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Almost split Kac—-Moody groups over ultrametric fields

Guy Rousseau

Abstract. For a split Kac-Moody group G over an ultrametric field K, S. Gaussent and
the author defined an ordered affine hovel (for short, a masure) on which the group acts; it
generalizes the Bruhat-Tits building which corresponds to the case when G is reductive.
This construction was generalized by C. Charignon to the almost split case when K is a
local field. We explain here these constructions with more details and prove many new
properties, e.g. that the hovel of an almost split Kac-Moody group is an ordered affine
hovel, as defined in a previous article.
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Introduction

Split Kac—-Moody groups over ultrametric local fields were first studied by
H. Garland in the case of loop groups [15]. In [28] we constructed a “microaffine”
building for every split Kac—Moody group over a field K endowed with a non triv-
ial real valuation. It is a (non discrete) building with the good usual properties,
but it looks not like a Bruhat-Tits building, rather like the border of this building
in its Satake (or polyhedral) compactification.
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A more direct generalization of the Bruhat-Tits construction was made by
S. Gaussent and the author, in the case where the residue field of K contains C
(see [16]). This enabled us to deduce interesting consequences in representation
theory. In [31] the restriction about the residue field was removed. So, for a
split Kac—Moody group G over K, one can build an hovel I on which G acts.
As for the Bruhat-Tits building, I is covered by apartments corresponding to split
maximal tori; but it is no longer true that any two points are in a same apartment
(this corresponds to the fact that the Cartan decomposition fails in G). This is the
reason why the word “building” was changed to “hovel.” Nevertheless this hovel
has interesting properties: it is an ordered affine hovel as defined in [30]; actually
the french name masure is now often used instead of ordered affine hovel. As a
consequence the residues in each point of I are twin buildings, there existon I a
preorder invariant by G and, at infinity, we get twin buildings and two microaffine
buildings. These are the twin buildings of G introduced by B. Rémy [26] and the
microaffine buildings of [30].

Cyril Charignon undertook the construction of hovels for almost split Kac—
Moody groups ([12] and [13]). Actually he considered the disjoint union of the
hovel and of some hovels at infinity called fagades. This union is called a bordered
hovel, it looks like the Satake compactification of a Bruhat-Tits building; in
addition to the main hovel it contains the microaffine buildings. He elaborates
an abstract theory of bordered hovels associated to a generating root datum, a
valuation and a family of parahoric subgroups. He proves an abstract descent
theorem and succeeds in using it to build a bordered hovel associated to an almost
split Kac—Moody group over a field endowed with a discrete valuation and a
perfect residue field. As a corollary the microaffine buildings are also defined
in this situation.

In this article we give more details about these constructions and improve many
results (see below some details about each section). In particular the fixed point
theorem in R-buildings proved recently by K. Struyve [32] enables us to prove the
existence of bordered hovels in new cases (with a non discrete valuation).

The essential new result we get (from [13] and the present article) is the
existence of a nice (bordered) hovel for each almost split Kac—-Moody group over
an ultrametric local field, with a strongly transitive action of the group and a good
enclosure map (Theorem 6.9 and Proposition 6.11.3). This is the powerful tool
which enables S. Gaussent, N. Bardy-Panse and the author to define spherical
Hecke algebras or Iwahori-Hecke algebras associated to any almost split Kac—
Moody group over an ultrametric local field: [17], [4], see also [18]. The non split
case involves unequal parameters.

In Section 1 we explain the general framework of our study: abstract generating
root data, their associated twin buildings and split Kac-Moody groups (as defined
by J. Tits [33]).

Section 2 is devoted to B. Rémy’s theory of almost split Kac—Moody groups
(see [26]). We improve a few results, e.g. on geometric realizations of the associ-
ated twin buildings and on imaginary relative root groups.
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In Section 3 we define the affine apartments associated to a valuation of
an abstract root datum. We explain the interesting subsets or filters of subsets
inside them (facets, sectors, chimneys, enclosures, ...) and embed them in their
bordered apartments. There are several possible choices for these apartments, their
imaginary roots or walls and for the fagades at infinity. So this leads to several
choices for all these objects and none of them is better in all circumstances.

Section 4 is devoted to Charignon’s abstract construction of the bordered hovel
associated to a good family of parahoric subgroups in a valuated root datum
(see [12] and [13]). We select two other conditions he considered for parahoric
families and a new third one to define what is a very good family. Then we are
able to generalize abstractly the constructions of [16] and prove that the abstract
space built by Charignon is really an ordered affine hovel in the sense of [30]

(slightly generalized). This involves an enclosure map (clﬁn) which gives (too)
small enclosures: they are reduced to the closed convex hull.

In Section 5 we mix these abstract results and the results of [31] to define the
bordered hovel of a split Kac-Moody group over a field endowed with a non trivial
real valuation. One of the problems is to extend the results to general apartments,
neither essential as in Charignon’s or Rémy’s works, nor associated directly to
the group as in [31]. We prove that these bordered hovels are functorial, uniquely
defined (in the sense that the very good family of parahorics is unique) and that
their residue twin buildings are associated to a generating root datum.

These results are generalized to almost split Kac-Moody groups in Section 6.
We explain the abstract descent theorem of Charignon (generalizing the analogous
theorem of F. Bruhat and J. Tits [8]). To apply it to an almost split Kac—Moody
group G, we need the same condition as for reductive groups: G is assumed to
become quasi split over a finite tamely ramified Galois extension L/K, see [27].
There is no need for another condition, even for a non discrete valuation, as is now
clear from Struyve’s work [32]. We explain Charignon’s results in this almost split
case and generalize them to more general apartments. So we get a bordered hovel.
We are able to prove that the hovel inside it (its main facade) is an ordered affine

hovel (in the original sense of [30]) with a good enclosure map (01§Ar), much
better than the one in Section 4 (but perhaps still not the best one).

The consideration of bordered hovels (of rather general types) leads to many
technical complications and many similar definitions (e.g. of enclosure maps).
This seams unavoidable, but we include a glossary to help the reader. The
final results (for almost split Kac-Moody groups) are simpler, especially when
speaking only about hovels (without boundaries). In addition, we warn the reader
that a good knowledge of [26], of [31] and of some parts of [16] is usefull (resp.
necessary) to understand the main results (resp. and some secondary results, or the
proofs) of this article. A detailed review of these references would have been too
long. We try to give enough details about [12] and [13] to understand all results.
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1. Root data and split Kac—-Moody groups

We introduce here the Kac—Moody root systems, the corresponding root generat-
ing systems, root data or vectorial apartments and the associated split Kac—Moody
groups (with their completions). We describe also the associated twin buildings.
Most of the following definitions or results (and some other useful ones) may be
found in [26], [28], [30], or [31].

1.1. Root generating systems. 1) We consider a Kac-Moody matrix (or gener-
alized Cartan matrix) IM = (a;,;)i,jer , with rows and columns indexed by a finite
set /. Let Q be a free Z-module with basis (o;)ie; and QT = ", ; Z>o.0; C O,

= = —Q7T. The (vectorial) Weyl group WV associated to M is a Coxeter
group with generating system the set ¥ = {s; | i € [} of automorphisms
of Q defined by s;(0;) = «; — a;, ;. The associated system of real roots
is ® = {w(w) | we WY,i € I}[21]; it is a real root system (with free
basis (@;);er) in the sense of [24] or [25], see also [3] and [19]. If @ € ®, then
sq = w.s;.w ! is well defined by o independently of the choice of w and i such
that « = w(w;). We say that we are in the classical case when WV is finite,
then M is a Cartan matrix and & a root system in the sense of [6]. For J C I,
M(J) = (a;,j)i,jes is a Kac-Moody matrix; with obvious notations, Q(J) is a
submodule of Q and ®™(J) = & N Q(J) the root system associated to M(J), its
Weyl group is WY(J) = (s; | i € J).

2) A root generating system (or RGS) [3] will be (for our purpose) a quadruple
§=(M,Y, (@)ier, (oz;’)iE 1) where M is a Kac-Moody matrix, Y a free Z-module
of finite rank n, (&;);e; a family (of simple roots) in its dual X = Y* and
(o) )ier afamily (of simple coroots)in Y . These data have to satisfy the condition:
ajj = Ol_] (Ollv)

The Weyl group W" acts on X (and dually on Y) by s;(x) = x — x(e))a;.

We say that 8 is free (resp. adjoint) if (&;);ey is free in (resp. generates) X.
For example the minimal adjoint RGS Spm = 8% = (M, O*, (2i)ier, (@))ier)
(with an obvious definition of the «”) is free and adjoint.

There is a group homomorphism bar: 0 — X , & +— & such that bar(«;) = o5;
itis W"-equivariant and ¢*! = bar*: Y — Q* is a commutative extension of RGS
8 — Snm [31, 1.1]. When 8 is free, Q is identified with Q = bar(Q) C X.

For J C 1,8(J) = (M(J),Y, (@)ies. () )ies) is also a RGS.

3) The complex Kac—Moody algebra gs associated to § is generated by the
Cartan subalgebra hs = Y ®z C and elements (e;, fi)iey with well known
relations [21]. This Lie algebra has a gradation by Q:gs = hs & (Pyep 9a)
where A C Q \ {0} is the root system of gg or of M.

We have bs = (gs)o, 9o; = Ce;, g—o; = Cfi and ® C A (as A is W'-stable).
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If AT = AN Q% (resp. A~ = —A™) is the set of positive (resp. negative)
roots, then A = A~ [ |At. We set ®* = & N A* = —®T. The imaginary roots
are the roots in A \ @ = Ajm; we set Are = &, AL = @ and AL = AN A

For J C I, gs(s) is a Lie subalgebra of gs and A™(J) = A N Q(J) a subroot
system of A.

In the classical case, gs is a reductive finite dimensional Lie algebra and
Aim = 0.

1.2. Vectorial apartments. 1) We consider a free RGS § = (IM,Y, (&;)ier,
(o) )ier) and the real vector space V = V8 =Y ® R = Homg(X,R). Each
element in X orin Q C X induces a linear form on V. A vectorial wall in V is
the kernel of some o € ®. The positive (resp. negative) fundamental chamber in
VisC} ={veV|a() >0, foralli € I} (resp. CY = —CJ). If J C I, let
FI(J)={v eV |a() =0, foralli € J,a;(v) > 0, foralli € I\ J} and
FY(J) = —F](J), they are cones in V. Then the closed positive fundamental
chamberis CY = | |;; FY(J) and symmetrically for CY.

The Weyl group WV acts faithfully on V', we identify WV with its image in
GL(V). Forw € WY and J C I, wF](J) (resp. wFY(J)) is called a positive
(resp. negative) vectorial facet of (vectorial) type J. The fixer or stabilizer of
F(J)is WY(J); if this group is finite we say that J or wFY(J) is spherical.
These positive facets are disjoint and their union T is a cone: the Tits cone. The
inclusion in the closure gives an order relation on these facets. The star of a facet
FV is the set FV* of all facets F,’ such that F¥ C F).

The properties of the action of W on the set of positive facets allows one to
identify this poset (or to be short 7 ) with the Coxeter complex of (WV, ). The
interior T of T is the union of its spherical facets, it is also a non empty convex
cone. The symmetric results for T_ = —T are also true.

We call AV = T4 UT_ the vectorial fundamental twin apartment associated to
9
S and set AY = V (vector space generated by AV). A generic subspace of A is an

—
intersection of A" with a vector subspace of AY which meets the interior of A"; for
example a wall is a generic subspace. An half-apartment in A" is the intersection

with AV of one of the two closed half-spaces of 1@ bounded by a wall.
In V' the subspace Vo = FY (/) = ();¢; Ker(a;) (trivial facet) is the intersec-

tion of all vectorial walls. Acting by translations it stabilizes all facets and the two
Tits cones. So the essentialization of V or AVis Ve = V/Vyor AY =AY/ V.

One may generalize these definitions to the case when the chamber CY defined
by (@;)ies (for a non free RGS) is non empty in V = Y ® R [3, p. 113f] but we
shall avoid this.
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2) The smallest example for V' associated to IM and ® C @ corresponds
08 = Sym. Then V = V4 = VM = 0* ® R = Homgz(Q,R). In the
above notations we add an exponent 9 to all names. We get thus the essential
vectorial fundamental twin apartment A¥4. Actually V9 and A9 are canonically
the essentializations of any V or AV in1): V¢ = V9 and AY = A4,

3) If S is a given free RGS, we shall write VX = VS and add an exponent * to
allnamesinl)e.g. V9 = V* = V*/Vfand Al = A¥* = AV /V}. We get thus
the normal vectorial fundamental twin apartment AVX.

If 8 is a given (non necessarily free) RGS, we may consider the free RGS 8! of
[31,1.3d]: 8' = (M, Y, (@ier, (@7 V)ier) with Y = Y @ 0%, @M = @; +; €
XM=X@QandaY =ay eY C Y =Y @ Q0% = (X ® Q)*. Then
V¥ = Homz(X @ Q.R) and we add an exponent *! to all names in 1). We get
thus the extended vectorial fundamental twin apartment A,

4) More generally we may consider a quadruple as in [30, 1.1]: (V, WY, (¢;)ier,
() )ier) with ; free in V* and a;,; = «;(e;”) hence ® C Q C V*. The same
things asin 1) (e.g. FY(J), AY, A} = T4, ...) may be defined in V' and we have
V4 =V/V,for Vo = ();e; Ker(e;). For example we may take for V' a quotient of
a V'S as in 1) by any subspace Voo of Vj.

5) We get thus many geometric realizations of the Coxeter complex of (W7V, X).

As is clear from above, we want that the basis («; );ey of ® is free in the dual (1@ )*.
So AV = AYM C V4 = Q* ® R is always a good choice: the one used in [26].
But (principally for the affine version of AV) it may be important that A" takes
into account the full RGS § defining a split Kac-Moody group: this is the same
reason that leads to enlarge a Bruhat-Tits building by adding to it a trivial factor
corresponding to the center. So if § is free, A¥* C V* = Y ® R is certainly the
other good choice (and A4 C V*/ Vs its essentialization). If § is not free, A¥X!
above may be chosen.

When we deal with an almost split Kac-Moody group G over a field K, it is

natural to consider A" included in the vector space A:Vf of the vectorial apartment
associated to G above an extension L of K splitting G. This is done in Section 2
and leads actually to two good choices for AY: the Weyl one XA is described as
above and the other gAY C A involves “simple imaginary roots” to describe the
facets, see 2.8 below.

1.3. The split Kac-Moody group &s. As defined by J. Tits [33], this group &g
is a functor from the category of (commutative) rings to the category of groups.

One considers first the torus Ts = Ty = Gpec(Z[X]) with character group
X(%¥s) = X and cocharacter group Y(%s) = Y. For any ring R, Ty (R) =
Y ®z R* = Homy(X, R*). Then the group &g (R) is generated by Tg(R) and
some elements g, (r) for « € ® and r € R; for the precise relations see [33], [26],
or [31].
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Actually T is a sub-group-functor of &g, the standard maximal split subtorus.
For « € &, there is an injective homomorphism rq: A00 — G, r € R 14(r);
the sub-group-functor of &g image of g, is written ,. The standard positive
(resp. negative) maximal unipotent subgroup is the sub-group-functor ugﬁ such
that, for any ring R, ilg (R) (resp. LI (R)) is generated by all £ly(R) for o € @
(resp. @ € ®7); it depends actually only on IM, not on 8. Then the standard positive
(resp. negative) Borel subgroup is the semi-direct product B = Tg x L (resp.
By = Ts x U).

The construction of &g uses a Q-graded Z-form Ugy, of the universal envelop-
ing algebra of gs, we call it the Tits enveloping algebra of &g over Z. It is a filtered
Z-bialgebra; the first term of its filtration is Z & gsz, where gsz is a Z-form of the
Lie algebra gs. There is a functorial adjoint representation Ad: &g — Aut(Usz),
see [26] and/or [31] for details. In the classical case &g is a reductive group and
Usyz is often called the Kostant’s Z-form. By analogy with this case we define the
reductive rank (resp. semi-simple rank) of &g or § as rtk(8) = n = dim(X) (resp.
ssrk(8) = |I|); there is no a priori inequality between these two ranks.

In the following we shall almost always consider a field K and restrict the
above functors to the category Sep(K) of algebraic separable field extensions of
K contained in a given separable closure K. The groups associated to K by
these functors are then written with roman letters: Gg = ®g(K), Ts = Ts(K),
Uy = Ug(K), xo: K — Uy C Gsg, etc. We set also Usg = Usz ®z K, ....
We shall sometimes forget the subscript s.

Definition 1.4 (cf. [28]). A root datum of type a (real) root system @ is a triple
(G, (Uy)aeco, Z) where G is a group and Z, U, (for « € @) are subgroups of G,
satisfying the following conditions.

(RD1) For all @ € ®, Uy, is non trivial and normalized by Z.

(RD2) For each pre-nilpotent pair of roots {c, B}, the commutator group [Uy, Ug]
is included in the group generated by the groups U,, for y = pa+¢gf € ®
and p,q € Z-o. (there is a finite number of such roots y, as {«, 8} is
supposed to be pre-nilpotent).

(RD3) If € ® and 20 € @, then Uy G U,.

(RD4) For all @ € ® and all u € Uy \ {1}, there exist u’,u” € U_q, such that
m(u) := u'uu” conjugates U into Uy, (g) for all B € ®. Moreover, for all
u,v € Uy \ {1}, m(u)Z = m(v)Z.

(RD5) If UT (resp. U™) is the group generated by the groups U, for o € ®T
(resp.a« € ®7), then ZUT NU~ = {1}.

The root datum is called generating if moreover

(GRD) the group G is generated by Z and the groups U, for o € ®.
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Remarks 1.5. a) This definition is given for a general (real) root system ®.
For the system ® of 1.1 the axiom (RD?3) is useless as ® is reduced. In the classical
case (i.e. for a finite root system) this is equivalent to the definition of “donnée
radicielle de type ®” in [8]. In general a generating root datum is the same thing
as a “donnée radicielle jumelée entiere” as defined in [26, 6.2.5].

b) Actually Z has to be the intersection of the normalizers of the groups Uy:
[26, 1.5.3], see also [I, 7.84]. So one may forget Z in the datum, as in [34]
or [13,10.1.1].

c¢) Even in the classical case, the notion of root datum (of type a root system)
is more precise than the notion of RGD-system (of type a Coxeter system) defined
in [1, 8.6.1] (which is the same thing as “donnée radicielle jumelée” defined in [26,
1.5.1], see also [34]). The set of “roots” of (WV, X) is in bijection with the set ®pq
of non-divisible roots in ®. So, if (G, (Uy)wed, Z) is a generating root datum,
then (G, (Uy)aea,y. Z) is a RGD-system; the difference is that axiom (RGD]) is
less precise than (RD2): it allows p and g to be in R~.

Root data describe more precisely the algebraic structure of reductive groups
or Kac—-Moody groups; with RGD-systems one can describe more general actions
of groups on (twin) buildings.

Consequences 1.6. Let (G, (Uy)acad, Z) be a generating root datum, then,
by [26, Chapters 1 and 2] or [1], the following properties hold.

1) The group B* = ZU™¥ is called the standard positive (resp. negative) Borel
subgroup or more generally minimal parabolic subgroup.

Let N be the group generated by Z and the m(u) for« € ® and u €
Uy \{1}. There is a surjective homomorphism vV: N — WYV (where WV is the
Weyl group of the root system @) such that v¥(m(u)) = s and Ker(v¥) = Z.

Then B* NN = Z and (B*, N) is a BN-pair in G. In particular we have
two Bruhat decompositions: G = | |, epv BwB? (for e = + or —).

Moreover G = | |,,epv ([Tgeo+nwo-w-1 Up)-wZ.U™, with uniqueness
of the decomposition (refined Bruhat decomposition). The same is also true
when exchanging + and —.

2) More precisely (BT, B~, N) is a twin BN-pair; in particular we have a
Birkhoff decomposition: G = | |, epv BTwB~. Moreover for u,u’ € U™,
v, v eU  andz,z € Z,ifuzv =u'z’v thenu =u',v =v' and z = z'.

3) Associated to the BN-pair (B®, N), there is a combinatorial building I3°¢
(viewed as an abstract simplicial complex) on which G acts strongly tran-
sitively (with preservation of the types of the facets). The group B? is the
stabilizer and fixer of the fundamental chamber C° C I}°. The group N sta-
bilizes the fundamental apartment AY° (which contains C;¢); it is equal to the
stabilizer in G of AY®, as the BN-pair is saturated i.e. Z = (), epv wB*w™ L.

The Birkhoff decomposition gives a twinning between the buildings I%°
and I¥; we have Z = BT N B~.
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4) As the facets of T, = A} are in one to one, increasing and N -equivariant
correspondence with those of the Coxeter complex A}¢, we can glue different
apartments together to get a geometric realization I} = I7(G,AV) of I}¢
(called vectorial or conical) in which the apartments and facets are cones.
The different peculiar choices of AV explained in 1.2 2), 3) give vectorial
buildings I;, IY*, I,

For any of these vectorial buildings, the vector space Vy C Xf acts
G-equivariantly and stabilizes all facets or apartments. The essentialization
of this building i.e. its quotient I;°(G, AY) = I}(G,AY)/V, by Vj is canon-
ically equal to I;? = IY(G, AY9).

5) There is a one to one decreasing correspondence between facets and par-
abolic subgroups: the stabilizer and fixer in G of a facet FV C T, or
of FV/Vy C T4 is a parabolic subgroup P(F") of G (which is its own
normalizer). We have a Levi decomposition P(FV) = M(FY) x U(FY).
The group P(FV) (resp. M(FV)) is generated by Z and the groups Uy
fora € O(FY) (resp. ¢ € P"(FV)) ie. ¢ € ® and a(FY) > 0 (resp.
a(FY) = 0). The subgroup U(FV) is normal in P(F") and contains the
groups U, for o € ®*(FV) i.e. « € ® and a(F") > 0[26, 6.2]. We define
G(FV)= P(FY)/]U(F') ~ M(FY)and N(FY) = N N P(FY) C M(F").

6) If F¥ = FY(J) for J C I, then P(F') = P*J) = B*WY(J)B?,
O™(FY) = ®™(J) and N(FV)/Z = WY(J). The group G(J) = M(F")
is endowed with the generating root datum (G(J), (Uy)geom(J), Z)-

Theorem 1.7. With the notations of 1.3, (Gs, (Uy)ac®, Ts) is a root datum of type
®. Moreover if |K| > 4, N is the normalizer of Ts in Gsg.

Proof. This is essentially in [33] and [34]. See [26, 8.4.1] O

Remarks1.8. 1) Bgﬁ (resp. Usi) as defined in 1.3 coincide with B* defined in1.6.1
(resp. U™ defined in 1.4). The group N is Ns = s (K), where s is a sub-group-
functor of g normalizing Ts. Moreover N is the normalizer in Gg of T, but not
always the normalizer of Ts (e.g. when |K| = 2, Ts = {1}). The maximal split
tori of &g are conjugated by Gg to Tg [26, 12.5.3].

The Levi factor of P*(J) is G(J) = &g()(K) where &gy is the split Kac—
Moody group associated to the RGS 8(J) of 1.1.2 [31, 5.15.2].

2) The combinatorial buildings associated to this root datum are written
IX(®s, K) or IY*™M(K), as they depend only on the field K and the Kac—-Moody
matrix IM (not of the SGR §: [31, 1.10]).

As N is the stabilizer of the fundamental apartment AY® in IY*™M(K) and the
normalizer of Tg, we get a one to one correspondence T +— A°(T) between the
maximal split tori in &g (or their points over K, if | K| > 4) and the apartments of
I;fc]M( K)
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3) The geometric realization of IY*M(K) introduced in 1.6.4 is denoted
IY(®s, K, AY). If we use Tg = A, we call it the essential vectorial building
IV(Bs, K, AV = I.4(&s, K) = IYM(K) of &5 over K of sign e = +. We have
also extended vectorial buildings I)(®s, K,A"™) = I¥(&s,K) = I;Sl (K)
defined using T¥' = A instead of T¢ in 1.6.4.

When 8§ is free, we can also use T> = AY* and define the (normal) vectorial
buildings I}(®s, K,AY%) = IYX(8s, K) = I'5(K).

To be short we omit often K and/or M, 8, &g, AV in the above notations.

4) I7°(®s, K) is clearly functorial in K. I} (&g, K, AY) is functorial in K and
8 (for commutative extensions).

1.9. Completions of &s. There is a positive (resp. negative) completion &Y™
(resp. &M% of &g (defined in [22], [23]) which is used in [31] to get better
commutation relations. This is an ind-group-scheme which contains &g but
differs from it by its positive (resp. negative) maximal pro-unipotent subgroup: ug
(resp. LI5) is replaced by a greater group scheme ilg‘a+ (resp. Ug%™) involving the
full root system A of 1.1.3.

For a ring R, an element of ilfsnai (R) can be written uniquely as an infinite
product: u = [[,cp+ Ue With uy € Uy (R), for a given order on the roots
o =) ;e nfa; € A* (e.g. anordersuchthat |ht(a)| = ) ;¢; [n¥]is increasing).
For o € ®, u, is written uy = ro(r) = [exp]re, for a unique r € R and e,
a fixed basis of go. For @ € Aim, uy is written u, = ]_[]J.:""‘ [explry,;-€a.
for unique ry,; € R and for (eq,;)j=1,, @ fixed basis of gq; but Ly (R) is not a
group: this is only true for 4 (R) = [[gez._ o Up(R). Moreover the conjugate
of an element u € ilg‘ai (R) by t € Ts(R) is given by the same formula: for
ul, = tugt ™! € 8y (R), we just replace r by a(¢)r or each ry,j by @(t)rg,; [31, 3.2
and 3.5]. (Actually we often write «(¢) for a(¢).)

The commutation relations between the u,, are deduced from the correspond-
ing relations in the Lie algebra (or better in the Tits enveloping algebra Usyz).
So we know well the structure of the Borel groups B1E = Tg x {14+ For R a
field there are Bruhat and Birkhoftf decompositions of Q5§ma(R) and B"(R):

BE™(R) = LT (R).Ms (R) LT (R) = U5 (R).MNs (R) LF* (R)
and
BI™(R) = YT (R)MNs(R) AT (R) = UF (R).Ns (R). 4T ().

1.10. Centralizers of tori. Let ¥’ be a subtorus of Tg (over Ky). There is a linear
map Y(T)® R — Y(%s) ® R — V9 = Homy(Q, R) which sends A ® x to the
map a — &(A)x. We write V4(%) its image. We say that ¥’ is generic (resp.
almost generic) in Tg if V9(T') meets the interior of the Tits cone ﬁ (resp. if
V4T Hn ﬁ generates the vector space V4(T')) cf. 1.2.1. Note that, if 8 is free, Tg
is generic in T, as the above map is then onto.
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Proposition. If T’ is generic, then, up to conjugacy, VIZ') is generated by
Vg n C:_q (Which is convex) or more precisely by VI(T') N qu(J) where
Ff_q(J ) (with J spherical in I) is the greatest facet in C—:_q meeting VI(T'). Then
the centralizer 3(T') of T in &g is By (a reductive group).

To be short, when T’ is generic, its centralizer 3(T') is the group scheme 3 4(T')

generated by T and the g fora € ® and | o =1 (called the generic centralizer
of T in &g).

Proof. The reduction to V4(%’) generated by V4(T')NF lq(J )isclearas V4(T')N
ﬁ is convex and generates V9(%’). We embed & in the ind-group-scheme Qigma.
Any element g € Gﬁgma(Ks) may be written uniquely as

e=( T w)ein( IT w).

acdtNuwd— aEAT

where 1 € Ts(Ks), w € WY, w is its representant in a chosen system of repre-
sentants WV C 9(Ts)(Ks) and each uy is in Uy (Ks) cf [26, 1.2.3] and [31, 3.2].
If we conjugate by s € T'(Kj), ¢ is fixed, each u, is sent to u), € Uqy(Ks). So
g commutes with s if and only if u/, = ug, for all « and sws™! = . This
last condition is s = Wsw ! = w(s); as it must be true for all s € T'(K;), this
means that w € WY(J). Now for @ € ® and uy = 1qo(r), u, = ro((s).r);
hence ug = uy foralls € T(Ks) = @, = 1 = Ajpggy =0 = @ €
Q(J). The same thing is true for « € AT by the formulae in 1.9. Finally
g€3IT)NK) < g€ (’52?;)(1(5). But, as qu(J) is in the interior of the Tits
cone, J is spherical, A(J) is finite and Qﬁg[(n;) = Gg(s) is areductive group. I

Remarks 1.11. a) 3(%') is the schematic centralizer of ¥’ or the centralizer of
%'(Ks). The centralizer of T'(K) may be greater, e.g. if |K| = 2, Ts(K) = {1}.

b) If ¥’ is almost generic, the above proof tells that 3(¥') = 62?;) N®g. Butit

is not clear that it is the Kac-Moody group &y i.e. that LTS H NG g = LI N

8(J) 8(J)
is $L3 ;3 ¢f. [31, 3.17 and §6].

