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Curves intersecting exactly once

and their dual cube complexes
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Abstract. Let Sg denote the closed orientable surface of genus g. We construct exponen-

tially many mapping class group orbits of collections of 2gC1 simple closed curves on Sg

which pairwise intersect exactly once, extending a result of the �rst author [1] and further

answering a question of Malestein, Rivin, and Theran [10]. To distinguish such collections

up to the action of the mapping class group, we analyze their dual cube complexes in the

sense of Sageev [12]. In particular, we show that for any even k between bg=2c and g,

there exists such collections whose dual cube complexes have dimension k, and we prove

a simplifying structural theorem for any cube complex dual to a collection of curves on a

surface pairwise intersecting at most once.
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1. Introduction

For g; p 2 N; g � 2; p � 0, let Sg;p denote the orientable surface of genus g

with p punctures or marked points, let Mod�.S/ denote the associated extended

mapping class group, and let I.S/ be the set of isotopy classes of essential simple

closed curves on S . Mod�.S/ acts naturally on I.S/, and analyzing orbits of

various �nite subsets of I.S/ has proven to be a fruitful way of probing the

algebra and geometry of Mod�.S/. For example, the Mod�.S/-orbits of pants

decompositions have been used to estimate the Weil-Petersson diameter of the

thick part of Moduli space [4].

The main focus of this paper is to explicitly construct many distinct Mod�.S/-

orbits of collections of curves with intersection properties that are reminiscent of

pants decompositions. We show:

Theorem 1. On Sg , there exists at least 2g�3=.g � 1/, and at most .4g2 C 2g/Š

distinct Mod�.S/ orbits of collections of 2g C 1 simple closed curves pairwise

intersecting once.

Malestein, Rivin, and Theran have shown that any collection of curves pairwise

intersecting once has cardinality at most 2gC1. Thus we think of such collections

as analogous to pants decompositions in the following way: pants decompositions

are the maximal cliques of the curve graph, C.S/, of S � the graph with vertex set

I.S/, and edges between two isotopy classes that can be realized disjointly on S .

Similarly, the curve systems in Theorem 1 are the largest cliques of the Schmutz or

systole graph, SC.S/, of S , whose vertices correspond to the subset of I of non-

separating simple closed curves, and whose edges correspond to pairs of curves

intersecting exactly once.

Remark 1.1. Unlike pants decompositions, there do exist non-maximum collec-

tions of curves pairwise intersecting once that are nonetheless maximal with re-

spect to inclusion. See Figure 1 for a complete 1-system on a surface of genus one

with two boundary components so that there is no triangle in the complement of

the curves. Gluing the two boundary components together, we �nd a complete

1-system of three curves with no triangle in their complement. There is only one

Mod�.S2/-orbit of �ve curves pairwise intersecting once on S2 (see [10, p. 231]),

and this orbit has the property that every trio forms triangles, so the example from

Figure 1 is not contained in a maximum complete 1-system in genus two.

We remark that the number of Mod�.Sg/-inequivalent pants decompositions

grows at least factorially in g (cf. [2]), and we conjecture that the same is true

for the types of curve systems considered here. However, though SC.S/ and

C.S/ are Mod�.S/-equivariantly quasi-isometric, it is not necessarily the case

that the corresponding growth rates of Mod�.S/-inequivalent maximal cliques are

comparable. This question requires a more detailed understanding of the speci�c

nature of SC.S/.
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Figure 1. A complete 1-system that is not contained in a maximum complete 1-system.

Schmutz has shown that the automorphism group of SC.S/ is the (extended)

mapping class group [14], and thus as a corollary to Theorem 1 we obtain:

Corollary. The number of maximum cardinality cliques of SC.Sg/, inequivalent

under the action of Aut.SC/, grows at least exponentially in g.

By a k-system, we mean any subset � � I.S/ consisting of curves pairwise

intersecting at most k times. A complete k-system is a k-system in which any two

curves intersect exactly k times. Thus the main focus of this paper is the study of

complete 1-systems of maximum possible size, or maximum complete 1-systems.

Malestein, Rivin, and Theran showed that such 1-systems are unique up to the

action of Mod�.Sg/, for g D 1; 2, and asked if this uniqueness persists for higher

genera. The �rst author answered this question by subsequently constructing two

distinct orbits of complete 1-systems of size 2gC 1 on Sg , for all g � 3. Thus we

view Theorem 1 as a further demonstration of the non-uniqueness of maximum

complete 1-systems.

Note that ‘complete’-ness, for the 1-systems we consider, is a signi�cant sim-

plifying assumption. Though there has been substantial recent progress towards

estimating the size of maximum 1-systems [11], even asymptotically precise counts

are not currently available. While it would be interesting to examine the number of

Mod�.S/-orbits of maximum 1-systems, the absence of any examples when g � 3

makes this seem di�cult.1

Our method of distinguishing Mod�.S/-orbits of a curve system � is to an-

alyze the dual cube complex C.�/ to �, a complex built from cubes of various

dimensions which encodes the combinatorics of the intersections between curves.

This invariant is a useful way of organizing topological information about the

Mod�.S/-orbit of �. Along the way in our analysis, we show:

1 [10] calculate that there are two Mod�
.S/-orbits of maximum 1-systems for g D 2.
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Theorem 2. Letƒ1; ƒ2 be any two collections of curves which �ll a closed surface

S . Thenƒ1 andƒ2 are equivalent under the action of the extended mapping class

group if and only if there is an isomorphism of cube complexes C.ƒ1/ Š C.ƒ2/.

The induced set map from ƒ1 to ƒ2 corresponds to the induced map between

hyperplanes of C.ƒ1/ and hyperplanes of C.ƒ2).

Thus, the reader may view the main result as a construction of many non-

isomorphic cube complexes, each dual to a maximum complete 1-system. In

particular, we show:

Proposition 1.2. For any even k 2 Œbg=2c; g�, there exists a complete 1-system of

size 2g C 1 on Sg whose dual cube complex has dimension k.

It is interesting to consider whether or not the minimal dimension of the cube

complex dual to a maximum complete 1-system grows with the genus. At the

moment this problem seems di�cult. As a �rst step, one might determine whether

there exists a maximum complete 1-system � whose dual cube complex is 2-

dimensional:

Question 1. For g � 3, does there exist a complete 1-system of size 2gC 1 whose

dual cube complex is 2-dimensional?

In this case, the quotient of the dual cube complex C.�/ by the action of �1.S/

produces a square-tiled copy of S , with at least 4 squares around each vertex.

We conjecture that the answer to Question 1 is no.

In general, C.�/ can be a very complicated combinatorial object; indeed, one

may interpret this as a consequence of Theorem 2, since Mod�.S/-orbits of curve

systems can be di�cult to distinguish (cf. [9]). In order to leverage C.�/ to useful

information about Mod�.S/, we make use of the following simplifying theorem

for cube complexes dual to 1-systems:

Theorem 3. Suppose� D ¹
1; :::; 
nº is any 1-system on a closed surfaceS . Then

the dimension of C.�/ is n if and only if the dimension of C.� 0/ is 3, for � 0 any

triple of curves in �.

Remark 1.3. We note that one direction of Theorem 3 is immediate: if the

dimension of the entire cube complex is n, then any three curves must correspond

to a 3-cube in the dual cube complex. However, as Figure 3 in §5 demonstrates,

the converse is false if the assumption of being a 1-system is dropped.

Our main construction requires g to be odd, and we extend the conclusion of

Theorem 1 and Proposition 1.2 to even g via the following simple process (see §9

for a slightly more careful description):
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Beginning with a complete 1-system � of size 2g C 1 on Sg for g D 2k C 1,

excise a pair of small open disks which are locally on opposite sides of some


 2 �, and glue on an annulus A along the resulting boundary circles. Note that

� is still a complete 1-system on SgC1, and we extend � to a collection of 2gC 3

curves by adding 
 0; 
 00, de�ned as follows: both 
 0; 
 00 run parallel to 
 in the

complement of the new annulus A. Within A, both 
 0; 
 00 run from one boundary

component of A to the other, intersecting once in the interior of A.

Therefore 
 0; 
 00 intersect each other exactly once, withinA, and each intersects

all of the original elements of � exactly once because 
 does. If � on Sg is

obtained from a complete 1-system � 0 on Sg�1 as described above, we call �

a stabilization of � 0.

It is natural to ask whether or not every complete 1-system on Sg of size 2gC1
is obtained from one on Sg�1 of size 2g � 1 via this process:

Question 2. Let � be a complete 1-system on Sg of size 2g C 1. Is it always the

case that � is a stabilization of some complete 1-system on Sg�1?

We observe that each complete 1-system we construct is indeed a stabiliza-

tion of a complete 1-system on a lower genus surface. Furthermore, we note that

a positive answer to Question 2 implies a negative answer to Question 1: Lem-

mas 5.2 and 9.1 imply that the dimension of the cube complex dual to any complete

1-system obtained via stabilization is at least three.

Organization of paper. In §2 and §3 we outline some preliminary notions re-

garding the mapping class group and Sageev’s construction of dual cube com-

plexes. In §4, we prove Theorem 2; in §5, we prove Theorem 3; in §6, we outline

the main construction of our complete 1-systems; in §7, §8, and §9 we prove that

these complete 1-systems are indeed inequivalent up to the action of the extended

mapping class group, completing the proof of Theorem 1.

2. Background

Let S D Sg be a compact oriented surface of genus g, and let � D ¹
1; : : : ; 
nº
be a collection of free homotopy classes of closed curves on S . Recall that

a collection of curves form a bigon if there is an embedded disk in S whose

boundary is the union of two arcs of the curves. A minimal position realization of

� is a set � D ¹�1; : : : ; �nº such that

(i) each �i WS
1 ! S is a smooth immersion in the free homotopy class 
i ;

(ii) the union
S

i �i .S
1/ forms no bigons;

(iii) the immersed submanifolds ¹�1.S
1/; : : : ; �n.S

1/º intersect only at transverse

double points.
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We will refer to minimal position realizations simply as realizations. In everything

that follows, we suppose that � D ¹�1; : : : ; �nº is a realization of �. Condition (ii)

above implies that � minimizes the sum of the pairwise geometric intersection

numbers of the curves in � [7, Proposition 1.7, p. 31]. See [7, Chapter 1] for

background on curves on surfaces.

