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1. Introduction

A “subshift of �nite type” on a group G, with some alphabet A, is a subset of

AG de�ned by allowed (or forbidden) local patterns, and is “strongly aperiodic”

if every element of it has trivial stabilizer.

Strongly aperiodic subshifts of �nite type (SASFTs), and the close analog of

strongly aperiodic tilings, have been studied in a variety of contexts, notably Zn

([2, 18] and a great many others) Hn [6, 11], the integer Heisenberg group [21],

higher-rank symmetric spaces [15], polycyclic groups [9] and Z�G for a general

class of group G [8]. Whether or not a group admits a SASFT is a quasi-isometry

invariant under mild conditions [4], and a commensurability invariant [3]. It is

known that no free group admits a SASFT [17] and more generally, nor does

any group with two or more ends [4], nor any group with undecidable word

problem [8].

Here we construct a strongly aperiodic subshift of �nite type on genus > 1

surface groups (Corollary 10). Though strongly aperiodic tilings have been con-

structed in H2 [5, 6, 11] the underlying tiles do not admit a tiling of any compact

fundamental domain. Here we use an observation from [7], that any regular tiling

of H2 can be encoded as an “orbit graph” of an expansive primitive symbolic sub-

stitution system (greatly distorting the geometry but maintaining the combinato-

rial structure). In turn, given any pair of expansive primitive symbolic substitution
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systems with incommensurate growth rates, we construct SASFT’s on their orbit

graphs.

This technique can be seen as a generalization of the construction in [5], in turn

derived from [10] – in our terms here, the underlying substitution systems there

are simply 0 7! 02 and 0 7! 03.

Figure 1. A pair of overlaid pieces of orbit tilings – duals of orbit graphs for the substitution

systems 0 7! 00 (with growth rate 2) and A 7! AB, B 7! AAB (with growth rate 1
2
.3C

p
5/).

In e�ect, we create a set of tiles encoding the local combinatorics of how these tilings may

meet; any tiling by these tiles must enforce the growth rates of the underlying substitution

systems. In turn, as these growth rates are incommensurate, there can be no vertical period.

2. Preliminary de�nitions

We take the convention that 0 is not a natural number, that N D ¹1; 2; : : : ; º.
We will write n0 for nC 1. For any sequence ¹xiº 2 RZ, we de�ne

n
P

i

xi WD

8

ˆ

ˆ

<

ˆ

ˆ

:

0 for n D 0;

x0 C � � � C xn�1 for n > 0;

�xn � � � � � x�1 for n < 0;

so that for all n 2 Z, xn D
Pn0

i xi �
Pn

i xi .

Let A be any �nite alphabet and L � A� be any language on A. For any word

w 2 A�, let kwk be the length of w. We de�ne the language L1 � AZ of in�nite

words to be sequences ! 2 AZ such that every �nite subsequence !.i/ : : : !.j /

is a subword of some word in L. If L is an in�nite regular language, then by the

Pumping Lemma, L1 ¤ ;. To compress notation, for �nite or in�nite words, we

will often write !i for !.i/, and !.i:::j / or !.i : : : j / for the word !.i/ : : : !.j /.

For �nite words we will also write !.k::: / or !.k : : : / for !.k/ : : : !.k!k/.
Given an in�nite set ¹unº � .A�/Z the in�nite concatenation

! D : : : u�1u0u1 � � � 2 A
Z

satis�es, for all n 2 Z,

!..sn/
0 : : : sn0/ D un
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where sn D
Pn

i kuik. This de�nition coincides with what one might expect,

taking !.1/ to coincide with u0.1/. Note if L is closed under concatenation, then

every in�nite concatenation of words in L is in L1. Given, say, alphabets A and

B, and any map f WA ! B�, we will naturally de�ne f WA� ! B� as f .w/ D
f .w1/ : : : f .wn/, and f WAZ ! BZ as f .!/ D : : : f .!�1/f .!0/f .!1/ : : : .

Productions. A production system .A; L; R/ is speci�ed by an alphabet A,

language L on A and “production rules,” a �nite subset R of A � L. A regular

production system is one for which L is a regular language. ([7] gives many

applications and examples.)

Given .A; L; R/, we extend our production rules R to de�ne production rela-

tions R � .L � L/ [ .L1 � L1/ on �nite and in�nite words: for �nite words

u; v 2 L, .u; v/ 2 R if and only if v D v1 : : : vkuk for some ¹viº 2 Lkuk with each

.ui ; v
i/ 2 R.

For in�nite words !; � 2 L1, .!; �/ 2 R if and only if for some monotonic

and onto “parent function” PWZ ! Z, each .!i ; � j
P�1.i// 2 R. In other words,

each letter !i in ! produces the word with indices in P�1.i/ in � (formally, the

function � W P�1.i/ ! A), and each letter �j in � appears in the word produced by

!P.j /. As P is monotonic, each � i D � j
P�1.i/ is a well-de�ned word, and as P is

onto � D : : : ��1�0�1 : : : each � i is of �nite length. We say that “! produces �

with respect to P.”

