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Abstract. For a split Kac–Moody group G over an ultrametric �eld K, S. Gaussent and

the author de�ned an ordered a�ne hovel (for short, a masure) on which the group acts; it

generalizes the Bruhat–Tits building which corresponds to the case when G is reductive.

This construction was generalized by C. Charignon to the almost split case when K is a

local �eld. We explain here these constructions with more details and prove many new

properties, e.g. that the hovel of an almost split Kac–Moody group is an ordered a�ne

hovel, as de�ned in a previous article.
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Introduction

Split Kac–Moody groups over ultrametric local �elds were �rst studied by
H. Garland in the case of loop groups [15]. In [28] we constructed a “microa�ne”
building for every split Kac–Moody group over a �eldK endowed with a non triv-
ial real valuation. It is a (non discrete) building with the good usual properties,
but it looks not like a Bruhat–Tits building, rather like the border of this building
in its Satake (or polyhedral) compacti�cation.
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A more direct generalization of the Bruhat–Tits construction was made by
S. Gaussent and the author, in the case where the residue �eld of K contains C

(see [16]). This enabled us to deduce interesting consequences in representation
theory. In [31] the restriction about the residue �eld was removed. So, for a
split Kac–Moody group G over K, one can build an hovel 	 on which G acts.
As for the Bruhat–Tits building, 	 is covered by apartments corresponding to split
maximal tori; but it is no longer true that any two points are in a same apartment
(this corresponds to the fact that the Cartan decomposition fails in G). This is the
reason why the word “building” was changed to “hovel.” Nevertheless this hovel
has interesting properties: it is an ordered a�ne hovel as de�ned in [30]; actually
the french name masure is now often used instead of ordered a�ne hovel. As a
consequence the residues in each point of 	 are twin buildings, there exist on 	 a
preorder invariant by G and, at in�nity, we get twin buildings and two microa�ne
buildings. These are the twin buildings of G introduced by B. Rémy [26] and the
microa�ne buildings of [30].

Cyril Charignon undertook the construction of hovels for almost split Kac–
Moody groups ([12] and [13]). Actually he considered the disjoint union of the
hovel and of some hovels at in�nity called façades. This union is called a bordered
hovel, it looks like the Satake compacti�cation of a Bruhat–Tits building; in
addition to the main hovel it contains the microa�ne buildings. He elaborates
an abstract theory of bordered hovels associated to a generating root datum, a
valuation and a family of parahoric subgroups. He proves an abstract descent
theorem and succeeds in using it to build a bordered hovel associated to an almost
split Kac–Moody group over a �eld endowed with a discrete valuation and a
perfect residue �eld. As a corollary the microa�ne buildings are also de�ned
in this situation.

In this article we give more details about these constructions and improve many
results (see below some details about each section). In particular the �xed point
theorem in R-buildings proved recently by K. Struyve [32] enables us to prove the
existence of bordered hovels in new cases (with a non discrete valuation).

The essential new result we get (from [13] and the present article) is the
existence of a nice (bordered) hovel for each almost split Kac–Moody group over
an ultrametric local �eld, with a strongly transitive action of the group and a good
enclosure map (Theorem 6.9 and Proposition 6.11.3). This is the powerful tool
which enables S. Gaussent, N. Bardy-Panse and the author to de�ne spherical
Hecke algebras or Iwahori-Hecke algebras associated to any almost split Kac–
Moody group over an ultrametric local �eld: [17], [4], see also [18]. The non split
case involves unequal parameters.

In Section 1 we explain the general framework of our study: abstract generating
root data, their associated twin buildings and split Kac–Moody groups (as de�ned
by J. Tits [33]).

Section 2 is devoted to B. Rémy’s theory of almost split Kac–Moody groups
(see [26]). We improve a few results, e.g. on geometric realizations of the associ-
ated twin buildings and on imaginary relative root groups.
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In Section 3 we de�ne the a�ne apartments associated to a valuation of
an abstract root datum. We explain the interesting subsets or �lters of subsets
inside them (facets, sectors, chimneys, enclosures, . . . ) and embed them in their
bordered apartments. There are several possible choices for these apartments, their
imaginary roots or walls and for the façades at in�nity. So this leads to several
choices for all these objects and none of them is better in all circumstances.

Section 4 is devoted to Charignon’s abstract construction of the bordered hovel
associated to a good family of parahoric subgroups in a valuated root datum
(see [12] and [13]). We select two other conditions he considered for parahoric
families and a new third one to de�ne what is a very good family. Then we are
able to generalize abstractly the constructions of [16] and prove that the abstract
space built by Charignon is really an ordered a�ne hovel in the sense of [30]

(slightly generalized). This involves an enclosure map (cl�
ti

R
) which gives (too)

small enclosures: they are reduced to the closed convex hull.

In Section 5 we mix these abstract results and the results of [31] to de�ne the
bordered hovel of a split Kac–Moody group over a �eld endowed with a non trivial
real valuation. One of the problems is to extend the results to general apartments,
neither essential as in Charignon’s or Rémy’s works, nor associated directly to
the group as in [31]. We prove that these bordered hovels are functorial, uniquely
de�ned (in the sense that the very good family of parahorics is unique) and that
their residue twin buildings are associated to a generating root datum.

These results are generalized to almost split Kac–Moody groups in Section 6.
We explain the abstract descent theorem of Charignon (generalizing the analogous
theorem of F. Bruhat and J. Tits [8]). To apply it to an almost split Kac–Moody
group G, we need the same condition as for reductive groups: G is assumed to
become quasi split over a �nite tamely rami�ed Galois extension L=K, see [27].
There is no need for another condition, even for a non discrete valuation, as is now
clear from Struyve’s work [32]. We explain Charignon’s results in this almost split
case and generalize them to more general apartments. So we get a bordered hovel.
We are able to prove that the hovel inside it (its main façade) is an ordered a�ne
hovel (in the original sense of [30]) with a good enclosure map (clK�r

K ), much
better than the one in Section 4 (but perhaps still not the best one).

The consideration of bordered hovels (of rather general types) leads to many
technical complications and many similar de�nitions (e.g. of enclosure maps).
This seams unavoidable, but we include a glossary to help the reader. The
�nal results (for almost split Kac–Moody groups) are simpler, especially when
speaking only about hovels (without boundaries). In addition, we warn the reader
that a good knowledge of [26], of [31] and of some parts of [16] is usefull (resp.
necessary) to understand the main results (resp. and some secondary results, or the
proofs) of this article. A detailed review of these references would have been too
long. We try to give enough details about [12] and [13] to understand all results.
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1. Root data and split Kac–Moody groups

We introduce here the Kac–Moody root systems, the corresponding root generat-
ing systems, root data or vectorial apartments and the associated split Kac–Moody
groups (with their completions). We describe also the associated twin buildings.
Most of the following de�nitions or results (and some other useful ones) may be
found in [26], [28], [30], or [31].

1.1. Root generating systems. 1) We consider a Kac–Moody matrix (or gener-
alized Cartan matrix) M D .ai;j /i;j 2I , with rows and columns indexed by a �nite
set I . LetQ be a free Z-module with basis .˛i /i2I andQC D

P
i2I Z�0:˛i � Q,

Q� D �QC. The (vectorial) Weyl group W v associated to M is a Coxeter
group with generating system the set † D ¹ si j i 2 I º of automorphisms
of Q de�ned by si . j̨ / D j̨ � ai;j˛i . The associated system of real roots
is ˆ D ¹w.˛i/ j w 2 W v; i 2 I º [21]; it is a real root system (with free
basis .˛i /i2I ) in the sense of [24] or [25], see also [3] and [19]. If ˛ 2 ˆ, then
s˛ D w:si :w

�1 is well de�ned by ˛ independently of the choice of w and i such
that ˛ D w.˛i /. We say that we are in the classical case when W v is �nite,
then M is a Cartan matrix and ˆ a root system in the sense of [6]. For J � I ,
M.J / D .ai;j /i;j 2J is a Kac–Moody matrix; with obvious notations, Q.J / is a
submodule ofQ and ˆm.J / D ˆ\Q.J / the root system associated to M.J /, its
Weyl group is W v.J / D hsi j i 2 J i.

2) A root generating system (or RGS) [3] will be (for our purpose) a quadruple
S D .M; Y; .S̨i/i2I ; .˛

_
i /i2I /whereM is a Kac–Moody matrix, Y a freeZ-module

of �nite rank n, .S̨i /i2I a family (of simple roots) in its dual X D Y � and
.˛_

i /i2I a family (of simple coroots) in Y . These data have to satisfy the condition:
ai;j D S̨j .˛

_
i /.

The Weyl group W v acts on X (and dually on Y ) by si .�/ D � � �.˛_
i /S̨i .

We say that S is free (resp. adjoint) if .S̨i /i2I is free in (resp. generates) X .
For example the minimal adjoint RGS SMm D Slad D .M; Q�; .˛i/i2I ; .˛

_
i /i2I /

(with an obvious de�nition of the ˛_
i ) is free and adjoint.

There is a group homomorphism barWQ ! X , ˛ 7! N̨ such that bar.˛i / D S̨i ;
it isW v-equivariant and 'ad D bar�WY ! Q� is a commutative extension of RGS
S ! SMm [31, 1.1]. When S is free, Q is identi�ed with xQ D bar.Q/ � X .

For J � I , S.J / D .M.J /; Y; .S̨i/i2J ; .˛
_
i /i2J / is also a RGS.

3) The complex Kac–Moody algebra gS associated to S is generated by the
Cartan subalgebra hS D Y ˝Z C and elements .ei ; fi /i2I with well known
relations [21]. This Lie algebra has a gradation by QW gS D hS ˚ .

L
˛2� g˛/

where � � Q n ¹0º is the root system of gS or of M.
We have hS D .gS/0, g˛i

D Cei , g�˛i
D Cfi and ˆ � � (as � is W v-stable).
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If �C D � \ QC (resp. �� D ��C) is the set of positive (resp. negative)
roots, then � D ��

F
�C. We set ˆ˙ D ˆ\�˙ D �ˆ�. The imaginary roots

are the roots in � nˆ D �im; we set�re D ˆ, �˙
re D ˆ˙ and �˙

im D �im \�˙ .

For J � I , gS.J / is a Lie subalgebra of gS and �m.J / D �\Q.J / a subroot
system of �.

In the classical case, gS is a reductive �nite dimensional Lie algebra and
�im D ;.

1.2. Vectorial apartments. 1) We consider a free RGS S D .M; Y; .˛i/i2I ,
.˛_

i /i2I / and the real vector space V D V S D Y ˝ R D HomZ.X;R/. Each
element in X or in Q � X induces a linear form on V . A vectorial wall in V is
the kernel of some ˛ 2 ˆ. The positive (resp. negative) fundamental chamber in
V is C v

C D ¹ v 2 V j ˛i .v/ > 0; for all i 2 I º (resp. C v
� D �C v

C). If J � I , let
F v

C.J / D ¹ v 2 V j ˛i .v/ D 0; for all i 2 J; ˛i .v/ > 0; for all i 2 I n J º and
F v

�.J / D �F v
C.J /, they are cones in V . Then the closed positive fundamental

chamber is C v
C D

F
J �I F v

C.J / and symmetrically for C v
�.

The Weyl group W v acts faithfully on V , we identify W v with its image in
GL.V /. For w 2 W v and J � I , wF v

C.J / (resp. wF v
�.J /) is called a positive

(resp. negative) vectorial facet of (vectorial) type J . The �xer or stabilizer of
F v

˙.J / is W v.J /; if this group is �nite we say that J or wF v
˙.J / is spherical.

These positive facets are disjoint and their union TC is a cone: the Tits cone. The
inclusion in the closure gives an order relation on these facets. The star of a facet
F v is the set F v� of all facets F v

1 such that F v � F v
1 .

The properties of the action of W v on the set of positive facets allows one to
identify this poset (or to be short TC) with the Coxeter complex of .W v; †/. The
interior Tı

C of TC is the union of its spherical facets, it is also a non empty convex
cone. The symmetric results for T� D �TC are also true.

We call Av D TC [T� the vectorial fundamental twin apartment associated to

S and set
�!
Av D V (vector space generated by Av). A generic subspace of Av is an

intersection of Av with a vector subspace of
�!
Av which meets the interior ofAv; for

example a wall is a generic subspace. An half-apartment in Av is the intersection

with Av of one of the two closed half-spaces of
�!
Av bounded by a wall.

In V the subspace V0 D F v
˙.I / D

T
i2I Ker.˛i / (trivial facet) is the intersec-

tion of all vectorial walls. Acting by translations it stabilizes all facets and the two
Tits cones. So the essentialization of V or Av is V e D V=V0 or Ave D Av=V0.

One may generalize these de�nitions to the case when the chamberC v
C de�ned

by .S̨i /i2I (for a non free RGS) is non empty in V D Y ˝ R [3, p. 113f] but we
shall avoid this.
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2) The smallest example for V associated to M and ˆ � Q corresponds
to S D SMm. Then V D V q D V M D Q� ˝ R D HomZ.Q;R/. In the
above notations we add an exponent q to all names. We get thus the essential
vectorial fundamental twin apartment Avq. Actually V q and Avq are canonically
the essentializations of any V or Av in 1): V e D V q and Ave D Avq.

3) If S is a given free RGS, we shall write V x D V S and add an exponent x to
all names in 1) e.g. V q D V xe D V x=V x

0 and Avq D Avxe D Avx=V x
0 . We get thus

the normal vectorial fundamental twin apartment Avx.
If S is a given (non necessarily free) RGS, we may consider the free RGS Sl of

[31, 1.3d]: Sl D .M; Y xl; .˛xl
i /i2I ; .˛

xl_
i /i2I /with Y xl D Y ˚Q�, ˛xl

i D N̨ i C˛i 2
Xxl D X ˚ Q and ˛xl_

i D ˛_
i 2 Y � Y xl D Y ˚ Q� D .X ˚ Q/�. Then

V xl D HomZ.X ˚ Q;R/ and we add an exponent xl to all names in 1). We get
thus the extended vectorial fundamental twin apartment Avxl.

4) More generally we may consider a quadruple as in [30, 1.1]: .V;W v; .˛i /i2I ,
.˛_

i /i2I / with ˛i free in V � and ai;j D j̨ .˛
_
i / hence ˆ � Q � V �. The same

things as in 1) (e.g. F v
˙.J /, A

v, Av
˙ D T˙, . . . ) may be de�ned in V and we have

V q D V=V0 for V0 D
T

i2I Ker.˛i /. For example we may take for V a quotient of
a V S as in 1) by any subspace V00 of V0.

5) We get thus many geometric realizations of the Coxeter complex of .W v; †/.

As is clear from above, we want that the basis .˛i /i2I ofˆ is free in the dual .
�!
Av/�.

So Av D Avq � V q D Q� ˝ R is always a good choice: the one used in [26].
But (principally for the a�ne version of Av) it may be important that Av takes
into account the full RGS S de�ning a split Kac–Moody group: this is the same
reason that leads to enlarge a Bruhat–Tits building by adding to it a trivial factor
corresponding to the center. So if S is free, Avx � V x D Y ˝ R is certainly the
other good choice (and Avq � V x=V x

0 is its essentialization). If S is not free, Avxl

above may be chosen.
When we deal with an almost split Kac–Moody group G over a �eld K, it is

natural to consider Av included in the vector space
�!
Av

L of the vectorial apartment
associated to G above an extension L of K splitting G. This is done in Section 2
and leads actually to two good choices for Av: the Weyl one KAv is described as
above and the other KAv � Av

L involves “simple imaginary roots” to describe the
facets, see 2.8 below.

1.3. The split Kac–Moody group GS. As de�ned by J. Tits [33], this group GS

is a functor from the category of (commutative) rings to the category of groups.
One considers �rst the torus TS D TY D Spec.ZŒX�/ with character group

X.TS/ D X and cocharacter group Y.TS/ D Y . For any ring R, TY .R/ D
Y ˝Z R

� D HomZ.X;R
�/. Then the group GS.R/ is generated by TS.R/ and

some elements x˛.r/ for ˛ 2 ˆ and r 2 R; for the precise relations see [33], [26],
or [31].
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ActuallyTS is a sub-group-functor of GS, the standard maximal split subtorus.
For ˛ 2 ˆ, there is an injective homomorphism x˛WAdd ! GS, r 2 R 7! x˛.r/;
the sub-group-functor of GS image of x˛ is written U˛. The standard positive
(resp. negative) maximal unipotent subgroup is the sub-group-functor U˙

S
such

that, for any ring R, UC
S
.R/ (resp. U�

S
.R/) is generated by all U˛.R/ for ˛ 2 ˆC

(resp. ˛ 2 ˆ�); it depends actually only onM, not on S. Then the standard positive
(resp. negative) Borel subgroup is the semi-direct product BC

S
D TS Ë UC

S
(resp.

B�
S

D TS Ë U�
S

).
The construction of GS uses aQ-graded Z-form USZ of the universal envelop-

ing algebra of gS, we call it the Tits enveloping algebra ofGS overZ. It is a �ltered
Z-bialgebra; the �rst term of its �ltration is Z˚gSZ, where gSZ is a Z-form of the
Lie algebra gS. There is a functorial adjoint representation AdWGS ! Aut.USZ/,
see [26] and/or [31] for details. In the classical case GS is a reductive group and
USZ is often called the Kostant’s Z-form. By analogy with this case we de�ne the
reductive rank (resp. semi-simple rank) of GS or S as rrk.S/ D n D dim.X/ (resp.
ssrk.S/ D jI j ); there is no a priori inequality between these two ranks.

In the following we shall almost always consider a �eld K and restrict the
above functors to the category Sep.K/ of algebraic separable �eld extensions of
K contained in a given separable closure Ks. The groups associated to K by
these functors are then written with roman letters: GS D GS.K/, TS D TS.K/,
U˛ D U˛.K/, x˛WK ! U˛ � GS, etc. We set also USK D USZ ˝Z K; : : : .
We shall sometimes forget the subscript S.

De�nition 1.4 (cf. [28]). A root datum of type a (real) root system ˆ is a triple
.G; .U˛/˛2ˆ; Z/ where G is a group and Z, U˛ (for ˛ 2 ˆ) are subgroups of G,
satisfying the following conditions.

(RD1) For all ˛ 2 ˆ, U˛ is non trivial and normalized by Z.

(RD2) For each pre-nilpotent pair of roots ¹˛; ˇº, the commutator group ŒU˛; Uˇ �

is included in the group generated by the groups U for  D p˛Cqˇ 2 ˆ
and p; q 2 Z>0. (there is a �nite number of such roots  , as ¹˛; ˇº is
supposed to be pre-nilpotent).

(RD3) If ˛ 2 ˆ and 2˛ 2 ˆ, then U2˛ ¤ U˛ .

(RD4) For all ˛ 2 ˆ and all u 2 U˛ n ¹1º, there exist u0; u00 2 U�˛ such that
m.u/ WD u0uu00 conjugates Uˇ into Us˛.ˇ/ for all ˇ 2 ˆ. Moreover, for all
u; v 2 U˛ n ¹1º, m.u/Z D m.v/Z.

(RD5) If UC (resp. U�) is the group generated by the groups U˛ for ˛ 2 ˆC

(resp. ˛ 2 ˆ�), then ZUC \ U� D ¹1º.

The root datum is called generating if moreover

(GRD) the group G is generated by Z and the groups U˛ for ˛ 2 ˆ.
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Remarks 1.5. a) This de�nition is given for a general (real) root system ˆ.
For the systemˆ of 1.1 the axiom (RD3) is useless asˆ is reduced. In the classical
case (i.e. for a �nite root system) this is equivalent to the de�nition of “donnée
radicielle de type ˆ” in [8]. In general a generating root datum is the same thing
as a “donnée radicielle jumelée entière” as de�ned in [26, 6.2.5].

b) Actually Z has to be the intersection of the normalizers of the groups U˛:
[26, 1.5.3], see also [1, 7.84]. So one may forget Z in the datum, as in [34]
or [13, 10.1.1].

c) Even in the classical case, the notion of root datum (of type a root system)
is more precise than the notion of RGD-system (of type a Coxeter system) de�ned
in [1, 8.6.1] (which is the same thing as “donnée radicielle jumelée” de�ned in [26,
1.5.1], see also [34]). The set of “roots” of .W v; †/ is in bijection with the set ˆnd

of non-divisible roots in ˆ. So, if .G; .U˛/˛2ˆ; Z/ is a generating root datum,
then .G; .U˛/˛2ˆnd ; Z/ is a RGD-system; the di�erence is that axiom (RGD1) is
less precise than (RD2): it allows p and q to be in R>0.

Root data describe more precisely the algebraic structure of reductive groups
or Kac–Moody groups; with RGD-systems one can describe more general actions
of groups on (twin) buildings.

Consequences 1.6. Let .G; .U˛/˛2ˆ; Z/ be a generating root datum, then,
by [26, Chapters 1 and 2] or [1], the following properties hold.

1) The group B˙ D ZU˙ is called the standard positive (resp. negative) Borel
subgroup or more generally minimal parabolic subgroup.

Let N be the group generated by Z and the m.u/ for ˛ 2 ˆ and u 2
U˛ n¹1º. There is a surjective homomorphism �vWN ! W v (whereW v is the
Weyl group of the root systemˆ) such that �v.m.u// D s˛ and Ker.�v/ D Z.

Then B˙ \N D Z and .B˙; N / is a BN-pair in G. In particular we have
two Bruhat decompositions: G D

F
w2W v B"wB" (for " D C or �).

Moreover G D
F

w2W v .
Q

ˇ2ˆC\wˆ�w�1 Uˇ /:wZ:U
C, with uniqueness

of the decomposition (re�ned Bruhat decomposition). The same is also true
when exchanging C and �.

2) More precisely .BC; B�; N / is a twin BN-pair; in particular we have a
Birkho� decomposition: G D

F
w2W v BCwB�. Moreover for u; u0 2 UC,

v; v0 2 U� and z; z0 2 Z, if uzv D u0z0v0 then u D u0, v D v0 and z D z0.

3) Associated to the BN-pair .B"; N /, there is a combinatorial building 	 vc
"

(viewed as an abstract simplicial complex) on which G acts strongly tran-
sitively (with preservation of the types of the facets). The group B" is the
stabilizer and �xer of the fundamental chamberC vc

" � 	 vc
" . The groupN sta-

bilizes the fundamental apartment Avc
" (which containsC vc

" ); it is equal to the
stabilizer inG of Avc

" , as the BN-pair is saturated i.e.Z D
T

w2W v wB"w�1.

The Birkho� decomposition gives a twinning between the buildings 	 vc
C

and 	 vc
� ; we have Z D BC \ B�.
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4) As the facets of T" D Av
" are in one to one, increasing and N -equivariant

correspondence with those of the Coxeter complexAvc
" , we can glue di�erent

apartments together to get a geometric realization 	 v
" D 	 v

" .G;A
v/ of 	 vc

"

(called vectorial or conical) in which the apartments and facets are cones.
The di�erent peculiar choices of Av explained in 1.2 2), 3) give vectorial
buildings 	

vq
" , 	 vx

" , 	 vxl
" .

For any of these vectorial buildings, the vector space V0 �
�!
Av

" acts
G-equivariantly and stabilizes all facets or apartments. The essentialization
of this building i.e. its quotient 	 ve

" .G;A
v/ D 	 v

" .G;A
v/=V0 by V0 is canon-

ically equal to 	
vq
" D 	 v

" .G;A
vq/.

5) There is a one to one decreasing correspondence between facets and par-
abolic subgroups: the stabilizer and �xer in G of a facet F v � T" or
of F v=V0 � T

q
" is a parabolic subgroup P.F v/ of G (which is its own

normalizer). We have a Levi decomposition P.F v/ D M.F v/ Ë U.F v/.
The group P.F v/ (resp. M.F v/) is generated by Z and the groups U˛

for ˛ 2 ˆ.F v/ (resp. ˛ 2 ˆm.F v/) i.e. ˛ 2 ˆ and ˛.F v/ � 0 (resp.
˛.F v/ D 0). The subgroup U.F v/ is normal in P.F v/ and contains the
groups U˛ for ˛ 2 ˆu.F v/ i.e. ˛ 2 ˆ and ˛.F v/ > 0 [26, 6.2]. We de�ne
G.F v/ D P.F v/=U.F v/ ' M.F v/ and N.F v/ D N \ P.F v/ � M.F v/.

6) If F v D F v
" .J / for J � I , then P.F v/ D P ".J / D B"W v.J /B",

ˆm.F v/ D ˆm.J / and N.F v/=Z D W v.J /. The group G.J / D M.F v/

is endowed with the generating root datum .G.J /; .U˛/˛2ˆm.J /; Z/.

Theorem 1.7. With the notations of 1.3, .GS; .U˛/˛2ˆ; TS/ is a root datum of type
ˆ. Moreover if jKj � 4, N is the normalizer of TS in GS.

Proof. This is essentially in [33] and [34]. See [26, 8.4.1] �

Remarks 1.8. 1)B˙
S

(resp.U˙
S

) as de�ned in 1.3 coincide withB˙ de�ned in 1.6.1
(resp.U˙ de�ned in 1.4). The groupN isNS D NS.K/, whereNS is a sub-group-
functor of GS normalizing TS. MoreoverN is the normalizer in GS of TS, but not
always the normalizer of TS (e.g. when jKj D 2, TS D ¹1º). The maximal split
tori of GS are conjugated by GS to TS [26, 12.5.3].

The Levi factor of P ".J / is G.J / D GS.J /.K/ where GS.J / is the split Kac–
Moody group associated to the RGS S.J / of 1.1.2 [31, 5.15.2].

2) The combinatorial buildings associated to this root datum are written
	 vc

" .GS; K/ or 	 vcM
" .K/, as they depend only on the �eld K and the Kac–Moody

matrix M (not of the SGR S: [31, 1.10]).
As N is the stabilizer of the fundamental apartment Avc

" in 	 vcM
" .K/ and the

normalizer of TS, we get a one to one correspondence T 7! Avc
" .T/ between the

maximal split tori in GS (or their points overK, if jKj � 4) and the apartments of
	 vcM

" .K/.
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3) The geometric realization of 	 vcM
" .K/ introduced in 1.6.4 is denoted

	 v
" .GS; K;A

v/. If we use T
q
" D A

vq
" , we call it the essential vectorial building

	 v
" .GS; K;A

vq/ D 	
vq
" .GS; K/ D 	 vM

" .K/ of GS overK of sign " D ˙. We have

also extended vectorial buildings 	 v
" .GS; K;A

vxl/ D 	 vxl
" .GS; K/ D 	 vSl

" .K/

de�ned using Txl
" D Avxl

" instead of Tq
" in 1.6.4.

When S is free, we can also use Tx
" D Avx

" and de�ne the (normal) vectorial
buildings 	 v

" .GS; K;A
vx/ D 	 vx

" .GS; K/ D 	 vS
" .K/.

To be short we omit often K and/or M, S, GS, Av in the above notations.
4) 	 vc

" .GS; K/ is clearly functorial in K. 	 v
" .GS; K;A

v/ is functorial in K and
S (for commutative extensions).

1.9. Completions of GS. There is a positive (resp. negative) completion G
pma
S

(resp. Gnma
S

) of GS (de�ned in [22], [23]) which is used in [31] to get better
commutation relations. This is an ind-group-scheme which contains GS but
di�ers from it by its positive (resp. negative) maximal pro-unipotent subgroup: UC

S

(resp. U�
S

) is replaced by a greater group scheme UmaC
S

(resp. Uma�
S

) involving the
full root system� of 1.1.3.

For a ring R, an element of Uma˙
S

.R/ can be written uniquely as an in�nite
product: u D

Q
˛2�˙ u˛ with u˛ 2 U˛.R/, for a given order on the roots

˛ D
P

i2I n
˛
i ˛i 2 �˙ (e.g. an order such that jht.˛/j D

P
i2I jn˛

i j is increasing).
For ˛ 2 ˆ, u˛ is written u˛ D x˛.r/ D Œexp�re˛ for a unique r 2 R and e˛

a �xed basis of g˛ . For ˛ 2 �im, u˛ is written u˛ D
Qj Dn˛

j D1 Œexp�r˛;j :e˛;j

for unique r˛;j 2 R and for .e˛;j /j D1;n˛
a �xed basis of g˛; but U˛.R/ is not a

group: this is only true for U.˛/.R/ D
Q

ˇ2Z>0˛ Uˇ .R/. Moreover the conjugate
of an element u 2 Uma˙

S
.R/ by t 2 TS.R/ is given by the same formula: for

u0
˛ D tu˛t

�1 2 U˛.R/, we just replace r by N̨ .t /r or each r˛;j by N̨ .t /r˛;j [31, 3.2
and 3.5]. (Actually we often write ˛.t/ for N̨ .t /.)

The commutation relations between the u˛ are deduced from the correspond-
ing relations in the Lie algebra (or better in the Tits enveloping algebra USZ).
So we know well the structure of the Borel groups Bma˙

S
D TS Ë Uma˙

S
. For R a

�eld there are Bruhat and Birkho� decompositions of Gpma
S
.R/ and Gnma

S
.R/:

G
pma
S
.R/ D UmaC

S
.R/:NS.R/:U

maC
S

.R/ D U�
S
.R/:NS.R/:U

maC
S

.R/

and

Gnma
S
.R/ D Uma�

S
.R/:NS.R/:U

ma�
S

.R/ D UC
S
.R/:NS.R/:U

ma�
S

.R/:

1.10. Centralizers of tori. Let T0 be a subtorus of TS (overKs). There is a linear
map Y.T0/˝ R ,! Y.TS/˝ R ! V q D HomZ.Q;R/ which sends �˝ x to the
map ˛ 7! N̨ .�/x. We write V q.T0/ its image. We say that T0 is generic (resp.
almost generic) in TS if V q.T0/ meets the interior of the Tits cone T

q
C (resp. if

V q.T0/\T
q
C generates the vector space V q.T0/) cf. 1.2.1. Note that, if S is free, TS

is generic in TS, as the above map is then onto.
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Proposition. If T0 is generic, then, up to conjugacy, V q.T0/ is generated by

V q.T0/ \ C
vq
C (which is convex) or more precisely by V q.T0/ \ F

vq
C .J / where

F
vq
C .J / (with J spherical in I ) is the greatest facet in C vq

C meeting V q.T0/. Then
the centralizer Z.T0/ of T0 in GS is GS.J / (a reductive group).

To be short, whenT0 is generic, its centralizerZ.T0/ is the group schemeZg.T
0/

generated byTS and the U˛ for ˛ 2 ˆ and N̨
T0 D 1 (called the generic centralizer

of T0 in GS).

Proof. The reduction to V q.T0/ generated by V q.T0/\F vq
C .J / is clear as V q.T0/\

T
q
C is convex and generates V q.T0/. We embed GS in the ind-group-schemeGpma

S
.

Any element g 2 G
pma
S
.Ks/ may be written uniquely as

g D
� Y

˛2ˆC\wˆ�

u˛

�
:t: zw:

� Y

˛2�C

u˛

�
;

where t 2 TS.Ks/, w 2 W v, zw is its representant in a chosen system of repre-
sentants zW v � N.TS/.Ks/ and each u˛ is in U˛.Ks/ cf. [26, 1.2.3] and [31, 3.2].
If we conjugate by s 2 T0.Ks/, t is �xed, each u˛ is sent to u0

˛ 2 U˛.Ks/. So
g commutes with s if and only if u0

˛ D u˛ , for all ˛ and s zws�1 D zw. This
last condition is s D zws zw�1 D w.s/; as it must be true for all s 2 T0.Ks/, this
means that w 2 W v.J /. Now for ˛ 2 ˆ and u˛ D x˛.r/, u0

˛ D x˛.˛.s/:r/;
hence u˛ D u0

˛ for all s 2 T0.Ks/ H) N̨
T0 D 1 H) ˛

V q.T0/
D 0 H) ˛ 2

Q.J /. The same thing is true for ˛ 2 �C by the formulae in 1.9. Finally
g 2 Z.T0/.Ks/ () g 2 G

pma
S.J /

.Ks/. But, as F vq
C .J / is in the interior of the Tits

cone, J is spherical, �.J / is �nite and G
pma
S.J /

D GS.J / is a reductive group. �

Remarks 1.11. a) Z.T0/ is the schematic centralizer of T0 or the centralizer of
T0.Ks/. The centralizer of T0.K/ may be greater, e.g. if jKj D 2, TS.K/ D ¹1º.

b) If T0 is almost generic, the above proof tells that Z.T0/ D G
pma
S.J /

\GS. But it

is not clear that it is the Kac–Moody groupGS.J / i.e. thatUmaC
S.J /

\GS D UmaC
S.J /

\UC
S

is UC
S.J /

; cf. [31, 3.17 and §6].

c) In the a�ne case with S free, let ı be the smallest positive imaginary root.
The torus T0 D Ker.ı/ is not almost generic, there is no real root ˛ 2 ˆ with
˛

T0 D 1 but Z.T0/ is greater than TS: if GS.Ks/ D Gı.KsŒt; t
�1�/ Ì K�

s for
Gı a semi-simple group with maximal torus Tı, then TS.Ks/ D Tı.Ks/ � K�

s ,
T0.Ks/ D Tı.Ks/ and Z.T0/.Ks/ D Tı.KsŒt; t

�1�/ Ì K�
s is the subset of NS.Ks/

consisting of elements whose image in the a�ne Weyl group W v are in the
“translation group.”