Let ƒ indicate the set of the lifts of elements of � to the universal cover zS ,

so that the elements of ƒ are curves in zS . The union of the curves in ƒ may be

considered as an embedded graph G � zS . Condition (iii) above guarantees that

each vertex of this graph has valence four, and condition (ii) implies that every

pair of curves in ƒ intersect at most once (see [7, Lemma 1.8, p. 30]).

When the curves in � are disjoint, then the dual graph to the lifts ƒ admits

an isometric action of �1S , and the quotient graph is an invariant for � that can

be used to distinguish mapping class group orbits. However, in general the dual

graph to � in S is not an invariant of ƒ, as di�erent realizations may yield non-

isomorphic graphs. For example, the presence of a triangle in the complement of

� allows a Reidemeister type III move, creating a new realization but changing the

isomorphism types of the dual graph, as shown in Figure 2.

Figure 2. Changing the realization � by a Reidemeister type III move changes the isomor-

phism type of the dual graph.

While the dual graph depends essentially on the realization �, we now describe

the construction of a related cube complex ‘dual’ to ƒ which is independent of

realization. Originally due to Sageev, this produces an isometric action of �1S

on a �nite-dimensional cube complex, which we denote by AC.�/, with quotient

C.ƒ/ WD AC.�/=�1S , a cube complex with �nitely many maximal cubes. Though it

will be unnecessary in this work, whenƒ is �lling C.ƒ/ is non-positively curved,

and this construction can be placed in a considerably more general context (see

[12], [13], and [5]).
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Recall that a cube of dimension n is Œ�1; 1�n, endowed naturally with the

structure of a cell complex with a Euclidean metric, and a cube complex is the

quotient of disjoint cubes by a gluing map which is a Euclidean isometry on each

cell. In such a complex, a maximal cube is a cube which is not contained in a

higher dimensional cube. The dimension of a cube complex is the supremum of

the dimensions of its cubes. A square complex is a two-dimensional cube complex.

See [13] for an introduction to cube complexes.

The local hyperplanes of an n-cube are the intersections of Œ�1; 1�n with

coordinate planes. We introduce an equivalence relation on local hyperplanes in

a cube complex: two local hyperplanes are hyperplane equivalent if they intersect

along the 1-skeleton of the cube complex, and a hyperplane of a cube complex is

the hyperplane equivalence class of a local hyperplane. An isomorphism of cube

complexes is a homeomorphism that is a cellular Euclidean isometry, which thus

preserves hyperplanes. We will denote the hyperplanes of a cube complex C by

HC . For example, 1-dimensional cube complexes are graphs whose hyperplanes

(and local hyperplanes) are midpoints of edges.

3. Sageev’s construction

Fix a choice of realization � of �, with lifts ƒ as before. We now describe

the construction of a cube complex AC.�/ that is independent of the choice of

realization. Each element 
 2 ƒ separates zS n 
 into two connected components.

Fix a choice of identi�cation of these two half-spaces with ¹1;�1º for each 
 2 ƒ.

We will refer to a choice of one of these two as a labeling of 
 , and a labeling of

ƒ is a labeling for each of the curves of ƒ. Identifying 2 with ¹1;�1º, we say a

labeling v 2 2ƒ is admissible if the half-spaces v.˛/ and v.ˇ/ intersect for every

pair of curves ˛; ˇ 2 ƒ.

Let V0 � 2ƒ denote the collection of admissible labelings. Note that for each

connected region U � zS nƒ, there is an admissible labeling v�.U / 2 V0 de�ned

as follows. For each curve in ƒ, v�.U / chooses the half-space containing U . Let

V
0
1 be the graph whose vertex set is V0, where two labelings are joined by an edge

when they di�er on exactly one element of ƒ. Hence there is an element of ƒ

associated to each edge of V0
1.

Choose a connected region U � zS n ƒ, and let V1 denote the connected

component of v�.U / in V
0
1. (The choice of connected region U is evidently not

essential). When lifts 
1; : : : ; 
n 2 ƒ pairwise intersect, it is straightforward to

check that V1 contains an embedded copy of the 1-skeleton of Œ�1; 1�n. We obtain

the cube complex AC.�/ by adding in the interior of any cube whose 1-skeleton

is contained in V1; the links of the resulting cube complex are all �ag simplicial

complexes (see [5] for a more detailed exposition).
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The action of �1S on ƒ induces a permutation action of �1S on 2ƒ. For

g 2 �1S and admissible labeling v 2 V0, the labeling g � v 2 V0 is given by

.g � v/.
/ D g � v.g�1 � 
/ for each 
 2 ƒ. Since the action on zS is by deck

transformations, it is straightforward to check that the action of �1S preserves the

admissible setV0 and induces an action by graph automorphisms on the 1-skeleton

V1. This action extends to AC.�/ by de�nition.

The complex AC.�/ with an action of �1S is independent of the realization �:

a choice of half space for a lift 
 2 ƒ determines, and is determined by, a choice

of complement of @
 � S1 D @�1S . By [7, Proposition 1.7, p. 31], choices of

half-spaces for two lifts 
; 
 0 2 ƒ intersect if and only if the endpoints of 
 link

with those of 
 0 on S1. The latter is independent of the choice of realization. We

thus denote AC.�/ by AC.�/ when convenient.

Moreover, by Gromov’s link condition [3] it is immediate that AC.�/ is non-

positively curved. A direct argument shows that any loop in AC.�/ must back-

track, which implies that the complex is also simply-connected, and thus CAT.0/.

We collect the relevant information about AC.�/:

Theorem 3.1. [13] Suppose that � is a �lling collection of curves. Then the cube

complex AC.�/ is CAT.0/, and the action of �1S is free, properly discontinuous,

and cocompact. Given a realization �, there is a �1S -equivariant incidence-

preserving identi�cation of H
eC.�/

with the lifts ƒ.

We will invoke the correspondence in Theorem 3.1 often, which we may re-

fer to as the curves to hyperplanes correspondence. Brie�y, this correspondence

proceeds as follows. Each local hyperplane corresponds to a single coordinate of

a cube, i.e. a single lift in ƒ, and hyperplane equivalent local hyperplanes corre-

spond to the same lift. Conversely, a single lift 
 in ƒ determines a subcomplex

of AC.�/ spanned by admissible labelings whose chosen halfspaces, in each co-

ordinate, intersect 
 . In each maximal cube of this subcomplex, there is a local

hyperplane which corresponds to switching the label at 
 , and one can check that

these local hyperplanes are all hyperplane equivalent. In what follows, we do not

return to the combinatorial de�nition of C.�/.

4. Mapping class group orbits of collections of curves

We now characterize a �lling curve system from the isomorphism type of its

dual cube complex. Recall the extended mapping class group Mod�.S/ D
Di�.S/=Di�0.S/. We recall Theorem 2:
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Theorem 2. Two �lling curve systems ƒ1 and ƒ2 are equivalent under the

action of Mod�.S/ if and only if there is an isomorphism of cube complexes

C.ƒ1/ Š C.ƒ2/. The induced set map fromƒ1 to ƒ2 corresponds to the induced

map between hyperplanes of C.ƒ1/ and hyperplanes of C.ƒ2).

Proof. One direction is straightforward. Suppose � �ƒ1 D ƒ2 for � 2 Mod�.S/.

Choose a realization �1 for ƒ1, and a homeomorphism �0 realizing �. In this

case �0 induces a �1S -equivariant isomorphism ��0W AC.�1/ Š CC.� � �1/, where

the induced map of hyperplanes corresponds to the set map induced by �0 from

�1 to �0 � �1. Since �0 � �1 is a realization of ƒ2, we have C.ƒ1/ Š C.�1/ and

C.ƒ2/ Š C.� � �1/. The result follows.

On the other hand, suppose ˆWC.ƒ1/ Š C.ƒ2/ is an isomorphism of cube

complexes. Choose realizations �1 and �2 for ƒ1 and ƒ2. By Theorem 3.1, we

have that AC.ƒi / is simply-connected and the action of �1S is free and properly

discontinuous, for each i D 1; 2 – note that this step requires the assumption

that ƒi is �lling. Thus AC.ƒi/ is the universal cover of C.ƒi/ and there are

isomorphisms �1S Š �1C.ƒi / for each i . Composing these isomorphisms with

ˆ�, we �nd an automorphism ��W�1S ! �1S . By construction, we may lift ˆ

to a ��-equivariant isomorphism of cube complexes ẑ WBC.ƒ1/ ! BC.ƒ2/, in the

sense that

ẑ .g � x/ D ��.g/ � ẑ .x/

for each x 2 BC.ƒ1/ and g 2 �1S . This induces a corresponding equivariant

map on hyperplanes, which in turn induces a correspondence of the collections of

conjugacy classes of stabilizers of hyperplanes of BC.ƒ1/ with those of BC.ƒ2/.

The curves to hyperplanes correspondence guarantees that there is an iden-

ti�cation of the collection of conjugacy classes of hyperplane stabilizers of �1S

acting on AC.ƒi/with the collection of conjugacy classes of stabilizers of curves in
��i , and so we arrive at a correspondence of the collection of conjugacy classes of

stabilizers of curves in ��1 with those of ��2. The conjugacy classes of the stabiliz-

ers of curves in ��i are naturally identi�ed with the collection of conjugacy classes

of ƒi in �1S , from which it follows that the automorphism �� of �1S takes the

conjugacy classes determined by ƒ1 to those of ƒ2. By the Dehn–Nielsen–Baer

Theorem [7, Chapter 8, Theorem 8.1], there is � 2 Mod�.S/ inducing ��, so that

� �ƒ1 D ƒ2. �
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5. Recognizing n-cubes dual to a 1-system

There remains the problem of recognizing quantitative information about C.ƒ/

from a given set of curves ƒ. In this section, we prove Theorem 3, giving

a criterion for recognizing the dimensions of cubes in the complex dual to a

1-system.

