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1. Introduction

In this paper G will always denote a discrete and countable group. A �ow space

X for G is a metric space X together with a continuous action of G � R, such

that the action of G D G � 0 on X is isometric and proper. We call the action

of R on X the �ow and denote the image of x 2 X under t 2 R by ˆtx. See

Notation 2.1.2–4 for the de�nition of a Vcyc-cover.

Theorem 1.1 (main theorem). Let X be a �nite-dimensional, second-countable

and locally compact �ow space for a group G and let ˛; ı be positive real numbers.

Then there is a Vcyc-cover U of X of dimension at most 7 dim.X/ C 7 such that

for every point x 2 X there is an open set U 2 U with ˆŒ�˛;˛�.x/ � U and for

every U 2 U there is a point x 2 X with U � Bı.ˆR.x//.

The �ow de�nes a foliation of X whose leaves are the �ow lines ˆR.x/ for

x 2 X . Even if X is a nice topological space, the orbit space RnX can be very

wild. For example RnX will not be Hausdor� in general. When approximating

the orbit map by continuous maps f W X ! V into a simplicial complex V we

can therefore not expect a whole �ow line to map to a single point but only to

capture arbitrary large parts of the �ow. By taking maps into the nerves of the

covers the main theorem produces a sequence of continuous G-equivariant maps

fnW X ! Vn, where Vn is a simplicial complex of dimension at most 7 dim.X/C7

whose G-action has virtually cyclic stabilizers. More details on the construction
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of the maps fn are given in Section 9. This gives an approximation of the orbit

map X ! RnX in the following sense: for every point x 2 X there is a vertex

v 2 Vn with ˆŒ�n;n�.x/ � f �1
n .St.v// and for every vertex v 2 Vn there exists

x 2 X such that the preimage of the star St.v/ is contained in Bı.ˆR.x//. Note

that virtually cyclic stabilizers are the smallest stabilizers one can obtain, since

the stabilizers of Vn not only have to contain the �nite stabilizers of X but also an

additional in�nite cyclic subgroup coming from a possible translation along the

�ow.

The existence of covers as in Theorem 1.1 is a main ingredient in the proof of

the Farrell–Jones conjecture for hyperbolic groups by Bartels, Reich and Lück [5]

and CAT.0/-groups by Bartels and Lück [2] and Wegner [15]. Long thin cell struc-

tures, a predecessor of long and thin covers, were �rst constructed in [8, Section 7].

The Farrell–Jones conjecture was �rst introduced in [9, Sections 1.6 and 1.7]. For

this application long and thin covers do not actually have to be thin, i.e. the con-

dition on the cover U that U � Bı.ˆR.x// for every U 2 U is not needed. But

they cannot be too large because of the restriction on the stabilizers. The �ow

space X is decomposed in the part with a short G-period and the part without, see

De�nition 2.2. So far a general construction was only given for the part without

short G-period by Bartels, Lück and Reich in [4]. Here we give an alternative

construction which leads to a shorter and cleaner proof.

The cover of the part with short G-period was previously only constructed for

special groups. We give a construction that holds for all groups and thus giving

a result Arthur Bartels asked for in [1, Remark 1.5.9]. In Section 9 we explain

how this can be used to generalize [3, Proposition 5.11] and obtain the following

corollary; see Section 9 for appearing notation.

Corollary 1.2. If X is a cocompact, �nite-dimensional �ow space for the group

G, which admits strong contracting transfers, then G is strongly transfer reducible

with respect to the family Vcyc, in particular G satis�es the Farrell–Jones con-

jecture with �nite wreath products.

In [10] the authors use this to extend the proof of the Farrell–Jones conjecture

for CAT.0/-groups to a larger class of groups. In particular, giving a uni�ed proof

for hyperbolic and CAT.0/-groups and proving the Farrell–Jones conjecture for all

groups acting properly and cocompactly on a �nite product of hyperbolic graphs.

The proof of Theorem 1.1 will decompose the �ow space into three parts;

the part without a short G-period in Section 5, the nonperiodic part with short

G-period in Section 6 and the periodic part with short G-period in Section 7.

We will construct a cover for each of the three parts and take their union.

The construction for the cover of the part without short G-period is based

on an idea of Arthur Bartels and Roman Sauer. We begin by constructing a

countable, locally �nite cover which is long in direction of the �ow but has

arbitrary dimension. By cutting overlapping subsets from previous elements of
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the cover we obtain a disjoint collection of subsets. Enlarging them in direction

of the �ow will produce a collection of subsets which is a long cover except for a

subspace of lower dimension. Since all intersections are obtained by enlarging in

direction of the R-action we get an estimate of the dimension independent of X .

Proceeding by induction we will cover the part without short G-period in at most

dim.X/ C 1 steps. To make the argument precise we will need the notion of small

inductive dimension, see Section 3.

For the part with short G-period the key idea is that passing to the quotient

of this subspace by the �ow does not increase the dimension. This allows us to

construct covers of the quotient and pull them back.

Acknowledgements. We would like to thank Arthur Bartels and Roman Sauer

for explaining to us their idea to use the small inductive dimension to construct

covers. Furthermore, we thank Svenja Knopf, Malte Pieper and the referee for

helpful comments and suggestions. The �rst author was supported by the Max-

Planck-Society.

2. Basic properties of �ow spaces and notations

Notation 2.1. We will use the following notations.

(1) We will denote the image of x 2 X under the action of g 2 G by gx and the

image of x 2 X under the action of t 2 R by ˆt x. The action of R will also

be called �ow.

(2) A family F of subgroups of G is a collection of subgroups which is closed

under conjugation and taking subgroups;

(3) examples are the family Fin of all �nite subgroups and the family Vcyc of all

virtually cyclic subgroups.

(4) An F-subset U of a G-space is a subset with gU \ U ¤ ; ) gU D U and

GU WD ¹g j gU D U º 2 F. An F-collection is an equivariant collection of

F-subsets. An F-cover is an F-collection which covers the whole space.

(5) For a subset B � X we denote by VB the interior of B .

(6) For U � X let @XU denote the boundary of U as a subset of X .

(7) A G-action on X is called cocompact if GnX is compact. If the G-action on

a �ow space X is cocompact we call X a cocompact �ow space.

