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Abstract. The work discusses equivariant asymptotic dimension (also known as “wide

equivariant covers”, “N -F-amenability” or “amenability dimension”, and “d -BLR condi-

tion”) and its generalisation, transfer reducibility, which are versions of asymptotic dimen-

sion invented for the proofs of the Farrell–Jones and Borel conjectures.

We prove that groups of null equivariant asymptotic dimension are exactly virtually

cyclic groups. We show that a covering of the boundary always extends to a covering

of the whole compacti�cation. We provide a number of characterisations of equivariant

asymptotic dimension in the general setting of homotopy actions, including equivariant

counterparts of classical characterisations of asymptotic dimension. Finally, we strengthen

the result of Mole and Rüping about equivariant re�nements from �nite groups to in�nite

groups.
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Introduction

The concept of equivariant asymptotic dimension was introduced by Bartels,
Lück, and Reich in [6]. Proving �niteness of equivariant asymptotic dimension
was a major technical step in the proof of the Farrell–Jones conjecture for hy-
perbolic groups [7]. A generalisation of this property – transfer reducibility (see
Section 2) – was used to prove the Farrell–Jones conjecture for CAT.0/ groups [5].
Then, the Borel conjecture was derived for a class of groups containing hyperbolic
and CAT.0/ groups [5].

Equivariant asymptotic dimension and transfer reducibility have been exten-
sively studied in the last years, mostly as a tool to prove the Farrell–Jones con-
jecture. The scope of this research involves GLn.Z/ [8] and other linear groups

1 The author was partially supported by the Foundation for Polish Science with the grant
HOMING PLUS Bis/2011-4/6.
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[14, 18], virtually solvable groups [21], CAT.0/ groups [4, 20], and relatively hyper-
bolic groups [2]. Very recently, in [13], a new construction of covers was proposed,
which – in particular – provides improved bounds on equivariant asymptotic di-
mension of hyperbolic groups. There are more positive results regarding transfer
reducibility [4, 8, 18, 20, 21] than equivariant asymptotic dimension [2, 6], because
its de�nition is formally less restrictive. However, it seems to be an open question
whether the two notions are equivalent, cf. [1, Remark 3.15].

All the known proofs [2, 6, 13] showing �niteness of equivariant asymptotic
dimension are complex and involve the notion of (coarse) �ow space. Some
elementary constructions, even in the simplest cases such as that of the free
group, are unknown and desired, cf. [1, Remark 3.12]. We make a step in this
direction, showing that it is enough to study the equivariant asymptotic dimension
eq-asdimG � @X for the boundary @X . More precisely, we describe a method of
extending coverings from the boundary and obtain the following result.

Theorem A (Theorem 1.9). Under appropriate assumptions,

eq-asdimG � xX � eq-asdimG � @X C dimX:

Another quantitative result is the following characterisation of the situation
when the equivariant asymptotic dimension vanishes, which yields, as a corollary,
a geometric characterisation of virtually cyclic groups.

Theorem B (Theorem 1.14). For a family of groups F, F-eq-asdimG D 0 if and
only if F contains a �nite-index subgroup of G.

The notion of equivariant asymptotic dimension relates to some other con-
cepts, most importantly to asymptotic dimension (but also to amenable actions).
The similarity of de�nitions and quantitative relations are discussed in Subsec-
tion 1.3. The second part of the paper, Section 2, is devoted to providing a number
of di�erent characterisations of equivariant asymptotic dimension and transfer
reducibility (Theorem 2.4). Interestingly, appropriate forms of characterisations
invented originally for asymptotic dimension are still valid in the very general
framework of homotopy actions (transfer reducible groups). In Proposition 2.8,
we present two more characterisations and a di�erent proof (not using metrisabil-
ity) of their equivalences, assuming that we deal with ordinary (not homotopy)
group actions.

In Appendix A, we strengthen the result of [14] stating that for an equivariant
covering one can �nd an equivariant re�nement of dimension at most equal to
the dimension of the space. In that sense, “equivariant topological dimension”
is equal to the topological dimension. The theorem was originally formulated for
�nite groups and we generalise it to in�nite groups provided the action is assumed
to be proper. It is used in Subsection 1.2 in the proof of Lemma 1.8, but can be
read independently from the rest of the paper.
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1. Genuine group actions

– the vanishing theorem and extending coverings from the boundary

1.1. De�nition. Let us start by �xing some notation. The metric neighbourhood
of a subset A of radius r will be denoted by B.A; r/ D

S

x2A B.x; r/ and xB.x; r/

will denote a closed ball. When a group G acts on a topological space X (on a
set Y ), we will shortly say that X (Y ) is a G-space (a G-set). Sometimes we will
write “for all ˛ < 1...” to denote “for all ˛ 2 .0;1/...” in order to clarify that
the following condition is trivial for “small” ˛ and interesting for “large” ones.

Unless stated otherwise, we will assume that G is a �nitely generated group
with a �xed word-length metric, and xX will denote a compact G-space.

De�nition 1.1. A family F of subgroups of a group G is a set of subgroups closed
under conjugation and taking subgroups.

A family F is virtually closed if for every H 2 F and H � H 0 � G such that
ŒH 0 W H� < 1, also H 0 2 F.

Our considerations are general enough to hold for any family F as in De�ni-
tion 1.1. However, in the context of the Farrell–Jones conjecture it is the (virtually
closed) family of virtually cyclic subgroups, denoted VCyc, that appears most nat-
urally [4, 5, 6, 7].

De�nition 1.2. Let Y be a G-set and F be a family of subgroups of G. A subset
U � Y is called an F-subset if:

(a) elements gU of the orbit of U are either equal or disjoint,

(b) the stabiliser of U , GU D ¹g 2 G j gU D U º, is a member of F.

A cover that consists of F-subsets and is G-equivariant will be called an F-
cover. The name “equivariant asymptotic dimension” comes from the fact that
the coverings in its de�nition are F-covers.

For a family of subsets U of set Y , by dimU (the dimension of U) we will
denote the value supy2Y j¹U 2 U j y 2 U ºj � 1, where jAj is the cardinality of A.

De�nition 1.3. Let Y be any set and U be a covering of G � Y . We say that
˛ < 1 is a G-Lebesgue number of U, given that for each .g; y/ 2 G � Y there
exists U 2 U such that xB.g; ˛/ � ¹yº � U .

The following de�nition originates in [6, Theorem 1.1], see also [7, Assump-
tion 1.4] and [2, De�nition 0.1].
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De�nition 1.4. The equivariant asymptotic dimension of G � xX with respect to
family F, denoted by F-eq-asdimG � xX , is the smallest integer n such that for
every ˛ < 1 there exists an open F-cover U of G � xX (with the diagonal G-
action) satisfying:

(1) dim.U/ � n,

(2) ˛ is a G-Lebesgue number of U.

If no such integer exists, we say that the dimension is in�nite.

When the family F is irrelevant or clear from the context, we will skip it
from notation. The coverings U D U.˛/ from the above de�nition will be called
eq-asdim-coverings and ˛-eq-asdim-coverings, in case the constant˛ is important.

Remark 1.5. In [6, Theorem 1.1], eq-asdim-coverings were also required to be
G-co�nite, but by compactness one can choose co�nite subcoverings from arbi-
trary coverings, so this requirement can be skipped.

One generalisation of equivariant asymptotic dimension (still su�cient for
the Farrell–Jones conjecture) is transfer reducibility. It occurs in many �avours
in the literature, but the main di�erence between it and equivariant asymptotic
dimension is that in transfer reducibility one can choose a space xX depending
on a parameter (for eq-asdim this parameter is ˛) and instead of a genuine group
action a “homotopy action” is considered. Very roughly, in homotopy action the
action of gh is equal to the composition of actions of g and h only up to homotopy.
We study this notion in Section 2, see in particular De�nition 2.1 and Remark 2.5.