¢) In the affine case with S free, let § be the smallest positive imaginary root.
The torus ¥’ = Ker(§) is not almost generic, there is no real root « € ® with
|y, = 1but 3(T') is greater than Ts: if Bg(Ks) = B°(K[t,171]) x K for
®° a semi-simple group with maximal torus T°, then Tg(Ks) = T°(K) x K,
T'(Ks) = T°(Ks) and 3(T')(Ks) = T°(K[t,t71]) x K is the subset of Mg (Ks)
consisting of elements whose image in the affine Weyl group WV are in the
“translation group.”

Otherwise said, when § is affine non free, § = 0, ¥’ = T and 3(%Ts) may be
greater than Tg: Tg is not almost generic in Ts.
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1.12. Remark on the notations. The plethora of notations introduced above may
be destabilizing. It is required to be precise and it will be often used in the other
sections. The main things to remember are as follows.

The exponent ¥ means vectorial (for Weyl groups, facets, apartments, build-
ings), it will disappear for affine versions. The exponent ¢ means combinatorial
(for facets, apartments, buildings). The exponent ™ refers to Mathieu’s completed
Kac—Moody groups (™ or "2 for the positive or negative one). The other expo-
nents are relative to the chosen RGS: ¢ indicates the essentialization, 2 the adjoint,
X a free RGS, ¥ a specific free RGS and 9 is equivalent to *° or X!°. The reader may
restrict, without much lost of generality, to this essential free case, denoted by 9.

2. Almost split Kac—-Moody groups

We deal in this section with the relative theory of almost split Kac-Moody groups,
analogous to the Borel-Tits theory of reductive groups. We describe the associated
twin buildings. This includes a discussion of the possible associated apartments
and the imaginary relative root groups. The reference here is B. Rémy’s mono-
graph [26].

2.1. Kac-Moody groups. 1) A Kac—Moody group over the field K is a functor
® = Gk from the category Sep(K) to the category of groups such that there
exist a RGS 8, a field £ € Sep(K) and a functorial isomorphism between the
restrictions &z and Ggg of & and Gg to Sep(E) = {F € Sep(K) | E C F}.
We say that & is split over E, that & is a K-form of &g and we fix such a functorial
isomorphism to identify &g and Bsg.

The above condition is the most important but, to compensate the lack of a
good notion of algebraicity, we need also a K-form U = Ug of the Tits enveloping
algebra Usg, and some other technical conditions (PREALGI,2, SGR, ALGl,2)
given in [26, Chapter 11] and omitted here. We write only the following condition
[Lc. 12.1.1] which makes more precise the functoriality.

(DCS2) For each extension L of K in 8ep(K) the group &(L) maps isomor-
phically to its canonical image in &(K,) which is the fixed-point-set
& (Ks)CUKs/L) of the Galois group.

We identify all these groups with their images in &(K). We forget often the
subscript s for subgroups of &gk, when we think of them as subgroups of &g,
e.g. BTy = B . Now the natural action of I' = Gal(K/K) on &, gives
us a twisted action of T' on &gk, such that &g (K,) M K/L) = (L) for each
L € 8ep(K)and &(L) = &g(L)if E C L.

A subgroup H of &(Kj) invariant under this twisted action of Gal(K/L)
defines a sub-group-functor £);, on Sep(L); we say that H is L-defined in &(K)
and that §y7 is a L-sub-group-functor of &y



Almost split Kac-Moody groups over ultrametric fields 903

2) We say that & is almost split if the twisted action of each y € I" transforms
B g, into a Borel subgroup in the same conjugacy class under &g (Kj).

Let L be an infinite field in Sep(E), Galois over K, then there is a (twisted)
action of Gal(L/K) on the twin combinatorial buildings I °(L) such that the
action of (L) on I°(L) is Gal(L/K)-equivariant; this action permutes the types
of the facets [l.c. 11.3.2]. One can extend affinely this action on the geometric
realization 1 ;’q(L) [l.c.12.1.2] or on the so-called “metric” realization, where the
action is through a bounded group of isomorphisms; more precisely any point in
this last realization has a finite orbit [l.c. 11.3.3, 11.3.4].

As a consequence any Borel subgroup of &(Kj) is defined over a finite Galois
extension of K; taking a greater extension K’ such that Gal(K/K’) preserves the
types, we see that the same thing is true for parabolic subgroups. A maximal torus
of B(Kj) is intersection of two opposite Borel subgroups, so it is also defined over
a finite Galois extension of K.

3) If & is almost split, the twisted action of I' on Bg(K) and Usk, is de-
scribed through a “star action” [l.c. 11.2.2, 11.3.2]. More precisely there is a map
y > gy from I' to B5(K;) and for each y € T" an automorphism y* of &s(Kj)
and a y-linear bijection y* of Usk,, such that the twisted actions are given by
y =Int(g,) o y* on Bg(Ks) and y =Ad(gy,) o y* on Usk,; moreover g, and y*
are trivial for y € Gal(Ks/E). On Bg5(Kj), y* stabilizes Tg and ‘Bgt; on Ugk,, y*
stabilizes ug K. [l.c. 11.2.5(i)]. Actually g, is defined up to Ts(Ky) (but the map
y + g, may be chosen with a finite image, by 2.1.2 above). So y* is defined up
to Ts(K). The “star action” is perhaps not an action on &g(Ks) or Usk,, but it

defines an action on ung, X,A, &, &t T orWw".

4) By [31, 3.19.4] we may actually choose the element g, in GguLda(Ks) =:
&*ad(K(). Then we may add the condition that y* stabilizes the épinglage
(Ts. @, (e)ier) i.e. y*(ei) = eyxy and y*(xq,; (1)) = Xy=(a)(yr) fori € I
and r € K [26, 11.2.5iii)]. This condition determines uniquely g, and y*.
But y* may be extended as an automorphism of QSXlad(Ks) (cf [31, 1.8.2]), so
y*olnt(g,/) =Int(y*(gy’)) o y*. We deduce from this that g,,, = g,.7*(gy)
and (yy’)* = y*y™*: thus defined, the “star action” is a true action.

Lemma 2.2. Let & be an almost split K-form of &g as above.

a) There is an almost split K-form &X' of &1 which is split over the same field
E as & and an homomorphism & — & whose restriction to Sep(E) is the
known homomorphism &g — G [31, 1.3d and 1.11].

b) Let L be an infinite field in Sep(E) Galois over K, then the action of
Gal(L/K) on the building I)°(L) may be extended linearly to I)*'(L). This
action makes T-equivariant the action of &¥(K;) (= &(Ky)) over this build-
ing and the essentialization map n": IY*(L) — I;9(L).

c) When 8 is free, b) above is also true if we replace IX'(L) and &¥(Ky) by
IYX(L) and B(Ks).
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Remarks. 1) For AY asin 1.2.4, let us suppose that the star action of I" on / (hence
on the @;, ;") may be extended linearly to . Then b) and c¢) above are also true
for IV (&g, K, AY).

2) If we define on &*1%(K;) y* as above in 2.1.4 and § =Int(g,) o y*, we can
prove as below that we get an extension of the twisted action to &*134(Ky).

3) In the (particularly interesting) case of a free, essential RGS 8§ = 84, this
technical lemma is essentially reduced to the existence of an action of Gal(L/K)
on I;%(L), compatible with its action on I +¢(L), such that the action of &(Kj) is
I'-equivariant. This is a result of [26], see below in the proof.

Proof. a) We have to describe the form &* and a K-form U of the Tits envelop-
ing algebra Ugi g, through twisted actions of I' on &41(Ks) and Ug g extending
those constructed in 2.1.3 above for 8. For the RGS 8!, Y! = Y¥ = Y @ Q*,
so, by [31, L11], &gig, is the semi-direct product of Ssk, by the torus Tog, =
Spec(Ks[Q]). Clearly Ugi g is also a semi-direct product of Ug, = Usk, and the
“integral enveloping algebra” Ugk, of the torus Tpk, (i.e. its algebra of distribu-

tions at the origin). Now the star action of I" on Q gives a ['-algebraic action on
T ok, and a I'-linear action on Ugg,. This is compatible with the formulae defin-
ing semi-direct products and so we construct an automorphism y* of &g (K) and
a y-linear bijection y* of Ugi g . Now let y =Int(gy) o y* or y =Ad(gy) o y*.

We have to prove that this defines actions of I". By definition Int(g,,/) o
(yy)* = yy'and oy’ =Int(gy) o y*olnt(gy) oy =Int(gy.y*(gy)) oy* 0 J/*
There is equality of these two expressions on &g (K), moreover (yy')* = y*op™
on sk, hence gy.y *(8y') = &yy' tyy Witht,,, € Tg(Ks). We have to verify
that yy'(t) = ¥ o y'(1) for 1 € To(Ky). But (yy)* (1) = y*(y™ (1)) is in To(K)
hence centralized by ¢,,,/; so the result follows. The same proof works also for
Usig, -

We define UM as (Ugi g )52&s/K) and, for L € Sep(K),

GXI(L) — 681 (KS)Gal(KS/K)

(fixed points for the twisted actions). We have now the two ingredients of the
Kac—Moody group as defined above. We leave to the reader the verification of the
technical conditions of [26] (PREALG, SGR, ...).

b,c) As the star action of T is well defined on X¥ = X @ Q and on X, we
just have to mimic the proof in the case I; (L) (corresponding to X9 = Q)
[l.c. 12.1.2].

2.3. Continuity of the actions of the Galois group. From now on in this
Section 2, we choose an almost split Kac—Moody group & over K with Tits
enveloping algebra U and keep the above notations. We forget now the (old)
actions of I' = Gal(Ks/K) on Bgk, or Usg, and consider only the star action
or the (twisted) action (which is the natural action on &, or Ug,).



Almost split Kac-Moody groups over ultrametric fields 905

1) By 2.1.2 above the orbits of I" on the Borel subgroups of & are finite. So the
gy € B(K) (such that y* =Int(g,) ! o y stabilizes Tg, and SBIﬂgs) may be chosen
in a finite set. In particular, if y* =Ad(g,)™! oy on Uk, then {y*u | y € ['} is
finite for all u € Ug,. So the star action of I'" has finite orbits on ® [26, 11.2.5(iii)]
and on Q. We know that this star action stabilizes the basis {«; | i € I} and acts
on / by automorphisms of the Dynkin diagram.

2) The following extension of condition (ALG?2) is implicit in /. c. starting e.g.
from 11.3.2.

(ALG3) The star action of I" on X or Y is continuous i.e. its orbits are finite.

As for (ALG?2) this is useless if X = Q. Without it, only the description of the
action of I on the center of &(Kj) is less precise; in particular there is no problem
for the buildings I;%(L). But the proof of [Lc. 12.5.1(i)] uses this property.

It would also be reasonable to ask the following axiom.

(ALG?') The evidentmap¢:Y — Y ® Ks C u%s is ['*-equivariant.

By [l.c. 11.2.5] the map ¢ restricted to QY = Y ,; Za,” is I'*-equivariant.
In characteristic 0 (ALG?3) is a consequence of (ALG3).

In the following we add to the conditions of /c. the condition (ALG3) but not
(ALG3'). With these assumptions we get the good structure for &. But anybody
interested in considering U as the good Tits enveloping algebra for & should
add (ALG3') and, in positive characteristic, perhaps some stronger conditions,
see 2.10.

3) By 2.1.2 Tk, and %Ii( are defined over a finite Galois extension L of K in
Sep(K). Enlarging a little L. we may suppose that Tk, is split over L (i.e. X or
Y is fixed pointwise under Gal(K /L)) and Q is also fixed (2.3.1). Now we may
modify each e; in Kge; = u(x K> SO that e; (and f;) is fixed under I". By [l.c.
11.2.5(iii)] this proves that y(gial (r)) = I4q, (yr) forr € Ksand y € Gal(K;/L).
So the original action and the new twisted action of I" on &g (Kj) coincide on
T(Ks) and the groups Uiy, (Ks). As these groups generate &g(Ks) (see [31, 1.6
KMTY7]), the two actions coincide and & is actually split over the finite Galois
extension L of K.

Now each of the above generators of &(Kj) has a finite orbit under I, so this
is also true for every element of &(Kj): &(K) is the union of the subgroups &(L)
for L € Sep(K) with L/K finite.

4) We saw in 2.1.2 that the orbits of I on I°(Kj) are finite. The stabilizer in
T of a facet of IY°(K) acts on the corresponding facet of I;%(Kj), IY¥(Ks) or
I*(K;) through a finite group (see 2) above and the definition of these actions).
So the actions of I" other these buildings have finite orbits.
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If a Galois group Gal(Ky/M) stabilizes a facet of one of these geometric
buildings, then it has a fixed point in this facet (as this facet is a convex cone
and the action is affine).

2.4. K-objects in the buildings. 1) Let £ € Sep(K) be infinite, Galois over K
and such that & is split over E. By [26, 10.1.4 and 13.2.4] the buildings over E are
the fixed point sets in the buildings over K of the Galois group Gal(Ks/E). So
we set I' = Gal(E/K) and we shall work over E (cf.l.c. 12.1.1(1)).

We always choose now a vectorial apartment A" as in Remark 2.2.1 (hence with
the properties of 1.2.4), e.g. AY = AY4, AV or if § is free AY*. Then we define
IV = IY U IV astheunion IV(8s, E,AY) = I (&g, E,AY) U IV (&g, E, AY).
The essentialization IV of IV is always IVI(E) = IV(&g, E, A¥9) which is the
building investigated in [26] so one may use this reference.

2) Definitions. A K-facet (resp. spherical K-facet) in IV is the fixed point set
under I" of a facet (resp. spherical facet) of IV stable under I" (by 2.3.4 the K-facet
is non empty).

A K-chamberin IV is a spherical K-facet with maximal closure.

A K-apartment in IV is a generic subspace (of an apartment) of IV which is
(pointwise) fixed under I" and maximal for these properties.

A (real) K-wall in a K-apartment g A" is the intersection with g A" of a wall
in an apartment of IV containing x A", provided that this intersection contains a
spherical K-facet. This K-wall divides g A" into two (closed) K-half-apartments.

3) Properties. By definition K-facets (resp. spherical K-facets, K-chambers)
correspond bijectively to K -defined parabolics (resp. K -defined spherical parabol-
ics, minimal K-defined parabolics). The union of the K-facets is (I'V)T; their set
is written g IV,

By [lc. 12.2.4 and 12.3.1] two K-facets are always in a same K-apartment
and there exists an integer d = d(I'T) > 1 such that each K-chamber or each
K-apartment is of dimension d. One should notice that the different choices for
IV may give different integers d. The group G = &(K) acts transitively on
the pairs (xC, x AY) of a K-chamber g C of given sign in a K-apartment g A"
(see also [Lc. 12.4.1)).

4) Standardizations. Any K-apartment gAY in IV is contained in a Ga-
lois stable apartment AY of IV (perhaps after enlarging a little F) [Lc. 12.3.2(D)].
We may choose moreover opposite chambers xCY, xCY in gAY and (non nec-
essarily I'-stable) opposite chambers C}, CY in A" with xC] C C_l We say
that (xA4Y, kC},kCY) and (A", CY, CY) are compatible standardizations of T
and IV.
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The apartment A" determines a K -defined maximal torus Tk, (such that A" =
AY(%k,)). After enlarging a little £ we may suppose that Tg_ is split over £, and
conjugated under &(E) to the fundamental torus Tgg [l.c. 10.4.2]. So we may
(and will) suppose that T, = Tsk, and C} is associated to the Borel subgroups
%EEE. Then the star action of T is defined by y* =Int(g,)~! o y with g, € &(E)
normalizing T and fixing pointwise g C, xCY and g A".

Letlo ={i €I |ai(xkA") = {0} } and

Ao ={x e AV | a;(x) =0, foralli € I}.
Then [y is spherical (as g A" meets spherical facets) and stable under I'*, the

(normal twisted) action and the star action of I'" coincide on A0 and gAY =
* . 9 .
(A¥10)T™  The vector space generated by gAY in AV is

- i . r*
kA" ={ve AY |a;j(x) =0, foralli € Iy}

[l.c. 12.6.1].

2.5. Maximal split tori and relative roots. We choose standardizations and
identifications as in 2.4.4 above.

1) The maximal split subtorus & of ¥ depends only on the K-apartment g A"
and is actually a maximal split torus in &. The maximal split tori are conjugated
under G = &(K) [26,12.5.2 and 12.5.3]. The dimension of a maximal split torus
is the reductive relative rank over K of &, written rrkg (&).

As a consequence of [l.c. cor. 12.5.3] and Lemma 2.6.2 (ii) below, there is a
bijection & — g AY(S) between maximal K-split tori in & (or their points over
K, if |K| > 4) and the K-apartments in I".

2) Let g X (resp. xY) be the group of characters (resp. cocharacters) of &.
For each @ € Q, let g € g X be the restriction to & of @ € X and g be the

—
restriction of @ to g AV. We define g Q as the image of Q by this restriction map
o k.

The set of relative K-roots is the set

kA ={ga|aeA, ga #0};
the set of real relative K-roots is the set
kD = kA = {gka € kA | kA NKer(x) is a (real) K-wall}.

Let g O be the submodule of ¢ O generated by the real relative roots.
The relative K — roots in g Aim = kA \ k Are are called imaginary.

With the notations in 2.4.4, g«; is a root if and only if i ¢ Io; for i, j ¢ Iy,
ko; = gaj if and only if i and j are in the same I"*-orbit; x«; is a real root if
Iy U T is spherical and different from /.
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Hence a basis of g A (or Q) is given by {xo; | i € gl} where gl =
(I \ Iy)/T* and a basis of x® (or g Qre) is given by {g«a; | i € glw} Where
kle = {i € I\ Iy | Ip UT*i spherical}/T*. The basis of g A may contain
some imaginary relative roots. Besides the above definition, the simple imaginary
K-roots are characterized among the simple K-roots by the fact that the associated
root group is trivial (see below 2.6.2 (i) and 2.9.4).

The set &9 = {a € ¢ | xa = 0} is actually ® N (D, ¢y, Zo;). We say that
|k Ire| = sstkx (®) is the semi-simple relative rank over K of &.

Fori € Iy, «; is trivial on & (see 3) below); so the two actions of I" (star or
not) on ¥ coincideon Sand Y ={y €Y |w;(y) =0, foralli Io}™. Hence,
for all « € Q, g« is the canonical image ko of xo in ¢ X. It is now clear that
{ka | xa € gAY} is the set of roots of & for the adjoint representation on the Lie
algebra gx C Uk.

When § is free and IV = IV*(E) is the normal geometric realization, then
dim(x AY) = dim(S) is the reductive relative rank. Hence, when 8 is free, the
reductive relative rank is at least 1: an almost split Kac-Moody group (with §
free) cannot be anisotropic.

When IV is the essential building I7Y9(F), then dim(xAY) = |xI| may be
greater than |g Ire| = ssrkx (), so g AY may be inessential.

3) Relative Weyl group ([Lc. 12.4.1, 12.4.2]). Let ¢ N (resp. xkZ) be the
stabilizer (resp. fixer) of gAY in G; by 2.5.1 ¢ N is the normalizer of & in G
and g Z centralizes G (by definition of & [l.c. 12.5.2]). Actually g Z is generated
by T and the U, for o« € &g [l.c. 6.4.1], hence «(&) = 1 for all @ € ®y. The
quotient group xk WY = g N/k Z is the relative Weyl group of  (associated to &
or g AV). It acts simply transitively on the K-chambers of fixed sign in gAY and
(as kN C N.xZ) is induced by the action of the subgroup of WV = WV(A")
stabilizing g A".

To each real relative root ko € g ® is associated an element s, € gW" of
order 2 which fixes the wall Ker(xa). The pair (k WY, {szo; | i € klw})isa
Coxeter system.

When 8§ is free, the map Y (%¥s) ® R — A= (0 ® R)* is onto. But gAY4
is generic in AY9 (2.4.2) and, by 2.4.4 and 2.5.2, the same equations define m
in ﬁ or Y(6) ® Rin Y(¥s) ® R. So & is generic in Tg, 3(6) = 34(6) and
kZ = 3(6)(K) (L10).

For 8§ general xZ = 3,(6)(K) may be smaller than 3(S)(K), cf. 1.1lc. The
reductive group 3¢ (O) is the anisotropic kernel [26,12.3.2] associated to g A" i.e.
to & (by 1) above).
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4) The set g A (resp. k® = g A™) is a system of roots (resp. of real roots) in
the sense of [3] ¢f: [26,12.6.2], [3] or [2]. If g A* = £(k AN (D;c 1 Zz0-k%))
(resp. @ = =(x® N (Bjc, s, Z0.xi)) then kA = gAT U gA™ and
k® = g®" U g®. The system g A or g® is stable under g W" and any real
relative root is of the form w.xa; or 2w.go; with w € kWY andi € g ;. (as the
system may be unreduced).

It is not too hard to find a RGS (xIM, kY, (k@ )iex Ire- (K@} )iex I.) (in the
sense of 1.1) with Weyl group xWV. But it is not sufficient to describe x A
(or even x®); one has to use a more complicated notion of RGS, see [3], [2],
or [26, 12.6.2]. On the contrary the reduced system g ®,.; is a system of real
roots in the sense of [24], [25] and even of [21] as its basis is free.

2.6. Relative root groups. 1) For xa € g ®, we consider the finite set (xa) =
{B € @ | kB € N.ga} and the unipotent group . o)k, generated by the gk, for
B € (ka), it is defined over K. We set Vo = () (K).

The positive integral multiples of g in g A are xo and (eventually) 2xo
(€ x®). If 2k ¢ xA we set u(21<0!)Ks = {1} and Vapa = {1}. So u(2Ktx)Ks
(resp. Vaq) is always a normal subgroup of U, o)k, (resp. Vo) [26,12.5.4].

2) Lemma. Let xa € g ® be a real relative root.

(i) Via/Vaga is isomorphic to a vector space over K on which s € &(K) acts
by multiplication by xa(s) € K*. Its dimension is |(xa)| — |2ga)| > 0.

(ii) The centralizer Zy, ,(S(K)) of &(K) in Vo is trivial if |K| = 4.

Proof (suggested in [l.c. 12.5.3]). By [l.c. 12.5.4] there exists a reductive K-group
$ of relative semi-simple rank 1 containing & and (). Then (i) is classical,
cf.e.g. [5, Theorem 3.17]. Now (for $)) there exists a coroot ga¥ € Hom(Mult, &)
such that 2ga(gaY) = 2 or ga(ga”) = 2 (if 2k« is not a root) (one may use the
K-split reductive subgroup of $ constructed in [5, 7.2]). So (ii) follows. O

Theorem 2.7 ([26,12.6.3 and 12.4.4]). Let & be an almost split Kac—Moody group
over K, then

a) the triple (6(K), (Vi) xaex @ kK Z) is a generating root datum of type g ®;

b) the fixed point set IV = (IV)' is a good geometrical representation of the
combinatorial twin building KIV¢ = IV°(®, K) associated to this root datum:
there are B(K)-equivariant bijections, between the K-apartments and the
apartments of K7ve and between the K -chambers and the chambers of Kyve.
this last bijection is compatible with adjacency and opposition.
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N.B. 1) When & is already split over K, we easily see, using galleries, that
K'Y = (19T and g IV = IY(®, K, AY).

2) The group k BT = g ZU " defined in 1.6.1 for this root datum is a minimal
K -parabolic of &. It is a Borel subgroup if and only if there exist Borel subgroups
defined over K (i.e. & is quasi split over K); this is equivalent to Iy = @ i.e. to
3¢(6) being a torus.

3) The objects defined in 1.4 to 1.6 for the above root datum will bear a left or
right index g, sometimes a left exponent X.

2.8. Comparison with a Weyl geometric realization. We saw in 2.5.2 that
some simple K-roots may be imaginary. So the K-facets are not defined using
uniquely real K-roots (as in 1.2). We compare them here with the Weyl K-facets,
defined only with the real K-roots.

1) With the notations in 2.4.4, 2.5, we may describe the positive K-facets:
—
Cl={xed |a(x)>0, foralli eI},
- —
Cl={xeA |a(x)>0, foralli € I} C A",

—>
kC} ={x e gA" | kai(x) >0, foralli € g1}
e A —
(relative interior of CY N gAY = gC} C AY),
kAL = | ) wxC{cga’ cA
wexg WV

The K-facets in g CY correspond bijectively to subsets g J of g/ by setting:

kFY(xJ) = {x € kA" | ke (x) > 0, forall i € xI \ xJ and
Kai(x) =0, foralli KJ}
C KA:_ N C__T_
so the definition of the K-facets uses the whole g A (not only g ®).
Moreover g FY (x J) is spherical if and only if x J = IoU{i € [ |I'*i € g J}
is spherical, which is equivalentto g J C g Ire and g J spherical in g I (as defined
by the root system g ®) cf. [3, p.163 and p.175].

2) A Weyl geometric realization I = I (&, K, XA") of the combinatorial
building KT % can be constructed using, for fundamental apartment and facets,

subcones of the vector space ﬁ defined using x ® (i.e. x W"). The correspond-
ing Weyl facets in the closure of the positive fundamental chamber are defined,
for g J C glte, as
H
KFY(xJ) ={x e kA" | kai(x) > 0, foralli € gl \ xJ and

Kozi(x) =0, foralli e KJ}
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and the positive fundamental Weyl K -apartment is

—
Kqy = U wXFY (xJ) cxA".

weg WY,k JCx Ire

The building X1V is the disjoint union of the Weyl K-facets associated to the
parabolics of (&(K), (Via) gaex @, k Z); it contains g IV by the following lemma.
Its minimal facet is KFjX (k1) = (m)m

One should notice that KTV is, in general, not included in IV, as K4} ¢ A",
see the example [26, 13.4] and 4) below.

3) Lemma. Let gJ C gle.
a) The intersection ¥ Fl(kJ) N gAY is the disjoint union of the K-facets
KF_T_(KJ/)fOI’ kJ DxJandgJ Ngle =kJ.

Among these K-facets the maximal one ( for the inclusion of the closures)
is k FY (xJ), which is open in KFJ_ (xJ); moreover

K v v -
Fi(kJ)=kFi(kJ)+ (k4)o.
The minimal one correspondsto gJ' = gJ U (g1 \ xIte).

b) The Weyl K -facet KFjL’ (xJ) is spherical if and only if x FY (x J) is spherical
and then this K -facet is the only spherical K -facet in ¥ Fl(gkJ)NgAY.

c) The Weyl K -facet KFJ‘; (xJ) and all K-facets g F" in KFJVF(KJ) Nk AY have
the same fixer Pg(KJ) = Pg(x F") in &(K). Hence each K-facet of g I}
is associated to a unique Weyl K -facet in XTI M

Proof. Let w.xC} (with w € g W) be a closed K-chamber meeting K Fl(gJ),
then w.KC;[ meets KFl (xJ); so w € gWY(xJ) which fixes (pointwise)
KFY(xJ). Hence w.xCy N KFY(xJ) C xCY and gAY}, N KFY(xJ) C xC}.
Now a) and b) are clear.

The fixer in &(K) of KFJ‘;(KJ/) contains the fixer P of ¢ CY, hence it is a
parabolic subgroup of the positive BN -pair associated to the root datum in &(K)
i.e. of the form P.xWY(gJ").P for some xgJ” C gle. It is easy to check that
xJ" has to be g J and c¢) follows. O

4) So the Weyl K-facets of KT ¢ correspond to some K-facets of (I ZL)F and
there is a good correspondence between spherical Weyl K-facets and spherical
K-facets. But, if g Ie # x I, some non-spherical K-facets correspond to nothing
in 1%, So (IV)! is only a geometric representation of XI*¢ in the sense of the
theorem, it is not really a geometric realization of it. Note also that, if x ;e # g/,
the Weyl geometric realization K1 Y of K1 f, constructed in 2) above, is not
essential, even if IV = V9 is.