Otherwise said, when S is a�ne non free, Nı D 0, T0 D TS and Z.TS/ may be
greater than TSWTS is not almost generic in TS.
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1.12. Remark on the notations. The plethora of notations introduced above may
be destabilizing. It is required to be precise and it will be often used in the other
sections. The main things to remember are as follows.

The exponent v means vectorial (for Weyl groups, facets, apartments, build-
ings), it will disappear for a�ne versions. The exponent c means combinatorial
(for facets, apartments, buildings). The exponent ma refers to Mathieu’s completed
Kac–Moody groups ( pma or nma for the positive or negative one). The other expo-
nents are relative to the chosen RGS: e indicates the essentialization, ad the adjoint,
x a free RGS, xl a speci�c free RGS and q is equivalent to xe or xle. The reader may
restrict, without much lost of generality, to this essential free case, denoted by q.

2. Almost split Kac–Moody groups

We deal in this section with the relative theory of almost split Kac–Moody groups,
analogous to the Borel-Tits theory of reductive groups. We describe the associated
twin buildings. This includes a discussion of the possible associated apartments
and the imaginary relative root groups. The reference here is B. Rémy’s mono-
graph [26].

2.1. Kac–Moody groups. 1) A Kac–Moody group over the �eld K is a functor
G D GK from the category Sep.K/ to the category of groups such that there
exist a RGS S, a �eld E 2 Sep.K/ and a functorial isomorphism between the
restrictions GE and GSE of G and GS to Sep.E/ D ¹F 2 Sep.K/ j E � F º.
We say that G is split overE, that G is aK-form of GS and we �x such a functorial
isomorphism to identify GE and GSE .

The above condition is the most important but, to compensate the lack of a
good notion of algebraicity, we need also aK-form U D UK of the Tits enveloping
algebra USKs and some other technical conditions (PREALG1,2, SGR, ALG1,2)
given in [26, Chapter 11] and omitted here. We write only the following condition
[l.c. 12.1.1] which makes more precise the functoriality.

(DCS2) For each extension L of K in Sep.K/ the group G.L/ maps isomor-
phically to its canonical image in G.Ks/ which is the �xed-point-set
G.Ks/

Gal.Ks=L/ of the Galois group.

We identify all these groups with their images in G.Ks/. We forget often the
subscript S for subgroups of GSKs when we think of them as subgroups of GKs ,
e.g. B˙

SKs
D B˙

Ks
. Now the natural action of � D Gal.Ks=K/ on GKs gives

us a twisted action of � on GSKs such that GS.Ks/
Gal.Ks=L/ D G.L/ for each

L 2 Sep.K/ and G.L/ D GS.L/ if E � L.
A subgroup H of G.Ks/ invariant under this twisted action of Gal.Ks=L/

de�nes a sub-group-functor HL on Sep.L/; we say that H is L-de�ned in G.Ks/

and that HL is a L-sub-group-functor of GL.
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2) We say that G is almost split if the twisted action of each  2 � transforms
B"

SKs
into a Borel subgroup in the same conjugacy class under GS.Ks/.

Let L be an in�nite �eld in Sep.E/, Galois over K, then there is a (twisted)
action of Gal.L=K/ on the twin combinatorial buildings 	 vc

" .L/ such that the
action of G.L/ on 	 vc

" .L/ is Gal.L=K/-equivariant; this action permutes the types
of the facets [l.c. 11.3.2]. One can extend a�nely this action on the geometric
realization 	

vq
" .L/ [l.c. 12.1.2] or on the so-called “metric” realization, where the

action is through a bounded group of isomorphisms; more precisely any point in
this last realization has a �nite orbit [l.c. 11.3.3, 11.3.4].

As a consequence any Borel subgroup of G.Ks/ is de�ned over a �nite Galois
extension of K; taking a greater extensionK 0 such that Gal.Ks=K

0/ preserves the
types, we see that the same thing is true for parabolic subgroups. A maximal torus
of G.Ks/ is intersection of two opposite Borel subgroups, so it is also de�ned over
a �nite Galois extension of K.

3) If G is almost split, the twisted action of � on GS.Ks/ and USKs is de-
scribed through a “star action” [l.c. 11.2.2, 11.3.2]. More precisely there is a map
 7! g from � to GS.Ks/ and for each  2 � an automorphism � of GS.Ks/

and a -linear bijection � of USKs , such that the twisted actions are given by
Q DInt.g / ı � on GS.Ks/ and Q DAd.g / ı � on USKs ; moreover g and �

are trivial for  2 Gal.Ks=E/. On GS.Ks/, � stabilizes TS and B˙
S

; on USKs , 
�

stabilizes U0
SKs

[l.c. 11.2.5(i)]. Actually g is de�ned up to TS.Ks/ (but the map
 7! g may be chosen with a �nite image, by 2.1.2 above). So � is de�ned up
to TS.Ks/. The “star action” is perhaps not an action on GS.Ks/ or USKs , but it
de�nes an action on U0

SKs
, X , �, ˆ, ˆC, I or W v.

4) By [31, 3.19.4] we may actually choose the element g in G
Slad .Ks/ DW

Gxlad.Ks/. Then we may add the condition that � stabilizes the épinglage
.TS; ˆ

C; .ei/i2I / i.e. �.ei / D e�.i/ and �.x˛i
.r// D x�.˛i /.r/ for i 2 I

and r 2 Ks [26, 11.2.5 iii)]. This condition determines uniquely g and �.
But � may be extended as an automorphism of Gxlad.Ks/ (cf. [31, 1.8.2]), so
�ıInt.g 0/ DInt.�.g 0// ı �. We deduce from this that g 0 D g :

�.g 0/

and . 0/� D � 0�: thus de�ned, the “star action” is a true action.

Lemma 2.2. Let G be an almost split K-form of GS as above.

a) There is an almost split K-form Gxl of G
Sl which is split over the same �eld

E as G and an homomorphism G ! Gxl whose restriction to Sep.E/ is the
known homomorphism GS ! G

Sl [31, 1.3d and 1.11].

b) Let L be an in�nite �eld in Sep.E/ Galois over K, then the action of
Gal.L=K/ on the building 	 vc

" .L/ may be extended linearly to 	 vxl
" .L/. This

action makes �-equivariant the action of Gxl.Ks/ (D G.Ks/) over this build-
ing and the essentialization map �vW 	 vxl

" .L/ ! 	
vq
" .L/.

c) When S is free, b) above is also true if we replace 	 vxl
" .L/ and Gxl.Ks/ by

	 vx
" .L/ and G.Ks/.
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Remarks. 1) ForAv as in 1.2.4, let us suppose that the star action of � on I (hence
on the ˛i , ˛_

i ) may be extended linearly to V . Then b) and c) above are also true
for 	 v.GS; K;A

v/.

2) If we de�ne on Gxlad.Ks/ 
� as above in 2.1.4 and Q DInt.g / ı �, we can

prove as below that we get an extension of the twisted action to Gxlad.Ks/.

3) In the (particularly interesting) case of a free, essential RGS S D Sq, this
technical lemma is essentially reduced to the existence of an action of Gal.L=K/
on 	

vq
" .L/, compatible with its action on 	 vc

" .L/, such that the action of G.Ks/ is
�-equivariant. This is a result of [26], see below in the proof.

Proof. a) We have to describe the form Gxl and a K-form Uxl of the Tits envelop-
ing algebra U

SlKs
through twisted actions of � on G

Sl.Ks/ and U
SlKs

extending
those constructed in 2.1.3 above for S. For the RGS Sl, Y l D Y xl D Y ˚ Q�,
so, by [31, 1.11], G

SlKs
is the semi-direct product of GSKs by the torus TQKs D

Spec.KsŒQ�/. Clearly U
SlKs

is also a semi-direct product of UKs D USKs and the
“integral enveloping algebra” UQKs of the torus TQKs (i.e. its algebra of distribu-
tions at the origin). Now the star action of � on Q gives a �-algebraic action on
TQKs and a �-linear action on UQKs . This is compatible with the formulae de�n-
ing semi-direct products and so we construct an automorphism � of G

Sl.Ks/ and
a -linear bijection � of U

SlKs
. Now let Q DInt.g / ı � or Q DAd.g / ı �.

We have to prove that this de�nes actions of �. By de�nition Int.g 0 / ı

. 0/� D e 0 and z ı � 0 DInt.g / ı �ıInt.g 0 / ı  0� DInt.g :
�.g 0// ı � ı  0�.

There is equality of these two expressions on GS.Ks/, moreover . 0/� D � ı 0�

on TSKs , hence g :
�.g 0/ D g 0 :t; 0 with t; 0 2 TS.Ks/. We have to verify

that e 0.t / D z ı � 0.t / for t 2 TQ.Ks/. But . 0/�.t / D �. 0�.t // is in TQ.Ks/

hence centralized by t; 0; so the result follows. The same proof works also for
U

SlKs
.

We de�ne Uxl as .U
SlKs

/Gal.Ks=K/ and, for L 2 Sep.K/,

Gxl.L/ D G
Sl.Ks/

Gal.Ks=K/

(�xed points for the twisted actions). We have now the two ingredients of the
Kac–Moody group as de�ned above. We leave to the reader the veri�cation of the
technical conditions of [26] (PREALG, SGR, . . . ).

b,c) As the star action of � is well de�ned on Xxl D X ˚ Q and on X , we
just have to mimic the proof in the case 	

vq
" .L/ (corresponding to Xq D Q)

[l.c. 12.1.2]. �

2.3. Continuity of the actions of the Galois group. From now on in this
Section 2, we choose an almost split Kac–Moody group G over K with Tits
enveloping algebra U and keep the above notations. We forget now the (old)
actions of � D Gal.Ks=K/ on GSKs or USKs and consider only the star action
or the (twisted) action (which is the natural action on GKs or UKs).
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1) By 2.1.2 above the orbits of� on the Borel subgroups ofGKs are �nite. So the
g 2 G.Ks/ (such that � DInt.g /

�1 ı  stabilizes TKs and B˙
Ks

) may be chosen
in a �nite set. In particular, if � DAd.g /

�1 ı  on UKs , then ¹�u j  2 �º is
�nite for all u 2 UKs . So the star action of � has �nite orbits on ˆ [26, 11.2.5(iii)]
and on Q. We know that this star action stabilizes the basis ¹˛i j i 2 I º and acts
on I by automorphisms of the Dynkin diagram.

2) The following extension of condition (ALG2) is implicit in l.c. starting e.g.
from 11.3.2.

(ALG3) The star action of � on X or Y is continuous i.e. its orbits are �nite.

As for (ALG2) this is useless if X D Q. Without it, only the description of the
action of � on the center of G.Ks/ is less precise; in particular there is no problem
for the buildings 	

vq
" .L/. But the proof of [l.c. 12.5.1(i)] uses this property.

It would also be reasonable to ask the following axiom.

(ALG30) The evident map 'WY ! Y ˝Ks � U0
Ks

is ��-equivariant.

By [l.c. 11.2.5] the map ' restricted to Q_ D
P

i2I Z˛_
i is ��-equivariant.

In characteristic 0 (ALG3) is a consequence of (ALG30).
In the following we add to the conditions of l.c. the condition (ALG3) but not

(ALG30). With these assumptions we get the good structure for G. But anybody
interested in considering U as the good Tits enveloping algebra for G should
add (ALG30) and, in positive characteristic, perhaps some stronger conditions,
see 2.10.

3) By 2.1.2 TKs and B˙
Ks

are de�ned over a �nite Galois extension L of K in
Sep.K/. Enlarging a little L we may suppose that TKs is split over L (i.e. X or
Y is �xed pointwise under Gal.Ks=L/) and Q is also �xed (2.3.1). Now we may
modify each ei in Ksei D U

C
˛i Ks

, so that ei (and fi ) is �xed under �. By [l.c.
11.2.5(iii)] this proves that .x˙˛i

.r// D x˙˛i
.r/ for r 2 Ks and  2 Gal.Ks=L/.

So the original action and the new twisted action of � on GS.Ks/ coincide on
T.Ks/ and the groups U˙˛i

.Ks/. As these groups generate GS.Ks/ (see [31, 1.6
KMT7]), the two actions coincide and G is actually split over the �nite Galois
extension L of K.

Now each of the above generators of G.Ks/ has a �nite orbit under �, so this
is also true for every element of G.Ks/WG.Ks/ is the union of the subgroups G.L/
for L 2 Sep.K/ with L=K �nite.

4) We saw in 2.1.2 that the orbits of � on 	 vc
" .Ks/ are �nite. The stabilizer in

� of a facet of 	 vc
" .Ks/ acts on the corresponding facet of 	

vq
" .Ks/, 	 vxl

" .Ks/ or
	 vx

" .Ks/ through a �nite group (see 2) above and the de�nition of these actions).
So the actions of � other these buildings have �nite orbits.
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If a Galois group Gal.Ks=M/ stabilizes a facet of one of these geometric
buildings, then it has a �xed point in this facet (as this facet is a convex cone
and the action is a�ne).

2.4. K -objects in the buildings. 1) Let E 2 Sep.K/ be in�nite, Galois over K
and such that G is split overE. By [26, 10.1.4 and 13.2.4] the buildings overE are
the �xed point sets in the buildings over Ks of the Galois group Gal.Ks=E/. So
we set � D Gal.E=K/ and we shall work over E (cf.l.c. 12.1.1(1)).

We always choose now a vectorial apartmentAv as in Remark 2.2.1 (hence with
the properties of 1.2.4), e.g. Av D Avq, Avxl or if S is free Avx. Then we de�ne
	 v D 	 v

C [ 	 v
� as the union 	 v.GS; E;A

v/ D 	 v
C.GS; E;A

v/ [ 	 v
�.GS; E;A

v/.
The essentialization 	 ve of 	 v is always 	 vq.E/ D 	 v.GS; E;A

vq/ which is the
building investigated in [26] so one may use this reference.

2) De�nitions. A K-facet (resp. sphericalK-facet) in 	 v is the �xed point set
under � of a facet (resp. spherical facet) of 	 v stable under� (by 2.3.4 theK-facet
is non empty).

A K-chamber in 	 v is a spherical K-facet with maximal closure.

A K-apartment in 	 v is a generic subspace (of an apartment) of 	 v which is
(pointwise) �xed under � and maximal for these properties.

A (real) K-wall in a K-apartment KA
v is the intersection with KA

v of a wall
in an apartment of 	 v containing KA

v, provided that this intersection contains a
sphericalK-facet. ThisK-wall divides KA

v into two (closed)K-half-apartments.

3) Properties. By de�nition K-facets (resp. sphericalK-facets,K-chambers)
correspond bijectively toK-de�ned parabolics (resp.K-de�ned spherical parabol-
ics, minimal K-de�ned parabolics). The union of the K-facets is .	 v/� ; their set
is written K	 vc.

By [l.c. 12.2.4 and 12.3.1] two K-facets are always in a same K-apartment
and there exists an integer d D d.	 v�/ � 1 such that each K-chamber or each
K-apartment is of dimension d . One should notice that the di�erent choices for
	 v may give di�erent integers d . The group G D G.K/ acts transitively on
the pairs .KC;KAv/ of a K-chamber KC of given sign in a K-apartment KA

v

(see also [l.c. 12.4.1]).

4) Standardizations. Any K-apartment KA
v in 	 v is contained in a Ga-

lois stable apartment Av of 	 v (perhaps after enlarging a little E) [l.c. 12.3.2(1)].
We may choose moreover opposite chambers KC

v
C, KC

v
� in KA

v and (non nec-

essarily �-stable) opposite chambers C v
C, C v

� in Av with KC
v
˙ � C v

˙. We say
that .KAv;KC

v
C;KC

v
�/ and .Av; C v

C; C
v
�/ are compatible standardizations of 	 v�

and 	 v.



Almost split Kac–Moody groups over ultrametric �elds 907

The apartment Av determines aK-de�ned maximal torus TKs (such that Av D
Av.TKs/). After enlarging a little E we may suppose that TKs is split over E, and
conjugated under G.E/ to the fundamental torus TSE [l.c. 10.4.2]. So we may
(and will) suppose that TKs D TSKs and C v

˙ is associated to the Borel subgroups
B˙

SE . Then the star action of � is de�ned by � DInt.g /
�1 ı  with g 2 G.E/

normalizing TS and �xing pointwise KC
v
C, KC

v
� and KA

v.
Let I0 D ¹i 2 I j ˛i .KA

v/ D ¹0º º and

AvI0 D ¹x 2 Av j ˛i .x/ D 0; for all i 2 I0º:

Then I0 is spherical (as KA
v meets spherical facets) and stable under ��, the

(normal twisted) action and the star action of � coincide on AvI0 and KA
v D

.AvI0/�
�
. The vector space generated by KA

v in
�!
Av is

��!
KA

v D ¹v 2
�!
Av j ˛i .x/ D 0; for all i 2 I0º��

[l.c. 12.6.1].

2.5. Maximal split tori and relative roots. We choose standardizations and
identi�cations as in 2.4.4 above.

1) The maximal split subtorus S of T depends only on the K-apartment KA
v

and is actually a maximal split torus in G. The maximal split tori are conjugated
under G D G.K/ [26, 12.5.2 and 12.5.3]. The dimension of a maximal split torus
is the reductive relative rank over K of G, written rrkK.G/.

As a consequence of [l.c. cor. 12.5.3] and Lemma 2.6.2 (ii) below, there is a
bijection S 7! KA

v.S/ between maximal K-split tori in G (or their points over
K, if jKj � 4) and the K-apartments in 	 v.

2) Let KX (resp. KY ) be the group of characters (resp. cocharacters) of S.
For each ˛ 2 Q, let K N̨ 2 KX be the restriction to S of N̨ 2 X and K˛ be the

restriction of ˛ to
��!

KA
v. We de�ne KQ as the image of Q by this restriction map

˛ 7! K˛.
The set of relative K-roots is the set

K� D ¹K˛ j ˛ 2 �; K˛ 6D 0ºI

the set of real relative K-roots is the set

Kˆ D K�re D ¹K˛ 2 K� j KA
v \ Ker.˛/ is a (real) K-wallº:

Let KQre be the submodule of KQ generated by the real relative roots.
The relative K � roots in K�im D K� n K�re are called imaginary.

With the notations in 2.4.4, K˛i is a root if and only if i … I0; for i; j … I0,
K˛i D K j̨ if and only if i and j are in the same ��-orbit; K˛i is a real root if
I0 [ ��i is spherical and di�erent from I0.



908 G. Rousseau

Hence a basis of K� (or KQ) is given by ¹K˛i j i 2 KI º where KI D
.I n I0/=�

� and a basis of Kˆ (or KQre) is given by ¹K˛i j i 2 KIreº where
KIre D ¹i 2 I n I0 j I0 [ ��i sphericalº=��. The basis of K� may contain
some imaginary relative roots. Besides the above de�nition, the simple imaginary
K-roots are characterized among the simpleK-roots by the fact that the associated
root group is trivial (see below 2.6.2 (i) and 2.9.4).

The set ˆ0 D ¹˛ 2 ˆ j K˛ D 0º is actually ˆ \ .
L

i2I0
Z˛i /. We say that

jKIrej D ssrkK.G/ is the semi-simple relative rank over K of G.

For i 2 I0, ˛i is trivial on S (see 3) below); so the two actions of � (star or
not) on T coincide on S and KY D ¹y 2 Y j ˛i .y/ D 0; for all i 2 I0º��

. Hence,
for all ˛ 2 Q, K N̨ is the canonical image K˛ of K˛ in KX . It is now clear that
¹K˛ j K˛ 2 K�º is the set of roots of S for the adjoint representation on the Lie
algebra gK � UK .

When S is free and 	 v D 	 vx.E/ is the normal geometric realization, then
dim.KAv/ D dim.S/ is the reductive relative rank. Hence, when S is free, the
reductive relative rank is at least 1: an almost split Kac–Moody group (with S

free) cannot be anisotropic.

When 	 v is the essential building 	 vq.E/, then dim.KAv/ D jKI j may be
greater than jKIrej D ssrkK.G/, so KA

v may be inessential.

3) Relative Weyl group ([l.c. 12.4.1, 12.4.2]). Let KN (resp. KZ) be the
stabilizer (resp. �xer) of KA

v in G; by 2.5.1 KN is the normalizer of S in G
and KZ centralizes S (by de�nition of S [l.c. 12.5.2]). Actually KZ is generated
by T and the U˛ for ˛ 2 ˆ0 [l.c. 6.4.1], hence ˛.S/ D 1 for all ˛ 2 ˆ0. The
quotient group KW

v D KN=KZ is the relative Weyl group of G (associated to S
or KA

v). It acts simply transitively on the K-chambers of �xed sign in KA
v and

(as KN � N:KZ) is induced by the action of the subgroup of W v D W v.Av/

stabilizing KA
v.

To each real relative root K˛ 2 Kˆ is associated an element s
K ˛ 2 KW

v of
order 2 which �xes the wall Ker.K˛/. The pair .KW v; ¹s

K˛i
j i 2 KIreº/ is a

Coxeter system.

When S is free, the map Y.TS/ ˝ R !
�!
Avq D .Q ˝ R/� is onto. But KA

vq

is generic in Avq (2.4.2) and, by 2.4.4 and 2.5.2, the same equations de�ne
��!

KA
vq

in
�!
Avq or Y.S/ ˝ R in Y.TS/ ˝ R. So S is generic in TS, Z.S/ D Zg.S/ and

KZ D Z.S/.K/ (1.10).

For S general KZ D Zg .S/.K/ may be smaller than Z.S/.K/, cf. 1.11c. The
reductive group Zg.S/ is the anisotropic kernel [26, 12.3.2] associated to KA

v i.e.
to S (by 1) above).
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4) The set K� (resp. Kˆ D K�
re) is a system of roots (resp. of real roots) in

the sense of [3] cf. [26, 12.6.2], [3] or [2]. If K�
˙ D ˙.K�\ .

L
i2K I Z�0:K˛i //

(resp. Kˆ
˙ D ˙.Kˆ \ .

L
i2KIre

Z�0:K˛i // then K� D K�
C t K�

� and

Kˆ D Kˆ
C t Kˆ

�. The system K� or Kˆ is stable under KW
v and any real

relative root is of the form w:K˛i or 2w:K˛i with w 2 KW
v and i 2 KIre (as the

system may be unreduced).
It is not too hard to �nd a RGS .KM; KY; .K S̨i /i2KIre ; .K˛

_
i /i2K Ire/ (in the

sense of 1.1) with Weyl group KW
v. But it is not su�cient to describe K�

(or even Kˆ); one has to use a more complicated notion of RGS, see [3], [2],
or [26, 12.6.2]. On the contrary the reduced system Kˆred is a system of real
roots in the sense of [24], [25] and even of [21] as its basis is free.

2.6. Relative root groups. 1) For K˛ 2 Kˆ, we consider the �nite set .K˛/ D
¹ˇ 2 ˆ j Kˇ 2 N:K˛º and the unipotent group U.K ˛/Ks generated by the UˇKs for
ˇ 2 .K˛/, it is de�ned over K. We set V

K ˛ D U.K ˛/.K/.
The positive integral multiples of K˛ in K� are K˛ and (eventually) 2K˛

(2 Kˆ). If 2K˛ … K� we set U.2K ˛/Ks D ¹1º and V2K˛ D ¹1º. So U.2K ˛/Ks

(resp. V2K ˛) is always a normal subgroup of U.K ˛/Ks (resp. V
K˛) [26, 12.5.4].

2) Lemma. Let K˛ 2 Kˆ be a real relative root.

(i) V
K˛=V2K˛ is isomorphic to a vector space over K on which s 2 S.K/ acts

by multiplication by K N̨ .s/ 2 K�. Its dimension is j.K˛/j � j.2K˛/j > 0.

(ii) The centralizer ZV
K ˛
.S.K// of S.K/ in V

K˛ is trivial if jKj � 4.

Proof (suggested in [l.c. 12.5.3]). By [l.c. 12.5.4] there exists a reductiveK-group
H of relative semi-simple rank 1 containing S and U.K ˛/. Then (i) is classical,
cf.e.g. [5, Theorem 3.17]. Now (for H) there exists a coroot K˛

_ 2 Hom.Mult;S/
such that 2K˛.K˛

_/ D 2 or K˛.K˛
_/ D 2 (if 2K˛ is not a root) (one may use the

K-split reductive subgroup of H constructed in [5, 7.2]). So (ii) follows. �

Theorem 2.7 ([26, 12.6.3 and 12.4.4]). LetG be an almost split Kac–Moody group
over K, then

a) the triple .G.K/; .V
K˛/K˛2K ˆ;KZ/ is a generating root datum of type Kˆ;

b) the �xed point set K	 v D .	 v/� is a good geometrical representation of the
combinatorial twin building K	 vc D 	 vc.G; K/ associated to this root datum:
there are G.K/-equivariant bijections, between the K-apartments and the
apartments of K	 vc, and between the K-chambers and the chambers of K	 vc;
this last bijection is compatible with adjacency and opposition.
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N.B. 1) When G is already split over K, we easily see, using galleries, that
K	

vc
D .	 vc/� and K	 v D 	 v.G; K;Av/.

2) The group KB
C D KZU

C de�ned in 1.6.1 for this root datum is a minimal
K-parabolic of G. It is a Borel subgroup if and only if there exist Borel subgroups
de�ned over K (i.e. G is quasi split over K); this is equivalent to I0 D ; i.e. to
Zg .S/ being a torus.

3) The objects de�ned in 1.4 to 1.6 for the above root datum will bear a left or
right index K , sometimes a left exponent K .

2.8. Comparison with a Weyl geometric realization. We saw in 2.5.2 that
some simple K-roots may be imaginary. So the K-facets are not de�ned using
uniquely real K-roots (as in 1.2). We compare them here with the Weyl K-facets,
de�ned only with the real K-roots.

1) With the notations in 2.4.4, 2.5, we may describe the positive K-facets:

C v
C D ¹x 2

�!
Av j ˛i .x/ > 0; for all i 2 I º;

C v
C D ¹x 2

�!
Av j ˛i .x/ � 0; for all i 2 I º � Av;

KC
v
C D ¹x 2

��!
KA

v j K˛i .x/ > 0; for all i 2 KI º

(relative interior of C v
C \

��!
KA

v D KC
v
C � Av),

KA
v
C D

[

w2KW v

w:KC
v
C � KA

v � Av:

The K-facets in KC
v
C correspond bijectively to subsets KJ of KI by setting:

KF
v
C.KJ / D ¹x 2

��!
KA

v j K˛i .x/ > 0; for all i 2 KI n KJ and

K˛i .x/ D 0; for all i 2 KJ º

� KA
v
C \ C v

C

so the de�nition of the K-facets uses the whole K� (not only Kˆ).
Moreover KF

v
C.KJ / is spherical if and only if KJ D I0 [ ¹i 2 I j ��i 2 KJ º

is spherical, which is equivalent to KJ � KIre and KJ spherical in KIre (as de�ned
by the root system Kˆ) cf. [3, p. 163 and p. 175].

2) A Weyl geometric realization K	 v
C D 	 v

C.G; K;
KAv/ of the combinatorial

building K	 vc
C can be constructed using, for fundamental apartment and facets,

subcones of the vector space
��!

KA
v de�ned using Kˆ (i.e. KW

v). The correspond-
ing Weyl facets in the closure of the positive fundamental chamber are de�ned,
for KJ � KIre, as

KF v
C.KJ / D ¹x 2

��!
KA

v j K˛i .x/ > 0; for all i 2 KIre n KJ and

K˛i .x/ D 0; for all i 2 KJ º
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and the positive fundamental Weyl K-apartment is

KAv
C D

[

w2K W v;KJ �K Ire

w:KF v
C.KJ / �

��!
KA

v:

The building K	 v is the disjoint union of the Weyl K-facets associated to the
parabolics of .G.K/; .V

K˛/K˛2K ˆ;KZ/; it contains K	 v by the following lemma.

Its minimal facet is KF v
C.KIre/ D .

��!
KA

v/0.
One should notice that K	 v is, in general, not included in 	 v, as KAv

C 6� Av,
see the example [26, 13.4] and 4) below.

3) Lemma. Let KJ � KIre.

a) The intersection KF v
C.KJ / \ KA

v
C is the disjoint union of the K-facets

KF
v
C.KJ

0/ for KJ
0 � KJ and KJ

0 \ KIre D KJ .

Among these K-facets the maximal one ( for the inclusion of the closures)
is KF

v
C.KJ /, which is open in KF v

C.KJ /; moreover

KF v
C.KJ / D KF

v
C.KJ /C .

��!
KA

v/0:

The minimal one corresponds to KJ
0 D KJ [ .KI n KIre/.

b) The WeylK-facet KF v
C.KJ / is spherical if and only if KF

v
C.KJ / is spherical

and then this K-facet is the only sphericalK-facet in KF v
C.KJ / \ KA

v
C.

c) The WeylK-facet KF v
C.KJ / and allK-facets KF

v in KF v
C.KJ /\KA

v
C have

the same �xer PC
K .KJ / D PK.KF

v/ in G.K/. Hence each K-facet of K	 v
C

is associated to a unique Weyl K-facet in K	 v
C.

Proof. Let w:KC v
C (with w 2 KW

v) be a closed K-chamber meeting KF v
C.KJ /,

then w:KC v
C meets KF v

C.KJ /; so w 2 KW
v.KJ / which �xes (pointwise)

KF v
C.KJ /. Hence w:KC v

C \ KF v
C.KJ / � KC

v
C and KA

v
C \ KF v

C.KJ / � KC
v
C.

Now a) and b) are clear.
The �xer in G.K/ of KF

v
C.KJ

0/ contains the �xer P of KC
v
C, hence it is a

parabolic subgroup of the positive BN -pair associated to the root datum in G.K/
i.e. of the form P:KW

v.KJ
00/:P for some KJ

00 � KIre. It is easy to check that
KJ

00 has to be KJ and c) follows. �

4) So the Weyl K-facets of K	 vc
C correspond to some K-facets of .	 v

C/
� and

there is a good correspondence between spherical Weyl K-facets and spherical
K-facets. But, if KIre 6D KI , some non-spherical K-facets correspond to nothing
in K	 vc

C . So .	 v/� is only a geometric representation of K	 vc in the sense of the
theorem, it is not really a geometric realization of it. Note also that, if KIre 6D KI ,
the Weyl geometric realization K	 v

C of K	 vc
C , constructed in 2) above, is not

essential, even if 	 v D 	 vq is.
The above results (and those in 2.9) are well illustrated by Example 13.4 in [26].
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5) Remarks. a) In this example we see also that Kˆ may be a classical
(�nite) root system, even if ˆ is in�nite. It may also happen that Kˆ is empty
(i.e. ssrkK.G/ D 0); this is always the case when ˆ is in�nite and jKI j D 1

(see examples for K D R in the tables of [2]). Then G.K/ D KZ and .	 v/� is
reduced to one K-apartment and two K-chambers (one of each sign).

b) On the contrary, if ˆ is in�nite, K� is always in�nite and jKI j � 1.

c) Actually some vectorial facets (e.g. the minimal one V0) are positive and
negative. So to associate a maximal K-facet to a Weyl K-facet, we may have to
make a choice of a sign, at least if KIre 6D KI .