An orbit in a production system .A; L; R/ is any set ¹.!i ; Pi /º 2 .L1 � ZZ/Z

such that for all i 2 Z, Pi is monotonic and onto, and !i produces !i 0

with respect

to Pi . (A priori orbits may or may not exist.) An orbit is periodic if and only if

there is some � � 1 with !i D !iC� , Pi D P.iC�/ for all i ; the period of the orbit

is the minimal such � .

A production system is expansive if for every sequence of words u1; : : : 2 L

with .ui ; ui 0

/ 2 R, there is some n 2 N, such that for all i > n, kuik > ku1k.

Symbolic substitutions. A symbolic substitution system is a production system

.A;A�; �/ such that � is a function A ! A� – that is, for each a 2 A, we

have exactly one value �.a/. We will write .A; �/ for .A;A�; �/. A symbolic

substitution system is primitive if and only if, for some N , for every n > N

and a; b 2 A, the letter b occurs within �n.a/. Note that a primitive symbolic

substitution system is expansive if for at least some a 2 A, k�.a/k > 1.
It is well known that orbits exist in any primitive symbolic substitution systems,

using that some letter a appears in the interior of some �n.a/. In fact, there are

uncountably many orbits, as some letter must appear more than once in some

�n.a/, giving a countable sequence of choices in the construction of an orbit;

however there are only countably many periodic orbits [7].
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For functions f; gWN ! R, we write f .k/ D ‚.g.k// to mean that for some

constant C > 1, for some M , for all k > M , we have C�1g.k/ � f .k/ � Cg.k/.

Note that if sk D ‚.tk/, then s D t . For a given v D .v1; : : : ; vn/ 2 Rn, let

jvj D
P

jvi j (that is, the 1-norm of v) and let v WD v=jvj. The following is well-

known (cf. [12]):

Theorem 1. Let .A; �/ be a primitive, expansive symbolic substitution system on

a �nite alphabet A D ¹a1; : : : ; anº. For each w 2 A�, let vw 2 Rn count each

letter: that is, the i th coordinate of vw is the number of occurrences of ai in w.

Then there exists � > 1 such that for all w 2 A�, k�k.w/k D ‚.�k/ .

Proof. Let A be an n� n matrix – a “substitution matrix” for � – with each entry

.Aij /, the number of occurrences of ai in �.aj / (and thus non-negative).

For a given word w 2 A�, note that Avw D v�.w/, and so for each k 2 N,

Akvw D v�k.w/. Since .�;A/ is primitive, there exists some N 2 N such that for

all k > N , Ak has all positive integer entries. By the Perron-Frobenius theorem,

A has a real eigenvalue � > 1, that is strictly larger than the absolute value of any

other eigenvalue. Consequently, for any word w 2 A�, k�k.w/k D jv�k.w/j D
jAkvw j D ‚.�kkwk/ D ‚.�k/. �

We call � the growth rate of .A; �/. A distribution of .A; �/ is any left

eigenvector � 2 R1�n of A corresponding to �. De�ning

kwk� WD �vw

we have the useful k�.w/k� D �Avw D ��vw D �kwk� .

Orbit graphs. Given a production system .A; L; R/, we construct for each orbit

.!i ; Pi /, an orbit graph with vertices indexed by i; j 2 Z, labeled by each !i
j .

Edges connect the vertices !i
j with !i

j 0 and each !i 0

j with each !i
Pi .j /

. Clearly,

every orbit graph is planar and the vertices are partitioned into “rows,” in�nite

paths corresponding to each !i . As a planar graph, each face is a cycle with

vertices !i
Pi .j /

, !i 0

j , !i 0

j 0 , !
i
Pi .j 0/

– each face is either a “quadrilateral,” with four

vertices, or a “triangle,” with three, depending on whether Pi .j
0/ D .Pi .j //

0 or

Pi .j
0/ D Pi .j /. (Recall each Pi is monotonic and onto.)

Lemma 2. Let .A; �/ be an expansive primitive substitution system with an orbit

.!i ; Pi /. Then any graph automorphism preserves the partition of the orbit graph

� into rows.

(The hypothesis that our regular production system is an expansive primitive

substitution system is stronger than necessary, but we do need the existence of lots

of triangles in the graph.)
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Proof. Because .A; �/ is expansive, for some a 2 A, k�.a/k � 2. Because

.A; �/ is primitive, each !i has in�nitely many occurrences of each a 2 A

– consequently, each row contains in�nitely many edges which are the side of

some triangle.

Given any quadrilateral with vertices !i
Pi .j /

, !i 0

j , !i 0

j 0 , !
i
Pi .j 0/

, it is adjacent to a

quadrilateral sharing the edge !i 0

j , !i 0

j 0 on the i 0th row, which is in turn adjacent to

a quadrilateral sharing an edge on the .i C 2/nd row, etc. Each quadrilateral thus

lies within an in�nite “gallery” of quadrilaterals.

Moreover, any triangle � in an orbit graph is incident to such a gallery,

beginning with its “row-edge.” Since there are triangles in this row to the left and

right of �, � is incident to exactly one such gallery, and this gallery is transverse

to the rows in the graph. Consequently, any graph isomorphism must preserve

these galleries, and so preserve the rows. �

Orbit tilings. We next de�ne, at least for informal understanding, a kind of dual

construction, due to L. Sadun [20, 7], of tilings of H2, corresponding to orbits in

expansive primitive symbolic substitution systems. The construction is simplest to

describe in the less used but quite convenient “horocyclic model” of the hyperbolic

plane, consisting of points .i; j / 2 R2 with metric .ds/2 D .e�ydx/2 C .dy/2.

