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Slow north-south dynamics on PML

Mark C. Bell and Saul Schleimer

Abstract. We consider the action of a pseudo-Anosov mapping class on PML.S/. This ac-

tion has north-south dynamics and so, under iteration, laminations converge exponentially

to the stable lamination.

We study the rate of this convergence and give examples of families of pseudo-Anosov

mapping classes where the rate goes to one, decaying exponentially with the word length.

Furthermore we prove that this behaviour is the worst possible.

Mathematics Subject Classi�cation (2010). 37E30, 57M99.
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1. Introduction

A pseudo-Anosov mapping class h 2 ModC.S/ acts on PML.S/ with north-

south dynamics. Therefore its action has a pair of �xed points L˙.h/ 2 PML.S/

and under iteration laminations (other than L
�.h/) converge to L

C.h/. A pants

decomposition, collection of train tracks or ideal triangulation gives a coordinate

system on PML.S/ [5, Exposé 6]. In any such system the convergence to L
C.h/

is exponential.

Thurston suggested that under iteration laminations always converge to L
C.h/

“rather quickly” [9, page 427]. If this were true for all pseudo-Anosov mapping

classes then iteration would give an e�cient algorithm to �nd L
C.h/. However it

is false:

Theorem 1.1. Suppose that 3g � 3 C p � 4 and �x a �nite generating set for

ModC.Sg;p/. There is an in�nite family of pseudo-Anosov mapping classes where

the rate of convergence goes to one, and decays exponentially with respect to word

length.

As usual, we use Sg;p to denote the surface of genus g with p punctures.

In Section 2 we show how to construct such a family on S3;0 and in Section 3

we show how to generalise this construction to other surfaces. Furthermore, in

Proposition 4.1 we show that this type of convergence is the worst possible. Finally
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in Section 5 we describe how these examples can be rigorously veri�ed using

flipper [2].

In order to bound the rate of convergence, we use the following de�nition.

De�nition 1.2. Suppose that f 2 ZŒx� is a polynomial with roots �1; : : : ; �m,

ordered such that j�1j � j�2j � � � � � j�mj. The spectral ratio of f is !.f / WD
j�1=�2j.

This is motivated by the equivalent problem of GL.N;Z/ acting on RPN �1.

Under iteration of a matrix M 2 GL.N;Z/, generic vectors in RPN �1 converge

exponentially to the dominant eigenvector of M . The rate of this convergence

is bounded above by !.M/ WD !.�M /, the spectral ratio of the characteristic

polynomial of M [11, Section 4.1].

De�nition 1.3. Suppose that h 2 ModC.S/ is a pseudo-Anosov mapping class.

Let ��.h/ 2 ZŒx� denote the minimal polynomial of its dilatation �.h/. The

spectral ratio of h is !.h/ WD !.��.h//.

Choose one of the above coordinate systems onPML.S/ and a pseudo-Anosov

mapping class h. On a suitable neighbourhood of LC.h/, the action of h is given

by an integer matrix M . Hence, for a generic lamination L the rate of convergence

of hn.L/ to L
C.h/ is bounded above by !.M/. However, the dominant eigenvalue

of M is �.h/ and so !.M/ � !.h/. Thus we achieve Theorem 1.1 by producing

mapping classes with spectral ratio exponentially close to one.

Finally, we conjecture that the surface complexity condition in Theorem 1.1 is

not only su�cient but also necessary. If so then this problem is subtly di�erent

from the equivalent problem for matrices. In GL.N;Z/ exponentially slow con-

vergence occurs even when N D 3. One such family is given by the matrices
0

@

0 0 1

1 0 2k

0 1 0

1

A :

These have word length only O.k/, due to distorted subgroups [8, Theorem 4.1].

2. An upper bound by example

We start by constructing an explicit family of pseudo-Anosov mapping classes on

S3;0 whose spectral ratio goes to one exponentially with the word length. To do

this we use:

� ' WD 1C
p

5
2

to denote the golden ratio,

� Fn to denote the nth Fibonacci number, and

� x �t y to denote that jx � yj � t .
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Figure 1. Curves on the surface of genus 3.

Let S be the surface of genus 3 as shown in Figure 1 in which sides with the

same label are identi�ed. Fix k � 7 such that k � 2 .mod 8/. Consider the

mapping class

h WD � ı Tc ı .T �1
a ı Tb/k

where Tx denotes a right Dehn twist about x and � is the order three mapping

class which cycles these hexagons to the left.

Theorem 2.1. The mapping class h is pseudo-Anosov and !.h/ � 1 C 14'�k .