6) Lemma. let G be an almost split Kac–Moody group de�ned over K 0, with
K 0 � K � E, E=K 0, K=K 0 Galois and .GK ; E/ as above (cf. 2.4.4).

a) Let K0Av � KA
v � Av be respectively a K 0-apartment in K0	 v, a K-apart-

ment in K	 v and an apartment in 	 v (stable under Gal.E=K 0/ or not). Then
the K-facets or K 0-facets are described in Av as in 1) above with help of KI

or K0I .

b) The action of Gal.E=K 0/ on 	 v induces an action of Gal.K=K 0/ on K	 v

which may be extended (linearly and uniquely) to K	 v.

Proof. There is a star-action of Gal.E=K/ (resp. Gal.E=K 0/) onAv (and its vector

space
�!
Av) and a subset IK

0 (resp. IK0

0 ) of I which describe entirely KA
v (resp.

K0Av); this is independent of the choice of Av, as di�erent choices are conjugated
[26, Proposition 6.2.3 (i)]. They describe also the K-facets (resp. K 0-facets),
so a) follows. The action of Gal.K=K 0/ on K	 v D G.K/:KA

v is described through
its action on K	 vc and its star action on KA

v which may be extended (linearly and
uniquely) to KAv. So b) is a consequence of 3)c above. �

2.9. Imaginary relative root groups. 1) Let’s consider K˛ 2 K�
im. The sets

.Z>0:K˛/ \ .K�/ and .K˛/ D ¹ˇ 2 � j Kˇ 2 Z>0:K˛º are in�nite [2, 3.3.2].
We saw in 1.9 that GE is embedded in some ind-group-scheme. If K˛

is positive (resp. negative) we can de�ne in the pro-unipotent group-scheme
UmaC

E (resp. Uma�
E ) a pro-unipotent subgroup-scheme Uma

.K ˛/E
such that the ele-

ments of Uma
.K ˛/

D Uma
.K ˛/E

.E/ are written uniquely as in�nite products: u D
Q

ˇ2.K ˛/

Qj Dnˇ

j D1 Œexp��ˇ;j :eˇ;j where .eˇ;j /j D1;nˇ
is a basis of gˇ (nˇ D 1 for

ˇ real) and �ˇ;j 2 E. Moreover the conjugate of such an element u 2 Uma
.K ˛/

by

s 2 S.E/ is
Q

ˇ2.K ˛/

Qj Dnˇ

j D1 Œexp�ˇ.s/:�ˇ;j :eˇ;j .
We de�ne the root group corresponding to K˛ as V

K˛ D Uma
.K ˛/

\ G.K/.

2) Lemma. The groupG D G.K/ has an extra large (abstract) center: it contains
SZ D ¹s 2 S.K/ j K˛i .s/ D 1; for all i 2 KIreº.
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Proof. As S.K/ is in the center of KZ and G is generated by KZ and the groups
V

K ˛ for K˛ 2 Kˆ, this result is a consequence of Lemma 2.6.2 (i). �

3) Remarks and de�nition a) The schematic center of G, i.e. the centralizer in
G of G.Ks/, is ¹s 2 T.K/ j ˛i .s/ D 1; for all i 2 I º [26, 9.6.2]. Hence its
intersection with S.K/ is smaller than SZ in general.

b) If K˛ 2 K�, we can write uniquely K˛ D ˙.
P

i2KI ni :K˛i /with ni 2 Z�0.
We shall say that K˛ is almost real and write K˛ 2 K�

r if and only if ni D 0 for
all i 2 KI n KIre. Hence Kˆ D K�re � K�

r � K�. This set K�
r is a system of

roots in the sense of [3, 2.4.1].

c) By the following lemma the non trivial root groups V
K˛ correspond to roots

K˛ 2 K�
r. So it is natural to abandon theK-facets (de�ned using K�) and to use

the Weyl K-facets of 2.8.2 (de�ned using Kˆ or K�
r).

We may de�ne K� D ¹K˛ 2 K� j V
K ˛ 6D ¹1º º, so Kˆ � K� � K�

r (by the
following).

4) Lemma. If K˛ 2 K� n K�
r (hence K˛ 2 K�im), then V

K˛ D ¹1º.

Proof. Suppose that S is free, K is in�nite and K˛ 2 K� n K�
r, then for all

n 2 Z>0 we have .n:K˛/.SZ/ 6D ¹1º. But the conjugation by s 2 SZ of an
element of G (resp. Uma

.K ˛/
) is trivial (resp. given by the formulae in 1) above).

Hence V
K ˛ D ¹1º.

When S is not free we obtain the same result by using Gxl cf. 2.2a. WhenK is
�nite, the (schematic) centralizer Z of S is a K-quasi-split reductive group with
S as maximal K-split torus; so Z is a torus. Now Z splits over a Galois extension
of degree D. If L is an in�nite union of extensions of degree prime to D, S is
still maximal K-split over L and the wanted result is true over L. The result over
K is then clear. �

2.10. Associated almost split maximal Kac–Moody groups. In 1.9 or [31], we
associated to GS a positive (resp. negative) completion G

pma
S

(resp. Gnma
S

). We
want to associate to G a positive (resp. negative) completion Gpma (resp. Gnma)
considered as a functor from Sep.K/ to the category of groups. For this we have
to describe a (twisted) action of � D Gal.Ks=K/ on G

pma
S
.Ks/ (resp. Gnma

S
.Ks/)

extending the known one on GS.Ks/ and to de�ne Gpma.L/ D G
pma
S
.Ks/

Gal.Ks=L/

(resp. Gnma.L/ D Gnma
S
.Ks/

Gal.Ks=L// for every L 2 Sep.K/.
We consider a maximal K-split torus S in G, contained in a K-de�ned max-

imal torus T. We choose a Weyl K-chamber KC v in KAv D KAv.S/ and de�ne
F v

1 as the vectorial (spherical) facet in Av D Av.T/ such that KF
v
1 D F v

1 \KA
v is

open in KC v (cf. 2.8.3). We choose a vectorial chamber C v in Av whose closure
contains F v

1 . We identify GKs and GSKs in such a way that TKs D TSKs and C v

is the fundamental positive chamber C v
C; this de�nes a (twisted) action of � on
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GKs D GSKs . As in 2.1.4 we choose, for any  2 �, an element g 2 Gxlad.Ks/

such that Int.g�1
 / ı  stabilizes Av and C v, more precisely TKs and BC

SKs
. It is

clear, in the above situation, that g 2 P xlad.F v
1 / \ Zxlad

g .S/.Ks/ D M xlad.F v
1 /;

moreover g D 1 for  in some �nite index subgroup of �. Now the star action of
� is de�ned by � D Int.g�1

 / ı  on G.Ks/ and � D Ad.g�1
 / ı  on USKs . This

star action is a true action.
By hypothesis �.TKs/ D TKs , 

�.BC
Ks
/ D BC

Ks
and �.ei / D e�i for every

 2 � and i 2 I . By [26, 11.2.5], we have �.˛_
i / D ˛_

�i , 
�.fi / D f�i

and �.x˙˛i
.k// D x˙˛�i

.k/ for k 2 Ks. We deduce that �.Qs˛i
/ D Qs�˛i

and �.x˛.k// D x�˛.k/, for all ˛ 2 ˆ and k 2 Ks, cf. [31, Section 1] in
particular (KMT7). Together with the clear star action on T.Ks/ this gives a
complete description of the star action on G.Ks/.

For USKs the description of the star action is less clear. We have �.e˛/ D e�˛

and �.˛_/ D .�˛/_ for all ˛ 2 ˆ. The condition (ALG30) of 2.3 (if it is
assumed) tells us that � on Y ˝Ks � U0

Ks
is given by � on Y i.e. on TS. If ˛.Y /

is non zero in K (e.g. if char.K/ D 0) the formula �.x˛.k// D x�˛.k/ and

the ��-equivariance of Ad tells us that �.e
.n/
˛ / D e

.n/
�˛ for all ˛ 2 ˆ and n 2 N.

More precisely in characteristic 0 the condition (ALG30) tells us that � on USKs

is as we want: the �� of [26, 13.2.3] entirely de�ned by the star action on I and
X or Y . In positive characteristic, particularly in characteristic 2, the equality of
� and �� is far from obvious, e.g. for imaginary roots.

We have two solutions to this problem. First add an axiom (ALG300) (involving
(ALG30)) telling that � D ��. We choose the second solution: we change
the star action on USKs , we take �� instead of �; the description we gave
of � on G.Ks/ tells us that Ad is still ��-equivariant. Then we de�ne z D
Ad.g / ı ��; this gives an action as g 0 D g :

�.g 0/ (2.1.4) and Ad is
z�-equivariant. Moreover the orbits of z� on USKs are �nite, hence we have de�ned
a new K-form U0

K of USKs . With the precise de�nition of Kac–Moody groups
given in [26], we have changed the Kac–Moody group, but the functor G is still
the same.

The de�nition of an almost split maximal Kac–Moody group is now clear: the
���-action on USKs induces clearly an action on Gpma.Ks/ D G.Ks/:U

maC.Ks/

or on Gnma.Ks/ D G.Ks/:U
ma�.Ks/ which coincides on G.Ks/ with the known

��-action (see the de�nition of these groups in [31]). Then we de�ne the action
of � by z D Int.g / ı ��.

3. Valuations and a�ne (bordered) apartments

In this section and the following one, we introduce an abstract theory, independent
of Kac–Moody groups (except in 3.3 and 3.5 for examples). It is the generalization
of Bruhat–Tits’ monograph [8] which deals with the case of �nite root systems.
In this section we de�ne the valuated root data and study the associated a�ne
apartments. We introduce also the bordered apartments, following Charignon.
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De�nition 3.1. A valuation of a root datum .G; .U˛/˛2ˆ; Z/ of type a real root
system ˆ (as in 1.4) is a family .'˛/˛2ˆ of maps '˛WU˛ ! R [ ¹C1º satisfying
the following axioms.

(V0) For all ˛ 2 ˆ, j'˛.U˛/j � 3.

(V1) For all ˛ 2 ˆ and all � 2 R[¹C1º,U˛;� D '�1
˛ .Œ�;C1�/ is a subgroup

of U˛ and U˛;1 D ¹1º.

(V2.1) For all ˛; ˇ 2 ˆ, u 2 U˛ n ¹1º, and v 2 Uˇ n ¹1º, 's˛.ˇ/.m.u/vm.u/
�1/ D

'ˇ .v/ � ˇ.˛_/'˛.u/.

(V2.2) For all ˛ 2 ˆ and t 2 Z, the map v 7! '˛.v/ � '˛.tvt
�1/ is constant on

U˛ n ¹1º.

(V3) For each pre-nilpotent pair of roots ¹˛; ˇº and all �; � 2 R, the commu-
tator group ŒU˛;�; Uˇ;�� is contained in the group generated by the groups
Up˛Cqˇ;p�Cq� for p; q 2 Z>0 and p˛ C qˇ 2 ˆ.

(V4) If ˛ 2 ˆ and 2˛ 2 ˆ, then '2˛ is the restriction of 2'˛ to U2˛ .

Remarks. 1) This de�nition appears in [13, 10.2.1]. A weaker de�nition is given
in [28, 2.2]; there, axiom (V2.1) is replaced by axioms named (V2a) and (V5)
(see 2) below). In the classical case, both de�nitions are equivalent to the original
one of [8, 6.2.1], cf. [13, 10.2.3.2]. Actually (V2.1) is then Proposition 6.2.7 of [8].
This de�nition may be extended to RGD-systems for a family .'˛/˛2ˆnd : in (V3)
just allow p and q to be in R>0; in (V2.1) if s˛.ˇ/ D � with � > 0 and  2 ˆnd,
replace 's˛.ˇ/ by �' .

2) We de�ne ƒ˛ D '˛.U˛ n ¹1º/ � R. From (V2.1) with ˛ D ˇ, u D v we
get ƒ˛ D �ƒ�˛. For u; u0; u00 as in 1.4 (RD4), we have '�˛.u

0/ D '�˛.u
00/ D

�'˛.u/, [13, 11.1.11]. This is the axiom (V5) in [8] or [28]. For � 2 R, we set
U˛;�C D '�1

˛ .��;C1�/.

3) Let Q D Zˆ be the Z-module generated by ˆ and V q D .Q ˝ R/�. Then
using this (strong) de�nition one can build an action of the group N (de�ned
in 1.6.1) on V q (this seems impossible with the weaker de�nition of [28]).

Proposition 3.2. cf. [13, Propositions 11.1.9 and 11.1.10] There exists a unique
action �q of N on V q by a�ne transformations such that

� for all t 2 Z, �q.t / is the translation by the vector �!
vt such that ˛.�!

vt / D
'˛.u/ � '˛.tut

�1/, for all ˛ 2 ˆ, u 2 U˛ n ¹1º;

� for all n 2 N , �q.n/ is an a�ne automorphism with associated linear map
���!
�q.n/ D �v.n/.
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3.3. Valuation for a split Kac–Moody group. 1) Let G D GS be a split Kac–
Moody group over K, as in 1.3. We suppose that the base �eld K is endowed
with a non trivial real valuation ! D !K WK ! R [ ¹C1º. Its ring of integers
(resp. maximal ideal, residue �eld) is O D OK D !�1.Œ0;C1�/ (resp.m D mK D
!�1.�0;C1�/, � D O=m) andƒ D ƒK D !.K�/ is its value group. An important
particular case (the discrete case) is when ƒ is discrete in R.

Let u D x˛.r/ 2 U˛ with ˛ 2 ˆ and r 2 K, we set '˛.u/ D !.r/ 2 R[¹C1º.

2) Proposition. .'˛/˛2ˆ is a valuation of the root datum .G; .U˛/˛2ˆ; T /.

Proof. Clear except for (V2.1) proved in [13, 10.2.3.1]. �

Remark. We have ƒ˛ D ƒ, for all ˛ 2 ˆ.

3.4. A�ne apartments. We consider an abstract valuated root datum as in 3.1.

1) Let V D
�!
A be a real vector space with ˆ � Q � V � and .˛_

i /i2I � V as
in 1.2.4; we consider in V all objects de�ned in 1.2.

For � 2 R and ˛ 2 Q n ¹0º, we de�ne the a�ne hyperplane

M.˛; �/ D ¹x 2 V j ˛.x/C � D 0º of direction Ker.˛/;

the closed half-space

D.˛; �/ D ¹x 2 V j ˛.x/C � � 0º;

and its interior
Dı.˛; �/ D ¹x 2 V j ˛.x/C � > 0º:

For ˛ 2 ˆ the re�ection sM D s˛;� with respect to M D M.˛; �/ is the a�ne
re�ection with associated linear map �!sM D s˛ and with �xed point set M .

We suppose that V is endowed with an action � of N such that, for all n 2 N ,

�.n/ is an a�ne automorphism with associated linear map
��!
�.n/ D �v.n/. We ask

moreover that, for ˛ 2 ˆ and u 2 U˛ n ¹1º, �.m.u// is the re�ection s˛;'˛.u/.
We write Z0 D Ker.�/ � Z.

Then t 2 Z D Ker.�v/ acts on V by a translation of vector �!vt . The action
� commutes with the translations by V0 and the induced action on the essential
quotient V q D V=V0 is �q as de�ned in Proposition 3.2: asm.tut�1/ D tm.u/t�1,
we have clearly ˛.�!vt / D '˛.u/ � '˛.tut

�1/.
As a consequence, for all n 2 N , ˛ 2 ˆ, and u 2 U˛ n ¹1º, we have

�.n/:D.˛; '˛.u// D D.�v.n/:˛; '�v.n/:˛.nun
�1// and the same thing for the walls

[13, 11.1.10].
For v 2 V , we may de�ne a new valuation '0 (equipollent to ') by '0

˛.u/ D
'˛.u/C˛.v/ for ˛ 2 ˆ. This corresponds to choosing for V a new origin 0'0 D v.
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2) De�nitions. a) A wall (resp. an half-apartment) in V is an hyperplane (resp.
a closed half-space) of the form M.˛; '˛.u// D V m.u/ (�xed point set) (resp.
D.˛; '˛.u// with ˛ 2 ˆ and u 2 U˛ n ¹1º. The action � of N permutes the walls
and half-apartments.

More generally, for .V;W v; .˛i/i2I ; .˛
_
i /i2I / as in 1.2.4 and a family ƒ D

.ƒ˛/˛2ˆ of in�nite subsets of R, we say that M.˛; �/ (resp. D.˛; �/) is a wall
(resp. half-apartment) if, and only if, � 2 ƒ˛ . We use this de�nition only when,
for any ˛ 2 ˆ, � 2 ƒ˛, the re�ection s˛;� stabilizes this set M of walls.

b) The a�ne apartmentA is V considered as an a�ne space and endowed with
its family M of walls and the corresponding re�ections. It is called semi-discrete
if, for all ˛ 2 ˆ, the set of walls of direction Ker.˛/ is locally �nite, i.e. if ƒ˛ is
discrete in R. Its essentialization is Ae D A=V0 endowed with the image of the
family M.

A preorder is de�ned on A (or Ae) by x � y () y � x 2 TC.

There is also a more restrictive preorder: x V<y () y � x 2 To
C.

c) An automorphism ofA is an a�ne bijection 'WA ! A stabilizing the family
M of walls and conjugating the corresponding re�ections. We ask also that its
associated linear map �!' stabilizes ˆ (this is automatic in the semi-discrete case
withˆ reduced andƒ˛ independent of ˛) and the union TC [T� of the Tits cones
(this is automatic in the classical case). Then �!' normalizes the vectorial Weyl
group W v and transforms vectorial facets into vectorial facets.

d) We say that an automorphism ' is positive (or of �rst kind) (resp. vectorial-
type-preserving, vectorially Weyl) if �!' .T˙/ D T˙ (resp. �!' preserves the types
of the vectorial facets, �!

' 2 W v).

e) The (a�ne) Weyl group W a D W a.A/ of A is the subgroup of Aut.A/
generated by the re�ections sM for M 2 M. Its elements are called Weyl-
automorphisms of A.

f) An apartment of type A is a set A endowed with a set IsomW a.A; A/ of
bijections f WA ! A (called Weyl isomorphisms) such that if f0 2 IsomW a.A; A/,
then f 2 IsomW a.A; A/ if, and only if, there existsw 2 W a such that f D f0 ıw.

g) An isomorphism between two apartments A and A0 is a bijection 'WA ! A0

such that for some f0 2 IsomW a.A; A/ and f 0
0 2 IsomW a.A; A0/ (the choices

have no importance) the map .f 0
0/

�1 ı ' ı f0 is an automorphism of A. We
say that this ' is positive, vectorial-type-preserving, vectorially Weyl or a Weyl
isomorphism if .f 0

0/
�1 ı ' ı f0 is positive, vectorial-type-preserving, vectorially

Weyl or a Weyl automorphism (compare with [30, 1.13]); actually it is su�cient to
verify this property by restriction to a non empty open convex subset of A.
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3) Remarks. a) By de�nition N and W a act on A by vectorially Weyl automor-
phisms. The Weyl group W a is a normal subgroup of �.N/. They are not always
equal.

b) If ' is an automorphism of A, �!' stabilizes ˆ and TC [ T�; so, up to
W v, ˙ �!' stabilizes the basis .˛i /i2I and † D ¹si j i 2 I º or .˛_

i /i2I . The
induced action on I preserves the Kac–Moody matrix M and its Dynkin diagram
(it is a diagram automorphism); it is trivial if ' is vectorial-type-preserving.
A vectorially Weyl automorphism is positive and vectorial-type preserving; the
converse is true when A is essential.

c) We de�ne G; (resp. N ;) as the subgroup of G (resp. N ) generated by Z0

and the groups U˛ (resp. byZ0 and them.u/, u 2 U˛ n¹1º) for ˛ 2 ˆ. It is normal
in G (resp. N ) and G D G;:Z (resp. N D N ;:Z). By de�nition �.N ;/ D W a

and even N ; D ��1.W a/ is the group of Weyl automorphisms in N . We set
Z; D N ; \Z which is normal in Z.

By [8, 6.1.2 (12)] .G;; .U˛/˛2ˆ; Z
;/ is a generating root datum of type ˆ.

The associated group “N ” (as in 1.6.1) is N ;. Comparing the re�ned Bruhat
decompositions (1.6.1) of G; and G, we obtain G; \ N D N ;. Compare with
[30, 6.2].

4) Imaginary roots. We consider moreover a set �im in V � of imaginary
roots with �im \ .

S
˛2ˆ R˛/ D ; and �im W v-stable; we write �re D ˆ and

� D ˆ[�im. The best example for � is a root system as in [3] with ˆ as system
of real roots (it can be e.g. the root system generated byˆ as in 1.1.3 or, ifˆ D Kˆ,
the system K� as in 2.5). The totally imaginary choice �ti for � corresponds to
�ti

im D V � n .
S

˛2ˆ R˛/.
We say that � is tamely imaginary [30, 1.1] (resp. relatively imaginary) if

�im D �C
im [ ��

im with W v-stable sets �˙
im D ˙.� \ .

L
i2I RC˛i // (resp.

�˙
im D ˙.� \ .

L
i2I�

RC˛i //, where I� � I is �nite and .˛i /i2I�
is free).

Remark that K� (as de�ned in 2.5.2) is always relatively imaginary and is tamely
imaginary if and only if it is equal to K�

r: 2.9.3b.
For all ˛ 2 �im, we consider an in�nite subset ƒ˛ D �ƒ�˛ of R. We de�ne

the system Mi of imaginary walls as the set of a�ne hyperplanes M.˛; �/ for
˛ 2 �im and � 2 ƒ˛ (actually the real walls are given by the same formula for
˛ 2 ˆ). We ask that these walls are permuted by �.N/ � W a, in particular
ƒw˛ D ƒ˛ , for all w 2 W v.

For ˛ 2 � and k 2 R, we sometimes say thatM.˛; k/ (resp.D.˛; k/) is a true
or ghost wall (resp. half-apartment), according to the fact that k 2 ƒ˛ or k 62 ƒ˛.

5) Remarks. a) Actually these imaginary roots or walls will be used only to de�ne
enclosures, hence facets and chimneys (3.6). So making a di�erence between true
or ghost imaginary walls is often useless, e.g. in the case of 3.5, see 3.6.1. It would
be possible to modify the vectorial facets (hence the sectors, facets, chimneys, . . . )
with �im (as in 2.8) in the relatively imaginary case (this changes nothing in the
tamely imaginary case). But it seems useless for us: see 2.9.4 and Section 6.
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b) Let ' be an automorphism of A. Then �!' stabilizes �C
im and ��

im or
exchanges them if ' is a Weyl automorphism (by de�nition) or if� is generated by
ˆ [3, 4.2.15, 4.2.20, and 2.4.1]. We say in general that ' is imaginary-compatible if
�!
' .�C

im/ D �˙
im and ' permutes the imaginary walls (automatic e.g. if ƒ˛ D R,

for all ˛ 2 �im). But we do not always assume the automorphisms imaginary-
compatible.

3.5. A�ne apartments for a split Kac–Moody group. We consider the group
and valuation as in 3.3.

1) We can build easily examples of pairs .V; �/ as in 3.4.1. We choose a
commutative extension of RGS 'W S ! S0 D .M; Y 0; .˛0

i/i2I ; .˛
0_
i /i2I / with S0

free and we set V D Y 0 ˝ R.
There is an action �T of T over V by translations: for t 2 T , �T .t / is the

translation of vector �T .t / such that �.�T .t // D �!. N�.t// for � 2 X 0 and
N� D '�.�/ 2 X . In other words �T is the map �.' ˝ !/ from T D Y ˝Z K

� to
V D Y 0 ˝Z R. This action is W v-equivariant.

By [28, 2.9] there exists an a�ne action � of N over V whose restriction to T
is �T and satisfying the properties asked in 3.4.1. Actually N=Ker.�T / is a semi-
direct product by T=Ker.�T / of a group isomorphic to W v and generated by the
images of m.x˛i

.˙1// for i 2 I . This last group will �x the origin of V .
For S0 we may choose SMm, Sl or (if S is free) S itself. We get thus V D V q; V xl

or V x and corresponding a�ne apartments A D Aq;Axl or Ax.

2) Remarks. Suppose that .V; �/ is as in 1) above.

a) The kernel Z0 D Ker.�T / D Ker.�/ of � contains the group T.O/ D
Y ˝ O� ' .O�/n of points of T over O. It is actually equal to it except
when the image of the map '�WX 0 ! X , � 7! N� has in�nite index i.e. when
' is not injective.

b) We have �.N/ D W v Ë . xY ˝Z ƒ/ and W a D W v Ë . SQ_ ˝Z ƒ/, where NY
(resp. Q_) is the image by ' of Y (resp. Q_ D

P
i2I Z˛_

i � Y ) in V . So
there is equality in the simply connected case (in a strong sense: Y D Q_)
and only in this case when ' is injective (e.g. V D V xl or V D V x) and !
discrete.

3) General a�ne apartments a) We consider now any pair .V; �/ as in 3.4.1.
But we add the condition (useful in Section 5) that the kernel Z0 D Ker.�/
contains T.O/. We speak then of a suitable apartment for .GS;TS/; apartments
de�ned in 1) are suitable.

Then �
T

induces a Z-linear map N�WY ˝ ƒ ! V and this map sends ˛_
i ˝ �

to ��˛_
i : ˛_

i ˝ � is the class modulo T.O/ of ˛_
i .r/ 2 T.K/ with !.r/ D �.

But ˛_
i .r/ D m.x�˛i

.1//�1:m.x�˛i
.r// by [31, 1.5 and 1.6], so by the hypothesis

in 3.4.1, �.˛_
i .r// D s�˛i ;0 ı s�˛i ;!.r/ which is the translation of vector ��˛_

i .
In particular the Z-linear relations between the ˛_

i in Y are also satis�ed in V .
By 3.4.1 and 3.3, we have also ˛. N�.y ˝ �// D �˛.y/:�.
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b) We choose �im as in 1.1.3 i.e. generated by ˆ [21, 5.4], [3, 2.4.1]. We have
ƒ˛ D ƒ, for all ˛ 2 ˆ and we set ƒ˛ D ƒ, for all ˛ 2 �im. The system M of
walls is discrete (resp. semi-discrete) if and only if we are in the classical discrete
case (resp. if the valuation is discrete).

If ' is an automorphism of A and ˛ 2 �, � 2 ƒ, then

x 2 '.M.˛; �// () 0 D ˛.'�1.x//C � D ˛.'�1.0//C �!' .˛/.x/C �:

So '.M.˛; �// is a (real or imaginary) wall (of direction Ker.�!
' .˛//) if and

only if ˛.'�1.0// 2 ƒ. By hypothesis this is true for ˛ 2 ˆ, so this is also
true for ˛ 2 �im � Q; hence ' permutes the imaginary walls. Therefore any
automorphism of A is imaginary-compatible.

3.6. Enclosures, facets, sectors and chimneys. We come back to the general
abstract case of 3.4; the following notions depend only on A (with M) and Mi.

We consider �lters in A as in [16] or [29], [30], [31]. The reference for the
following is [31] or [30]. The support of a �lter in A is the smallest a�ne subspace
in A containing it. We identify a subset in A with the �lter whose elements are
the subsets of A containing this subset. We use de�nitions for �lters (inclusion,
union, closure, (pointwise) �xation or stabilization by a group) which coincide
with the usual ones for sets when these �lters are associated to subsets. For
example F � F 0 means that every set in the �lter F 0 is in F .

1) If F is a �lter in A, we de�ne several types of enclosures for F (corre-
sponding to di�erent choices for a greater family of real or imaginary walls) cf.
[31, 4.2.5]: if ˆ � P � � and, for all ˛ 2 P, ƒ˛ � ƒ0

˛ � R, then clPƒ0.F /

is the �lter made of the subsets of A containing an element of F of the form
\˛2PD.˛; �˛/ with, for each ˛ 2 P, �˛ 2 ƒ0

˛ [ ¹C1º; in particular each
D.˛; �˛/ contains the �lter F i.e. is an element of this �lter. When ƒ0

˛ D ƒ˛

(resp.ƒ0
˛ D R) for all ˛, we write clP WD clPƒ (resp. clP

R
WD clPƒ0); whenƒ0

˛ D ƒ˛,
for all ˛ 2 ˆ and ƒ0

˛ D R, for all ˛ 2 �im we write clPma WD clPƒ0 . We de�ne
ƒ00

˛ D ¹k 2 R j clPƒ0.D.˛; k// D D.˛; k/º for ˛ 2 �, then ƒ00
˛ D ƒ0

˛ [ 1
2
ƒ0

2˛ for
˛ 2 ˆ and clPƒ0 D clPƒ00 . In the case of 3.5.3b with ƒ0 D ƒ, clPma D clPƒ00 D clPƒ0

[30, 1.6.2].
We de�ne cl#.F / (resp. cl#

R
.F /) as the �lter made of the subsets of A contain-

ing an element of F of the form \k
j D1 D. ǰ ; �j / for ǰ 2 ˆ and �j 2 ƒˇj

[¹C1º

(resp. �j 2 R [ ¹C1º); cl# is the enclosure map used by Charignon [13, Sec-
tion 11.1.3].

In [16] (resp. [30] or [31]) one uses cl� (resp. cl�ma, cl�
R

, clˆ, clˆ
R

or cl�, clˆ,
cl#) under the names cl (resp. cl, clR, clsi , clsi

R
or cl, clsi , cl#).

One has cl#.F / � clˆ.F / � cl�.F / � cl�ma.F / � cl�
R
.F / � cl�

ti

R
.F / D

conv.F / (closed convex hull), clˆ.F / � clˆ
R
.F / � cl�

R
.F / and some other clear

inclusions.
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The maps cl�
ti

R
D conv, clˆ,clˆ

R
, cl#, cl#

R
(resp. cl�, cl�

ti
, cl�ma, cl�

R
) are

equivariant with respect to automorphisms (resp. imaginary-compatible automor-
phisms) of A.

In the following, we choose one of these enclosure maps (clPƒ0 , cl# or cl#
R

)
which we call cl. We say that F is enclosed or cl-enclosed if F D cl.F /.

Actually M is entirely determined by cl and ˆ �
�!
A � (provided that cl is

M-adapted, i.e. ƒ0
˛ D ƒ˛ for ˛ 2 ˆ): a (true) wall in M is an a�ne hyperplane

which is cl-enclosed and with direction Ker.˛/ for ˛ 2 ˆ. The enclosure map
does not always determine Mi, but this set of imaginary walls is only used to
determine cl.

2) Remark. We de�ned above (too) many enclosure maps. We have to do this as,
in the following, the best choice depends on the cases. We would like that cl.F /
is the biggest compatible with the axioms (MA2), (MA4) of masures (see 4.10.1
below). Unfortunately to get this, even in the split Kac–Moody case of 3.5, we
have to consider imaginary walls. Nevertheless it seems that a good choice for
cl is to assume it tame: cl � cl�ma (i.e. cl.F / � cl�ma.F / for any �lter F ) with �
tamely imaginary.

Recall that cl�ma.F / is the �lter of the subsets of A containing the intersection
of a family .D.˛; �˛//˛2� of half spaces (each containing F ), such that, for
˛ 2 ˆ D �re, �˛ 2 ƒ˛ i.e. D.˛; �˛/ is an half-apartment and, for ˛ 2 �im,
�˛ is any real. The main simple property of a tame enclosure map cl is as follows:
if x � y 2 A, there exists a positive vectorial facet F v in Av such that y�x 2 F v

and then cl.¹x; yº/ � .xCF v/\.y�F v/; in particular for y D x, cl.¹xº/ � xCV0:
any enclosed �lter is stable under V0. These two properties are also satis�ed when
cl is almost tame: cl � cl�ƒ0 with � tamely imaginary.

We shall succeed in proving that the masures of almost split Kac–Moody
groups are compatible with a tame, M-adapted enclosure map: see 5.6 and 6.11.

3) A local-facet is associated to a point x in A and a vectorial facet F v in
�!
A ;

it is the �lter F l.x; F v/ D germx.x C F v/ intersection of x C F v with the �lter
of neighbourhoods of x in A.