The above results (and those in 2.9) are well illustrated by Example 13.4 in [26].
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5) Remarks. a) In this example we see also that x® may be a classical
(finite) root system, even if @ is infinite. It may also happen that g ® is empty
(i.e. sstkx(®) = 0); this is always the case when @ is infinite and |x/| = 1
(see examples for K = R in the tables of [2]). Then &(K) = gZ and (IV)' is
reduced to one K-apartment and two K-chambers (one of each sign).

b) On the contrary, if ® is infinite, g A is always infinite and | /| > 1.

¢) Actually some vectorial facets (e.g. the minimal one V) are positive and
negative. So to associate a maximal K-facet to a Weyl K-facet, we may have to
make a choice of a sign, at least if x Ie # k1.

6) Lemma. let & be an almost split Kac—-Moody group defined over K', with
K' C K CE, E/K', K/K' Galois and (&, E) as above (cf. 2.4.4).

a) Let gAY C gAY C AY be respectively a K'-apartment in g I, a K-apart-
ment in g IV and an apartment in IV (stable under Gal(E/K') or not). Then
the K -facets or K'-facets are described in A" as in I) above with help of kI
orgl.

b) The action of Gal(E/K') on IV induces an action of Gal(K/K’) on g IV
which may be extended (linearly and uniquely) to XI".

Proof. There is a star-action of Gal(E/ K) (resp. Gal(E/K’)) on A (and its vector

space Xg ) and a subset 1K (resp. I({(/) of I which describe entirely x A" (resp.
kAV); this is independent of the choice of AV, as different choices are conjugated
[26, Proposition 6.2.3(i)]. They describe also the K-facets (resp. K’-facets),
so a) follows. The action of Gal(K/K')on g IV = &(K).x A" is described through
its action on g 7¥¢ and its star action on g A which may be extended (linearly and
uniquely) to X 4". So b) is a consequence of 3)c above. |

2.9. Imaginary relative root groups. 1) Let’s consider ga € xkA™. The sets
(Zso.xkx) N (kA) and (ga) = {f € A | kB € Z=>¢.xa} are infinite [2, 3.3.2].
We saw in 1.9 that &g is embedded in some ind-group-scheme. If go
is positive (resp. negative) we can define in the pro-unipotent group-scheme
ifg” (resp. Uz*") a pro-unipotent subgroup-scheme ﬂ‘(‘;?a) g such that the ele-
ments of U(I;f:x) = ilf(‘;fa) g (E) are written uniquely as infinite products: u =

[peea [1j=1” [explAg,;.ep.; where (eg,;)j=1.n, is a basis of gg (ng = 1 for
B real) and Ag ; € E. Moreover the conjugate of such an element u € U([;l::x ) by
s € S(E) is [Tpe(eay 1121 [explB(s).2p,;-€p.;-

We define the root group corresponding to go as Vo = U(‘;‘(aa) N B(K).

2) Lemma. The group G = B(K) has an extra large (abstract) center: it contains
Sz ={s €e6S(K) | kai(s) =1, foralli € gl}.
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Proof. As G(K) is in the center of ¢ Z and G is generated by x Z and the groups
Via for ga € g @, this result is a consequence of Lemma 2.6.2 (i). O

3) Remarks and definition a) The schematic center of G, i.e. the centralizer in
G of B(Ky),is {s € T(K) | ai(s) = 1, foralli € I} [26, 9.6.2]. Hence its
intersection with G(K) is smaller than Sz in general.

b)If x € x A, we can write uniquely g = :I:(ZiEKI nj.go;) withn; € Zso.
We shall say that g« is almost real and write g € g A" if and only if n; = 0 for
alli € kI \ gle- Hence x® = g A, C kA" C g A. This set g A" is a system of
roots in the sense of [3, 2.4.1].

¢) By the following lemma the non trivial root groups V., correspond to roots
ko € gA". So it is natural to abandon the K -facets (defined using x A) and to use
the Weyl K-facets of 2.8.2 (defined using x ® or g A").

We may define KA = {ka € kA | Vi # {1}},50 k® C KA C g AT (by the
following).

4) Lemma. If ga € g A\ kA" (hence g € g Aim), then Vo = {1}.

Proof. Suppose that § is free, K is infinite and ko € gA \ g A", then for all
n € Zso we have (n.xa)(Sz) # {1}. But the conjugation by s € Sz of an
element of G (resp. U(‘;f:x)) is trivial (resp. given by the formulae in 1) above).
Hence Vo = {1}.

When § is not free we obtain the same result by using &*! ¢f. 2.2a. When K is
finite, the (schematic) centralizer 3 of G is a K-quasi-split reductive group with
& as maximal K-split torus; so 3 is a torus. Now 3 splits over a Galois extension
of degree D. If L is an infinite union of extensions of degree prime to D, G is
still maximal K-split over L and the wanted result is true over L. The result over
K is then clear. U

2.10. Associated almost split maximal Kac—-Moody groups. In 1.9 or [31], we
associated to ®g a positive (resp. negative) completion Qigma (resp. B5™). We
want to associate to & a positive (resp. negative) completion &P™? (resp. &"™M?)
considered as a functor from Sep(K) to the category of groups. For this we have
to describe a (twisted) action of I' = Gal(K/K) on Qﬁgma(Ks) (resp. BM(K5))
extending the known one on &3 (K;) and to define &P™(L) = &5 (K)Gal(Ks/L)
(resp. "M (L) = &Ima(K)GalK/L)) for every L € Sep(K).

We consider a maximal K-split torus G in &, contained in a K-defined max-
imal torus T. We choose a Weyl K-chamber XC" in ¥ 4¥ = K 4¥(&) and define
F} as the vectorial (spherical) facetin AY = AY(¥) such that x F}' = F N gAY is
open in XCV (c¢f. 2.8.3). We choose a vectorial chamber C" in AY whose closure
contains Fy. We identify &g, and &gk, in such a way that T, = Tgg, and CV

is the fundamental positive chamber CY; this defines a (twisted) action of I' on
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Bk, = Bsk,. Asin 2.1.4 we choose, for any y € T, an element g, € &*%(Ky)
such that Int(g,, 1) o y stabilizes A" and CY, more precisely Tg, and SB;'KS. Itis
clear, in the above situation, that g, € P*(FY) N 354(&)(K,) = MX4(FY);
moreover g, = 1 for y in some finite index subgroup of I'. Now the star action of
[ is defined by y* = Int(g, ") oy on &(K;) and y* = Ad(g, ") oy on Usk,. This
star action is a true action.

By hypothesis y*(Tx,) = Tk,, y*(Bz.) = B, and y*(¢;) = e+ for every
y € T'andi € [. By [26, 11.2.5], we have y*(o))) = s, v*(fi) = fy=i
and y*(X+q; (k) = Xia,., (k) for k € K;. We deduce that y*(Se;) = Sy*q;
and y*(xq(k)) = xyxq(yk), for all « € ® and k € K, cf. [31, Section 1] in
particular (KMT7). Together with the clear star action on T(Kj) this gives a
complete description of the star action on &(Kj).

For Us g, the description of the star action is less clear. We have y*(ey) = €y+q
and y*(«¥) = (y*a)Y for all @ € ®. The condition (ALG3') of 2.3 (if it is
assumed) tells us that y* on ¥ ® K C ug{s isgivenby y*on Y i.e. on Tg. If a(Y)
is non zero in K (e.g. if char(K) = 0) the formula y*(xq(k)) = xy+o(yk) and
the I"*-equivariance of Ad tells us that y*(e,g,”)) = e)(/'fk)a foralla € ® andn € IN.
More precisely in characteristic 0 the condition (ALG3') tells us that y* on Ugk,
is as we want: the y** of [26, 13.2.3] entirely defined by the star action on 7 and
X or Y. In positive characteristic, particularly in characteristic 2, the equality of
y* and y** is far from obvious, e.g. for imaginary roots.

We have two solutions to this problem. First add an axiom (ALG3") (involving
(ALG?Y)) telling that y* = yp**. We choose the second solution: we change
the star action on Ugk,, we take y** instead of y*; the description we gave
of y* on &(Kj) tells us that Ad is still T*-equivariant. Then we define y =
Ad(gy) o y**; this gives an action as g,,» = gy.y*(gy) (2.1.4) and Ad is
f‘-equivariant. Moreover the orbits of T on Usk, are finite, hence we have defined
a new K-form Uy of Usk,. With the precise definition of Kac-Moody groups
given in [26], we have changed the Kac—Moody group, but the functor & is still
the same.

The definition of an almost split maximal Kac—Moody group is now clear: the
[**-action on Ugg, induces clearly an action on P (K) = & (K;) .UMt (Ky)
or on "M (K ) = &(K;). .UM~ (K;) which coincides on &(K) with the known
I'*-action (see the definition of these groups in [31]). Then we define the action
of I' by ¥ = Int(gy) o y**.

3. Valuations and affine (bordered) apartments

In this section and the following one, we introduce an abstract theory, independent
of Kac—Moody groups (except in 3.3 and 3.5 for examples). It is the generalization
of Bruhat-Tits’ monograph [8] which deals with the case of finite root systems.
In this section we define the valuated root data and study the associated affine
apartments. We introduce also the bordered apartments, following Charignon.
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Definition 3.1. A valuation of a root datum (G, (Uy)ged, Z) of type a real root
system @ (as in 1.4) is a family (¢q)gee of maps ¢q: Uy, — R U {400} satistying
the following axioms.

(VO) Forallx € @, |py(Uy)| > 3.

(V1) Foralla € ®andall A € RU {400}, Uy x = @, ([, +00]) is a subgroup
of Uy and Uy o0 = {1}.

(V2.1) Foralla, B € ®,u € Uy \ {1}, and v € Ug \ {1}, @5, (8) (m(u)vm(u)~!) =
@p(v) — B pa(u).

(V2.2) Foralla € ® and ¢ € Z, the map v > @4 (v) — @ (tvt~!) is constant on

Ua \ {1}.

(V3) For each pre-nilpotent pair of roots {«, 8} and all A, u € R, the commu-
tator group [Ug 1, Ug,,] is contained in the group generated by the groups
Upa+qB,pr+qu for p.q € Z~9 and pa + qp € ®.

(V4) Ifa € ®and2a € O, then ¢y, is the restriction of 2¢y to Uy,.

Remarks. 1) This definition appears in [13, 10.2.1]. A weaker definition is given
in [28, 2.2]; there, axiom (V2.1) is replaced by axioms named (V2a) and (V5)
(see 2) below). In the classical case, both definitions are equivalent to the original
one of [8, 6.2.1], cf. [13,10.2.3.2]. Actually (V2.1) is then Proposition 6.2.7 of [8].
This definition may be extended to RGD-systems for a family (¢g)ace,,: in (V3)
just allow p and g to be in R~¢; in (V2.1) if 54 (8) = Ay with A > 0 and y € Dy,
replace ¢y, () by A@y.

2) We define Ay = ¢4 (Uy \ {1}) C R. From (V2.1) witha = B, u = v we
get Ay = —A_y. For u,u’,u” as in 1.4 (RD4), we have ¢_o (1) = ¢p_ou") =
—@q(u), [13, 11.1.11]. This is the axiom (V5) in [8] or [28]. For A € R, we set
Unis = ¢ (A, +03)).

3) Let Q = Z® be the Z-module generated by ® and V4 = (Q ® R)*. Then
using this (strong) definition one can build an action of the group N (defined
in 1.6.1) on V4 (this seems impossible with the weaker definition of [28]).

Proposition 3.2. cf. [13, Propositions 11.1.9 and 11.1.10] There exists a unique
action v of N on V4 by affine transformations such that

e forallt € Z, vi(t) is the translation by the vector v; such that a(v;) =
0o () — o (tut™), foralla € ®, u € Uy \ {1};

e foralln € N, vi(n) is an affine automorphism with associated linear map
—
vi(n) = vV(n).
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3.3. Valuation for a split Kac—-Moody group. 1) Let & = &g be a split Kac—
Moody group over K, as in 1.3. We suppose that the base field K is endowed
with a non trivial real valuation ® = wg: K — R U {+o0}. Its ring of integers
(resp. maximal ideal, residue field)is O = Og = 0™ 1([0, +00]) (resp.m = mg =
0710, +00]), k = O/m)and A = Ax = w(K*)isits value group. Animportant
particular case (the discrete case) is when A is discrete in R.

Letu = x4(r) € Uy witha € @ andr € K, we set ¢, (1) = w(r) € RU{+o0}.

2) Proposition. (¢y)qca is a valuation of the root datum (G, (Uy)qew, T).
Proof. Clear except for (V2.1) proved in [13, 10.2.3.1]. O
Remark. We have A, = A, forall o € ®.

3.4. Affine apartments. We consider an abstract valuated root datum as in 3.1.

1) LetV = A be a real vector space with ® C Q C V* and (o;);je; C V as
in 1.2.4; we consider in V all objects defined in 1.2.
For A € R and @ € Q \ {0}, we define the affine hyperplane

M(a,A) = {x € V | a(x) + A = 0} of direction Ker(x),
the closed half-space
D, A)={xeV |alx)+ 1 =>0},

and its interior
D°(a,A) ={x eV |akx)+ >0}

For o € ® the reflection syr = sq,4 With respect to M = M(a, A) is the affine
reflection with associated linear map sﬁ = 5o and with fixed point set M.
We suppose that V' is endowed with an action v of N such that, for alln € N,

v(n) is an affine automorphism with associated linear map m = v¥(n). We ask
moreover that, for @« € ® and u € Uy \ {1}, v(m(u)) is the reflection 54 4, u)-
We write Zy = Ker(v) C Z.

Then r € Z = Ker(v") acts on V by a translation of vector v;. The action
v commutes with the translations by Vj and the induced action on the essential
quotient V4 = V/Vj is v9 as defined in Proposition 3.2: as m(tut ') = tm(u)t ™!,
we have clearly (V) = @q (1) — g (tut ™).

As a consequence, for all n € N, « € &, and u € Uy \ {1}, we have
v(n).D(a, o (u)) = DY (n).a, @yv(n).o (nun~")) and the same thing for the walls
[13, 11.1.10].

For v € V, we may define a new valuation ¢’ (equipollent to ¢) by ¢, (1) =
¢o (1) +a(v) for o € ®. This corresponds to choosing for V' a new origin 0, = v.
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2) Definitions. a) A wall (resp. an half-apartment) in V is an hyperplane (resp.
a closed half-space) of the form M (x, g (1)) = V™% (fixed point set) (resp.
D(o, ¢o (1)) with € ® and u € Uy \ {1}. The action v of N permutes the walls
and half-apartments.

More generally, for (V, WV, (®;)ier, (a;’)iel) as in 1.2.4 and a family A =
(Ag)aco of infinite subsets of R, we say that M(«, A) (resp. D(a, X)) is a wall
(resp. half-apartment) if, and only if, A € A,. We use this definition only when,
for any o € ®, A € A, the reflection s, stabilizes this set M of walls.

b) The affine apartment A. is V considered as an affine space and endowed with
its family M of walls and the corresponding reflections. It is called semi-discrete
if, for all @ € ®, the set of walls of direction Ker(«) is locally finite, i.e. if Ay is
discrete in R. Its essentialization is A® = A/V, endowed with the image of the
family M.

A preorder is defined on A (or A®) by x <y <= y—x € Ty.

There is also a more restrictive preorder: x<y <= y —x € Jq.

¢) An automorphism of A is an affine bijection ¢: A — A stabilizing the family
M of walls and conjugating the corresponding reflections. We ask also that its
associated linear map ¢ stabilizes ® (this is automatic in the semi-discrete case
with ® reduced and A, independent of o) and the union T4 U T_ of the Tits cones
(this is automatic in the classical case). Then 5) normalizes the vectorial Weyl
group WV and transforms vectorial facets into vectorial facets.

d) We say that an automorphism ¢ is positive (or of first kind) (resp. vectorial-
type-preserving, vectorially Weyl) if ¢ (T+) = T+ (resp. @ preserves the types
of the vectorial facets, ? e WV).

e) The (affine) Weyl group W? = W2(A) of A is the subgroup of Aut(A)
generated by the reflections sy for M € M. Its elements are called Weyl-
automorphisms of A.

f) An apartment of type A is a set A endowed with a set Isompa(A, A) of
bijections f: A — A (called Weyl isomorphisms) such thatif f, € Isompa(A, A),
then f € Isompya(A, A) if, and only if, there exists w € W2 such that f = fyow.

g) An isomorphism between two apartments A and A’ is a bijection ¢: 4 — A’
such that for some fy € Isompa(A, A) and f; € Isompa(A, A") (the choices
have no importance) the map (fy)~! o ¢ o fo is an automorphism of A. We
say that this ¢ is positive, vectorial-type-preserving, vectorially Weyl or a Weyl
isomorphism if (f§)~' o ¢ o fo is positive, vectorial-type-preserving, vectorially
Weyl or a Weyl automorphism (compare with [30, 1.13]); actually it is sufficient to
verify this property by restriction to a non empty open convex subset of A.
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3) Remarks. a) By definition N and W2 act on A by vectorially Weyl automor-
phisms. The Weyl group W? is a normal subgroup of v(N). They are not always
equal.

b) If ¢ is an automorphism of A, ¢ stabilizes ® and T4 U T_; so, up to
wv, :I:? stabilizes the basis (v;)jey and ¥ = {s; | i € I} or (al.v)l-el. The
induced action on / preserves the Kac—Moody matrix IM and its Dynkin diagram
(it is a diagram automorphism); it is trivial if ¢ is vectorial-type-preserving.
A vectorially Weyl automorphism is positive and vectorial-type preserving; the
converse is true when A is essential.

¢) We define G? (resp. N?) as the subgroup of G (resp. N) generated by Z,
and the groups U, (resp. by Zg and the m(u), u € Uy \ {1}) for ¢ € ®. It is normal
in G (resp. N) and G = G?%z (resp. N = N%.7). By definition v(N?) = wa
and even N? = v~ (W?) is the group of Weyl automorphisms in N. We set
7Z? = N? 0 Z which is normal in Z.

By [8, 6.1.2(12)] (G?, (Uy)wea. Z?) is a generating root datum of type ®.
The associated group “N” (as in 1.6.1) is N?. Comparing the refined Bruhat
decompositions (1.6.1) of G? and G, we obtain G? N N = N?. Compare with
[30, 6.2].

4) Imaginary roots. We consider moreover a set Ajy, in V* of imaginary
roots with Ajm N (Uyeep Ra) = @ and Ay, WV-stable; we write A = & and
A = ® U Ajp. The best example for A is a root system as in [3] with ® as system
of real roots (it can be e.g. the root system generated by ® asin 1.1.3 or, if & = g P,
the system g A as in 2.5). The totally imaginary choice A" for A corresponds to
Al = V*\ (Ugeo Re).

We say that A is tamely imaginary [30, 1.1] (resp. relatively imaginary) if
Aim = A U AL with WV-stable sets AL = £(A N (B;c; RTa;)) (resp.
AE = £(A N (Dics, RYai)), where In D 1 is finite and (a;)ier, is free).
Remark that x A (as defined in 2.5.2) is always relatively imaginary and is tamely
imaginary if and only if it is equal to g A": 2.9.3b.

For all @« € Ajyn, we consider an infinite subset A, = —A_, of R. We define
the system M' of imaginary walls as the set of affine hyperplanes M(a, 1) for
o € Ajn and A € A, (actually the real walls are given by the same formula for
a € ). We ask that these walls are permuted by v(N) D W?, in particular
Apa = Ay, forallw € WV,

For o € A and k € R, we sometimes say that M(«, k) (resp. D(«, k)) is a true
or ghost wall (resp. half-apartment), according to the fact that k € Ay ork & A,.

5) Remarks. a) Actually these imaginary roots or walls will be used only to define
enclosures, hence facets and chimneys (3.6). So making a difference between true
or ghost imaginary walls is often useless, e.g. in the case of 3.5, see 3.6.1. It would
be possible to modify the vectorial facets (hence the sectors, facets, chimneys, ...)
with A, (as in 2.8) in the relatively imaginary case (this changes nothing in the
tamely imaginary case). But it seems useless for us: see 2.9.4 and Section 6.
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b) Let ¢ be an automorphism of A. Then ¢ stabilizes A;:n and A or
exchanges them if ¢ is a Weyl automorphism (by definition) or if A is generated by
®[3,4.2.15,4.2.20, and 2.4.1]. We say in general that ¢ is imaginary-compatible if
?(Aifn) = Aiﬂfn and ¢ permutes the imaginary walls (automatic e.g. if A, = R,
for all @ € Ajp). But we do not always assume the automorphisms imaginary-
compatible.

3.5. Affine apartments for a split Kac—-Moody group. We consider the group
and valuation as in 3.3.

1) We can build easily examples of pairs (V,v) as in 3.4.1. We choose a
commutative extension of RGS ¢:8 — 8 = (M,Y’, (a))ier, (a;V)iel) with 8
free and weset V =Y’ ® R.

There is an action vy of T over V by translations: for ¢t € T, vr(¢) is the
translation of vector vr(¢) such that y(vr(¢)) = —w(j()) for y € X’ and
7= ¢*(x) € X. In other words vr is the map —(¢p @ w) from T =Y ®z K* to
V =Y’ ®z R. This action is W"-equivariant.

By [28, 2.9] there exists an affine action v of N over V whose restriction to T’
is vy and satisfying the properties asked in 3.4.1. Actually N/ Ker(vr) is a semi-
direct product by 7'/ Ker(vr) of a group isomorphic to WV and generated by the
images of m(x,, (1)) for i € I. This last group will fix the origin of V.

For 8’ we may choose Spim, Slor (if 8 is free) § itself. We getthus V = V9, pxl
or V* and corresponding affine apartments A = A9, AX or A*.

2) Remarks. Suppose that (V, v) is as in 1) above.

a) The kernel Zy = Ker(vr) = Ker(v) of v contains the group T(0) =
Y ® O >~ (0*)" of points of T over O. It is actually equal to it except
when the image of the map ¢*: X’ — X, y > j has infinite index i.e. when
@ is not injective.

b) We have v(N) = W' x (Y ®z A) and W2 = W' x (QY ®z A), where Y
(resp. QV) is the image by ¢ of ¥ (resp. Q¥ = Y ;c; Zay C Y)in V. So
there is equality in the simply connected case (in a strong sense: ¥ = QV)
and only in this case when ¢ is injective (e.g. V = V¥ or V = V*) and 0
discrete.

3) General affine apartments a) We consider now any pair (V, v) as in 3.4.1.
But we add the condition (useful in Section 5) that the kernel Z, = Ker(v)
contains ¥(0). We speak then of a suitable apartment for (&g, ¥g); apartments
defined in 1) are suitable.

Then v|,. induces a Z-linear map v:Y ® A — V and this map sends o ® A
to —Aa: o ® A is the class modulo T(0) of o (r) € T(K) with w(r) = A.
But )/ (r) = m(x_q; (1)~'.m(x_q, (r)) by [31, 1.5 and 1.6], so by the hypothesis
in 3.4.1, v(a;"(r)) = S—g;,0 © S—a;,w(r) Which is the translation of vector —Ac;’.
In particular the Z-linear relations between the «;” in Y are also satisfied in V.

By 3.4.1 and 3.3, we have also a(V(y ® 1)) = —a(y).A.
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b) We choose Ajp, as in 1.1.3 i.e. generated by @ [21, 5.4], [3, 2.4.1]. We have
Ay = A, forall @« € ® and we set Ay, = A, for all @ € Ajy. The system M of
walls is discrete (resp. semi-discrete) if and only if we are in the classical discrete
case (resp. if the valuation is discrete).

If ¢ is an automorphism of A and @ € A, A € A, then

x€pM(,2) <= 0=alp™ () +1=a(@(0) + @ @) +A.

So ¢(M(w, X)) is a (real or imaginary) wall (of direction Ker('g («))) if and
only if a(¢~1(0)) € A. By hypothesis this is true for « € ®, so this is also
true for @ € Ajm C Q; hence ¢ permutes the imaginary walls. Therefore any
automorphism of A is imaginary-compatible.

3.6. Enclosures, facets, sectors and chimneys. We come back to the general
abstract case of 3.4; the following notions depend only on A (with M) and M.

We consider filters in A as in [16] or [29], [30], [31]. The reference for the
following is [31] or [30]. The support of a filter in A is the smallest affine subspace
in A containing it. We identify a subset in A with the filter whose elements are
the subsets of A containing this subset. We use definitions for filters (inclusion,
union, closure, (pointwise) fixation or stabilization by a group) which coincide
with the usual ones for sets when these filters are associated to subsets. For
example F C F’ means that every set in the filter F' is in F.

1) If F is a filter in A, we define several types of enclosures for F (corre-
sponding to different choices for a greater family of real or imaginary walls) cf.
[31,42.5: if ® C P C Aand, foralla € P, Ay C A, C R, then cly,(F)
is the filter made of the subsets of A containing an element of F of the form
Ngep D(a, Ay) with, for each o € P, 4, € Al U {+o0o}; in particular each
D(a, Ay) contains the filter F i.e. is an element of this filter. When A, = A,
(resp. A/, = R) for all &, we write cl” := ¢l (resp. clf; := cl’\,); when A, = A,
foralla € ® and A/, = R, for all @ € A™ we write cl”, := cl5,. We define
Al ={k e R| cli/(D(oe,k)) = D(a,k)} fora € A, then A, = A/, U %A’M for
a € ® and cl}, = cl},. In the case of 3.5.3b with A’ = A, cl, = cly, = cl},
[30, 1.6.2].

We define cl”(F) (resp. clff{(F )) as the filter made of the subsets of A contain-
ing an element of F of the form ﬂ}‘zl D(Bj,Aj)for Bj € ®andA; € Ag, U{+o0}

(resp. A; € R U {+00}); cl* is the enclosure map used by Charignon [13, Sec-
tion 11.1.3].

In [16] (resp. [30] or [31]) one uses cl® (resp. clﬁa, clﬂ%, cl®, clﬁ or CIA, C
cI®) under the names cl (resp. cl, clg, cI*’, clfRi or cl, cI*?, cI™).

One has cl*(F) > cI®(F) D cI®(F) D cl&,(F) D cla(F) D clf' (F) =
conv(F) (closed convex hull), cI®(F) > clﬁ(F )D clﬁ (F) and some other clear
inclusions.

1<I>

’
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The maps cl]ﬁtl = conv, clcp,clfﬁ, cl#, cl‘?tR (resp. clA, CIAU, clﬁm, clﬁ) are
equivariant with respect to automorphisms (resp. imaginary-compatible automor-
phisms) of A.
In the following, we choose one of these enclosure maps (cli,, cl” or clff{)
which we call cl. We say that F is enclosed or cl-enclosed if F = cl(F).

Actually M is entirely determined by cl and & C A (provided that cl is
M-adapted, i.e. A, = A for o € ®): a (true) wall in M is an affine hyperplane
which is cl-enclosed and with direction Ker(«) for « € ®. The enclosure map
does not always determine M, but this set of imaginary walls is only used to
determine cl.

2) Remark. We defined above (too) many enclosure maps. We have to do this as,
in the following, the best choice depends on the cases. We would like that cl(F)
is the biggest compatible with the axioms (MA2), (MA4) of masures (see 4.10.1
below). Unfortunately to get this, even in the split Kac—-Moody case of 3.5, we
have to consider imaginary walls. Nevertheless it seems that a good choice for
cl is to assume it tame: cl D clﬁla (i.e. cl(F) D clﬁla(F ) for any filter F') with A
tamely imaginary.

Recall that cI2, (F) is the filter of the subsets of A containing the intersection
of a family (D(&,Ay))aea of half spaces (each containing F), such that, for
o€ ® = A, Ay € Ay ie. D(a, Ay) is an half-apartment and, for ¢ € Ajp,
Aq is any real. The main simple property of a tame enclosure map cl is as follows:
if x <y € A, there exists a positive vectorial facet F¥in AV suchthat y —x € FV
and then cl({x, y}) D (x+FV)N(y—FV);in particular for y = x, cl({x}) D x+Vp:
any enclosed filter is stable under V. These two properties are also satisfied when
clis almost tame: cl D clIA\, with A tamely imaginary.

We shall succeed in proving that the masures of almost split Kac—Moody
groups are compatible with a tame, M-adapted enclosure map: see 5.6 and 6.11.