One may easily check that maps of the form .x; y/ 7! .x C c; y/ and .x; y/ 7!
.edx; y C d/ are isometries. For familiarity, the map .x; y/ 7! .x C .ey/i/

isometrically takes the horocyclic model to the upper-half plane model.

Given an expansive primitive symbolic substitution system .A; �/, with growth

rate � and any choice of distribution �, for each a 2 A, de�ne a-tiles to be

rectangles of Euclidean height log� and width ed kak� where the base of the

rectangle lies on the line y D d . Clearly all a-tiles are congruent.

We next note that because k�.a/k� D e.log �/kak� , we may �t any a-tile directly

above a row of tiles labeled in �.a/, and more generally, any row labeled in a word

w may �t above a word labeled in �.w/, each wi �tting above each �.wi /.

More generally still, given any orbit .!i ; Pi / we may form tilings of the entire

plane. For precision, choosing any arbitrary c; d 2 R, we take a Euclidean

rectangle corresponding to each !i
j , with upper left corner at .c C U i

j C Si ,

d � i log�/ of Euclidean width ed��ik!i
j k

�
and height log�, where

U i
j D ed��i

j
P

k

kui
k
k

�
and Si D ed

i
P

j

�

��j
nj
P

k

kuj

k
k

�

�

;

where

ni D min P�1
j .0/

(U i
j measures the Euclidean distance, in the model, of the left side of the tile

corresponding to !i
j from the left side of the tile !i

0. Si measures the horizontal

distance from the left side of !i
0 from the left side of !0

0 . The upper left corner of

the tile corresponding to !0
0 lies at the point .c; d/.)
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3. Main Technical Lemma

Before stating the main technical lemma, for any �xed N 2 N, on any lan-

guage, we take the relation w �
N

w0 on words w;w0 to mean that there ex-

ist (possibly empty) words c; p; p0; s; s0 such that w D pcs, w0 D p0cs0 and

N > kpk; kp0k; ksk; ks0k – that is, the words are equal apart from some pre�x

and su�x of length at most N .

We say that the growth rates �, 
 of primitive expansive substitution systems

.A; �/, .B; &/ are incommensurate if for no m; n 2 N is �m D 
n. Equivalently,

log�= log 
 … Q. Substitution systems generically have incommensurate growth

rates, and every substitution system will be incommensurate with at least one of

the systems de�ned by 0! 00 or 0! 000.

Lemma 3 (main technical lemma). Given primitive expansive substitution systems

.A; �/, .B; &/ there exist K;N 2 N and a regular production system .AB; L; R/

equipped with maps ˛WAB ! A, ˇWAB ! B�, ıWAB ! ¹K;K � 1º with the

following properties.

(1) For any orbit ¹.!i ; Pi /º of .AB; L; R/, ¹.˛.!i/; Pi /º is an orbit of .A; �/.

(2) ı.wi/ D ı.wj / for all w 2 L and 1 � i; j � kwk. Consequently, ı is

well-de�ned on L and on L1.

(3) For all w;w0 2 L with .w; w0/ 2 R, ˇ.w0/ �
N
& ı.w/.ˇ.w//.

(4) If the growth rates of .A; �/; .B; &/ are incommensurate, then no orbit of

.AB; L; R/ is periodic.

(5) .AB; L; R/ does have orbits.

Proof. Let �; 
 be the growth rates of .A; �/; .B; &/. Let � 2 RjAj; � 2 RjBj be

distributions for .A; �/; .B; &/, scaled so that �i > 
 �j for each ai 2 A, bj 2 B.

That is, kak� > 
kbk� for all a 2 A; b 2 B.

˛̨

ˇ1 ˇ2::: b

& ı.ˇb/ D p q r s t
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The basic idea is very simple. We overlay orbit tilings for .A; �/ and .B; &/,

reading o� all possible ways that tiles in the latter can meet tiles in the former.

Combinatorially, there are only �nite many such possibilities, which we de�ne as

our alphabet AB (choosing the relevant information we’ll need). Our de�nition

of L captures the correct (and rather simple) combinatorics along rows and our

production rules R describes how each row may �t against the next locally. If

we ignore the additional information we have placed on our tiles, we recover our

original A-tiling – that is, our AB-tiling is a marked A-tiling. And we show that

these additional markings do not allow any periodic tiling, simply because of the

incompatibility of the growth rates, that is, the vertical spacing of the rows in the

two tilings.

We may think of AB as simply all possible ways for tiles in aB-tiling to cover a

tile in an A-tiling. Because kak� > 
kbk� for each a 2 A; b 2 B, each horizontal

A edge meets at least 3 di�erent B-tiles. Considering a tile T labeled ˛ 2 A, with

width k˛k� , ˇ is any word corresponding to a string of B-tiles that cover the upper

left corner of T , do not extend beyond the right of T , but with the addition of one

more tile (labeled b) does extend beyond the right of T . The bottom of tile T is

ı D K or .K�1/ rows further below the row of ˇ, and ˇb is above a string of tiles

& ı.ˇb/, which we partition into strings labeled p; q; r; s; t : p is the maximal string

to the left of T ; q is the rest of & ı.ˇ1/; r D & ı.ˇ2:::/; and & ı.b/ is partitioned into

s; t where s is the maximal string entirely inside of T . From ˛; ˇ; ı; p and s any

remaining combinatorics are completely implied.