The facet or cl-facet associated to F l.x; F v/ and the enclosure map cl D
clPƒ0 (resp. cl D cl# or cl D cl#

R
) is the �lter F.x; F v/ D FP

ƒ0.x; F
v/ (resp.

F #.x; F v/ or F #
R
.x; F v/) made of the subsets containing an intersection (resp. a

�nite intersection) of half spacesD.˛; �˛/ orDı.˛; �˛/ (at most one �˛ 2 ƒ00
˛ for

each ˛ 2 P) (resp. with ˛ 2 ˆ and �˛ 2 ƒ˛ or � 2 R) such that this intersection
contains F l.x; F v/ i.e. a neighbourhood of x in x C F v.

The closed-facet xF.x; F v/ is the closure of F.x; F v/, also xF.x; F v/ D
cl.F.x; F v// D cl.F l.x; F v//. Note that F l D F�ti

R
� F�

R
� Fˆ

R
D F #

R
D

F l C V0 and xF l D xF�ti

R
� xF�

R
� xFˆ

R
D xF #

R
D xF l C V0, where V0 is as de�ned

in 1.2.4.
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These facets are called spherical (resp. positive, negative) if F v is. When F v

is a vectorial chamber, these facets are chambers hence spherical.

4) A sector (resp. sector-face) is a V -translate q D x CC v (resp. f D x CF v)
of a vectorial chamber C v (resp. vectorial facet F v). A shortening of a sector
or sector-face f D x C F v is a sector or sector-face f0 D x0 C F v included in
f. The germ of a sector q D x C C v (resp. sector-face f D x C F v) is the �lter
Q D germ1.q/ (resp. F D germ1.f/) made of the subsets containing shortenings
of q (resp. f). The direction of f D x C F v or of its germ is F v, its sign is the
sign of F v. When F v is spherical, we say that f and F are spherical or splayed
(“évasé” in [30] or [31]). The vertex x of f D x C F v is well de�ned by f when A

is essential.

5) A chimney or cl-chimney is associated to a facet F D F.x; F v
0 / (its base)

and a vectorial facet F v; it is the �lter

r.F; F v/ WD cl.F C F v/ D cl.F l.x; F v
0 /C F v/ DW r.F l; F v/

(containing cl.F /CF v D xF CF v). If cl D clPƒ0 , we write rPƒ0.F; F
v/ D r.F; F v/.

A shortening of r.F; F v/ (with F D F.x; F v
0 /) is de�ned by � 2 F v, it is

the chimney r.F.xC �; F v
0 /; F

v/. The germ of this chimney is the �lter R.F; F v/

made of the subsets containing a shortening of r.F; F v/. The direction of r.F; F v/

or R.F; F v/ is F v, its sign is the sign of F v, it is said splayed if F v is spherical
and solid (resp. full) if the direction of its support has a �nite �xer in W v (resp. if
its support is A).

For example the enclosure cl.f/ of a sector-face f D x C F v is a chimney of
direction F v; its germ is splayed if and only if f is spherical, it is full if (but not
only if) it is a sector. A facet is a chimney and a chimney germ with direction
the minimal vectorial facet V0 D F v

˙.I /; it is splayed or solid if and only if it is
spherical, it is full if and only if it is a chamber.

N.B. In [27] a chimney is a speci�c set among the sets of the chimney as de-
�ned above, the chimney germs are the same as here. In [10] P. E. Caprace and
J. Lécureux introduce (generalized) sectors in any combinatorial building; in the
classical discrete case for A, these sectors are the enclosures of a facet and a chim-
ney germ.

3.7. Bordered apartments. Following [13], we shall add to A some other apart-
ments at in�nity, see also [30].

1) Façades. For F v a vectorial facet in V , we consider the sets �m.F v/ D
¹˛ 2 � j ˛.F v/ D 0 º and ˆm.F v/ D ˆ \ �m.F v/ of roots. They are clearly
systems of roots: if F v D F v.J /, then�m.F v/ D �m.J / andˆm.F v/ D ˆm.J /.
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We de�ne Ane
F v as the a�ne space V endowed with the set M.F v/ D

¹M.˛; �/ j ˛ 2 ˆ.F v/; � 2 ƒº of walls, the corresponding re�ections and Mi.F v/

de�ned similarly using �.F v/. Its points are written .x; F v/ with x 2 V . The es-

sentialization Ae
F v of Ane

F v is the quotient of V by the vector space
�!
F v generated

by F v (with the corresponding walls and re�ections); the class of x 2 V in Ae
F v

is written Œx C F v�.

When F v
1 2 F v� i.e. F v � F v

1 , we have
�!
F v �

�!
F v

1 ; so there is a projection prF v
1

of Ae
F v onto Ae

F v
1

: prF v
1
.Œx C F v�/ D Œx C F v

1 �. We also write prF v
1

the evident

map from Ane
F v onto Ane

F v
1

or Ae
F v

1

.

Following [13], we say that Ae
F v (resp. Ane

F v) is the (essential) façade (resp.
non essential façade) of A in the direction F v. A façade is called spherical (resp.
positive or negative) if its direction is spherical (resp. positive, or negative). The
same things as in 3.6 may be de�ned in each façade.

2) Bordered apartments. Let xxA (resp. xAe) be the disjoint union of all Ane
F v

(resp. Ae
F v) for F v a vectorial facet in V and let xAi be the disjoint union of A and

allAe
F v for F v a non trivial vectorial facet in V . Then xxA (resp. xAe, xAi) is the strong

(resp. essential, injective) bordered apartment associated to A; its main façade is
A0 D A (resp. Ae, A) of direction the trivial vectorial facet V0 D F v

˙.I /.

In the following we set xA D xxA (resp. xAe, xAi), AF v D Ane
F v (resp. Ae

F v , Ane
F v),

etc.
For x 2 xA, we write F v.x/ the direction of the façade containing x. For " D ˙,

xA" (resp. xAsph) is the union of the façades of sign ˙ (resp. the spherical façades)
in xA and xA"

sph D xA" \ xAsph.

To each wall M.˛; �/ or half-apartment D.˛; �/ is associated a wall xM.˛; �/
or half-apartment xD.˛; �/ of xA: for all F v, xM.˛; �/\AF v (resp. xD.˛; �/\AF v)
is the projection of M.˛; �/ (resp. D.˛; �/) on AF v if ˛.F v/ D 0, the empty set
if ˛.F v/ < 0 and the empty set (resp. AF v) if ˛.F v/ > 0. With these de�nitions
we may de�ne enclosures cl.�/ in xA.

The essentialization of xA is xAe, which is the bordered apartment de�ned in [13].
We shall focus on xAi, as xAe is xAi if we choose V D V q.

The set xAi"
sph is the microa�ne apartment of sign " as in [28] (in its Satake re-

alization). The corresponding object xxA"
sph is closer to the apartments of [28, 2.3].

3) Links with sector-face germs and chimney germs. There is a one to
one correspondence between the points of xAe and the sector-face germs in A.

To F D germ1.x C F v/ corresponds the class Œx C F v� of x modulo
�!
F v in Ae

F v ,

also written ŒF�. When A D Aq is essential, the points in xxA correspond bijectively
to the sector-faces in A.
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By de�nition AF v itself is an a�ne apartment with walls de�ned using
ˆm.F v/. The closed-facets in AF v correspond bijectively with the chimney germs
of A of direction F v. To R D R.F; F v/ corresponds the closed facet ŒR� which
is the �lter made of the subsets in AF v containing ¹ ŒF� j F � †º for some subset
† of A containing R.

ActuallyR is splayed (resp. solid, full) if and only if ŒR� is in a spherical façade
(resp. is spherical in its façade, is a chamber in its façade).

4) Topology. On xAi (or xAe) one can de�ne a topology inducing the a�ne
topology on each façade and such that xA (or xAe) is the closure of A0 D A (or Ae)
which is open in xA (or xAe) [13, 11.1.1]:

For a non trivial vectorial facet F v, x 2 A and U an open subset of A

containing x, we set V.U; F v/ D .U C F v/ [ ¹ ŒF� j F � U C F v º. When
x; U vary but F v and germ1.x C F v/ are �xed, we get a fundamental system of
neighborhoods of Œx C F v� in xAi (or Ae).

For this topology the closure xAF v of a façade AF v (with F v non trivial) is the
union of the façades AF v

1
for F v

1 2 F v� i.e. F v � F v
1 ; we take this for de�nition

of xAF v when xA D xxA. In the classical case, xAi is a compacti�cation of A called
the Satake or polyhedral compacti�cation, see e.g. [11].

5) Automorphisms. Any automorphism ' of A may be extended to an
automorphism N' of xA. For xAi or xAe the image of Œx C F v� 2 AF v is Œ'.x/ C
�!' .F v/� 2 A�!

' .F v/
and N' is continuous. For xxA, N'.x; F v/ D .'.x/; �!' .F v//.

Automorphisms permute the façades.
In particular, the action � ofN on A may be extended as an action on xA which

is also written �.

4. Hovels and bordered hovels

The goal of this section is to build a hovel (or bordered hovel) associated to a
valuated root datum, as Bruhat and Tits build (in [8]) a building when the root
datum corresponds to a �nite system of roots. Actually we shall need a new datum:
a family of parahoric subgroups. So we explain the axioms these families have to
satisfy and then we build the hovel and the bordered hovel. The end of this section
is devoted to the discussion of their properties.

The main ideas and results here are due to Charignon, so the main reference
is [13], but we recall all needed de�nitions.

4.1. Wanted. Let G be a group, N a subgroup and � an action of N on some
space A. We want a space 	 containing A as a subset and an action of G on 	

such that G:A D 	 , A is stable under N and the induced action is �.
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Following F. Bruhat and J. Tits [8, 7.4.1], a good way to get it, is to de�ne 	 as
a quotient:

	 D G � A= �Q

with .g; x/ �Q .h; y/ if and only if there exists n 2 N such that y D �.n/:x and
g�1hn 2 Q.x/, where Q D .Q.x//x2A is a family of subgroups of G. The action
of G on 	 is induced by the left multiplication on G, we have a map i WA ! 	 :
for x 2 A, i.x/ is the class of .1; x/.

We are interested in the groups G and N as in 3.1 and 1.6.1 (in particu-
lar associated to a valuated root datum) and an action � as in 3.4.1 or 3.7.5.
In particular we de�ne 	 (resp. x	 ) as above with A D A (resp. A D xA). As
in [12] and [13] we skip a possible generalization to RGD-systems. We shall now
make the conditions on the family .Q.x//x2A precise, following [13, 11.2.1 and
11.3].

4.2. Families of parahoric subgroups. 1) Let A D xA be xxA, xAe or xAi and �
the corresponding action of N . For a family Q D .Q.x//x2A, we then write x	 D
G � xA=�Q, it is the bordered hovel associated to the situation. The (bordered)
apartments of x	 are the sets g:i.xA/ for g 2 G. The hovel is 	 D G � A=�Q and
its apartments are the g:i.A/ for g 2 G.

For a subset or a �lter � in xA (resp. A), ˛ 2 ˆ and ‰ � ˆ, we de�ne

xD.˛;�/ D xD.˛; sup.�˛.�///

(resp. D.˛;�/ D xD.˛;�/\ A),

U˛.�/ D ¹u 2 U˛ j � � xD.˛; '˛.u//º

(hence U˛.y/ D U˛;�˛.y/),

N.�/ D ¹n 2 N j n �xes �º;

G.‰;�/ D hU˛.�/ j ˛ 2 ‰i;

and
G.�/ D G.ˆ;�/;

written U� in [16, §3.2] or [31, 4.6a]. As in these references we write

UCC
� WD G.ˆC; �/ � UC

� WD UC \G.�/

and the same things with �. It often happens that UCC
� 6D UC

� ; see [31, 4.12.3a]
and also 5.11.4 below.

It is clear that N.�/ � N.F v/ normalizes G.�/ and U.F v/ and that G.�/ �
G.ˆ.F v/; �/ � P.F v/ normalizes U.F v/, if � \ AF v 6D ;. We always have
G.‰;�/ D G.‰; cl#.�//. When � D ;, we have G; D Z0:G.;/. For � 6D ;,
the group Nmin

� D N \ G.�/ is normal in N.�/. Its image W min
� by � is in W a

and generated by the re�ections with respect to the (true) walls of A containing
�. This group W min

� is isomorphic to its image W v
� in W v [16, §3.2].
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2) De�nition. A family Q D .Q.x//x2xA of subgroups of G is a family of
parahoric subgroups if it satis�es the following axioms (for the convenience of
the reader, we give to axioms the names in [13] and shorter names).

(P1) (para 0.1) For all x 2 xA, U.F v.x// � Q.x/ � P.F v.x//.

(P2) (para 0.2) For all x 2 xA, N.x/ � Q.x/.

(P3) (para 0.3) For all x 2 xA, for all ˛ 2 ˆ, for all � 2 R, if x 2 xD.˛; �/, then
U˛;� � Q.x/.

(P4) (para 0.4) For all x 2 xA, for all n 2 N , nQ.x/n�1 D Q.�.n/:x/.

If � is a subset of xA, we de�ne Q.�/ D
T

x2� Q.x/. If � is a �lter in xA,
we de�ne Q.�/ D

S
�02� Q.�0/. In both casesQ.�/ is a subgroup of G.

3) Easy consequences. a) Axiom (P4) tells that �Q is an equivalence relation,
[l.c., 11.3.2]. By axiom (P3), U˛;� �xes (pointwise) xD.˛; �/. Axiom (P2) tells that
the map i W xA ! x	 isN -equivariant, but it is not clearly one to one, cf. 4.3.2 below.

b) (See [l.c., 11.3.8].) The �xer of i.x/ 2 i.xA/ in G is Gx D Q.x/. More
generally for a subset or �lter � in g:i.xA/ � x	 , we de�ne G� D Q.�/ as the
�xer g:Q.g�1:�/:g�1 of �.

For x 2 xA and g 2 G, if g:i.x/ 2 i.xA/, then there exists n 2 N with
g:i.x/ D n:i.x/. For a subset or �lter � in xA, the set G.� � xA/ D ¹g 2 G j
G:i.�/ � i.xA/º is equal to

T
x2� NQ.x/ (if � is a set) or

S
�02� G.�0 � xA/

(if � is a �lter).
For all x 2 x	 , Q.x/ is transitive on the apartments containing x.
c) If F v is a vectorial facet of Av, axiom (P1) tells that P.F v/ � AF v ! x	

induces a map G.F v/ � AF v= �F v! x	 , where �F v is the equivalence relation
de�ned using Q

AF v
and N.F v/. This map is one to one, as y D �.n/:x with

x; y 2 AF v and n 2 N implies n 2 N.F v/ D N \ P.F v/.

The image of this map is the façade 	F v of x	 in the direction F v. In par-
ticular the main façade of x	 is the hovel 	 D G � A= � where � is de�ned
using Q

A
and N . Actually each façade 	F v is an hovel, the main façade of

x	F v D
S

F v
1

2F v� 	F v
1

associated to xAF v , Q xAF v
and the valuated root datum

.G.F v/; .U˛/˛2ˆm.F v/; Z; .'˛/˛2ˆm.F v//.

d) By (P1) and (P3), if� � AF v is non empty, thenG.ˆm.F v/; �/ � G.�/ �
U.F v/ ÌG.ˆm.F v/; �/ � Q.�/ D U.F v/ Ì .M.F v/ \Q.�//.

e) If Q is a family of parahorics and x 2 xA, then Q.x/ � P.x/ WD
hN.x/; G.x/; U.F v.x//i D N.x/:G.x/:U.F v.x//. So it is clear that P D
.P.x//x2xA is the minimal family of parahorics. In the classical (= spherical) case
it is the right family; this is the reason for axiom (P6) below. But it is not clear
in general that P satis�es axiom (P5) below. Note that, even for x 2 A, P.x/ is
seldom equal to Px, as de�ned in [31, 5.14] or [16, 3.12].
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4) De�nition. A good family of parahorics is a family Q of parahorics satisfying
moreover.

(P5) (para inj) For all x 2 xA, N.x/ D Q.x/ \N .

(P6) (para sph) For all x 2 xA, if F v.x/ is spherical, Q.x/ D P.x/ i.e.
Q xAsph

D P xAsph
.

(P7) (para 2.2)(sph) If F v is a spherical facet, F v
1 � F v and x 2 AF v

1
then

NQ.x/ \ NP.F v/ D NQ.¹x; prF v.x/º/.

5) De�nition. A very good family of parahorics is a good family Q of parahorics
satisfying the following additional axioms.

(P8) (para dec) For all x 2 xA, for all chamber C v 2 F v.x/�, Q.x/ D
.Q.x/ \ U.C v//:.Q.x/ \ U.�C v//:N.x/

(P9) (para 2.1C)(sph) If F v is a spherical facet, F v
1 � F v and x 2 AF v

1
then

Q.x/\P.F v/ D Q.x C F v/ where xCF v D prF v
1
.x1 C

F v/ for any x1 2 A with prF v
1
.x1/ D x and x C F v is the

union of the sets prF v
2
.x C F v C

�!
F v

2 / for F v
1 � F v

2 � F v

(it is the closure of x C F v when xA D xAe or xAi).

(P10) If x < y or y < x in AF v , then Q.�x; y�/ � Q.x/ i.e.
Q.�x; y�/ D Q.Œx; y�/ where �x; y� D Œx; y� n ¹xº is an
half-open-segment.

6) Remarks. a) (P8) is an important tool for calculations. (P7) and (P9) give links
between Q and Q xAsph

which is well known by (P6).

b) By [l.c., 11.9.2] a consequence of (P9) is the following condition.

(P9�) (para 2.1C�)(sph) If F v is a vectorial facet and g 2 U.F v/, there exists
x 2 A such that g 2 Q.x C C v/ for all chamber
C v 2 F v�.

c) For x, F v D F v.x/ and C v as in (P8), suppose that x … A i.e. F v

is non trivial. Then we have Q.x/ \ U.C v/ D .Q.x/ \ M.F v/ \ U.C v// Ë
U.F v/. Now, by the uniqueness in Birkho� decomposition (1.6.2), P.F v/ \
U.�C v/ D M.F v/ \ U.�C v/ D M.�F v/ \ U.�C v/ which is a “maximal
unipotent” subgroup (opposite M.F v/ \ U.C v/) in M.F v/ D M.�F v/; hence
Q.x/ \ U.�C v/ D Q.x/ \M.�F v/ \ U.�C v/. Now, if F v is spherical, we can
give another explanation: M.F v/\U.�C v/ D M.F v/\U.C v

�/ where C v
� is the

chamber opposite to C v in F v�; so Q.x/ \ U.�C v/ D Q.x/ \M.F v/ \ U.C v
�/.
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d) Except (P9) all axioms impose relations between a single façade AF v and
the spherical façades AF v

1
for F v

1 2 F v�. We may �x F v
0 and take x 2 AF v

0
[ xAsph

in the axioms, then we get the same results. So, starting with 4.4, we shall use
actually a family Q of groups Q.x/ for x 2 A [ xAsph with the corresponding
axioms.

e) A priori a good family of parahorics has no property of continuity. This is
the reason of the (weak) axiom (P10). But without it everything in this Section is
still true (except when the contrary is explicitly told). This axiom (P10) is satis�ed
by the minimal family P.

f) If Q is a very good family for .G; .U˛/˛2ˆ; Z; .'˛/˛2ˆ/ then we de�ne
Q;.x/ D Q.x/ \ G;. We have Q.x/ D Q;.x/:N.x/ (by (P8)) and Q; is a
very good family of parahorics for .G;; .U˛/˛2ˆ; Z

;; .'˛/˛2ˆ/ (de�ned in 3.4.3c).
The two bordered hovels associated to xA and .G;Q/ or .G;;Q;/ are canonically
isomorphic.

4.3. Bordered hovels associated to good families. We explain now some of the
abstract results of [13] (or [12]). So let Q be a good family of parahorics (if it exists)
and x	 be the associated bordered hovel. For the following we give no proofs, only
some precise references to l.c.

1) By Bruhat–Tits theory and (P6) Q is well known on the spherical façades
[l.c., 11.2.3]. In particular we get the following properties.

The results of (P8) and (P9) are true when F v.x/ is spherical; for � in a
spherical façade AF v one has

Q.�/ D U.F v/ Ì .N.�/:G.ˆm.F v/; �// D N.�/:Q.cl#.�//

and
G.� � xA/ D N:Q.�/:

Actually, for F v spherical, 	F v is the Bruhat–Tits building of the classical
valuated root datum .G.F v/; .U˛/˛2ˆm.F v/; Z; .'˛/˛2ˆm.F v// (with the facets as-
sociated to cl).

2) The minimal family P satis�es also (P5) and (P6). Axiom (P5) tells us that
i W xA ! x	 is one to one [l.c., 11.3.4]; we identify xA and i.xA/. The stabilizer of xA
in G is N [l.c., 11.3.5].

3) Iwasawa decomposition ([l.c., 11.4.2]). For a chamber C v or a facet F v in
Av and a facet F � xA, we have

G D U.C v/:N:G.F / D U.F v/:N:Q.cl#.F // D U.F v/:N:Q.F /:

Actually one has a more general result: we may replace aboveF by any narrow
�lter (see [16, 3.2 and 3.6]), e.g. any segment germ Œx; y/ � A, preordered or not
(cf. 4.6.1).
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4) Bruhat–Birkho�–Iwasawa decomposition [l.c., 11.5]. Let F1 � AF v
1

and
F2 � AF v

2
be two facets with F v

1 or F v
2 spherical. Then

G D U.F v
1 /:G.ˆ

m.F v
1 /; F1/:N:G.ˆ

m.F v
2 /; F2/:U.F

v
2 /

D Q.cl#.F1//:N:Q.cl#.F2//

D Q.F1/:N:Q.F2/:

From this one deduces the following: if F1 and F2 are facets in x	 and F1 or F2 is
in a spherical façade, then there is an apartment of x	 containing F1 and F2 (even
cl#.F1/ and cl#.F2/).

5) Projection. Let F v be a spherical facet and F v
1 � F v. Then, by (P7), the

projection prF v of AF v
1

onto AF v extends to a well de�ned map prF v W 	F v
1

! 	F v

between the corresponding façades. For each g 2 G, g: prF v.x/ D prgF v.gx/

[l.c., prop. 11.7.3].

6) If xA D xAe, then axiom (P8) is satis�ed by any good family of parahorics
[l.c., 11.7.5].

7) Let Q be a good family of parahorics for xA D xAe, satisfying moreover (P9)
or (P9�). Suppose that � � xA is either in xA" and intersects non trivially xA"

sph or

intersects non trivially xAC
sph and xA�

sph. Then G.� � xA/ D N:Q.�/, hence Q.�/
is transitive on the apartments containing �.

If � � xA intersects non trivially xAC
sph and xA�

sph, then

Q.�/ D N.�/:Q.cl#.�//I

so cl#.�/ (and also cl.�/, . . . ) is well de�ned in x	 independently of the apartment
containing �. All this is proved in [l.c., Section 11.9.2]

8) One can �nd in loc. cit. many other implications between the various
axioms. Actually Charignon introduces also useful notions of functoriality i.e. the
possibility of embedding the valuated root datum in greater ones, with arbitrarily
large subsetsƒ˛ of R and various good compatibilities. We shall not explain this,
as it is more natural in the framework of split Kac–Moody groups over valuated
�elds on which we shall concentrate in the next Section.

Proposition 4.4. Let Q be a good family of parahorics satisfying (P9) and � be
a non empty subset or �lter in A.

a) Let F v � C v � Av be a spherical vectorial facet in the closure of a chamber
and ˛1; : : : ; ˛n 2 ˆ be the non divisible roots such that ˛.C v/ > 0 and
˛.F v/ D 0. Then,

Q.�/ \ P.C v/ D .Q.�/ \ U.C v// ÌZ0;

Q.�/ \ U.C v/ D .Q.�/ \ U.F v// Ì .Q.�/ \ U.C v/ \M.F v//;



930 G. Rousseau

and

Q.�/ \ U.C v/ \M.F v/ D U˛1
.�/: � � � :U˛n

.�/

with uniqueness of the decomposition.

b) Let C v � Av be a chamber. The set

Qdec.�; C v/ D .Q.�/ \ U.C v//:.Q.�/ \ U.�C v//:N.�/

depends only on the sign of the chamber C v.

N.B. 1) So we de�ne Qdec.�; "/ D Qdec.�; C v/ if C v is of sign ".

2) By (P9) Q.�/ \ U.F v/ � Q.�C C v/ for all C v 2 F v�.

Proof. a) We have P.F v/ D U.C v/ Ì Z, U.C v/ D U.F v/ Ì .U.C v/ \M.F v//

and, by Bruhat–Tits theory (4.3.1), U.C v/ \ M.F v/ D U˛1
: � � � :U˛n

(unique).
Using these uniqueness results, we have just to prove a) for � D ¹xº and x 2 A.
We write x0 D prF v.x/.

By (P9) and 4.3.1Q.x/\P.F v/ D Q.x C F v/ � Q.x0/ D U.F v/Ì .Q.x0/\
M.F v// and Q.x0/ \M.F v/ D U˛1

.x/: � � � :U˛n
.x/:U�˛1

.x/: � � � :U�˛n
.x/:N.x0/

[8, 7.1.8]. So Q.x0/ \ M.F v/ \ U.C v/ D U˛1
.x/: � � � :U˛n

.x/ and Q.x0/ \
M.F v/ \ P.C v/ D U˛1

.x/: � � � :U˛n
.x/:Z0 (by uniqueness in the Birkho� de-

composition 1.6.2.). And, as each U˛i
.x/ is in Q.x/, we get what we wanted.

b) Any two chambers of sign " are connected by a gallery of chambers of sign
". So one has only to show that Qdec.�; C v/ D Qdec.�; s˛.C

v// when ˛ 2 ˆ is
simple with respect toˆC.C v/. We consider F v D C v \Ker.˛/ and apply a). But
U˛.�/:U�˛.�/:N.�C Ker.˛// D U�˛.�/:U˛.�/:N.�C Ker.˛// by [8, 6.4.7];
so the same proof as in [16, 3.4a] applies. �

4.5. Good �xers. 1) We consider now a very good family of parahorics Q D
.Q.x//x2A[xAsph

and we want to de�ne the same notions as in [16, De�nition 4.1],
using the axioms and Proposition 4.4; this is suggested in the beginning of [31,
Section 5].

2) De�nition. Consider the following conditions for a subset or �lter � in A:

(GF") Q.�/ D Qdec.�; "/ for " D C or �;

(TF) G.� � xA/ D NQ.�/ (where G.� � xA/ is de�ned in 4.2.3b).

We say that � has a good �xer if it satis�es these three conditions.

We say that � has an half-good �xer if it satis�es (TF) and (GFC) or (GF�).

We say that � has a transitive �xer if it satis�es (TF).
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3) Consequences. We get the following results by mimicking the proofs in [16,
Section 4.1]. The ingredients are Proposition 4.4 and the facts that Q.�/ \
U.˙C v/ D Q.�˙C v/\U.˙C v/,

T
� Q.�/\U.˙C v/ D Q.

S
� �/\U.˙C v/

for a family � of �lters, etc.We do not write the proofs.

a) By (P8) a point has a good �xer. The group N permutes the �lters with good
�xers and the corresponding �xers.

b) If � has a transitive �xer, then Q.�/ acts transitively on the apartments
containing �. From this last property, one deduces clearly that the “shape”
of� doesn’t depend on the apartment containing it. As a consequence of the
many examples below of �lters with (half) good �xers, we may de�ne in 	

(independently of the apartment containing it) what is a preordered segment,
preordered segment-germ, generic ray, closed (local) facet, spherical sector
face, solid chimney etc.

c) In the classical case every �lter has a good �xer.

d) Let F be a family of �lters with good (or half-good) �xers such that the
family � of the sets belonging to one of these �lters is a �lter. Then� has a
good (or half-good) �xer Q.�/ D

S
F 2F

Q.F /.

e) Suppose that the �lter � is the union of an increasing sequence .Fi /i2N

of �lters with good (or half-good) �xers and that, for some i , the support
of Fi has a �nite �xer in �.N/, then � has a good (or half-good) �xer
Q.�/ D

T
i2N Q.Fi /.

f) Let� and�0 be two �lters in A and C v
1 ; : : : ; C

v
n be positive vectorial cham-

bers. If �0 satis�es (GFC) and (TF) and � �
Sn

iD1 .�
0 C C v

i /, then
� [ �0 satis�es (GFC) and (TF) with Q.� [ �0/ D Q.�/ \ Q.�0/. If
moreover � (resp. �0) satis�es (GF�) and �0 �

Sn
iD1 .� � C v

i / (resp.
� �

Sn
iD1 .�

0 � C v
i /), then � [�0 has a good �xer.

4) Remarks. a) Let� in A be a �lter with good (or half-good) �xer and F v be a
spherical vectorial facet. We write ‚ D

S
C v2F v� C v and

�0 D .�C‚/ \ .��‚/ \
� \

˛2ˆm.F v/

D.˛;�/
�

(which is in clˆ
R
.�/), then, by 4.4a and 4.5.3e, any �00 with � � �00 � �0 has

a good (or half-good) �xer; moreover Q.�/ D Q.�00/N.�/. In particular any
apartment A of 	 containing � contains �0 and is conjugated to A by Q.�0/.

b) By 4.2.6f, for every �lter �, we have Q;.�/ D Q.�/ \ G;,
Q.�/ \ U.C v/ D Q;.�/ \ U.C v/, and N ;.�/ D N.�/ \ G;. Hence if �
has a (half) good �xer for Q, N:Q.�/ D N:Q;.�/, N:Q.�/ \ G; D N ;:Q;.�/

and � has a (half) good �xer for Q;.
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4.6. Examples of �lters with good �xers. 1) If x � y or y � x in A (pre-
ordered situation), then ¹x; yº and the segment Œx; y� have good �xersQ.¹x; yº/ D
Q.Œx; y�/ (apply 4.5.3e); in particular any apartmentA of 	 containing ¹x; yº con-
tains Œx; y� and is conjugated to A by Q.Œx; y�/. If moreover x 6D y the segment
germ Œx; y/ D germx.Œx; y�/ has a good �xer ( 4.5.3c).

2) If x; y 2 A and � D y � x 6D 0 is in a spherical vectorial facet F v

(generic situation: x V<y or y V<x), then the half-open segment �x; y� D Œx; y�n¹xº,
the line .x; y/ and the ray ı D x C Œ0;C1Œ:� of origin x containing y (or the
open ray ıı D ı n ¹xº) have good �xers (4.5.3d). Using now 4.5.3c the germs
�x; y/ D germx.�x; y�/ and germ1.ı/ (the �lter of subsets containing some subray
x C Œa;C1Œ:�) have good �xers.

3) A closed local facet F l.x C F v/ has a good �xer: choose � 2 F v and � > 0
then the intersection��;� of .xCF v/\ .xC�� �F v/ with a ball of radius k��k
and center x (for any norm) has a good �xer (4.5.3e with �0 D Œx; x C ���) and
F l.x C F v/ is as described in (4.5.3c) using the family ��;� (when � varies).

If the local facet is spherical, then it has a good �xer. We just have to use above
.x C "� C F v/ \ .x C �� � F v/ for 0 < " < � and 4.5.3c,d,e.

4) By similar arguments we see that a spherical sector face or its closure or
its germ has a good �xer. The apartment A has a good �xer Q.A/ D Z0, so
the stabilizer of A is N . An half-apartment D.˛; k/ has a good �xer Z0:U˛;k,
cf. [31, 5.7.7].

5) We suppose now in this paragraph that the family Q satis�es axiom (P10)
(see 4.2.6.e). If y < x or x < y in A, then the half-open segment �x; y� (resp.
the open-segment-germ �x; y/) has a good �xer Q.�x; y�/ D Q.Œx; y�/ (resp.
Q.�x; y// D Q.Œx; y// ), even if F v.y � x/ is not spherical. By arguments as
in 3) above (using x C F v D�x; x C ���C F v instead of x C F v) we deduce that
any local facet F l D F l.x; F v/ has a good �xer and Q.F l/ D Q.F l/.

Proposition 4.7. Let Q be a very good family of parahorics, � 6D 0 a vector in a
spherical vectorial facet F v and x 2 A. We consider the ray ı D x C Œ0;C1Œ �,
then Q.ı/ � Q.germ1.ı// � P.F v/.