3) A local-facet is associated to a point x in A and a vectorial facet FV in K;
it is the filter F!(x, FY) = germ,(x + F") intersection of x + F" with the filter
of neighbourhoods of x in A.

The facet or cl-facet associated to F'(x, FV) and the enclosure map cl =
cli, (resp. cl = cl* orcl = clf';{) is the filter F(x, FV) = FX’/(x, FY) (resp.
F#(x, FY) or Flg(x, FY)) made of the subsets containing an intersection (resp. a
finite intersection) of half spaces D(a, A1) or D°(c, 1) (at most one A, € A, for
each @ € P) (resp. with « € ® and A, € Ay or A € R) such that this intersection
contains F'(x, F") i.e. a neighbourhood of x in x + F".

The closed-facet F(x, FY) is the closure of F (x, FY), also F(x,FY) =
cl(F(x, FY)) = cl(F'(x, F¥)). Note that F' = F{" ¢ Ff c F? = F} =
F'+ Vyand F! = Fﬁ“ C Ff C Fg = Fi = F' + V,, where Vj is as defined
in1.2.4.



922 G. Rousseau

These facets are called spherical (resp. positive, negative) if FV is. When FV
is a vectorial chamber, these facets are chambers hence spherical.

4) A sector (resp. sector-face) is a V-translate ¢ = x + CV (resp. f = x + FV)
of a vectorial chamber CV (resp. vectorial facet FV). A shortening of a sector
or sector-face f = x + FV is a sector or sector-face f = x’ + F" included in
f. The germ of a sector ¢ = x + CV (resp. sector-face f = x + FV) is the filter
9 = germ,(q) (resp. § = germ (f)) made of the subsets containing shortenings
of q (resp. f). The direction of f = x + FV or of its germ is FV, its sign is the
sign of FV. When FV is spherical, we say that f and § are spherical or splayed
(“évasé” in [30] or [31]). The vertex x of f = x + FV is well defined by f when A
is essential.

5) A chimney or cl-chimney is associated to a facet F = F(x, Fy)) (its base)
and a vectorial facet FV; it is the filter

t(F, F¥) := cI(F + F") = cI(F'(x, F}) + F¥) =: «(F', F")

(containing cl(F)+F" = F + FY). If cl = cl},, we write t},(F, F¥) = t(F, FY).

A shortening of v(F, FV) (with F = F(x, Fy)) is defined by £ € FV, it is
the chimney v(F(x + &, F\)), F¥). The germ of this chimney is the filter R(F, F")
made of the subsets containing a shortening of ¢(F, F"). The direction of t(F, F")
or SR(F, FY) is FV, its sign is the sign of F"V, it is said splayed if F" is spherical
and solid (resp. full) if the direction of its support has a finite fixer in WV (resp. if
its support is A).

For example the enclosure cl(f) of a sector-face f = x + FV is a chimney of
direction FV; its germ is splayed if and only if § is spherical, it is full if (but not
only if) it is a sector. A facet is a chimney and a chimney germ with direction
the minimal vectorial facet Vo = FJ (I); it is splayed or solid if and only if it is
spherical, it is full if and only if it is a chamber.

N.B. In [27] a chimney is a specific set among the sets of the chimney as de-
fined above, the chimney germs are the same as here. In [10] P. E. Caprace and
J. Lécureux introduce (generalized) sectors in any combinatorial building; in the
classical discrete case for A, these sectors are the enclosures of a facet and a chim-
ney germ.

3.7. Bordered apartments. Following [13], we shall add to A some other apart-
ments at infinity, see also [30].

1) Facades. For FV a vectorial facet in V, we consider the sets A™(FY) =
{ed € A a(FY) =0} and ®™(FY) = & N A™(FV) of roots. They are clearly
systems of roots: if F¥ = FY(J), then A™(FV) = A™(J) and ®™(FV) = ®™(J).
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We define A%, as the affine space V' endowed with the set M(F') =
{M(a, L) | ¢ € ®(FVY), A € A} of walls, the corresponding reflections and M'(F")
defined similarly using A(F"). Its points are written (x, FV) with x € V. The es-
sentialization A%, of A'f, is the quotient of V' by the vector space ﬁ generated
by FVY (with the corresponding walls and reflections); the class of x € V in A%,
is written [x + FV].

— — —

When Fy € F* i.e. F¥ C Fy, we have F'¥ C F'’; so there is a projection pr g
of A%, onto Af v erlv([x + F']) = [x + F}']. We also write Prey the evident
map from A7, onto A‘;,elv or A;IV.

Following [13], we say that A%, (resp. A7) is the (essential) facade (resp.
non essential facade) of A in the direction F". A fagade is called spherical (resp.
positive or negative) if its direction is spherical (resp. positive, or negative). The
same things as in 3.6 may be defined in each fagade.

2) Bordered apartments. Let A (resp. A®) be the disjoint union of all A's,
(resp. A%, ) for F¥ a vectorial facetin V' and let Al be the disjoint union of A and
all AS,, for F¥ anon trivial vectorial facetin V. Then A (resp. A¢, Al) is the strong
(resp. essential, injective) bordered apartment associated to A; its main facade is
Ay = A (resp. A®, A) of direction the trivial vectorial facet Vo = F} (/).

In the following we set A = A (resp. A%, Al), A, = A%, (resp. A%, AS,),
etc.

_ Forx e A, we write F"(x) the direction of the facade containing x. Fore = =+,
A® (resp. Agpp) is the union of the fagades of sign £ (resp. the spherical facades)
in A and Aiph =A’nN Asph.

To each wall M(a, A) or half-apartment D(a, ) is associated a wall M(a, )
or half-apartment D(a, A) of A: for all F¥, M(a, 1) N A, (resp. D(a, A) NAL,)
is the projection of M(«, A) (resp. D(a,A)) on A, if a(FV) = 0, the empty set
if «(F") < 0 and the empty set (resp. A ) if a(FY) > 0. With these definitions
we may define enclosures cl($2) in A.

The essentialization of - Ais @e, which is the bordered apartment defined in [13].
We shall focus on A!, as A€ is A! if we choose V = V4.

The set Aégh is the microaffine apartment of sign ¢ as in [28] (in its Satake re-

alization). The corresponding object ijh is closer to the apartments of [28, 2.3].

3) Links with sector-face germs and chimney germs. There is a one to
one correspondence between the points of A° and the sector-face germs in A.

—
To § = germy,(x + F) corresponds the class [x 4+ F"] of x modulo F" in A%,

also written [§]. When A = A9 is essential, the points in A correspond bijectively
to the sector-faces in A.
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By definition A fv itself is an affine apartment with walls defined using
®M(FY). The closed-facets in A v correspond bijectively with the chimney germs
of A of direction FV. To R = R(F, F") corresponds the closed facet [9R] which
is the filter made of the subsets in A v containing { [§] | § C ¥} for some subset
3 of A containing fR.

Actually R is splayed (resp. solid, full) if and only if [91] is in a spherical fagade
(resp. is spherical in its facade, is a chamber in its fagade).

4) Topology. On Al (or A°) one can define a topology inducing the affine
topology on each facade and such that A (or A®) is the closure of Ay = A (or A®)
which is open in A (or A®) [13, 11.1.1]:

For a non trivial vectorial facet F¥, x € A and U an open subset of A
containing x, we set V({U, FY) = (U + FY) U{[§] | § € U + F'}. When
x, U vary but FV and germ_(x + FV) are fixed, we get a fundamental system of
neighborhoods of [x + F]in A! (or A®).

For this topology the closure A gv of a facade A gv (with FY non trivial) is the
union of the fagades A gy for F{' € F¥* i.e. F¥ C Fy'; we take this for definition

of Arv when A = A. In the classical case, A! is a compactification of A called
the Satake or polyhedral compactification, see e.g. [11].

5) Automorphisms. Any automorphism ¢ of A may be extended to an
automorphism @ of A. For A or A® the image of [x + F'] € Apv is [p(x) +
?(FV)] € A?(FV) and ¢ is continuous. For A, ¢(x, F¥) = (¢(x), ¢ (FY)).
Automorphisms permute the facades.

In particular, the action v of N on A may be extended as an action on A which
is also written v.

4. Hovels and bordered hovels

The goal of this section is to build a hovel (or bordered hovel) associated to a
valuated root datum, as Bruhat and Tits build (in [8]) a building when the root
datum corresponds to a finite system of roots. Actually we shall need a new datum:
a family of parahoric subgroups. So we explain the axioms these families have to
satisfy and then we build the hovel and the bordered hovel. The end of this section
is devoted to the discussion of their properties.

The main ideas and results here are due to Charignon, so the main reference
is [13], but we recall all needed definitions.

4.1. Wanted. Let G be a group, N a subgroup and v an action of N on some
space A. We want a space I containing A as a subset and an action of G on I
such that G.A = I, A is stable under N and the induced action is v.
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Following F. Bruhat and J. Tits [8, 7.4.1], a good way to get it, is to define I as

a quotient:

I=GxA/~qg
with (g, x) ~q (h, y) if and only if there exists n € N such that y = v(n).x and
g Yhn € Q(x), where Q = (Q(x))xea is a family of subgroups of G. The action
of G on I is induced by the left multiplication on G, we have amap i: A — I:
for x € A, i(x) is the class of (1, x).

We are interested in the groups G and N as in 3.1 and 1.6.1 (in particu-
lar associated to a valuated root datum) and an action v as in 3.4.1 or 3.7.5.
In particular we define I (resp. I) as above with A = A (resp. A = A). As
in [12] and [13] we skip a possible generalization to RGD-systems. We shall now
make the conditions on the family (Q(x))xe4 precise, following [13, 11.2.1 and
11.3].

4.2. Families of parahoric subgroups. 1) Let A = A be A, A® or Al and v
the corresponding action of N. For a family Q = (Q(x))xc4, We then write T =
G x A/ ~q, it is the bordered hovel associated to the situation. The (bordered)
apartments of I are the sets g.i(A) for g € G. The hovelis I = G x A/~¢ and
its apartments are the g.i (A) for g € G.

For a subset or a filter Q in A (resp. A), « € ® and ¥ C P, we define

D(a, Q) = D(a, sup(—a(R2)))

(resp. D(a, Q) = D(a, Q) N A),
Ua(Q) = {u € Uy | 2 C D(, 9o (u))}

(hence Uy (y) = Un,—a());

N(Q) = {n € N | n fixes Q},

GV, Q) = (Ua(Q) |a € V),
and

G(Q) =G(D,Q),
written Ug in [16, §3.2] or [31, 4.6a]. As in these references we write
Ugt =G, Q) cUS :=UTNnGEQ)

and the same things with —. It often happens that US " # Ud; see [31, 4.12.3a]
and also 5.11.4 below.

It is clear that N(2) C N(FV) normalizes G(£2) and U(F") and that G(2) C
G(P(FY),Q2) C P(FY) normalizes U(FV), if @ N Apv # . We always have
G(V, Q) = G(,cl*(R2)). When Q@ = 0, we have G? = Z,.G(%). For Q # 0,
the group NJ" = N N G(R) is normal in N(Q). Its image W™ by v is in W?
and generated by the reflections with respect to the (true) walls of A containing
2. This group WM is isomorphic to its image Wy in WV [16, §3.2].
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2) Definition. A family Q = (Q(x)),c5 of subgroups of G is a family of
parahoric subgroups if it satisfies the following axioms (for the convenience of
the reader, we give to axioms the names in [13] and shorter names).

(P1) (para 0.1) For all x € A, U(F¥(x)) C Q(x) C P(F'(x)).
(P2) (para 0.2) Forall x € A, N(x) C Q(x).

(P3) (para 0.3) Forall x € A, foralla € ®, forall A € R, if x € D(«, 1), then
Ua,/l C Q(x)
(P4) (para 0.4) Forall x € A, foralln € N, nQ(x)n~' = Q(v(n).x).

If Q is a subset of A, we define Q(Q) = Nyeq Qx). If Q is a filter in A,
we define Q(Q) = Ugreq (). In both cases Q(£2) is a subgroup of G.

3) Easy consequences. a) Axiom (P4) tells that ~¢ is an equivalence relation,
[l.c., 11.3.2]. By axiom (P3), Uy, fixes (pointwise) D(c, A). Axiom (P2) tells that
the map i: A — I is N-equivariant, but it is not clearly one to one, cf. 4.3.2 below.

b) (See [l.c., 11.3.8].) The fixer of i(x) € i_(&) in G is Gy = Q(x). More
generally for a subset or filter Q in g.i(A) C I, we define Gg = Q(Q) as the
fixer g.0(g7'.Q).g7" of Q.

Forx € Aand g € G, if g.i(x) € z(A) then there exists n € N with
g.i(x) = n.i(x). For a subset or filter €2 in A, theset G(Q C A) = {g € G |
G.i(RQ) C i(A)} is equal to Nyeq NQ(x) (if € is a set) or Jgreq G(R' C A)
(if 2 is a filter).

For all x € I, Q(x) is transitive on the apartments containing x. B

c) If FV is a vectorial facet of AY, axiom (P1) tells that P(FY) x Apv — T
induces a map G(F") X Apv/ ~pv— I, where ~pv is the equivalence relation
defined using Q‘AFV and N(FV). This map is one to one, as y = v(n).x with
x,y € Apvandn € N impliesn € N(FY) = N N P(FY).

The image of this map is the facade Ipv of I in the direction FV. In par-
ticular the main facade of T is the hovel I = G x A/ ~ where ~ is defined
using Q| and N. Actually each facade Irv is an hovel, the main facade of

Irv = U Fyervs Lpy associated to Apv, Q) A and the valuated root datum

(G(FY), (Ug)aeom(Fvy: Z. (Pa)acom(Fv))-

d) By (P1) and (P3), if @ C A pv is non empty, then G(®™(FV), Q) C G(RQ) C
U(FY) x G(P™(FY), Q) C Q() = U(F) x (M(F") N Q()).

e) If Q is a family of parahorics and x € A, then Q(x) D P(x)
(N(x),G(x),U(F'(x))) = N(x).G(x).U(F'(x)). So it is clear that P =
(P(x)),cx is the minimal family of parahorics. In the classical (= spherical) case
it is the right family; this is the reason for axiom (P6) below. But it is not clear
in general that P satisfies axiom (P5) below. Note that, even for x € A, P(x) is
seldom equal to Py, as defined in [31, 5.14] or [16, 3.12].
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4) Definition. A good family of parahorics is a family Q of parahorics satisfying
moreover.

(P5) (para inj) Forall x € A, N(x) = Q(x) N N.
(P6) (para sph) For all x € A, if FY(x) is spherical, Q(x) = P(x) ie.

QUi = VA

(P7) (para 2.2)(sph) If FV is a spherical facet, F} C FVand x € A Fy then
NQ(x) N NP(FY) = NQ({x, prpv(x)}).

5) Definition. A very good family of parahorics is a good family Q of parahorics
satisfying the following additional axioms.

(P8) (para dec) For all x € A, for all chamber C¥Y € FY(x)*, Q(x) =
(Q(x)NU(CY)).(Q(x) NU(=C")).N(x)

(P9) (para 2.14+)(sph) If FV is a spherical facet, F}’ C FVand x € A Fy then
OX)NP(FY) =Q(x+ FY)wherex + F¥ = erlv(Xl +
FY) for any x; € A with erlv(xl) = x and x + FV is the
_ — N _
union of the sets prgy(x + FY + Fy) for F' C Fy C FY
(it is the closure of x + F¥ when A = A® or A).

(P10) Ifx < yory < xin Apv, then Q(Jx,y]) C Q(x) i.e.

O(x.y]) = O([x,y]) where ]x,y] = [x,y]\ {x} is an
half-open-segment.

6) Remarks. a) (P8) is an important tool for calculations. (P7) and (P9) give links
between Q and Q|5 ) which is well known by (P6).

P
b) By [l.c., 11.9.2] a consequence of (P9) is the following condition.

(P9—) (para 2.1+—)(sph) If FV is a vectorial facet and g € U(F"), there exists
x € A such that g € Q(x + CV) for all chamber
CVeFV*.

c) For x, F¥ = FY(x) and CV as in (P8), suppose that x ¢ A ie. FY
is non trivial. Then we have Q(x) N U(CY) = (Q(x) N M(FY) N U(CY)) x
U(FY). Now, by the uniqueness in Birkhoff decomposition (1.6.2), P(F"V) N
U-CY) = M(FY) N U(-CY) = M(—F") N U(—C") which is a “maximal
unipotent” subgroup (opposite M(FY) N U(CY)) in M(FY) = M(—F"); hence
Ox)NUCY) = Q0(x)NM(—FY)NU(—CV). Now, if FY is spherical, we can
give another explanation: M(FY) N U(—CY) = M(F¥) N U(CY) where C_ is the
chamber opposite to CV in FY*;s0 Q(x) N U(—C") = Q(x) N M(FY) N U(CY).
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d) Except (P9) all axioms impose relations between a single facade A rv and
the spherical facades A pv for Fy € F**. We may fix Fy and take x € A gy U &Sph
in the axioms, then we get the same results. So, starting with 4.4, we shall use
actually a family Q of groups Q(x) for x € A U Asph with the corresponding
axioms.

e) A priori a good family of parahorics has no property of continuity. This is
the reason of the (weak) axiom (P10). But without it everything in this Section is
still true (except when the contrary is explicitly told). This axiom (P10) is satisfied
by the minimal family P.

f) If Q is a very good family for (G, (Uy)aecad, Z, (¢o)acd) then we define
0%x) = O(x) N G?. We have O(x) = Q%x).N(x) (by (P8)) and Q% is a
very good family of parahorics for (G?, (Uy)gca. Z?, (¢po)ace) (defined in 3.4.3¢).
The two bordered hovels associated to A and (G, Q) or (G?, Q%) are canonically
isomorphic.

4.3. Bordered hovels associated to good families. We explain now some of the
abstract results of [13] (or [12]). So let Q be a good family of parahorics (if it exists)
and T be the associated bordered hovel. For the following we give no proofs, only
some precise references to L.c.

1) By Bruhat-Tits theory and (P6) Q is well known on the spherical facades
[Lc., 11.2.3]. In particular we get the following properties.

The results of (P8) and (P9) are true when FV(x) is spherical; for Q in a
spherical facade A v one has

Q(RQ) = U(F") x (N(Q).G(™(F), Q) = N(Q).0(cl" (%))

and
G(Q C A) = N.Q(Q).

Actually, for FV spherical, I v is the Bruhat-Tits building of the classical
valuated root datum (G(F"), (Uy)qecadm(Fvy: Z, (Pa)acom(Fv)) (With the facets as-
sociated to cl).

_2) The minimal family P satisfies also (P5) and (P6). Axiom (P5) tells us that
i:A — I isonetoone [Lc., 11.3.4]; we identify A and i (A). The stabilizer of A
in G is N [Lc., 11.3.5].

3) Iwasawa decomposition ([/.c., 11.4.2]). For a chamber C" or a facet F" in
AY and a facet F C A, we have

G = U(C").N.G(F) = U(F").N.Q(cl*(F)) = U(F").N.Q(F).

Actually one has a more general result: we may replace above F by any narrow
filter (see [16, 3.2 and 3.6]), e.g. any segment germ [x, y) C A, preordered or not
(cf- 4.6.1).
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4) Bruhat-Birkhoff-Iwasawa decomposition [L.c., 11.5]. Let F; C A FY and
F> C Ay be two facets with Fy' or F;’ spherical. Then

G = U(F)).G(®™(FY), F1).N.G(®™(F3), F2).U(Fy)

= Q(cl*(F1)).N.Q(cl*(F>))
= Q(F1).N.Q(F>).

From this one deduces the following: if Fy and F, are facets in Tand Fyor F, is
in a spherical facade, then there is an apartment of I containing F; and F, (even
cl*(Fy) and cl*(F)).

5) Projection. Let FV be a spherical facet and F}’ C FV. Then, by (P7), the
projection prv of A pv onto A pv extends to a well defined map prpv: Iy — Ipv
between the corresponding facades. For each ¢ € G, g.prpv(x) = prypv(gx)
[Lc., prop. 11.7.3].

6) If A = A°, then axiom (P8) is satisfied by any good family of parahorics
[Lec., 11.7.5].

7) Let Q be a good family of parahorics for A = A*, satisfying moreover (P9)
or (P9—). Suppose that 2 C A is either in A® and intersects non trivially Ajph or
intersects non trivially A;}:h and A;)h. Then G(Q C A) = N.Q(), hence Q(R2)
is transitive on the apartments containing 2.

If Q@ C A intersects non trivially A;;h and A, then

0(Q) = N(Q).0(cI*(Q));

so cl*(Q) (and also cl(), ...) is well defined in T independently of the apartment
containing 2. All this is proved in [Lc., Section 11.9.2]

8) One can find in loc. cit. many other implications between the various
axioms. Actually Charignon introduces also useful notions of functoriality i.e. the
possibility of embedding the valuated root datum in greater ones, with arbitrarily
large subsets A, of R and various good compatibilities. We shall not explain this,
as it is more natural in the framework of split Kac—-Moody groups over valuated
fields on which we shall concentrate in the next Section.

Proposition 4.4. Let Q be a good family of parahorics satisfying (P9) and Q2 be
a non empty subset or filter in A.

a) Let F¥ C CY C A be a spherical vectorial facet in the closure of a chamber
and ay,...,a, € ® be the non divisible roots such that «(CV) > 0 and
a(FY) = 0. Then,

Q(Q) N P(CY) = (Q() NU(CY)) x Zo.
Q(Q)NU(CY) = (2(Q)NU(FY) % (Q(Q) NUCY) N M(FY)).
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and
Q) NUC) NM(FY) = Uy, (). Us, ()

with uniqueness of the decomposition.

b) Let CV C AV be a chamber. The set
QU(Q,CY) = (Q(Q) NU(CY)).(Q(R) N U(-CY)).N(R)

depends only on the sign of the chamber C".

N.B. 1) So we define Q9¢(Q2, &) = Q4¢(Q, CV) if C" is of sign .
2) By (P9) Q(Q) NU(FY) C Q(Q + CV) forall C¥ € F*.

Proof. a) We have P(FY) = U(CY) x Z, U(CY) = U(FY) x (U(CY) N M(FY))
and, by Bruhat-Tits theory (4.3.1), U(CY) N M(FV) = Uyg,.--- .Uy, (unique).
Using these uniqueness results, we have just to prove a) for Q@ = {x} and x € A.
We write x” = prgv(x).

By (P9)and4.31Q0(x)NP(FY) = Q(x+ FY) C Q(x) = U(FY)x(Q(x")N
M(F")) and Q(x') N M(F") = Uq, (x). -+ .Uq, (x).U-q, (x). "+ .U_q, (x).N(x')
[8, 7..8]. So Q(x') N M(FY) N U(CY) = Uy, (x).-++ .Uy, (x) and Q(x") N
M(FY) N P(CY) = Uy, (x).++ .Uy, (x).Zo (by uniqueness in the Birkhoff de-
composition 1.6.2.). And, as each Uy, (x) is in Q(x), we get what we wanted.

b) Any two chambers of sign ¢ are connected by a gallery of chambers of sign
e. So one has only to show that 09¢(Q, CY) = 09¢(Q, 5,(C")) when o € ® is
simple with respect to ®(CV). We consider F¥ = C¥NKer(x) and apply a). But
U (2).U_q(2).N(Q2 4+ Ker(a)) = U_,(R2).Uy(2).N(2 4+ Ker()) by [8, 6.4.7];
so the same proof as in [16, 3.4a] applies. |

4.5. Good fixers. 1) We consider now a very good family of parahorics Q =
(%)) renu Roph and we want to define the same notions as in [16, Definition 4.1],

using the axioms and Proposition 4.4; this is suggested in the beginning of [3I,
Section 5].

2) Definition. Consider the following conditions for a subset or filter 2 in A:
(GFe) Q(Q) = Q%°(Q,¢) for e = + or —;
(TF) G( C A) = NQ(R2) (where G(Q C A) is defined in 4.2.3b).
We say that Q2 has a good fixer if it satisfies these three conditions.

We say that Q2 has an half-good fixer if it satisfies (TF) and (GF+) or (GF—).
We say that Q2 has a transitive fixer if it satisfies (TF).
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3) Consequences. We get the following results by mimicking the proofs in [16,
Section 4.1]. The ingredients are Proposition 4.4 and the facts that Q(2) N
U(£CY) = Q(QECY)NUECY),Ng Q@)NUEECY) = Q(Ug )NU(ECY)
for a family 2 of filters, etc. We do not write the proofs.

a) By (P8) a point has a good fixer. The group N permutes the filters with good
fixers and the corresponding fixers.

b) If @ has a transitive fixer, then Q(2) acts transitively on the apartments
containing 2. From this last property, one deduces clearly that the “shape”
of Q2 doesn’t depend on the apartment containing it. As a consequence of the
many examples below of filters with (half) good fixers, we may define in I
(independently of the apartment containing it) what is a preordered segment,
preordered segment-germ, generic ray, closed (local) facet, spherical sector
face, solid chimney etc.

c) In the classical case every filter has a good fixer.

d) Let ¥ be a family of filters with good (or half-good) fixers such that the
family Q of the sets belonging to one of these filters is a filter. Then €2 has a
good (or half-good) fixer Q(Q) = Upcsy O(F).

e) Suppose that the filter Q is the union of an increasing sequence (F;);eN
of filters with good (or half-good) fixers and that, for some i, the support
of F; has a finite fixer in v(/N), then Q has a good (or half-good) fixer

0(2) = Niew Q(F).

f) Let € and Q' be two filters in A and CY, ..., C,/ be positive vectorial cham-
bers. If @’ satisfies (GF+) and (TF) and @ C /., (@ + C_l.V), then
Q U Q' satisfies (GF+) and (TF) with Q(Q U Q') = Q(R) N Q(Q'). If
moreover 2 (resp. ') satisfies (GF—) and Q' C |Jj_; (2 — C)) (resp.
Q c U, (2 —C))), then Q U Q' has a good fixer.

4) Remarks. a) Let Q in A be a filter with good (or half-good) fixer and F'¥ be a
spherical vectorial facet. We write ® = |Jovepvw CY and

Q/:(Q+®)Q(Q—®)ﬂ( N D(a,Q))
ac®M(FV)

(which is in CIE(Q)), then, by 4.4a and 4.5.3e, any Q" with Q C Q" C Q' has
a good (or half-good) fixer; moreover Q(2) = Q(Q”)N(S2). In particular any
apartment A of I containing 2 contains Q' and is conjugated to A by Q ().

b) By 4.2.6f, for every filter Q, we have 0%(Q) = 0Q(Q) n G,
0(Q) NUCY) = 0%Q) N U(CY), and N?(Q) = N(Q) N G?. Hence if Q
has a (half) good fixer for Q, N.Q(Q) = N.0%(Q), N.Q(Q) N G? = N?.0%(Q)
and 2 has a (half) good fixer for Q2.
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4.6. Examples of filters with good fixers. 1) If x < yor y < x in A (pre-
ordered situation), then {x, y} and the segment [x, y] have good fixers Q ({x, y}) =
O([x, y]) (apply 4.5.3e); in particular any apartment A of I containing {x, y} con-
tains [x, y] and is conjugated to A by Q([x, y]). If moreover x # y the segment
germ [x, y) = germ ([x, y]) has a good fixer ( 4.5.3c).

2) If x,y € Aand § = y — x # 0 is in a spherical vectorial facet FV
(generic situation: x<y or y<x), then the half-open segment ]x, y] = [x, y]\ {x},
the line (x, y) and the ray § = x + [0, +00[.£ of origin x containing y (or the
open ray §° = § \ {x}) have good fixers (4.5.3d). Using now 4.5.3c the germs
Ix,y) = germ,(]x, y]) and germ_,(6) (the filter of subsets containing some subray
X + [a, +00[.£) have good fixers.

3) A closed local facet F1(x + FV) has a good fixer: choose § € FYand A > 0
then the intersection 2 ¢ of (x + FY) N (x + A& — FV) with a ball of radius || A£||
and center x (for any norm) has a good fixer (4.5.3e with Q' = [x, x + A&]) and
Fl(x + FV) is as described in (4.5.3¢) using the family Q¢ (when A varies).

If the local facet is spherical, then it has a good fixer. We just have to use above
(x+eE+FY)N(x+ 16— FV)for0<e < Aand4.53cde.

4) By similar arguments we see that a spherical sector face or its closure or
its germ has a good fixer. The apartment A has a good fixer Q(A) = Z, so
the stabilizer of A is N. An half-apartment D(«, k) has a good fixer Zy.U, k,
cf [31,5.7.7].