Adjacent letters in any word in L need only satisfy that the number of rows ı

match, and that s of a tile on the left matchesp of a tile on the right. The production

rules in R only require that the sequence of ˇ’s of the children match the string

pqr of the parent.

In this de�nition of .AB; L; R/, we simply take all possible such strings,

constrained only by lengths measured in kk� and kk�; properties (1)-(3) in the

lemma are essentially trivial from the de�nition. It is more interesting that with

no more care, just from the incompatibility of the growth rates of the two systems,

that there are no periodic orbits. Finally, we must actually construct orbits – we

take care to do this explicitly, checking that our de�nitions are satis�ed.

De�ning .AB;L;R/, ˛; ˇ; p; s; ı,K andN . LetK WD
˙ log �

log 


�

. We now de�ne

AB as the set of all .˛; ˇ; p; s; ı/ 2 A � B� � B� � B� � ¹K;K � 1º such that

� for some b 2 B, kˇ.2::: /k� < k˛k� < 
kˇbk�;

� & ı.ˇb/ D pqrst where & ı.ˇ1/ D pq, & ı.b/ D st , and kq.2::: /rsk�
<

k�.˛/k� < 
kqrst1k�.

Note that AB is �nite and non-empty. For each x D .˛x ; ˇx; px; sx ; ıx/ 2 AB,

de�ne ˛.x/ D ˛x ; ˇ.x/ D ˇx ; p.x/ D px ; s.x/ D sx and ı.x/ D ıx. Take any

N > max
x2AB

kp.x/k; ks.x/k.
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We de�ne L � A�
B

by requiring that any length 2 subword wi i 0 2 A�
B

of any

word w in L must satisfy

� s.wi / D p.wi 0/

� and ı.wi/ D ı.wi 0/.

We de�ne production rules R � AB � L to be the pairs .x; w/ satisfying

� p.x/ˇ.w/ D & ı.x/.ˇ.x//

� and �.˛.x// D ˛.w/ and extend to production relations R � L � L,

L1 � L1.

Verifying properties (1)–(3) of .AB;L;R/; ˛; ˇ; p; s, ı, K and N . (1) For

any .x; y/ 2 R, by de�nition, we have �.˛.x// D ˛.y/; thus for any orbit

¹.!i ; Pi /º of .AB; L; R/, ¹.˛.!i/; Pi /º is an orbit of .A; �/.

(2) By the de�nition of L, ı is constant on the letters of any word in L.

(3) Let w; v 2 L with .w; v/ 2 R and let n D kwk. Then v D w1 : : : wn with

.wk ; w
k/ 2 R for all 1 � k � n.

We will show by induction that

p.w1/ˇ.w
1/ : : : ˇ.wk/ D & ı.w/.ˇ.w.1:::k//s.wk/

for each 1 � k � n.

When k D 1, this equality follows from the de�nition ofR. Under the inductive

hypothesis that

p.w1/ˇ.w
1/ : : : ˇ.wk�1/ D & ı.w/.ˇ.w.1:::.k�1////s.w.k�1//

we have

p.w1/ˇ.w
1/ : : : ˇ.wk/ D p.w1/ˇ.w

1/ : : : ˇ.wk�1/ˇ.wk/

D & ı.w/.ˇ.w.1:::.k�1////s.w.k�1//ˇ.w
k/

D & ı.w/.ˇ.w.1:::.k�1////p.wk/ˇ.w
k/

D & ı.w/.ˇ.w.1:::.k�1////&
ı.w/.ˇ.wk//s.wk/

D & ı.w/.ˇ.w.1:::k///s.wk/

for all k, and in particular for k D n. Since N > kp.w1/k; ks.wn/k, ˇ.v/ �
N

& ı.w/.ˇ.w//.
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(4) No orbit in .AB;L;R/ is periodic. For contradiction, suppose ¹.!i ; Pi /º �
.L1 � Z/Z is an orbit of .AB; L; R/ with period � .

Let u0 D !0.0/. For all k 2 N, let uk D !k.m : : :M/ where m;M are the

minimum and maximum of P�1
0 ı � � � ı P�1

k�1
.0/; in other words, each uk is the

subword of !k with .uk�1; uk/ 2 R, inductively, the “kth descendant” of u0.

Now

˛.uk� / D �k�.˛.u0//;

so that

kuk�k D ‚.�k�ku0k/ D ‚.�k�/:

Let� D ı.u0/C� � �Cı.u.��1//. Because the orbit has period � , for all k 2 Z,

� D ı.uk�/C � � � C ı.u.��1Ck�// and so

ˇ.uk� / �
N
&k�.ˇ.u0//;

and hence

kˇ.uk�/k D ‚.
k�kˇ.u0/k/ D ‚.
k�/:

On the other hand, for all u 2 A�
B

, kuk � kˇ.u/k � Ckuk where C D
max

a2AB

kˇ.a/k, and so we have

kˇ.uk�/k D ‚.kuk�k/ D ‚.�k�/:

But if ‚..
�/k/ D ‚..��/k/, then we must have that �� D 
�, contradicting

our hypothesis that .A; �/, .B; &/ are incommensurate.