(8) A G-action on X is called proper if for every compact subspace K � X the

set ¹g 2 G j K \ gK ¤ ;º is �nite.
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De�nition 2.2. For x 2 X de�ne the period of x as inf¹t j t > 0; x D ˆtxº.
If that set is empty, we say that the period of x is 1. The G-period of x is the

period of Gx 2 GnX with respect to the induced �ow on the quotient. The �ow

line through a point is its orbit under the �ow.

Notation 2.3. For 
 2 R we will consider the following subspaces of X satisfying

the stated restrictions on the period and G-period. Here – denotes that there is no

condition on the period or G-period.

Notation period G-period

X�
 – Œ0; 
�

X>
 – .
; 1�

X 0
cyc Œ0; 1/ –

X 0
axes 1 Œ0; 1/

Xcyc;
 Œ0; 1/ Œ0; 
�

Xcyc;
;>0 .0; 1/ .0; 
�

Xaxes;
 1 Œ0; 
�

All above subspaces are invariant under the G � R-action. We will denote the

quotients of these subspaces under the R-action by Y�
 ; Y>
 etc. The quotient

spaces are again G-spaces.

Later we will omit 
 from the notation if 
 is �xed. By Lemma 6.1 and

Lemma 7.1 we will see that X�
 is topologically the disjoint union of Xcyc;
 and

Xaxes;
 . We will construct the covers for the two components separately and then

take their union.

De�nition 2.4. Let g 2 G. We call c 2 X an axis of g if there is t > 0 with

ˆt x D gc. In this case we de�ne l.g; c/ WD t . The space X 0
axes consists of

all points that are an axis for some element of G. Note that l.g; ˆt c/ D l.g; c/

for all t 2 R, since gˆt c D ˆt gc D ˆtˆl.g;c/c D ˆl.g;c/ˆt c. Furthermore,

l.hgh�1; hc/ equals l.g; c/.

The quotient of a metric space X by a proper and isometric group action of a

group G is metrizable using

d.Gx; Gy/ WD inf
g2G

d.x; gy/:

Lemma 2.5. Let X be a metric space with a proper, cocompact and isometric

G-action. Then X is second-countable and locally compact.
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Proof. Let � W X ! GnX be the projection. The family ¹�.B1=n.x//ºx2X is an

open cover of GnX for every n 2 N. Since GnX is compact there exists a �nite

subcover, i.e. a �nite subset In � X with X D G
�

S

x2In
B1=n.x/

�

. A countable

basis for the topology is given by U WD ¹gB1=n.x/ j g 2 G; n 2 N; x 2 Inº.

Let x 2 X .

Claim. There exists � > 0 such that S WD ¹g 2 G j B�.x/ \ gB�.x/ ¤ ;º is �nite.

Otherwise there exists a sequence xn converging to x and gn 2 G with

gn ¤ gm for n ¤ m such that gnxn converges to x.

K 0 WD ¹gnxn j n 2 Nº [ ¹xn j n 2 Nº [ ¹xº

is compact and gnxn 2 K 0 \ gnK 0. Since the G-action is proper the set ¹gn j n 2
Nº has to be �nite, a contradiction to the assumption that all gn are di�erent.

Now let � > 0 be such that S WD ¹g 2 G j B�.x/ \ gB�.x/ ¤ ;º is �nite.

And let xn 2 B�=2.x/ be any sequence. Since GnX is compact there exists a

subsequence xnk
converging in the quotient to some z 2 GnX . There is y 2 B�.x/

mapping to z and there exist sn 2 S with snk
xnk

converging to y. Since S is �nite

there exists s 2 S and again a subsequence such that sxnk
converges to y. This

implies that xnk
converges to s�1y and since X is metric B�=2.x/ is therefore

compact. �

Remark 2.6. A group action on a locally compact space is proper, if and only

if we can �nd for every point x a small open neighborhood U such that the set

¹g 2 G j gU \ U ¤ ;º is �nite.

In the situation where the group action is cocompact, proper and isometric

Proposition 2.5 implies that the above de�nition of cocompact is equivalent to the

existence of a compact subset K � X with GK D X .

The following lemma will be useful to extend open covers of the subspaces

from Notation 2.3 to the entire space.

Lemma 2.7. Let X be a metrizable space and V; A be subsets such that V is an

open subset of A. Then the open subset UV � X given by

UV WD ¹x 2 X j d.x; V / < d.x; A n V /º

for some metric d on X has the following properties.

(1) We have UV \ A D V .

(2) Two such extensions UV ; UV 0 of V; V 0 � A intersect if and only if V; V 0

intersect.
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(3) If G acts isometrically on X and A is a G-subspace, we have gUV D UgV .

In particular,

¹g 2 G j gV \ V ¤ ;º D ¹g 2 G j gUV \ UV ¤ ;º:

(4) The boundary of UV intersects A exactly in the boundary of V (as a subspace

of A), i.e.

.@XUV / \ A D @A.V /:

Proof.

(1) A point x in A is either in V in which case d.x; V / < d.x; A n V / since

the right hand side is positive or it is not in V , in which case d.x; V / �
d.x; A n V /:

(2) If V; V 0 intersect, also UV ; UV 0 intersect since they contain V and V 0 respec-

tively.

Now suppose V \ V 0 D ;. In this case d.x; A n V / � d.x; V 0/ and

d.x; A n V 0/ � d.x; V / for all x 2 X . Hence for x 2 UV we get

d.x; A n V 0/ � d.x; V / < d.x; A n V / � d.x; V /

and x … UV 0 .

(3) Since G acts isometrically and A is G-invariant we get

x 2 gUV () d.g�1x; V / < d.g�1x; A n V /

() d.x; gV / < d.x; g.A n V // D d.x; A n gV /

() x 2 UgV :

(4) Using (1) we obtain

.@XUV / D UV \ X n UV

� UV \ A \ .X n UV / \ A

D V \ A n V D @A.V /

Thus @A.V / is contained in .@X UV / \ A. Conversely, we have

@X .UV / \ A � ¹x 2 X j d.x; V / D d.x; A n V /º \ A

D ¹x 2 A j d.x; V / D d.x; A n V / D 0º

and the latter is just @A.V /. �
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3. Dimension theory

Let us recall the de�nition of the small inductive dimension.