A realization of a collection of curves forms a triangle if there is an embedded

disk on S whose boundary components are three arcs of the curves, and so that

these arcs intersect pairwise exactly once on the boundary of the disk. A collection

of homotopy classes of curves forms a triangle if there is a realization of the curves

that forms a triangle.

Lemma 5.1. If a collection of homotopy classes of closed curves forms a triangle

then every realization of the curves forms a triangle.

Proof. By [6, Theorem 1] any two realizations are homotopic through isotopies

and �nitely many Reidemeister type III moves. Neither of these changes the

existence of a triangle in the complement. �

Lemma 5.2. If � D ¹
1; 
2; 
3º is a realization of simple closed curves on S , then

dimC.�/ D 3 if and only if S n � has a connected component that is a triangle.

Proof. If dimC.�/ D 3 and � is in minimal position, then the curves to hyper-

planes correspondence guarantees that there are three mutually intersecting lifts

of � in zS . As � is a realization, the intersections of these lifts are not concurrent,

and there is a triangle T in their complement. Since T is compact, the intersection

T \ z� consists of �nitely many arcs. As each such arc doesn’t form a bigon with

the boundary of the triangle, the complement of the arc has a triangular compo-

nent. Thus there is a triangular component T 0 � T n z� (cf. with innermost bigon,

[7, p. 31]).

Let � W zS ! S be the covering map. If int.T 0/ does not embed under � , then

there is an element g 2 �1S so that int.T 0/ \ g � int.T 0/ ¤ ;. In this case, by

the Jordan Curve Theorem there is an intersection p 2 @T 0 \ g � @T 0. Since @T 0

consists of arcs from lifts of �, this violates T 0 � T n z�. Thus int.T 0/ embeds in

S , and we have found a triangle in the complement of �.

Conversely, suppose � forms a triangle T . Lift this topological disk to zS ,

and observe that the arcs of the boundary are contained in curves that pairwise

intersect. By the curves to hyperplanes correspondence, there is a 3-cube corre-

sponding to this collection. Using the correspondence again, a 4-cube would yield

four lifts of curves in � that pairwise intersect. Since j�j D 3, two of these lifts

are in the same �1S -orbit. As each of the 
i are simple, this is impossible. �
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Recall that a 1-system is a collection of homotopy classes of simple closed

curves whose pairwise geometric intersection number is at most one. It is in-

teresting to note that our proof of Theorem 3 below makes essential use of the

orientation of S .

Theorem 3. Suppose � D ¹
1; : : : ; 
nº is a 1-system on S . Then the dimension

of C.�/ is n if and only if the dimension of C.� 0/ is three, for every triple � 0 � �.

One direction is straightforward. If dimC.�/ D n, then the correspondence

of curves to hyperplanes guarantees that there is a set of n lifts of the curves of �

which mutually intersect. In this case, every trio of these lifts mutually intersect

and form a 3-cube in the complex dual to that trio. Towards the other direction,

using Lemma 5.2 we may assume that each trio forms a triangle.

We de�ne an almost-realization of a curve system to be a minimal position

realization (see §2) with one slight change: the words ‘only at transverse double

points’ in condition (iii) should be replaced by ‘transversally.’ (The terms pair-

wise minimal position realization would be more descriptive, but less economi-

cal). Note that [7, Proposition 1.7, p. 31] still guarantees that almost-realizations

minimize pairwise geometric intersection numbers, as with realizations.

Proposition 5.3. If ¹
1; : : : ; 
nº is a 1-system so that every trio ¹
i ; 
j ; 
kº forms

a triangle, then there is an almost-realization ¹˛1; : : : ; ˛nº of ¹
1; : : : ; 
nº so that

the curves ˛1; : : : ; ˛n have a single common intersection point.

Note that it is essential that the curves form a 1-system, as Figure 3 exhibits

four curves so that every trio forms a triangle, but the conclusion of Proposition 5.3

fails. Note as well that, if the curves form a 1-system and every trio forms triangles,

then each pair intersects exactly once, which we assume below. We �rst prove

Theorem 3, assuming Proposition 5.3.

Proof of Theorem 3. By Proposition 5.3, the curves 
1; : : : ; 
n have an almost-

realization as ˛1; : : : ; ˛n, so that the ˛i have a single common intersection point.

Choose a lift of this point to zS , and consider the lifts of the ˛i passing through this

point. Since the ˛i form an almost-realization, there are no bigons formed by the

curves, and the chosen lifts pairwise intersect in exactly one point. This implies

that in any realization of the curves 
1; : : : ; 
n these lifts will pairwise intersect.

By the curves to hyperplanes correspondence, there is an n-cube dual to these

curves. �

In the proof of Proposition 5.3, we will need a straightforward adaptation of

[7, Proposition 1.7, p. 31]:

Lemma 5.4. If ¹˛1; : : : ; ˛nº is an almost-realization of a collection of simple

closed curves, then for any other simple closed curve ˇ, there is a curve ˇ0,

homotopic to ˇ, so that ¹˛1; : : : ; ˛n; ˇ
0º is an almost-realization.
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Figure 3. Four curves for which every trio forms a triangle, but so that there is no almost-

realization with a single fourfold intersection point.

Proof. By [7, Proposition 1.7, p. 31], two curves are in minimal position if and

only if they form no bigons. One half of this proof shows that if a bigon is formed

[7, p. 32], one may homotope one of these curves across the bigon while the other

remains �xed. Choose any realization ˇ0 of ˇ. If ˇ0 is in minimal position with

˛1, then let ˇ1 D ˇ0. If ˇ0 is not in minimal position with ˛1, �nd a bigon that

ˇ0 forms with ˛1. Use this bigon to �nd a curve ˇ0
0, homotopic to ˇ0, so that

jˇ0
0 \ ˛1j < jˇ0 \ ˛1j.

It is crucial to observe that this step may be done so that jˇ0
0\ j̨ j � jˇ0\ j̨ j, for

each j . The new curve ˇ0
0 D ˇC [ˇ� is composed of two arcs, where ˇC follows

ˇ0 and ˇ� follows ˛1. If an arc of j̨ intersects ˇ0
0 in the arc ˇC, then there is a

corresponding point of intersection of j̨ with ˇ0. If an arc of j̨ intersects ˇ0
0 in

the arc ˇ�, then this arc of j̨ enters the bigon formed by ˇ0 and ˛1 along the side

contained in ˛1. In this case, j̨ must exit the bigon through the side contained

in ˇ0, since ˛1 and j̨ form no bigons by hypothesis (see Figures 4 and 5). Thus

there is again a point of intersection of ˇ0 with this arc of j̨ that corresponds to

the intersection of j̨ with ˇ0
0. We conclude that jˇ0

0 \ j̨ j � jˇ0 \ j̨ j, for j ¤ 1.

We apply these �nitely many homotopies across bigons to ˇ0, one for each of

the bigons formed by ˇ0 and ˛1. The result is a curve ˇ1, homotopic to ˇ, so that

ˇ1 and ˛1 are in minimal position, and so that jˇ1 \ j̨ j � jˇ0 \ j̨ j, for j ¤ 1.

Do this one-by-one for each ˛k , and the result is a curve ˇ0, homotopic to ˇ, so

that ˇ is in minimal position with j̨ for each j D 1; : : : ; n. Thus ¹˛1; : : : ; ˛n; ˇ
0º

is an almost-realization. �
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Figure 4. A point in j̨ \ˇ0
0

corresponds

to a point in j̨ \ ˇ0.

Figure 5. ‘New’ intersections of ˇ0
0

with

j̨ , violating the assumption that ˛1 and

j̨ are in minimal position.

Proof of Proposition 5.3. We proceed by induction on n. For n D 3, choose a

realization of the three curves that forms a triangle. Note that since the curves

form a 1-system, there is one boundary arc of the triangle contained in each of the

curves. Fixing the curves outside of a disk containing the triangle, homotope one

of the curves across the triangle so that it transversally crosses the other two curves

at their intersection point. This produces an almost-realization of the curves, since

no bigons have been created.

Assume now that we have nC 1 curves ¹
1; : : : ; 
nC1º so that every trio forms

a triangle. By the inductive hypothesis, there is an almost-realization ¹˛1; : : : ; ˛nº
of ¹
1; : : : ; 
nº so that the ˛i all have a unique common intersection point. Suppose

we are given a curve in the homotopy class of 
nC1 that is in minimal position with

the ˛i . Our strategy of proof will use the intersection properties of the curves –

namely the fact that each pair intersects exactly once, and that every trio forms

triangles – to ‘weave’ this curve around the other curves. Note that in the process

of achieving the desired arrangement, the curves ˛i remain unchanged.

Lemma 5.4 implies that we may �nd a curve ˇ, homotopic to 
nC1, so

that ¹˛1; : : : ; ˛n; ˇº is an almost-realization. After possibly renaming the curves

˛1; : : : ; ˛n, we may assume that these curves are arranged around their unique

common intersection in the counter-clockwise order ˛1; : : : ; ˛n. Let p0 indicate

the common intersection point of the ˛i , and choose a disk neighborhood C of

p0, embedded on S , so that ˛i \ C is connected for each i D 1; : : : ; n.

Let pi WD ˇ \ ˛i . Replacing ˇ with a homotopic curve if necessary, we may

assume that all of the pi are contained in the arcs ˛i \C , and that ˇ \C consists

only of arcs that intersect an arc ˛i \ C . We now have a picture where ˇ weaves

in and out of C , intersecting each of the arcs ˛i \C precisely once. Outside of C

the curves ¹˛1; : : : ; ˛n; ˇº are disjoint. The argument that follows applies various

homotopies to ˇ, maintaining the fact that ˇ and ˛i are in minimal position, for

each i D 1; : : : ; n. Note that as we apply such homotopies, the pi move as well.

In fact, for eachpi there is a homotopy of the curveˇ that slides the intersection

pi along ˛i , out of C , until pi “reappears” on the other side of p0 on ˛i \ C .