(5) Constructing an orbit in .AB;L;R/. We have yet to show that there

actually are any orbits in .AB; L; R/.

In fact, we have great latitude: let ¹.ui ; Pi /º be an orbit of .A; �/, let ¹.vi ;Qi /º
be an orbit of .B; &/, and let c; d 2 R, with which we may o�set the orbit in B

against the orbit in A. Given these parameters, we will construct letters !i
j , show

these are correctly de�ned in AB, show that each !i D :::!i
�1!

i
0!

i
1 : : : is a word

in L1, and then show that each .!i ; !i 0

/ 2 R relative to Pi .

De�ning ıi : the number ofB rows intersecting row ui . First we will establish

some notation for measuring the orbits against one another; as discussed above,

we may think of these as an A-tiling overlaid with a B-tiling, with an arbitrary

o�set of c horizontally and d vertically. Recall that �; � are the growth rates of

.A; �/ and .B; &/, and �; � are distributions scaled so that �a > 
 �b for each

a 2 A, b 2 B. For each i; j 2 Z, let

U i
j WD ��i

j
P

k

kui
k
k

�
:
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(We may think of U i
j as the distance to the left of ui

j from the left of ui
0, measured

relative to the �, scaled to the horocyclic model.) Let

�i WD b.d C i log�/= log 
c

– that is, 
�i � ed�i < 
 .�i /0

– and let

ıi WD �i 0 ��i :

(Thus the �i th row of the B tiling contains the top edge of the i th row of the A

tiling, and ıi is the number of rows in the B tiling that meet the i th row, but not

the bottom edge of the i th row, in the A-tiling.)

Now ıi D �i 0 ��i D
�dCi log �

log 

C log �

log 


˘

�
�dCi log �

log 


˘

and so
log �

log 

� 1 < ıi <

log �

log 

C 1. Recalling that K D

˙ log �

log 


�

, we have ıi 2 ¹K;K � 1º.

De�ning r i
j

: the index of the �rst v�i tile meeting ui
j
. Next, there must exist

some r i
j 2 Z satisfying


��i

ri
j

X

k

kv�i

k
k

�
� e�d U i

j C c � 
��i

.ri
j

/0

X

k

kv�i

k
k

�

(That is, r i
j is the index of the letter in v�i just to the left, inclusively, of ui

j ,

shifted by d vertically and c horizontally in the horocyclic model.)

Let

V i
j WD 
��i

ri
j

X

k

kv�i

k
k

�
and W i

j WD 
��i

.ri
j

/0

X

k

kv�i

k
k

�

(We may think of V i
j , W i

j as the distances to the left and right of v
�i

ri
j

from v
�i

0 ,

scaled in the horocyclic model.)

Note that V i
j 0 > W i

j since kak� > 
kbk� for all a 2 A; b 2 B. Moreover, for

all k � j ,

V i
k0 �W i

j � e�d .U i
k0 � U i

j / < W
i

k0 � V i
j

and thus, using 
�i � ed�i < 
�0

i , we have


�i .V i
k0 �W i

j / � �i .U i
k0 � U i

j / < 

.�i /0

.W i
k0 � V i

j /:

That is,

kv�i ..r i
j /

0 : : :r i
k/k�

� kui .j : : : k/k� < 
kv�i .r i
j : : : .r i

k/
0/k

�
(1)

as illustrated below for the �i th row of the ˇ tiling:
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v�i ..r i
j /

0 : : :r i
k
/

ui .j : : : k/

v�i .r i
j : : : .r i

k
/0/

De�ning !i
j
. For each i; j 2 Z we now de�ne !i

j , giving ˛.!i
j /; ˇ.!

i
j /; p.!

i
j /,

s.!i
j / D p.!i

j 0/ (and letting ı.!i
j / D ıi ). We will show each satis�es the de�nition

of AB, that each !i .jj 0/ 2 L and so each !i 2 L1. We will show each

.!i
j ; !

i 0

P�1
i

.j /
/ satis�es the de�nition ofR and so too then .!i ; !i 0

/ 2 Rwith respect

to Pi – thus .!i ; Pi / is an orbit of .AB; L; R/, concluding the construction.

For each i; j 2 Z, we de�ne

˛.!i
j / WD ui

j 2 A

De�ne

ˇ.!i
j / WD v�i .r i

j : : : .r i
j 0 � 1//

Thus, taking k D j in equation (1) above,

kˇ.!i
j /.2::: /k�

< k˛.!i
j /k�

< 
kˇ.!i
j /ˇ.!

i
j 0/1k

�

satisfying the conditions on ˇ.