De�nition 3.1 ([7, De�nition 1.1.1]). To every regular space X we assign the small

inductive dimension ind.X/ 2 N [ ¹�1; 1º given by the following properties:

(1) ind.X/ D �1 if and only if X D ;;

(2) ind.X/ � n, where n 2 N if for every point x 2 X and each neighborhood

V � X of the point x there exists an open set U � X such that x 2 U � V

and ind.@U / � n � 1;

(3) ind.X/ D n if ind.X/ � n and ind.X/ > n � 1, i.e., the inequality

ind.X/ � n � 1 does not hold;

(4) ind.X/ D 1 if ind.X/ > n for all n 2 N [ ¹�1º.

The elementary fact that for A; B � X we have

@.A \ B/; @.A [ B/; @.A n B/ � @A [ @B and @A.A \ B/ � @X B

and the following theorems will be used repeatedly to estimate the inductive

dimension in the sequel.

Theorem 3.2 (subspace theorem [7, Theorem 1.2.2]). For every subspace M of

a regular space X we have ind.M/ � ind.X/.

Theorem 3.3 (sum theorem [7, Theorem 1.5.3]). If a second-countable metric

space X can be represented as the union of a sequence Fk ; k 2 N of closed

subspaces such that ind.Fk/ � n, for every k 2 N, then ind.X/ � n.

Theorem 3.4 (Cartesian product theorem [7, Theorem 1.5.16]). For every pair

X; Y of second-countable metric spaces of which at least one is non-empty we

have

ind.X � Y / � ind.X/ C ind.Y /:

Theorem 3.5 ([7, Theorem 1.7.7]). The inductive dimension of a second-countable

metric space agrees with its covering dimension.

4. Boxes

To construct the open sets for the long part, we need the notion of a box and some

of its basic properties.
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De�nition 4.1 ([4, De�nition 2.3]). Let X be a �ow space. A box B is a subset

B � X with the following properties:

(1) B is a compact Fin-subset;

(2) there exists a real number lB > 0, called the length of the box B , with the

property that for every x 2 B there exist real numbers a�.x/ � 0 � aC.x/

and �.x/ > 0 satisfying

lB D aC.x/ � a�.x/I

ˆ� .x/ 2 B for � 2 Œa�.x/; aC.x/�I

ˆ� .x/ … B for � 2 .a�.x/ � �.x/; a�.x// [ .aC.x/; aC.x/ C �.x//:

To a box B we can assign the central slice

SB WD ¹x 2 B j a�.x/ C aC.x/ D 0º:

We abuse notation and de�ne @SB WD @B \ SB and VSB WD VB \ SB .

Lemma 4.2 ([4, Lemma 2.6]). The map

�B W SB � Œ�lB=2; lB=2�
Š

�! B; .x; t / 7�! ˆt .x/

is a GB-homeomorphism.

Consequently, we can de�ne a projection prB to the central slice, via

prB W B �! SB ; x 7�! pr1 ı��1
B .x/:

By de�nition of �B this is the same as x 7! ˆ� pr2.��1
B

.x//.x/.

De�nition 4.3. An open box is the interior of a box.

Lemma 4.4 ([4, Lemma 2.16]). For every x 2 X>
 and for every 0 < l � 
 there

exists a box B of length l with x 2 VSB and GB D Gx.

Remark 4.5. In [4, Lemma 2.16] the space X n XR is assumed to be locally

connected. This is only needed to �nd a box as in Lemma 4.4 with the additional

assumption that SB is connected. Furthermore, in [4, Lemma 2.16] the lemma is

only stated for l < 
 . Since x 2 X>
 is also in X>
C" for " small enough, it

follows that the lemma also holds for l D 
 .
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Lemma 4.6. Let X be a locally compact, second-countable �ow space and

˛; ı > 0. Then there is a countable collection of compact subsets .Si/i2N and

.xi /i2N with xi 2 X such that

(1) ˆŒ�10˛;10˛�.Si / � Bı.ˆŒ�10˛;10˛�.xi // is a box of length 20˛ with central

slice Si ;

(2) the interiors of the smaller boxes ˆŒ�˛;˛�.Si / form a locally �nite cover of

X>20˛;

(3) for any two Si ; Sj the set

¹t 2 Œ�3˛; 3˛� j there exists x 2 Si such that ˆt .x/ 2 Sj º � R

has diameter less than ˛.

Proof. By Lemma 4.4 we can �nd for every point x 2 X>20˛ a box ˆŒ�10˛;10˛�S
0
x

of length 20˛ such that x is in the interior of this box and in the central slice.

Furthermore, we can choose them in such a way that S 0
gx D gS 0

x . We can assume

ˆŒ�10˛;10˛�.S
0
x/ � Bı.ˆŒ�10˛;10˛�.x//;

since otherwise we can replace S 0
x by S 0

x \
T

t2Œ�10˛;10˛� ˆ�t .Bı.ˆtx//. Now

consider the open cover

¹.ˆŒ�˛;˛�S
0
x/ı j x 2 Xº

and push it along the quotient map � to the quotient GnX . The quotient GnX is

metrizable and hence second-countable and paracompact by [14, Corollary 2.1.8].

We can thus �nd a countable, locally �nite re�nement ¹V.n/ j n 2 Nº of this

cover. Being a re�nement means that we can �nd for every n an x.n/ with

��1.V .n// � ��1.�..ˆŒ�˛;˛�S
0
x.n/

/ı// D G � .ˆŒ�˛;˛�S
0
x.n/

/ı. Now de�ne a cover

V WD ¹��1.V .n// \ g.ˆŒ�˛;˛�S
0
x.n//

ı j g 2 G; n 2 Nº:

This is a countable, locally �nite, G-invariant open cover of X . Choose an

enumeration V D ¹Vi j i 2 Nº. We can enlarge these sets by �rst projecting

the closure of Vi D ��1.V .ni// \ gi .ˆŒ�˛;˛�S
0
x.ni /

/ı to the central slice gS 0
x.ni /

and then letting it �ow by Œ�˛; ˛�. Call the resulting box Ci and its central slice

Di . Let C be the collection of boxes ¹Ci j i 2 Nº.
To show that it is locally �nite at some point x, pick a compact neighborhood

K and note that if K \ Ci ¤ ;, then ˆŒ�2˛;2˛�.K/ \ Vi ¤ ;. Since ˆŒ�2˛;2˛�.K/

is compact and the collection ¹Vi j i 2 Nº locally �nite, this can happen only for

�nitely many i .