Remark 1.6. Note that if we have aG-equivariant map pW xY ! xX , then eq-asdim-
coverings of G � xX can be pulled back to eq-asdim-coverings of G � xY . Hence,
the minimal possible value of eq-asdimG � xX for xX compact and Hausdor� is
acquired for xX D ˇG – we will sometimes call it the equivariant asymptotic
dimension of G.

It is not enough to restrict to xX D ˇG, though, since in applications conditions
similar to the following are utilised, cf. [7, Theorem 1.1 and Assumption 1.2].

� xX is a metrisable compacti�cation of its G-invariant subset X ,

� X is a realisation of an abstract simplicial complex,

� xX is contractible,

� (weak Z-set condition) there exists a homotopyH W xX � Œ0; 1� ! xX , such that
H0 D id xX and Ht . xX/ � X for every t > 0.

However, we do not adopt any of these conditions as a convention.
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In the above context, considerations may become less complicated if one
constructs coverings ofG�@X rather than the wholeG� xX (where @X D xX nX).
The fact that the latter can be reconstructed from the former is the content of
Theorem 1.9.

A natural setting to have in mind is when the space X admits a geometric
action ofG (for example, it is a Rips complex of the group) and @X is the Gromov
boundary of G, cf. [6].

1.2. The role of xX . Since the applications of equivariant asymptotic dimension
concern the group G, it is natural to ask what the role of xX is. What happens if
we just take xX D ¹�º or, on the other extreme, drop the compactness assumption.
A special case of the latter is the question whether we can drop the requirement
that eq-asdim-coverings are open, which corresponds to equipping xX with the dis-
crete topology. Another question is whether a decomposition of xX into invariant
subspaces can be used to simplify the problem of �nding eq-asdim-coverings.

It turns out that compactness of xX is crucial to the notion of eq-asdim.

Remark 1.7. If the compactness assumption for xX in De�nition 1.4 is skipped,
then for X D G we have eq-asdimG � X D 0.

Proof. A good eq-asdim-covering for G � X is U D ¹G � ¹xº j x 2 Xº, which
is clearly an open T-cover of dimension 0 with the in�nite G-Lebesgue number,
where T is the singleton family of the trivial subgroup of G. �

Clearly, the same construction of eq-asdim-coverings works for any discrete
X provided that point stabilisers belong to F. The above proof exempli�es a more
general approach indicated in [6]. While eq-asdim-coverings must be ˛-large in
the G-coordinate, making them small in the xX-coordinate may be helpful in ob-
taining the properties desired in De�nition 1.2. The following lemma generalises
the above remark and covers a wide range of examples (e.g., the spaces considered
in [6]). Below, a G-simplicial complex such that all the stabilisers of simplices
belong to F is called an F-simplicial complex.

Lemma 1.8. Assume that a �nitely generated groupG acts on a topological space
X . There is an F-eq-asdim-covering U1 (with ˛ D 1) of the space G �X under
any of the following conditions:

(a) X is a �nite-dimensional F-simplicial complex (the same is true for CW-
complexes);

(b) X is regular, the G-action is proper, isotropy groups belong to F, and either
of the following conditions holds:

(i) the G-action is cocompact;

(ii) X is of �nite covering dimension and admits a G-invariant metric.

In cases (a) and (ii), we have dimU1 � dimX .
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Proof. Ad (a). For each open simplex �o of X , one can construct (using a
barycentric subdivision, compare the proof of implication .3/ H) .2/ in The-
orem 2.4 or [14, Lemma 3.4] for more details) a neighbourhood N.�o/ such that
neighbourhoods of simplices of the same dimension are disjoint and the family
of such neighbourhoods is equivariant. Thus, the stabiliser of N.�o/ is equal to
the stabiliser of �o and hence belongs to F. Putting U D ¹G � N.�o/ j � 2 Xº

�nishes the proof, because each point x of X belongs to a neighbourhood of at
most one simplex of each dimension.

Ad (b). For each x 2 X we will construct its neighbourhood Ux being an
F-subset. By properness of the action (and T1-property), we can �nd a neigh-
bourhood U 0

x such that the set RSx D ¹g j gU 0
x \ U 0

x ¤ ;º is �nite and such that
U 0

x is disjoint with the completion Cx D Gx n ¹xº of x in its orbit Gx.
Then, using regularity ofX , we choose a smaller neighbourhoodU 1

x , such that
its closure U 1

x is contained in U 0
x – in particular it is disjoint with Cx. But we have

the equivalence

8gWgx¤xgx 62 U 1
x () 8gWgx¤xx 62 gU 1

x ;

so the set U 2
x D U 1

x n
S

gWgx¤x gU
1
x contains x. It is open, as the sum can be

taken over the �nite set RSx without a�ecting the di�erence. What we achieved
is emptiness of the intersection U 2

x \ gU 2
x � .U 1

x n gU 1
x /\ gU 1

x D ; for gx ¤ x.
To handle the case gx D x, we do the last tweak setting Ux D

T

gWgxDx gU
2
x .

The intersection is �nite (as the stabiliser of x is a subset of RSx), so we have just
obtained a neighbourhood of x with the stabiliser equal to the stabiliser of x, and
conclude that Ux is an F-subset.

We still need to bound the dimension of the covering. Provided thatX is �nite-
dimensional and the action is isometric, we can use Proposition A.8 to �nd an
equivariant re�nement UX of the covering ¹gUx j g 2 G; x 2 Xº with dimension
at most dimX .

Otherwise, we can assume that the action is cocompact. Since the quotient

map X
q

! X=G is open, ¹q.Ux/ºx2X is an open covering of a compact set.
Consequently, there is a �nite family x0; : : : ; xn such that ¹q.Uxi

/º0�i�n covers
X=G and thus UX D ¹gUxi

j g 2 G; 0 � i � nº coversX . Clearly, the dimension
of UX is at most n.

Finally, the family U1 D ¹G � U j U 2 UXº is an ˛-eq-asdim-covering of
G � X for any ˛ � 1. �

We would like to mention that actually G-invariant coverings of X (rather
than of G � X) were constructed in the above proof and that it relied mainly on
topological properties of X (not on the geometry of G).
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Assume now that xX is a compacti�cation of X and recall that we denote
@X D xX n X . An eq-asdim-covering U of G � xX breaks up into two invariant
parts:

U
o D ¹U 2 U j U \G � @X D ;º;

U
@ D ¹U 2 U j U \ G � @X ¤ ;º:

Conversely, if we are given two open F-families Uo, U@ of subsets ofG� xX , which
– after restriction to G �X and G � @X respectively – have G-Lebesgue numbers
˛, then the family U

o [ U
@ is an F-cover of G � xX with G-Lebesgue number ˛

and dimension at most dimU
o C dimU

@ C 1.
Hence, if the assumptions of Lemma 1.8 are satis�ed, we can always assume

(at the expense of possible increase in the bound on the dimension) that eq-asdim-
coverings U of G � xX satisfy U

o D U1 and thus the only relevant part of U is
U

@. In other words, it is enough to deal with a neighbourhood of the boundary to
obtain a covering of G � xX .

Even more is true. An open F-cover ofG � @X can be extended to a family U
@

of the same dimension that is open in G � xX . Thus, one can indeed restrict their
attention to the boundary itself.

Theorem 1.9. If xX is a metrisable compacti�cation of X and any of the assump-
tions of Lemma 1.8 hold, then

eq-asdimG � xX � eq-asdimG � @X C dimU1 C 1;

where U1 is the covering from Lemma 1.8.