N.B. 1) This is a kind of reciprocity for axiom (P9). We have Q.x/ \ P.F v/ D
Q.x C F v/ D Q.x C F v/ with x C F v in A.

2) We thus directly see that Q.A/ �xes xAsph.
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Proof. It is su�cient to prove that Q.ı/ � P.F v/. Let C v be a chamber in F v�,
then by 4.6.2, Q.ı/ D .Q.ı/ \ U.C v//:.Q.ı/ \ U.�C v//:N.ı/. As N.ı/ and
U.C v/ are in P.F v/, we have only to prove Q.ı/ \ U.�C v/ � P.F v/. By (P9)
and 4.3.1, for � � 0,

Q.x C ��/ \ U.�C v/ � Q.x C ��/ \ P.�F v/

� Q.pr�F v.x//

D N.pr�F v.x//:G.ˆ
m.F v/; pr�F v.x//:U.�F v/:

So

Q.ı/\ U.�C v/ D .G.ˆm.F v/; pr�F v.x// \ U.�C v//:.U.�F v/ \Q.ı//

as G.ˆm.F v/; pr�F v.x// �xes pointwise x C R� � ı.
Now

U.�F v/ \Q.ı/ D
\

C v2F v�;��0

U.�C v/ \Q.x C ��/

� Q
� [

C v2F v�;��0

.x C �� � C v/
�
:

But this last union is actually A, so

U.�F v/ \Q.ı/ D U.�F v/ \Q.A/ D U.�F v/ \Z0 D ¹1º

and
U.�C v/ \Q.ı/ � G.ˆm.F v/; pr�F v.x// � P.F v/: �

Corollary 4.8. Let F � AF v be a facet in a façade and R � A be the
corresponding chimney germ (cf. 3.7.3). Then

U.F v/:G.ˆm.F v/; F /:N.R/ � Q.F / \Q.R/:

If F v is spherical, then

Q.F / D U.F v/:G.ˆm.F v/; F /:N.F /

� Q.R/

D U.F v/:G.ˆm.F v/; F /:N.R/:

N.B. We sometimes say that Q.R/ is the strong �xer of F .

Proof. For x 2 A, it is clear that R is in the union of all x C C v for C v 2 F v�.
So the �rst result is due to (P9�). For F v spherical Q.F / is given in 4.3.1.
By Proposition 4.7 Q.R/ � P.F v/ and Q.R/ � Q.F / by (P9), hence the
result. �
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4.9. Properties speci�c to clR. We are interested here in the cases cl D clR i.e.
cl D clˆ

R
, cl#

R
, cl�

R
or cl�

ti

R
.

1) For a �lter � in A, � � �C V0 � .�C C v/ \ .� � C v/ for all vectorial
chamber C v. So, by 4.5.4, if� has a good or half-good �xer, it is also true for any
�0 with � � �0 � �C V0. Moreover Q.�/ D Q.�0/: N.�/ D N.� C V0/ as
W v �xes V0.

2) For a local facet F l, we saw that xF l D xF�ti

R
� xF�

R
� xFˆ

R
D xF #

R
D xF l CV0,

hence the closed clR-facet associated to F l has a good �xer by 1) above.
We saw also that the clR-facet associated to F l is between F l and F l C V0.

If the family Q satis�es (P10), then this clR-facet has a good �xer (4.6.5 and 1)
above); by 4.5.4 any apartment containing F l contains clR.F l/ and is conjugated
to A by Q.F l/ D Q.F l/ D Q.F l C V0/.

3) Let � be a point, preordered segment, preordered segment-germ, generic
ray, generic ray-germ or generic line (resp. preordered half-open segment, pre-
ordered open-segment-germ or generic open ray if Q satis�es (P10)) as in 4.6
and let � � �00 � clR.�/. Then Q.�/ D Q.�00/ by 4.5.4, as clR.�/ �
.� C F v/ \ .� � F v/ (resp. clR.�/ � .S� C F v/ \ .S� � F v/) for some facet
F v pointwise �xed by �v.N.�//. Hence any apartment containing� contains�00

and is conjugated to A by Q.�00/ D Q.�/.
We may choose clR D clˆ

R
. So, for � a preordered segment-germ, generic

ray or generic ray-germ, we may choose above �00 equal to its clˆ
R

-enclosure i.e.
the corresponding closed-local-facet, spherical sector-face-closure or spherical
sector-face-germ. If Q satis�es (P10) and � is a preordered open segment-germ
(resp. a generic open ray) the same result is true with �00 the corresponding local
facet (resp. corresponding spherical sector-face).

4) Let F l D xF l.x; F v/ be a closed local facet in A and F v
1 a vectorial facet.

Then r D F lCF v
1 is closed convex i.e. cl�

ti

R
-enclosed; hence it is the cl�

ti

R
-chimney

r�ti

R
.F l; F v

1 /; note that this is not always true for clˆ
R

, cl#
R

or cl�
R

.
Suppose that r is solid i.e. that the �xer in �.N/ of its support is �nite. Then r

and its germ R have good �xers: we apply 4.5.3e to F l and F l C �� (with � > 0,
� 2 F v

1 ), then 4.5.4 and 4.5.3d to see that r has a good �xer; now the result for R
is a consequence of 4.5.3c.

5) Remark. Suppose that F v andF v
1 are as above in 4) and of the same sign. Then

F v CF v
1 meets a vectorial facet F v

2 with F v � F v
2 and F v

2 \ hF v; F v
1 i open in the

vector space hF v; F v
1 i (F v

2 is the projection of F v
1 in F v�). By 4.9.3 any apartment

containing xF l.x; F v/ and x C F v
1 (or F l.x; F v

1 /) contains xF l.x; F v
2 /. Suppose

that F v
2 is spherical (e.g. if r is solid) then, by using a few more times the same

argument, we see that any apartment containing r contains the clˆ
R

-enclosure� of
xF l.x; F v/ and F l.x; F v

1 / and also �C F v
1 which is the clˆ

R
-chimney rˆ

R
.F l; F v

1 /.
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So one could use this clˆ
R

-chimney. But unfortunately it is not clear that � or
� C F v

1 has a good �xer. Moreover the following proposition seems di�cult to

prove for clˆ
R

. So we shall concentrate on cl�
ti

R
.

6) Proposition. Let R1 be the germ of a splayed cl�
ti

R
-chimney r1 D F l

1 C F v
3

and R2 be either a closed local facet F l
2 or the germ of a solid cl�

ti

R
-chimney

r2 D F l
2 C F v

4 . Then � D R1 [ R2 has a half-good �xer and Q.�/ D

Q.cl�
ti

R
.�//:N.�/. In particular any apartment of 	 containing � also contains

cl�
ti

R
.�/ and is conjugated to A by Q.cl�

ti

R
.�//.

N.B. Actually if R2 is the germ of a splayed cl�
ti

R
-chimney (i.e. F v

4 is spherical),
then � has a good �xer [30, 6.10].

Proof. We may replace � by � D r1 [ r2 with r1 and r2 su�ciently small.
Consider ‚ D

S
C v2F v�

3
C v; by shortening r1 we may assume r1 � r2 C‚. So,

by 4.5.3e and 4.6.3 or 4) above,� has a half good �xer. We use 4.5.4 with � and
F v

3 : as r1 �‚ D A,�0 is actually equal to�0 D .r2 C‚/\ .
T

˛2ˆm.F v
3

/ D.˛;�//

which is convex and closed. So � � �00 D cl�
ti

R
.�/ D conv.�/ � �0 and

Q.�/ D Q.�00/:N.�/. �

4.10. (Generalized) a�ne hovels. We consider an a�ne apartment A, as de-
�ned abstractly in 3.4.2 a,b and an enclosure map cl as in 3.6.1 (using 3.4.4). For
the following de�nitions see below in 1), 2) the restrictions on cl, or the associated
variants. See also 4.15 for some variants.

1) De�nitions. An a�ne hovel of type .A; cl/ is a set I endowed with a covering
A by subsets called apartments such that the following axioms are satis�ed.

(MA1) Every A 2 A is an apartment of type A (cf. 3.4.2.f).

(MA2) If F is a point, a preordered open-segment-germ, a generic ray or a solid
chimney in an apartment A and if A0 is another apartment containing F ,
then A\A0 contains the enclosure cl.F / of F in A and there exists a Weyl
isomorphism from A to A0 �xing (pointwise) this enclosure.

(MA3) If R is a splayed chimney-germ, if F is a facet or a solid chimney-germ,
then R and F are always contained in a same apartment.

(MA4) If two apartments A, A0 contain R and F as in (MA3), then their inter-
section A\A0 contains the enclosure cl.R[F / of R[F in A and there
exists a Weyl isomorphism fromA to A0 �xing (pointwise) this enclosure.
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This a�ne hovel is called ordered if it satis�es the following additional axiom.

[MAO] Let x, y be two points in I and A, A0 be two apartments containing them;
if x � y in A, then the segments Œx; y�A and Œx; y�A0 de�ned by x, y in A
and A0 are equal.

Actually an ordered a�ne hovel is now often called (for short) a masure.

An automorphism of the hovel I is a bijection 'W I ! I such that, for every
apartment A, '.A/ is an apartment and '

A
an isomorphism. We say that ' is pos-

itive, vectorial-type-preserving, vectorially Weyl or a Weyl automorphism, if '
A

is
positive, vectorial-type-preserving, vectorially Weyl or a Weyl isomorphism, for
some A 2 A. This is then true for any A 2 A: for any two apartments A1, A2,
there is a third apartment A such that Ai \ A contains a non empty open convex
subset (e.g. a splayed chimney) and we may use 3.4.2.g.

We say that a group G acting on I acts strongly transitively if it acts by
automorphisms of I and moreover the Weyl isomorphisms between apartments
involved in the axioms (MA2) or (MA4) may be chosen induced by elements ofG,
see also 4.15.1. (In the classical case of thick discrete a�ne buildings and groups
of Weyl automorphisms, this is equivalent to the known de�nition, cf. 4.13.1 below
and e.g. [1, Proposition 6.6].)

So G acts strongly transitively if, and only if, the subgroup Gw of Weyl
automorphisms acts strongly transitively.

Variations due to the enclosure map. Unfortunately the de�nition of a�ne
hovel given in [30] is still not general enough, it is too restrictive for cl to be
satis�ed in this section. We explain now our more general de�nition, for a more
general enclosure map.

2) The enclosure map considered in loc. cit. is cl�ma or (after changing � or
ƒ D .ƒ˛/˛2ˆ) clˆ, clˆ

R
, cl�

R
. As suggested in [l.c. 1.6] the enclosure map cl� is

often not so di�erent from cl�ma. The results of loc. cit. are true for cl� without
changing anything. We may also enlarge as we want the family ƒ to a family ƒ0.

3) In loc. cit. (except in Section 1) the root system � is asked to be tamely
imaginary (in particular cl�ma is tame). This excludes the totally imaginary case�ti.

When� is not tamely imaginary (actually we try to avoid this case), the axioms
of a�ne hovels of type .A; cl�ƒ0/) have to be modi�ed as follows:

We must add to the list of the �lters involved in (MA2) the local facets and
the spherical sector faces. Moreover in (MA3) and (MA4) we must add the
possibilities that F is a point or a preordered segment germ and that R or F is a
generic ray germ.
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Then all results of loc. cit. are true up to Section 4 (except the last sentence of
[l.c. 4.8.2]). In Section 5 (specially 5.2 N.B.) we must add (MA2) for F a segment
germ and clˆ

R
i.e. the following property holds.

� For �x; y/ � F l.x; F v/, any apartment containing Œx; y/ contains xF l.x; F v/

(We can restrict to the case where F v is a chamber.)

Generalizations. 4) A generalization is necessary when we drop axiom (P10).
We shall say that I is an a�ne (ordered) closed-restricted-hovel of type .A; cl/ if
it satis�es the above axioms modi�ed as follows:

In the list of axiom (MA2) or in (MA3) and (MA4), we replace preordered
open-segment-germ by preordered segment-germ, facet by closed facet and (in
the case of 2) above) local facet by closed local facet, spherical sector-face by
spherical sector-face closure. Then all results in loc. cit. are true if we make the
same replacements.

5) We shall say that I is an a�ne (ordered) generic-restricted-hovel of type
.A; cl/ if it satis�es the above axioms modi�ed as follows:

In axioms (MA2), (MA3), (MA4), and (MAO) (eventually modi�ed as in 2)
above), we replace everywhere the words preordered, solid, full by generic,
splayed, full and splayed (respectively), the preorder � by V< and suppose that
all facets are spherical. Then all results in loc. cit. are true if we make the same
replacements.

Theorem 4.11. Let Q be a very good family of parahorics in G.

(1) Then 	 with its family of apartments is an ordered a�ne hovel of type
.A; cl�

ti

R
/. The group G acts strongly transitively and by vectorially Weyl

automorphisms on 	 .

(2) The twin buildings 	 ˙1 constructed at in�nity of 	 in [30, Section 3] are
G-equivariantly isomorphic to the combinatorial twin buildings 	 vc

˙ of 1.6.3
(restricted to their spherical facets). This isomorphism associates to each
spherical sector-face-direction F1 a spherical vectorial facet F v 2 	 vc

˙ .

(3) IfF v spherical corresponds toF1, then there is aP.F v/-equivariant isomor-
phism between the a�ne building I.F1/ of [l.c. 4.2] and the (essentialization
of the) façade 	 e

F v of x	 .

N.B. a) Of course in this theorem, a�ne hovel must be understood according to

the choice of cl�
ti

R
, see 4.10.3 above; moreover, for this choice, cl�

ti

R
.F / is simply

the closed convex hull of F . This is unsatisfactory. Fortunately for almost split

Kac–Moody groups, we are able to avoid this problem: we may replace cl�
ti

R
by a

tame enclosure map: cl� in the split case (5.6) and clK �r

K or clK�r

ma in the general
almost split case (6.11).

If we drop the hypothesis (P10), then we get only a closed-restricted-hovel.
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b) We may replace �ti by the non essential system �tine with �tine
im D

.
P

˛2ˆ R˛/ n .
S

˛2ˆ R˛/ cf. 4.9.1.

c) As we chose cl D cl�
ti

R
(or cl D cl�

tine

R
), the Bruhat–Tits building 	 e

F v in 3)
above is endowed with its R-structure.

d) The hovel 	 inherits all properties proved in loc. cit.. In particular it is
endowed with a preorder relation V< (resp. � if we are not in the generic-restricted
case) inducing on each apartment A the known relation V<A (resp. �A) associated
to the Tits cone cf. 3.4.2b.

e) If a wallM.˛; k/ contains a panel of a chamber C � D.˛; k/ � A, then the
chambers adjacent to C along this panel are in one to one correspondence with
U˛;k=U˛;kC (cf. [30, 2.9.1] and 4.6.4). In particular 	 is thick (3.4.2a).

f) As G D G;:N and N ; D G; \ N is the group of Weyl automorphisms of
A, the following proof tells that G; is the subgroup Gw of Weyl automorphisms
in G.

Proof. 1) It is su�cient to use the family Q; in G;. Axiom (MA1) is then
clear by de�nition and all the properties asked for axioms (MA2), (MA4) and
(MAO) are proved in 4.5, 4.6 or 4.9. If F and R in A are as in (MA3), then
the Bruhat–Birkho�–Iwasawa decomposition 4.3.4 and Corollary 4.8 prove that
G D Q.F /:N:Q.R/; it is classical that this proves (MA3).

As the elements in �.N/ are vectorially Weyl automorphisms of A (3.4.3.a)
and N is the stabilizer of A (4.6.4), the elements in G act by vectorially Weyl
automorphisms.

2) The �xer Q.f/ of a spherical sector-face f D x C F v in A is in P.F v/,
see (4.7). So the map f 7! F v is well de�ned and onto the spherical facets of
	 vc

˙ . Consider f1 and f2, after shortening they are in a same apartment and then,
by de�nition, they are parallel if and only if they correspond to the same F v. So
we have got the desired bijection. Now this bijection is clearly compatible with
domination and opposition cf. [30, 3.1]: it is an isomorphism of the twin buildings.

3) I.F1/ is the set of sector-face-germs with direction F1. Now in A we
saw (3.7.3) that the map F D germ1.xCF v/ 7! ŒxCF v� identi�es the apartment
A.F1/ in I.F1/ with Ae

F v . By 4.8 Q.Œx C F v�/ D Q.F/:N.Œx C F v�/; but in A

it is clear that N.Œx C F v�/ D N.F/, so Q.Œx C F v�/ D Q.F/. The identi�cation
of I.F1/ and 	 e

F v is now clear, through a construction as in 4.1. �

4.12. Compatibility with enclosure maps. We have proved good properties

with respect to cl�
ti

R
. But the example of split Kac–Moody groups ([16] or Section 5

below) proves that we may hope the following strong compatibility property.
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1) De�nition. The family Q of parahorics is compatible with the enclosure map cl
if for all non empty �lter � in a façade AF v and all vectorial chamber C v 2 F v�,
we have

Q.�/ \ U.˙C v/ � Q.cl.�//:

2) Remarks. a) Combined with (P9) and 4.4 this compatibility condition implies
that Q.�/ \ P.C v/ � Q.cl.�C C v//.

b) Even for cl D cl�
ti

R
this is stronger than (P9), e.g. if S�CC v is not closed in

A or � not convex. It implies always (P10).

c) Clearly, if another enclosure map cl0 satis�es cl0 � cl, i.e. cl0.F / � cl.F /
for any �lter F , then the compatibility of Q with cl implies its compatibility with
cl0.

d) The most important case is when� has an (half) good �xer. ThenQ.�/ D
Q.cl.�//:N.�/, more precisely we may generalize [16, Proposition 4.3]:

3) Lemma. Suppose Q is very good, compatible with cl and

� � �0 � cl.�/ � A:

If � has a good (or half good) �xer, then this is also true for �0 and Q.�/ D
Q.�0/:N.�/, Q.�/:N D Q.�0/:N . In particular any apartment containing �
contains its enclosure cl.�/ and is conjugated to A by Q.cl.�//.

Conversely, if supp.�/ D A (or supp.�0/ D supp.�/, hence N.�0/ D
N.�/), � has an half good �xer and �0 has a good �xer, then � has a good
�xer.

4) Consequences. All the results proved in [16, Section 4] are true when Q is very

good and compatible with cl. For example the results in 4.9 above for clR or cl�
ti

R

are true for cl; hence:

5) Theorem. If Q is a very good family of parahorics compatible with cl, then
Theorem 4.11 is true with type .A; cl/ instead of .A; cl�

ti

R
). If cl D clPƒ0 and P � �

is tamely imaginary, we get an ordered a�ne hovel exactly as in [30], see 4.10 2)
and 3).

6) De�nition. A parahoric hovel (or parahoric masure) of type .A; cl/ is an
ordered a�ne hovel, obtained from a valuated root datum endowed with a very
good family of parabolics compatible with cl. We suppose moreover that cl is
almost tame, i.e. cl � clPƒ0 with P � � tamely imaginary.

A parahoric hovel has all properties of hovels and some other ones: the
associated group G acts strongly transitively by vectorially Weyl automorphisms,
moreover 4.3.3 tells that any sector germ and any segment germ are in a same
apartment.
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4.13. Backwards constructions

1) Lemma. Let I be a masure of type .A; cl/ with a groupG acting on it strongly
transitively. ThenG acts transitively on the apartments and the stabilizer N of an
apartment A induces in A a group �.N/ containing the groupW ath generated by
the re�ections along the thick (hence true) walls.

N.B. The subgroup W ath of W a is equal to it when I is thick.

Proof. Let S1 � A1, S2 � A2 be sector germs in apartments. By (MA3) there
exists an apartment A3 containing S1 and S2. By (MA2) there exists g1; g2 2 G
with A1 D g1A3 and A2 D g2A3, so A1 and A2 are conjugated by G.

If nowM is a thick wall inA, we writeD1; D2 the half-apartments inA limited
by M . By [30, 2.9] there is a third half-apartment D3 in I limited byM such that
for i 6D j ,Di \Dj D M andDi [Dj is an apartmentAij . By (MA4) applied to a
sector-panel-germ F inM and a sector-germ inDi (dominating the opposite inM
of F) there exists gijk 2 G with gijk:Aij D Aik (where ¹1; 2; 3º D ¹i; j; kº). Now
A D A12 and g142:g231:g123 (where D4 D g231:D1) stabilizes A and exchanges
D1 and D2: it is the re�ection with respect to M . �

2) Let I andG be as in the lemma. ThenG acts “nicely” (in particular strongly
transitively) on the twin buildings I˙1 and we saw in [30, 3.8] following [34], that
G is often endowed with a RGD system.

3) Suppose that G is endowed with a generating root datum such that the
corresponding twin buildings 	 vc

˙ are identi�ed G-equivariantly with I˙1, in
particular G acts via positive, vectorial-type-preserving automorphisms. Then
the action of G on the a�ne buildings I.F1/ (for F1 a panel in I˙1) should
endow the root group datum with a valuation as in the classical case [30, 4.12].

4) Suppose now that there exists a valuation of the root group datum which
gives the a�ne buildings I.F v/ on which P.F v/ acts through P.F v/=U.F v/ (for
any spherical vectorial facet F v). Then I is constructed as in 4.1 with a family
Q D .Q.x//x2A of parahorics. We de�ne also Q on xAe

sph by the action of G on
the buildings I.F v/. Let us look at the properties satis�ed by Q:

(P1), (P2), (P4), (P5), and (P6) are clear by de�nition and hypothesis.
By [30, 4.7] x 2 I and F v 2 I˙1 (hence spherical) determine a unique sector

face xCF v so (P9) is satis�ed: Q.x/\P.F v/ stabilizes xCF v and, up to elements
�xing xCF v, it stabilizes A and is vectorially Weyl, hence �xes xCF v. As Q is
well known on xAe

sph, Q.x/ \ P.F v/ �xes .x C F v/ \ xAe
sph.

Now let u 2 U˛;� and F v a panel in Ker.˛/ D M1. Then by [l.c. sec.4] uA is
an apartment of the building I.M1/ ' I.F v/ (which is a tree) and its intersection
with A is an half-apartment D.˛; �/. But by de�nition of the valuation u �xes
prF v.D.˛; �// � Ae

F v ; so A \ uA � D.˛; �/ hence u �xes D.˛; �/. So (P3) is
satis�ed.
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For x 2 A and g 2 G, suppose that g 2 Q.x/:N \ P.F v/:N , then gA 3 x,
gAv � F v and gA contains the sector face x C F v [30, 4.7]. So by (MA2)
g 2 Q.x C F v/:N . But Q.x C F v/ � Q.x/ and Q.x C F v/ � Q.prF v.x// as
prF v.x/ 2 AF v is the class of x C F v. Hence (P7) is satis�ed.

(P10) is satis�ed as I is an hovel (not a closed-restricted-hovel).
When xA D xAe, Charignon proved that (P8) is satis�ed for every good family

of parahorics (4.3.6). We may also use a geometrical translation of (P8) for good
families satisfying (P9): let x 2 A and s a sector of origin x in A, then any
apartment A0 containing x contains also a sector s1 of origin x opposite s (in
an apartment containing them both): actually A0 D pA for some p 2 Q.x/;
following (P8) and (MA2), one may suppose that s D x C V v and write p D
pC:p�:n. If s2 D x � C v is the sector opposite s in A, then by (P9), A0 contains
s1 D pCs2, which is opposite s in pCA.

So if xA D xAe is essential, we know that the family Q (de�ned on A [ xAsph) is
very good.

5) These sketchy constructions reduce more or less the classi�cation problem
for a�ne hovels with a good group of automorphisms to the problem of existence
(or uniqueness ?) of very good (excellent ?) families of parahorics associated to
valuated RGD systems.

Proposition 4.14. We consider a group G (resp. G0) acting strongly transitively
on an ordered a�ne hovel I (resp. I0) and a map j W I ! I0 which is G-equivariant
with respect to an homomorphism 'WG ! G0. We suppose that the following
conditions are satis�ed.

(1) There exist apartments A � I and A0 � I0 such that j
A

is injective a�ne
from A to A0.

(2) There exists a sector germ S in A such that the direction of the cone j.S/

meets the interior of the Tits cone T0
˙ in

�!
A0 .

Then j is injective.

N.B. We exclude here the closed-restricted-hovels. For buildings the proof is
easier, as two points are in a same apartment.

Proof. Let x1; x2 2 I such that j.x1/ D j.x2/. There is an apartment Ai D giA

containing xi and S, with gi �xing pointwise a sector s in S. Then A0
i D '.gi /A

0

is an apartment containing j.xi / and j.s/ with '.gi / �xing pointwise j.s/. Let’s
consider y 2 s su�ciently far away; then Œy; xi � and j.Œy; xi �/ D Œj.y/; j.xi /�

are preordered (even generic) segments in Ai and A0
i . But j.x1/ D j.x2/,

so Œj.y/; j.x1/� D Œj.y/; j.x2/� (axiom (MAO)). As g D g2g
�1
1 �xes point-

wise the segment germs Œy; x1/ and Œy; x2/, '.g/ �xes pointwise Œj.y/; j.x1// D
Œj.y/; j.x2// and, as '.g/ is an a�ne isomorphism from A0

1 to A0
2, it �xes point-

wise the whole segment Œj.y/; j.x1/� D Œj.y/; j.x2/�. Then gŒy; x1� and Œy; x2�
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are two segments in A2 with the same image Œj.y/; j.x2/� in A0
2 by j (injective on

the apartments). So these segments are equal; in particular Œy; x1/ D Œy; x2/.
Now j.Œy; x1�/ D j.Œy; x2�/ and Œy; x1/ D Œy; x2/. Then Œy; x1� \ Œy; x2� is

a segment Œy; z� (cf. (MA2) for open-segment-germs, as we avoid 4.10.4) with
z 6D y. We are done if z D x1 or z D x2. Otherwise Œz; x1/ and Œz; x2/ are distinct
segment germs in a same apartment [30, 5.1] with the same image by j , contrary
to the hypothesis. �

4.15. Simpli�cations of the axioms. For simplicity we suppose that� is tamely
imaginary.

1) Let G be a group acting on an a�ne ordered hovel 	 by vectorially Weyl
automorphisms. It is proved in [14] that strong transitivity is equivalent to any of
the two following conditions:

For any local chamber (resp. sector germ)� in 	 and any two apartmentsA;A0

containing �, there is g 2 G �xing pointwise � such that A0 D g:A.

2) Proposition. In the de�nition of an a�ne ordered hovel (resp. an a�ne ordered
generic-restricted-hovel), we may replace axiom (MA2) by the axiom we get when
we allow F to be only a preordered open-segment-germ or a solid chimney (resp.
only a generic open-segment-germ)

Proof. Let A;A0 be two apartments containing a point x. We consider in A a
generic segment germ Œx; y/ and in A0 a sector germ S0. By (MA3) there is an
apartment A00 containing Œx; y/ [ S0. The intersection A0 \ A00 contains a sector
s0 (with germ S0). We choose z 2 s0 su�ciently far; so Œx; z� is a generic segment
in A0 and by (MA0) this is also a line segment in A00. By (MA2) for generic open-
segment-germs, there is a Weyl isomorphism 'WA ! A00 (resp.  WA0 ! A00)
�xing cl.�x; y// � cl.x/ (resp. cl.�x; z// � cl.x/). Then  �1 ı ' is the expected
Weyl isomorphism from A to A0.

Let ı be a generic ray with origin x in an apartment A and A0 an apart-
ment containing ı. Then R D clA.germ1.ı// is a splayed chimney germ and
clA.germx.ı// a spherical closed-facet. By (MA2) for generic open-segment-
germs, clA.germx.ı// � A0. By (MA0) and (MA2) for generic open-segment-
germs, ı is closed convex in a generic line of A0. But ı has only one endpoint
(x) in A, so ı is a generic ray in A0. We consider the splayed chimney germ
R0 D clA0.germ1.ı//. By (MA3) and (MA4), there is an apartment A00 con-
taining R [ R0 and, by (MA4), it is clear that R D clA00.germ1.ı// D R0 in
A00. So A\A0 � clA.germx.ı//[ clA.germ1.ı// and, by (MA4), there is a Weyl
isomorphism from A to A0 �xing clA.germx.ı/[ germ1.ı// D clA.ı/.

A splayed chimney is the enclosure of a spherical facet and its (splayed)
chimney germ. So (MA2) for splayed chimneys is a consequence of (MA4) (with
F a spherical facet). �
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5. Hovels and bordered hovels for split Kac–Moody groups

We consider now the situation of split Kac–Moody groups, i.e. of 3.3 and 3.5
and shall build a very good family yP of parahorics following [31]. We choose the
enclosure map cl D cl� of 3.6.1, which is tame and M-adapted.

5.1. The parahoric subgroup associated to y 2 A. 1) The free case with

V D V x: In [31] the RGS S is supposed to be free and the a�ne apartment A is
equal to Ax with associated vector space V x D Y ˝Z R. Then for y 2 A, one
de�nes the group yP .y/ D U

pmC
y :U nm�

y :N.y/ D U nm�
y :U

pmC
y :N.y/ where N.y/

is the �xer of y in N and U pmC
y (resp. U nm�

y ) is the intersection with G or UC

(resp. U�) of a group UmaC
y D

Q
˛2�C U˛.y/ (resp. Uma�

y D
Q

˛2�� U˛.y/)
which exists in a suitable completion Gpma (resp. Gnma) of the Kac–Moody
group G [l.c. 4.5, 4.14]; actually one has to de�ne suitably U˛.y/ for ˛ 2 �im:
U˛.y/ D U˛;�˛.y/ WD Uma

¹yº
.¹˛º/ in the notations of [l.c. 4.5.2].

The group U˙
y D U˙ \ G.y/ of 4.2.1 is clearly included in yP .y/. As

U
pmC
y D UC \ yP.y/, we have UC

y � U
pmC
y and, similarly, U�

y � U nm�
y .

Moreover,
yP .y/ D U

pmC
y :U�

y :N.y/ D U nm�
y :UC

y :N.y/;

see [l.c. 4.14];
The interesting point for us is that UmaC

y , Uma�
y , U pmC

y , U nm�
y , UC

y or
U�

y depend only on the true half-apartments (imaginary or not) containing y.
In particular they depend only on the class Ny of y in the essentialization Aq D
Ax=V0.

In the classical case where ˆ is �nite (and �im empty) the group U pmC
y (resp.

U nm�
y ) is the group UCC

y (resp. U��
y ) generated by the groups U˛.y/ for ˛ 2 ˆC

(resp. ˛ 2 ˆ�).

2) Consider now any RGS S, any a�ne apartment A as in 3.5 for the root
datum in G D GS.K/ and any y 2 A. By [31, 1.3 and 1.11] there is an injective
homomorphism 'WG ,! Gxl D G

Sl.K/ where Sl is a free RGS. The a�ne
apartment associated to it is Axl and we know that the essentializations of A and
Axl are equal: A=V0 D Axl=V xl

0 D Aq.
To Ny 2 Aq we associated above some subgroups of Gxl. By [l.c. 1.9.2, 3.19.3]

the groups U˙ in G and Gxl are isomorphic by ', so U pmC

Ny , U nm�
Ny , UC

Ny and U�
Ny

are actually in G (and if S is free, they are as de�ned in 1) above). We de�ne the
group yPm. Ny/ as generated byU pmC

Ny ,U nm�
Ny andTS.O/ � Z0 D Ker.�/. We de�ne

N.y/ the �xer of y in N and yP.y/ D yPm. Ny/:N.y/ which is called the �xer group
associated to y in A (cf. 5.2b below).
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Lemma 5.2. a) We have yPm. Ny/ D U
pmC

Ny :U nm�
Ny :Nm. Ny/ D U nm�

Ny :U
pmC

Ny :Nm. Ny/ D

U
pmC

Ny :U�
Ny :N

m. Ny/ D U nm�
Ny :UC

Ny :N
m. Ny/ where Nm. Ny/ is a subgroup of N.y/,

hence �xing pointwise y C V0 � A.

b) Moreover yPm. Ny/ does not change when one changesˆC byW v, hence it is
normalized by N.y/ and yP .y/ is a group.