Let Q
�ıi

i WD Q�1
i ı � � � ı Q�1

.iCıi �1/
and de�ne mi

j ; n
i
j and M i

j as

mi
j WD minQ

�ıi

�i
.r i

j /

and

M i
j WD maxQ

�ıi

�i
.r i

j /

the indices of the �rst and last letters of & ıi .v
�i

ri
j

/ in v�i0 , and

ni
j WD min P�1

i .j /

the index of the �rst letter of �.ui
j / in ui 0

– notemi
j � r i 0

ni
j

< M i
j < m

i
j 0 . Moreover

& ıi .ˇ.!i
j // D vi 0

.mi
j : : :r i 0

ni
j

: : :M i
j : : : .m

i
j 0 � 1//

and in particular

& ıi .ˇ.!i
j /1/ D vi 0

.mi
j : : :M

i
j /
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If r i 0

ni
j

� mi
j let

p.!i
j / D v�i0 .mi

j : : : .r i 0

ni
j

� 1//

and let p.!i
j / be the empty word otherwise.

Letting p D p.!i
j /, q D v�i0

.r i 0

ni
j

: : :M i
j /, r D v�i0

..M i
j /

0 : : : .mi
j 0 � 1//,

s D s.!i
j / D p.!i

j 0/, and t D v�i0

.r i 0

ni
j 0

: : :M i
j 0/ we now have

& ıi .ˇijˇ
ij 0

1 / D pqrst; & ı.ˇ
ij
1 / D pq; and & ı.ˇ

ij 0

1 / D st

Since k�.˛ij /k� D kui 0

.ni
j : : : .n

i
j 0 � 1//k

�
, applying equation (1) we have

kq.2::: /rsk�
< k�.˛ij /k� < 
kqrst1k�

Consequently, each!i
j is a well-de�ned letter in A. Moreover, as each ı.!i

j / D
ıi D ı.!i

j / and each p.!i
j 0/ D s.!i

j /, we have that every !i .jj 0/ 2 L and

every !i 2 L1. Finally, each .!i
j ; !

i 0

.P�1
i .j /// is a production rule in R since

p.!i
j /ˇ.!

i 0

.P�1
i .j /// D & ıi .ˇ.!i

j // and �.˛.!i
j // D ˛.!i 0

.P�1
i .j ///. �

We do not need and will not prove, but in fact

Theorem 4. Every orbit of .AB; L; R/ is of the form constructed in the proof

above.

4. Strongly aperiodic subshifts of �nite type on surface groups

We will now de�ne a strongly aperiodic subshift of �nite type on a hyperbolic

surface group. The idea is that there is a primitive symbolic substitution system

which in some sense describes the combinatorics of the tiling of H2 by the

fundamental domain of a surface group. Applying Lemma 3 will then allow us to

produce a strongly aperiodic subshift of �nite type on the dual graph of this tiling,

which is just the Cayley graph of the surface group.

4.1. The ¹p; qº-graph, periods, and subshifts of �nite type. The ¹p; qº-graph

�p;q is the unique planar graph such that every vertex has degree q and every

complementary region (in the plane) is bounded by a p-cycle. When p D q D 4g,

this �p;q will be isomorphic to an unmarked unlabeled Cayley graph �4g;4g of the

genus g surface group.
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We will extend the notion of a subshift of �nite type from Cayley graphs to

graphs of bounded degree. In fact, our de�nition will be slightly more restrictive,

since an arbitrary graph carries no natural framing on its vertices. After discussing

what it means for such an object to be strongly aperiodic, we will de�ne a primitive

substitution system whose orbit graphs each contain a naturally embedded copy

of the ¹p; qº-graph which �lls out every vertex. This substitution system will be

critical in what follows.

Labeled graphs and subshifts of �nite type. Given an alphabet A, an A-la-

beling of a graph � with vertices V.�/ is a map ! 2 AV.�/. An A-labeled graph

.�; !/ is a graph � together with an A-labeling ! of it. An A-pattern is a �nite

A-labeled graph .�; !/ with a speci�ed basepoint V0.�/ 2 V.�/.
A labeled isomorphismˆW .�1; !1/ ! .�2; !2/, with !1 an A-labeling and !2

a B-labeling on alphabets A and B, consists of a graph isomorphismˆW�1 ! �2,

together with a map ˆ�WA ! B, such that !2.ˆ.v// WD ˆ�.!1.v//. If A D B

then ˆ� is typically understood to be the identity.

Given a graph � and a �nite collection F of �nite A-labeled graphs, a subshift

of �nite type X.�;F/ on � consists of all A-labelings ! of �, such that every

vertex v of � lies within an subgraph � 0 so that there is a labeled isomorphism ˆ

from .� 0; !j�0/ to some .�; !0/ 2 F, with ˆ.v/ D V0.�/. That is, in e�ect, every

vertex is the basepoint of some pattern speci�ed in F.

Given ! 2 X.�;F/, a period of ! is any labeled isomorphism ˆW .�; !/ !
.�; !/. We say that X.�;F/ is strongly aperiodic if no labeling in X has a

nontrivial period.

Cayley graphs. Note that if � is the (unlabeled) Cayley graph of a group G,

then every subshift of �nite type X on � induces a subshift of �nite type QX on G,

and any period of QX induces a period of X . However, a subshift of �nite type on

G will not always be a subshift of �nite type on � because forbidden patterns on

G can use framing data which is not available on �.