Since the curves ˛i do not intersect outside of C , this homotopy leaves the

collection ¹˛1; : : : ; ˛n; ˇº, pairwise, in minimal position. This homotopy of ˇ

will be exploited in the following argument, where we will refer to it as the ‘slide

move applied to pi .’
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Our goal is to apply a homotopy to ˇ to achieve a special formation, in which

intersections of ˇ with ˛i have been ‘localized’ to C . We will say a curve is a

localized realization of ˇ if it is homotopic to ˇ, ˇ\C is connected, and pi 2 C ,

for each i . See Figure 6 for an illustrated example. The bulk of the proof of the

inductive step concerns existence of a localized realization of ˇ. We will proceed

by analyzing the triangles formed by ˇ with ˛i and ˛iC1, as i goes from 1 to n�1.
At each step, we either �nd a localized realization of ˇ, or we apply a homotopy

to ˇ so that the number of connected components of ˇ \ C is at most n � i .

ˇ

Figure 6. A ‘localized realization’ of ˇ: ˇ \ C is connected, and pi 2 C .

Given vertices a1; a2; a3 of the triangle T , we will say that T ‘realizes

.a1; a2; a3/’ if the counter-clockwise orientation of @T induces the cyclic order

.a1; a2; a3/. We will refer to a su�ciently small neighborhood of ai as a ‘corner’

of T , or ‘the corner at ai ’ when the points are distinct, where the su�ciency is ful-

�lled when the intersection of T with this neighborhood is connected and disjoint

from the side opposite the vertex.

Suppose that two curves � and ı in minimal position, together with a third

curve, form a triangle T , so that T has a corner at the intersection point p 2 �\ ı.
In this case, the complement of �[ı in a small enough neighborhood of p consists

of four components. Note that these four components correspond to the four

possibilities for the placement of a corner of T at p. (When � and ı are simple

curves it is straightforward to check that these possibilities are mutually exclusive).

This is exploited repeatedly below, for the placement of corners of triangles at p0.

By hypothesis, and by Lemma 5.1, there is a triangular component T1 of

S n ¹˛1; ˛2; ˇº. Because the curves form a 1-system, the vertices of T1 are nec-

essarily given by p0, p1, and p2. Of the four ways for there to be a corner
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formed by ˛1 and ˛2 at p0, two of them – namely, the choice of corner so that

T realizes .p0; p2; p1/ (see Figure 7) – would achieve a localized realization.

The composition, if necessary, of slide moves applied to p1 and p2 with a ho-

motopy of ˇ across the triangle T2 would form a localized realization. We thus

assume that T realizes .p0; p1; p2/, in which case, applying slide moves to p1 and

p2 if necessary, we have the situation pictured in Figure 8. Applying further slide

moves when necessary, we may now assume that the pi , for i > 2, all lie on the

same side of ˛1 \ C inside C , as in Figure 9.

We now consider a triangular component T2 of S n ¹˛2; ˛3; ˇº, with vertices

p0, p2, and p3. As before, there are four possible placements of the corner of T2 at

p0. Two of them correspond to a situation in which T2 realizes .p0; p3; p2/, again

allowing a homotopy of ˇ that forms a localized realization. Assuming then that

T2 realizes .p0; p2; p3/, we now describe why there is only one possible placement

of the corner of T2 at p0.

First suppose the corner of T2 at p0 is placed as pictured in Figure 10. That is,

suppose T2 does not share the side between p0 and p2, contained in the arc ˛2 \C ,

with T1. Because T2 realizes .p0; p2; p3/, the counter-clockwise orientation of

@T2 turns left from ˛2 to ˇ at p2. There are two ways to make a left turn from ˛2

to ˇ at p2. Of them, the one so that T2 does not share the side between p0 and p2

with T1 contains the arc of the curve ˇ that lies between the vertices p2 and p3

and containing p1. Consequently, one side of the arc ˛1 \ C leaves C inside T2,

while the other leaves C outside of T2. Since ˛1 may only intersect the sides of

T2 inside C , this is impossible.

This leaves only one possibility for the placement of the corner of T2 at p0

in which T2 realizes .p0; p2; p3/ (see Figure 11). This case allows us to apply a

homotopy to ˇ supported in the triangle T2, leaving the intersections pi inside C ,

and ensuring that the number of connected components of ˇ \C is at most n� 2
(see Figure 12).

Similarly, at the kth step, the triangular component Tk of S n ¹˛k ; ˛kC1; ˇº
either provides a homotopy of ˇ that achieves a localized realization, or provides

a homotopy of ˇ, supported inside C , that ensures that the number of connected

components of ˇ \ C is at most n � k. When k D n � 1, we have ensured the

existence of a localized realization of ˇ.

Finally, after replacing ˇ with its localized realization, we assume that ˇ\C is

connected, and that pi 2 C for each i . Note that this implies that ˇ \ @C consists

of exactly two points, which we denote p� and pC. A straightforward application

of the Jordan Curve Theorem ensures that p� and pC are in diametrically opposed

components of @C n ¹˛1; : : : ; ˛nº, and we may apply a homotopy to ˇ making it

into a diameter passing through p0, completing the inductive step. �
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C

p0

p1

p2

˛2

˛1

ˇ

˛n

Figure 7. The triangle T1 realizes .p0; p2; p1/, forming a localized realization of ˇ.

C

p0

p1 p2

˛2 ˛1

ˇ

˛n

Figure 8. The triangle T1 realizes .p0; p1; p2/, where no localized realization is yet assured.
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C

p0

p1

p2

p3

˛1

˛2

˛3

ˇ

˛n

Figure 9. Given that the triangle T1 realizes .p0; p1; p2/, the arcs ˇ \ C may appear as

pictured.

C

p0

p1

p2

p3

˛1

˛2

˛3

ˇ

˛n

Figure 10. Given triangle T1 realized as .p0; p1; p2/, the darkly shaded oriented triangle

T2 cannot have a corner at p0 as pictured.
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C

p0

p1

p2

p3

˛1

˛2

˛3

ˇ

˛n

Figure 11. The remaining case where triangle T2 realizes .p0; p2; p3/.

C

p0

p1

p2

p3

˛1

˛2

˛3

ˇ

˛n

Figure 12. Applying a homotopy to ˇ using T2, getting ‘closer’ to a localized realization.



Complete 1-systems and dual cube complexes 1079

A word of caution. It is not generally true that if � 0 � � then the complex

C.� 0/ is a subcomplex ofC.�/ (see Figure 13). The following corollary is a weaker

version of such a statement that will su�ce for our application. Given a collection

of curves �, we will say that a subset of n curves � 0 � � form an n-cube in C.�/

if there are n hyperplanes corresponding to the curves of � 0 intersecting in an

n-cube of C.�/.

˛

ˇ




Figure 13. The complex C.¹˛; 
º/ is not a subcomplex of C.¹˛; ˇ; 
º/.

Corollary 5.5. If � is a 1-system of curves, and ¹
1; : : : ; 
nº D � 0 � �, then the

curves of � 0 form an n-cube in C.�/ if and only if every triple of curves from � 0

form a 3-cube.

Proof. Using the curves to hyperplanes correspondence, the curves of � 0 form an

n-cube in C.�/ if and only if there is a choice of lifts ¹�
1; : : : ; �
nº so that these lifts

pairwise intersect, which in turn occurs if and only if dimC.� 0/ D n, at which

point we apply Theorem 3. �

6. A family of maximum complete 1-systems

We now construct many maximum complete 1-systems on a surface S of any odd

genus g D 2nC 1. Consider the genus g surface as the unit sphere in R
3 with g

handles attached at evenly spaced disks centered on an equator, making the order

g homeomorphism � that cyclically permutes the handles apparent. Let x be a

point �xed by this homeomorphism. Consider the presentation

�1.S; x/ D

*
ri ; si

ˇ̌
ˇ̌
ˇ

gY

iD1

Œri ; si �

+
;

where the generators r1 and s1 are as pictured in 14, and ri D �.ri�1/ and

si D �.si�1/ for i D 2; : : : ; g.
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x

r1

s1

Figure 14. The generators of �1.S; x/ in one handle.

Let ˛1, ˇ1, and ı be given by

(1) ˛1 D ŒrnC2rnC3 : : : r2nC1s1�,

(2) ˇ1 D
h
rnC2rnC3 : : : r2nC1s

�1
1

nC1Y

iD1

Œsi ; ri �
i
, and

(3) ı D Œr1r2 : : : r2nC1�.

The orbit of ˛1 under � gives g curves which we denote by ¹˛1; ˛3; : : : ; ˛2g�1º.
Similarly, we denote the �-orbit of ˇ1 by ¹ˇ1; ˇ3; : : : ; ˇ2g�1º. We complete these

collections to sequences ¹˛iº
2g
iD1 and ¹ˇiº

2g
iD1 by de�ning ˛2i D �i .˛2i�1/ and

ˇ2i D ��1
i .ˇ2i�1/ for i D 1; : : : ; g, and where �i is the right Dehn twist around

ri . See Figures 15, 16, 17, and 18 for illustrative examples.

Grouping these curves together, we will refer to A D ¹˛1; : : : ; ˛2gº as the set

of ‘up’ curves and B D ¹ˇ1; : : : ; ˇ2gº as the set of ‘down’ curves. We will refer

to the pair of up curves (resp. down curves) ˛2i�1 and ˛2i (resp. ˇ2i�1 and ˇ2i )

as ‘partners’, for i D 1; : : : ; g.
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It is immediate that ˛i \ j̨ D ˇi \ ǰ D 1 for i ¤ j . When ˛i and j̨

are not partners, then ˛i \ ǰ D 1. This calculation makes it clear that we may

form many maximum complete 1-systems. For each i D 1; : : : ; g, choose one of

the two pairs of partners from ¹˛2i�1; ˛2iº and ¹ˇ2i�1; ˇ2iº. Together with the ı

curve, this forms 2g C 1 curves that pairwise intersect once. This is maximal by

[10, Theorem 1.4].

More precisely, for � 2 ¹1;�1ºg , let A.�/ D ¹˛2i�1; ˛2i j�i D 1º and B.�/ D
¹ˇ2i�1; ˇ2i j�i D �1º, and let �.�/ D ¹ıº [ A.�/ [ B.�/. Several examples in

genus 5 and 7 are shown in Figures 19, 20, 21, and 22.