Proof. a) We identify G and '.G/ � Gxl. We choose an origin in A (resp. Axl)
�xed by �.m.x˛i

.1///, for all i 2 I ; hence A (resp. Axl) is identi�ed with V
(resp. V xl) and �.N/ (resp. �xl.N xl/ whereN xl D N

Sl.K/) with �.T /ÌW v (resp.
�xl.T xl/ Ì W v) where W v acts linearly via �v. Actually �WT ! V factorizes
through T=T.O/ D Y ˝ƒW �.t/ D N�.Nt /where Nt is the class of t modulo T.O/; and
the same thing for �xl. We consider z 2 V xl such that Nz D Ny 2 V q.

By [l.c. 4.6, 4.14] we have U pmC

Ny :U nm�
Ny :Nmin. Ny/ � yPm. Ny/ � yP xl.z/ D

U
pmC

Ny :U nm�
Ny :N xl.z/ D U

pmC

Ny :U�
Ny :N

xl.z/ where Nmin. Ny/ is a subgroup of N

and N xl.z/ the �xer in N xl of z. Moreover N xl.z/ D N xl \ yP xl.z/. It is now
clear that yPm. Ny/ D U

pmC

Ny :U nm�
Ny :Nm. Ny/ D U

pmC

Ny :U�
Ny :N

m. Ny/ with Nm. Ny/ D
yPm. Ny/ \ N xl.z/ D yPm. Ny/ \ N � N \ N xl.z/. The same thing is clearly true
when exchanging U pmC

Ny , UC
Ny and U nm�

Ny , U�
Ny .

Let n D tw 2 N \ N xl.z/ with t 2 T and w 2 W v (�xing 0). We
have z D nz D �xl.t / C w.z/. But, if w D si1 : � � � :sin 2 W v, z � w.z/ DPn

j D1 .sij C1
: � � � :sin.z/ � sij : � � � :sin.z// D

Pn
j D1 ˛ij .sij C1

: � � � :sin.z//:˛
_
ij

DW

@. Nz; V xl/ an element of V xl depending only on Nz D Ny. Hence N�xl.Nt / D @. Nz; V xl/;
but N�xl is one to one, so Nt 2 .

P
i2I R˛_

i ˝ 1/ \ Y ˝ ƒ. By 3.5.3a, there exists
r 2 Z>0 with r Nt D �

P
i2I ˛

_
i ˝ �i with �i 2 ƒ a suitable Z-linear combination

of the coe�cients r:˛ij .sij C1
: � � � :sin.z// 2 R (as the relations between the ˛_

i

in Y � Y xl have coe�cients in Q). Now N�.r Nt / D
P

i2I �i˛
_
i 2 V and, by the

expression of the �i , r N�.Nt / D r@. Nz; V / (as the ˛_
i in V satisfy theZ-linear relations

between the ˛_
i in Y ). In V we may divide by r , so N�.Nt / D @. Nz; V /. By the same

calculations as above �.n/ �xes any element y with Ny D Nz.

b) It is proved in [31, 4.6c] that U pmC

Ny :U nm�
Ny :Nmin. Ny/ doesn’t change when one

changes ˆC by W v. So it is the same for the subgroup yPm. Ny/ it generates. �

5.3. The �xer group associated to y 2 xA n A. For F v a non minimal vecto-
rial facet, the façade AF v is an a�ne apartment for the group P.F v/=U.F v/ D
G.F v/ ' M.F v/ which, by 1.6.5 and 3.4, is endowed with the generating
root datum .G.F v/; .U˛/˛2ˆm.F v/; Z/. Moreover G.F v/ is actually the group
of K-points of a Kac–Moody group: if F v D F v

" .J / then G.F v/ D G.J / D
GS.J /.K/.



Almost split Kac–Moody groups over ultrametric �elds 945

So for y 2 AF v we may de�ne yP .y/ as the subgroup of P.F v/ inverse image
of the subgroup yPF v.y/ constructed inside G.F v/ ' M.F v/ as above. We have

yP.y/ D yPF v.y/ Ë U.F v/

D U
pmC

F vy :U
nm�
F vy :N.y/:U.F

v/

D U nm�
F vy :U

pmC

F vy :N.y/:U.F
v/

D U
pmC

F vy :U
�
F vy :N.y/:U.F

v/

D U nm�
F vy :U

C
F vy :N.y/:U.F

v/

where C and � refer to the choice of a chamber C v 2 F v�.

Remark. Even if F v D V0 is minimal, a point Ny 2 Ae
F v D AF v=

�!
F v corresponds

to a collection y C
�!
F v of points y 2 Ane

F v D A. So we have two parahoric
subgroups yP .y/ � yP . Ny/ D yP .y/:N.F v/. Ny/ and N.F v/. Ny/ acts by translations

on y C
�!
F v. We say that yP .y/ (resp. yP . Ny/) is the strong (resp. weak) �xer of y

or Ny.

De�nition 5.4. We de�ne yP as the family . yP.y//y2xA. By construction it is a
family of parahorics. The corresponding hovel (resp. bordered hovel) will be
written 	 D 	 .GS; K;A/ (resp. x	 D x	 .GS; K; xA/ ) and called the a�ne hovel
(resp. a�ne bordered hovel) of GS over K with model apartment A (resp. xA).
When we add the adjective essential we mean that A D Aq (resp. xA D xAe).

It is perhaps possible that yP D P [31, 4.13.5], see also 5.11.4c.

Lemma 5.5. Let x 2 xA, F v D F v.x/ and C v a chamber in F v�. Then,

yP .x/ \N D N.x/;

yP .x/ \N:U.C v/ D N.x/:U
pmC

F vx :U.F
v/;

yP .x/ \ U.C v/ D U
pmC

F vx :U.F
v/;

yP .x/ \N:U.�C v/ D N.x/:U nm�
F vx ;

yP .x/ \ U.�C v/ D U nm�
F vx :

Proof. Let g 2 yP .x/ \ N:U.C v/. So g D nuC D n0v�vCuF v with n 2 N ,
uC 2 U.C v/, n0 2 N.x/, v� 2 U nm�

F vx , vC 2 U
pmC

F vx and uF v 2 U.F v/. Hence
.n0�1n/.uCu�1

F v.v
C/�1/ D v� 2 N:U.C v/ \ U.�C v/. By the uniqueness in the

Birkho� decomposition (1.6.2) we have v� D 1, n D n0 and uC D vCuF v so
g 2 N.x/:U

pmC

F vx :U.F
v/. If moreover g 2 N (resp. g 2 U.C v/) we have uC D 1

(resp. n D 1) hence g D n0 2 N.x/ (resp. g D vCuF v 2 U pmC

F vx :U.F
v/).
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Now let g 2 yP .x/ \ N:U.�C v/. We write g D nu� D n0vCv�uF v D
n0vCu0

F vv
� (with obvious notations). Hence .n0�1n/.u�.v�/�1/ D vCu0

F v 2
N:U.�C v/ \ U.C v/. So vCu0

F v D 1 (hence vC D u0
F v D 1, as P.F v/ D

M.F v/ Ë U.F v/), n D n0 and u� D v�. We have g D n0v� 2 N.x/:U nm�
F vx

and, if g 2 U.�C v/, n D n0 D 1 so g D v� 2 U nm�
F vx . �

Proposition 5.6. The family yP is a very good family of parahorics. It is compatible
with the enclosure map cl�. Hence 	 .GS; K;A/ is a thick parahoric hovel of
type .A; cl�/ and G D G.K/ acts strongly transitively on it (by vectorially Weyl
automorphisms).

Proof. We proved (P5) in the lemma above. IfF v.x/ is spherical,U pmC

F vx andU nm�
F vx

are generated by the groups U˛.x/ for ˛ 2 ˆm˙.F v/, so (P6) holds. By de�nition
yP .x/ D U

pmC

F vx :U
nm�
F vx :N.x/:U.F

v/ D U nm�
F vx :U

pmC

F vx :N.x/:U.F
v/, so (P8) is a

consequence of Lemma 5.5. We have also yP .x/ D . yP.x/ \ U.�C v//:. yP.x/ \
U.C v//:N.x/.

Consider now the situation of (P7) or (P9). We have to prove N: yP .x/ \
P.F v/ � N: yP.¹x; prF v.x/º/ and yP .x/ \ P.F v/ � yP.x C F v/. These relations
are in P.F v

1 / and each side contains U.F v
1 /, so we may argue in G.F v

1 / D
P.F v

1 /=U.F
v
1 /. Actually we shall suppose that x 2 A. Consider a chamber

C v 2 F v�, we have P.F v/ D U.F v/ Ì M.F v/ and (by Iwasawa) M.F v/ D
.U.C v/ \M.F v//:N.F v/:G.ˆm.F v/; x/ with G.ˆm.F v/; x/ � yP .x C F v/. Let
g 2 N: yP .x/\P.F v/ (resp. g 2 yP .x/\P.F v/). We write g D n0q D uF vvCnq0

with n0 2 N (resp. n0 D 1), q 2 yP .x/, uF v 2 U.F v/, vC 2 U.C v/ \ M.F v/,
n 2 N.F v/, q0 2 yP .x C F v/ and we want to prove that g 2 N: yP .x C F v/ (resp.
g 2 yP .x C F v/). So one may suppose that q0 D 1, then g 2 nU.n�1C v/ and q 2
n0�1nU.n�1C v/. By the proof of 5.5 q 2 n0�1nU

pm
x .n�1C v/ with n0�1n 2 N.x/

and, as n 2 N.F v/, U pm
x .n�1C v/ � yP .x C F v/. So g D n0q 2 N: yP .x C F v/

(resp. g D q 2 yP .x C F v/, as n D n0�1n 2 N.x/ \ N.F v/ � N.x C F v/).
By 5.5 yP .x/ \ U.C v/ D U

pmC

F vx Ë U.F v/ and yP .x/ \ U.�C v/ D U nm�
F vx .

So yP .�/ \ U.C v/ D U
pmC

F v� Ë U.F v/ and yP .�/ \ U.�C v/ D U nm�
F v� and these

groups depend only on cl�.�/ [31, 4.5.4f]. We have proved that yP is compatible
with cl�. �

5.7. Remarks. 1) So we get for 	 and x	 all the properties proved in Section 4.
The map gTg�1 7! A.gTg�1/ D gA (resp. gTg�1 7! xA.gTg�1/ D g xA) is a
bijection between the split maximal tori in GS and the apartments in 	 (resp. the
bordered apartments in x	 ) cf. 4.6.4 and 1.8.1.

2) Actually we proved (P7) and (P9) even when F v is non spherical. So one
may de�ne a projection prF v W 	F v

1
! 	F v even if F v 2 F v�

1 is non spherical
[13, 11.7.3]. This gives stronger links between the hovel 	 and its non spherical
façades.
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3) For (P8) we proved also yP .x/ D . yP.x/ \ U.�C v//:. yP.x/ \ U.C v//:N.x/

which improves (P8) essentially when F v.x/ has a well de�ned sign.

4) If we choose A as in [31, 4.2] (which implies S free) then 	 .GS; K;A/ is the
a�ne hovel 	 .GS; K/ de�ned in [l.c. 5.1], with the same action of G D GS.K/,
the same apartments, the same enclosure map, the same facets, . . . ). By Lemma
5.5 the notions of (half) good �xers for �lters in A are the same. Note however
that, if (and only if) � does not have an (half) good �xer, yP .�/ may be di�erent
from yP� as de�ned in [31].

The groupG; of Weyl automorphisms inG (3.4.3c, 4.11f) is equal to .GA/:Z0

de�ned in [31, 5.13.2 or] (as  �1.N / D NA and �. .NA// D W a).

5) A point Nx 2 	F v determines a sector-face-germ F D germ1.x C F v/ of
direction F v in 	 and the correspondence is one to one if xA D xAe (or xA D xAi

and F v non trivial) cf. 4.11. The strong (resp. weak) �xer of Nx (cf. 5.3) is the set of
the g inG which �x pointwise an element (resp. which induce a bijection between
the sets which are elements) of the �lter F.

5.8. Functoriality. 1) Changing the group, commutative extensions. Let’s
consider a commutative extension of RGS 'W S ! S0 [31, 1.1]. We then get
an homomorphism G' WGS ! GS0 inducing homomorphisms T' WTS ! TS0 ,
N' WNS ! NS0 and isomorphisms U˙

S
! U˙

S0 . If A is a suitable apartment for

.GS0 ;TS0/ (3.5.3a) it is clearly suitable for .GS;TS/ and, for x 2 AF v , U pmC

F vx

or U nm�
F vx is the same for GS or GS0 . Hence yPS0.x/ D G'. yPS.x//:NS0.x/. But

G�1
' .NS0/ D NS [l.c. 1.10] hence Ker.G'/ � TS, so Lemma 5.5 tells that

G�1
' . yPS0.x// D yPS.x/. It is now clear that G' � IdA induces a G'-equivariant

embedding 	 .G' ; K;A/W 	 .GS; K;A/ ,! 	 .GS0 ; K;A/which is an isomorphism
(bijection between the sets of apartments, isomorphism of the apartments). Hence
the a�ne Weyl groups W a are the same, but �.NS/ � �.NS0/ are in general
di�erent.

The same things are true for the bordered hovels and the embeddings are
functorial (note however that A or xA depends on G0).

2) Changing the group, Levi factors. For a vectorial facet F v, we may con-
sider the homomorphism M.F v/ ,! G. More precisely if F v D F v

" .J / then
GS.J / embeds into GS (1.6.5 and 1.8.1). If A is suitable for GS then it is also suit-
able for GS.J /, but we have only to consider the walls of direction Ker.˛/ with
˛ 2 Q.J /. By construction 	 .GS.J /; K;A/ is GS.J /-equivariantly isomorphic to

the façade 	 .GS; K;
xxA/F v for F v D F v

" .J / orF v
�".J / or any other maximal vecto-

rial facet in \i2J Ker. j̨ /. Clearly for x 2 A, yPS.J /.x/ � yP .x/ andNS.J / � N , so
	 .GS.J /; K;A/ maps onto 	 .GS.J /;GS; K;A/ WD GS.J /:A � 	 .GS; K;A/ and

the projection prF v maps 	 .GS.J /;GS; K;A/ onto 	 .GS; K;
xxA/F v . So the three

sets 	 .GS.J /; K;A/, 	 .GS.J /;GS; K;A/ and 	 .GS; K;
xxA/F v are GS.J /-equivari-

antly isomorphic.
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For GS.J /, the bordered apartment associated to A is a union of façades
with direction facets for ˆ.J /. These facets are in one to one correspondence

with the facets in F v�, for F v as above. Let xAi
J , xAe

J and xxAJ be the three

possible apartments as in 3.7. Then x	 .GS.J /; K; xAe
J / (resp. x	 .GS.J /; K;

xxAJ /)

is isomorphic to x	 .GS; K; xAe/F v (resp. x	 .GS; K;
xxA/F v) as de�ned in 4.2.3c.

And x	 .GS.J /; K; xAi
J / is isomorphic to x	 .GS; K; xAi/F v where we remove

	 .GS; K; xAi/F v and add 	 .GS.J /;GS; K;A/.

3) Changing the �eld: Let’s consider a �eld extension i WK ,! L and suppose
that the valuation ! may be extended to L. Then GS.K/ embeds via GS.i/ into
GS.L/. If A is suitable for GS.L/, it is also suitable for GS.K/; the three examples
for A in 3.5.1 on K and L are corresponding this way each to the other. There
are also embeddings G

pma
S
.K/ ,! G

pma
S
.L/, Gnma

S
.K/ ,! Gnma

S
.L/ and it is

clear that, for x 2 A, U pmC

Kx D U
pmC

Lx \ GS.K/, U nm�
Kx D U nm�

Lx \ GS.K/ and
N.K/.x/ D N.L/.x/\GS.K/. So, using Iwasawa decomposition for GS.K/, 5.5
and uniqueness in Birkho� decomposition for GS.L/, we have

yPL.x/ \ GS.K/ D yPK.x/:. yPL.x/ \ .N.K/:UC.K///

D yPK.x/:. yPL.x/ \ .N.L/:UC.L// \ .N.K/:UC.K///

D yPK.x/:..N.L/.x/:U
pmC

Lx / \ .N.K/:UC.K///

D yPK.x/:.N.L/.x/ \ N.K//:.U
pmC

Lx \ UC.K//

D yPK.x/:N.K/.x/:U
pmC

Kx

D yPK.x/:

The same calculus gives N.L/: yPL.x/ \ GS.K/ D N.K/: yPK.x/.
Hence there is a GS.K/-equivariant embedding 	 .GS; i;A/W 	 .GS; K;A/ ,!

	 .GS; L;A/; it sends each apartment onto an apartment. But this embedding is
not onto and the bijection between an apartmentAK and its imageAL is in general
not an isomorphism: if the extension i is rami�ed, ƒL D !.L�/ is greater than
ƒ D !.K�/, so there are more walls in AL than in AK and the enclosures or facets
are smaller in AL than in AK .

This embedding extends clearly to the bordered hovels. Hence 	 .GS; K;A/

and x	 .GS; K; xA/ are functorial in .K; !/. In particular a group � of automor-
phisms of K �xing ! acts on 	 .GS; K;A/ and x	 .GS; K; xA/.

Actually this possibility of embedding 	 .GS; K;A/ or x	 .GS; K; xA/ in a (bor-
dered) hovel where there are more walls or even where all points are special (if
ƒL D R) is technically very interesting. It was axiomatized for abstract (bordered)
hovels and used by Cyril Charignon: [12] and [13].
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4) Changing the model apartment: Let’s consider an a�ne map  WA ! A0

between two a�ne apartments suitable for G D GS.K/. We ask that  is

N -equivariant and .t
�!
 /.�/ D �, this makes sense as � � Q is in .

�!
A /� and

.
�!
A0/�. So  �1.V 0

0/ D V0 and the quotients A=V0, A0=V 0
0 are naturally equal

to Aq (with the same walls). In particular there is a one to one correspondence
between the enclosed �lters in A, A0 or Aq.

For y 2 A, N.y/ � N. .y//,

yP .y/ D U
pmC

Ny :U nm�
Ny :N.y/ � yP 0. .y// D U

pmC

Ny :U nm�
Ny :N. .y//:

We get a G-equivariant map 	 .GS; K;  /W 	 .GS; K;A/ ! 	 .GS; K;A
0/.

It induces a one to one correspondence between the apartments or facets, chim-
neys, . . . , of both hovels but it is in general neither into nor onto. The most inter-
esting example is the essentialization map 	 .GS; K;A/ ! 	 .GS; K;A

q/.
Clearly these maps extend to the bordered hovels.

5.9. Uniqueness of the very good family of parahorics. 1) Actually, by 5.3 the
family yP satis�es the following strengthening of axiom (P8).

(P8C) For all x 2 xA, for all chamber C v 2 F v.x/�,

Q.x/ D .Q.x/ \ U.C v//:.P.x/ \ U.�C v//:N.x/:

By the following lemma, we know that yP is the only very good family of
parahorics over xA.

2) At least for A D Aq, Charignon de�nes a maximal good family of para-
horics xP:

xP.x/ D ¹g 2 P.F v/ j g: prF v
1
.x/ D prg:F v

1
.x/ for all F v

1 2 	 v
sph; F

v � F v
1 º

for x 2 AF v , where prF v
1

is the projection associated to the minimal family P

(supposed to be good) or to any good family Q e.g. yP.
We have P � yP � xP in the sense that, for all x 2 xA, P.x/ � yP .x/ � xP.x/ [13,

Section 11.8]. It is likely that yP D xP, but it seems not to be a clear consequence of
the preceding results.

Lemma 5.10. Let Q and Q0 be two very good families of parahoric subgroups of
G (in the general setting of Section 4). Suppose that Q � Q0 (i.e. Q.x/ � Q0.x/

for all x 2 xA) or that Q0 satis�es (P8C), then Q D Q0.
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Proof. If Q � Q0 there is clearly a G-equivariant map j WxI ! xI0 between the
bordered hovels associated to G, xA and Q or Q0. This map sends each bordered
apartment isomorphically to its image. Let F v be a vectorial facet in Av, then 4.14
applies to the map j between the ordered a�ne hovels IF v and I

0
F v . So j is one

to one. Let x 2 AF v and g 2 Q0.x/, then j.gx/ D gj.x/ D j.x/, so gx D x and
g 2 Q.x/.

If Q0 satis�es (P8C) we may apply the �rst case to Q or Q0 andQ00 D Q\Q0 (i.e.
Q00.x/ D Q.x/\Q0.x/ for all x), as this family Q00 is very good. Actually for Q00

(P1) to (P6) and (P9), (P10) are clear. For (P7) we have to proveQ00.x/\NP.F v/ �
NQ00.prF v.x// D NP.prF v.x// (as F v is spherical); it is clear. For (P8), as
P.x/:N.x/ � Q.x/, we have

Q00.x/ D Q.x/ \ Œ.Q0.x/ \ U.C v//:.P.x/\ U.�C v//:N.x/�

D .Q.x/ \Q0.x/ \ U.C v//:.P.x/ \ U.�C v//:N.x/: �

5.11. Residue buildings. 1) Let x be a point in the apartment A. We de�ned
in [16, 4.5] or [30, §5] the twinned buildings 	 C

x and 	 �
x , where 	 C

x (resp. 	 �
x )

is the set of segment germs Œx; y/ for y 2 	 , y 6D x and x � y (resp. y � x).
Any apartment A containing x induces a twin apartment Ax D AC

x [ A�
x where

A˙
x D ¹Œx; y/ j y 2 Aº \ 	 ˙

x . As we want to consider thick buildings, we endow
the apartments of 	 ˙

x with their restricted structure of Coxeter complexes; on Ax

it is associated with the subroot system ˆx D ¹˛ 2 ˆ j �˛.x/ 2 ƒ˛º of ˆ
(cf. [3, 5.1]) and the Coxeter subgroup W min

x ' W v
x of W v. One should note that

ˆx is reduced but could perhaps have an in�nite non free basis, corresponding to
an in�nite generating set of W v

x .
The group Gx D yP .x/ contains three interesting subgroups: P.x/ D

N.x/:G.x/ � Pmin
x WD Z0:G.x/ (see [16, §3.2], they are equal when x is spe-

cial); the group G	x
is the pointwise �xer of all Œx; y/ 2 	 ˙

x (i.e. g 2 G	x
if and

only if for all Œx; y/ 2 	 ˙
x there exists z 2 �x; y� such that g �xes pointwise Œx; z�),

it is clearly normal in Gx.
We write xGx D Gx=G	x

and xU˛ or xR the images in xGx of U˛;�˛.x/ (˛ 2 ˆ)
or R any subgroup of Gx.

2) Lemma. A g 2 Gx �xing ( pointwise) an element in 	 �
x and �xing pointwise

	 C
x (e.g. g 2 G	x

) �xes pointwise each Œx; y/ for y 6D x in a same apartment as x.

Proof. So g �xes Œx; z� for some z < x. By [31, 5.12.4], Œx; z/ and Œx; y/ are in
a same apartment A. By hypothesis g �xes points z1; : : : ; zn in A such that each

zi � x is in the open Tits cone Tı �
�!
A , these vectors generate the vector space

�!
A and the interior of the convex hull of ¹x; z1; : : : ; znº contains an opposite of
Œx; z/. By moving each zi in �x; zi � one may suppose that x � z1 � � � � � zn.
Now as z < x, g �xes (pointwise) the convex hull of ¹z; z1; : : : ; znº which is a
neighbourhood of x in A, hence contains Œx; y/. �
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3) Lemma. Any u 2 UC �xing ( pointwise) a neighbourhood of x in A, �xes
pointwise 	x . This applies in particular to a u 2 U˛;�˛.x/C for ˛ 2 ˆx or a
u 2 U˛;�˛.x/ for ˛ 2 ˆ nˆx.

Proof. By 5.8.3 we may suppose that x is special, hence x D 0. By the above
lemma it is su�cient to prove that u �xes 	 C

0 . An element Œ0; y/ of 	 C
0 is

in an apartment A containing the chamber F D F.0; C v
C/ and even the sector

q D 0 C C v
C, see [31, 5.12.4]; this apartment may be written A D g�1A with

g 2 yP .q/ and even g 2 U pmC
0 . Now g.Œ0; y// is in a sectorwC v

C for somew 2 W v

and we have to prove that gug�1 �xes a neighbourhood of 0 in this sector.
We argue in UmaC

0 (as de�ned in 5.1 or [31, 4.5.2]). This group may be written
as a direct product: UmaC

0 D Uma
0 .�C/ D .

Q
ˇ2�0 Uˇ;0/ � Uma

0 .�C n �0/

where �0 is the �nite set of positive roots of height � N (with N such that
�C\w�� � �0\ˆ) andUma

0 .�Cn�0/ is a normal subgroup. Moreover eachUˇ;0

is a �nite product of sets in bijection with O, the neutral element corresponding
to .0; : : : ; 0/ (actually for ˇ real, Uˇ;0 is isomorphic to the additive group of O).
For g1 2 UmaC

0 the map sending v 2 UmaC
0 to the component of g1vg

�1
1 inQ

ˇ2�0 Uˇ;0, factors through UmaC
0 =Uma

0 .�C n�0/ D
Q

ˇ2�0 Uˇ;0 and induces a
polynomial map with coe�cients in O and without any constant term.

Now u 2 UC \ G0 D U
pmC
0 and u �xes (pointwise) a neighbourhood of x in

A, hence some x0 2 �C v
C. So u 2 UmaC

x0 and the component of u in Uˇ;0 is in
the maximal ideal m of O if ˇ is real or in m � � � � � m if ˇ is imaginary. By the
above property this is also true for gug�1 and gug�1 �xes a neighbourhood of 0
in wC v

C (as wC v
C is �xed by Uma

0 .�C n�0/). �

4) Proposition. . xPmin
x D xZ0:G.x/; . xU˛/˛2ˆx

; xZ0/ is a generating root datum
whose associated twin buildings have the same chamber sets or twin-apartment
sets as 	 ˙

x .
MoreoverGx D G.x/:N.x/:G	x

and U pmC
x � UCC

x :G	x
, U nm�

x � U��
x :G	x

.

Remarks. a) As the basis ofˆx could be in�nite the above generating root datum
must be understood in a more general sense than in 1.4: we should consider the free
covering ẑ

x of ˆx (whose basis is free) which is in one to one correspondence
with ˆx (cf. [3, 4.2.8]) and a root datum as in [26, 6.2.5]. Another (less precise)
possibility is to index the xU˛ by subsets of the Weyl group W v

x , see [26, 1.5.1] or
[1, 8.6.1]. Actually there is no trouble in de�ning the combinatorial twin buildings
associated to this generalized root datum; but, except for chambers, their facets
may not be in one to one correspondence with those of 	 ˙

x , cf. [30, 5.3.2].

b) We may de�ne the subgroupPx D Pmin
x :G	x

; this generalizes the de�nition
given in [31, 5.14.2], as clearly Px \ N D Nmin

x . It is the subgroup of Gx which
preserves the “restricted types in x” of the facets F.x; F v/ (i.e. their types as
de�ned in the twin buildings 	 ˙

x endowed with their restricted structures). The
greater group yP sc

x of [31, 5.14.1] preserves the “unrestricted types” of the local
facets F l.x; F v/ (i.e. the (vectorial) type of F v).
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c) These results and [31, 4.13.5] suggest that Gx D yP .x/ could perhaps
be always equal to P.x/ D G.x/:N.x/ D Pmin

x :N.x/ for any x 2 A (i.e.
U

pmC
x D UC

x and U nm�
x D U�

x ). On the contrary we already said in 4.2.1 that
U

pmC
x or UC

x is in general di�erent from UCC
x .

Proof. By de�nition of ˛ 2 ˆx, �˛.x/ 2 ƒ hence there is a r 2 K with
!.r/C˛.x/ D 0, so '˛.x˛.r//C˛.x/ D 0 and the �xed point set of u D x˛.r/ 2
U˛;�˛.x/ is D.˛;�˛.x//. Therefore the image of u in xU˛ � xGx is non trivial;
(RD1) follows.

(RD2) is a consequence of (RD2) and (V3) in G as xU˛ is trivial when ˛ 62 ˆx

by Lemma 3. (RD3) is useless as ˆ is reduced. For (RD4) Nu 2 xU˛ n ¹1º is the
class of an element u 2 U˛ with '˛.u/ D �˛.x/ (by Lemma 3); hence the result
follows from 3.1.2.

An element Ng 2 xZ0: xUC \ xU� is the class of an element g 2 U� and, up to
G	x

, g �xes x C C v
C and x � C v

C, hence g �xes a neighbourhood of x in A (by
convexity) and, by Lemma 3, g 2 G	x

. So Ng D 1 and (RD5) is proved.
The groupPmin

x is generated byZ0 and theU˛;k for ˛ 2 ˆ and ˛.x/Ck � 0. So
the Lemma 3 tells that its image xPmin

x is generated by xZ0 and the xU˛ for ˛ 2 ˆx.
Hence . xPmin

x ; . xU˛/˛2ˆx
; xZ0/ is a generating root datum. We de�ne xU˙ as the

group generated by the xU˙˛ for ˛ 2 ˆC
x (and not the image xU˙

x of U˙
x ).

Let I˙
c be its associated (combinatorial) twin buildings andC˙

c its fundamental
chambers [1, 8.81]. The twin apartments of I˙

c or 	 ˙
x are both the twin Coxeter

complexes associated to W v
x and N acts transitively on their four chamber sets.

Moreover the chambers in IC
c (resp. 	 C

x ) sharing with CC
c (resp. C D F.x; C v

C/)
a panel of type s˛ 2 W v

x (for ˛ simple in ˆx) are in one to one correspondence
with xU˛ by [1, 8.56] (resp. U˛;�˛.x/=U˛;�˛.x/C by 4.11e). By Lemma 3 these two
groups are isomorphic. So the chamber sets of IC

c and 	 C
x are in one to one

correspondence. The same thing is true for the negative buildings.
The twin apartments in I˙

c are permuted transitively by Pmin
x and the stabilizer

of the fundamental one is Nmin
x D Pmin

x \ N . So the twin apartments in I˙
c

correspond bijectively to some apartments of 	 ˙
x . But two chambers in 	 ˙

x

correspond to chambers in I˙
c , hence are in a twin apartment of I˙

c and their
distance or codistance is the same in I˙

c or 	 ˙
x . As a twin apartment is uniquely

determined by a pair of opposite chambers, every twin apartment of 	 ˙
x comes

from a twin apartment in I˙
c .

The chambers in I�
c opposite CC

c are transitively permuted by xZ0: xUC [1, 6.87]
hence in one to one correspondence with xUC, as xZ0: xU� \ xUC D ¹1º [l.c. 8.76].
In 	 �

x the chambers opposite C are in a same apartment as the sector xCC v
C [31,

5.12.4] hence transitively permuted by U pmC
x (4.6.4). Now the �xer in U pmC

x of
the chamberF.x;�C v

C/ is actually inG	x
by Lemma 3. So the chambers opposite

C in 	 �
x are in one to one correspondence with the image xU pmC

x of U pmC
x in xGx.
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Thus xU pmC
x D xUC. But xUC is the image of UCC

x , hence U pmC
x � UCC

x :G	x
.

As Gx D yP.x/ D U
pmC
x :U�

x :N.x/ D U
pmC
x :G.x/:N.x/ we have xGx D

xG.x/: xN.x/, hence Gx D G.x/:N.x/:G	x
. �

5.12. Iwahori-Matsumoto decompositions. 1) Let x be a special point inA and
V the �lter of neighbourhoods of x in A. Then Pmin

x D Z0:G.x/ D N.x/:G.x/ D

P.x/ (as W min
x ' W v

x D W v) and Gx D yP .x/ D P.x/:U nm�
x D P.x/:U

pmC
x ,

equal moreover to P pm
x D P nm

x D yPx with the notations of [31, 4.6 and 4.13].
We get the following Iwahori-Matsumoto decompositions (compare 5.11.4).