It remains to establish Lemma 4.6(3). To achieve this we have to subdivide the

central slices Di into �nitely many compact sets Si;1; : : : ; Si;mi
. We will do this

by induction over i 2 N. If there is a g 2 G such that gDj D Di for some j < i ,

de�ne Si;k WD gSj;k . Otherwise proceed as follows.
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De�ne for j 2 N a continuous function

fi;j W Di \ ˆŒ�3˛;3˛�.Dj / �! Œ�3˛; 3˛�; x 7�! t with ˆt .x/ 2 Dj :

There is precisely one such t since there is a box of length 6˛ with central

slice Dj . This map is continuous by [4, De�nition 4.14]. For every x 2
Di \ ˆŒ�3˛;3˛�.Dj / there is a small, open Fin-neighborhood Ui;j;x in Di \
ˆŒ�3˛;3˛�.Dj / such that fi;j .Ui;j;x/ has diameter less than ˛. This neighborhood

can be extended by Lemma 2.7 to an open neighborhood U 0
i;j;x in Di such that

U 0
i;j;x \ ˆŒ�3˛;3˛�.Dj / D Ui;j;x.

The set Ji D ¹j j Di \ ˆŒ�3˛;3˛�.Dj / ¤ ;º is �nite and thus Ui;x WD
T

j 2Ji
U 0

i;j;x is still an open neighborhood. Let Wi;x WD
T

h2GDi
h�1Ui;hx. This

collection is GDi
-invariant. Since Di is compact we can �nd a �nite subcover

Wi;x1
; : : : ; Wi;xmi

. This can be chosen in a GDi
-equivariant way. This yields a

Fin-cover of Di . The new collection

¹Siºi2N WD ¹Wn;xk
j n 2 N; 1 � k � miº:

does the job. Note that, since every element of the collection ¹Siºi2N is a subset

of some S 0
x; x 2 X considered in the beginning, we have ˆŒ�10˛;10˛�.Si / �

Bı.ˆŒ�10˛;10˛�.x// for some x 2 X . �

5. Covering X>


We will now construct covers for the part without a short G-period. Here X

denotes a second-countable, locally compact �ow space of dimension n and let

˛ > 0 be given. Let 
 be 20˛ and .Si/i2N be a collection of compact subsets of

X as in Lemma 4.6. Fix these choices for the rest of this section.

Lemma 5.1. Let .Ai /i2N be a collection where Ai is a compact GSi
-invariant

subset of VSi of inductive dimension at most k for some k � 0. Then there is a

collection of open GSi
-invariant subsets Bi � VSi such that

(1) Ai n
S

j 2N;g2G ˆ.�3˛;3˛/.gBj / has inductive dimension at most k � 1 for

every i ;

(2) any point is contained in at most 5 sets of the collection

¹ˆ.�4˛;4˛/.gBi / j i 2 N; g 2 Gº:
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Proof. Let

A0 WD
[

j 2N;g2G

ˆR.gAj /I

A0
i WD Si \ A0 D

[

j 2N;z2Z;g2G

Si \ ˆŒ.z�1/˛;z˛�gAj :

Since Si and thus also ˆ1�zg�1Si is the central slice of a box of length greater

than ˛, the projection ˆŒ0;˛�Aj ! Aj restricted to ˆ1�zg�1Si \ ˆŒ0;˛�Aj is

injective. The intersection ˆ1�zg�1Si \ˆŒ0;˛�Aj is compact and Aj is Hausdor�.

Hence ˆ1�zg�1Si \ ˆŒ0;˛�Aj is homeomorphic to its image in Aj . Therefore, the

union in the displayed equation above is a countable union of compact spaces

homeomorphic to subspaces of Aj . Thus by Theorem 3.2 and Theorem 3.3 we

have that ind.A0
i / � k.

For every x 2 Ai we can �nd an open neighborhood Ux � A0
i such that we have

ind.@A0

i
Ux/ � k � 1 and @A0

i
Ux � VSi . We can choose those such that Ugx D gUx

for g in the �nite group GSi
by replacing Ux by

T

g2GSi
g�1Ugx.

By compactness we can �nd a �nite GSi
-subset Fi � Ai such that Vi WD

S

x2Fi
Ux contains Ai . By Lemma 2.7, the open GSi

-subset

Ui WD ¹x 2 Si j d.x; Vi / < d.x; A0
i n Vi /º

of Si has the following properties:

� Ui \ A0
i D Vi I

� .@Si
Ui / \ A0

i D @A0

i
.Ui \ A0

i /.

Thus,

ind..@Si
Ui / \ A0

i / D ind.@A0

i
.Vi // � ind

�

[

x2Fi

@A0

i
.Ux/

�

� k � 1; (5.1)

where the last inequality follows from Theorem 3.3 since @A0

i
.Ux/ is closed in A0

i .

De�ne inductively GSi
-invariant subsets

Bi WD Ui n
[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

ˆ.�3˛;3˛/gBj

D Ui n
�

Si \
[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

ˆ.�3˛;3˛/gBj

�

:
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Now since Si and gBj are both compact and the G-action on the space is proper,

there are only �nitely many g 2 G such that the intersection ˆŒ�2˛;2˛�gBj \ Ui is

not empty. We want to show by induction on i that ind.A0
i \ @Si

Bi / � k � 1:

@Si
Bi � @Si

Ui [
[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

@Si
.Si \ ˆ.�3˛;3˛/gBj /

� @Si
Ui [

[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

Si \ @X .ˆ.�3˛;3˛/gBj /

� @Si
Ui [

[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

Si \ .ˆ¹˙3˛ºgBj [ ˆ.�3˛;3˛/.g@Sj
Bj //:

By Lemma 4.6(3) and ˆŒ�2˛;2˛�gBj \ Ui ¤ ;, we get that Si \ ˆ¹˙.3˛/ºgBj is

empty.

Consider the following equation, where the �rst and fourth equality are from

expanding the de�nitions of A0
i and A0, the second equality follows from A0 being

R-invariant, the third equality follows from @Sj
Bj � Sj and the last equality is

given by writing R as a union of the intervals Œz; z C 1�.