Figure 15. The curves ˛1; ˛2 2 A Figure 16. The curves ˇ1; ˇ2 2 B

Figure 17. The curves ˛3; ˛4 2 A and

ˇ5; ˇ6 2 B
Figure 18. The curve ı
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Figure 19. The system of curves �.1; 1; 1; 1; 1/

Figure 20. The system of curves �.1;�1; 1; 1;�1/
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Figure 21. The system of curves �.1; 1; 1; 1; 1; 1; 1/

Figure 22. The system of curves �.1;�1; 1;�1;�1; 1;�1/
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Lemma 6.1. For each � 2 ¹�1; 1ºg , the collection of curves �.�/ forms a

maximum complete 1-system.

There is an action of the dihedral group Dg on ¹1;�1ºg given by letting the

generators act by a g-cycle and a reversal of the list, respectively. Letting Z=2Z

act by taking � to ��, we obtain an action of Z=2Z ˚Dg on ¹1;�1ºg , and there

is naturally an action of Mod�.S/ on systems of conjugacy classes of curves on

S . The following proposition, whose proof occupies the bulk of our analysis in §7

and §8, implies that the maximum complete 1-systems from Lemma 6.1 represent

many distinct orbits.

Proposition 6.2. If �.�/ and �.�0/ are in the same Mod�.S/-orbit, then � and �0

are in the same .Z=2Z ˚Dg/-orbit in ¹1;�1ºg .

We will also require the simple observation:

Lemma 6.3. A maximum complete 1-system is �lling.

Proof. Suppose not. Then there is a simple closed curve ˛ disjoint from the

curves in our 1-system. Cut open S along ˛, and cap o� the two resulting

boundary components created with disks. Note that the resulting surface may

be disconnected. In any case, the set of 2gC 1 curves obtained forms a maximum

complete 1-system of curves on a surface of genus g0 � g � 1, contradicting [10,

Theorem 1.4]. �

In fact, one can show that any 2g curves from a maximum complete 1-system

are �lling, but we will not require this stronger statement.

LetN.g/ indicate the number of Mod�.S/-orbits among maximum complete 1-

systems. A simple argument involving the square complex dual to a realization of

curves on S provides an upper bound for N.g/ below. For g odd, Proposition 6.2

allows using the �.�/ to provide a lower bound for N.g/. For g even, we will use

the stabilization procedure described in detail in §9 to obtain lower bounds for

N.g/. Given a choice of realization for a maximum complete 1-system �, and an

arc ˛ intersecting each of the curves in � once, stabilization produces a maximum

complete 1-system on a surface of genus g C 1.

When necessary below, we identify �.�/ with �xed choices of realization for

each such collection. In §9 we prove:

Proposition 6.4. There is a choice of arc ˛ so that the stabilizations of �.�/ and

�.�0/ along ˛ are in the same Mod�.SgC1/-orbit if and only if �.�/ and �.�0/ are

in the same Mod�.Sg/-orbit.
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We restate and prove Theorem 1:

Theorem 1. We have the bounds

.4g2 C 2g/Š � N.g/ �
2g�1

4.g � 1/
:

Proof. The lower bound follows from Proposition 6.2 when g is odd, and from

Proposition 6.4 when g is even.

Towards the upper bound, consider the set of isomorphism classes of square

complexes S� that are dual to realizations � of maximum complete 1-systems. For

�lling systems of curves, the dual square complex is isomorphic to the surface

S , and the hyperplanes of the square complex are in the homotopy classes of the

curves one started with. Lemma 6.3 now guarantees that an isomorphism of square

complexes S� Š S�0 yields a homeomorphism of S taking � to �0. Thus there

is a well-de�ned map from the set of isomorphism classes of square complexes

dual to maximum complete 1-systems to the set of Mod�.S/-orbits of maximum

complete 1-systems. This map is evidently surjective, so that an upper bound

for the number of possible square complexes dual to a realization of a maximum

complete 1-system produces an upper bound for N.g/.

For each realization � of a maximum complete 1-system, each of the curves in

� passes through exactly 2g squares of S�. We may thus view S� as the quotient of

the disjoint union of 2gC 1 annuli, each of which is built from 2g squares, where

the quotient map identi�es squares in pairs. There are at most
�

2g.2gC1/
2;:::;2

�
pairings,

and each pair of matched squares has two possible identi�cations, giving at most

2g.2gC1/

�
2g.2g C 1/

2; : : : ; 2

�
D 2g.2gC1/ �

.2g.2g C 1//Š

2g.2gC1/
D .2g.2g C 1//Š

square complexes S�. �

7. Restricting mapping class group orbits via C.�.�//

This section is the �rst step towards the proof of Proposition 6.2.

Proposition 7.1. If � 2 Mod�.S/ satis�es � � �.�/ D �.�0/, then

(1) � � ı D ı, and

(2) � � ¹A.�/; B.�/º D ¹A.�0/; B.�0/º.

Moreover, the map � sends partner curves to partner curves.

In other words, either � preserves the sets of up and down curves, or it

exchanges them. The proof of this proposition will follow from a coarse picture

of the cube complex C.�.�//.
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Lemma 7.2. In the complex C.A[B[ ¹ıº/, the triples that form 3-cubes are the

following:

(1) ¹˛i ; j̨ ; ˛kº or ¹ˇi ; ǰ ; ˇkº, for distinct i; j; k 2 ¹1; : : : ; 2gº;

(2) ¹˛2i�1; ˛2i ; ıº or ¹ˇ2i�1; ˇ2i ; ıº, for i 2 ¹1; : : : ; gº;

(3) ¹˛2j �1; ˛2j ; ˇiº or ¹ˇ2j �1; ˇ2j ; ˛iº, for i 2 ¹1; : : : ; 2gº and j 2 ¹1; : : : ; gº;

(4) ¹˛i ; ǰ ; ıº for i; j 2 ¹1; : : : ; 2gº.

Proof. Using Lemmas 5.1 and 5.2, we determine whether a triple of curves forms

a 3-cube by choosing a realization of the curves, and observing whether there is a

triangular component of the complement. For each of the curves, we �x choices

of realizations as in Figures 15, 16, and 18.

If ı is one of the three curves, we arrange the possible ways to choose the

other two curves according to whether the curves are chosen as ‘up’ or ‘down’

(i.e. from A or B). If both of the other curves are up, then there is a triangle in the

complement of the trio if and only if the other two curves were partners. If one

of the curves is up and one is down, there is such a triangle. The other cases are

similar.

On the other hand, if ı is not one of the three curves, if all of the curves are

up, there is such a triangle. If two of the curves are up and one is down, there is

a triangle in their complement if and only if the two up curves are partners. The

other cases are similar. �

We proceed with an examination of hyperplanes of maximal cubes in the cases

for � 2 ¹1;�1ºg where jA.�/j; jB.�/j > 2.

Lemma 7.3. When jA.�/j; jB.�/j > 2, the sets of hyperplanes of maximal cubes

of C.�.�// correspond to one of the following lists of curves:

(1) the 2j��1.1/j curves A.�/;

(2) the 2j��1.�1/j curves B.�/;

(3) the 5 curves ¹˛2i�1; ˛2i ; ˇ2j �1; ˇ2j ; ıº, for i; j 2 ¹1; : : : ; gº such that

˛2i 2 A.�/ and ˇ2j 2 B.�/.

Proof. Using Corollary 5.5, in order to check whether a subset of curves from

�.�/ forms an n-cube, it is enough to check whether every triple forms a 3-cube.

By Lemma 7.2 we have a complete list of such 3-cubes.

The curvesA.�/ andB.�/ form cubes of dimensions 2j��1.1/j and 2j��1.�1/j,
respectively, by Lemma 7.2 and Corollary 5.5. If one adds a down curveˇi toA.�/,

then a pair of up curves that are not partners will not form a 3-cube with this down

curve ˇi , by Lemma 7.2. If one adds ı to A.�/, then again a pair of up curves

that are not partners will not form a 3-cube with ı. The analogous statements

hold for B.�/. By Corollary 5.5, the cubes of dimension 2j��1.1/j and 2j��1.�1/j
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containing these sets of hyperplanes, respectively, must be maximal. The same

analysis shows that a maximal cube containing ı must contain a pair of partner up

curves and a pair of partner down curves. �

The cases in which either of jA.�/j or jB.�/j are less than or equal to 2 are quite

similar, so we list the relevant information without proof.

Lemma 7.4. When jB.�/j D 0 (resp. jA.�/j D 0), the sets of hyperplanes of

maximal cubes of C.�.�// correspond to one of the following lists of curves:

(1) the 2g curves A.�/ (resp. B.�/);

(2) the 3 curves ¹˛2i�1; ˛2i ; ıº (resp. ¹ˇ2i�1; ˇ2i ; ıº), for i 2 ¹1; : : : ; gº.

When jB.�/j D 2 (resp. jA.�/j D 2), the sets of hyperplanes of maximal cubes

of C.�.�// correspond to one of the following lists of curves:

(1) the 2g � 2 curves A.�/ (resp. B.�/);

(2) the 5 curves ¹˛2i�1; ˛2i ; ˇ2j �1; ˇ2j ; ıº, for i; j 2 ¹1; : : : ; gº such that

˛2i 2 A.�/ and ˇ2j 2 B.�/.

Proof of Proposition 7.1. The simple observation we exploit is that cube complex

isomorphisms must send maximal cubes to maximal cubes.

Suppose jA.�/j; jB.�/j > 2. By Lemma 7.3 and Lemma 7.4, the maximal

cubes that the hyperplane corresponding to ı passes through are all 5-dimensional,

while the maximal cubes that the hyperplane corresponding to ˛i (resp. ˇi ) passes

through, for any i 2 ¹1; : : : ; 2gº, include one of the two even-dimensional maxi-

mal cubes corresponding to A.�/ and B.�/. Thus any isomorphism of cube com-

plexes ˆWC.�.�// Š C.�.�0// must take the hyperplane corresponding to ı to

itself. By Theorem 2, the corresponding mapping class � �xes ı. Similarly, the

even-dimensional maximal cubes whose hyperplanes correspond toA.�/ andB.�/

must be sent to the pair of even-dimensional maximal cubes whose hyperplanes

correspond to A.�0/ and B.�0/. The remaining cases are similar.