Proof. For a given ˛ < 1, we will de�ne an ˛-eq-asdim-covering U of G � xX as
the sum of the covering U1 and a covering U

@ constructed from an ˛-eq-asdim-
covering V of G � @X .

For V � G � @X let Vg D V \ .¹gº � @X/ and let V1 D ¹V1 j V 2 Vº.
We will describe a dimension-preserving method of enlarging sets Y 2 V1 to
open subsets W.Y / of ¹1º � xX ' xX . It will satisfy:

Y ¤ Y 0 H) W.Y / ¤ W.Y 0/I (1)

\

1�i�n

W.Y i / D W
�

\

1�i�n

Y i
�

: (2)

Fix a metric d inducing the topology of xX . As dimV1 � dimV, every x 2 @X

belongs to a �nite number of elements Y 1
x ; : : : ; Y

k
x of V1. Let ".x/ > 0 be

such that B.x; ".x// \ @X �
T

j Y
j
x . For any Y � @X we de�ne W.Y / D

S

x2Y B.x; ".x/=2/.
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Condition (1) is clear from the fact that W.Y / \ @X D Y . We will show
condition (2) by induction. Let us denote Y .n/ D

T

1�i�n Y
i . The base is trivial,

so we assume n > 1:
\

1�i�n

W.Y i / D
\

1�i�n�1

W.Y i / \W.Y n/

D W.Y .n�1// \W.Y n/

D .W.Y .n�1/ n Y n/ [W.Y .n�1/ \ Y n//

\ .W.Y n n Y .n�1// [W.Y n \ Y .n�1///

D .W.Y .n�1/ n Y n/ \W.Y n n Y .n�1/// [W.Y .n//

We claim that the �rst summand of the right-hand side is empty. Suppose some
z belongs to it. Then, there must be x 2 Y .n�1/ n Y n and y 2 Y n n Y .n�1/ such
that z 2 B.x; ".x/=2/ \ B.y; ".y/=2/. Thus, d.x; y/ < max.".x/; ".y//. Hence,
either x 2 B.y; ".y// \ @X �

T

j Y
j

y � Y n (contradicting x 2 Y .n�1/ n Y n), or

y 2 B.x; ".x// \ @X �
T

j Y
j
x � Y .n�1/ (contradicting y 2 Y n n Y .n�1/).

Now, for V 2 V with a decomposition V D
S

g¹gº � Vg let us de�ne
U.V / D

S

g¹gº � gW.g�1Vg/ (note that g�1Vg D .g�1V /1 2 V1). We have
the equality hV D

S

g¹gº � hVh�1g , so one gets:

U.hV / D
[

g2G

¹gº � gW.g�1hVh�1g/ D
[

k2G

¹hkº � hkW.k�1Vk/ D hU.V /I

i.e., the obtained family is equivariant.
From (1) and the equivariance it follows that the stabiliser of U.V / is equal to

the stabiliser of V , hence it belongs to F. Condition (2) (for n D 2) guarantees
that di�erent translates U.V /, gU.V / D U.gV / are disjoint and (for arbitrary n)
it assures that the dimension of U@ D ¹U.V / j V 2 Vº is equal to the dimension
of V. Putting U D U@ [ U1 �nishes the proof. �

Example 1.10. The crucial part of the proof is the de�nition of sets W.Y /. For
X D Cay.F2; ¹a; bº/ and its Gromov boundary as @X , it is enough to de�ne
W.Y / \ X as all those points x 2 X such that the endpoint of any geodesic ray
from 1 via x ends in Y (geometrically: we take “cones” over the boundary).

Group G can be embedded in G � xX in various ways yielding di�erent pull-
backs of U. Assume for example that the conclusion of the Švarc–Milnor lemma
is true, that is, the orbit mapG 3 g 7! gx0 2 X is a quasi-isometry for some met-
ric on X , and consider the pullback of U in G via the map g 7! .1; gx0/. Inverse
images of U 2 U1 will be uniformly bounded. On the other hand, we expect
the inverse image of U 2 U

@ to be unbounded, as it contains neighbourhoods of
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“points at in�nity”, cf. condition (3) in the Remarks subsection. Thus, some ele-
ments of the covering are small, independently of ˛, while others are unbounded.
It di�ers from asdim-coverings (see De�nition 1.11 below), where elements of the
covering grow with ˛, but uniform boundedness is preserved at each step.

Nonetheless, equivariant and classical asymptotic dimension are related and
we discuss it in the next subsection.

1.3. Asymptotic dimension and the vanishing theorem. A natural question
coming to mind is how equivariant asymptotic dimension is related to asymptotic
dimension. Let us recall the de�nition.

De�nition 1.11. The asymptotic dimension of a metric space G is the smallest
integer n such that for all ˛ < 1 there is an open covering U of G such that

(1) dim.U/ � n,

(2) for each g 2 G there exists U 2 U such that xB.g; ˛/ � U ,

(3) supU 2U diam.U / < 1 (uniform boundedness).

We can see that the �rst two conditions in the de�nition of asdim are analogues
of the conditions for eq-asdim. Such a similarity occurs also for various charac-
terisations of asdim, compare the following Theorem 1.12 (see [9, Theorem 1] or
[16, Theorem 9.9]) characterising asdim with Theorem 2.4 and Proposition 2.8
characterising eq-asdim.

Theorem 1.12. LetX be a metric space. The following conditions are equivalent:

(1) asdimX � n;

(2) for every r < 1 there exist uniformly bounded, r-disjoint families .Ui/ for
0 � i � n of subsets of X such that

S

i U
i covers X ;

(3) for every " > 0 there is a uniformly cobounded, "-Lipschitz map �WX ! K

to a simplicial complex of dimension n;

(4) for every d < 1 there exists a uniformly bounded cover V of X with
d -multiplicity at most nC 1;

In the above theorem, a family of subsets is r-disjoint if the distance of any two
of its members is at least r ; a map to a simplicial complex is uniformly cobounded
if there is a bound on diameter of inverse images of stars; a simplicial complex
K is viewed as a subset of `1.V .K//, where V.K/ is the set of vertices of K; and
d -multiplicity of a covering means the maximal number of its elements intersect-
ing a d -ball.
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We would like to mention that if we relax condition (3) so that � is a map
into the sphere in `1 instead of an n-dimensional complex, then it becomes
(in the case of bounded geometry metric spaces) equivalent to property A
([22, Theorem 1.2.4 (6)], see also [11]). The equivalence is established by replacing
"-Lipschitz maps x 7! �.x/ into the unit sphere of `1.V .K// by maps x 7! Ax

into .
L

v N/ n ¹0º, where v 2 V.K/, such that for d.x; y/ � R we have
kAx �Ayk=k min.Ax; Ay/k < " (and vice versa). A similar transition would give
one more characterisation also in the equivariant case.

Guentner, Willet, and Yu [12] show that Fin-eq-asdimG � ˇG D asdimG,
where Fin is the family of �nite subgroups. Clearly, the equivariant asymptotic
dimension decreases when F increases, so F-eq-asdimG�ˇG � asdimG for any
F � Fin.

On the other hand, Willett and Yu observed that the appropriate version of the
argument from [10, Proposition 5.2.1] gives the inequality

1C asdimG � .1C F-eq-asdimG � xX/ � .1C sup
F 2F

asdimF /I

in particular, �nite VCyc-eq-asdim implies �nite asymptotic dimension of G.
The proof uses the language of amenable actions (we recall the de�nition in the
discussion after Theorem 2.4).