5) We suppose now in this paragraph that the family Q satisfies axiom (P10)
(see 4.2.6.e). If y < x or x < y in A, then the half-open segment |x, y] (resp.
the open-segment-germ |x, y)) has a good fixer Q(]x,y]) = QO([x,y]) (resp.
O(x,y)) = O([x,y))), even if FY(y — x) is not spherical. By arguments as
in 3) above (using x + F¥ =]x, x + A£] + FV instead of x + FV) we deduce that
any local facet F! = F!(x, F") has a good fixer and Q(F') = Q(F!).

Proposition 4.7. Let Q be a very good family of parahorics, € # 0 a vector in a
spherical vectorial facet F¥ and x € A. We consider the ray § = x + [0, +00] &,
then Q(8) C Q(germ,(8)) C P(FY).

N.B. 1) This is a kind of reciprocity for axiom (P9). We have Q(x) N P(FY) =
O(x+ FV) = Q(x+ FV)with x + FVin A.

2) We thus directly see that O (A) fixes Asph.
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Proof. It is sufficient to prove that Q(§) C P(F"). Let CY be a chamber in F*,
then by 4.6.2, 0(§) = (Q(6) N U(CY)).(Q(6) N U(—CY)).N(§). As N(d) and
U(CV) are in P(FV), we have only to prove Q(§) N U(—C") C P(F"). By (P9)
and 4.3.1, for A > 0,

O(x+A6)NU-CY) C Q(x + A§) N P(—FY)
C Q(pr_pv(x))
= N(pr_pv(x)).G(®™(F), pr_p(x)).U(=F").
So
Q@) NU=CY) = (G(O™(F"), pr_pv(x)) NU=C").(U(=F") N Q(6))

as G(®™(FY), pr_gv(x)) fixes pointwise x + R¢ D 4.
Now

U~F)YNQE) = () UECHNQ(x+Af)

CVEFV*,A>0
c Q( U @ +Ag—ﬁ)).
CVeFV*,A>0
But this last union is actually A, so
U=F)NQE) =UF)NQA) =U-F)NZy={1}
and

U—CY) N Q) C GO™(FY),pr_pv(x)) C P(FY). O

Corollary 4.8. Let F C Apv be a facet in a facade and R C A be the
corresponding chimney germ (cf. 3.7.3). Then

U(FY).G(®™(FY), F).N(R) C Q(F) N Q(R).
If FY is spherical, then
O(F) =U(F").G(®™(F"), F).N(F)
> 0
= U(FY).G(®™(F"), F).N(R).
N.B. We sometimes say that Q ({R) is the strong fixer of F.

Proof. For x € A, it is clear that R is in the union of all x + CV for CV € F'*.
So the first result is due to (P9—). For FV spherical Q(F) is given in 4.3.1.
By Proposition 4.7 Q(R) C P(FY) and Q(R) C Q(F) by (P9), hence the
result. |
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4.9. Properties specific to clg. We are interested here in the cases cl = cly, i.e.
_ 1P g A Al
cl =clp, cly, cly orcly .

DForafilter Qin A, Q C Q+V, C (R4 CY) N (Q — CV) for all vectorial
chamber C"V. So, by 4.5.4, if Q has a good or half-good fixer, it is also true for any
Q' with Q@ C Q" € Q + V. Moreover Q(2) = Q(): N(RQ) = N(Q + Vp) as
WYV fixes V.

2) For a local facet F!, we saw that F! = F]}%u CFR C F¢ =Fl=F'+1,,
hence the closed clg-facet associated to F! has a good fixer by 1) above.

We saw also that the clg-facet associated to F! is between F! and F! + V.
If the family Q satisfies (P10), then this clgy-facet has a good fixer (4.6.5 and 1)
above); by 4.5.4 any apartment containing F' contains clg (F') and is conjugated

to Aby Q(F') = Q(F!) = Q(F' + Vo).

3) Let Q2 be a point, preordered segment, preordered segment-germ, generic
ray, generic ray-germ or generic line (resp. preordered half-open segment, pre-
ordered open-segment-germ or generic open ray if Q satisfies (P10)) as in 4.6
and let @ € Q" C clg(R2). Then Q(Q) = Q(RQ”) by 4.5.4, as clr(R) C
(Q + FV) N (2 — FY) (resp. clr(Q) C (L + FY) N (Q — FY)) for some facet
FY pointwise fixed by vV (N(£2)). Hence any apartment containing € contains Q"
and is conjugated to A by Q(Q") = Q(Q).

We may choose clg = clﬁ. So, for Q a preordered segment-germ, generic
ray or generic ray-germ, we may choose above Q" equal to its clfﬁ—enclosure ie.
the corresponding closed-local-facet, spherical sector-face-closure or spherical
sector-face-germ. If Q satisfies (P10) and €2 is a preordered open segment-germ
(resp. a generic open ray) the same result is true with Q" the corresponding local
facet (resp. corresponding spherical sector-face).

4)Let F' = F I(x, FV) be a closed local facet in A and F} a vectorial facet.
Thent = F+F_1V is closed convex i.e. cl]ﬁti -enclosed; hence it is the cl]ﬁti -chimney
tﬁti (F', FY'); note that this is not always true for clg, cI% or cIf.

Suppose that t is solid i.e. that the fixer in v(N) of its support is finite. Then ¢
and its germ R have good fixers: we apply 4.5.3e to Fland F' + A£ (with A > 0,
& € F)), then 4.5.4 and 4.5.3d to see that v has a good fixer; now the result for 5}
is a consequence of 4.5.3c.

5) Remark. Suppose that F¥ and F}’ are as above in 4) and of the same sign. Then
FY + FY meets a vectorial facet Fy with F¥ C F) and Fy N (F", F}') open in the
vector space (FY, F)') (F, is the projection of F) in FV*). By 4.9.3 any apartment
containing F!(x, F¥) and x + F (or F!(x, F}')) contains F'(x, F)). Suppose
that F, is spherical (e.g. if v is solid) then, by using a few more times the same
argument, we see that any apartment containing v contains the clﬁ-enclosure Q of
F'(x, F¥) and F'(x, F) and also Q + F} which is the clf-chimney v (F', F).
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So one could use this cl}-chimney. But unfortunately it is not clear that Q or
Q+ F) FY has a good fixer. Moreover the followmg proposition seems difficult to

prove for cl. So we shall concentrate on cl]R .

6) Proposition. Let R be the germ of a splayed Cl]R -chzmney vy = F Fl 4 F3 FY
and Ry be either a closed local facet F, F! or the germ of a solid CI]R -chzmney
v = Fl + Fv Then Q@ = 91 U R, has a half-good fixer and Q(2) =
Q(CI]R (Q)) N(R2). In particular any apartment of I containing Q2 also contains
CIR (Q) and is conjugated to A by Q(CIR (Q))

N.B. Actually if R, is the germ of a splayed clﬁn—chimney (i.e. F, is spherical),
then Q2 has a good fixer [30, 6.10].

Proof. We may replace Q by @ = t; U v, with t; and v, sufficiently small.
Consider ® = Ucvng* Cv; by shortening t; we may assume t; C t; + 0. So,
by 4.5.3e and 4.6.3 or 4) above, 2 has a half good fixer. We use 4.5.4 with 2 and
F):ast;—0 = A, Q' is actually equal to Q" = (r; +0O) N (ﬂae¢m(F3V) D(a, Q))

which is convex and closed. So  C Q" = clﬁﬁ(Q) = conv(R) C Q' and
0(Q) = 0(Q").N(Q). a

4.10. (Generalized) affine hovels. We consider an affine apartment A, as de-
fined abstractly in 3.4.2 a,b and an enclosure map cl as in 3.6.1 (using 3.4.4). For
the following definitions see below in 1), 2) the restrictions on cl, or the associated
variants. See also 4.15 for some variants.

1) Definitions. An affine hovel of type (A, cl) is a set J endowed with a covering
A by subsets called apartments such that the following axioms are satisfied.

(MAT1) Every A € A is an apartment of type A (cf. 3.4.2.f).

(MA2) If F is a point, a preordered open-segment-germ, a generic ray or a solid
chimney in an apartment A and if A’ is another apartment containing F,
then AN A’ contains the enclosure cI(F) of F in A and there exists a Weyl
isomorphism from A to A’ fixing (pointwise) this enclosure.

(MA3) If R is a splayed chimney-germ, if F is a facet or a solid chimney-germ,
then R and F are always contained in a same apartment.

(MA4) If two apartments A, A’ contain R and F as in (MA3), then their inter-
section A N A’ contains the enclosure cl(R U F) of RU F in A and there
exists a Weyl isomorphism from A to A’ fixing (pointwise) this enclosure.
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This affine hovel is called ordered if it satisfies the following additional axiom.

[MAO] Let x, y be two points in J and A, A’ be two apartments containing them;
if x < y in A, then the segments [x, y]4 and [x, y]4- defined by x, y in A4
and A’ are equal.

Actually an ordered affine hovel is now often called (for short) a masure.

An automorphism of the hovel J is a bijection ¢:J — J such that, for every
apartment A, ¢(A) is an apartment and ¢|, an isomorphism. We say that ¢ is pos-
itive, vectorial-type-preserving, vectorially Weyl or a Weyl automorphism, if ¢ 4 18
positive, vectorial-type-preserving, vectorially Weyl or a Weyl isomorphism, for
some A € A. This is then true for any A € A: for any two apartments Ay, Az,
there is a third apartment A such that A; N A contains a non empty open convex
subset (e.g. a splayed chimney) and we may use 3.4.2.g.

We say that a group G acting on J acts strongly transitively if it acts by
automorphisms of J and moreover the Weyl isomorphisms between apartments
involved in the axioms (MA2) or (MA4) may be chosen induced by elements of G,
see also 4.15.1. (In the classical case of thick discrete affine buildings and groups
of Weyl automorphisms, this is equivalent to the known definition, cf. 4.13.1 below
and e.g. [1, Proposition 6.6].)

So G acts strongly transitively if, and only if, the subgroup GV of Weyl
automorphisms acts strongly transitively.

Variations due to the enclosure map. Unfortunately the definition of affine
hovel given in [30] is still not general enough, it is too restrictive for cl to be
satisfied in this section. We explain now our more general definition, for a more
general enclosure map.

2) The enclosure map considered in loc. cit. is clﬁm or (after changing A or
A = (Ay)acd) cl®, clﬁ, clﬁ. As suggested in [Lc. 1.6] the enclosure map cl® is
often not so different from clﬁm. The results of loc. cit. are true for cI* without
changing anything. We may also enlarge as we want the family A to a family A’

3) In loc. cit. (except in Section 1) the root system A is asked to be tamely
imaginary (in particular clﬁ1a is tame). This excludes the totally imaginary case AY.

When A is not tamely imaginary (actually we try to avoid this case), the axioms
of affine hovels of type (A, clﬁ,)) have to be modified as follows:

We must add to the list of the filters involved in (MA2) the local facets and
the spherical sector faces. Moreover in (MA3) and (MA4) we must add the
possibilities that F is a point or a preordered segment germ and that R or F' is a
generic ray germ.



Almost split Kac-Moody groups over ultrametric fields 937

Then all results of loc. cit. are true up to Section 4 (except the last sentence of
[Lc. 4.8.2]). In Section 5 (specially 5.2 N.B.) we must add (MA2) for F' a segment
germ and clﬁ i.e. the following property holds.

e For]x,y) C Fl(x, FY), any apartment containing [x, y) contains F'(x, F")
(We can restrict to the case where FV is a chamber.)

Generalizations. 4) A generalization is necessary when we drop axiom (P10).
We shall say that J is an affine (ordered) closed-restricted-hovel of type (A, cl) if
it satisfies the above axioms modified as follows:

In the list of axiom (MA2) or in (MA3) and (MA4), we replace preordered
open-segment-germ by preordered segment-germ, facet by closed facet and (in
the case of 2) above) local facet by closed local facet, spherical sector-face by
spherical sector-face closure. Then all results in loc. cit. are true if we make the
same replacements.

5) We shall say that J is an affine (ordered) generic-restricted-hovel of type
(A, cl) if it satisfies the above axioms modified as follows:

In axioms (MA2), (MA3), (MA4), and (MAO) (eventually modified as in 2)
above), we replace everywhere the words preordered, solid, full by generic,
splayed, full and splayed (respectively), the preorder < by < and suppose that
all facets are spherical. Then all results in loc. cit. are true if we make the same
replacements.

Theorem 4.11. Let Q be a very good family of parahorics in G.

(1) Then I with its family of apartments is an ordered affine hovel of type

(A, clﬁn). The group G acts strongly transitively and by vectorially Weyl
automorphisms on I.

(2) The twin buildings I*% constructed at infinity of I in [30, Section 3] are
G-equivariantly isomorphic to the combinatorial twin buildings I of 1.6.3
(restricted to their spherical facets). This isomorphism associates to each
spherical sector-face-direction §°° a spherical vectorial facet F¥ € IF.

(3) If FY spherical corresponds to §°, then there is a P (FY)-equivariant isomor-
phism between the affine building I(§*°) of [I.c. 4.2] and the (essentialization
of the) facade I, of 1.

N.B. a) Of course in this theorem, affine hovel must be understood according to
the choice of clﬁu, see 4.10.3 above; moreover, for this choice, clﬁtl (F) is simply
the closed convex hull of F. This is unsatisfactory. Fortunately for almost split
Kac—Moody groups, we are able to avoid this problem: we may replace clﬂA{tl by a
tame enclosure map: cl® in the split case (5.6) and cl’éAr or cI€A" in the general
almost split case (6.11).

If we drop the hypothesis (P10), then we get only a closed-restricted-hovel.
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b) We may replace A' by the non essential system AU with Al =
O pes Ra) \ (Uyep Ra) cf 49.1.

¢) As we chose cl = clﬂA{[i (orcl = clﬁm), the Bruhat-Tits building I, in 3)
above is endowed with its IR-structure.

d) The hovel I inherits all properties proved in loc. cit.. In particular it is
endowed with a preorder relation < (resp. < if we are not in the generic-restricted
case) inducing on each apartment A the known relation <4 (resp. <4) associated
to the Tits cone cf. 3.4.2b.

e) If a wall M(«, k) contains a panel of a chamber C C D(«, k) C A, then the
chambers adjacent to C along this panel are in one to one correspondence with
Uy i/ Uy i+ (cf- [30,2.9.1] and 4.6.4). In particular I is thick (3.4.2a).

f) As G = G?.N and N? = GY N N is the group of Weyl automorphisms of
A, the following proof tells that G? is the subgroup G¥ of Weyl automorphisms
inG.

Proof. 1) It is sufficient to use the family Q? in G?. Axiom (MALI) is then
clear by definition and all the properties asked for axioms (MA2), (MA4) and
(MAO) are proved in 4.5, 4.6 or 4.9. If F and R in A are as in (MA3), then
the Bruhat—Birkhoff-Iwasawa decomposition 4.3.4 and Corollary 4.8 prove that
G = Q(F).N.Q(®R); it is classical that this proves (MA3).

As the elements in v(V) are vectorially Weyl automorphisms of A (3.4.3.a)
and N is the stabilizer of A (4.6.4), the elements in G act by vectorially Weyl
automorphisms.

2) The fixer Q(f) of a spherical sector-face f = x + FV in A is in P(FYV),
see (4.7). So the map f — FV is well defined and onto the spherical facets of
IY¢. Consider f; and f,, after shortening they are in a same apartment and then,
by definition, they are parallel if and only if they correspond to the same FV. So
we have got the desired bijection. Now this bijection is clearly compatible with
domination and opposition cf. [30, 3.1]: it is an isomorphism of the twin buildings.

3) J(F*) is the set of sector-face-germs with direction §*°. Now in A we
saw (3.7.3) that the map § = germ_,(x + FV) — [x + F"] identifies the apartment
A(F%®) in J(F°) with AS,,. By 4.8 Q([x + F']) = Q(F).N([x + F"]); butin A
it is clear that N([x + F"]) = N(F), so Q([x + F']) = Q(§). The identification
of J(§°°) and I, is now clear, through a construction as in 4.1. O

4.12. Compatibility with enclosure maps. We have proved good properties

with respect to CIHA{tl . But the example of split Kac—Moody groups ([16] or Section 5
below) proves that we may hope the following strong compatibility property.
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1) Definition. The family Q of parahorics is compatible with the enclosure map cl
if for all non empty filter 2 in a facade A rv and all vectorial chamber CY € F¥*,
we have

Q(2) NU(ECY) C Q(cl(R2)).

2) Remarks. a) Combined with (P9) and 4.4 this compatibility condition implies
that Q(2) N P(CY) C Q(cl(Q + CY)).

b) Even for cl = cl]ﬁti this is stronger than (P9), e.g. if Q + CV is not closed in
A or  not convex. It implies always (P10).

¢) Clearly, if another enclosure map cl’ satisfies cl' C cl, i.e. cl'(F) C cl(F)
for any filter F, then the compatibility of Q with cl implies its compatibility with
cl'.

d) The most important case is when €2 has an (half) good fixer. Then Q(Q2) =
0(cl(2)).N(2), more precisely we may generalize [16, Proposition 4.3]:

3) Lemma. Suppose Q is very good, compatible with cl and
QcCQ ccl(R) CA.

If Q has a good (or half good) fixer, then this is also true for Q' and Q () =
0(Q).N(RQ), Q(R).N = Q().N. In particular any apartment containing
contains its enclosure cl(2) and is conjugated to A by Q(cl(R2)).

Conversely, if supp(Q2) = A (or supp(Q') = supp(Q), hence N(Q') =
N(R2)), @ has an half good fixer and Q' has a good fixer, then Q has a good
fixer.

4) Consequences. All the results proved in [16, Section 4] are true when Q is very

good and compatible with cl. For example the results in 4.9 above for cly or clﬁtl
are true for cl; hence:

5) Theorem. If Q is a very good family of parahorics compatible with cl, then
Theorem 411 is true with type (A, cl) instead of (A, clﬁtl ). Ifcl = cli/ andP C A
is tamely imaginary, we get an ordered affine hovel exactly as in [30], see 4.10 2)
and 3).

6) Definition. A parahoric hovel (or parahoric masure) of type (A,cl) is an
ordered affine hovel, obtained from a valuated root datum endowed with a very
good family of parabolics compatible with cl. We suppose moreover that cl is
almost tame, i.e. cl D cli, with P C A tamely imaginary.

A parahoric hovel has all properties of hovels and some other ones: the
associated group G acts strongly transitively by vectorially Weyl automorphisms,
moreover 4.3.3 tells that any sector germ and any segment germ are in a same
apartment.
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4.13. Backwards constructions

1) Lemma. Let J be a masure of type (A, cl) with a group G acting on it strongly
transitively. Then G acts transitively on the apartments and the stabilizer N of an
apartment A induces in A a group v(N) containing the group W" generated by
the reflections along the thick (hence true) walls.

N.B. The subgroup W%" of W2 is equal to it when J is thick.

Proof. Let &1 C Ay, &2 C A, be sector germs in apartments. By (MA3) there
exists an apartment A3 containing &; and S,. By (MA?2) there exists g1, 82 € G
with A1 = g1 A3 and A, = g2 A3, s0 A and A, are conjugated by G.

If now M is athick wall in A, we write D, D, the half-apartments in A4 limited
by M. By [30, 2.9] there is a third half-apartment D3 in J limited by M such that
fori # j, DiNDj = M and D; U D; is an apartment 4;;. By (MA4) applied to a
sector-panel-germ § in M and a sector-germ in D; (dominating the opposite in M
of §) there exists g;jx € G with g;;x.Aij = Ajx (Where {1,2,3} = {i, j, k}). Now
A = Aqp and g142.8231-8123 (Where D4 = g531.D1) stabilizes A and exchanges
D; and D»: it is the reflection with respect to M. O

2) LetJ and G be as in the lemma. Then G acts “nicely” (in particular strongly
transitively) on the twin buildings J +% and we saw in [30, 3.8] following [34], that
G is often endowed with a RGD system.

3) Suppose that G is endowed with a generating root datum such that the
corresponding twin buildings IY° are identified G-equivariantly with J*® " in
particular G acts via positive, vectorial-type-preserving automorphisms. Then
the action of G on the affine buildings J(5°°) (for §°° a panel in J%£%) should
endow the root group datum with a valuation as in the classical case [30, 4.12].

4) Suppose now that there exists a valuation of the root group datum which
gives the affine buildings J(FV) on which P (F") acts through P(F")/U(F") (for
any spherical vectorial facet FV). Then J is constructed as in 4.1 with a family
Q = (Q(x))xea of parahorics. We define also Q on Agph by the action of G on
the buildings J(FV). Let us look at the properties satisfied by Q:

(PD), (P2), (P4), (P5), and (P6) are clear by definition and hypothesis.

By [30,4.7]x € Jand FY €J +% (hence spherical) determine a unique sector
face x4+ FV so (P9) is satisfied: Q(x)N P (F") stabilizes x+ F¥ and, up to elements
fixing x + FV, it stabilizes A and is vectorially Weyl, hence fixes x + FV. As Qs
well known on Agph, Q(x) N P(FY) fixes (x + FY) N Agph.

Now letu € Uy ) and FV a panel in Ker(a) = M*°. Then by [/.c. sec.4] uA is
an apartment of the building J(M *°) ~ J(FV) (which is a tree) and its intersection
with A is an half-apartment D(«, u). But by definition of the valuation u fixes
prev(D(a, A)) C A%y; so ANuA D D(a, A) hence u fixes D(a, A). So (P3) is
satisfied.
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For x € A and g € G, suppose that g € Q(x).N N P(FY).N, then gA > x,
gAY D FY and gA contains the sector face x + FV [30, 4.7]. So by (MA2)
g€ Q(x+ FY).N.But O(x + F¥) D Q(x) and Q(x + F¥) D Q(prg(x)) as
prev(x) € Apv is the class of x + FY. Hence (P7) is satisfied.

(P10) is satisfied as J is an hovel (not a closed-restricted-hovel).

When A = A€, Charignon proved that (P8) is satisfied for every good family
of parahorics (4.3.6). We may also use a geometrical translation of (P8) for good
families satisfying (P9): let x € A and s a sector of origin x in A, then any
apartment A’ containing x contains also a sector s; of origin x opposite s (in
an apartment containing them both): actually A’ = pA for some p € Q(x);
following (P8) and (MAZ2), one may suppose that s = x + V'V and write p =
pt.p~.n. If s = x — CV is the sector opposite s in A, then by (P9), A’ contains
s1 = pts,, which is opposite s in pTA.

So if A = A® is essential, we know that the family Q (defined on A U Ayp) is
very good.

5) These sketchy constructions reduce more or less the classification problem
for affine hovels with a good group of automorphisms to the problem of existence
(or uniqueness ?) of very good (excellent ?) families of parahorics associated to
valuated RGD systems.

Proposition 4.14. We consider a group G (resp. G') acting strongly transitively
on an ordered affine hovel J (resp. 7)) and amap j:J — I which is G -equivariant
with respect to an homomorphism ¢:G — G'. We suppose that the following
conditions are satisfied.

(1) There exist apartments A C J and A" C J' such that j | 4 is injective affine
from Ato A

(2) There exists a sector germ S in A such that the direction of the cone j(G)
-
meets the interior of the Tits cone T, in A’

Then j is injective.

N.B. We exclude here the closed-restricted-hovels. For buildings the proof is
easier, as two points are in a same apartment.

Proof. Let x1, x5 € J such that j(x;) = j(x2). There is an apartment A; = g; A
containing x; and &, with g; fixing pointwise a sector s in &. Then A} = ¢(g;)A’
is an apartment containing j(x;) and j(s) with ¢(g;) fixing pointwise j(s). Let’s
consider y € s sufficiently far away; then [y, x;] and j([y, x;]) = [J(V), j(xi)]
are preordered (even generic) segments in A; and A;. But j(x1) = j(x2),
0 [j(»). j(xD)] = [j().j(x2)] (axiom (MAO)). As g = g»g;" fixes point-
wise the segment germs [y, x1) and [y, x2), ¢(g) fixes pointwise [j(y), j(x1)) =
[/(»). j(x2)) and, as ¢(g) is an affine isomorphism from A to A5, it fixes point-
wise the whole segment [j(y), j(x1)] = [j(»), j(x2)]. Then g[y, x;] and [y, x2]
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are two segments in A, with the same image [ (), j(x2)] in A5 by j (injective on
the apartments). So these segments are equal; in particular [y, x1) = [y, x2).
Now j([y,x1]) = j([y,x2]) and [y, x1) = [y, x2). Then [y, x1] N [y, x2] is
a segment [y, z] (¢f. (MA2) for open-segment-germs, as we avoid 4.10.4) with
z # y. We are done if z = x; or z = x,. Otherwise [z, x1) and [z, x;) are distinct
segment germs in a same apartment [30, 5.1] with the same image by j, contrary
to the hypothesis. |

4.15. Simplifications of the axioms. For simplicity we suppose that A is tamely
imaginary.

1) Let G be a group acting on an affine ordered hovel I by vectorially Weyl
automorphisms. It is proved in [14] that strong transitivity is equivalent to any of
the two following conditions:

For any local chamber (resp. sector germ) 2 in I and any two apartments A4, A’
containing €, there is g € G fixing pointwise Q such that A’ = g.A.

2) Proposition. In the definition of an affine ordered hovel (resp. an affine ordered
generic-restricted-hovel), we may replace axiom (MA?2) by the axiom we get when
we allow F to be only a preordered open-segment-germ or a solid chimney (resp.
only a generic open-segment-germ)

Proof. Let A, A’ be two apartments containing a point x. We consider in 4 a
generic segment germ [x, y) and in A" a sector germ &’. By (MA3) there is an
apartment A” containing [x, y) U &'. The intersection A’ N A” contains a sector
s’ (with germ &’). We choose z € s’ sufficiently far; so [x, z] is a generic segment
in A’ and by (MADO) this is also a line segment in A”. By (MA?2) for generic open-
segment-germs, there is a Weyl isomorphism ¢: A — A” (resp. y: A" — A”)
fixing cl(]x, y)) D cl(x) (resp. cl(]x, z)) D cl(x)). Then ¥~! o ¢ is the expected
Weyl isomorphism from A4 to A’.

Let § be a generic ray with origin x in an apartment A and A’ an apart-
ment containing §. Then R = clg(germ,(8)) is a splayed chimney germ and
clg(germ, (§)) a spherical closed-facet. By (MA2) for generic open-segment-
germs, cly(germ, (6)) C A’. By (MAO) and (MA2) for generic open-segment-
germs, § is closed convex in a generic line of A’. But § has only one endpoint
(x) in A, so § is a generic ray in A’. We consider the splayed chimney germ
R = cly(germ,(6)). By (MA3) and (MA4), there is an apartment A” con-
taining R U R’ and, by (MA4), it is clear that R = clyr(germ(§)) = R in
A”.So AN A" D cly(germ, (§)) U cly(germ ,(8)) and, by (MA4), there is a Weyl
isomorphism from 4 to A’ fixing cls(germ, (§) U germ,(8)) = cla(§).

A splayed chimney is the enclosure of a spherical facet and its (splayed)
chimney germ. So (MA2) for splayed chimneys is a consequence of (MA4) (with
F a spherical facet). O
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5. Hovels and bordered hovels for split Kac-Moody groups

We consider now the situation of split Kac—-Moody groups, i.e. of 3.3 and 3.5
and shall build a very good family P of parahorics following [31]. We choose the
enclosure map cl = c1® of 3.6.1, which is tame and M-adapted.

5.1. The parahoric subgroup associated to y € A. 1) The free case with
V = V*: In [31] the RGS S is supposed to be free and the affine apartment A is
equal to A* with associated vector space V* = Y ®z R. Then for y € A, one
defines the group P(y) = prm+.U;‘m_.N(y) = U;m_.prm+.N(y) where N(y)
is the fixer of y in N and U} mt (resp. U;™7) is the intersection with G or U +
(resp. U™) of a group UymaJr = [laca+ Ua(y) (resp. U™ = [[yea- Ua())
which exists in a suitable completion GP™ (resp. G"™?) of the Kac—-Moody
group G [lc. 4.5, 4.14]; actually one has to define suitably U,(y) for « € Ajn:
Ug(y) = Ug,—a(y) := U{“ylz}‘({a}) in the notations of [Lc. 4.5.2].