2) Proposition. We have

P.x/ D UC
V
:U�

x :N.x/:U
�
x D

G

w2W v

UC
V
:U�

x :wZ0:U
�
x

and

Gx D yP .x/ D UC
V
:U�

x :N.x/:U
nm�
x D

G

w2W v

UC
V
:U�

x :wZ0:U
nm�
x :

3) Remark. The equality of P.x/ and UCC
V

:U��
x :N.x/:U��

x , stated in a prelim-
inary draft of [7], fails in general. With the notations of [31, 4.12.3] with x D 0,
let’s consider the following element h of SL2.KŒt; t

�1�/:
�
1 0

1 1

��
1 $t

0 1

��
1 0

�1 1

�
D

�
1�$t $t

�$t 1C$t

�

D

�
1 1

0 1

��
1 0

�$t 1

��
1 �1
0 1

�
:

As in loc. cit. a) we see that h is in UCC
x nUCC

V
(right hand side). HenceUCC

V
,

which contains
�

1 0
�$t 1

�
, is not normalized by

�
1 1
0 1

�
2 U˛1;x � UCC

x . Moreover
if h 2 UCC

V
:U��

x :wZ0:U
��
x with w 2 W v, one has w D 1 (as the image of h in

SL2.�Œt; t
�1�/ is trivial). So h 2 UCC

V
:U��

x :Z0 \UCC
x . But the decomposition of

an element in UCU�Z is unique (1.6.2), hence h 2 UCC
V

, contradiction.

4) Proof of the proposition. As suggested in [7], we get the decomposition of
P.x/ as in the article by Iwahori and Matsumoto [20, Proposition 2.4]. The
main ingredients are the decompositions UC

V
D U˛i ;V Ë UV.�

C n ¹˛iº/ and
U�

x D U�˛i ;x Ë Ux.�
� n ¹�˛iº/ where ˛i is a simple root and UV.�

C n ¹˛iº/,
Ux.�

� n ¹�˛iº/ are de�ned as in [16, Proof of 3.4d] and normalized by U˙˛i ;x.
The decomposition of yP.x/ is a simple consequence. We have now to prove that
two sets UC

V
:U�

x :wZ0:U
nm�
x for two di�erent w 2 W v have no intersection. But

UC
V
:U�

x andZ0:U
nm�
x �x the local chamber F l.x;�C v

C/; so this is a consequence
of the uniqueness in the Bruhat decomposition of xGx D Gx=G	x

, cf. 5.11.4. �
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6. Hovels and bordered hovels for almost split Kac–Moody groups

6.1. Situation and goal. We consider an almost split Kac–Moody group G over
a �eld K, as in Section 2. We suppose that the �eld K is endowed with a non
trivial real valuation ! D !K which may be extended functorially and uniquely
to all extensions in Sep.K/. This condition is satis�ed ifK is complete for !K (or
more generally if .K; !K/ is henselian).

We built in 5.4 a bordered hovel x	 .G; L; xA/ for any L 2 Sep.K/ splitting G.
We want a bordered hovel x	 .G; K;K xA/ on which G D G.K/ would act strongly
transitively and G-equivariant embeddings x	 .G; K;K xA/ ,! x	 .G; L; xA/ for L 2
Sep.K/ splitting G.

An idea (already used in the classical case [9]) is to assumeL=K �nite Galois,
to build an action of the Galois group � D Gal.L=K/ on x	 .G; L; xA/ and to
�nd x	 .G; K;K xA/ in the �xed point set x	 .G; L; xA/�. As already known in the
classical case [27], the equality of these last two objects is in general impossible,
but possible if L=K is tamely rami�ed.

6.2. Action of the Galois group on the bordered hovel. 1) We consider a �nite
Galois extension L of K which splits G. The Galois group � D Gal.L=K/ acts
on 	 v.L/ D 	 v.G; L;Av/ and the action of G.L/ on 	 v.L/ is �-equivariant.
More precisely we choose L such that there exists a maximal K-split torus S
in G contained in a maximal torus T de�ned over K and split over L (cf. 2.4.4
and 2.5). We described in Section 2 the �xed point set 	 v.L/� , its K-apartments
andK-facets. In particular the apartmentAv D Av.T/ corresponding toT is stable
under � and .Av/� is the K-apartment KA

v.S/ corresponding to S.
We want an action of � on the bordered hovel x	 .L/ D x	 .G; L; xA/ compatible

with its action on 	 v.L/ and the action of G.L/. Hence � must permute the apart-
ments and façades of x	 .L/ as the apartments and facets of 	 v.L/. In particular �
has to stabilize the bordered apartment xA D xA.T/ corresponding to Av i.e. to T.

2) Action on xA:  2 � must act a�nely on xA with associated linear action

the action of  on V D
�!
Av D

�!
A . Moreover this action has to be compatible with

the action on the root groups (for all ˛ 2 ˆ .U˛;�/ D U˛;�0 H) .D.˛; �// D
D.˛; �0/ at least when � 2 ƒ˛) and we know that the action of � on G.L/ is
compatible with its action on its Lie algebra (.exp.ke˛// D exp..k/.e˛// ).
Using these results and conditions, C. Charignon succeeds in �nding a (unique)
good action of � on the essentialization Ae D A=V0 of A; in particular the action
of N is �-equivariant [13, 13.2]. As � is �nite and acts a�nely, it has a �xed point
x0 C V0 in Ae.

Now � has to �x a point in x0 C V0. But all points in x0 C V0 play the same
rôle with respect to the conditions; so we may choose a point in x0 C V0, e.g. x0,

and say that � �xes x0 i.e. that � acts on A as on
�!
Av (after choosing x0 as origin).

This action is compatible with the above action on Ae. It permutes the walls,

facets, . . . , and extends clearly to xA ( D xAe, xAi or xxA).
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N.B. We had to make a choice to de�ne this action. This is not a surprise: as
in the classical case, V0 is a group of G-equivariant automorphisms of x	 .L/.

3) Lemma. This action of � on xA stabilizes yP:

. yP .x// D yP .x/;

for all x 2 xA and  2 �.

Proof. By Charignon’s work (2) above) we know that� stabilizesP. Hence  2 �
sends yP to a family Q which is still a very good family of parahorics. So 5.9.1 tells
that Q D yP. Note that a longer proof may also be given using the star actions
instead of 5.9.1. �

4) We have got compatible actions of � on G D G.L/ and xA satisfying the
above lemma. As x	 .L/ D x	 .G; L; xA/ is de�ned by the formula in 4.1, we obtain
an action of � on this bordered hovel, for which the G-action is �-equivariant.
Each  2 � acts as an automorphism: it induces a permutation of the apartments,
facets, walls, façades, chimneys, . . . and the bijection between an apartment and
its image is an a�ne automorphism.

This action of � on x	 .L/ is compatible with its action on 	 v.L/ (.	F v/ D
	.F v/ ) and on the sector faces (.x C F v/ D .x/ C .F v/ ) or the chimneys.
Moreover the projections on the façades are �-equivariant (ıprF v D pr.F v/ ı).
These results are �rst proved (easily) for the actions on A and Av, and then
extended (easily) to x	 .

As � has �xed points in 	 , any �-�xed point in a façade 	F v � x	 is associated
to a �-stable sector face x C F v in 	 .

6.3. The descent problem. In x	 we have got an apartment xA stable under �.
But � is �nite and acts a�nely, so it has a �xed point in A and A� is an a�ne

space directed by .
�!
Av/� . It seems interesting to choose xA � as a�ne bordered

K-apartment and de�ne K
x	 D G.K/: xA � . Unfortunately we are not sure then that

xA � is stable under KN or �xed by KZ; so this K
x	 is not a good candidate for a

bordered hovel associated to the root datum .G.K/; .V
K˛/K˛2Kˆ;KZ/.

It is possible to �nd in x	 � a subspace of apartment KA1 directed by .
�!
Av/� and

stable under KN . But then it is not clear that there exists an apartment xA2 in x	
containing K

xA1 and stable under �, or even such that xA2 \ x	 � D K
xA1 [13, 13.3].

This problem is the same as in the classical case of reductive groups: [8], [9],
and [27]. Charignon solves it the same way: under some hypothesis on G or K
and by a two steps descent.
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6.4. The descent theorem of Charignon. This abstract result is largely inspired
by the descent theorem of Bruhat and Tits in the classical case [8, 9.2.10]. We
explain here the hypotheses and conclusions of [13, §12], but, to simplify, we
consider a more concrete framework. We keep the notations of loc. cit. or we
indicate them in brackets when they are too far from ours. We keep our idea to
replace many Charignon’s overrightarrows by an exponent v and to use often an
overrightarrow to indicate the generated vector spaces.

1) Vectorial data. We consider a �nite Galois extension L=K which splits G
as in 6.2.1. So there exists in G a maximal K-split torus KS and a maximal torus
T split over L containing KS (we don’t ask T to be de�ned over K).

We consider the �xed point set
�!
I \ D K	 vq D .	 vq/� of � D Gal.L=K/

in
�!
I D 	 vq. The group G.K/ (D G\) acts on

�!
I \. By 2.7, 2.8

�!
I \ is a good

geometrical representation of the combinatorial twin building K	 vc D 	 vc.G; K/.

To KS and T correspond apartments Av
\

D KA
vq.KS/ �

�!
I \ included

in Avq D Avq.T/ �
�!
I ; they are cones in the vector spaces

�!
Av

\
(D

�!
V \)

included in
�!
Avq (D

�!
V ). The real root system ˆ (resp. the real relative root

system Kˆ D ˆ\) is included in the dual .
�!
Avq/� (resp. .

�!
Av

\
/�) and has a free

basis. Its associated vectorial Weyl group is W v D N=T (D W.ˆ/) (resp.
KW

v D KN=KZ D W.ˆ\/). Here KZ D T \ or KN D N \ is the generic

centralizer or normalizer in G\ of KS. We write
�!
Av

\0
D \a2ˆ\ Ker.a/.

We consider also the Weyl K-apartment Av\ D KAvq.KS/ with Av
\

� Av\ �
�!
Av

\
and the corresponding building

�!
I \ D G\:Av\ (cf. 2.8). As in [13] we de�ne the

facets inAv
\

or
�!
I \ as the tracesF v

\
D F v\\

�!
I \ of the WeylK-facetsF v\ inAv\ or

�!
I \. The same setAv

\
, endowed as facets with the non empty tracesF v

# D F vq\Av
\

for F vq a facet in Avq, will be written Av
#. There is a one to one correspondence

between facets of Av\ and Av
\
. But a facet F v\ or F v

\
D F v\ \Av

\
contains several

facets in Av
#; among them one F v\

# is maximal, open in F v\, generates the same

vector space and F v\
# C

�!
Av

\0
D F v

\
C

�!
Av

\0
D F v\ (cf. 2.8).

The combinatorial twin building K	 vc
˙ is associated to the root datum .G.K/,

.V
K ˛/K ˛2K ˆ;KZ/ (D .G\; .U

\
a/a2ˆ\ ;KZ/). Everything associated as in §1 to

this root datum will be written with an exponent \ or a subscript K . The
reader will check easily the conditions (DSR), (DDR1),. . . , (DDR3.2) and (DIV)
of [l.c. 12.1], cf. [l.c. 13.4.1]. In particular for a D K˛ 2 ˆ\, U \

a D V
K˛ is in-

cluded in the group Ua generated by the groups Uˇ for the roots ˇ in the �nite
set ˆa D ¹ˇ 2 ˆ j ˇ �!

V \
2 RC�aº D

®
ˇ 2 ˆ j Kˇ D K˛ or

�
1
2

�
:K˛ or 2:K˛

¯
.

Actually Ua D
Q

ˇ2ˆa
Uˇ for any order [26, 6.2.5].
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2) A�ne data: We consider the essential bordered hovel x	 D x	 .G; L; xAe/

(D I) and xA (D A.T /) the bordered apartment associated to Avq whose main

façade A (D Aı.T /) is an a�ne space under
�!
Avq D

�!
V . The façades of x	 are

indexed by the facets F v 2 	 vc.
We consider moreover a subset xI# in x	 , we write A# D A \ xI# and suppose

that the following axioms are satis�ed.

(DM1) xI# is G\-stable and, for all F v 2 	 vc
sph, xI# \ 	F v is convex in 	F v .

(DM2) A# is a�ne in A, directed by
�!
V \ and xA\xI# is the closure xA# of A# in xA.

(DM3) For all F v 2 	 vc
sph, if F v \Av\ 6D ;, there exists a facet F in the (classical)

apartment AF v with F \ xI# 6D ; and F is equal to any facet F 0 in 	F v

with F 0 \ xI# 6D ; and F � F 0.

(DM4) xA# is stable under KN D N \.

Axiom (DM3) means essentially that, in appropriate spherical façades, xA\xI#

cannot be enlarged by modifying the apartment xA.

For a 2 ˆ\ and u 2 U \
a , one de�nes '\

a.u/ as the supremum in R [ ¹C1º of
the k such that u is in the group Ua;k generated by the U˛;r˛k D '�1

˛ .Œr˛k;C1�/

for ˛ 2 ˆa, r˛ 2 RC� and ˛ �!
V \

D r˛a. Actually Ua;k D
Q

˛2ˆa
U˛;r˛k and

U
\

a;k
WD .'

\
a/

�1.Œk;C1�/ D U
\
a \ Ua;k .

There are two more axioms, one normalizing ' (among equipollent valuations,
in such a way that the associated origin 0' ofA is inA#) and one avoiding triviality

for each '\
a. They are easily veri�ed in our situation [l.c. 13.4.1].

As we have three types of vectorial facets in
�!
V \ D

�!
Av

\
, we may de�ne three

bordered apartments with A#: xA\ (resp. xA\, xA#) is the disjoint union of the façades

A#
F v

\

D A#=
�!
F v

\
(resp. A#

F v\ D A#=
�!
F v\, A#

F v
#

D A#=
�!
F v

# ), for F v
\

(resp. F v\, F v
# )

a facet in Av
\

(resp. Av\, Av
#). Actually xA# is the closure of A# in xA as in (DM2)

above. Moreover the sets xA\ and xA\ are equal (as
�!
F v

\
D

�!
F v\ when F v

\
D F v\ \Av

\
)

but they di�er by their facets, sectors, . . . .

When F v\ � F
v\

# D F v \ Av
\

for F v a (maximal) facet in Av, we have
�!
F v\ D

�!
F v, so A#

F v\ � AF v � xA. Hence for x 2 A#
F v\ � xA\, we may de�ne:

Q\.x/ D yP.x/ \G\ .

This is the same de�nition as in [l.c. 12.4] as, for us,F v\
# is uniquely determined

by F v\.
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3) Theorem. We suppose that all conditions or axioms in 1) or 2) above are
satis�ed. Then,

a) KN DW N \ � N: yP. xA#/;

b) for all a 2 ˆ\ andu 2 U \
a n¹1º the �xed point set of u inA# isD#.a; '

\
a.u// WD

¹x 2 A# j a.x � 0'/ C '
\
a.u/ � 0º and m\.u/ 2 N \ induces on A# the

re�ection with respect to the wall M#.a; '
\
a.u// D @D#.a; '

\
a.u//;

c) the family '\ is a valuation for the root datum .G\; .U
\
a/a2ˆ\ ;KZ/;

d) the family Q\ D .Q\.x//x2 xA\ is a very good family of parahorics;

e) there is an injection of the essential bordered hovel xI\ associated to Q\ into
x	 which may be described on the façades as follows.

For F v\

# D F v \ Av
\

open in F v\ as above in 2), the KN -equivariant em-

beddingA#
F v\ ,! AF v between apartment-façades may be extended uniquely

in a PK.F
v\/-equivariant embedding I

\

F v\ ,! 	F v , where I
\

F v\ is the façade

of xI\ associated to F v\.

Remark. The de�nition of '\
a tells us that a wall M\.a; '

\
a.u// is the trace on A#

of a wall M.˛; k/ for some ˛ 2 ˆa.

Proof. a), b), c) and a great part of d), e) are among the main results of Charignon
[l.c. 12.3, 12.4]. For Q\ he proves (P1) to (P7), but then (P8) is got for free in this
framework (cf. 4.3.6) and (P10) is clearly satis�ed.

He proves (P9) actually for xA\ i.e. for (spherical) vectorial facets in Av
\
: if

F v\ is spherical, F v\
1 � F v\ and x 2 A#

F
v\
1

D A#
F v

1\

(with F v
1\

D F
v\
1 \ Av

\

and F v
\

D F v\ \ Av
\
) he proves only Q\.x/ \ PK.F

v
\
/ D Q\.x C F v

\
/. But

PK.F
v
\
/ D PK.F

v\/, F v
\

C
�!
Av

\0
D F v\ (2.8.3) and the “torus” SZ in the center

of G\ (2.9.2) acts on A# as a group (of translations)
�!
T generating

�!
Av

\0
. So

Q\.x/ \ PK.F
v\/ D Q\.

S
�2

�!
T
x C � C F v

\
/ D Q\.x C F v\/.

The maps in e) between façades are described in [l.c. 12.5] and proved to be
injective in the spherical case; but 4.14 gives the general injectivity. �

6.5. Tamely quasi-splittable descent. 1) Let S be a maximal K-split torus in
the almost split Kac–Moody group G over K. The generic centralizer Zg.S/ of
S in G (1.10 and 2.5.3) is actually a reductive group de�ned over K [26, 12.5.2].
We suppose that the following condition (independent of the choice of S,
as di�erent choices are conjugated by 2.5.1) is satis�ed.
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(TRQS) Zg.S/ becomes quasi-split over a �nite tamely rami�ed Galois extension
M of K.

(Actually Zg.S/ is quasi-split over M if and only if G itself is quasi-split.
It is an easy consequence of 2.7 NB 2) applied toM and a maximalM -split torus
containing S.)

There are two important cases where this condition is satis�ed for anyG: when
the �eldK is complete (or henselian) for a discrete valuation with perfect residue
�eld (we then may replace tamely rami�ed by unrami�ed, cf. [9, 5.1.1] or [27,
5.1.3]) or when the residue �eld of K has characteristic 0 (we then may replace
quasi-split by split).

A consequence of this hypothesis is that there exists a �nite Galois extension
L ofK containingM , a maximalK-split torus KS, a maximalM -split torus MS
and a maximal torus T with TL-split,M -de�ned and KS � MS � T [13, 13.4.2].
We shall now apply the abstract descent theorem successively to L=M and L=K
to build a bordered hovel for G over K.

2) Quasi-split descent. We consider the extensionL=M , so we apply 6.4 with
K D M : G is quasi-split over K and split over L. Then T D Zg.KS/ is the only
maximal torus containing KS.

We choose the essential bordered hovel x	 D x	 .G; L; xAe/ and set xI# D x	 � .
Then the bordered apartment xA D xAe.T/ is �-stable. The Galois group � has
a �xed point in its main façade A D Aq.T/ and A# D A� D A \ xI# is an

a�ne subspace directed by
�!
V � D

�!
V \. It is easy to verify (DM1), (DM2) and

also (DM4) (as KN is the normalizer in G.K/ of KS). For (DM3) there exists a
chamber F in AF v meeting xI#, so the condition is clearly satis�ed.

Therefore Theorem 6.4.3 applies. Actually in the classical case (ˆ �nite)
G.K/:A# is the extended Bruhat–Tits building of G overM cf. [9] or [27].

3) General descent. We come back to the situation and notations in 1) above.
We still choose the essential bordered hovel x	 D x	 .G; L; xAe/ with A D Aq.

The generic centralizer Zg.S/ of S D KS is a K-de�ned reductive group
generated over L by T D T.L/ and the groups U˛ for ˛ 2 ˆ, ˛

S
trivial. In par-

ticular overL, Zg.S/ is isomorphic to some GS.I0/ and by 5.8.2 	 .Zg.S/; L;A
q/

may be embedded in 	 . The image is the union 	S D 	 .Zg.S/;G; L;A
q/ of

the apartments of 	 corresponding to L-split maximal tori of G containing S.
This set is stable by � and ZL.S/ D Zg .S/.L/ or the normalizer NL.S/ of S in
G.L/. If we choose a vectorial K-chamber KC

vq
0 � Av

\
and let F vq

0 2 	 vc.L/ be

the spherical vectorial facet containing KC
vq
0 , the projection map � from 	S to

	F
vq

0
is onto and � Ë NL.S/-equivariant; it identi�es the essentialization of 	S

with 	F
vq
0

.
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In 	S we consider the union 	 ord
S

of the apartments corresponding to a torus
containing a maximalM -split torus MS (containing S). It is stable by �ËNL.S/
and we saw in 2) above that JS D ZM .S/:A

#
M D .	 ord

S
/Gal.L=M / is a good

candidate for the hovel of Zg.S/ overM . More precisely its image JF
vq

0
D �.JS/

in 	F
vq
0

is the Bruhat–Tits building of Zg.S/ over M : it is the set of ordinary

Gal.L=M/-invariant points in the Bruhat–Tits building over L [27, 2.5.8c].
We consider now A# D .JS/

Gal.M=K/ D .	 ord
S
/� ; its image by � is in

.JF
vq

0
/Gal.M=K/. But the semi-simple quotient of Zg.S/ is K-anisotropic and

M=K is tamely rami�ed, so we know that .JF
vq
0
/Gal.M=K/ contains at most one

point [27, 5.2.1]. Moreover Koen Struyve [32] proved what was missing in [27]
(condition (DE) of [9, 5.1.5]): this set is non empty (even if the valuation is not
discrete). So .JF

vq
0
/Gal.M=K/ is reduced to one point x0 and A# D ��1.x0/

� . But

��1.x0/ is an a�ne space directed by
�!
F

vq
0 , � is �nite and acts a�nely, so A# is

a (non empty) a�ne space directed by .
�!
F

vq
0 /� D

���!
KC

vq
0 D

�!
Av

\
D

�!
V \. We shall

apply 6.4 with A#, A any apartment of 	 ord
S

containing A# and xA its closure in
x	 D x	 .G; L; xAe/.

We de�ne J D G.M/:JS D G.M/:A#
M (resp. its closure xJ D G.M/:A#

M ); it
is the set of Gal.L=M/-�xed points in the union of the apartments in 	 (resp. x	 )
corresponding to a maximal torus containing a maximal M -split torus, itself
containing a maximal K-split torus. We take xI# D xJGal.M=K/ D xJ� . The
veri�cation of axioms (DM1) to (DM4) is made in [13, 13.4.4]. Actually (DM4) is
clear, (DM2) not too di�cult and (DM1), (DM3) have to be veri�ed in spherical
façades, hence are corollaries of the classical Bruhat–Tits theory.

4) Conclusion. We keep the notations as in 1); let KA
vq be the K-apart-

ment in K	 vq.G/ and Kˆ the real root system associated to S. Then Theo-
rem 6.4.3 gives us a valuation K' D '\ D .K'K ˛/K ˛2K ˆ of the root da-
tum .G.K/; .V

K˛/K˛2Kˆ;KZ/ (cf. 2.7) and a very good family of parahorics

. yPK.x//x2 xA\
. The corresponding bordered hovel is written x	 .G; K; A\/.

For KF vq D F v\ a vectorial Weyl K-facet and F vq a vectorial facet with
F vq \ KA

vq open in KF vq, we have a PK.
KF vq/-equivariant embedding

	 .G; K; xA\/KF vq ,! 	 .G; L; xAe/F vq between the façades. The image G.K/:A#
F v\

is pointwise �xed by �.
Actually the set xA\ is the essential bordered apartment associated to A# and

Kˆ, its façades are the A#
F v\ for F v\ as above. Such a façade A#

F v\ may be identi-

�ed with the closure ofA# inAq.T/F vq . MoreoverA# is the set of Gal.L=K/-�xed
points in the union of the apartments Aq.T/ � 	 .G; L;Aq/ for T a L-split max-
imal torus containing a maximal M -split torus, itself containing the maximal
K-split torus KS. More precisely for each such apartment Aq.T/, Aq.T/ \ 	 �

is empty or equal to A# (an a�ne subspace directed by
������!

KA
v.KS/ �

���!
Aq.T/)
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and, for each F vq as above, the intersection xAq.T/ \ 	 �
F vq is empty or equal to

xA#\Aq.T/F vq (as the arguments in 3) give analogous results in the Gal.L=K/-sta-
ble façades).

The image of 	 .G; K; xA\/KF vq in 	 .G; L; xAe/F vq is the set of Gal.L=K/-�xed
points in the union of the apartments Aq.T/F vq � 	 .G; L;Aq/F vq for T a L-split
maximal torus containing a maximal M -split torus, itself containing a maximal
K-split torus.

6.6. More general relative apartments. Most of the preceding arguments apply
with a more general choice of apartments. We keep the hypotheses as in 6.5.1, but
we choose for A one of the model apartments associated to G and T as in 3.5.1
(i.e. via a commutative extension 'W S ! S0 of RGS) or eventually a quotient by a
subspace V00 of V0 � V D Y 0 ˝R. We suppose moreover that S0 is endowed with
a star action of � for which ' is ��-equivariant and V00 �

�-stable; cf. Remark 2.2
and the choice made in 2.4.1. We write Av the corresponding vectorial apartment

in
�!
A D V=V00 and xA one of the three associated bordered apartments.
The Galois group � acts on x	 .G; L; xA/ and 	 v.G; L;Av/, cf. 6.2.4. These

actions are compatible with each other, with the G.L/-actions and the essen-
tialization maps �W x	 .G; L; xA/ ! x	 .G; L; xAe/ D x	 , �vW 	 v.G; L;Av/ !
	 v.G; L;Avq/ D 	 vq. We de�ne KA D ��1.A#/� ; it is an a�ne space directed

by .
�!
F v

0 /
� D

��!
KAv (where F v

0 D .�v/�1.F
vq
0 / and A#, F vq

0 are as in 6.5.3). The
group KN acts on KA, we write �K this action.

We choose KA as model relative apartment. We may suppose that KA � A,
but then A, as apartment in 	 .G; L;A/, is non necessarily �-stable. We choose
in KA a special origin x0 i.e. its image by � is the special point in A# chosen as
origin in 6.4.2 to de�ne the valuation K' D '\ of .G.K/; .V

K˛/K˛2K ˆre ;KZ/.
For x 2 KA we de�ne yPK.x/ D yP .x/ \ G.K/.

The (real) walls in KA are the inverse images by � of the walls in A# de�ned
in 6.4.3b, i.e. they are described asMK.K˛;K'˛.u// D ¹x 2 KA j K˛.x � x0/C

K'˛.u/ D 0º for K˛ 2 Kˆ and u 2 V
K˛ n ¹1º; their set is written MK . Note

that, even if A D Aq is essential, KA may be inessential (as essentiality does not
involve the imaginary walls de�ned below).

We consider the set ML=K [ Mi
L=K

of the non trivial traces on KA of the

real or imaginary walls of A. More precisely if M.˛; �/ 2 ML [ Mi
L is such a

wall and ˛ 2 ˆ, K˛ D ˛
S

2 Kˆ (resp. ˛ 2 �, K˛ D ˛
S

2 K� n Kˆ) then
MK.K˛; �/ D M.˛; �/ \ KA is a real (ghost) wall (resp. an imaginary wall) and
we write MK.K˛; �/ 2 ML=K (resp. MK.K˛; �/ 2 Mi

L=K
). By Remark 6.4.3

MK � ML=K .

We de�ne the enclosure map clK�r

L=K
as in 3.6.1: it is associated to ML=K and

the subset Mir
L=K

of Mi
L=K

containing the imaginary walls which are almost real
i.e. of direction Ker.K˛/with K˛ 2 K�

r D K�\.
P

2K ˆ R/ � K�, cf. 2.9.3b.
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By 3.6.1 clK�r

L=K
does not change if we replace Mi

L=K
by MiR

L=K
D ¹MK.K˛; �/ j

K˛ 2 K�
im; � 2 Rº (and Mir

L=K
by the set MirR

L=K
of all walls parallel to a wall in

Mir
L=K

). This enclosure map is almost tame, but in general non tame, as it involves

M
L=K

instead of MK . A more precise enclosure map clK�r

K associated to MK and

a subset of MiR
L=K

will be introduced in 6.11; it will be tame.

Proposition 6.7. In the above situation, the following properties hold.

a) The action �K is a�ne and KN � N: yP .KA/ � N:KZ. In particular for
n 2 KN , the linear map associated to �K.n/ is �v

K.n/ 2 KW
v D KN=KZ.

b) The group KZ acts on KA by translations. More precisely for z 2 KZ,
the vector �K.z/ of this translation is the class modulo V00 of a vector
Q�K.z/ 2 V which satis�es the formula: �1. Q�K.z// D �!K.�2.z//, for any
�1 2 X 0 � V � and �2 in the groupX.Z/ of characters of the reductive group
Zg.S/ with the condition that �2 and '�.�1/ 2 X.T/ coincide on S.

As X.Z/ is identi�ed by restriction to a �nite index subgroup of X.S/, this
formula determines completely Q�K.z/ and �K.z/.

c) For any real relative root K˛ and u 2 V
K˛ n ¹1º u �xes the half apartment

DK.K˛;K'˛.u// D ¹x 2 KA j K˛.x � x0/C K'˛.u/ � 0º and �K.mK.u//

is the re�ection s
K ˛;K '˛.u/ with respect to the wall MK.K˛;K'˛.u// D

@DK.K˛;K'˛.u//.

d) If moreover K˛ is non multipliable, mK.u/
2 D K˛

_.�1/ and mK.u/
4 D 1.

e) �K.KN/ is a semi-direct product of �K.KZ/ by a subgroup �xing x0 and
isomorphic, via �v

K , to KW
v D KN=KZ.

f) The action of KN on the closure ��1.A#/� of KA in xA is deduced from its
actions on KA and KAv : �K.n/: pr

K F v.x/ D pr�v
K

.n/.K F v/.�K.n/:x/, for
n 2 KN , x 2 KA and KF

v a K-facet in KAv.

N.B. The equations de�ning
��!

KAv in
�!
Av are inQ and correspond (via bar) to the

equations de�ning KY D Y.S/ in Y D Y.T/ i.e. S in T, cf. 2.4.4 an 2.5.2. So the

formula in b) above de�nes a vector �K.z/ 2
��!

KAv D
�!

KA. Moreover �K.z/ is in

the image of the map Y.S/˝ R ,! Y.T/˝ R
'

! V ! V=V00 (analogous to the
map in 1.10).

Proof. With the notations as in 2.8.1, let j 2 KI re; then J D K¹j º D I0 [¹i 2 I j
��i D j º is spherical. So GS.J / is a reductive group, containing Zg.S/ D GS.I0/

and de�ned over K; we write GJ the corresponding K-subgroup-scheme of G.
By 5.8.2 the extended Bruhat–Tits building 	 .GJ ; L;A/ embeds in the hovel
	 .G; L;A/: the way we have chosen A ensures us that A is really endowed with
the same action of the normalizer of T in GJ .L/ as in the case of an extended
Bruhat–Tits building [27, §2.1]. Moreover the actions of � are compatible.
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As the classical construction of 	 .GJ ; K;A/ uses the same methods as in 6.5
above, we know that a), b) and c) are satis�ed for KN \ GJ .K/ and K˛ D
˙K˛j ;˙2K˛j [27, 5.1.2]. So b) is completely proved. Now KW

v D KN=KZ

is generated by simple re�ections in .KN \ GJ .K//=KZ for j 2 KI re (as
KZ � GJ .K/, for all j ). So a) is satis�ed and also c) as any K˛ 2 Kˆre is
conjugated by KW

v to some ˙K˛j or ˙2K˛j .

Let K˛ and u be as in d); we choose t 2 S.Ks/ such that K˛.t/ D �1. By
[5, 7.2 (2)], mK.u/

2 D mK.u/:t:mK.u/
�1:t�1 D s

K ˛.t /:t
�1 D K˛

_.�1/; so d)
follows. As x0 was chosen special, for all i 2 KI re, there exists ui 2 V

K˛i
n ¹1º

with K'˛i
.ui / D 0 hence mK.ui / �xes x0. So the subgroup �xing x0 in e) is

the image by K� of the subgroup of KN generated by the mK.ui / and e) follows
from a) and b).

We know that, for the action � ofN on xA, �.n/: prF v.x/ D pr�v.n/.F v/.�.n/:x/;
so f) follows from a). �

6.8. Embeddings of bordered apartments. 1) To de�ne the bordered apart-
ment K

xA, we always choose the vectorial WeylK-facets in KAv (as for xA\ in 6.4.2
but di�erently from 6.7f). We still have three choices for K

xA (as in the general

de�nition 3.7.2): K
xxA (resp. K

xAe) is the disjoint union of the inessential façades

KAne
KF v D KA (resp. the essential façades KAe

KF v D KA=
��!
KF v) for KF v a Weyl

K-facet in KAv, and K
xAi di�ers from K

xAe only by its main façade which is the
inessential one. A Weyl K-facet KF v contains a unique maximal K-facet KF

v
max

which is open in KF v, hence
����!