A primitive substitution system encoding the ¹p; qº-graph. For the rest of

this section, �x p; q � 5, �x A D ¹Y; Wº and �x

�.Y/ D .YWp�3/q�4
YW

p�4;

�.W/ D .YWp�3/q�3
YW

p�4:

Given a production system .A; L; R/, for each orbit .!i ; Pi /, we construct a

reduced orbit graph �O with vertices indexed by i; j 2 Z, labeled by each !i
j .

Edges connect the vertices !i
j with !i

j 0 and each !i 0

j D Y (rather than all !i 0

j ) with

each !i
Pi .j /

. (That is, a reduced orbit graph corresponds to an orbit graph with the

edges produced by W vertices removed.) More generally, if O is an orbit of some
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RPS .A0; L; R/, then for any function �WA0 ! A, we can de�ne a corresponding

reduced orbit graph where we remove vertical edges produced by ��1¹Wº vertices

YW

YWWYWWYW YWWYWWYWWYW

The following is easily veri�ed and further discussion appears in [5]; the

construction for the ¹5; 6º graph is shown above.

Lemma 5. For all orbits O of .A; �/, the reduced orbit graph �O has underlying

graph �p;q .

If B is any other primitive symbolic substitution system, then for any orbit

O D .!i ; Pi / of the RPS .AB; L; R/ given by Lemma 3, it follows that �O has

underlying graph �p;q (where we reduce with respect to ˛WAB ! A as in the

statement of the Lemma). This is because of the �rst property promised by the

Lemma – that .˛.!i/; Pi / is an orbit of .A; �/.

4.2. A strongly aperiodic subshift of �nite type on the ¹p; qº-graph. Fix

.B; &/ with growth rate incommensurable with that of .A; �/ – in fact taking

B D ¹0º and &.0/ D 0k for any �xed k > 1 will su�ce – and let .AB; R; L/

be as in Lemma 3. We would like to say that the collection of .AB; R; L/ orbit

graphs forms a subshift of �nite type on �p;q , and that this subshift of �nite type is

strongly aperiodic, but for technical reasons, we must adjust this plan as follows.

First we construct a primitive substitution system .A#; �#/ and a SFT XF on

�p;q such that every con�guration of XF is labeled isomorphic to a reduced orbit

graph of some orbit O of .A#; �#/. In fact the system .A#; �#/ will be essentially

the same as .A; �/, but the alphabet A# will carry some extra data that allows us

to recover the orbit graph structure of �O knowing only the labels !OW�p;q ! A#.

We then modify .AB; R; L/ to produce an RPS .A0; R0; L0/ and a SFT on �p;q

whose con�gurations are isomorphic to A0 orbit graphs, and hence have no

periods.

De�ning .A#; �#/. Let N be k�.W/k.

De�nition 6. Let A# D A � ¹1; : : :N º, and for a 2 A, let

�#.a; i/ D .�.a/1; 1/.�.a/2; 2/ : : : .�.a/k�.a/k; k�.a/k/;

i.e., �#.a; i/ ignores i and writes out the letters of �.a/, labeled by their place

within the word.
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For a vertex v 2 �p;q , let �v be the union of p-cycles containing v. Let �p;q

be an abstract graph isomorphic to �v .

Lemma 7. Let F be the collection of all patterns realized on �v for v any vertex

of any .A#; �#/ reduced orbit graph.

Then for any ! 2 XF, there exists an orbit O of .A#; �#/ such that

.�p;q ; !/ Š .�O; !O/:

Proof. Before outlining the proof, we need to make an observation about p-cells

in A# orbit graphs.

De�nition 8. For a 2 A, let sa D ¹i W �.a/i D Yº. Given a sequence n1; : : : ; nk of

natural numbers, we say that this sequence is of horizontal type if the following

hold.

� The ni are consecutive, i.e., ni 0 D .ni /
0.

� k D p � 1 or p � 2.
� For k�.a/k D k, we have n1 and nk in sa.

Key observation. Letting �p be an abstract p-cycle, let O be an orbit of .A#; �#/

and ˛W�p ! �O a p-cycle in �O. Then we have the following.

� There exists exactly one oriented path 
 W ¹1; : : : ; kº ! �p whose numerical

labels !O ı ˛ ı 
 form a sequence of horizontal type.

� If 
 has p � 1 vertices, then all the vertices of this path are produced by the

other vertex of the p-cycle.

� Suppose 
 has p � 2 vertices, v0 is the vertex preceding 
 in cyclic order,

and v1 the vertex following 
 in cyclic order. Then the �rst p � 3 vertices of


 constitute the last (rightmost) p � 3 vertices produced by v0, and the last

vertex of 
 is the �rst vertex produced by v1.

It is easy to see that there is at least one such path as one of the vertices of the

p-cycle must produce at least p � 3 of the other vertices. On the other hand, it is

clear that there is at most one such path with length p � 1 and at most one with

length p � 2, as i 2 sa implies that i 0 and i C 2 are not in sa. We leave the rest to

the reader.

Now we may proceed to outline the proof of the lemma. We will construct a

bijection  WV.�p;q/ ! Z2 and P W�p;q ! Z such that the following hold.