A0
i \ Si \ ˆŒ�3˛;3˛�.g@Sj

Bj /

D Si \ A0 \ ˆŒ�3˛;3˛�.g@Sj
Bj /

D Si \ ˆŒ�3˛;3˛�.A
0 \ g@Sj

Bj /

D Si \ ˆŒ�3˛;3˛�.A
0 \ gSj \ g@Sj

Bj /

D
[

h2G;k2N

Si \ ˆŒ�3˛;3˛�.ˆR.hAk/ \ gSj \ g@Sj
Bj /

D
[

h2G;k2N;z2Z

Si \ ˆŒ�3˛;3˛�.ˆŒz;zC1�.hAk/ \ gSj \ g@Sj
Bj /:

Arguing as at the beginning of the proof, the compact space

Si \ ˆŒ�3˛;3˛�.ˆŒz;zC1�.hAk/ \ gSj \ g@Sj
Bj /

is homeomorphic to a subspace of .ˆŒz;zC1�.hAk/ \ gSj / \ g@Sj
Bj � g.A0

j \
@Sj

Bj /. Thus we know that A0
i \ @Si

.Bi / is contained in the union of a countable

collection compact subsets of A0
j \ @Sj

.Bj / with j < i which have inductive

dimension at most k �1 by induction assumption and the space @Si
Ui \A0

i whose

inductive dimension is at most k�1 by (5.1). We would like to apply Theorem 3.3,
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but @Si
Ui\A0

i might not be a closed subspaceof Si . This problem can be overcome

by writing A0
i as a union of countably many compact spaces as in the beginning

of the proof. Thus we obtain

ind.A0
i \ @Si

.Bi // � k � 1:

This completes the induction.

Now let us show (1). We have the following inclusion. The individual steps

are explained afterwards.

Ai n
[

j 2N;g2G

ˆ.�3˛;3˛/.gBj /

� Ai n
[

j �i;g2G

ˆ.�3˛;3˛/.gBj /

D
�

Ai n ˆ.�3˛;3˛/

�

Ui n
[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

ˆ.�3˛;3˛/gBj

��

n
[

j <i;g2G

ˆ.�3˛;3˛/.gBj /

�
�

Ai n
�

Ui n
[

j <i;g2G

ˆŒ�2˛;2˛�gBj \Ui ¤;

ˆ.�3˛;3˛/gBj

��

n
[

j <i;g2G

ˆ.�3˛;3˛/.gBj /

�
�

Ai \
�

[

j <i;g2G

ˆ.�3˛;3˛/gBj

��

n
[

j <i;g2G

ˆ.�3˛;3˛/.gBj /

� Ai \
[

j <i;g2G

ˆ.�3˛;3˛/g.Bj n Bj /

�
[

j <i;g2G

Ai \ ˆŒ�3˛;3˛�g@Sj
Bj :

The �rst and second inclusion comes from removing a smaller set. The �rst

equality is given by removing �rst ˆ.�3˛;3˛/gBi and inserting the de�nition of Bi .

The third inclusion follows from the fact that Ai � Ui . The last two inclusions are

obvious.

The set Ai \ ˆŒ�3˛;3˛�g@Sj
Bj is homeomorphic to a compact subset of A0 \

@Sj
gBj D g.A0

j \ @Sj
Bj / and thus its inductive dimension is at most k � 1. So

Ai n
S

j 2N;g2G ˆ.�3˛;3˛/.gBj / embeds into a space of inductive dimension at most

k � 1. Thus we have shown (1).

To show (2) we �rst want to show that the collection

C WD ¹ˆŒ�˛;˛�gBi j g 2 G; i 2 Nº
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consists of pairwise disjoint sets. Since Bj is a GSj
-invariant subset of the central

slice of a box of length 2˛, we know that gˆŒ�˛;˛�Bj \ g0ˆŒ�˛;˛�Bj ¤ ; if and

only if gg0�1 2 GSj
, in which case the two sets are equal. By de�nition of Bi we

have that for j < i

gˆŒ�˛;˛�Bi \ g0ˆŒ�˛;˛�Bj D ;:

Thus the collection C consists of pairwise disjoint sets. Now let us consider the

collection

C
0 D ¹ˆŒ�4˛;4˛�gBi j g 2 G; i 2 Nº:

If x is contained in ˆŒ�4˛;4˛�gBi then there is a ˇ 2 ¹�4˛; �2˛; 0˛; 2˛; 4˛º such

that ˆˇ .x/ 2 ˆŒ�˛;˛�gBi and thus x is contained in at most 5 sets of C0. �

Theorem 5.2. For every ˛; ı > 0 there is a Fin-cover of X>20˛ of dimension at

most 5.ind.X/ C 1/ with the following property: for every point x 2 X>20˛ there

is an open set in this cover containing ˆŒ�˛;˛�.x/ and for every open set U in this

cover there is an element x 2 X with U � Bı.ˆR.x//.

Proof. Let 
 WD 20˛. First consider the collection of subsets A0 WD ¹ VSi j i 2 Nº
as in Lemma 4.6. We can �nd a sequence "i > 0 such that A0

i WD ¹x 2 Si j
d.x; @Si / � "iº has the property that

¹ˆŒ�2˛;2˛�.gA0
i / j g 2 G; i 2 Nº

still covers the whole of X>
 . Note that A0
i is a compact, GSi

-invariant subset of

VSi of inductive dimension at most ind.X/.

By Lemma 5.1 we can �nd a collection B0
i � VSi as in the lemma. De�ne new

compact subsets

A1
i WD A0

i n
[

j 2N;g2G

ˆ.�3˛;3˛/.gB0
j /

and iterate the process. Note that Ak
i D ; for k > ind.X/ since its dimension is

�1. By Lemma 5.1 (1) we know that any point in X>
 is contained in an open

set of the form ˆ.�3˛;3˛/.gBk
i / for some g 2 G; i 2 N; k 2 0; : : : ; ind.X/. Now

consider the collection

B WD ¹ˆ.�4˛;4˛/B
k
i j i 2 N; k 2 0; : : : ; ind.X/º:

Thus for every point x we can �nd an open set U 2 B with ˆŒ�˛;˛�.x/ 2 U . Every

point is contained in at most 5�.ind.X/C1/ sets of this collection by Lemma 5.1 (2).

By construction each element in B is a subset of ˆŒ�4˛;4˛�.Si / and in particular

contained in Bı.ˆŒ�10˛;10˛�.x// for some x 2 X by Lemma 4.6(1). �
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6. Axes with bounded G-period

In this section we will construct the cover for Xaxes;
 . From now on we will �x


 > 0 and omit it from the notation.

Lemma 6.1. The G-subspace Xaxes � X is

(1) closed,

(2) second-countable and

(3) locally compact.

First we need to prove that [3, Lemma 4.6, Corollary 4.7] still hold without the

assumption that the metric space is proper.