KF
v
max D

��!
KF v. So KAe

K F v is equal to KAe
KF v

max
.

Now Proposition 6.7f tells us that the action �K of KN on KA extends naturally

to K
xA (D K

xAe, or K
xAi or K

xxA).

2) For any choice of A (suitable for G and L), we chose a unique KA (inside
A for some embedding). So it is interesting to de�ne a good choice for K

xA

for each choice of xA. And it is natural to choose K
xAi (resp. K

xAe, K
xxA) when

xA D xAi (resp. K
xAe, K

xxA). Then we have a KN -equivariant embedding K
xA ,! xA

de�ned as follows on each façade: for KF v a vectorial Weyl K-facet, let F v

be the facet in Av containing KF
v
max, then KAne

K F v D KA ,! A D Ane
F v and

KAe
KF v D KA=

����!
KF

v
max ,! Ae

F v D A=
�!
F v.

Note that the main façade does not embed in general in the main façade when
we choose K

xAe (as was the case for Charignon, cf. 6.4.3e). Moreover, if KF
v is

positive and negative, the de�nition of KF
v
max may include a choice of sign. For

example the main façade KAe of K
xAe may embed in Ae

F v or Ae
�F v (they are equal

but included separately in xA).
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3) For x 2 K
xA, more precisely x 2 KA

.n/e
K F v , we de�ne yPK.x/ D yP .x/\G.K/

where x is considered in A
.n/e
F v as above. This coincides with the above de�nition

for x 2 KA and it is compatible with the projections: yPK.x/ � yPK.prKF v
1
.x//.

Theorem 6.9. We suppose that the Kac–Moody group G satis�es the condition
(TRQS) of 6.5 and we keep the notations as in 6.5 to 6.8. See in particular 6.6
for KA, K' and clK �r

L=K
.

a) The family K' is a valuation for the root datum .G.K/; .V
K˛/K˛2Kˆ;KZ/.

b) The family yPK D . yPK.x//x2K
xA is a very good family of parahorics. We write

	 .G; K;KA/ (resp. x	 .G; K;K xA/) the corresponding hovel (resp. bordered
hovel).

c) The family yPK is compatible with the enclosure map clK �r

L=K
: 	 .G; K;KA/ is

a parahoric hovel of type .KA; clK �r

L=K
/, in particular G.K/ acts on it strongly

transitively by vectorially Weyl automorphisms.

d) The KN -equivariant embedding K
xA ,! xA may be extended uniquely in a

G.K/-equivariant embedding x	 .G; K;K xA/ ,! x	 .G; L; xA/. Its image is in
x	 .G; L; xA/� .

e) If the valuation !K of K is discrete, then KA (or 	 .G; K;KA/) is semi-
discrete: in ML=K or MK the set of walls of given direction is locally �nite.

f) The hovel 	 .G; K;KA/ is thick: for any wall M 2 MK , there are three half-
apartmentsD1; D2; D3 in 	 with boundaryM and such thatDi \Dj D M

for i ¤ j . Moreover the set of chambers adjacent to a chamber C along
a panel in a wall MK.K˛; k/ with K˛ 2 Kˆ non divisible, is in one to one
correspondence with a �nite dimensional vector space over the residue �eld
� of K.

De�nition. 	 .G; K;KA/ (resp. x	 .G; K;K xA/) is the a�ne hovel (resp. a�ne
bordered hovel) of G over K with model apartment A (resp. xA).

Remark. 	 .G; K;KA/ is the main façade of x	 .G; K;K xA/ for K
xA D K

xA
i
or K

xxA.
By the de�nition of KA in 6.6 and of A# in 6.5.4, the image of 	 .G; K;KA/ in
	 .G; L;A/ is the set of �-�xed points in the union of the apartments A.T/ �
	 .G; L;A/ for T a L-split maximal torus containing a maximal M -split torus,
itself containing a maximal K-split torus.

Proof. a) The family K' is actually de�ned by the essentialization of KA. So it is
a valuation by 6.4.3c.

b) The family yPK satis�es clearly to axioms (P1), (P2), (P4), (P5), and (P10).
(P3) is proved in 6.7c for the main façade; the result is analogous in the other
façades and the link is made by 6.7f.



Almost split Kac–Moody groups over ultrametric �elds 965

If KF v.x/ is spherical, then the corresponding facetF v (as in 6.8.2) is spherical
and KAK F v.x/ embeds in AF v which is an apartment in the Bruhat–Tits build-
ing 	 .G; L; xA/F v for the reductive group P.F v/=U.F v/ ' M.F v/. Moreover
KAKF v.x/ is chosen in 	 .G; L; xA/F v as in 6.5.3 i.e. as in the descent theorems

of (extended) Bruhat–Tits buildings. So yPK.x/ is generated by KN.x/ and the
V

K ˛ \ yPK.x/ for K˛ 2 Kˆ and (P6) is satis�ed.

For x 2 KAK F v
1

and KF v
1 � KF v we write F v

1max and F v
max the corresponding

maximal facets in Av. Then yPK.x/ \ PK.
KF v/ � G.K/ \ yP .x/ \ P.F v

max/ �
G.K/ \ yP .x C F v

max/ � G.K/ \ yP .x C F v
max \ KAv/ D G.K/ \ yP.x C KF v/

with KF
v D F v

max \KAv � KF
v. But KF

v C
��!
KAv

0 D KF v and the “torus” SZ in

the center of G.K/ (2.9.2) acts on KA as a group (of translations)
�!
T generating

��!
KAv

0; so yPK.x/ \ PK.
KF v/ D yPK.

S
�2

�!
T
x C � C KF v/ D yPK.x C KF v/ and

(P9) is satis�ed.
For x 2 xA and KC v a chamber in KF v.x/�, we have by 6.4.3d yPK.x/ �

yPK.�x/ D . yPK.�x/ \ U.KC v//:. yPK.�x/ \ U.�KC v//:KN.�x/. We know by
construction that yP.�x/ \ U.˙C v/ D yP .x/ \ U.˙C v/ (cf. 5.1 to 5.3) for any
chamber C v in F v� (F v as above) e.g. C v containing KC

v D KC v \ KAv. So
yP .�x/ \ U.˙KC v/ D yP .x/ \ U.˙KC v/ and yPK.�x/ \ U.˙KC v/ � yPK.x/.
Hence yPK.x/ D . yPK.x/ \ U.KC v//:. yPK.x/ \ U.�KC v//:. yPK.x/ \ KN.�x//

and yPK.x/ \ KN D KN.x/. So (P8) is satis�ed.
In the situation of (P7), letB D ¹x; prF v.x/º. We saw above that yPK.x/:KN D

yPK.�x/:KN . So, by 6.4.3d, yPK.x/:KN \ PK.
KF v/:KN � yPK.�B/:KN . Let

KC v be such that KF v � KC v, then arguing as in [16, 4.3.4] we see that
yPK.�B/ D Œ yPK.�B/ \ U.KC v/�:Œ yPK.�B/ \ U.�KC v/�:KN.�B/ � Œ yPK.B/ \
U.KC v/�:Œ yPK.B/ \ U.�KC v/�:KN . So (P7) follows.

c) Let � be a non empty �lter in KAKF v and KC v a chamber in .KF v/�. We
consider the facet F v

1 in Av such that KF
v
1 D F v

1 \ KAv is open in KC v and a
chamber C v 2 .F v

1 /
�. Then yPK.�/ \ U.˙KC v/ � G.K/ \ yP .�/ \ U.˙C v/ �

G.K/ \ yP .cl�.�// � G.K/ \ yP .clK�

L=K
.�//, where cl�.�/ (resp. clK �

L=K
.�/)

is the enclosure of � in A (resp. KA) for the root system � (resp. for K� and
ML=K , Mi

L=K
). We use once more the torus SZ in the center of G.K/: we have

clK�

L=K
.
S

�2
�!
T
� C �/ D clK �r

L=K
.�/. So yPK.�/ \ UK.˙KC

v/ � yPK.clK�r

L=K
.�//.

Hence yPK is compatible with clK�r

L=K
and c) is a consequence of 4.12.5.

d) The existence of a unique PK.
KF v/-equivariant map 	 .G; K;K xA/KF v !

	 .G; L; xA/F v extending AKF v ,! AF v is an easy consequence of the de�nitions
of �K and yPK.x/: KN � N: yP .KA/, “�K D �

KN
” and yPK.x/ D G.K/ \ yP .x/.

As for 6.4.3e we conclude with 4.14.

e) As !K is discrete and L=K �nite, !L is discrete. Suppose that K˛ 2 Kˆ is
non divisible, then the walls in ML=K of direction Ker.K˛/ are the traces of walls
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in A of direction Ker.ˇ/ for ˇ 2 ˆ with Kˇ D K˛ or Kˇ D 2:K˛. There is only
a �nite number of such ˇ and, for each ˇ, ƒˇ D !L.L

�/ is discrete. So the set of
these walls of direction Ker.K˛/ is locally �nite.

f) The �rst assertion (about thickness) is a simple consequence of 6.7.c. We
write a D K˛. By 4.11e this set of chambers is in one to one correspondence with
Va;k=Va;kC. Suppose that 2a 62 Kˆ, then by 6.4.2, Va;k D Va \ .

Q
K ˇDa Uˇ;k/

is an OK-module and Va;kC D Va \ .
Q

KˇDa Uˇ;kC/ an OK-submodule such
that mK :Va;k � Va;kC. So Va;k=Va;kC is a �-vector space of dimension �
dimK.Va/ D j.a/j. When 2a 2 Kˆ we prove, the same way, that Va;k=Va;kC is a
group extension of two �-vector spaces of dimensions at most j.2a/j and j.a/j �
j.2a/j, cf. 2.6. To see that Va;k=V2a;2k is an OK-submodule of

Q
KˇDa Uˇ;k �

Va;L=V2a;L, we may use the coroot .2a/_ in Y.S/; as a..2a/_/ D 1 the exterior
multiplication by K n ¹0º in Va;L=V2a;L is given by the action of the torus S.K/.

�

6.10. Remarks. 1) The condition (TRQS) is certainly non necessary for the ex-
istence of an hovel 	 .G; K;KA/; the existence of this hovel for any almost split
Kac–Moody group G (over a complete �eld) seems a reasonable conjecture, as
in the classical (= reductive) case. On the contrary the existence of a G.K/-equi-
variant embedding of 	 .G; K;KA/ in 	 .G; L;LA/ for any extension L=K seems
to necessitate (TRQS) or !K discrete. And the functoriality of these embeddings
seems to necessitate (TRQS). There are counter-examples even in the classical
case [27, 3.5.9 and 3.4.12a].

2) We chose to de�ne the façades of K
xA and x	 .G; K;K xA/ using the Weyl

K-facets as indexing set. This is more natural for the bordered hovel of the root
datum .G.K/; .V

K˛/K˛2K ˆ; KZ/ but a de�nition using K-facets seems richer.
This is largely an illusion:

Let KF v � KAv be a Weyl K-facet and KF
v (resp. KF

v
min, KF

v
max) be any

(resp. the minimal, maximal)K-facet in KAv corresponding to KF v andF v (resp.
F v

min, F v
max) the corresponding facet in Av: hence KF

v
min � KF v � KF v

max and

F v
min � F v � F v

max. The K-façade KAne
K F v D KA or KAe

K F v D KA=
��!

KF
v

is endowed with a system of relative real roots Kˆ
m.KF

v/ (and even a system
of relative almost real roots K�

rm.KF
v/) which is independent of the choice of

KF
v. So KAne

K F v and the essentialization of KAe
K F v do not depend on the choice:

we have projections maps KA D KAne
KF v ! KAe

K F v
min

! KAe
K F v ! KAe

K F v
max

D

KAe
KF v where the last term is the essentialization of the �rst three (actually

��!
KF

v

is in general non enclosed, as KF
v is de�ned by inequalities involving K�, and

not only Kˆ or K�
r).

We saw in 2.8.3c that the �xer PK.KF
v/ of KF

v in G.K/ is independent of
the choice of KF

v. In particular the above maps are KN \PK.KF
v/-equivariant.

Moreover the �xer of a point x in an apartment is included in the �xer of the image
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of x in another apartment. So we have corresponding projection maps between
the façades corresponding to these K-facets:

	 .G; K;K xxA/KF v �! 	 .G; K;KA/
K F v

min
�! 	 .G; K;KA/

KF v

�! 	 .G; K;KA/
K F v

max
D 	 .G; K;K xA

e
/KF v

and the last hovel is the essentialization of the �rst three .
Hence these hovels are more or less the same and it is not really interest-

ing to include all of them in a bordered hovel. Perhaps the only interesting
thing to do could be to de�ne a fourth bordered apartment K

xAmin associated to
KA with KAmin

KF v D KA
K F v

min
and 	 .G; K;KAmin/KF v D 	 .G; K;KA/

KF v
min

.

Then x	 .G; K;K xAmin/ coincides with x	 .G; K;K xAe/ when G is split over K (or if
KIre D KI i.e. K� D K�

r).

3) The microa�ne building of a split Kac–Moody group GS over a
“local” �eld is de�ned in [28]. In its Satake realization [l.c. 4.2.3] it is the
union x	sph.GS; K; xAe/ of the spherical façades in the essential bordered hovel
x	 .GS; K; xAe/. Hence, as explained in this Section, Charignon proved the exis-
tence of such a microa�ne building for any almost split Kac–Moody group sat-
isfying (TRQS). This building satis�es clearly the functorial properties proved
below for bordered hovels.

6.11. The enclosure map clK
�r

K
. We already proved in 6.9 that the family yPK

of parahorics is compatible with an enclosure map clK�r

L=K
, much better than cl�

ti

R

(as in 4.11). We now de�ne a still better enclosure map.

1) Imaginary walls: We de�ned in 2.9.1 a subgroup scheme Uma
.K˛/Ks

of Uma˙
Ks

associated to a root K˛ 2 K�
im
˙ . It is clear that Uma

.K ˛/
D Uma

.K ˛/Ks
.Ks/ is stable

under the action of the Galois group Gal.Ks=K/ on Gpma or Gnma explained
in 2.10. We de�ne yV

K˛ D .Uma
.K ˛/

/Gal.Ks=K/ hence V
K˛ D yV

K ˛ \ G.Ks/ D
yV

K ˛ \G.K/ D Uma
.K ˛/

\ G.K/.
An element u of Uma

.K ˛/
may be written as an in�nite product u D

Q
ˇ2.K ˛/ uˇ

with uˇ D
Qj Dnˇ

j D1 Œexp�.�ˇ;jeˇ;j /. Then, for a set � � A, we have u 2
Uma

� ..K˛// if and only if, for all ˇ 2 .K˛/, � � D.ˇ; inf ¹!.�ˇ;j / j j D
1; : : : ; nˇ º � ˇ.x0

0// where x0
0 is the (old) origin in A, see [31, 4.5]. So, for �

in KA, u 2 Uma
� ..K˛// if and only if � � DK.K˛; 'K ˛.u// with '

K ˛.u/ D
inf ¹ 1

mˇ
.!.�ˇ;j / � ˇ.x0

0// j ˇ 2 .K˛/;Kˇ D mˇ :K˛; j D 1; : : : ; nˇ º. As

K˛ 2 K�
im, .K˛/ is in�nite hence '

K ˛.U
ma
.K˛/

/ D R [ ¹˙1º.

We de�ne the set MiR
K of imaginary walls in KA as the set of hyperplanes

MK.K˛; 'K ˛.u// for K˛ 2 K�im, u 2 yV
K ˛ and '

K ˛.u/ ¤ ˙1. For L as
in 6.5.1, we have yV

K˛ � Uma
.K ˛/

.L/ and MiR
K � MiR

L=K
. We have MiR

K D MiR
L=K

in
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many cases e.g., when G is split over K, MiR
K (� Mi

K) is the set of true or ghost
imaginary walls. We do not de�ne in general the analogue of Mi

K .

2) Enclosure map. The enclosure map clK�r

K in KA is associated to MK

and the subset MirR
K of MiR

K containing the imaginary walls in MiR
K of direction

Ker.K˛/ with K˛ 2 K�
r. More precisely for K˛ 2 K�

r, we set ƒ0
K˛ D

'
K ˛. yV

K˛/ n ¹˙1º and then clK�r

K D clK�r

ƒ0 with the notations of 3.6.1.

For any � in KA, we have clK�r

K .�/ � clK�r

L=K
.�/. When G is split over K,

K�
r D � and clK�r

K D cl�.

This enclosure map clK�r

K is more natural than clK�r

L=K
as it involves the set of

true real relative walls MK instead of ML=K (and nothing else in the classical
case): it is MK-adapted (in the sense of 3.6.1). As moreover the directions of
the involved imaginary walls are in the tamely imaginary root system K�

r, this
enclosure map is tame: for any �lter F , clK�r

K .F / � clK�r

ma .F /. By 4.12.2.c the
following proposition is also true for clK�r

ma .F /.

3) Proposition. The family yPK of 6.8.3 is compatible with the enclosure map
clK�r

K . In particular 	 .G; K;KA/ is a parahoric hovel of type .KA; clK�r

K /.

Proof. Let� be a non empty �lter in a façade KAKF v of KA. We choose a Weyl
K-chamber KC v containing KF v and then F v

1 , C v as in 2.10. We have to prove

that yPK.�/ \ U.˙KC v/ � yPK.clK�r

K .�//. By 5.3 and 6.8 we may replace � by
its inverse image in KA, hence suppose that � � A. But yPK.�/ \ U.˙KC v/ D
yPK.�/ \ U.˙F v

1 / D G.K/ \ yP.�/ \ U.˙F v
1 / D G.K/ \ Uma

� .ˆu.˙F v
1 //,

cf. [31, 4.5]. Let K�
˙
nd be the set of non divisible real or imaginary relative roots in

K�
˙. Then by construction, Uma.ˆu.˙F v

1 //.L/ (resp. Uma
� .ˆu.˙F v

1 //) may be
written uniquely as a product

Q
K˛2K �˙

nd
Uma

.K ˛/
.L/ (resp.

Q
K˛2K �˙

nd
Uma

� .K˛/)

where actually Uma
.K ˛/

D U.K ˛/ when K˛ 2 Kˆ. Each subgroup Uma
.K ˛/

.L/ is stable

under the Galois group �, hence G.K/\Uma
� .ˆu.˙F v

1 // � Uma
� .ˆu.˙F v

1 //
� DQ

K˛2K �˙
nd
Uma

� .K˛/ \ yV
K˛ (with yV

K˛ D V
K˛ for K˛ 2 Kˆ). Now the de�nition

in 1) above of '
K ˛ and MiR

K , together with 6.7 and the de�nition of MK , prove that

Uma
� .ˆu.˙F v

1 //
� D Uma

clK
�

K
.�/
.ˆu.˙F v

1 //
� with an obvious de�nition of clK�

K .

So yPK is compatible with clK�
K and the same arguments as in 6.9c prove the

compatibility with clK�r

K . �

6.12. Functoriality. 1) Changing the group, commutative extensions. We
consider a morphism  WG ! G0 between two almost split Kac–Moody groups
and we suppose that, over Ks,  D G' WGS ! GS0 for a commutative extension
of RGS 'W S ! S0. This extension is then automatically Gal.Ks=K/

�-equivariant.
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The conditions (TRQS) for G and G0 are equivalent:  induces a bijection
between the combinatorial vectorial buildings of G andG0 overKs [31, 1.10] which
is clearly Gal.Ks=K/-equivariant; so G has a Borel subgroup de�ned over a �eld
M 2 Sep.K/ if and only if G0 has one.

Suppose that (TRQS) is satis�ed, then G0 and G are quasi-split over a tamely
rami�ed �nite Galois extensionM=K and split over a �nite Galois extensionL=K
with L � M . We choose an apartment A for G0 as in 6.8, hence associated to a
morphism '0W S0 ! S00 of RGS and some V00 in V D Y 00 ˝ R compatible with
the star action of � D Gal.L=K/ associated to G0. Then the same thing is true
for '0 ı ' and G. Now the constructions of x	 .G; K;K xA/ inside x	 .G; L; xA/ or of
x	 .G0; K;K xA/ inside x	 .G0; L; xA/ are completely parallel. So the  L-equivariant
morphism x	 . L; L; xA/W x	 .G; L; xA/ ! x	 .G0; L; xA/ of 5.8.1 induces a  K-equi-
variant morphism x	 . K ; K;K xA/W x	 .G; K;K xA/ ! x	 .G0; K;K xA/.

This is functorial (up to the problem that A or xA has sometimes to change
with G0).

2) Changing the group, Levi factors. Suppose that G satis�es (TRQS) and
let M;L; �; : : : be as in 6.5.

Let F v
C and F v

� be opposite �-stable vectorial facets in 	 v.G; L;Av/. They
determine completely a subgroup M.F v/ in G.L/ which is �-stable. We write
G0 D GF v

˙
the corresponding subgroup-scheme of G. We know that, over L, G0

is isomorphic to some GS.J /.
The parabolic subgroup-schemeP.F v/ of GL associated to F v is de�ned over

K, hence over M , and contains a minimal M -parabolic i.e. a Borel subgroup
de�ned overM . The parabolics in P.F v/ correspond bijectively to the parabolics
of its Levi factor G0 and this correspondence is �-equivariant as G0 is �-stable.
So G0 is quasi-split overM : it satis�es (TRQS).

If A is chosen as in 6.6 for G, then it satis�es the same conditions for
G0 � G. Here also the constructions of the bordered hovels over K inside
the bordered hovels over L for G and G0 are completely parallel. We deduce
from 5.8.2 a G0.K/-equivariant isomorphism of 	 .G0; K;KA/ with the façade

	 .G; K;K
xxA/KF v (where KF v is the Weyl K-facet corresponding to F v) or with

	 .G0;G; K;KA/ D G0.K/:.KA/ � 	 .G; K;KA/.
The reader will write the results for bordered hovels analogous to those in 5.8.2.

3) Changing the �eld: We asked in 6.1 that the valuation ! D !K of K may
be extended functorially to all extensions in Sep.K/. We ask also that the almost
split Kac–Moody group G satis�es (TRQS), hence is quasi-split over a tamely
rami�ed �nite Galois extensionM=K and split over a �nite Galois extensionL=K
with L � M .

Let’s consider now a �eld extension i WK ,! K 0 in Sep.K/. We de�ne in
Ks, L0 D K 0L and M 0 D K 0M ; we write iLWL ,! L0. The extensions L0=K 0

and L0=M 0 are Galois, Gal.L0=K 0/ � Gal.L=K/, Gal.M 0=K 0/ � Gal.M=K/ and
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M 0=K 0 is tamely rami�ed. Moreover G is split on L0 and quasi-split on M 0, so G
satis�es (TRQS) on K 0.

We saw in 5.8.3 that A (with some added walls) is still a suitable apartment for
.G;T/ over L0 and that there is a G.L/-equivariant embedding

	 .G; iL;A/W 	 .G; L;A/ ,�! 	 .G; L0;A/:

This embedding is also Gal.L0=K 0/-equivariant. Now

	 .G; K;KA/ � 	 .G; L;A/Gal.L=K/

and

	 .G; K 0;K0A/ � 	 .G; L0;A/Gal.L0=K0/:

Moreover 	 .G; K;KA/ is the union of the apartments AS D 	 .Zg.S/;G; K;KA/

for S a maximal K-split torus in G and Zg.S/ its generic centralizer, which is a
reductive group. By 2) above and [27, 5.12],

	 .G; iL;A/.AS/ D 	 .Zg.S/; iL;A/.	 .Zg.S/;G; K;KA/

� 	 .Zg.S/;G; K
0;K0A/

� 	 .G; K 0;K0A/;

where K0A is associated to a maximal K 0-split torus S0 containing S. We have
thus de�ned a G.K/-equivariant embedding

	 .G; i;A/W 	 .G; K;KA/ ,�! 	 .G; K 0;K0A/:

This is clearly functorial. We leave to the reader the “pleasure” to formulate a
result for bordered hovels; there is the problem of the choice of the façade of K0A

in which embeds a façade of KA. This is easier for the essential spherical façades
i.e. for the microa�ne buildings.

Note that the (real) walls in KA are some of the traces on KA of the (real)
walls in K0A. In general any such trace is not necessarily a wall in KA, see
nevertheless 6.13 below.

4) Changing the model apartment: Suppose that G satis�es (TRQS) and let
M;L; �; : : : be as in 6.5.

The apartment A is associated to a commutative extension 'W S ! S0 of RGS
and a subspace V 0

00 of V 0
0 � V 0 D Y 0 ˝ R with the condition that S0 is endowed

with a star action of � for which ' is ��-equivariant and V 0
00 �

�-stable.
Now let  W S0 ! S00 be a commutative extension of RGS and V 00

00 a subspace
of V 00

0 � V 00 D Y 00 ˝ R containing  .V 0
00/, with the condition that S00 is endowed

with a star action of � for which  is ��-equivariant and V 00
00 �

�-stable. Then
'0 D  ı 'W S ! S00 satis�es the above condition and can be used to de�ne
a new apartment A0 D V 00=V 00

00. We have an a�ne map  WA ! A0 which is
N -equivariant.
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By 5.8.4 we get a G.L/-equivariant map

	 .G; L;  /W 	 .G; L;A/ �! 	 .G; L;A0/:

It is �-equivariant and induces a G.K/-equivariant map

	 .G; K;  /W 	 .G; K;KA/ �! 	 .G; K;KA0/

(by the characterization given in Remark 6.9).
This construction is functorial and extends clearly to the bordered hovels.

Proposition 6.13. In the situation of 6.12.3 above, suppose that the extension
K 0=K is Galois and unrami�ed (more precisely for a non discrete valuation,K 0=K

is supposed to be etale [9, 1.6]). Then the intersection with KA of any real wall of
K0A is a real wall of KA if (and only if ) it is a hyperplane of direction given by a
root in Kˆ.

Proof. Let � D Gal.K 0=K/. Then with obvious notations, OK0 is a free OK-mod-
ule with basis a family x1; : : : ; xn whose image in �0 D OK0=mK0 is a basis
over � D OK=mK ; moreover �0=� is Galois and � D Gal.�0=�/ [9, 1.6.1d]. If
� D ¹1; : : : ; nº, then a well known theorem tells us that det.i .xj // is non triv-
ial in �0, hence is in O�

K0 . An easy consequence is that any OK0-module M with a
conjugate-linear action of � is the OK0-module generated by M� .

Let a 2 Kˆ and x 2 KA in the wallM.a0; k/ of K0A for a0 2 K0ˆ, a0
S

D a and
k D �a.x/. With notations as in the proof of 6.9f, we have Va0;k=.V2a0;2k :Va0;kC/

(or V2a0;2k=V2a0;2kC) non trivial (where Va0;k; : : : is relative to K 0 and S0) and
we want to prove that Va;k=V2a;2k :Va;kC (or V2a;2k=V2a;2kC) is non trivial. We
concentrate on the �rst case, the second is easier.

We set V 0
2a;2k

D
Q

b0
S

D2a Vb0;k, V 0
a;k

D V 0
2a;2k

:
Q

b0
S

Da Vb0;k and anal-

ogous formulae for V 0
2a;2kC

, V 0
a;kC

. By hypothesis V 0
a;k
=.V 0

2a;2k
:V 0

a;kC
/ is non

trivial. But V 0
a;k
=V 0

2a;2k
(resp. V 0

a;kC
=V 0

2a;2kC
) is an OK0-module stable under �

and .V 0
a;k
=V 0

2a;2k
/� D Va;k=V2a;2k (resp. .V 0

a;kC
=V 0

2a;2kC
/� D Va;kC=V2a;2kC).

If Va;k=.V2a;2k :Va;kC/ were trivial, then we would have Va;k=V2a;2k D
Va;kC=V2a;2kC and, by the above result, V 0

a;k
=V 0

2a;2k
D V 0

a;kC
=V 0

2a;2kC
, contra-

diction. �

Glossary of notations

1.1 M, Q, ˛i , Q˙, W v, †, ˆ, s˛ , Q.J /, ˆm.J /,W v.J /, RGS, S, Y , X , S̨i , ˛_
i ,

SMm D Slad, S.J /, gS, hS, �, �˙, ˆ˙, �im, �re, �m.J /

1.2 V , C v
˙, F v

˙.J /, T˙, star: .�/�, Tı
˙, Av,

�!
Av, V0, V e, Ave, V q, Avq, V x, Avx,

Sl, Y xl, V xl
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1.3 TS, GS, x˛ , U˛, U˙
S

, B˙
S

, USZ, rrk.S/, ssrk.S/, Sep.K/, Ks

1.4 G, Z, U˛ , m.u/, U˙, (RD1) to (RD5), (GRD)

1.5 RGD-system, ˆnd

1.6 B˙, N , �v, 	 vc
˙ , 	 v

˙, P.F v/, M.F v/, U.F v/, G.F v/, N.F v/, P˙.J /

1.8 NS, G.J /

1.9 G
pma
S

, Gnma
S

, Uma˙
S

, U.˛/

1.10 V q.T0/, Z.T0/, Zg.T
0/

1.12 exponents v, e, x, etc.

2.1 (DCS2), �, star action �, �, z

2.3 (ALG3), (ALG30)

2.4 KA
v, K	 vc, KC

v
˙, I0

2.5 S, rrkK , KX , KY , K˛, KQ, K�, K�re D Kˆ, KQre, K�im, KI , KIre, ˆ0,
ssrkK , KN , KZ, KW

v

2.6 U.K ˛/, VK˛

2.8 KA
v
C, KF

v
C.KJ /,

KF v
C.KJ /,

KAv
C, K	 v

2.9 Uma
.K ˛/

, K�
r, K�

3.1 (V0) to (V4), '˛ , U˛;�, ƒ˛ , U˛;�C, V q

3.3 K, !, O, m, �, ƒ

3.4 M.˛; �/, D.˛; �/, Dı.˛; �/, sM D s˛;�, �, Z0, M, A, �, V<, W a, G;, N ;,
Z;, �ti, Mi

3.6 clPƒ0 , clP, clP
R

, clPma, cl#, cl#
R

, . . . , cl, F l.x; F v/, F.x; F v/, xF.x; F v/, q, f,
germ1, Q, F, r.F; F v/, R

3.7 �m.F v/, ˆm.F v/, Ane
F v , M.F v/, Mi.F v/, Ae

F v , prF v
1
, xxA, xAe, xAi, A0, xA,

AF v , F v.x/, xA˙, xA˙
sph, xM.˛; �/, xD.˛; �/, ŒF�, ŒR�

4.1 	 , i , x	

4.2 Q, xD.˛;�/, D.˛;�/, U˛.�/, N.�/, G.‰;�/, G.�/, U˙˙
� , U˙

� , Nmin
� ,

W min
� , W v

�, (P1) to (P10), Q.�/, G�, G.� � xA/, 	F v , P

4.3 prF v

4.4 Qdec.�; C v/ D Qdec.�; "/

4.5 (GF"), (TF)

4.6 Œx; y/, germ1

4.10 (MA1) to (MA4), (MAO), Gw
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5.1 yP .y/, U pmC
y , U nm�

y , Uma˙
y , Gpma, Gnma, yPm. Ny/

5.4 yP, 	 .GS; K;A/, x	 .GS; K; xA/

5.9 (P8C)

5.11 	 ˙
x , Ax, A˙

x , ˆx , Pmin
x , G	x

, xGx , xU˛

6.4
�!
I \ D K	 vq,

�!
I D 	 vq, G\ D G.K/, K	 vc, Av

\
� Avq, Kˆ D ˆ\,

�!
Av

\0
, Av\,

�!
	 \, F v

\
, F v\, F v

# , Av
#, F v\

# , U \
a , Ua, ˆa, xI#, A#, (DM1) to (DM4), '\

a, Ua;k ,

U
\

a;k
, Q\.x/, xI\

6.5 (TRQS)

6.6 KA, K', yPK , MK , M
L=K

, Mi
L=K

, clK�r

L=K

6.8 K
xxA, K

xAe, K
xAi

6.9 	 .G; K;KA/, x	 .G; K;K xA/

6.11 clK�r

K
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