Finally, a pair of partner curves are simultaneously up or down. By Lemma 7.2,

they form a 3-cube with ı while a pair of non-partner curves that are simulta-

neously up or down do not. It follows that � sends partner curves to partner

curves. �

While we may conclude that the pair of numbers jA.�/j and jB.�/j is equal to

jA.�0/j and jB.�0/j if �.�/ and �.�0/ are Mod�.S/-equivalent, we are not yet able

to prove Proposition 6.2. We turn to �ner invariants of �.�/.



1088 T. Aougab and J. Gaster

8. The labeled polygon P.�/ associated to �.�/

Towards the proof of Proposition 6.2, we introduce a more detailed invariant.

The information inherent to the invariant we produce is easily packaged as a

polygon. The essential tool to building this invariant is the ordering induced on

intersection points of a realization of an oriented curve.

However, while an oriented curve in a realization of a curve system determines

an ordering of its intersection points, this ordering may not be an invariant of the

collection of homotopy classes; the presence of 3-cubes implies the existence of a

Reidemeister move that will make it possible to switch the ordering of intersection

points. We state the following only for complete 1-systems for ease in exposition,

but with slightly more detail a more general statement could be made.

Lemma 8.1. Let ¹
1; : : : ; 
k ; 
; 

0º be a complete 1-system of curves, and let E
 be

a choice of orientation of 
 . Suppose that 
 does not form 3-cubes with any pair


i and 
j . Then the cyclic ordering of 
1; : : : ; 
k induced by E
 is invariant of the

choice of realization, and the choice of a ‘�rst curve’ 
j induces a well-de�ned

ordering of ¹
i W i ¤ j º. Moreover, if 
 and 
 0 form 3-cubes with 
i , for all i , then

the cyclic orderings of 
1; : : : ; 
k induced by the two orientations of 
 0 coincide

with those of the two orientations of 
 .

Proof. Choose a realization of the curve system ¹
1; : : : ; 
k; 
; 

0º. One obtains

a cyclic ordering of ¹
1; : : : ; 
kº induced by E
 . This ordering is invariant of the

chosen realization, since any realization can be obtained from any other realization

by applying a sequence of Reidemeister moves, and births or deaths of monogons

or bigons [8, Lemma 5.6].

Finally, suppose 
 and 
 0 intersect at p and form 3-cubes with each 
i , with

triangles indicated by �.
; 
 0; 
i /. In this case, an argument similar to the in-

ductive step in the proof of Lemma 5.3 guarantees that the triangles �.
; 
 0; 
i/

must determine corners that are either identical or opposite at p (see Figure 23).

Applying Reidemeister moves if necessary, we may arrange for all the corners to

be identical at p, in which case the fact that 
; 
i ; 
j don’t form triangles guaran-

tees the conclusion. �

p




 0


i

�.
; 
 0; 
j /

Figure 23. The corner of the darkly shaded triangle �.
; 
 0; 
j / at p cannot be as pictured

with respect to the corner of �.
; 
 0; 
i / at p.
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We refer to maximal sets of non-partner up (resp. down) curves as full, and

we �x choices of full sets of up and down curves U and D, by choosing one

curve in each pair of partner curves. In our setting, by Lemma 7.2 the curve ˛i

does not form 3-cubes with any pair of non-partner down curves. Thus, choosing

an orientation Ęi , we may apply Lemma 8.1 to Ęi with D. Note that this cyclic

ordering of D is unchanged by replacing ˛i with its partner curve by Lemma 8.1,

since a pair of partner up curves form 3-cubes with any down curve by Lemma 7.2.

We conclude that a choice of orientation Ęi induces a cyclic order to any full set

of down curves.

Moreover, as long as jA.�/j > 2, the cyclic order of D induced by Ęi can be

upgraded, canonically, into a bona �de ordering. If jA.�/j > 2, there is an up

curve j̨ which is not a partner of ˛i . By Lemma 7.2, the curve ˛i does not form a

3-cube with j̨ and ˇl , for any l , so that Lemma 8.1 applies to Ęi and the union of

D with j̨ . Moreover, it is evident that this order does not depend on the choice

of j̨ among up curves that are not partners of ˛i . We conclude that a choice of

orientation Ęi induces an ordering ofD, which we refer to as the Ęi -ordering ofD.

We choose an almost realization of �.�/ such that the curves in U intersect at a

single point p, and curves inD intersect at a single point p0. Let c be a small circle

centered at p, and c0 a small circle centered at p0. An orientation of c (resp. c0)

induces a cyclic ordering on the �nite set of points U \c (resp. D\c0/. Assuming

that both U andD are non-empty, using the orientation of the surface S , we equip

c with a clockwise orientation, and c0 with a counter-clockwise orientation. This

induces a cyclic ordering on the �nite collection of points U \ c and on D \ c0.

Remark 8.2. We note the pair given by the cyclic ordering onU\c and its reverse

(resp. for D \ c0) is an invariant of the Mod�.S/-orbit of �.�/. This follows from

the fact that the cyclic order on U \ c corresponds to the cyclic order on the set of

endpoints of lifts to H
2 of geodesics in U induced by an orientation of @H2 (with

respect to any hyperbolic structure on S ), and therefore this ordering is detected by

the dual cube complex to �.�/. In particular, the de�nition of this cyclic ordering

on U \ c does not depend on our particular choice of almost realization for �.�/.

Given a choice of orientation of a curve 
 2 U (resp. D), the two points

of 
 \ c (resp. 
 \ c0) are each equipped with an arrow that either points away

from, or towards p (resp. p0). We refer to arrows pointing towards p (resp. p0)

as inward pointing and the others as outward pointing. Given a set of choices of

orientations for each of the curves in U , the set of inward and outward pointing

arrows partitions the set of points U \ c into two sets. Moreover, there is an

involution � of U \ c that exchanges these two sets, for any set of choices of

orientations for the curves in U : given v 2 U \ c, �.v/ is the only other point

of U \ c on the same curve of �.�/ as v.
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Lemma 8.3. There exist choices of orientations ¹ Ęiº for the curves in U such that

the cyclic orderings of D induced by Ęi and Ęj are cyclically equivalent, for all i

and j .

Proof. Choose orientations for ˛i and j̨ as in Figure 24. The down curves

D are partitioned by this choice into four sets D1; D2; D3; D4, and with the

chosen orientations on ˛i and j̨ , the Ęi - and the Ęj -orderings ofD are cyclically

equivalent. �

Eu1

Eu2

D2

D3

D4 D1

Figure 24. The oriented up curve u1 induces the ordering .D1;D2;D3;D4/ of the down

curves, while u2 induces .D4;D1;D2;D3/.

A set of choices of orientations of the curves in U is coherent if it satis�es the

conclusion of Lemma 8.3. The orientations chosen in Lemma 8.3 (see Figure 24)

are a convenient choice, and we refer to these choices of orientations of up curves

as the standard orientations for curves in U . It will be useful to have a chosen

orientation of the down curves as well. Note the orientation-reversing involution of

the surface that exchanges each up curve ˛i with the down curveˇi . An orientation

of a down curve is standard if the image under this involution is a standardly

oriented up curve.
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Remark 8.4. We note that there are exactly two coherent orientations on U ;

this follows from the fact that a coherent orientation is completely determined

by choosing the orientation on one curve of U . We will refer to the coherent set

of choices of orientations for U that is not the standard one as non-standard.

De�nition 8.5. The labeled polygon P.�/ associated to �.�/ is a 2jU j-gon,

satisfying the following conditions.

(1) The vertices are labeled from elements of U \ c, in the cyclic ordering

induced by the orientation of c; thus P.�/ comes equipped with a preferred

orientation of its boundary. By placing an outward pointing arrow at each

point ofU\c, the vertices ofP.�/ determine orderings ofD. By Remark 8.4,

these orderings partition the vertices into two sets P1 and P2, exchanged

by �, that correspond to the two cyclic equivalence classes of orderings of

D determined by possible coherent choices of orientations for U . For each

l D 1; 2, we let Rl .�/ denote the polygon formed by the cyclically ordered

vertices in Pl . Note that the edges of Rl .�/ are diagonals of P.�/;

(2) Each edge of Rl.�/ is decorated with a pair of integers Ml .e/and Nl .e/, de-

�ned as follows. Let e D . Ęi ; Ęj / be an edge ofRl.�/with initial and terminal

vertices corresponding to the oriented curves Ęi and Ęj in U , respectively.

We set Ml .e/ equal to the number of vertices of P.�/ between Ęi and Ęj . If

ˇl1
; : : : ; ˇlm

denotes the Ęi -ordering of D, then by construction there exists

some r such that the Ęj -ordering on D is

ˇlm�rC1
; : : : ; ˇlm

; ˇl1
; : : : ; ˇlm�r

:

We de�ne Nl .e/ D r .

Lemma 8.6. P.�/ is a well-de�ned invariant of �.�/.

Proof. By Remark 8.4, the standard and non-standard pair of choices of orienta-

tions for the curves in U are the only coherent such choices. Thus the partition of

the vertices of P.�/ into the two sets P1 and P2 is well-de�ned. The labels Ml .e/

and Nl .e/ are evidently invariant under a di�erent set of choices of full sets U

and D. �

Lemma 8.7. For each of the labeled polygons P.�/ there exists a choice of l1 and

l2 so that ¹l1; l2º D ¹1; 2º and

X

e

Nl1
.e/ D jDj

and X

e

Nl2
.e/ D jDj � .jU j � 1/ :
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Proof. One of the polygons has vertices that determine the standard orientations

of the curves in U , while the other has vertices that determine the non-standard

ones. By examining Figure 24, one sees that the sum for the polygon with standard

orientations determined at its vertices is the �rst sum above, while the sum for the

other polygon is the second sum above. �

After relabeling, we assume from now on that R1.�/ refers to the polygon

whose vertices are points of U \ c with outward pointing arrows in the standard

orientations of the curves in U . See Figure 25 for examples corresponding to

� D .1; 1; 1;�1;�1; 1;�1/ and � D .�1; 1; 1;�1;�1; 1; 1/.