Lemma 6.2. Let .Z; d/ be a metric space with a proper isometric G-action.

If .zn/n2N and .gn/n2N are sequences in Z and G such that zn converges to z 2 Z

and gnzn converges to z0 2 Z, then ¹gn j n 2 Nº is �nite and for every g 2 G

such that gn D g for in�nitely many n 2 N we have gz D z0.

Proof. De�ne K WD ¹znº[¹gnznº[¹z; z0º. Then K is compact and gnK\K ¤ ;,

thus the set ¹gn j n 2 Nº is �nite. If gn D g for in�nitely many n 2 N, then

z0 D limn!1 gnzn D limn!1 gzn D gz. �

Corollary 6.3. Let .Z; d/ be a metric space with a proper isometric G-action.

If L � Z is compact, then HL � Z is closed for any subset H � G.

Proof. Let hnzn be converging to z with hn 2 H; zn 2 L. After passing to a

subsequence zn converges to z0 2 L and by Lemma 6.2 we can pass to a further

subsequence with hn � h. Thus z D hz0 2 HL. �

Proof of Lemma 6.1. (1) Let cn 2 Xaxes be a sequence that converges to c 2 X .

There are gn 2 G; tn 2 .0; 
� such that gncn D ˆtncn. We can pass to a

subsequence and assume that tn converges to t . Then gncn D ˆtncn converges

to ˆt c. Since G acts properly and isometrically on X we can apply Lemma 6.2

and assume after passing to a subsequence that gn D g is constant. We have

gc D lim gncn D lim ˆtncn D ˆt c:

Since the group action is proper and g has in�nite order, t can not be zero.

(2) Subspaces of second-countable spaces are again second-countable.

(3) Closed subspaces of locally compact spaces are again locally compact. �



1216 D. Kasprowski and H. Rüping

Lemma 6.4. If there are g 2 G; 0 < t 2 R with ˆt c D gc, then ˆRc is closed.

Proof. We have ˆRc D
S

n2Z gnˆŒ0;t�c. The group hgi also acts properly and

isometrically. The set ˆŒ0;t�c is compact. Hence ˆRc is closed by Corollary 6.3.

�

Lemma 6.5. The subspace ¹t 2 R j ˆt L \ L0 ¤ ;º of R is compact for every

two compact subspaces L; L0 � Xaxes.

Proof. Since this set is closed, it su�ces to show that it is bounded. Furthermore

it is a subset of ¹t 2 R j ˆt .L[L0/\.L[L0/ ¤ ;º and thus it su�ces to consider

the case L0 D L ¤ ;. In this case the set is symmetric at 0 and thus it su�ces to

�nd an upper bound.

The set

S D ¹g 2 G j gL \ ˆŒ�
;
�L ¤ ;º

is �nite since the group action is proper. Furthermore we have S D S�1. Since

every point in L is an axis for some group element, the set S contains at least

one element of in�nite order. Let m be the maximal integer such that there is an

element g 2 S of in�nite order with gm 2 S . Now let t � 0 be given such that

there is an x 2 L with ˆt .x/ 2 L. Since x is an axis, we can �nd a g 2 G with

gx D ˆl.g;x/x for 0 < l.g; x/ � 
 . Hence g has in�nite order and g 2 S . Now

write t in the form t D m0l.g; x/ C r with m0 2 Z; r 2 Œ0; l.g; x/�. By assumption

ˆt .x/ 2 L. Furthermore we have

ˆt .x/ D gm0

ˆr .x/ 2 gm0

ˆŒ�
;
�.L/:

Thus g�m0

2 S and by symmetry we have gm0

2 S . Hence m0 � m and thus

t D m0l.g; x/ C r � .m0 C 1/
 � .m C 1/
: �

Lemma 6.6. The space Yaxes is locally compact and metrizable.

Proof. The space Xaxes is second-countable by Lemma 6.1. The quotient map

pW Xaxes ! Yaxes is open, because it is the quotient by the action of the group

R. Let y be a point in Yaxes and c 2 Xaxes be a preimage. Let U be an open

neighborhood of y. Let L � p�1.U / be a compact neighborhood of c and since

p is continuous and open p.L/ is a compact neighborhood of y. Thus Yaxes is

locally compact.

Points in Yaxes are closed, since ˆRc � X is closed for every c 2 Xaxes by

Lemma 6.4. For a closed subset A � Yaxes and p.c/ … A there is an � > 0 such

that B�.c/ is compact and B�.c/ \ p�1.A/ D ; and thus also p.B�.c// \ A D ;.



Long and thin covers for �ow spaces 1217

Claim. The set B WD p.B�=2.c// is closed.

Then the complement of B is an open neighborhood of A and it is disjoint

from the open neighborhood p.B�=2.c// of p.c/. Hence, Yaxes is regular. Yaxes

is second-countable since it is a quotient of a subspace of a second-countable

space. By Urysohn’s metrization theorem [12, Theorem 34.1] the quotient Yaxes is

metrizable.

It remains to prove the claim. Let ci be a sequence in p�1.p.B�=2.c/// which

is converging to c0 in Xaxes. Let tn 2 R be such that ˆtncn 2 B�=2.c/. Let ı > 0 be

such that Bı.c0/ is compact and N 2 N be such that d.cn; c0/ < ı for all n � N .

By Lemma 6.5 there is a t0 > 0 such that ˆt .Bı.c0//\B�=2.c/ D ; for all jt j > jt0j
and thus jtnj � jt0j for all n � N . Therefore, there is a subsequence tn converging

to t 0 2 R. Thus for n large enough we have ˆt 0cn 2 ˆŒ��;��.B�=2.c//, which is

compact. So also the limit ˆt 0c0 D limn!1 ˆt 0cn lies in ˆŒ��;��.B�=2.c// and

thus c0 is an element of p�1p.B�=2.c//. �

Proposition 6.7. Let ı > 0 be given. There is an open ˆ-invariant Vcyc-cover

U of Xaxes whose dimension is at most dim.X/ and for each U 2 U there exists

x 2 X with U � Bı.ˆR.x//.

To prove this we need the following lemmas.

Lemma 6.8. For all y 2 Yaxes the stabilizer Gy WD ¹g 2 G j gy D yº is virtually

cyclic of type I and Gy � Yaxes is closed and discrete.