The de�nition of equivariant asymptotic dimension involves a family of groupsF,
for example VCyc, which causes the two notions – classical and equivariant as-
ymptotic dimension – to disagree even in the simplest cases. In particular, the
second factor on the right-hand side of the above inequality is necessary, because
it is not true that asdimG � F-eq-asdimG:

Example 1.13. For G D Z and, say, xX D Œ�1;C1� with the action by
translations, the one-element covering ¹G � xXº is an ˛-eq-asdim-covering for
any ˛ < 1 and F D VCyc. Hence, VCyc-eq-asdimZ D 0, while asdimZ D 1.

Apparently, eq-asdim is a more subtle (or at least less understood) notion
than asdim – for several years the only class of groups that were known to be
of �nite equivariant asymptotic dimension with a reasonable xX was the family of
hyperbolic groups [6], and the fact that they also have �nite asymptotic dimension
is classical and has a short proof [17]. (Now, we have similar results for relatively
hyperbolic groups [2] and mapping class groups [3].) On the other hand, we have
no examples of �nite-asdim groups which are known to have in�nite equivariant
asymptotic dimension if we put some restrictions on xX .

The di�culty with proving �niteness of eq-asdim arises (see the Remarks
subsection) already in the case of the simplest non-hyperbolic group, namely Z

2,
which can be immediately proven to be of asymptotic dimension 2.

It turns out that Example 1.13 can be generalised to give a complete character-
isation of groups with vanishing equivariant asymptotic dimension.
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Theorem 1.14. Equivariant asymptotic dimension of G vanishes if and only if F
contains a �nite-index subgroup of G.

Proof. For the “if” part, let H 2 F be a �nite-index subgroup of G. Let xX be the
quotient G=H and U D ¹G � ¹xº j x 2 xXº. It is a G-invariant, disjoint and open
covering with respect to the discrete topology on xX , and stabilisers of elements of
U are conjugates of H , hence they belong to F.

For the converse, assume that there is an F-cover U of G � xX of dimension 0
(that is, disjoint) and of G-Lebesgue number ˛ � 1. Take U 2 U and .g; x/ 2 U .
Then there exists U 0 2 U such that xB.g; ˛/ � ¹xº � U 0 – but then U \ U 0 ¤ ;,
so U D U 0. Thus, we showed that .g; x/ 2 U implies xB.g; ˛/� ¹xº � U – hence
G � ¹xº � U and we conclude that U D G � U xX for an open set U xX � xX .

Consider now the sum W D
S

GU xX of the orbit GU xX . We claim that W is
closed. Indeed, for y 2 xX nW , there is U 0 D G �U 0

xX
2 U such that y 2 U 0

xX
, and

disjointness of U implies U 0
xX

\W D ;.

So W is a compact subset of xX covered by the disjoint family GU xX , meaning
that the family must be �nite. Thus, the orbit of U xX is �nite and the same is true
for the orbit of U . Summing up, the stabiliser of U belongs to F and is of �nite
index in G. �

Corollary 1.15. VCyc-eq-asdimG D 0 if and only if G is virtually cyclic.

Example 1.16. In particular, eq-asdim is not a function of the asymptotic
dimension of a group and/or the topological dimension of its boundary, as
asdimZ D asdimFn D 1 and dim @Z D dim @Fn D 0; but for n > 1:

VCyc-eq-asdimZ D 0 < VCyc-eq-asdimFn:

Moreover, equivariant asymptotic dimension does not satisfy a logarithmic
inequality holding for other notions of dimension (dimG�H � dimGCdimH ),
as eq-asdimZ

n > 0 D eq-asdimZ. In fact, it seems to be an open problem
whether the product of groups of �nite eq-asdim has �nite eq-asdim.

Remarks. Let us now consider the following situation. Assume that G acts
geometrically on .X; d/ for a suitable proper and geodesic metric d . Then, any

orbit map G 3 g
j

7! gx0 2 X is a quasi-isometry. Assume further that if a
sequence .xn/ of points of X converges to x 2 @X and .yn/ 2 X is asymptotic to
.xn/, then .yn/ also converges to x:

sup
n
d.xn; yn/ < 1 H) lim

n
yn D x (3)

(which holds in particular for the Gromov boundary of a hyperbolic space). Then,
any �nitely generated abelian subgroup H � G has to belong to family F.
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Indeed, let ¹z1; : : : zkº be a generating set of H , and let a sequence .hn/ 2 H

and a point x0 2 X be such that xn D hnx0 converges to some x 2 @X . Then for
any i 2 ¹1; : : : ; kº and a sequence yn D hnzix0 we have supn d.xn; yn/ < 1 (as
dG.hn; hnzi / D dG.1; zi/ and j is a quasi-isometry), and thus zix D lim zihnx0 D

lim hnzix0 D x; i.e., H stabilises x.
But �nitely generated subgroups of isotropy groups of xX belong to F: let ˛

be large enough for xB.1; ˛/ to contain ¹z1; : : : zkº and let U 2 U.˛/ contain
xB.1; ˛/ � ¹xº. Then zi. xB.1; ˛/ � ¹xº/ D xB.zi ; ˛/ � ¹xº intersects nontrivially
with xB.1; ˛/ � ¹xº and thus ziU \ U ¤ ;, so zi must stabilise U and thus
H is a subgroup of the stabiliser of U , which belongs to F by the de�nition of
F-eq-asdim-coverings. This reasoning also shows that space xX in the de�nition
of eq-asdim is necessary; i.e., there are no ˛-eq-asdim-coverings of G D G � ¹�º

(unless ˛ < 1 or G 2 F).
The above suggests that commutativity (or existence of large abelian sub-

groups) may be an obstacle for (proving) �niteness of eq-asdim. Such a proof
(if we assume X ' G) would require a compacti�cation violating very natural
condition (3). The condition holds for compacti�cations of CAT.0/ groups used
in [4], and thus Bartels and Lück used suitable subspaces of the compacti�cation
and showed transfer reducibility (not �niteness of eq-asdim).

However, if we already have a free action with G nilpotent and xX metrisable,
we can use the following estimate from [19] (the paper uses the name amenability
dimension):

1C T-eq-asdimG � xX � 3`.G/ � .1C dim xX/;

where T is the singleton family of the trivial subgroup of G, `.G/ is the Hirsch
length and dim xX is the Lebesgue covering dimension of xX .

2. Characterisations of equivariant asymptotic dimension

The aim of this section is to provide a number of equivalent characterisations
of equivariant asymptotic dimension. We will state our theorem in a generality
broader than in the previous section to handle the notion of transfer reducible
groups that are de�ned in terms of homotopy group actions.

2.1. Homotopy actions. Consider the map �.g; x/ D .g; g�1x/. It is a G-
equivariant homeomorphism from G � xX with the diagonal action onto G � xX

with the action on the �rst coordinate by left multiplication (we will call this
the action by translations). The condition xB.g; ˛/ � ¹xº � U , is equivalent
to DB˛.�.g; x// ..D �. xB.g; ˛/ � ¹xº/ � �.U /, where DB stands for “diagonal
(closed) ball” and can be described as follows:

DB˛.g; x/ D ¹.gh; h�1x/ j jhj � ˛º:
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Hence, we could de�ne equivariant asymptotic dimension using diagonal balls
and the action by translations on G � xX .

Note that in this reformulation the action on xX is used only to de�ne DBs.
Thus, if we are able to generalise the de�nition ofDB , we could ease the require-
ment that G acts on xX .

De�nition 2.1 ([4, De�nition 0.1]). Let xX be a compact metric space, and S a
�nite and symmetric subset of a group G containing the neutral element 1.

(i) A homotopy S -action .';H/ on xX consists of continuous maps 'g W xX ! xX

for g 2 S and homotopies H t
g;h

W xX ! xX for g; h 2 S with gh 2 S and
t 2 Œ0; 1� such that H 0

g;h
D 'g ı 'h and H 1

g;h
D 'gh. Moreover, we require

H t
1;1 D '1 D id xX for all t 2 Œ0; 1�.