� The function rowi WZ ! �p;q de�ned by rowi .j / D  �1.j; i/ yields an

in�nite path in �p;q .

� The function Pi WZ ! Z given by Pi .j / D P.rowi 0.j // is a nondecreasing

surjection.
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� !jrowi0 .P �1
i

.j // is the same word as �#.!. 
�1.j; i//.

� The neighbors of  �1.j; i/ in rowi 0Z are exactly the Y-labeled vertices of

rowi 0.P�1
i .j //.

Then we can de�ne O D .!i ; Pi / by taking Pi D Pi and !i D ! ı rowi .

De�ning the second coordinate of . We will de�ne a function dy on oriented

edges of �p;q as follows. Every edge e participates in two p-cycles. If, in either

cycle, it is part of the path whose numerical labels are of horizontal type, then we

set dy.e/ D 0. Otherwise, we set dy.e/ D 1 if the terminal vertex of e lies on this

path, and dy.e/ D �1 if the initial vertex of e lies on this path. (This exhausts all

cases: if neither vertex of e lies in the horizontal type path, then e is horizontal in

the other p-cycle).

Now, �x a vertex v0 of �p;q . De�ne y.v/ to be the sum over any path 
 from

v0 to v of dy of the edges of 
 . Then y is well de�ned because it is easily seen

that dy sums to 0 around any p-cycle, and every loop can be broken into p-cycles.

This y will give the second coordinate of  W�p;q ! Z � Z.

Horizontal and vertical edges. Let H� be the subset of �p;q given by throwing

away the interior of any edge e such that dy.e/ ¤ 0. (We say that the edges of

H� are horizontal, while the other edges of �p;q are vertical). Of course, y is

constant on each connected component of H�. We wish to show that y�1.i/

forms a single connected component of H� and that this connected component is

an in�nite embedded path.

It follows from our key observation that every v 2 �p;q is incident to exactly

two horizontal edges, which carry a natural orientation. Hence, all connected

components of H� are either cycles or lines. Furthermore, v has a natural parent

Par.v/, the unique vertex connected to v by a vertical edge with v at the lower end,

in �v.

Proposition 9. Given u; v 2 V.�p;q/ we have that u; v are in the same connected

component of H� if and only if Par.u/ and Par.v/ are in the same connected

component of H�.

Proof. The parent of a horizontal neighbor of a vertex v is either equal to the

parent of v or is a horizontal neighbor of the parent of v. Hence, if u; v are in the

same connected component, so are their parents.

Conversely, if u and v are horizontal neighbors, and u is the parent of some

vertex Qu and v the parent of Qv, it is easily seen (in �v) that there is a horizontal

path connecting Qu and Qv. Hence, if two vertices have parents in the same connected

component, they must themselves be in the same connected component. 4
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Consequently, the collection of parents of vertices of some connected com-

ponent itself is the vertex set of some (nonempty) connected component. If the

original connected component is �nite, it is clear (from our observation) that the

set of parents is strictly smaller. Taking a minimal connected component, we ob-

tain a contradiction. Hence, every connected component is in�nite, and it follows

that every connected component is a line.

Connectedness of y�1.i /. We wish now to show that y�1.i/ consists of exactly

one in�nite embedded path. Suppose y�1.i/ includes two connected components

of H� . Let 
 be a path connecting these two, such that 
 includes a minimal

number of vertical edges. We know 
 (or its reverse) must contain at least one

vertical edge, hence it contains a subpath consisting of a positive vertical edge,

some horizontal edges, and a negative vertical edge. By the proposition, we can

replace this subpath with a horizontal subpath, contradicting minimality.

De�ning the �rst coordinate of . We have seen that each y�1.i/ is an in�nite

horizontal line. For each i , choose any vertex v0 in y�1.i/, and de�ne  jy�1.i/.v/

to be the signed count of horizontal edges between v0 and v.

De�ning P . Let P.v/ be the �rst coordinate of  of the parent of v. By the

proposition, every vertex of rowi is the parent of some vertex in rowi 0 , so Pi is

surjective. It is clear that Pi is nondecreasing, since if u is immediately to the

right of v, then the parent of u is either immediately to the right of the parent of v

or they coincide.

Verifying properties. For each vertex v, the vertices produced by v in �v form

a path labeled by �#.!.v//. Since these are exactly the vertices whose parent is

v, all have y value one greater than that of v, and the path is horizontal, we are

done. �

Now, as promised, take .B; &/ with incommensurable growth rate. Let A0 D
.A#/B, and let R, L be as in the lemma.

Corollary 10. Let F consist of all A0-patterns ! on�p;q such that the underlying

A# labels appear in some .A#; �#/ orbit graph, and if 
 � �p;q is the path of

vertices produced by v in this orbit graph, then !j
 2 L and .!.v/; !j
/ 2 R.

Then every con�guration ofXF is isomorphic to an A0 orbit graph, and hence

XF is strongly aperiodic.

Proof. The orbit graph structure is the same as in the lemma. We must only

verify that the rows are admissible and that each row produces the next. But this

immediately follows from the de�nition of F. �
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By applying the corollary with p D q D 4g, we see that every higher genus

surface group carries a strongly aperiodic subshift of �nite type.
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