Proof. First note that as in [6, page 448] it follows immediately from [7, Theo-

rem 3.1] that h3 is pseudo-Anosov and so h is too.
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Figure 2. The invariant train track � of h [6, Figure 3b].
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Now the train track � , shown in Figure 2, is invariant under h. Direct cal-

culation show that the hitting matrix of � under h with respect to the basis

a; b; c; �.a/; �.b/; �.c/; �2.a/; �2.b/; �2.c/ is

M WD

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

F2kC1 F2k F2k 0 0 0 0 0 F2k

F2k F2k�1 F2k�1 � 1 0 0 0 0 0 F2k�1 � 1

F2kC1 F2k F2k C 1 1 0 0 0 0 F2k

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

and that the characteristic polynomial of M is

.x3 � 1/.x6 � F2kx4 � F2kC3x3 � F2kx2 C 1/:

Using the fact that k � 2 .mod 8/, reducing the right-hand factor of this modulo 7

we obtain x6 C 4x4 C x3 C 4x2 C 1 2 F7Œx�. This is irreducible in F7Œx� and so

the minimal polynomial of �.h/ is

��.h/.x/ D x6 � F2kx4 � F2kC3x3 � F2kx2 C 1:

To �nd the roots of ��.h/, we divide by x3 and substitute y WD x C x�1 to

obtain:

y3 � .F2k C 3/y � F2kC3:

Let y�1, y0 and y1 be the three roots of this cubic. These are all real numbers as

� D 4.F2k C 3/3 � 27F 2
2kC3

> 0 and using the cubic Viète formula are given by

yj WD 2p
3

p

F2k C 3 cos
�1

3
arccos

� 3
p

3F2kC3

.F2k C 3/
p

F2k C 3

�

� .j � 1/
2�

3

�

:

By using the Taylor series for cosine and arccosine together with the fact thatp
F2k C 3 �1

4
p

5Fk , we deduce that

y�1 �2 � 4
p

5Fk ; y0 �2 0 and y1 �2
4
p

5Fk :

Since y D x C x�1, the six roots of ��.h/ are given by

x˙
i WD

yi ˙
q

y2
i � 4

2

Thus for each i either xC
i �1 yi and x�

i �1 0, or vice versa. In particular

x�
�1 �3 � 4

p
5Fk and xC

1 �3
4
p

5Fk :
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The other four roots of ��.h/ lie in B.0; 3/, the disk about 0 of radius 3. So we

deduce that the spectral ratio of h is at most the ratio of jx�
�1j and jxC

1 j. As these

both lie in X WD B.
4
p

5Fk ; 3/, we therefore have that

!.h/ � max.X/

min.X/
�

4
p

5Fk C 3
4
p

5Fk � 3
� 1 C 6

Fk

� 1 C 14'�k : �

3. Other surfaces

We also consider the possible spectral ratios of pseudo-Anosov mapping classes

on other surfaces. We summarise the results of this section in Table 1 where

� N denotes that there are no pseudo-Anosov mapping classes,

� B denotes that the spectral ratios of pseudo-Anosov mapping classes are

bounded away from one,

� P� denotes that !.h/ � 1C 1
poly.jhj/ for some in�nite family of pseudo-Anosov

mapping classes, and

� E denotes that !.h/ � 1 C 1
exp.jhj/ for some in�nite family of pseudo-Anosov

mapping classes.

punctures

0 1 2 3 4 5 6 7

0

1

2

3

g
en

u
s

N B

B

P�

P�

P� E

Table 1. Spectral ratios in other surfaces.

Conjecture 3.1. In all of the P� cases, there is no family of pseudo-Anosov

mapping classes whose spectral ratios converge to one exponentially. That is,

none of the P� cases are actually E cases.

Note that in all of our examples of slow convergence there is a pair of identical

disjoint subsurfaces supporting much of the dynamics of the mapping class.

Furthermore, some of the topology of S lies outside of these subsurfaces. If

these are necessary conditions then, since Dehn twists subgroups are undistorted

in ModC.S/ [3, Theorem 1.1], the conjecture should follow.
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3.1. Exponential convergence. We start by considering the cases where 3g �
3 C p D 4. Here the same argument as in Theorem 2.1 shows that a similar

exponential spectral ratio bound also holds for:

� S0;7 via the (spherical) braid ��1
4 .�5��1

6 /k.�1��1
2 /k�3,

� S1;4 via T �1
d

ı .Te ı T �1
f

/k ı .Ta ı T �1
b

/k ı Tc, and

� S2;1 via T �1
d

ı .Te ı T �1
f

/k ı .Ta ı T �1
b

/k ı Tc .

The curves used for S1;4 and S2;1 are shown in Figure 3a and Figure 3b respec-

tively.

a
b c d e f

(a) Curves on S1;4.

a
b

cd

e
f

(b) Curves on S2;1.

Figure 3. Surfaces with exponential convergence.

We now deal with surfaces with more punctures. If we have an exponential

family on Sg;p then by taking a common power we can obtain an additional �xed

point. Removing this point gives an exponential family on Sg;pC1. Conversely, if

we have an exponential family on Sg;pC1 and one of the punctures is a singularity

with order at least two (for each mapping class in the family) then we may �ll it

and obtain an exponential family on Sg;p.

We now deal with surfaces of higher genus. Note that having an exponential

family is preserved under taking covers. Thus if g > 3 is odd then Sg;0 is a cover

of S3;0 and so we may lift our exponential example from Section 2 to it. On the

other hand, if g > 3 is even then Sg;2 is a cover of S2;2. Therefore, after �rst

adding an additional puncture to our S2;1 example by the preceding paragraph,

we can lift this exponential example to Sg;2. Now note that for this lifted family

the punctures are both singularities of order at least g=2 � 2 and so can be �lled.