De�nition 8.8. An isomorphism of labeled polygons from P.�/ to P.�0/ is a

permutation  2 S2jU j, where Sn denotes the symmetric group on n symbols,

that induces a label-preserving isomorphism between the labeled 1-skeletons of

P.�/ [R1.�/ [ R2.�/ and P.�0/ [R1.�
0/ [R2.�

0/.

By Proposition 7.1, a homeomorphism of the surface that takes �.�/ to �.�0/

takes A.�/ to either A.�0/ or B.�0/. In the �rst case, by construction, the homeo-

morphism induces an isomorphism of labeled polygons P.�/ Š P.�0/. Note that

it is a consequence of Lemma 8.7 that we may conclude that, if  WP.�/ Š P.�0/

is an isomorphism of labeled polygons, then  takesR1.�/ to R1.�
0/ andR2.�/ to

R2.�
0/.

Remark 8.9. As a consequence, any homeomorphism taking �.�/ to �.�0/ that

takes A.�/ to A.�0/ must preserve the standard orientations of curves.

Proposition 8.10. If  WP.�/ Š P.�0/ is an isomorphism of labeled polygons,

then � and �0 are in the same .Z=2Z ˚Dg/-orbit of ¹�1; 1ºg .

Proof. Our strategy below is to make various choices for labels and orientations

of curves that make the structure of P.�/ more transparent – by Lemma 8.6

these choices don’t a�ect the isomorphism type of P.�/. With the structure of

P.�/ clear, the result will follow easily. Roughly speaking, the constructions

below are careful treatments of ‘how the curves in �.�/ look,’ when they are

drawn conveniently on the surface. In what follows, we �x the almost realization

described at the beginning of this section, and �x as well the standard orientations

of each of the curves.

We �rst establish a cyclic ordering on all the curves in U [ D. Consider the

collection of curves !1; : : : ; !g in Figure 26, realized in minimal position with

�.�/. Note that for each i , the curve !i intersects exactly one curve in U [ D.

Given 
 2 U [ D, the transversal to 
 is the unique curve in
®
!1; : : : ; !g

¯

intersecting 
 . Thus there is a cyclic ordering on U [D associated to the cyclic

ordering Œ1; : : : ; g� on the indices of the !i curves.
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.1; 1/
.0; 1/

.1; 0/

.2; 1/

� D .1; 1; 1;�1;�1; 1;�1/

.1; 0/

.0; 2/

.1; 0/

.2; 1/

� D .�1; 1; 1;�1;�1; 1; 1/

Figure 25. Full sets of curves from the curve system �.�/, the ‘small circle’ c, the polygon

P.�/, and the polygon R1.�/. Edge labels are written as the ordered pair .M1.e/;N1.e//.
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!1

!2

! g�1
2

! gC1
2

!g

Figure 26. The transversals !1; : : : ; !g .

We will now describe a cyclic order on .U \ c/ t .D \ c0/. For 
 2 U [D,

suppose 
 2 U , and let ! denote the transversal to 
 . Then c separates 
 into two

arcs, both bounded by the two points s1.
/; s2.
/ of 
 \ c � U \ c. Let ƒ.
/

denote the arc whose interior is not contained in the disk bounded by c. Then

ƒ.
/ is subdivided further into two sub-arcs, which we denote S1.
/ and S2.
/;

for each i D 1; 2, the arc Si.
/ is the sub-arc of ƒ.
/ bounded by si .
/ and by


 \! (see Figure 27). We remark that the arcs S1.
/ and S2.
/ are distinguished

by the choice that S1.
/ contains none of the intersection points with D in the

chosen realization of �.�/. Similarly, if 
 2 D then ƒ.
/ is the arc of 
 not

contained within c0, and ƒ.
/ is subdivided into S1.
/ and S2.
/, where S1.
/ is

the sub-arc of ƒ.
/ containing no intersections with U .

Starting at some point v ofU \c, let 
 2 U [D denote the up curve associated

to v, and let !i denote the transversal to 
 . The point of .U \ c/ t .D \ c0/

immediately following v is obtained as follows. We assume that v D s1.
/. Let


 0 be the curve obtained from 
 by moving .g C 1/=2 around the cyclic order on

U [D. Thus the transversal to 
 0 is !iC.gC1/=2, where the addition is interpreted

modulo g. Then the point of .U \ c/t .D\ c0/ immediately following v is s2.

0/.

The next point is obtained in a similar fashion. Starting at s2.

0/ we move to

the curve whose index in the cyclic order on U [D is .gC1/=2 from that of 
 0, in

the clockwise direction. Letting 
 00 denote this curve, the next point in the cyclic

order on .U \ c/ t .D \ c0/ is s1.

00/. The ordering is de�ned by iterating this

procedure: add .gC1/=2 to the cyclic index, and alternate between s1 and s2. See

Figure 28.
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S1.
/

s2.
/

s1.
/

c

!

Figure 27. The intersections s1.
/ and s2.
/ of 
 2 U with the small circle c, and the

sub-arc S1.
/ of 
 . (The arc S2.
/ is not pictured).

s1.
/

s1.

00/

s2.

0/


 00





 0

Figure 28. In the cyclic order on .U \ c/t .D\ c0/, s2.

0/ immediately follows s1.
/, and

s1.

00/ immediately follows s2.


0/.
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Thus far, we have established a cyclic ordering on U [ D, and an associated

cyclic ordering on .U \ c/ t .D \ c/; we also recall that the curves in U and D

are equipped with standard orientations. Note that these choices are compatible

in the following sense. Recall that the standard orientations of the curves induce

inward and outward pointing arrows on the points in .U \ c/ t .D \ c/. In the

established cyclic ordering of .U \ c/ t .D \ c/, each inward pointing arrow is

followed by an outward pointing arrow, and likewise each outward pointing arrow

is followed by an inward pointing arrow.

Lemma 8.11. For an edge e D e. Ęi ; Ęj / ofR1.�/, the integerM1.e/ (resp.N1.e/)

is equal to the number of outwardly pointing arrows of U (resp.D) which follow

�. Ęi / and which precede �. Ęj /.

Proof. With the given choices made, the integer M1.e/ is equal to the number of

inward pointing arrows that follow Ęi and precede Ęj . Apply the involution � and

the claim follows for M1.e/. For N1.e/, the edge e partitions the down curves into

four piecesD1; D2; D3; D4, as in Figure 24. The label N1.e/ of the edge e is equal

to jD4j, which is also the number of outwardly pointing arrows between �. Ęi / and

�. Ęj /. 4

Henceforth, by an interval of .U \ c/ t .D \ c0/, we mean the subset which

follows a particular point in .U \ c/ t .D \ c0/ and which precedes some other

point, as in the statement of Lemma 8.11. Evidently, given an interval I , �.I / is an

interval bounded by the image of the end points of I under �.

To �nish the proof of Proposition 8.10, it su�ces to show that the orbit of

� can be constructed from information about P.�/ which is preserved under

isomorphism of labeled polygons. The number of 1’s in � is equal to jA.�/j=2,
which is equal to half of the number of edges of P.�/. Thus all that remains is to

determine how to interleave the jB.�/j=2 necessary �1’s to obtain �. The following

lemma completes the proof of Proposition 8.10. �

Lemma 8.12. If e D . Ęi ; Ęj / is an edge ofR1.�/, then the number of �1’s between

�i and �j is equal to M1.e/C N1.e/ � 1.

Proof. Using the standard orientations for the curves in U [D again, the consec-

utive elements of .U \ c/t .D \ c0/ are equipped with opposite pointing arrows.

Each �1 between the 1’s associated to Ęi and Ęj corresponds to a down curve

whose outwardly-pointing arrow lies between the outwardly-pointing arrows for

Ęi and Ęj . Since e is an edge of R1.�/, there are no outwardly pointing arrows for

up curves between the outwardly pointing arrows of Ęi and Ęj .

By construction, the inward and outward pointing arrows alternate in .U \
c/ t .D \ c0/. Thus the number of outward pointing arrows that are between

the outward pointing arrows at Ęi and Ęj is equal to one less than the number
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of inward pointing arrows in this same interval I (see Figure 29). Each inward

pointing arrow in this interval corresponds to an outward pointing arrow in �.I /.

In turn, each outward pointing arrow in �.I / is associated to either an up curve

or a down curve, and is therefore accounted for by either M1.e/ or N1.e/ by

Lemma 8.11. This completes the proof of Lemma 8.12. �

There must be

outwardly pointing

arrows alternating
with these

Ęi

Ęj

Figure 29. Given standard orientations of the curves in U and D, the arrows at the points

of .U \ c/ t .D \ c0/ alternate between inward and outward pointing.

We are now ready to prove Proposition 6.2:

Proof of Proposition 6.2. Let � 2 Mod�.S/ have � � �.�/ D �.�0/. By Proposi-

tion 7.1, we have either � � A.�/ D A.�0/ or � � A.�/ D B.�0/. After composing

if necessary with the re�ection of the surface that exchanges all up curves A with

all down curves B (preserving the .Z=2Z ˚ Dg/-orbit of �0), we assume that

� � A.�/ D A.�0/. In this case, � induces an isomorphism of the labeled polygons

P.�/ Š P.�0/. By Proposition 8.10, this implies that � and �0 are in the same

.Z=2Z ˚Dg/-orbit. �

9. Stabilizing 1-systems

We return to stabilization. Suppose � is an almost realization of a maximal

complete 1-system on the surface Sg of genus g. Given any arc ˛ on Sg , we can
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delete tiny disks at its endpoints (in the complement of any of the curves of �), and

glue in an annulus. The result is a surface SgC1 of genus g C 1, and a complete

1-system naturally in correspondence with �. We refer to this system of curves by

� as well, the distinction being clear from context. Note that � is not maximum

in SgC1, as it consists of two too few curves.

When ˛ intersects each of the curves of � once (on Sg), there are two readily

available curves to add. Concatenate ˛ with an arc that crosses the annulus to

form a new simple closed curve ˛0. By construction, ˛0 intersects each of the

curves of � once. Moreover, the Dehn twist of ˛0 around the core curve of the

annulus, which we denote ˛00, intersects each of the curves of �[¹˛0º once. Thus,

given an arc ˛ that intersects each of the curves of a realization of a maximum

complete 1-system � once, we produce the stabilization of � along the arc ˛,

denoted stab.�; ˛/ WD � [ ¹˛0; ˛00º, a maximum complete 1-system on SgC1.