The group UF = U* N G(y) of 4.2.1 is clearly included in P(y). As
U™ = UT n P(y), we have U;” ¢ UP™" and, similatly, Uy C U™
Moreover,

P(y)=US"". Uy .N(y) = UM™~.UF.N(y),

see [L.c. 4.14];

The interesting point for us is that Uyma+, U, U},Jer, upm, Uy+ or
U, depend only on the true half-apartments (imaginary or not) containing y.
In particular they depend only on the class y of y in the essentialization A9 =
A*/ V.

In the classical case where @ is finite (and Ay, empty) the group Uy m (resp.
Uy™~) is the group Ut (resp. U, ~) generated by the groups Uy (y) for a € ®F
(resp. @ € ®7).

2) Consider now any RGS 8, any affine apartment A as in 3.5 for the root
datum in G = ®g(K) and any y € A. By [3], 1.3 and 1.11] there is an injective
homomorphism ¢:G — G¥ = B¢ (K) where 8! is a free RGS. The affine
apartment associated to it is A*' and we know that the essentializations of A and
AXlare equal: A/ Vo = AX/ V¥ = A

To 7 € A9 we associated above some subgroups of GX. By [Lc. 1.9.2, 3.19.3]
the groups U* in G and G*! are isomorphic by ¢, so U§m+, uz™, U;’ and Uy
are actually in G (and if 8 is free, they are as defined in 1) above). We define the
group ﬁm()?) as generated by U;’m+, U;‘m_ and T3(0) C Zp = Ker(v). We define
N(y) the fixer of y in N and P(y) = P™(5).N(y) which is called the fixer group
associated to y in A (cf. 5.2b below).
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Lemma 5.2. a) We have P™(5) = UE™ " .Umm= N™(5) = U2 U™ N™(5) =
U§m+.U;.Nm()7) = U)?m_.UJ-j'.Nm(ﬁ) where N™(3) is a subgroup of N(y),
hence fixing pointwise y + Vo C A.

b) Moreover P "(y) does not change when one changes &t by WY, hence it is
normalized by N(y) and P(y) is a group.

Proof. a) We identify G and ¢(G) C GX'. We choose an origin in A (resp. A*)
fixed by v(m(xq,(1))), for all i € I; hence A (resp. AX) is identified with V
(resp. VX and v(N) (resp. v (NX!) where NX! = Ngi(K)) with v(T) x WY (resp.
v (TX) % W) where WV acts linearly via v¥. Actually v: T — V factorizes
through 7/%(0) = Y ® A:v(t) = v(t) where ¢ is the class of  modulo T(0); and
the same thing for v*!. We consider z € V¥ such that z = y € V4.

By [Lc. 4.6, 4.14] we have UP"T. Ut N™in() C PM(5) C PY(z) =
U§m+.U}}m_.N’d(z) = U§m+.UJ-,_.NXl(z) where N™"(5) is a subgroup of N
and N¥(z) the fixer in N¥ of z. Moreover N¥(z) = N* n P¥(z). It is now
clear that P™(5) = UP™T.UM- N™(5) = UMT.U5 N™(F) with N™(F) =
P™(7) N N¥(z) = P™(F)N N C N N N*¥(z). The same thing is clearly true
when exchanging U)]-,Jm+, U; and U™, U5 .

Letn = tw € NN N¥z) witht € T and w € WV (fixing 0). We
have z = nz = V() + w(z). But, if w = ;.- .55, € WY, z —w(z) =
Dt Gijpyeee 80, (2) = iy i, (2)) = D07y iy (Si e .sin(z)).alz =:
3(z, V™) an element of VV*! depending only on Z = j. Hence v*\() = 9(z, V*);
but 7! is one to one, so 7 € (Y} ;c; Ry ® ) N'Y ® A. By 3.5.3a, there exists
r € Zsowithrt = —3%",.; & ® A; with A; € A a suitable Z-linear combination
of the coefficients r.o;; (si; .-+ .5i,(z)) € R (as the relations between the &;’
in Y C Y* have coefficients in Q). Now b(ri) = Y ;c; Aie’ € V and, by the
expression of the A;, rv(f) = rd(z, V) (as the ;;” in V satisfy the Z-linear relations
between the ;" in Y). In V' we may divide by r, so v(f) = 9(z, V). By the same
calculations as above v(n) fixes any element y with y = Z.

b) It is proved in [31, 4.6¢] that U)‘-,Jm+.U)‘-}m_.N min(5) doesn’t change when one

changes ®* by W". So it is the same for the subgroup PM(¥) it generates. O

5.3. The fixer group associated to y € A \ A. For F" a non minimal vecto-
rial facet, the fagcade A rv is an affine apartment for the group P(FY)/U(F") =
G(FY) =~ M(FV) which, by 1.6.5 and 3.4, is endowed with the generating
root datum (G(FY), (Uy)qeam(Fv), Z). Moreover G(FV) is actually the group
of K-points of a Kac-Moody group: if F¥ = FY(J) then G(F") = G(J) =
B (K).
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So for y € A v we may define ﬁ(y) as the subgroup of P(F") inverse image
of the subgroup Pgv(y) constructed inside G(FY) ~ M(F") as above. We have

P(y) = Ppv(y) x U(F")
= URy . URS N().U(FY)
= U . URT N(y).U(FY)
= UPV Uy N(»).U(FY)
= Uy Upv, .N(»).U(F")
where + and — refer to the choice of a chamber CY € FY*.

Remark. Even if FV = 1} is minimal, a point y € A%, = Apv/ ﬁ corresponds
to a collection y + ﬁ of points y € A, = A. So we have two parahoric
subgroups P(y) C P(y) = P(y).N(F")(y) and N(FV)(y) acts by translations
ony + 1’73 We say that ﬁ(y) (resp. ﬁ()?)) is the strong (resp. weak) fixer of y
or y.

Definition 5.4. We define P as the family (ﬁ (¥))yex- By construction it is a
family of parahorics. The corresponding hovel (resp. bordered hovel) will be
written I = I(&s, K, A) (resp. I = I(s, K, A)) and called the affine hovel
(resp. affine bordered hovel) of &g over K with model apartment A (resp. A).
When we add the adjective essential we mean that A = A9 (resp. A = A®).

It is perhaps possible that P = P [31, 4.13.5], see also 5.11.4c.

Lemma 5.5. Letx € A, F¥Y = FY(x) and CV a chamber in FV*. Then,
P(x)NN = N(x),

P(x) N N.UCY) = N(x).UNT U(FY),
P(x)nuU(CY) = UMY U(FY),
P(x) N N.U(—C") = N(x).UM-,
P(x) NU(-CY) = UM~

Proof. Let g € ﬁ(x) N N.U(CY). So g = nut = n'v"vtupv withn € N,
ut € U(CY), n' € N(x), v~ € UF=, vt € URYS and upv € U(FY). Hence
(') utupt(vh)™!) = v~ € N.U(CY) N U(-C"). By the uniqueness in the
Birkhoff decomposition (1.6.2) we have v~ = 1,n = n’ and u™ = v upgv so
g € N(x).UMYT .U(FY). If moreover g € N (resp. g € U(CY)) we have ut = 1

Vx *
(resp.n = 1) hence g = n’ € N(x) (resp. g = vTupv € UIF;T:.U(FV)).
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Now let g € ﬁ(x) N N.U(=CY). We write g = nu~ = n'vtv upy =
n'vtu’p, v~ (with obvious notations). Hence (n'~'n)(u~(v7)™!) = vTulf, €
N.U-CY) N U(CY). So vtuzy = 1 (hence vt = ufpy = 1, as P(F') =
M(FY) x U(FY)),n = n" and u~ = v~. We have g = n'v™ € N(x).UpV,
and,if g e U(=CY),n =n" =1s0g =v~ € UV, .

O

Proposition 5.6. The family Pisa very good family of parahorics. It is compatible
with the enclosure map cl®. Hence I (B3, K, A) is a thick parahoric hovel of
nype (A, c1®) and G = &(K) acts strongly transitively on it (by vectorially Weyl
automorphisms).

Proof. We proved (P5) in the lemma above. If FV(x) is spherical, UET: and Ug'”
are generated by the groups Uy (x) for @ € ®”*(FV), so (P6) holds. By definition
P(x) = URNT.UM- N(x).UFY) = UM-UNYT N(x).UFY), so (P8) is a
consequence of Lemma 5.5. We have also ﬁ(x) = (ﬁ(x) N U(—CV)).(ﬁ(x) N
U(CY)).N(x).

Consider now the situation ofA(P7) or (P9). We have to prove N.P (x) N
P(FY) C N.P({x,prgv(x)}) and P(x) N P(FY) C P(x + FV). These relations
are in P(Fy) and each side contains U(F}’), so we may argue in G(F}) =
P(F))/U(F)). Actually we shall suppose that x € A. Consider a chamber
CY € FY*, we have P(FY) = U(FY) x M(F") and (by Iwasawa) M(F") =
(U(CY) N M(FY)).N(F¥).G(®™(F"), x) with G(®™(F"),x) C P(x + FY). Let
g € N.P(x)N P(FY) (resp. g € P(x) N P(FY)). We write g = n'q = upvvtng’
with n' € N (resp.n’ = 1), q € P(x), upv € U(F"), vt € U(CY) N M(FY),
n € N(FY),q € P(x + FV) and we want to prove that g € N.P(x + FV) (resp.
gE ﬁ(x + FV)). So one may suppose that g’ = 1, then g € nU(n"'C") and ¢ €
n'~'nUn~'C"). By the proof of 5.5 ¢ € '~ 'nUL™(n='C") with n'~'n € N(x)
and, asn € N(FY), UP"(n='CY) ¢ P(x+ F"). Sog = n'q € N.P(x + F")
(resp.g =g € P(x + F¥),asn =n""'n € N(x) N N(FY) C N(x + FY)).

By 5.5 P(x) N U(CY) = URVT x U(FY) and P(x) N U(-CY) = Um-.
So P(Q) N U(CY) = U x U(FY) and P(Q) N U(—CY) = UPTS and these
groups depend only on cl®(€2) [31, 4.5.4f]. We have proved that P is compatible
with c1®. O

5.7. Remarks. 1) So we get for 7 and I all the properties proved in Section 4.
The map g%g~' — A(gTg™") = gA (resp. g%g~! — A(gTg™") = gA)isa
bijection between the split maximal tori in &5 and the apartments in I (resp. the
bordered apartments in ) cf. 4.6.4 and 1.8.1.

2) Actually we proved (P7) and (P9) even when FV is non spherical. So one
may define a projection prpv: Ipy — Ipvevenif F¥ € FY * is non spherical
[13, 11.7.3]. This gives stronger links between the hovel I and its non spherical
facades.



Almost split Kac-Moody groups over ultrametric fields 947

3) For (P8) we proved also P (x) = (P(x) N U(=CY)).(P(x) N U(CY)).N(x)
which improves (P8) essentially when FV(x) has a well defined sign.

4) If we choose A as in [31, 4.2] (which implies S free) then I (&g, K, A) is the
affine hovel I (&g, K) defined in [Lc. 5.1], with the same action of G = &g(K),
the same apartments, the same enclosure map, the same facets, ...). By Lemma
5.5 the notions of (half) good fixers for filters in A are the same. Note however
that, if (and only if) © does not have an (half) good fixer, P (£2) may be different
from ﬁg as defined in [31].

The group G? of Weyl automorphisms in G (3.4.3c, 4.11f) is equal to ¥ (G4).Z,
defined in [31, 5.13.2 or] (as ¥ "1(N) = N4 and v(y(N4)) = W?).

5) A point X € I fpv determines a sector-face-germ § = germ (x + FV) of
direction F" in I and the correspondence is one to one if A = A°® (or A = Al
and F" non trivial) c¢f. 4.11. The strong (resp. weak) fixer of x (cf. 5.3) is the set of
the g in G which fix pointwise an element (resp. which induce a bijection between
the sets which are elements) of the filter §.

5.8. Functoriality. 1) Changing the group, commutative extensions. Let’s
consider a commutative extension of RGS ¢:8 — 8 [31, 1.1]. We then get
an homomorphism &,: s — &g/ inducing homomorphisms T,: Ts — Ty,
Ny:Ns — Ng and isomorphisms U — 4L, If A is a suitable apartment for
(Bs,Ts) (3.5.3a) it is clearly suitable for (&g, Ts) and, for x € Apv, UET;
or Ugyy is the same for &5 or &s/. Hence Py (x) = G(p(f’g(x)).Ng/(x). But
G(; 1(Ns/) = Ns [Lc. 1.10] hence Ker(G,) C Ts, so Lemma 5.5 tells that
G, l(f’gx(x)) = Pg (x). It is now clear that G, x Id induces a G,-equivariant
embedding I(&,, K, A): I(Bs, K, A) — I (&g, K, A) which is an isomorphism
(bijection between the sets of apartments, isomorphism of the apartments). Hence
the affine Weyl groups W? are the same, but v(Ng) C v(Ng/) are in general
different.

The same things are true for the bordered hovels and the embeddings are
functorial (note however that A or A depends on &').

2) Changing the group, Levi factors. For a vectorial facet FV, we may con-
sider the homomorphism M(F") < G. More precisely if F¥ = FY(J) then
Gy embeds into B (1.6.5 and 1.8.1). If A is suitable for & then it is also suit-
able for &g(;), but we have only to consider the walls of direction Ker(o) with
a € Q(J). By construction I(&s(y). K, A) is Gg(s)-equivariantly isomorphic to
the facade I (&5, K, A)pv for F¥ = F)(J)or FY_(J) or any other maximal vecto-
rial facetin N;ey Ker(ej). Clearly for x € A, Pg(y)(x) C P(x)and Ng¢j) C N, so
I(&s(s), K. A) maps onto I(&s(y), &s. K, A) := Gg).A C I(Gs. K, A) and
the projection prgv maps I(&g(y), &s, K, A) onto I(&s, K. A)pv. So the three
sets I(Bsry, K, A), I(Bsr), Bs, K, A) and I(Ss, K, A) pv are Gg(yy-equivari-
antly isomorphic.
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For &gy, the bordered apartment associated to A is a union of fagades
with direction facets for ®(J). These facets are in one to one correspondence

with the facets in FY*, for FV as above. Let AiJ, A‘} and A be the three
possible apartments as in 3.7. Then ._[(QSS(J), K, A‘}) (resp. 2(055(]), K, KJ))
is isomorphic to f_(@g,K, Ae)Fv (resp. f(_@g,K, K)_Ev) as defined in 4.2.3c.
And I(&gy, K, AY) is isomorphic to I(8s, K, A")pv where we remove
I(@g, K, Al)pv and add I(@g(]), @5, K, A)

3) Changing the field: Let’s consider a field extensioni: K < L and suppose
that the valuation w may be extended to L. Then &g(K) embeds via Bg(i) into
Bg(L). If A is suitable for g (L), it is also suitable for &g (K); the three examples
for A in 3.5.1 on K and L are corresponding this way each to the other. There
are also embeddings ®Y"(K) < &8 (L), BIM(K) < &WM(L) and it is
clear that, for x € A, U}?;H = Ugcn+ N Gs(K), UgT™ = U/Y™ N Gs(K) and
M(K)(x) = ML)(x)NBs(K). So, using Iwasawa decomposition for g(K), 5.5
and uniqueness in Birkhoff decomposition for &g (L), we have

P(x) N ®5(K) = Pg(x).(PL(x) N (OUK).LUT(K)))
= Pg(x).(PL(x) N (N(L).UH (L)) N (NUK).UH(K)))
= P (x).(OUL)(x).ULTT) 0 (OUK) 4T (K)))
= Pg(x).(OUL)(x) N UK)).(UFTH Nt (K))
= Pg(x).N(K)(x).URTF
= Pg(x).

The same calculus gives N(L).Pr(x) N Bs(K) = N(K). P (x).

Hence there is a g (K)-equivariant embedding I (&s,i, A): I (&g, K, A) —
I (&g, L, A); it sends each apartment onto an apartment. But this embedding is
not onto and the bijection between an apartment Ax and its image Ay, is in general
not an isomorphism: if the extension i is ramified, A;, = w(L*) is greater than
A = w(K™), so there are more walls in Ay than in Ag and the enclosures or facets
are smaller in A7 than in Ag.

This embedding extends clearly to the bordered hovels. Hence I (&g, K, A)
and I(®s, K, A) are functorial in (K, ®). In particular a group I of automor-
phisms of K fixing w acts on I (&g, K, A) and I (&g, K, A).

Actually this possibility of embedding I (&s, K, A) or I(&s, K, A) in a (bor-
dered) hovel where there are more walls or even where all points are special (if
A1 = R)is technically very interesting. It was axiomatized for abstract (bordered)
hovels and used by Cyril Charignon: [12] and [13].
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4) Changing the model apartment: Let’s consider an affine map ¢: A — A’
between two affine apartments suitable for G = ®g(K). We ask that v is
N -equivariant and (* $)(A) = A, this makes sense as A C Q is in (K)* and

—
(A"*. So y~1(V§) = Vo and the quotients A/V,, A’/ V; are naturally equal
to A9 (with the same walls). In particular there is a one to one correspondence
between the enclosed filters in A, A’ or A4.

Fory € A, N(y) C N(¥ (),
P(y) = U™ U™ N(y) € P/ () = U™ U™ N (7).

We get a G-equivariant map I (&g, K,¥): I(8s, K,A) — I(8s, K, A).

It induces a one to one correspondence between the apartments or facets, chim-

neys, ..., of both hovels but it is in general neither into nor onto. The most inter-

esting example is the essentialization map I (&g, K, A) — I(8g, K, A9).
Clearly these maps extend to the bordered hovels.

5.9. Uniqueness of the very good family of parahorics. 1) Actually, by 5.3 the
family P satisfies the following strengthening of axiom (P8).

(P8+) For all x € A, for all chamber C¥ € FY(x)*,

Q(x) = (Q(x) NU(C).(P(x) N U(=C")).N(x).

By the following lemma, we know that P is the only very good family of
parahorics over A.

2) At least for A = A9, Charignon defines a maximal good family of para-
horics P:

P(x) = {g € P(F") | g.prpy(x) = prg py(x) forall F € I3, F¥ C FY)

for x € Apv, where pr Fy is the projection associated to the minimal family P

(supposed to be good) or to any good family Q e.g. P.

Wehave? C P C Pin the sense that, forall x € &, P(x) C P(x) C P(x) [13,
Section 11.8]. It is likely that P = P, but it seems not to be a clear consequence of
the preceding results.

Lemma 5.10. Let Q and Q' be two very good families of parahoric subgroups of
G (in the general setting of Section 4). Suppose that Q < Q' (i.e. Q(x) C Q'(x)
Jorall x € A) or that Q satisfies (P8+), then Q = Q'.
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Proof. If Q < Q' there is clearly a G-equivariant map j:J — 7' between the
bordered hovels associated to G, A and Q or Q'. This map sends each bordered
apartment isomorphically to its image. Let F'V be a vectorial facetin A", then 4.14
applies to the map ;j between the ordered affine hovels Jv and J%,. So j is one
toone. Let x € Apvand g € Q’(x), then j(gx) = gj(x) = j(x), so gx = x and
g € Q(x).

If Q' satisfies (P8+) we may apply the first case to Q or Q" and Q" = QN Q' (i.e.
0"(x) = Q(x) N Q’(x) for all x), as this family Q” is very good. Actually for Q”
(P1) to (P6) and (P9), (P10) are clear. For (P7) we have to prove Q" (x) N\NP(FY) C
NQ"(prpv(x)) = NP(prpv(x)) (as FV is spherical); it is clear. For (P8), as
P(x).N(x) C O(x), we have

0"(x) = 0(x) N[(Q'(x) NU(CY).(P(x) N U(-C")).N(x)]
= (Q(x) N Q'(x) NU(CY)).(P(x) N U(=C")).N(x). 0

5.11. Residue buildings. 1) Let x be a point in the apartment A. We defined
in [16, 4.5] or [30, §5] the twinned buildings I} and Iy, where I} (resp. Iy)
is the set of segment germs [x,y) for y € I,y # x and x < y (resp. y < x).
Any apartment A containing x induces a twin apartment Ay = A} U A, where
AT ={[x,y) | y € A} N IE. As we want to consider thick buildings, we endow
the apartments of 7 f with their restricted structure of Coxeter complexes; on A
it is associated with the subroot system &, = {& € ® | —a(x) € Ay} of ®
(cf. [3, 5.1]) and the Coxeter subgroup W™n ~ WY of W". One should note that
®, is reduced but could perhaps have an infinite non free basis, corresponding to
an infinite generating set of W

The group G, = P(x) contains three interesting subgroups: P(x) =
N(x).G(x) D PMM := Z,.G(x) (see [16, §3.2], they are equal when x is spe-
cial); the group G, is the pointwise fixer of all [x, y) € IT (ie. g € Gy, if and
only if for all [x, y) € T there exists z € ]x, y] such that g fixes pointwise [x, z]),
it is clearly normal in G,.

We write G, = Gx/Gy, and U, or R the images in Gy of Uy, —a(x) (@ € D)
or R any subgroup of G,.

2) Lemma. A g € Gy fixing ( pointwise) an element in I and fixing pointwise
It (e.g. g € Gr,)fixes pointwise each [x, y) for y # x in a same apartment as x.

Proof. So g fixes [x, z] for some z < x. By [3], 5.12.4], [x, z) and [x, y) are in
a same apartment A. By hypothesis g fixes points zy, ..., z, in A such that each

9
z; — x is in the open Tits cone T° C A, these vectors generate the vector space
—
A and the interior of the convex hull of {x, z1, ..., z,} contains an opposite of
[x,z). By moving each z; in ]x, z;] one may suppose that x < z; < --- < z,.
Now as z < x, g fixes (pointwise) the convex hull of {z, zy,...,z,} which is a
neighbourhood of x in A4, hence contains [x, y). |
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3) Lemma. Any u € U™ fixing (pointwise) a neighbourhood of x in A, fixes
pointwise Ix. This applies in particular to a u € Uy _yx)+ for a € @y ora
U € Uy —qx) fora € ®\ &,.

Proof. By 5.8.3 we may suppose that x is special, hence x = 0. By the above
lemma it is sufficient to prove that u fixes I. An element [0, y) of I is
in an apartment A containing the chamber F = F(0, C}) and even the sector
q = 0+ CY, see [31, 5.12.4]; this apartment may be written A = g~ !A with
gEe I3(q) andeveng € U§m+. Now g([0, y)) is in a sector w C} for some w € WV
and we have to prove that gug ™! fixes a neighbourhood of 0 in this sector.

We argue in Ug™* (as defined in 5.1 or [31, 4.5.2]). This group may be written
as a direct product: U™ = U (AY) = ([Tgear Upo) x UF*(AT \ A')
where A’ is the finite set of positive roots of height < N (with N such that
ATNwA™ C A'N®)and U™ (A1\A') is anormal subgroup. Moreover each Ug o
is a finite product of sets in bijection with O, the neutral element corresponding
to (0, ...,0) (actually for B real, Ug ¢ is isomorphic to the additive group of O).
For g; € Uy™" the map sending v € UJ™" to the component of gjvgy! in
[Tgear Up.o. factors through Ug™* /U™ (A™ \ A’) = [T Up,o and induces a
polynomial map with coefficients in O and without any constant term.

Nowu e UT NGy = U(])J ™% and u fixes (pointwise) a neighbourhood of x in
A, hence some x’ € —CY. Sou € US*" and the component of u in Ug g is in
the maximal ideal m of O if § is real or in m x --- x m if 8 is imaginary. By the
above property this is also true for gug™! and gug™! fixes a neighbourhood of 0
inwCY (as wCY is fixed by U™ (AT \ A)). O

4) Proposition. (PM" = Z,.G(x), (Uy)aca,, Zo) is a generating root datum
whose associated twin buildings have the same chamber sets or twin-apartment
sets as IF.

Moreover G, = G(x).N(x).Gz, and U™ c UF*+ .G, U™ c U7~ .Gy,

Remarks. a) As the basis of ®, could be infinite the above generating root datum
must be understood in a more general sense than in 1.4: we should consider the free
covering 5x of @, (whose basis is free) which is in one to one correspondence
with @, (cf. [3, 4.2.8]) and a root datum as in [26, 6.2.5]. Another (less precise)
possibility is to index the Uy by subsets of the Weyl group WY, see [26, 1.5.1] or
[1, 8.6.1]. Actually there is no trouble in defining the combinatorial twin buildings
associated to this generalized root datum; but, except for chambers, their facets
may not be in one to one correspondence with those of T xi, cf. 30, 5.3.2].

b) We may define the subgroup Py = PM".G 1 ; this generalizes the definition
given in [31, 5.14.2], as clearly Py N N = NM" Tt is the subgroup of G, which
preserves the “restricted types in x” of the facets F(x, FV) (i.e. their types as
defined in the twin buildings I endowed with their restricted structures). The
greater group ﬁf of [31, 5.14.1] preserves the “unrestricted types” of the local
facets Fl(x, FY) (i.e. the (vectorial) type of F").
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¢) These results and [31, 4.13.5] suggest that G, = P(x) could perhaps
be always equal to P(x) = G(x).N(x) = PM™.N(x) for any x € A (ie.
Uukmt = U and UM~ = U;). On the contrary we already said in 4.2.1 that
UP™ or U is in general different from U+ .

Proof. By definition of « € ®,, —a(x) € A hence there is a r € K with
o(r)+a(x) = 0,50 gu(xq(r)) + a(x) = 0 and the fixed point set of u = x4(r) €
Uy,—a(x) is D(a, —at(x)). Therefore the image of u in Uy C G, is non trivial;
(RD1) follows.

(RD2) is a consequence of (RD2) and (V3) in G as U, is trivial when o ¢ @
by Lemma 3. (RD3) is useless as ® is reduced. For (RD4) u € Uy \ {1} is the
class of an element u € U, with ¢, (1) = —a(x) (by Lemma 3); hence the result
follows from 3.1.2.

An element g € Zo.UT N U~ is the class of an element g € U~ and, up to
Gr,, g fixes x + C{ and x — CJ, hence g fixes a neighbourhood of x in A (by
convexity) and, by Lemma 3, g € G1,. So g = 1 and (RDS) is proved.

The group PM" is generated by Zo and the Uy 4 fora € ® and a(x)+k > 0. So
the Lemma 3 tells that its image P™Mn js generated by Zo and the U, for @ € ®,.
Hence (Pmln (Ua)a@x, Zo) is a generating root datum. We define UZ as the
group generated by the Uy, for o € ® (and not the image U of UF).

Let Jgﬁ be its associated (combinatorial) twin buildings and CCjE its fundamental
chambers [1, 8.81]. The twin apartments of J¥ or IF are both the twin Coxeter
complexes associated to W} and N acts transitively on their four chamber sets.
Moreover the chambers in J+ (resp. I7) sharing with C;F (resp. C = F(x, CY))
a panel of type s € W) (for « simple in &, ) are in one to one correspondence
with U, by [1, 8.56] (resp. Uy,—a(x)/ Ua,—a(x)+ by 4.1le). By Lemma 3 these two
groups are isomorphic. So the chamber sets of JI and I are in one to one
correspondence. The same thing is true for the negative buildings.

The twin apartments in JF are permuted transitively by P™" and the stabilizer
of the fundamental one is N™" = PMn 0 N. So the twin apartments in JF
correspond bijectively to some apartments of I¥. But two chambers in IF
correspond to chambers in J£, hence are in a twin apartment of J¥ and their
distance or codistance is the same in J¥ or I, As a twin apartment is uniquely
determined by a pair of opposite chambers, every twin apartment of 7 comes
from a twin apartment in J;

The chambers in J oppos1te C;are transitively permuted by Zo.UT [1,6.87]
hence in one to one correspondence with UT, as Zo.U~ NUT = {1} [Lc. 8.76].
In 7 the chambers opposite C are in a same apartment as the sector x + CJ [31,

5.12.4] hence transitively permuted by U$m+ (4.6.4). Now the fixer in U,?er of
the chamber F(x, —C}) is actually in G 7, by Lemma 3. So the chambers opposite

C in I are in one to one correspondence with the image U™ of UP™ in Gy.
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Thus U™ = U+, But U™ is the image of U}, hence U™ c UF*.Gy,.
As Gy = P(x) = UM U7 N(x) = UP™.G(x).N(x) we have G, =
G(x).N(x), hence Gx = G(x).N(x).Gy,. O

5.12. Iwahori-Matsumoto decompositions. 1) Let x be a special pointin A and
V the filter of neighbourhoods of x in A. Then P™" = Z(,.G(x) = N(x).G(x) =
P(x) (as WM ~ WY = WY)and G, = P(x) = P(x).U™™ = P(x).UM™",
equal moreover to PP = pP™ = ﬁx with the notations of [31, 4.6 and 4.13].

