MR 0573475

[3] Y. Cornulier, On the Cantor–Bendixson rank of metabelian groups. Ann. Inst. Fourier

(Grenoble) 61 (2011), no. 2, 593–618. Zbl 1238.20049 MR 2895067

[4] M. M. Day, Amenable semigroups. Illinois J. Math. 1 (1957), 509–544.

Zbl 0078.29402 MR 0092128

[5] R. Grigorchuk, R. Kravchenko, and A. Olshanskii, Constructions of torsion-free

countable, amenable, weakly mixing groups. Enseign. Math. 61 (2015), no. 3-4,

321–342. Zbl 06642724 MR 3539841

[6] R. Grigorchuk, Degrees of growth of �nitely generated groups and the theory

of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985.

Zbl 0583.20023 MR 0764305

[7] P. Hall, Finiteness conditions for soluble groups. Proc. London Math. Soc. (3) 4

(1954), 419–436. Zbl 0056.25603 MR 0072873

[8] P. Hall, The Frattini subgroups of �nitely generated groups. Proc. London Math.

Soc. (3) 11 (1961), 327–352. Zbl 0104.02201 MR 0124406

[9] G. Higman, B. H. Neumann, and H. Neumann, Embedding theorems for groups.

J. London Math. Soc. 24 (1949). 247–254. MR 0032641

[10] A. Karrass and D. Solitar, The free product of two groups with a malnormal amalga-

mated subgroup. Canad. J. Math. 23 (1971), 933–959. Zbl 0247.20028 MR 0314992

[11] A. S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156.

Springer-Verlag, New York, 1995. Zbl 0819.04002 MR 1321597

[12] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: Presentations

of groups in terms of generators and relations. Pure and Applied Mathematics. 13.

Interscience Publishers, New York etc., 1966. Zbl 0138.25604 MR 0207802

[13] B. H. Neumann and H. Neumann, Embedding theorems for groups. J. London Math.

Soc. 34 (1959), 465–479. Zbl 0102.26401 MR 0163968

[14] A. Olshanskii, E�cient embeddings of countable groups. Vestnik Moskov. Univ. Ser. I

Mat. Mekh. 1989, no. 2, 28–34, 105. In Russian. Eglish translation, Moscow Univ.

Math. Bull. 44 (1989), no. 2, 39–49. MR 1029497

http://zbmath.org/?q=an:0422.20022
http://www.ams.org/mathscinet-getitem?mr=0549936
http://zbmath.org/?q=an:0439.20017
http://www.ams.org/mathscinet-getitem?mr=0573475
http://zbmath.org/?q=an:1238.20049
http://www.ams.org/mathscinet-getitem?mr=2895067
http://zbmath.org/?q=an:0078.29402
http://www.ams.org/mathscinet-getitem?mr=0092128
http://zbmath.org/?q=an:06642724
http://www.ams.org/mathscinet-getitem?mr=3539841
http://zbmath.org/?q=an:0583.20023
http://www.ams.org/mathscinet-getitem?mr=0764305
http://zbmath.org/?q=an:0056.25603
http://www.ams.org/mathscinet-getitem?mr=0072873
http://zbmath.org/?q=an:0104.02201
http://www.ams.org/mathscinet-getitem?mr=0124406
http://www.ams.org/mathscinet-getitem?mr=0032641
http://zbmath.org/?q=an:0247.20028
http://www.ams.org/mathscinet-getitem?mr=0314992
http://zbmath.org/?q=an:0819.04002
http://www.ams.org/mathscinet-getitem?mr=1321597
http://zbmath.org/?q=an:0138.25604
http://www.ams.org/mathscinet-getitem?mr=0207802
http://zbmath.org/?q=an:0102.26401
http://www.ams.org/mathscinet-getitem?mr=0163968
http://www.ams.org/mathscinet-getitem?mr=1029497


684 Ph. Wesolek and J. Williams

[15] A. Olshanskii and D. V. Osin, A quasi-isometric embedding theorem for groups.

Duke Math. J. 162 (2013), no. 9, 1621–1648. Zbl 1331.20054 MR 3079257

[16] D. V. Osin, Elementary classes of groups. Mat. Zametki 72 (2002), no. 1, 84–93.

In Russian. English translation, Math. Notes 72 (2002), no. 1-2, 75–82.

Zbl 1068.20034 MR 1942584

Received February 12, 2015

Phillip Wesolek, Department of Mathematical Sciences, Binghamton University,

PO Box 6000, Binghamton, New York 13902, USA

e-mail: pwesolek@binghamton.edu

Jay Williams, Department of Mathematics, California Institute of Technology, Pasadena,

CA 91125, USA

e-mail: jaywill@caltech.edu

http://zbmath.org/?q=an:1331.20054
http://www.ams.org/mathscinet-getitem?mr=3079257
http://zbmath.org/?q=an:1068.20034
http://www.ams.org/mathscinet-getitem?mr=1942584
mailto:pwesolek@binghamton.edu
mailto:jaywill@caltech.edu

	Introduction
	Preliminaries
	The minimal condition on centralizers
	The maximal condition on subgroups
	The maximal condition on normal subgroups
	Elementary amenable groups
	Borel functions and sets
	Further remarks
	Acknowledgments
	References