(ii) Let .';H/ be a homotopy S -action on xX . For g 2 S let Fg D Fg.';H/ be
the set of all maps H t

r;s, where rs D g.

For .g; x/ 2 G � xX , let DB1
';H .g; x/ be the subset of G � xX consisting

of all .gs; y/ 2 G � X such that y D fs�1.x/ or x D fs.y/, where s 2 S ,
fs�1 2 Fs�1 and fs 2 Fs . For A � G � xX and n 2 N we put DB1

';H .A/ D
S

.g;x/2A DB
1
';H .g; x/ and inductively DBnC1

';H .A/ D DB1
';H .DB

n
';H .A//.

(iii) Let .';H/ be a homotopy S -action on xX , U be an open cover of G � xX ,
and n 2 N. We say that U is n-long with respect to .';H/ if for every
.g; x/ 2 G � xX there is U 2 U containing DBn

';H .g; x/.

Note that – due to the fact that 1 2 S and id xX 2 F1.';H/ – we have
A � DB1

';H .A/, so n 7! DBn
';H .A/ is “increasing”.

Lemma 2.2. Let A be a compact subset of G � xX . Then DBn
';H .A/ is also com-

pact. Moreover, for every " > 0 there exists ı > 0 such that DBn
';H .B.A; ı// �

B.DBn
';H .A/; "/, where the neighbourhoods are taken with respect to the product

metric on G � xX .

Proof. Since DBn
';H is the n-th power of DB1

';H (viewed as a function from the

power set of G � xX to itself), it is enough to restrict to the case ofDB ..D DB1
';H .

Moreover, we can restrict to the case when A D ¹hº � Y , for some closed Y � xX .
Observe that DB.¹hº � Y / is the union of two sets I and II:

I D
[

g2S

[

r;s2S

rsDg�1

[

t2Œ0;1�

¹hgº �H t
r;s.Y /;

II D
[

g2S

[

r;s2S
rsDg

[

t2Œ0;1�

¹hgº � .H t
r;s/

�1
.Y /:
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Let us denote the map .x; t / 7! H t
r;s.x/ by Hr;s. Instead of

S

t2Œ0;1�H
t
r;s.Y /

one can writeHr;s.Y�Œ0; 1�/ and similarly
S

t2Œ0;1� .H
t
r;s/

�1
.Y /D� xX.Hr;s

�1.Y //,
where � xX W xX � Œ0; 1� ! xX is the projection. Consequently:

I D
[

g2S

[

r;s2S

rsDg�1

¹hgº �Hr;s.Y � Œ0; 1�/;

II D
[

g2S

[

r;s2S
rsDg

¹hgº � � xX.Hr;s
�1.Y //:

The above sums are �nite, so the obtained set is compact, because images and
inverse images of compact sets are compact as long as all the spaces considered
are compact.

MapsHr;s are uniformly continuous, so the “moreover” part is clear for I, and
in order to obtain it for II it su�ces to prove the following (because � xX is also
uniformly continuous).

Claim. Let H WZ ! Z0 be a continuous map between compact metric spaces.
For every compact subset A � Z0 and every " > 0 there exists ı > 0 such that
H�1.B.A; ı// � B.H�1.A/; "/.

Suppose the contrary, that for some " > 0 there is a sequence of z0
n approaching

A such that there are zn 2 H�1.z0
n/ at least "-distant from H�1.A/. By passing

to a subsequence, we can assume that zn converge to some z0 … B.H�1.A/; "/.
However, by continuity, H.z0/ 2 A, which yields a contradiction. �

2.2. The characterisations

De�nition 2.3. Let Y be a G-set. Its subset is called an almost F-subset if its
stabiliser belongs to F. An almost F-cover is a covering consisting of almost F-
subsets and closed under the induced action of G.

That is, what distinguishes an almost F-subset U from an F-subset is that it
may happen that U ¤ gU , but still U \ gU ¤ ;.

Conditions (1), (2), and (3) below correspond to conditions (1), (2), and (3) in
Theorem 1.12. Condition (0), a version of (1), is introduced to relate to the “almost”
versions of transfer reducibility present in the literature, [8]. Similar to condition
(3), condition (4) comes from [1, Theorem A] and resembles the de�nition of an
amenable action.

Maps from condition (3) yield functors crucial for the proofs of the Farrell–
Jones and Borel conjectures, compare [7, Section 4], [20, Proposition 3.6 and
Section 5] and [5, Proposition 3.9 and Section 11].



On equivariant asymptotic dimension 991

Theorem 2.4. Let n 2 N and S be a �nite symmetric subset of G containing the
identity element 1. Below, we require each xX to be a compact metrisable space
and .';H/ to be a homotopy S -action ofG on xX . The action onG� xX considered
below is given by h.g; x/ D .hg; x/.

The following conditions .1– 4/ are equivalent and they imply condition .0/.
They are all equivalent if F is virtually closed (e.g., F D VCyc):

(0) for every m 2 N there is . xX; ';H/ and an m-long almost F-cover of G � xX

of dimension at most n;

(1) for every m 2 N there is . xX; ';H/ and an m-long F-cover of G � xX of
dimension at most n;

(2) for every r 2 N there is . xX; ';H/ and disjoint F-families .Ui / for 0 � i � n

of open subsets of G � xX such that
S

i U
i is an r-long covering of G � xX ;

(3) for every " > 0 there is . xX; ';H/, anF-simplicial complexK of dimension n,
and a G-equivariant continuous map �WG � xX ! K, which is “diagonally
.G; "/-Lipschitz”:

k�.g; x/ � �.gs�1; fs.x//k � " 8s2S 8fs2Fs
8.g;x/2G� xX I

(4) for every " > 0 there is . xX; ';H/, anF-simplicial complexK of dimension n,
and a continuous map  W xX ! K, which is "-equivariant:

k .fs.x// � s .x/k � " 8s2S 8fs2Fs
8x2 xX :

Remark 2.5. If a group G satis�es the equivalent conditions (1– 4) from the
theorem for all �nite symmetric subsets S � G with some additional technical
requirements on xX , then G is said to be transfer reducible over F, [4].

The above theorem is stated in terms of existence of homotopy actions, however
we do not construct spaces xX and homotopy actions in the proof. Hence, all the
equivalences stay true for a �xed G-action on a �xed xX as in the de�nition of
equivariant asymptotic dimension for G � xX (De�nition 1.4).

It was pointed out by M. Bridson that condition (4) of Theorem 2.4 is very
similar to the concept of amenable action [1, Remark 3.6]. As explained in [2],
this is – on one hand – more than an amenable action, where the target space is
the whole unit sphere of `1.G/, not just an n-dimensional complex in it. On the
other hand, for eq-asdim, space `1.Y / can be build on any G-set Y as long as its
isotropy groups belong to F and for amenable actions we have Y D G. In [2], an
action of G on xX such that F-eq-asdimG � xX � N is called N -F-amenable.
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Proof of Theorem 2.4. Implications .1/ H) .0/ and .2/ H) .1/ are immediate.
.3/ () .4/was suggested in [1, Remark 3.7] and holds even for a �xed ". For

the “if” part we put �.g; x/ D g .x/. Map � is clearly G-equivariant and also
satis�es the required condition:

k�.g; x/ � �.gs�1; fs.x//k D kg .x/ � gs�1 .fs.x//k

D ks .x/ �  .fs.x//k

� ":

For the “only if” part we put  .x/ D �.1; x/ and check:

ks .x/ �  .fs.x//k D ks�.1; x/ � �.1; fs.x//k

D k�.s; x/ � �.ss�1; fs.x//k

� ":

.3/ H) .2/. We will replace K from (3) by its barycentric subdivision SK.
The identity map K ! SK is Lipschitz with the constant depending only on n.
Each vertex of SK corresponds to a subset (simplex) of vertices of K, vertices
of the same cardinality are not adjacent, and the cardinality of a vertex is clearly
preserved under the group action. Moreover, the stabiliser of a vertex in SK is
the stabiliser of a simplex in K, so it belongs to F (in fact also simplex stabilisers
belong to F).