We get the following Iwahori-Matsumoto decompositions (compare 5.11.4).

2) Proposition. We have

P(x) =US U7 Nx).U; = | | UFU7wZo.U;
weWwv
and
Gy=P(x)=UJ.U; Nx).UJ™ = | | Uj.U7wZo.U™ .

wewyv

3) Remark. The equality of P(x) and U\J{J“.U;_.N(x).Ux__, stated in a prelim-
inary draft of [7), fails in general. With the notations of [31, 4.12.3] with x = 0,
let’s consider the following element h of SLo(K[t,t™]):

I 0\(1l wt\(1 0O\ _ (1-wt wt
1 1J\0 1 -1 1)\ —ot 1+ wt
(1 1\ 1 0\(1 -1
“\0 1 )\—wr 1J\O 1)
Asin loc. cit. a) we see that h is in U} T\ U™ (right hand side). Hence U ™,
which contains (_L, ), is not normalized by (} 1) € Uy, x C UF™. Moreover
ifh e U\J{J“.Ux__.wZo.Ux__ with w € WY, one has w = 1 (as the image of h in

SLa(k(t, 1Y) is trivial). Soh € U +.U;=.Zo N UF™T. But the decomposition of
an element in Ut U~ Z is unique (1.6.2), hence h € U\J{ * contradiction.

4) Proof of the proposition. As suggested in [7], we get the decomposition of
P(x) as in the article by Iwahori and Matsumoto [20, Proposition 2.4]. The
main ingredients are the decompositions UG’ = Uy, v X Up(AT \ {o;}) and
U7 = U_g;x X Ux(A™ \ {—;}) where o; is a simple root and Uy(A™ \ {a;}),
Uy (A~ \ {—a;}) are defined as in [16, Proof of 3.4d] and normalized by Ug; .
The decomposition of P(x)isa simple consequence. We have now to prove that
two sets Uyl .Uy .wZo. UM for two different w € WY have no intersection. But
Uy .U; and Zo.UM™ fix the local chamber F!(x, —CY); so this is a consequence
of the uniqueness in the Bruhat decomposition of G, = G, /Gr.,cf 5114, 0O
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6. Hovels and bordered hovels for almost split Kac-Moody groups

6.1. Situation and goal. We consider an almost split Kac—Moody group & over
a field K, as in Section 2. We suppose that the field K is endowed with a non
trivial real valuation v = wg which may be extended functorially and uniquely
to all extensions in Sep(K). This condition is satisfied if K is complete for wg (or
more generally if (K, wg) is henselian).

We built in 5.4 a bordered hovel I(&, L, A) for any L € Sep(K) splitting &.
We want a bordered hovel I (&, K, gA) on which G = &(K) would act strongly
transitively and G-equivariant embeddings I (&, K, kA) < I(®,L,A)for L €
Sep(K) splitting &.

Anidea (already used in the classical case [9]) is to assume L /K finite Galois,
to build an action of the Galois group I' = Gal(L/K) on I(&,L,A) and to
find 7(&, K, kA) in the fixed point set 7(&, L, A)T. As already known in the
classical case [27], the equality of these last two objects is in general impossible,
but possible if L/K is tamely ramified.

6.2. Action of the Galois group on the bordered hovel. 1) We consider a finite
Galois extension L of K which splits &. The Galois group I' = Gal(L/K) acts
on IV(L) = IV(®,L,A") and the action of &(L) on IV(L) is I'-equivariant.
More precisely we choose L such that there exists a maximal K-split torus &
in ® contained in a maximal torus ¥ defined over K and split over L (cf. 2.4.4
and 2.5). We described in Section 2 the fixed point set IV(L)T, its K-apartments
and K-facets. In particular the apartment AY = AY(%) corresponding to ¥ is stable
under T" and (A4Y)T is the K-apartment x A¥(&) corresponding to &.

We want an action of T" on the bordered hovel 7(L) = I(&, L, A) compatible
with its action on IV(L) and the action of &(L). Hence I" must permute the apart-
ments and fagades of I (L) as the apartments and facets of IV(L). In particular I'
has to stabilize the bordered apartment A = A(¥) corresponding to AV i.e. to T.

2) Action on A: y € I' must act affinely on A with associated linear action

the actionof y on V = Xg — 4. Moreover this action has to be compatible with
the action on the root groups (for all € ® y(Uy,3) = Uyopr = y(D(a, 1)) =
D(ya, ') at least when A € A,) and we know that the action of T on B(L) is
compatible with its action on its Lie algebra (y(exp(key)) = exp(y(k)y(ex)) )-
Using these results and conditions, C. Charignon succeeds in finding a (unique)
good action of I on the essentialization A° = A/ V} of A; in particular the action
of N is I'-equivariant [13, 13.2]. As I is finite and acts affinely, it has a fixed point
xo + Vo in A°.

Now I has to fix a point in xo + V. But all points in xo 4+ V, play the same
role with respect to the conditions; so we may choose a point in xo + Vp, e.g. Xo,

_—
and say that I" fixes xg i.e. that I" acts on A as on A" (after choosing x¢ as origin).
This action is compatible with the above action on A°. It permutes the walls,

facets, ..., and extends clearly to A (= A°, A® or A).



Almost split Kac-Moody groups over ultrametric fields 955

N.B. We had to make a choice to define this action. This is not a surprise: as
in the classical case, V} is a group of G-equivariant automorphisms of I (L).

3) Lemma. This action of T on A stabilizes P:

y(P(x)) = P(yx),

forallx e Aandy €T.

Proof. By Charignon’s work (2) above) we know that I stabilizes P. Hencey € '
sends P to a family Q which is still a very good family of parahorics. So 5.9.1 tells
that Q = P. Note that a longer proof may also be given using the star actions
instead of 5.9.1. U

4) We have got compatible actions of ' on G = &(L) and A satisfying the
above lemma. As I(L) = I(®, L, A) is defined by the formula in 4.1, we obtain
an action of I" on this bordered hovel, for which the G-action is I'-equivariant.
Each y e I" acts as an automorphism: it induces a permutation of the apartments,
facets, walls, fagades, chimneys, ...and the bijection between an apartment and
its image is an affine automorphism.

This action of T on I (L) is compatible with its action on IV(L) (y(Ifv) =
I, (Fv) ) and on the sector faces (y(x + F¥) = y(x) + y(F") ) or the chimneys.
Moreover the projections on the fagades are I'-equivariant (y oprgv = pr,,(gvy o).
These results are first proved (easily) for the actions on 4 and AY, and then
extended (easily) to I.

As T has fixed points in I, any I'-fixed point in a facade I v C I is associated
to a I'-stable sector face x + FV in 1.

6.3. The descent problem. In I we have got an apartment A stable under T'.
But T is finite and acts affinely, so it has a fixed point in A and AT is an affine

space directed by (ZC )y It seems interesting to choose AT as affine bordered
K -apartment and define g7 = &(K).A". Unfortunately we are not sure then that
AT is stable under g N or fixed by x Z; so this x I is not a good candidate for a
bordered hovel associated to the root datum (&(K), (Via) gacgx @, K Z)-

It is possible to find in IT a subspace of apartment g A, directed by (ZC )T and
stable under g N. But then it is not clear that there exists an apartment Ayin I
containing x A and stable under T, or even such that 4, N IT = g A; [13, 13.3].

This problem is the same as in the classical case of reductive groups: [8], [9],
and [27]. Charignon solves it the same way: under some hypothesis on & or K
and by a two steps descent.
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6.4. The descent theorem of Charignon. This abstract result is largely inspired
by the descent theorem of Bruhat and Tits in the classical case [8, 9.2.10]. We
explain here the hypotheses and conclusions of [13, §12], but, to simplify, we
consider a more concrete framework. We keep the notations of loc. cit. or we
indicate them in brackets when they are too far from ours. We keep our idea to
replace many Charignon’s overrightarrows by an exponent ¥ and to use often an
overrightarrow to indicate the generated vector spaces.

1) Vectorial data. We consider a finite Galois extension L/K which splits &
as in 6.2.1. So there exists in  a maximal K-split torus xS and a maximal torus
¥ split over L containing xS (we don’t ask ¥ to be defined over K).

We consider the fixed point set ?q = g1 = ('YL of ' = Gal(L/K)
in 3) = V4. The group &(K) (= GY) acts on ?h' By 2.7, 2.8 ?h is a good
geometrical representation of the combinatorial twin building XTV¢ = 1V¢(®, K).

To k& and ¥ correspond apartments AE = gA"(x6) C ?q included
in AYY = AY(%) C ?; they are cones in the vector spaces ZE (= ?“)
included in A_Va (= I_/>). The real root system @ (resp. the real relative root

— —
system x® = ®Y) is included in the dual (4Y9)* (resp. (Ag)*) and has a free
basis. Its associated vectorial Weyl group is WY = N/T (= W(®)) (resp.
kWY = xkN/xkZ = W(®"). Here xZ = T'"or kN = N! is the generic
—
centralizer or normalizer in G" of x&. We write Ay = Nyeqr Ker(a).

We consider also the Weyl K -apartment A"! = K4¥4(x&) with Ag c AY C
9
AE and the corresponding building 7” = G A (cf. 2.8). Asin [13] we define the
facets in A} or 7, as the traces F'=F"n 7 ; of the Weyl K-facets F*in A*! or

—

71, The same set Ag, endowed as facets with the non empty traces F = F¥4 ﬂAg
for F¥9 a facet in A9, will be written Ay. There is a one to one correspondence
between facets of A¥? and AEI’. But a facet F¥¥ or qu = F'in Ag contains several

facets in Aj; among them one F#V Tis maximal, open in F Ve generates the same
vector space and F," + Im =F'+ Az = FY0 (cf 2.8).

The combinatorial twin building KT ¥ is associated to the root datum (&(K),
(Vea) gaegd.kZ) (= (G”, (Uﬁ)aeqﬂ,KZ)). Everything associated as in §1 to

this root datum will be written with an exponent ¥ or a subscript x. The
reader will check easily the conditions (DSR), (DDR1),..., (DDR3.2) and (DIV)
of [Lc. 12.1], cf. [Lc. 13.4.1]. In particular for a = ga € o, U(E‘ = Vi is in-
cluded in the group U, generated by the groups Ug for the roots B in the finite
set &, = {f € @ | B, € R*a} = {B € ® | kB = g or (3).x or 2.502}.
Actually U, = [[geq, Up for any order [26, 6.2.5].
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2) Affine data: We consider the essential bordered hovel I = I(&, L,A®)
(= J) and A (= A(T)) the bordered apartment associated to AY4 whose main
facade A (= A°(T)) is an affine space under A_Va — V. The facades of T are
indexed by the facets FY € I'C.

We consider moreover a subset Jx in I, we write A* = 4 N J4 and suppose
that the following axioms are satisfied.

(DM1) Ty is G'-stable and, for all F¥ € I, T4 N Ipv is convex in I pv.

sph’
(DM2) A* is affine in A, directed by Viand AN Ty is the closure A" of A% in A.

(DM3) Forall F¥ e I :gh, if FYN AYY £ @, there exists a facet F in the (classical)

apartment Apv with F N 5#_ # @ and F is equal to any facet F’ in Ipv
with F' NIy # @Gand F C F'.

(DM4) A* is stable under g N = N.

Axiom (DM3) means essentially that, in appropriate spherical fagades, ANJy
cannot be enlarged by modifying the apartment A.

Fora € ®%and u e U‘E, one defines <p}1 (u) as the supremum in R U {+oc0} of
the k such that u is in the group U, 4 generated by the Uy, x = ¢; ' ([rak, +00])
fora € @4, ry € RT™ and |3, = Tad. Actually Uy x = [lgeq, Unrqk and
Ul o= (@) (k. +00]) = Ug N Uy

There are two more axioms, one normalizing ¢ (among equipollent valuations,

in such a way that the associated origin 0, of A4 is in Ay) and one avoiding triviality
for each goﬂ. They are easily verified in our situation [Lc. 13.4.1].

As we have three types of vectorial facets in Vo= Zg , we may define three
bordered apartments with 4*: A, y (resp. AV, A*) is the disjoint union of the facades

At = A#/PT% (resp. A* == A#/F_VE Ar, = A#/ﬁ) for FY (resp. F!, F)
FY b s AR e #/ b : v Ly

a facet in Ay (resp. AYY, AY). Actually A" is the closure of A* in A4 as in (DM2)

_ — _—
above. Moreover the sets Ay and A" are equal (as Ff=F Vi when F/=F vin A))
but they differ by their facets, sectors, ....

When FY! > F;n = F'nN Ag for FV a (maximal) facet in AY, we have

—_— — _
F¥" = F¥ s0 A% | C Apv C A. Hence for x € A%, C A", we may define:
0%(x) = P(x)NG".

This is the same definition asin [[.c. 12.4] as, for us, F*;’ Yis uniquely determined
by F'i.
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3) Theorem. We suppose that all conditions or axioms in 1) or 2) above are
satisfied. Then,

a) kN =: N' c N.P(4%);

b) foralla € ®"andu e Ug\{l}theﬁxedpointsetofu in A* is Dy(a, goﬂ(u)) =
{x € A* | a(x — 0p) + (pg(u) > 0} and m"(u) € NV induces on A* the
reflection with respect to the wall Myu(a, gog (u)) = dDy(a, (pg (u));

¢) the family ¢" is a valuation for the root datum (G", (U‘E)aeqﬂ ,KkZ);

d) the family Q' = (Q"(x)) ven is a very good family of parahorics;

e) there is an injection of the essential bordered hovel I associated to QY into
I which may be described on the facades as follows.

For F;n =F'N AE open in FYU as above in 2), the x N -equivariant em-
bedding A’;Vu — AFpv between apartment-facades may be extended uniquely
in a Px (F'%)-equivariant embedding J lvn
of I associated to F".

< I pv, where Jlj,,vu is the fagade

Remark. The definition of gog tells us that a wall My(a, gog (1)) is the trace on A*
of a wall M(«, k) for some o« € ®,.

Proof. a),b), c¢) and a great part of d), ) are among the main results of Charignon
[Lc. 12.3,12.4]. For QY he proves (P1) to (P7), but then (P8) is got for free in this
framework (cf. 4.3.6) and (P10) is clearly satisfied.

He proves (P9) actually for qu i.e. for (spherical) vectorial facets in Ag: if

FY% is spherical, " C FY% and x € 4* w = ATy (with Fyy = F'noay
and an = F'in AE) he proves only Q%(x) N PK(FH") = 0%'(x + an)‘ But
—
Pg(F)) = Px (F'Y), F + Ay = FY! (2.8.3) and the “torus” Sz in the center
—
of G" (2.9.2) acts on A" as a group (of translations) T generating AEO. So

Q% x) N P(FY) = Q" 7 x +t+ F)) = 0" (x + FYI).
The maps in e) between fagcades are described in [/.c. 12.5] and proved to be
injective in the spherical case; but 4.14 gives the general injectivity. O

6.5. Tamely quasi-splittable descent. 1) Let S be a maximal K-split torus in
the almost split Kac-Moody group & over K. The generic centralizer 34 (&) of
G in & (1.10 and 2.5.3) is actually a reductive group defined over K [26, 12.5.2].
We suppose that the following condition (independent of the choice of &,
as different choices are conjugated by 2.5.1) is satisfied.
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(TRQS) 3,(6) becomes quasi-split over a finite tamely ramified Galois extension
M of K.

(Actually 3,(6) is quasi-split over M if and only if & itself is quasi-split.
It is an easy consequence of 2.7 NB 2) applied to M and a maximal M -split torus
containing S.)

There are two important cases where this condition is satisfied for any &: when
the field K is complete (or henselian) for a discrete valuation with perfect residue
field (we then may replace tamely ramified by unramified, c¢f. [9, 5.1.1] or [27,
5.1.3]) or when the residue field of K has characteristic 0 (we then may replace
quasi-split by split).

A consequence of this hypothesis is that there exists a finite Galois extension
L of K containing M, a maximal K-split torus xS, a maximal M -split torus s S
and a maximal torus ¥ with ¥ L-split, M -definedand k& C & C ¥ [13,13.4.2].
We shall now apply the abstract descent theorem successively to L./ M and L/K
to build a bordered hovel for & over K.

2) Quasi-split descent. We consider the extension L/ M, so we apply 6.4 with
K = M: & is quasi-split over K and split over L. Then T = 3,(x©) is the only
maximal torus containing g S.

We choose the essential bordered hovel 7 = I(®,L,A€) and setJy = IT.
Then the bordered apartment A = A®(T) is I'-stable. The Galois group I' has
a fixed point in its main facade A = A9(%) and A* = AT = AN Jyis an
affine subspace directed by 7F = 7”. It is easy to verify (DMI), (DM2) and
also (DM4) (as g N is the normalizer in &(K) of xS). For (DM3) there exists a
chamber F in Apv meeting 5#, so the condition is clearly satisfied.

Therefore Theorem 6.4.3 applies. Actually in the classical case (® finite)
®(K).A* is the extended Bruhat—Tits building of & over M cf. [9] or [27].

3) General descent. We come back to the situation and notations in 1) above.
We still choose the essential bordered hovel 7 = I (&, L, A®) with A = A4,

The generic centralizer 3,(S) of & = & is a K-defined reductive group
generated over L by T = (L) and the groups Uy for a € ®, | trivial. In par-
ticular over L, 3, (&) is isomorphic to some &g(j,) and by 5.8.2 I(3,(5), L, A9)
may be embedded in I. The image is the union I'¢ = I(3¢(6),®, L, Ad) of
the apartments of I corresponding to L-split maximal tori of & containing &.
This set is stable by I' and Z; (6) = 3,(6)(L) or the normalizer Nz (&) of & in
®(L). If we choose a vectorial K-chamber xC," C A} and let Fy% e I°(L) be

the spherical vectorial facet containing x C, 9, the projection map 7 from Ig to
I pva is onto and I" x N (&)-equivariant; it identifies the essentialization of g

0
with T RO
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In ITs we consider the union I ord of the apartments corresponding to a torus
containing a maximal M -split torus MG (containing &). It is stable by I' x Nz (&)
and we saw in 2) above that §s = Zy(6).A%, = (IYH)CIL/M) j5 3 good
candidate for the hovel of 3, (&) over M. More precisely its image ¢ FO = ($e)
in T F is the Bruhat-Tits building of 3,(&) over M: it is the set of ordinary
Gal(L /M )-invariant points in the Bruhat-Tits bulldlng over L [27, 2.5.8c].

We consider now A* = (gg)02M/K) (ZZHT; its image by 7 is in
(g Fovq)Gal(M/ K)_ But the semi-simple quotient of 3¢(6) is K-anisotropic and
M/K is tamely ramified, so we know that (¢ Fovq)Gal(M/ K) contains at most one
point [27, 5.2.1]. Moreover Koen Struyve [32] proved what was missing in [27]

(condition (DE) of [9, 5.1.5]): this set is non empty (even if the valuation is not
discrete). So (¢ ng)Gal(M /K s reduced to one point xo and A* = 771 (xo)’. But

—
77 1(x0) is an affine space directed by F,", I is finite and acts affinely, so A* is
v — 2 — —

a (non empty) affine space directed by (Fy )" = xCy" = 4} = V. We shall
apply 6.4 with A", A any apartment of I ord containing A% and A its closure in
I=1(6,L A°.

We define § = 8(M).gs = G(M).A (resp. its closure § = &(M). At )5 it
is the set of Gal(L /M )-fixed points in the union of the apartments in I (resp. 1)
corresponding to a maximal torus containing a maximal M -split torus, itself
containing a maximal K-split torus. We take Jy = gCdM/K) — gT'  The
verification of axioms (DMI) to (DM4) is made in [13, 13.4.4]. Actually (DM4) is

clear, (DM2) not too difficult and (DM1), (DM3) have to be verified in spherical
facades, hence are corollaries of the classical Bruhat-Tits theory.

4) Conclusion. We keep the notations as in 1); let xA¥9 be the K-apart-
ment in g 7¥9(®) and g the real root system associated to &. Then Theo-
rem 6.4.3 gives us a valuation gp = (p” = (K@ra)gacx® Of the root da-
tum (Gﬁ(K) (Via)gaex®.kZ) (cf- 2.7) and a very good family of parahorics
(PK (x)) .- The corresponding bordered hovel is written I(6,K, A”)

For KF Vq = F"¥ a vectorial Weyl K-facet and F"9 a vectorial facet with
FY4 N gAY open in XFY4, we have a Py (KFV9)-equivariant embeddmg
I(6, K, Akpvg — I(&, L, A ) Fva between the facades. The image &(K).A*
is pointwise fixed by I.

Actually the set A" is the essential bordered apartment associated to A* and
x @, its facades are the A# Tovy for F Vi as above. Such a facade A*’;Vn may be identi-
fied with the closure of A% in A9(T) pva. Moreover A* is the set of Gal(L / K)-fixed
points in the union of the apartments A4(%) C I(®, L, A9) for T a L-split max-
imal torus containing a maximal M -split torus, itself containing the maximal
K-split torus g&. More precisely for each such apartment A9(T), A9(T) N IT

is empty or equal to A* (an affine subspace directed by x4¥(kS) C A4(%))

Fub
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and, for each FY4 as above, the intersection 49(¥) N T };Vq is empty or equal to
A*N A9(T) pva (as the arguments in 3) give analogous results in the Gal(L /K )-sta-
ble fagades).

The image of I(&, K, A" x pvq in I(&, L, A®) pvq is the set of Gal(L/K)-fixed
points in the union of the apartments AY(%) pva C I(&, L, AY)pvq for T a L-split
maximal torus containing a maximal M -split torus, itself containing a maximal
K-split torus.

6.6. More general relative apartments. Most of the preceding arguments apply
with a more general choice of apartments. We keep the hypotheses as in 6.5.1, but
we choose for A one of the model apartments associated to ® and ¥ as in 3.5.1
(i.e. via a commutative extension ¢: 8 — 8’ of RGS) or eventually a quotient by a
subspace Vyo of Vo C V = Y’ ® R. We suppose moreover that 8’ is endowed with
a star action of I" for which ¢ is ['*-equivariant and Vo ["*-stable; c¢f. Remark 2.2
and the choice made in 2.4.1. We write A" the corresponding vectorial apartment

in K = V/Vpo and A one of the three associated bordered apartments.

The Galois group I acts on (&, L, A) and IY(&, L, AY), ¢f. 6.2.4. These
actions are compatible with each other, with the &(L)-actions and the essen-
tialization maps 7: I(&,L,A) — I(®,L,A° = I, n":I%(&,L,AY) —
IV(&, L, AY) = IV9. We define kA = n~!(4%)T'; it is an affine space directed

— —>
by (F)T = gAY (where Fy = (")"'(F,") and A%, F,* are as in 6.5.3). The
group g N acts on g A, we write vk this action.

We choose x A as model relative apartment. We may suppose that gkA C A,
but then A, as apartment in I(®, L, A), is non necessarily I"-stable. We choose
in A a special origin xo i.e. its image by 7 is the special point in A* chosen as
origin in 6.4.2 to define the valuation x¢ = ¢" of (&(K), (Via) gaegoe, Kk Z).
For x € g A we define Px(x) = P(x) N &(K).

The (real) walls in A are the inverse images by 7 of the walls in A* defined
in 6.4.3b, i.e. they are described as Mk (ko, koo (1)) = {x € kA | ga(x —x¢) +
K¢a(u) = 0} for ka € g® and u € Vo \ {1}; their set is written Mg. Note
that, even if A = A9 is essential, g A may be inessential (as essentiality does not
involve the imaginary walls defined below).

We consider the set My, x U M‘L /K of the non trivial traces on g A of the
real or imaginary walls of A. More precisely if M(a, 1) € Mz U M} is such a
wall and o € ®, o = aly € kP (resp. @ € A, ko = Ay € kA \ g®) then
Mg (ga,A) = M(a,A) N kA is a real (ghost) wall (resp. an imaginary wall) and
we write Mg (xa,X) € My, g (resp. Mg(ka, 1) € MiL/K). By Remark 6.4.3
Mg C My, /K-

We define the enclosure map clf/AI; as in 3.6.1: it is associated to M,k and
the subset MQ’ K of M‘L /k containing the imaginary walls which are almost real
i.e. of direction Ker(gxo) with g € g A" = g AN (Zyech Ry) C kA, ¢f. 2.9.3b.
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By 3.6.1 clf/AI; does not chapge if we replace. MiL/K by J\/["LB}K = {Mg(ga,}) |
ko € gA™ A € R} (and M} K by the set M;" /E}{ of all walls parallel to a wall in
M iL’/ x)- This enclosure map is almost tame, but in general non tame, as it involves

M, /K instead of Mg. A more precise enclosure map cll’§Ar associated to Mg and
a subset of M’L]% « Will be introduced in 6.11; it will be tame.

Proposition 6.7. In the above situation, the following properties hold.

a) The action v is affine and kN C N.ﬁ(KA) C N.xZ. In particular for
n € g N, the linear map associated to vk (n) is v, (n) € kWY = gN [k Z.

b) The group xZ acts on g A by translations. More precisely for z € gZ,
the vector vk (z) of this translation is the class modulo Vyo of a vector
Vg (z) € V which satisfies the formula: y1(vk(z)) = —wg(x2(2)), for any
X1 € X' C V*and y in the group X(3) of characters of the reductive group
3¢ (6) with the condition that x, and ¢™*(x1) € X(%) coincide on &.

As X(3) is identified by restriction to a finite index subgroup of X(&), this
Jormula determines completely vk (z) and vk (z).

c) For any real relative root ka and u € V.o \ {1} u fixes the half apartment
D (ka, koo (1)) = {x € kA | ka(x — x9) + ko (u) = 0} and vk (mg (1))
is the reflection s,y i, w) With respect to the wall Mg (xa, x@a(u)) =
0Dk (k. kK Po (1))

d) If moreover ga is non multipliable, mg (u)> = gV (—1) and mg (u)* = 1.

e) vg(xN) is a semi-direct product of vg(xZ) by a subgroup fixing xo and
isomorphic, via vg, to kWY = kN /g Z.

f) The action of x N on the closure n_l(ﬁ)r of kA in A is deduced from its
actions on kA and gAY : vg(n).pr,pv(x) = prv;((n)(KFv)(vK(n).x), for
negN, x € gAand g FY¥ a K-facet in gA".

N.B. The equations defining m in A_z are in Q and correspond (via bar) to the
equations defining kY = Y(S)inY =Y (%) ie. Sin%, cf 2.4.4an2.5.2. So the

— —>
formula in b) above defines a vector vx(z) € gAY = g A. Moreover vg(z) is in

the image of the map Y(G) @ R — Y (%) ® R Ly V/ Voo (analogous to the
map in 1.10).

Proof. With the notations asin 2.8.1,let j € gl ;thenJ = g{j} = [yU{i € I |
['*i = j} is spherical. So Bg(y) is a reductive group, containing 34 (&) = &s(y,)
and defined over K; we write & the corresponding K-subgroup-scheme of &.
By 5.8.2 the extended Bruhat-Tits building I (&, L, A) embeds in the hovel
I(8, L, A): the way we have chosen A ensures us that A is really endowed with
the same action of the normalizer of ¥ in & ;(L) as in the case of an extended
Bruhat-Tits building [27, §2.1]. Moreover the actions of ' are compatible.
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As the classical construction of (&, K, A) uses the same methods as in 6.5
above, we know that a), b) and c) are satisfied for kN N &;(K) and go =
+koj, £2ga; [27, 5.1.2]. So b) is completely proved. Now x WV = g N /xZ
is generated by simple reflections in (x N N &;(K))/xZ for j € gl (as
kZ C 6;5(K), for all j). So a) is satisfied and also c) as any g € g P is
conjugated by x WV to some £go; or £2ka;.

Let o and u be as in d); we choose t € G(K;) such that ga(t) = —1. By
[5, 7.2 (2)], mg(w)? = mg(u).t.mg) L™t = s5.4(0)7 = Kav( 1); so d)
follows. As xo was chosen special, for all i € g1, there exists u; € Vo, \ {1}

with gy, (u;) = 0 hence mg (u;) fixes xo. So the subgroup fixing xo in e) is
the image by g v of the subgroup of x N generated by the mg (u;) and e) follows
from a) and b).