Proof. The space y D ˆR.c/ Š R is a closed Gy-invariant subspace of X . Thus

the group action of Gy on y is proper. Furthermore we have a homomorphism

Gy ! R; g 7! l.g; y/, where we set l.g; y/ WD 0 if gy D y. Since c is not

�xed under the �ow, we can �nd a small " such that ˆt .c/ … Gc for all t 2 .0; "/

and thus the image of this homomorphism is discrete. It is nontrivial since c is

G-periodic. Thus it must be in�nite cyclic. Since the G-action on X is proper the

kernel of this map is �nite. Hence Gy is virtually cyclic of type I .

Next suppose that we have a sequence gi ˆti .c/ 2 p�1.Gy/ with gi 2 G that

converges to some c0 2 Xaxes. Pick g 2 G such that c is an axis for g with

l.g; c/ � 
 . Then by replacing gi by gig
mi for some mi 2 Z we can assume

ti 2 Œ0; 
�. We have gic 2 ˆŒ�
;0�B1.c0/ DW L for n big enough. Since the action

is proper and L is compact we can �nd a subsequence with gi � h. Furthermore

we can pick a subsequence such that limi2N ti exists. Thus hˆti c converges to c0

and c0 D ˆlimi2N ti hc 2 p�1.Gy/. Therefore, Gy is closed. And since we can

always �nd a subsequence with gi � h every converging sequence in Gy already

contains its limit point in�nitely often. This implies that Gy is discrete. �
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Lemma 6.9. The space GnYaxes is locally compact and metrizable.

Proof. The space Xaxes is second-countable by Lemma 6.1. The quotient map

pW Xaxes ! GnYaxes is open, because it is the quotient by a group action. Let y be

a point in GnYaxes and c 2 Xaxes be a preimage. Let U be an open neighborhood

of y and let L � p�1.U / be a compact neighborhood of c. Since p is continuous

and open, p.L/ is a compact neighborhood of y. Thus GnYaxes is locally compact.

Points in GnYaxes are closed, since Gy � Yaxes is closed for every y 2 Yaxes by

Lemma 6.8. For a closed subset A � GnYaxes and c 2 Xaxes with p.c/ … A there

is an � > 0 such that B�.c/ is compact and B�.c/ \ p�1.A/ D ; and thus also

p.B�.c// \ A D ;.

Claim. The set B WD p.B�=2.c// is closed.

Then the complement of B is an open neighborhood of A and it is disjoint from

the open neighborhood p.B�=2.c// of p.c/. Hence, GnYaxes is regular. GnYaxes

is second-countable since it is a quotient of a subspace of a second-countable

space. By Urysohn’s metrization theorem [12, Theorem 34.1] the quotient GnYaxes

is metrizable.

It remains to prove the claim. Let ci be a sequence in B�=2.c/, ti 2 R; gi 2 G

such that the sequence gi ˆti ci is converging to c0 2 Xaxes. Let hi 2 G be

given such that ci is an axis for hi , then there are mi 2 Z; t 0
i 2 Œ0; 
� such that

gi ˆti ci D gih
mi

i ˆt 0

i
ci , therefore we can assume ti 2 Œ0; 
�. Since B�=2.c/ and

Œ0; 
� are compact we can assume that ci converges to k and ti converges to t .

By Lemma 6.2 there is g 2 G such that c0 D g�t k 2 p�1.p.B�=2.c///. This

proves the claim. �

The big di�erence to [3] is that there assumptions on the geometry are used to

de�ne a metric on GnYaxes. Here we just use metrization theorems and thus get

rid of those assumptions.

Lemma 6.10. We have dim.GnYaxes/ � dim.X/.

Proof. Xaxes is a metric space and hence completely regular. For every x 2 Xaxes

there is a compact neighborhood L of x. The space Hx WD ¹t 2 R j ˆt L\L ¤ ;º
is compact by Lemma 6.5. This implies by [13, Theorem 2.3.2] that there is a

slice at x, i.e. there exists Sx � Xaxes containing x such that ˆRSx � Xaxes

is open and an R-equivariant map f W ˆRSx ! R such that f �1.0/ D Sx. For

y 2 Yaxes let U WD p.ˆRSx/ for some x 2 Xaxes with p.x/ D y. This is an open

neighborhood of y. We can de�ne a section sW U ! Xaxes by s.y0/ D Sx \p�1.y0/

for all y0 2 U . The continuity of the section follows from the alternative de�nition

s.y0/ D ˆ�f .x0/x
0 for some x0 with p.x0/ D y0. Since Yaxes is locally compact

by Lemma 6.6 there is for each y a compact neighborhood Ky of y and a section

sW Ky ! Xaxes.
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By Theorem 3.2 and Theorem 3.5 this implies that dim.K/ � dim.Xaxes/ �
dim.X/ and therefore locdim.Yaxes/ � dim.X/. Since Yaxes is metrizable it is

paracompact and normal. This implies dim.Yaxes/ D locdim.Yaxes/ � dim.X/ by

[14, Proposition 3.4].

For every y 2 Yaxes there is a compact neighborhood L of y. Since the

G-action on Yaxes has closed, discrete orbits by Lemma 6.8 the map pW L ! GnGL

is �nite-to-one. Both L and GnGL are metrizable by Lemma 6.6 and Lemma 6.9

and thus paracompact and normal. This implies

dim.L/ D dim.GnGL/

by [14, Proposition 9.2.16]. As above we get

dim.GnYaxes/ D locdim.GnYaxes/ D dim.Yaxes/ � dim.X/: �

Lemma 6.11. Let c 2 X�
 and let F be a family of subgroups. For any open

F-neighborhood U � X�
 of ˆRc there exists an open F-neighborhood V � U

of ˆRc which is invariant under the �ow.

Proof. Let C be the complement of GU and let V be the intersection of U with

the complement of ˆRC . Then V contains ˆRc and is an F-subset. It remains to

show that V is open or equivalently that ˆRC is closed. Since every element has

G-period at most 
 and C is G-invariant we have that ˆRC D ˆŒ0;
�C . This is

closed since Œ0; 
� is compact and C is closed. �

Proof of Proposition 6.7. Let y 2 Yaxes be given. By Lemma 6.8 the set Gy n ¹yº
is closed and therefore p�1.y/ and p�1.Gyny/ are closed. Let c 2 p�1.y/

and g 2 G be such that c is an axis for g. There is ı > � > 0 such

that we have B�.ˆŒ0;l.g;c/�c/ \ p�1.Gyny/ D ;. Since Gyny is invariant un-

der g and gn.B�.ˆŒ0;l.g;c/�c// D B�.ˆŒnl.g;c/;.nC1/l.g;c/�c/ we conclude that

also B�.p�1.y// \ p�1.Gyny/ D ;. It follows that B�=2.p�1.y// is an open

Vcyc-neighborhood of p�1.y/ and thus by Lemma 6.11 contains an open

Vcyc-neighborhood V 0
y which is invariant under the �ow.