To obtain .2/, we put " D 1
.nC1/.rC1/

and let �WG � xX ! SK be diagonally

.G; "/-Lipschitz. We de�ne U
i D ¹��1.Sy/ j y 2 V.SK/; jyj D i C 1º, where

i 2 ¹0; : : : ; nº and Sy is the open star about y; that is, Sy D ¹p 2 SK j

p.y/ > 0º (recall that we view SK as a subset of `1.V .SK//). The fact that
two vertices are non-adjacent is equivalent to disjointness of the respective stars;
hence, di�erent elements of U

i are disjoint. By G-equivariance of � we get
g��1.Sy/ D ��1.Sgy/, so U

i is G-invariant and the stabiliser of ��1.Sy/ is the
stabiliser of y and thus belongs to F.

Let now .g; x/ 2 G � xX and v0 be an element v 2 V.SK/ maximis-
ing �.g; x/.v/. We have �.g; x/.v0/ � 1

nC1
. Thus, since � is diagonally

.G; "/-Lipschitz and " D 1
.nC1/.rC1/

, for any .g0; x0/ 2 DBr
';H .g; x/ we have

�.g0; x0/.v0/ � 1
nC1

� r
.nC1/.rC1/

> 0. Therefore, DBr
';H .g; x/ � ��1.Sv0

/ 2 U
i

for i D jv0j � 1.
.1/ H) .3/. This proof is based on techniques from [5, Section 3].
Let m be an integer greater than 3.nC1/

"
and U be an m-long F-cover of

G � xX . From Lemma 2.2 it follows that I.U / D ¹.g; x/ j DBm
';H .g; x/ � U º

is open provided that U is. The family I D ¹I.U / j U 2 Uº is G-invariant
(as hDBm

';H .g; x/ D DBm
';H .hg; x/), which means that it looks the same when

restricted to ¹gº � xX for any g. There is a �nite cover of ¹1º � xX by compact
subsets .Wi/

k
iD1 such that eachWi is contained in some I.Ui / with Ui 2 U. Thus,

DBm
';H .Wi / is contained in Ui . By compactness (see Lemma 2.2) there exists "i

such that B.DBm
';H .Wi /; "i / � Ui .
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For ı > 0 let us de�ne DB0;ı
';H .A/ D B.A; ı/ and inductively:

DB
kC1;ı
';H .A/ D B.DB1

';H .DB
k;ı
';H .A//; ı/:

From Lemma 2.2 and induction, it follows that for each i there is ıi such that
DB

m;ıi

';H .Wi / � B.DBm
';H .Wi/; "i / � Ui . Let ı D mini ıi and ƒ D m

ı
.

We will de�ne aG-invariant metric d onG� xX such thatmwill be a Lebesgue
number of U. Let

d0..g; x/; .g
0; x0// D

´

ƒ � d xX .x; x
0/ if g D g0,

max.m; ƒ � diam xX/ otherwise.

For y; z 2 G � xX let d.y; z/ be equal to the in�mum of �nite sums

k
X

iD1

�i ..gj ; xj /j /

over �nite sequences .gj ; xj /
k
j D0 such that .g0; x0/ D y, .gk; xk/ D z, where

�i..gj ; xj /j / D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if .gi ; xi / D .gi�1s
�1; fs.xi�1//;

1 if .gi�1; xi�1/ D .gis
�1; fs.xi //;

d0..gi�1; xi�1/; .gi ; xi//;

where s 2 S and fs 2 Fs (note that the three cases are not mutually exclusive so
we always choose the smallest value). It is easy to notice that d is symmetric and
satis�es the triangle inequality. Moreover, d0.y; z/ < 1 () d.y; z/ < 1 and
then they are equal, hence they induce the same topology (the product topology).

If d.y; z/ < m, there exists a sequence .gi ; xi/
k
iD0 joining y and z such that

P

�i < m. In particular, each time �i is equal to the distance d0 between
.gi�1; xi�1/ and .gi ; xi /, this distance is smaller than m, meaning that

d xX .xi�1; xi/ D ƒ�1 � d0..gi�1; xi�1/; .gi ; xi// < ƒ
�1 �m D ı:

The other case happens at most m times. Thus, z belongs to DBm;ı
';H .y/. Since

each y 2 G � xX belongs to some Wi (or a translation of it) and for Wi we have
DB

m;ı
';H .Wi / � Ui , we conclude that m is a Lebesgue number of U with respect

to d .
De�ne lU .y/ D min.m; sup¹r j Bd .y; r/ � U º/. It is clearly 1-Lipschitz, in

particular continuous. Moreover, d..g; x/; .gs�1; fs.x/// � 1 for fs 2 Fs , so we
have jlU .g; x/ � lU .gs

�1; fs.x//j � 1. Furthermore, by G-invariance of d , we
have lU .y/ D lgU .gy/ for any g 2 G.

We de�ne ˆ.g; x/ D
P

U 3x lU .g; x/ � 1U 2 `1.U/ and �.g; x/ D ˆ.g;x/
kˆ.g;x/k

.
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From the fact that l�1
U .0;1/ � U and that the dimension of U is at most

n C 1 we conclude that map � acquires its values in an n-dimensional complex
K � `1.U/. Moreover, since hU ¤ U implies hU \ U D ;, we get that
l�1
U .0;1/\l�1

hU
.0;1/ D ;, so we can assume thatU andhU inK are not adjacent.

Hence, the stabiliser of a simplex stabilises it pointwise, so it is the intersection
of stabilisers of its vertices (corresponding to elements of U) and belongs to F.

We have to check if � is diagonally .G; "/-Lipschitz. Let .g; x/ 2 G � xX and
s 2 S , fs 2 Fs . Without loss of generality:

m � kˆ.g; x/k � kˆ.gs�1; fs.x//k � kˆ.g; x/k C nC 1

(in the last inequality we use the fact that ˆ.gs�1; fs.x// has at most nC 1 points
in its support) thus we can write:

k�.g; x/ � �.gs�1; fs.x//k

D













ˆ.g; x/

kˆ.g; x/k
�

ˆ.gs�1; fs.x//

kˆ.gs�1; fs.x//k













�













ˆ.g; x/ �ˆ.gs�1; fs.x//

kˆ.g; x/k













C













ˆ.gs�1; fs.x//
� 1

kˆ.g; x/k
�

1

kˆ.gs�1; fs.x//k

�













�
2.nC 1/

m
C

�kˆ.gs�1; fs.x//k

kˆ.g; x/k
� 1

�

�
2.nC 1/

m
C
nC 1

m

< ":

.0/ H) .3/ can be proved in the same way as .1/ H) .3/, but we cannot
guarantee that simplex stabiliser is a pointwise stabiliser. Simplex stabiliser
permutes vertices of the simplex and the kernel of this action is the pointwise
stabiliser. This kernel is a �nite index subgroup of the stabiliser, hence – if F is
virtually closed – the stabiliser belongs to F. �

Corollary 2.6. For a virtually closed F, the notions [8] of groups transfer re-
ducible over F and almost transfer reducible over F are equivalent.

The above theorem is formulated for a particular de�nition of a homotopy
action, but should hold for all similar de�nitions such as [20, De�nition 2.1].