The following is immediate.

Lemma 9.1. For each 
 2 �, the trio ¹˛0; ˛00; 
º in stab.�; ˛/ forms a triangle.

If three curves don’t form a triangle in �, then the corresponding curves don’t

form a triangle in stab.�; ˛/.

There is a special case of this stabilization procedure. Choose a curve 
 � �,

and �x an identi�cation of 
 with S1 D Œ0; 1�=0 � 1, and the image of 0 with

p 2 
 . Identify an �-neighborhood of 
 with the annulus S1 � .0; 1/, with

coordinates chosen, with � small enough, such that the intersections of the other

curves in � n ¹
º with the annulus each consist of a single vertical arc. In these

coordinates, let ˛ be the arc

°�
t;
1

2
� t

�
W t 2 Œ0; 1�

±
:

We will refer to the stabilization stab.�; ˛/ by stab.�; p; 
/, which we iden-

tify with � [ ¹
 0; 
 00º. Note that the stabilization obtained may depend on the

realization � and on the point p 2 
 chosen, in the sense that it is possible that

stab.�; p; 
/ and stab.�; q; 
/ are Mod�.SgC1/-inequivalent, either for p ¤ q or

for non-isotopic realizations � 6' �.

In the case of this special version of stabilization, we note that there is a one-

holed torus subsurface † � SgC1 so that the curves in � n ¹
º are disjoint from

†, and so that the curves 
 , 
 0, and 
 00 are homotopic as properly embedded arcs

in the surface with boundary SgC1 n†.

Lemma 9.2. For each ˇ 2 � n ¹
º, the trios ¹ˇ; 
; 
 0º; ¹ˇ; 
; 
 00º � stab.�; p; 
/

form triangles in SgC1.
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Note that Lemmas 5.2 and 9.1 imply that any maximum complete 1-system

obtained via stabilization has dual cube complex of dimension at least three, and

Lemma 9.2, with Theorem 3 then implies that any obtained via the special case

above has dimension at least four.

Remark 9.3. All of the maximum complete 1-systems in our construction can

be obtained by a sequence of the more specialized stabilizing procedure, applied

successively to the canonical example in genus two. In particular, they all have

dual cube complexes of dimension at least three. Question 2 in §1 presents itself.

We �x choices of almost realizations for �.�/ as in §8, which we denote as

well by �.�/, the distinction being clear from context.

Lemma 9.4. For any choice of p 2 ı, any trio from A.�/ � stab.�.�/; p; ı/

(resp. B.�/ � stab.�.�/; p; ı/) forms a triangle in SgC1.

Proof. In the chosen realizations, the triangles formed among the curves of A.�/

are all disjoint from the stabilizing arcs (which track ı very closely), and from the

disks chosen in the stabilization process. Thus the triangles persist. �

Proposition 9.5. If � 2 Mod�.SgC1/ satis�es

� � stab.�.�/; p; ı/D stab.�.�0/; p; ı/;

then

(1) � � ¹ı; ı0; ı00º D ¹ı; ı0; ı00º, and

(2) � � ¹A.�/; B.�/º D ¹A.�0/; B.�0/º.

Proof. By Lemma 9.4, the hyperplanes corresponding to curves of A.�/

(resp.B.�/) pass through maximal cubes of dimension jA.�/j (resp. jB.�/j), which

is even. The hyperplanes corresponding to ı, ı0, and ı00 pass through maximal

cubes of odd dimension (e.g. the cube corresponding to the curves ı, ı0, ı00, ˛2i�1,

˛2i , ˇ2j �1, and ˇ2j , when jA.�/j; jB.�/j � 1). The conclusion follows as in the

proof of Proposition 7.1. �

We are now able to prove Proposition 6.4.

Proof of Proposition 6.4. Suppose � 2 Mod�.SgC1/ sends stab.�.�/; p; ı/ to

stab.�.�0/; p; ı/, so that by Proposition 9.5 we have that � preserves the set

¹ı; ı0; ı00º.
Consider the one-holed torus subsurface † � SgC1 that arises in the course

of the stabilizations stab.�.�/; p; ı/. Consider the mapping class Q� induced on Sg

by deleting † and identifying the resulting boundary component to a point. Since

the curves of �.�/ n ¹ıº (and likewise �.�0/ n ¹ıº) can be made disjoint from †,
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the induced map Q� takes the induced curves �.�/n ¹ıº to �.�0/n ¹ıº. Moreover, in

the resulting surface ı; ı0; and ı00 go to the same homotopy class of curve, namely

ı � Sg . Since � � ¹ı; ı0; ı00º D ¹ı; ı0; ı00º, we �nd that Q� � ı D ı, so that �.�/ and

�.�0/ are equivalent under the action of Mod�.Sg/. �

References

[1] T. Aougab, Large collections of curves pairwise intersecting exactly once. Geom.

Dedicata 172 (2014), 293–302. Zbl 1303.57018 MR 3253783

[2] B. Bollobás, The asymptotic number of unlabelled regular graphs. J. London Math.

Soc. (2) 26 (1982), no. 2, 201–206. Zbl 0504.05051 MR 0675164

[3] M. R. Bridson and A. Hae�iger, Metric spaces of non-positive curvature.

Grundlehren der Mathematischen Wissenschaften, 319. Springer Verlag, Berlin,

1999. Zbl 0988.53001 MR 1744486

[4] W. Cavendish and H. Parlier, Growth of the Weil–Petersson diameter of moduli space.

Duke Math. J. 161 (2012), no. 1, 139–171. Zbl 1244.32008 MR 2872556

[5] I. Chatterji and G. Niblo, From wall spaces to CAT.0/ cube complexes. Internat.

J. Algebra Comput. 15 (2005), no. 5-6, 875–885. Zbl 1107.20027 MR 2197811

[6] M. de Graaf and A. Schrijver, Making curves minimally crossing by Reidemeis-

ter moves. J. Combin. Theory Ser. B 70 (1997), no. 1, 134–156. Zbl 0888.57001

MR 1441263

[7] B. Farb and D. Margalit, A primer on mapping class groups. Princeton Mathemat-

ical Series, 49. Princeton University Press, Princeton, N.J., 2012. Zbl 1245.57002

MR 2850125

[8] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian �ows of sur-

face group representations. Invent. Math. 85 (1986), no. 2, 263–302. Zbl 0619.58021

MR 0846929

[9] G. Levitt and K. Vogtmann, A Whitehead algorithm for surface groups. Topology 39

(2000), no. 6, 1239–1251. Zbl 0973.20024 MR 1783856

[10] J. Malestein, I. Rivin, and L. Theran, Topological designs. Geom. Dedicata 168

(2014), 221–233. Zbl 1284.57020 MR 3158040

[11] P. Przytycki, Arcs intersecting at most once. Geom. Funct. Anal. 25 (2015), no. 2,

658–670. Zbl 1319.57016 MR 3334237

[12] M. Sageev, Ends of group pairs and non-positively curved cube complexes. Proc.

London Math. Soc. (3) 71 (1995), no. 3, 585–617. Zbl 0861.20041 MR 1347406

[13] M. Sageev, CAT.0/ cube complexes and groups. In M. Bestvina, M. Sageev, and

K. Vogtmann (eds.), Geometric group theory. (Park City, UT, 2012) IAS/Park City

Mathematics Series, 21. American Mathematical Society, Providence, R.I., and Insti-

tute for Advanced Study (IAS), Princeton, N.J., 2014, 7–54. MR 3329724

http://zbmath.org/?q=an:1303.57018
http://www.ams.org/mathscinet-getitem?mr=3253783
http://zbmath.org/?q=an:0504.05051
http://www.ams.org/mathscinet-getitem?mr=0675164
http://zbmath.org/?q=an:0988.53001
http://www.ams.org/mathscinet-getitem?mr=1744486
http://zbmath.org/?q=an:1244.32008
http://www.ams.org/mathscinet-getitem?mr=2872556
http://zbmath.org/?q=an:1107.20027
http://www.ams.org/mathscinet-getitem?mr=2197811
http://zbmath.org/?q=an:0888.57001
http://www.ams.org/mathscinet-getitem?mr=1441263
http://zbmath.org/?q=an:1245.57002
http://www.ams.org/mathscinet-getitem?mr=2850125
http://zbmath.org/?q=an:0619.58021
http://www.ams.org/mathscinet-getitem?mr=0846929
http://zbmath.org/?q=an:0973.20024
http://www.ams.org/mathscinet-getitem?mr=1783856
http://zbmath.org/?q=an:1284.57020
http://www.ams.org/mathscinet-getitem?mr=3158040
http://zbmath.org/?q=an:1319.57016
http://www.ams.org/mathscinet-getitem?mr=3334237
http://zbmath.org/?q=an:0861.20041
http://www.ams.org/mathscinet-getitem?mr=1347406
http://www.ams.org/mathscinet-getitem?mr=3329724


Complete 1-systems and dual cube complexes 1101

[14] P. Schmutz Schaller, Mapping class groups of hyperbolic surfaces and automorphism

groups of graphs. Compositio Math. 122 (2000), no. 3, 243–260. Zbl 0981.57004

MR 1781329

Received November 10, 2015

Tarik Aougab, Mathematics Department, Brown University, Box 1917, 151 Thayer Street,

Providence, RI 02912, USA

e-mail: tarik_aougab@brown.edu

Jonah Gaster, Department of Mathematics, Boston College, 541 Maloney Hall,

Chestnut Hill, MA 02467, USA

e-mail: gaster@bc.edu

http://zbmath.org/?q=an:0981.57004
http://www.ams.org/mathscinet-getitem?mr=1781329
mailto:tarik_aougab@brown.edu
mailto:gaster@bc.edu

	Introduction
	Background
	Sageev's construction
	Mapping class group orbits of collections of curves
	Recognizing n-cubes dual to a 1-system
	A family of maximum complete 1-systems
	Restricting mapping class group orbits via C(())
	The labeled polygon P() associated to ()
	Stabilizing 1-systems
	References