We know that, for the action v of N on A, v(n). prpv(x) = Pryv(ny(Fv) (V(17).X);
so f) follows from a). O

6.8. Embeddings of bordered apartments. 1) To define the bordered apart-
ment g A, we always choose the vectorial Weyl K-facets in KAV (asfor A" in 6.4.2
but differently from 6.7f). We still have three choices for kA (as in the general

definition 3.7.2): g A (resp. gA°) is the disjoint union of the inessential facades
—
kA%, = kA (resp. the essential fagades kA% ., = kA/X FY) for X FY a Weyl

K -facet in KAV, and g Al differs from g A® only by its main fagade which is the

inessential one. A Weyl K-facet X F¥ contains a unique maximal K-facet g FY,,
—

which is open in X FV, hence KFJlax = KFv. So kA% p is equal to gAS L
max
Now Proposition 6.7f tells us that the action vk of x N on g A extends naturally

to kA (= gAS, or gAl or KK).

2) For any choice of A (suitable for & and L), we chose a unique g A (inside
A for some embedding). So it is interesting to define a good choice for kA
for each choice of A. And it is natural to choose xA! (resp. xA®, kA) when
A = Al (resp. gA®, gA). Then we have a g N-equivariant embedding g A < A
defined as follows on each fagade for X FV a vectorial Weyl K-facet, let FY
be the facet in A contalnmg kF, max, then gAY, = kA — A = A, and

KAKFV—KA/KF ‘—>Ae —A/FV.

K Fv

max
Note that the main fagade does not embed in general in the main facade when
we choose xA® (as was the case for Charignon cf. 6.4.3e). Moreover, if g FV is
positive and negative, the definition of g F,),, may include a choice of sign. For
example the main facade x A° of x A® may embed in AS %vor AS p, (they are equal
but included separately in A).
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3) For x € x A, more precisely x € KA(,?ifv, we define 131( (x) = ﬁ(x) N&(K)
where x is considered in A%e as above. This coincides with the above definition
for x € g A and it is compatible with the projections: Pg(x) C Pg (prx Fy (x)).

Theorem 6.9. We suppose that the Kac—Moody group & satisfies the condition
(TRQNS) of 6.5 and we keep the notations as in 6.5 to 6.8. See in particular 6.6

for kA, ko and cl’If/AI;.

a) The family k¢ is a valuation for the root datum (B(K), (Vi) xacx @ KZ).

b) The family ’j\’K = (ﬁK (%)) xex & I8 a very good family of parahorics. We write
I(6, K, kA) (resp. I(®, K, kA)) the corresponding hovel (resp. bordered
hovel).

¢) The family Px is compatible with the enclosure map clf/AI;: I(B,K,kA)is

a parahoric hovel of type (k A, clf/AI;), in particular &(K) acts on it strongly
transitively by vectorially Weyl automorphisms.

d) The g N -equivariant embedding KA %_A may be extended uniquely in a
&(K)-equivariant embedding I(8, K, kA) — I(8,L,A). Its image is in
I(6,L,A).

e) If the valuation wg of K is discrete, then gA (or I(8, K, gA)) is semi-
discrete: in My x or Mk the set of walls of given direction is locally finite.

f) The hovel I(®, K, gA) is thick: for any wall M € Mk, there are three half-
apartments D1, D, D3 in I with boundary M and such that D "N D; = M
fori # j. Moreover the set of chambers adjacent to a chamber C along
a panel in a wall Mg (xo, k) with gka € g® non divisible, is in one to one

correspondence with a finite dimensional vector space over the residue field
Kk of K.

Definition. I(&,K,xA) (resp. I(&, K, xA)) is the affine_hovel (resp. affine
bordered hovel) of ® over K with model apartment A (resp. A).

Remark. I (&, K, g A) is the main facade of ._I((’j, K, xA) for gA = Kﬁl or gA.
By the definition of g A in 6.6 and of A" in 6.5.4, the image of I(®, K, xA) in
I(®, L, A) is the set of I'-fixed points in the union of the apartments A(%) C
I(&,L,A) for T a L-split maximal torus containing a maximal M -split torus,
itself containing a maximal K-split torus.

Proof. a) The family g ¢ is actually defined by the essentialization of g A. So it is
a valuation by 6.4.3c.

b) The family TTDK satisfies clearly to axioms (P1), (P2), (P4), (P5), and (P10).
(P3) is proved in 6.7c for the main fagade; the result is analogous in the other
facades and the link is made by 6.7f.
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If KFV(x) is spherical, then the corresponding facet F¥ (as in 6.8.2) is spherical
and g Ak pv(y) embeds in A pv which is an apartment in the Bruhat-Tits build-
ing I(®, L,A)pv for the reductive group P(F¥)/U(F"¥) ~ M(F"). Moreover
KAK py(y) 18 chosen in (&, L, A)Fv as in 6.5.3 i.e. as in the descent theorems
of (extended) Bruhat—Tits buildings. So Px (x) is generated by x N(x) and the
Via N ﬁK(x) for g € g ® and (P6) is satisfied.

For x € g Ak py and X FY C KFY we write F\, _and F),. the corresponding

maximal facets in AY. Then PK(x) N PK(KFV) Cc B(K)NPx)N P( Fy.) C
BK)NPx+ FY. FY..) C BK)NPx+ Fl. NgAY) = 8K)N P(x + xFY)
with x FV = FY,,NgAY C k F'. Butg FY +KAV0 = K FV and the “torus” Sz in
the center of B(K) (2.9.2) acts on g A as a group (of translations) T generating
kA%0: 50 Pr(x) N Pk(KFY) = Px( = X T T+ kFY) = Px(x + KF") and
(P9) is satisfied.

For x € A and ¥CY a chamber in X F¥(x)*, we have by 6.4.3d Px(x) C
Px(nx) = (Px(nx) N UKCY).(Px(1x) N U(=KC").x N (31). We know by
construction that ﬁ(nx) NUECY) = ﬁ(x) N U(£CY) (c¢f- 5.1 to 5.3) for any
chamber CVin FY* (FY as above) e.g. CV contammg xCY = Kcvn KAV So
P(nx) nUEKCY) = P(x) N UKCY) and Pg(nx) N UEKCY) C P(x).
Hence Px(x) = (Pg(x) N UKCY)).(Pk(x) N U(=XCY).(Pk(x) N kN (4x))
and PK(x) NgN = gN(x). So (P8) is satisfied.

In the situation of (P7), let B = {x, prpv(x)}. We saw above that ﬁK(x). kN =
Pg(nx).xN. So, by 6.4.3d, Px(x).xN N Pg(XF¥).xN C Pg(nB).xN. Let
KV be such that *FY c KCvV, then arguing as in [16, 4.3.4] we see that
Px(nB) = [Px(nB) N U(XCY)].[Px(nB) N U(=XC")].kN(nB) C [Pk(B) N
UK CY)].[Pxk(B) N U(-XCY)].x N. So (P7) follows.

c) Let Q be a non empty filter in g Axpv and ¥CY a chamber in (K F¥)*. We
consider the facet F} in AY such that g FY = F) N gAY is open in ¥C" and a
chamber CV € (F\)*. Then ﬁK(sz) N U(:I:K CY) C (K)N P(Q) N U(:I:CV) C
B(K) N Pcl®(R)) C &(K) N P(cl £ (2)), where cl®(Q) (resp. cI¥ o ()
is the enclosure of Q in A (resp. KA) for the root system A (resp. for x A and
Mz/k, iL/K) We use once more the torus Sz in the center of &(K): we have

lf iU, 7 2 ) = el 5 (@). So Pr(@) N Uk (£xC") © Prlelf ().

Hence Py is compatible with clf /AK and c) is a consequence of 4.12.5.

max

d) The existence of a unique Px (X FV)-equivariant map (&, K, kA)x pv —
I(6,L,A) Fvextending Ak pv — A FY is an easy conse(luence of the definitions
of vk and PK(X) kN C N. P(KA) ‘vg = \)‘ N > and PK(X) @(K) N P(x)
As for 6.4.3e we conclude with 4.14.

e) As wg is discrete and L /K finite, wy, is discrete. Suppose that g € g is
non divisible, then the walls in My, x of direction Ker(g ) are the traces of walls



966 G. Rousseau

in A of direction Ker(f8) for 8 € ® with k8 = g« or kf = 2.x«. There is only
a finite number of such B and, for each B, Ag = wr (L*) is discrete. So the set of
these walls of direction Ker(gx«) is locally finite.

f) The first assertion (about thickness) is a simple consequence of 6.7.c. We
write a = ga. By 4.1le this set of chambers is in one to one correspondence with
Vak/Vak+- Suppose that 2a & g®, then by 6.4.2, V,, = V, N (]_[K,B=a Ug k)
is an Og-module and Vx4 = V, N (Hxﬂ=a Ug k+) an Og-submodule such
that mg.Vyx C Vaks. S0 Vai/Vak+ is a k-vector space of dimension <
dimg(Va) = |(a)|. When 2a € g ® we prove, the same way, that V, i/ V, x+ is a
group extension of two «-vector spaces of dimensions at most |(2a)| and |(a)| —
|(2a)|, cf. 2.6. To see that V, x/Va4.2k is an Og-submodule of Hxﬂ=a Upx C
Va.L/ Vaa,L, Wwe may use the coroot (2a)Y in Y(S); as a((2a)") = 1 the exterior
multiplication by K \ {0} in V,,1./ V24,1 is given by the action of the torus G(K).

O

6.10. Remarks. 1) The condition (TRQS) is certainly non necessary for the ex-
istence of an hovel I (8, K, xA); the existence of this hovel for any almost split
Kac—Moody group & (over a complete field) seems a reasonable conjecture, as
in the classical (= reductive) case. On the contrary the existence of a & (K)-equi-
variant embedding of I(®, K, kA) in I(&, L, 1 A) for any extension L/K seems
to necessitate (TRQS) or wg discrete. And the functoriality of these embeddings
seems to necessitate (TRQS). There are counter-examples even in the classical
case [27, 3.5.9 and 3.4.12a].

2) We chose to define the facades of kA and I(®, K, xA) using the Weyl
K-facets as indexing set. This is more natural for the bordered hovel of the root
datum (&(K), (Via) gaex®, kZ) but a definition using K-facets seems richer.
This is largely an illusion:

Let KFV c KAY be a Weyl K-facet and g F" (resp. x F: , k Fyax) be any
(resp. the minimal, maximal) K-facetin gAY corresponding to ® F¥ and F (resp.

Fin» Fhax) the corresponding facet in AY: hence g Fy;, C xFV C g Fy, and

—_— —_ —_ e
Fi, C FY C Fy. The K-facade KA‘I‘;'FV = kA or KA‘;(FV = gA/gFY
is endowed with a system of relative real roots g ®™(x F") (and even a system
of relative almost real roots x A™" (g F'V)) which is independent of the choice of
xFY. So KA‘;{"'FV and the essentialization of KA‘;{ pv do not depend on the choice:

3 3 ne € e e
we have projections maps g A = KAKFV — KAKFHV,m — KAKFV — KAKF#W

—
kA% v where the last term is the essentialization of the first three (actually g FV

is in general non enclosed, as g F" is defined by inequalities involving g A, and
not only g ® or g A").

We saw in 2.8.3c that the fixer Px(x F") of ¢ FV in &(K) is independent of
the choice of g FV. In particular the above maps are k N N Pk (x F'V)-equivariant.
Moreover the fixer of a point x in an apartment is included in the fixer of the image
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of x in another apartment. So we have corresponding projection maps between
the facades corresponding to these K-facets:

16, K XR) kv —> I(®. K. g A) gy —> I(6. K. kA) o pv

— I(6, K, kA) = I(6, K, gk A%k po

KFnYAax

and the last hovel is the essentialization of the first three .

Hence these hovels are more or less the same and it is not really interest-
ing to include all of them in a bordered hovel. Perhaps the only interesting
thing to do could be to define a fourth bordered apartment g A™™ associated to
kA with g ARD = gA, pv and I(6, K, kA" kpy = I(6, K, kA) py .
Then I(&, K, xA™") coincides with (&, K, gA°) when & is split over K (or if
Klre = KI ie. KA = KAr).

3) The microaffine building of a split Kac—-Moody group &g over a
“local” field is defined in [28]. In its Satake realization [Lc. 4.2.3] it is the
union fsl,h (&s, K, A®) of the spherical facades in the essential bordered hovel
I(®s, K, A°). Hence, as explained in this Section, Charignon proved the exis-
tence of such a microaffine building for any almost split Kac—-Moody group sat-
isfying (TRQS). This building satisfies clearly the functorial properties proved
below for bordered hovels.

6.11. The enclosure map cl} AT We already proved in 6.9 that the family Px

of parahorics is compatible with an enclosure map clf / x> much better than clﬁti
(as in 4.11). We now define a still better enclosure map.

1) Imaginary walls: We defined in 2.9.1 a subgroup scheme 11( 0K, of ilmai

associated to a root g € KA”“ It is clear that U, mKa = ilma VK, (Ky) is stable
under the action of the Galois group Gal(K/K) on Qﬁpma or Qﬁnma explained
in 2.10. We define Vo = = (U, )Gal(K*/K) hence Vg = Via N G(Ks) =

Vea NG(K) = UM N G(K).

An element u of U, may be written as an infinite product v = [[ge(ca) U8

with ug = ] ! [exp](Aﬂ jep,j). Then, for a set 2 C A, we have u €
Us*((xa)) if and only if, for all B € (xa), @ C D(B.inflw(Ag;) | | =
1,....,ng} — P(xg)) where x; is the (old) origin in A, see [31, 4.5]. So, for Q
in KA u € Ug*((ka)) if and only if Q@ C Dg(ka, ¢xa(u)) with g q(u) =
inf e @Gg,) = BO) | B € (ka).xB = mpxa.j = 1...ngh As
KO € KA““ (ko) is infinite hence ¢, o (U, Ka)) = R U {£o00}.

We define the set J\/[Q}R of imaginary walls in g A as the set of hyperplanes
Mk (ka, ¢ra(u)) for ko € xAim, u € 17 « and @) # *oo. For L as
in 6.5.1, we have Vo C {4 (L) and ME C M’LH}K We have M:E = MiLE}K in
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many cases e.g., when & is split over K, M%{ (o) MiK) is the set of true or ghost
imaginary walls. We do not define in general the analogue of M.

2) Enclosure map. The enclosure map cll’§Ar in gA is associated to Mg
and the subset MR of M:E containing the imaginary walls in M5 of direction
Ker(xa) with gk € g A'. More precisely for ko € kA, we set A/Ka =
9xa(Via) \ {200} and then cl,’gAr = cl’ji/Ar with the notations of 3.6.1.

For any  in g A, we have clﬁAr(Q) D clf/AI;(SZ). When & is split over K,
kA" = A and cl}?Ar = cl?.

This enclosure map (:11’§Ar is more natural than clf AI; as it involves the set of
true real relative walls Mg instead of My, x (and nothing else in the classical

case): it is Mg-adapted (in the sense of 3.6.1). As moreover the directions of
the involved imaginary walls are in the tamely imaginary root system g A", this

enclosure map is tame: for any filter F, clgAr(F ) D clr’rﬂaAr(F ). By 4.12.2.c the
following proposition is also true for clr’r‘mAr(F ).

3) Proposition. The family Px of 6.8.3 is compatible with the enclosure map
cll’§A . In particular I(®, K, gA) is a parahoric hovel of type (x A, cll’§A ).

Proof. Let 2 be a non empty filter in a facade x A x v of k A. We choose a Weyl
K-chamber XCV containing X FV and then F}, C" as in 2.10. We have to prove
that Pg(Q) N U(XKCY) c Pg(clE* (R)). By 5.3 and 6.8 we may replace 2 by
its inverse image in g A, hence suppose that 2 C A. But ﬁK(Q) NnUEXcY) =
Pg(Q) NUEEF)) = 8(K)N P(Q) NUEEF) = 6(K) N UGS (£FY)),
cf. [31,4.5]. Let KAflfi be the set of non divisible real or imaginary relative roots in
KA‘i. Thep by construction, UM (D" (£ Fy))(L) (resp. U5 (®* (£ F}'))) may be
written uniquely as a product nKaEKA?fd Ul oy (L) (resp. HK(XEKA;% Ug*(ka))
where actually 4% = £l o) When g € g @. Each subgroup £(7 (L) is stable
under the Galois group I', hence &(K) N UG*(®¥ (£ FY)) C UG (P (F)T =
HKWEKA;% Ug*(ga) N I7Ka (with I7Ka = Vya for ga € g®). Now the definition
in1) above of ¢, o and J\/[Q}R, together with 6.7 and the definition of M, prove that
UD (@ (£ FY)T = U™, (®*(xF))T with an obvious definition of cl£.

Ak (@)
So Pk is compatible with cllﬁA and the same arguments as in 6.9c prove the
compatibility with clI@Ar. O

6.12. Functoriality. 1) Changing the group, commutative extensions. We
consider a morphism ¥: & — &’ between two almost split Kac—-Moody groups
and we suppose that, over K, ¥ = &,: s — &g for a commutative extension
of RGS ¢: 8 — 8. This extension is then automatically Gal(K/ K)*-equivariant.
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The conditions (TRQS) for & and &’ are equivalent: v induces a bijection
between the combinatorial vectorial buildings of & and &’ over K [31, 1.10] which
is clearly Gal(K;/K)-equivariant; so & has a Borel subgroup defined over a field
M e S8ep(K) if and only if &’ has one.

Suppose that (TRQS) is satisfied, then &’ and & are quasi-split over a tamely
ramified finite Galois extension M/ K and split over a finite Galois extension L/ K
with L D M. We choose an apartment A for &’ as in 6.8, hence associated to a
morphism ¢":8" — 8” of RGS and some Vo in V = Y” ® R compatible with
the star action of I' = Gal(L/K) associated to &’. Then the same thing is true
for ¢’ o ¢ and &. Now the constructions of I(&, K, gA) inside 7(&, L, A) or of
I(®', K, gA) inside I(&', L, A) are completely parallel. So the 7 -equivariant
morphism I(y, L, A): I(&,L,A) — I(&',L,A) of 5.8.1 induces a yx-equi-
variant morphism I (Vx, K, kA): I(&, K, gkA) — I(®', K, gA).

This is functorial (up to the problem that A or A has sometimes to change
with &").

2) Changing the group, Levi factors. Suppose that & satisfies (TRQS) and
let M,L,T,... beasin6.5.

Let F} and FY be opposite I'-stable vectorial facets in IV(&, L, A"). They
determine completely a subgroup M(FV) in & (L) which is ['-stable. We write
& =6 FY the corresponding subgroup-scheme of &. We know that, over L, &’
is isomorphic to some &gy).

The parabolic subgroup-scheme P (F") of &, associated to FV is defined over
K, hence over M, and contains a minimal M -parabolic i.e. a Borel subgroup
defined over M. The parabolics in B (F") correspond bijectively to the parabolics
of its Levi factor &’ and this correspondence is I'-equivariant as &’ is I'-stable.
So &' is quasi-split over M it satisfies (TRQS).

If A is chosen as in 6.6 for &, then it satisfies the same conditions for
&’ C &. Here also the constructions of the bordered hovels over K inside
the bordered hovels over L for & and &’ are completely parallel. We deduce
from 5.8.2 a &'(K)-equivariant isomorphism of I(®’, K, gA) with the fagade
I(8, K, kA)k pv (where K FV is the Weyl K-facet corresponding to F") or with
I(¢,86,K,kA) =6 (K).(kA) C I(8,K,kA).

The reader will write the results for bordered hovels analogous to those in 5.8.2.

3) Changing the field: We asked in 6.1 that the valuation w = wg of K may
be extended functorially to all extensions in Sep(K). We ask also that the almost
split Kac—-Moody group & satisfies (TRQS), hence is quasi-split over a tamely
ramified finite Galois extension M/ K and split over a finite Galois extension L/ K
with L D M.

Let’s consider now a field extension i: K <> K’ in Sep(K). We define in
Ks, L' = K'L and M’ = K'M; we write i;: L < L’. The extensions L'/K’
and L'/ M’ are Galois, Gal(L'/K’) C Gal(L/K), Gal(M’/K') C Gal(M/K) and
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M’/K' is tamely ramified. Moreover & is split on L” and quasi-split on M’, so &
satisfies (TRQS) on K'.

We saw in 5.8.3 that A (with some added walls) is still a suitable apartment for
(6, %) over L' and that there is a &(L)-equivariant embedding

I(8,ip,A): I(&,L,A)— I(6,L A).
This embedding is also Gal(L’/ K')-equivariant. Now

I(6, K, kA) C I(6, L, A)CIL/K)
and
I(Qﬁ, K/,K/A) C I(Qj’ L/’ A)Gal(L’/K’)‘

Moreover I (&, K, kA) is the union of the apartments Ag = I(3¢(6), 6, K, kA)
for & a maximal K-split torus in & and 3, (&) its generic centralizer, which is a
reductive group. By 2) above and [27, 5.12],

I(8,ip, A)(Ae) = T(34(6).iL, A)(I(34(6). &, K, kA)
C I(34(8),8,K' kA)
C I(@, K/,K/A),

where /A is associated to a maximal K’-split torus &’ containing &. We have
thus defined a & (K)-equivariant embedding

I(6,i,A): I(6, K, kA) —> I(®,K', g/ A).

This is clearly functorial. We leave to the reader the “pleasure” to formulate a
result for bordered hovels; there is the problem of the choice of the facade of x/ A
in which embeds a fagcade of x A. This is easier for the essential spherical facades
i.e. for the microaffine buildings.

Note that the (real) walls in g A are some of the traces on g A of the (real)
walls in g-A. In general any such trace is not necessarily a wall in g A, see
nevertheless 6.13 below.

4) Changing the model apartment: Suppose that & satisfies (TRQS) and let
M,L,T,...beasin6.5.

The apartment A is associated to a commutative extension ¢: 8 — 8’ of RGS
and a subspace Vg, of V5 C V' = Y’ ® R with the condition that 8’ is endowed
with a star action of I" for which ¢ is I'*-equivariant and Vy, I"*-stable.

Now let ¢: 8" — 8" be a commutative extension of RGS and Vj, a subspace
of Vi C V" =Y"” ® R containing v (V;,), with the condition that 8” is endowed
with a star action of I" for which y is I"*-equivariant and Vj, I'*-stable. Then
¢ = ¥ o@:8 — 8" satisfies the above condition and can be used to define
a new apartment A’ = V”/V,. We have an affine map y: A — A’ which is
N -equivariant.
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By 5.8.4 we get a &(L)-equivariant map
I(6,L,y):I(6,L,A)— I(6,L,A).
It is I'-equivariant and induces a & (K)-equivariant map
I(B,K,¥): I(6,K,gkA) — I(8, K, gA)

(by the characterization given in Remark 6.9).
This construction is functorial and extends clearly to the bordered hovels.

Proposition 6.13. In the situation of 6.12.3 above, suppose that the extension
K’/ K is Galois and unramified (more precisely for a non discrete valuation, K'/ K
is supposed to be etale |9, 1.6]). Then the intersection with g A of any real wall of
k' A is a real wall of k A if (and only if) it is a hyperplane of direction given by a
root in g ®.

Proof. LetT' = Gal(K’/K). Then with obvious notations, Ok is a free O g-mod-

ule with basis a family xi,...,x, whose image in ¥’ = Og//mg’ is a basis
over k = Ok /mg; moreover «'/k is Galois and I' = Gal(k'/k) [9, 1.6.1d]. If
I' ={y1,...,¥n}, then a well known theorem tells us that det(y;(x;)) is non triv-

ial in k', hence is in O%,. An easy consequence is that any Og/-module M with a
conjugate-linear action of T" is the Og/-module generated by MT.

Leta € g®and x € gAinthe wall M(a’, k) of g/ A fora’ € K/®,a/|6 =g and
k = —a(x). With notations as in the proof of 6.9, we have V. / (Vau 2k -Var k+)
(or Vaar 2k / Vaa’ pk+) non trivial (where Vg g, ... is relative to K’ and &) and
we want to prove that V, x/ Vaa.2k - Vak+ (OF Vag ok / Vaa2k+) is non trivial. We
concentrate on the first case, the second is easier.

We set V), = ]_[b,|6=2a Virde» Vo = Vz/ajzk.]_[b,%:a Vi k and anal-
ogous formulae for V) ., .., V.. By hypothesis V,, /(V], ..V ;) is non
trivial. But V) / V], o (resp. V. /V;, 5 ,) is an Og/-module stable under T
and (Va/,k/Vz/a,zk)F = Vax/Vaa2k (resp. (V;,k+/V2/a,2k+)F = Vak+/V2a,2k+)-
If Vor/(Vaa2k-Vak+) were trivial, then we would have V,i/Vagok =
Vak+/V2a26+ and, by the above result, Va/’k / V2/a,2k = Va/,k WA contra-
diction.

a,2k+’

Glossary of notations

1.1 M, Q,0;, O, WY, 2, @, 54, 0(J), D™(J), WY(J),RGS, 8, Y, X, @, o,
S]Mm = Slada S(J)a gS’ bSa A’ A:ta q):l:a Aima Are’ A[n('])

12 V., CY, FY(J), T, star: (—)*, T2, AY, AY, Vo, Ve, AYe, V9, AV, VX, AV,
Sl YXl VX]
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1.3 Ts, Bs, ras o, UL, BE, Usy, rrk(8), sstk(8), Sep(K), K
1.4 G, Z, Uy, m(u), U, (RDI) to (RDS), (GRD)
1.5 RGD-system, ®pq
1.6 BE, N, v, I, IY, P(FY), M(FY), U(F"), G(FY), N(FY), P£(J)
1.8 Ns, G(J)
L9 GY™, &ama, ymeE ((q,
1.10 V9T, 3(T), 35(T))
1.12 exponents Y, ¢, %, etc.
2.1 (DCS2), I', star action *, y*, ¥
2.3 (ALG3), (ALG3)
24 gAY, g I, kCY, I

2"5 6’ rrkK’ KXa KY’ K(X’ KQa KA’ KAre = K¢a KQrea KAima KIa Klrea ¢0a
SSl‘kK, kN, xZ, KWV

2.6 YUea)s Via

2.8 kAL, kFY(kJ), XF)(gJ), XA, X1V

2.9 Uy, kAL KA

3.1 (VO) to (V4), ¢a, Uy, Aas Uy a4, VI

33 K,w,0, m, k, A

3.4 M(a,A), D(a,A), D°(at, A), SM = Sa.r> Vs Zo, M, A, <, 2, wa, G? NY,
ZQJ’ Ati’ Mi

3.6 cI}, c”, clf, el oI, clfs, ..., cl, F'(x, FY), F(x,FY), F(x,F"), q, ,

germ,, Q, §, t(F, FY), R

3.7 AM(FY), ®M(FY), A, M(FY), ;Mi(FV), A%y, PrEys A, Ae, Al Ag, A,
AFV’ Fv(x)’ A:I:, A;;h’ M(Ol, A)’ D(Ol, A)’ [S]’ [%]

41 1,i,1

42 Q. D(e.Q). D(e.Q). Ua(R). N(Q). G(V. Q). G(Q), Us*, UZ, N§™.
W, W, (P) to (P10), Q(R), Ga, G(Q C A), Ipv, P

4.3 prpv
4.4 Q%(Q,CY) = 0%(Q,¢)
4.5 (GFe), (TF)
4.6 [x,y), germg,
4.10 (MAI) to (MA4), (MAO), GY



5.1

54
5.9
5.11

6.4

6.5
6.6 kA, ko, Px, Mg, M

6.8
6.9
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ﬁ()’), U)}/)m+’ U;m_, U;na:l:’ GPma_Gnma [’)\m();)

P, I(®s, K, A), I(®s, K, A)

(P8+)

I):::a Ax, A;lc:’ ®Xa P){-nin’ GIxa GXa UO{

— — —
Ty=x1" 7 =I'9,G" = &(K), K1, Ay C A9, k@ = o, Ao AL
?h’ ana Fvn’ F#;/9 A;;’ F#;]n’ Uttl:la Ua, q)tl’ j#’ A#9 (DMI) tO (DM4)9 QDE’ Ua,k’
an,k, Qn(x), jn

(TRQS)

kA

M}‘/K’ L/K

L/K’
kA, gA°, gAl
I1(6, K, gA), I(&, K, gA)

6.11 cI&®
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