Remark 2.7. To show .3/ H) .1/ directly we do not need the continuity of �. It
is enough to assume only that inverse images of stars are open and vertices in the
same orbit are not adjacent, and put U D ¹��1.Sy/ j y 2 V.K/º.
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Conversely, to obtain such a version of (3) from (1) it su�ces to de�ne lU .g; x/
as max¹r 2 ¹1; : : : ; mº j DBr

';H .g; x/ � U º.
Note that the implication .1/ H) .3/ (and similar .0/ H) .3/) was the only

step where we used the metrisability of xX . In Subsection 2.3, we show how to
avoid this requirement if we deal with genuine group actions. The analogue of
condition (4) from Theorem 1.12 is also provided.

2.3. Theorem 2.4 without metrisability. In this subsection we restrict our
attention to non-homotopy actions but allow non-metrisable spaces xX .

We already noticed (Remark 2.7) that the only part of the proof of Theorem 2.4
utilising metrisability was the implication .1/ H) .3/, more precisely, the de�-
nition of lU . In Subsection 2.3.1, we propose a de�nition of function lU in the
compact Hausdor� case, which enables proving .1/ H) .3/ in the non-metric
setting. Subsection 2.3.2 provides more conditions characterising equivariant as-
ymptotic dimension. Again, metrisability is not needed for the equivalences to
hold.

For the sake of the subsequent reasoning, we will overload our notation: for
U � G � xX and ˛ > 0 by xB.U; ˛/ we will denote the set

xB.U; ˛/ D
[

.g;x/2U

xB.g; ˛/� ¹xº D ¹.h; x/ j xB.h; ˛/� ¹xº \ U ¤ ;º;

and similarly (for �A meaning the complement of A):

xB.U;�˛/ D ¹.h; x/ j xB.h; ˛/� ¹xº � U º D � xB.�U; ˛/:

Observe that not only U 7! xB.U; ˛/ but also U 7! xB.U;�˛/ preserves open
sets. Indeed, .h; x/ 2 xB.U;�˛/ implies xB.h; ˛/ � ¹xº � U . As U is open and
xB.h; ˛/ is �nite, xB.h; ˛/ � W � U for some neighbourhood W of x – and thus
¹hº �W � xB.U;�˛/.

2.3.1. Function lU for a compact Hausdor� G -space xX . Let k > 3.nC1/2

"
and

U be a k-eq-asdim-covering of G � xX . Let '0
U W xX ! Œ0; 1� be a partition of unity

subordinate to the restriction of the family I D ¹I.U / j U 2 Uº to ¹1º � xX , where
I.U / D xB.U;�k/. We put 'U D k � '0

U .
Let now:

l0U .g; x/ D max
h2G

.'h�1U .h
�1x/ � dG.g; h//:

(Note that since 'U .�/ 2 Œ0; k�, the maximum is in fact taken over a �nite set
dG.g; h/ � k.) The positivity of l0U for some .g; x/ means the existence of h such
that dG.g; h/ < 'h�1U .h

�1x/, in particular 'h�1U .h
�1x/ > 0 and dG.g; h/ � k.

Thus, point .1; h�1x/ belongs to set I.h�1U/, which is equivalent to .h; x/ 2

I.U /, which, in turn, implies .g; x/ 2 U by the de�nition of I.U /. We conclude
that .l0U /

�1.0;1/ � U .
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Clearly, l0U also takes values in Œ0; k� and for each .g; x/ there is U such that
l0U .g; x/ � k

nC1
(it su�ces to put h D g and then select U ). Additionally, it is

G-invariant:

l0U .g; x/ D max
h2G

.'h�1U .h
�1x/ � dG.g; h//

D max
h2G

.'.jh/�1jU ..jh/
�1jx/ � dG.jg; jh//

D ljU .jg; jx/;

where j 2 G. Furthermore, it is 1-Lipschitz with respect to the G-coordinate.
Indeed, let s be a generator of G:

l0U .g; x/ D max
h2G

.'h�1U .h
�1x/ � dG.g; h//

� max
h2G

.'h�1U .h
�1x/ � dG.gs; h/C 1/

D l0U .gs; x/C 1:

Hence, lU .g; x/ D l0U .g; gx/ is diagonally .G; 1/-Lipschitz.
This time, the construction of l0U is based on a partition of unity (locally �nite),

so the continuity of � (de�ned as in the proof of Theorem 2.4) is automatic,
whereas in Theorem 2.4 it followed from the Lipschitz property of ˆ. The proof
of diagonal .G; "/-Lipschitz property of � is analogous.

2.3.2. d-disjointness and r-multiplicity. In Theorem 1.12, there is condi-
tion (4) characterising asymptotic dimension by the existence, for arbitrary d <1,
of a uniformly bounded cover with d -multiplicity at most n C 1. This condition
has no counterpart in Theorem 2.4 characterising transfer reducibility. Moreover
condition (2) in 1.12 is formulated in terms of r-disjoint families, while in 2.4 (2)
we have disjoint families forming a covering with a G-Lebesgue number equal
to r . This lack of analogy is due to the fact that it is not clear how to preserve
openness while enlarging sets in order to force large G-Lebesgue numbers in the
case of homotopy actions.

We �x it in the following proposition. Condition (2) of 1.12 has its analogue in
condition (2) below and condition (4) of 1.12 is re�ected by (3).

We say that a covering of G � xX has .G; d/-multiplicity n if each set of the
form xB.g; d/ � ¹xº intersects at most n elements of the covering. A family of
subsets of G � xX is .G; r/-disjoint if for any two of its elements U ¤ U 0 we have
xB.U; r/\ U 0 D ;.

Note that in this subsection we return to the conventions of Section 1, where the
action is diagonal, but the notions of G-multiplicity, G-disjointness etc. involve
only the �rst coordinate (formally, the map �.g; x/ D .g; g�1x/ intertwines the
two conventions).
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Proposition 2.8. Let xX be a compact Hausdor� space. Conditions .1/ and .2/
are equivalent and imply condition .3/. They are all equivalent if F is virtually
closed.

(1) F-eq-asdimG � xX � n;

(2) for each r < 1 there exist .r; G/-disjoint F-families .Ii / for 0 � i � n such
that

S

i I
i is an open cover of G � xX ;

(3) for each d < 1 there exists an open F-cover I of G � xX with .G; d/-
multiplicity at most nC 1.

Proof. For .1/ H) .3/ we put I D ¹ xB.U;�d/ j U 2 Uº (we remove the empty
set if it appears) for a d -eq-asdim family U. Elements of I are subsets of elements
of U, so the stabilisers may only be smaller (since the de�nition is equivariant,
they are equal).

Let us check the G-multiplicity. Consider any G-d -ball: xB.g; d/ � ¹xº.
If it intersects xB.U;�d/ at point .h; x/, then, by symmetry of the metric, set
xB.h; d/� ¹xº contains point .g; x/. But we have the inclusion xB.h; d/� ¹xº � U

following from the de�nition of xB.U;�d/, meaning that also set U contains point
.g; x/. Therefore, the number of sets xB.U;�d/ intersecting xB.g; d/�¹xº does not
exceed the number of sets U containing point .g; x/, which is bounded by nC 1.

For .3/ H) .1/ we take I for d D ˛ and U D ¹ xB.V; ˛/ j V 2 Iº. It is clearly
G-invariant, open and have a G-Lebesgue number equal to ˛.

Set xB.V; ˛/ contains point .h; x/ if and only if xB.h; ˛/ � ¹xº intersects V .
Thus, the multiplicity of U is bounded by the .G; ˛/-multiplicity of I, so we obtain
dimU � n.