Hence we can construct an exponential family on Sg;0 in this case too.

3.2. Polynomial convergence. When 3g � 3 C p is even lower, a polynomial

spectral ratio bound still holds for:

� S0;5 via the (spherical) braid �3�k
1 ��k

4 ��1
2 ,

� S1;2 via Tc ı T k
a ı T �k

d
ı T �1

b
, and

� S2;0 via Tc ı T k
a ı T �k

d
ı T �1

b
.

Again, the curves used for S1;2 and S2;0 are shown in Figure 4a and Figure 4b

respectively.
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(b) Curves on S2;0.

Figure 4. Surfaces with polynomial convergence.

In the case of S0;5, for example, if k > 4 and 4k C 1 is not a square then

the minimal polynomial of the dilatation of the pseudo-Anosov (spherical) braid

�3�k
1 ��k

4 ��1
2 is

1 � .2k C 5/x C .k2 C 4k C 8/x2 � .2k C 5/x3 C x4:

The same substitution trick allows us to explicitly compute the roots of this

polynomial and so determine that the spectral ratio of this mapping classes is at

most 1 C 1p
k
.

Again, by taking a common power of these families we can obtain additional

�xed points. By puncturing these out we can then also obtain a family of pseudo-

Anosov mapping classes on S0;6, S1;3 and S1;4 whose spectral ratios converge to

one polynomially.

3.3. No convergence. For S0;4, S1;0 and S1;1 the dilatation � of a pseudo-Anosov

h is a quadratic irrational. Thus � has a single Galois conjugate, its reciprocal,

and so !.h/ D �2. However, since � C 1=� � 3 [4, Section 5.1.3] it follows that

!.h/ � '4 � 6:854101 � � � .
Finally, there are no pseudo-Anosov mapping classes on S0;0, S0;1, S0;2 or

S0;3.

4. Lower bounds

In this section we show that the behaviour seen in the previous examples, where

the spectral ratio converges to one exponentially with the word length of h, is

actually the worst possible.

Proposition 4.1. Suppose that S is a surface and that X is a �nite generating set

for ModC.S/. If h 2 ModC.S/ is pseudo-Anosov then

!.h/ � 1 C 2�O.jhj/

where jhj denotes the word length of h with respect to X .
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To prove this result, we �rst recall some facts about algebraic numbers.

De�nition 4.2 ([10, Section 3.4]). The height of a polynomial f .x/ D
P

aix
i 2

ZŒx� is

hgt.f / WD log.max.jai j//:

The height of an algebraic number ˛ 2 Q is hgt.˛/ WD hgt.�˛/ where �˛ 2 ZŒx�

is its minimal polynomial.

Fact 4.3. If ˛; ˇ 2 Q are algebraic numbers then:

� hgt.˛ ˙ ˇ/ � hgt.˛/ C hgt.ˇ/ C 1 [10, Property 3.3],

� hgt.˛ˇ/ � hgt.˛/ C hgt.ˇ/ [10, Property 3.3], and

� hgt.˛�1/ D hgt.˛/.

Most importantly, we observe that algebraic numbers of bounded degree and

height are bounded away from zero.

Lemma 4.4 ([1, Lemma 10.3]). If ˛ ¤ 0 then

� log.j˛j/ � hgt.˛/ C deg.˛/: �

Proof of Proposition 4.1. Suppose that h 2 ModC.S/ is pseudo-Anosov. Let

� D �.h/ be the dilatation of h and �0 a distinct Galois conjugate that maximises

j�0j. Hence !.h/ D j�=�0j.
Since S and X are �xed, we have that

hgt.�/; hgt.�0/ 2 O.jhj/ and deg.�/; deg.�0/ 2 O.1/:

Now consider ˛ WD j�=�0j � 1. It follows from Fact 4.3 that

hgt.˛/ 2 O.jhj/ and deg.˛/ 2 O.1/:

As � is a Perron number [4, page 405], the spectral ratio !.h/ > 1 and so

˛ ¤ 0. Therefore, by Lemma 4.4 we have that

� log.j˛j/ 2 O.jhj/:

Rearranging this we obtain that

!.h/ � 1 C 2�O.jhj/

as required. �
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5. Flipper

All examples in this paper were found and veri�ed using the Python package

flipper [2]. For example, the following Python script uses flipper to recreate

the examples on S0;7 that are given in Section 3.1.

1 import flipper

2

3 S = flipper.load(’SB_7’)

4

5 for k in range(7, 50):

6 h = S.mapping_class(’S_4’ + ’s_5S_6s_1S_2’ * k + ’s_3’)

7 f = h.dilatation().polynomial()

8 X = sorted([abs(float(x)) for x in f.real_roots()])

9 print(k, f, X[-1] / X[-2])

Random sampling of spectral ratios can also be done using flipper. Such

experiments suggest that these exponentially slow examples are actually very rare.

One such sampled distribution is shown in Figure 5. Curiously, the distribution of

log.�1/= log.�2/ is essentially �at.
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Figure 5. A sampled distribution (500 samples per word length) on S0;7.
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