We have the equality g xB.V; ˛/ D xB.gV; ˛/, so for all elements g 2 G such that
g xB.V; ˛/ D xB.V; ˛/ and for all .h; x/ 2 xB.V; ˛/ the set xB.h; ˛/ � ¹xº intersects
all translates gV . Hence, the number of such gV is at most n C 1 and thus the
stabiliser of xB.V; ˛/maps into the symmetric group S.nC1/ and the kernel is the
intersection of stabilisers of sets gV . Consequently, the stabiliser of xB.V; ˛/ has
a �nite index subgroup from F.

Hence, if F is virtually closed, covering U satis�es all the conditions for an ˛-
F-eq-asdim covering apart from the fact we do not know whether distinct sets from
one orbit are disjoint; it is an almost F-covering. Theorem 2.4 (see condition (0))
in its non-metrisable version shows that for virtually closed F it su�ces.

For .1/ H) .2/ it is enough to take families U
i from condition (2) of Theo-

rem 2.4 and set Ii D ¹ xB.U;�d/ jU 2 U
iº as the desired family (we remove empty

sets if they appear). Conversely, if families .Ii / are .G; 2rC1/-disjoint, then fam-
ilies Ui de�ned by U

i D ¹ xB.I; r/ j I 2 I
iº satisfy condition (2) of 2.4. �
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Appendices

A. Equivariant topological dimension

Recall that the Lebesgue covering dimension of a topological space X is the
smallest integer n such that any open covering has a re�nement of dimension
at most n. The number n is sometimes called the topological dimension and is
denoted by dimX .

If X is an F -space for some group F , a natural question to ask is whether any
F -covering has an F -re�nement of dimension n. By an F -covering we mean an
F-cover, where F is the family of all subgroups of F . In other words: the covering
is F -invariant and two distinct elements of an orbit are disjoint.

The question was answered in positive in [14] for a �nite group F acting on a
metric space by isometries. This made the bound in Propositions 3.2 and 3.3 of [6]
independent of the order of the group F . In [6, 8] a bound on the orders of �nite
subgroups F of a group was needed. Due to the above improvement, a proof of
the Farrell–Jones conjecture became possible in a situation where no such bound
exists [18].

We will prove that the assumption that the group F acting on the space is
�nite, is super�uous. It is enough to assume properness of the action. Moreover,
our argument remains true for F-covers with arbitrary F.

A.1. Dimension theory – auxiliaries. Recall some de�nitions and facts from
dimension theory after [15].

Theorem A.1 ([15, 9.2.16]). Let f WX ! Y be a continuous open surjection of
metrisable spaces. If every �bre f �1.y/ is �nite, then dimX D dimY .

De�nition A.2 ([15, 5.1.1]). The local dimension, locdimX , of a topological space
X is de�ned as follows. IfX is empty, then locdimX D �1. Otherwise, locdimX

is the smallest integer n such that for every point x 2 X there is an open set U 3 x

such that dim xU � n. If there is no such n, then locdimX D 1.

Theorem A.3 ([15, 5.3.4]). If X is a metric space, then locdimX D dimX .

Corollary A.4. If V is an open subset of a metric space X , then dimV � dimX .

Proof. By the above theorem, it is enough to prove locdimV � dimX . Consider
x 2 V . There is an open neighbourhood Vx 3 x such that xVx � V . Hence, since
the dimension of a closed subset never exceeds the dimension of the space, we
obtain:

locdimV D sup
x2V

inf
V �U 3x

dim xU � sup
x2V

dim xVx � dimX

(where U is open and the closure of U is taken in V ). �
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Corollary A.5. In the case of metric spaces, there is no need for taking closures
of neighbourhoods in the de�nition of local dimension (it is enough to consider
open neighbourhoods and calculate their dimension).

Proof. Fix x 2 X . It su�ces to check the equality infU 3x dim xU D infU 3x dimU ,
where U are open neighbourhoods of x. Let Ux be an open neighbourhood of x
such that xUx has the smallest possible dimension. Then dimension of Ux – by
Corollary A.4 – is no larger. On the other hand, if there is an open neighbourhood
V of x such that dimV < dim xUx , then there would be an open neighbourhood
W such that xW � V and thus dim xW � dimV < dim xUx, contradicting the
minimality of dim xUx . �

Proposition A.6. The dimension of a metric space X is equal to the supremum
of dimensions of its open subsets. It is enough to consider the supremum over any
open cover of X .

Proof. Let U by any open covering ofX . By Corollary A.4, the dimension ofX is
no smaller than dimensions of its open subsets, thus dimX � supU 2U dimU . On
the other hand, it equals the local dimension, which is equal – by Corollary A.5 –
to the supremum over points of in�ma over open neighbourhoods of their dimen-
sions. But clearly, we have the inequalities:

dimX D sup
x

inf
U 3x

dimU � sup
x

inf
U3U 3x

dimU � sup
x; U3U 3x

dimU D sup
U 2U

dimU:

�

A.2. Equivariant re�nements. The following proposition strengthens Corol-
lary 2.5 of [14].

Proposition A.7. Let .X; d/ be a metric space with an isometric proper action of
a group G. Then dimX=G D dimX .

Proof. We can �x a pseudometric on the quotient space:

d 0.Œx�; Œx0�/ D inf
g;g02G

d.gx; g0x0/:

The action is isometric, so it is equal to infg2G d.gx; x
0/. If Œx� ¤ Œx0�, then – by

properness of the action – there is no in�nite sequence gnx converging to x0 and
thus d 0.Œx�; Œx0�/ > 0. Therefore, X=G is a metric space (it is easy to check that
the quotient topology and the metric topology agree).

Let x 2 X . Similarly as above, there is " D ".x/ > 0 such that B.x; 2"/
is disjoint with all the other elements of the orbit Gx. Consequently, B.x; "/ is
disjoint with its translates and has a �nite stabiliser S (the one of x).
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Denote by f the restriction of the quotient map qWX ! X=G to B.x; "/. For
x0 2 B.x; "/ and y0 D f .x0/, the �bre f �1.y0/ is equal to Sx0 and thus �nite.
Clearly f is an open surjection onto its (open) image, so Theorem A.1 applies:
dim f .B.x; "// D dimB.x; "/.

Using the openness and the surjectivity again, we notice that the family

¹q.B.x; ".x/// j x 2 Xº

is an open covering of X=G. With Proposition A.6 we conclude:

dimX=G D sup dim q.B.x; ".x/// D sup dimB.x; ".x// D dimX: �

Finally, we can prove a version of [14, Proposition 2.6].

Proposition A.8. Let X be a metric space with an isometric proper action of a
group G and dimX D n. Any open F-cover U of X has an open F-re�nement W
with dimension at most n.

Proof. Denote the quotient map by q. By Proposition A.7, we know that the open
covering ¹q.U / j U 2 Uº of X=G has a re�nement V of dimension at most n.

Clearly q�1.V / for V 2 V is G-invariant, in particular it is a G-subset. The
covering ¹q�1.V / j V 2 Vº has the same dimension as V.

In order to obtain the required re�nement of U, it is enough to divide each
q�1.V / into appropriate disjoint parts. Note that division into disjoint parts does
not increase the dimension of a covering. Let UV be such an element of U that
V � q.UV /. Then clearly:

q�1.V / � q�1.q.UV // D
G

Œg�2G=S

gUV ;

where S is the stabiliser of UV . The required division is
F

Œg� gUV \q�1.V /: The
coveringW D ¹gUV \q�1.V / j V 2 V; g 2 Gº is clearly aG-covering and re�nes
U. Moreover, if U is an F-cover, then W also is, as the stabiliser of UV \ q�1.V /

is the same as the stabiliser of UV . �
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