Then Vy WD p.V 0
y/ is a Vcyc-neighborhood of y. Because � W Yaxes ! GnYaxes

is open, ¹�.Vy/ j y 2 Yaxesº is an open cover of GnYaxes. By Lemma 6.10 there

is a re�nement W of dimension less or equal to dim.X/. For any W 2 W pick

yW 2 Yaxes such that W � �.VyW
/. Now de�ne

V WD ¹��1.W / \ gVyW
j W 2 W; g 2 Gº:

This is an open Vcyc-cover because each Vy is an open Vcyc-set. Its dimension is

bounded by dim.X/ because the dimension of W is bounded by dim.X/ and for

all g 2 G; y 2 Yaxes we have either Vy D gVy or Vy \ gVy D ;. It is G-invariant

because each ��1.W / is G-invariant. By construction p�1.��1.W / \ gVyW
/ �

V 0
yW

� Bı.p�1.yW //. Pulling the cover V back along the quotient by the �ow

Xaxes ! Yaxes yields the desired Vcyc-cover. �
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7. Compact �ow lines with bounded G-period

In this section we want to cover the periodic part Xcyc with small G-period. In [3]

and [4] this subspace was just the �xed points of the �ow, but here we do not want

to assume this. In this section pW Xcyc ! Ycyc denotes the quotient map.

Lemma 7.1. The subspace Xcyc � X is closed.

Proof. Let xn 2 Xcyc be a sequence converging to x 2 X . We want to show that

x 2 Xcyc D X 0
cyc \ X�
 . There are gn 2 G; sn 2 Œ
=2; 
� with gnxn D ˆsn

xn.

If we have gn; sn with sn 2 Œ
=4; 
=2� we take g2
n; 2sn and so on. After passing

to a subsequence we can assume sn converges to s 2 Œ
=2; 
�. Then the sequence

gnˆ�sn
xn D xn converges to x and thus also g�1

n ˆsx converges to x. Since the

G action is proper, we can �nd a subsequence with gn � g. Therefore, ˆsx D gx

and x 2 X�
 . The subgroup generated by g acts properly on the compact space

ˆR.xn/ and thus g has �nite order. This implies ˆmsx D x, where m is the order

of g. Hence x 2 X 0
cyc. �

In general X 0
cyc � X need not be closed, as the example of the geodesic �ow on

the unit tangent bundle of the two dimensional �at torus shows. Thus the bound

on the G-period is really crucial.

Lemma 7.2. The spaces Ycyc and GnYcyc are locally compact and the induced

G-action on Ycyc is proper.

Proof. Since Xcyc is closed in X and X is locally compact, also Xcyc is locally

compact. Let y 2 Ycyc respectively y 2 GnYcyc and let x 2 Xcyc be a preimage of

y. Let U be an open neighborhood of y. Then x has a compact neighborhood L

contained in the preimage of U . The image of L in Ycyc respectively GnYcyc is a

compact neighborhood of y, since quotient maps by group actions are open.

Now let y 2 Ycyc be given. Since Xcyc is locally compact this implies that

p�1.y/ has a compact neighborhood Ly . To show that G acts properly on Ycyc, it

su�ces to show that the set

T WD ¹g 2 G j gp.Ly/ \ p.Ly/ ¤ ;º

D ¹g 2 G j there exists x 2 Ly ; t 2 R such that gx 2 ˆt Lyº

is �nite for any point y 2 Ycyc. Let

S WD ¹g j there exists c 2 Ly; t 2 Œ0; 
� such that ˆt c D gcº:

This set is a subset of S 0 WD ¹g 2 G j gˆŒ0;
�Ly \ ˆŒ0;
�Ly ¤ ;º and the

latter is �nite, since G acts properly on X and ˆŒ0;
�Ly is compact. So S is �nite.

Any g 2 S has �nite order since hgi acts properly on the compact space ˆRc for
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c 2 Ly � Xcyc with ˆtc D gc. Thus the set S� D ¹gm j g 2 S; m 2 Zº is also

�nite. Now let us show that T � S 0 � S�. For g 2 T choose x 2 Ly , t 2 R such

that gx 2 ˆtLy . Since x has G-period � 
 , we can �nd an h 2 G, such that

hx D ˆt 0x for some t 0 2 .0; 
�. Usually t 0 is the G-period of x; if that period is

0, we can choose t 0 as any positive number. By de�nition of S we have h 2 S .

We get

ghmx D gˆmt 0x D ˆmt 0gx 2 ˆmt 0CtLy

and if we choose m 2 Z suitably, we have mt 0 C t 2 Œ0; 
� and thus ghmx 2
ˆŒ0;
�Ly and thus ghm 2 S 0. Hence

g D .ghm/ � h�m 2 S 0 � S�
�

Lemma 7.3. The space Ycyc;>0 and its quotient by the G-action are Hausdor�.

Proof. Pick two di�erent points y; y0 2 Ycyc;>0 and let x; x0 2 Xcyc;>0 be two

preimages. Thus ˆR.x/ and ˆR.x0/ are compact. There exist open disjoint Fin-

neighborhoods U; U 0 of ˆR.x/ and ˆR.x0/. By Lemma 6.11 they contain open

Fin-neighborhoods V; V 0 which are invariant under the �ow. Their images under

p then are the desired disjoint open sets.

We still have to show that the quotient by the G-action is Hausdor�. Let points

Gy ¤ Gy0 2 GnYcyc;>0 be given. Let x; x0; U; U 0 be as above. Since the G-action

is proper, we can assume U \gU 0 D ; for all g 2 G. Doing the same construction

as above and pushing it to the quotient, we end up with separating neighborhoods

for Gy and Gy0. Thus GnYcyc;>0 is Hausdor�. �

Lemma 7.4. The spaces Ycyc;>0 and its quotient by the G-action are paracompact

and normal.

Proof. Since Ycyc;>0 and GnYcyc;>0 are open subsets of Ycyc and GnYcyc respec-

tively, both are again locally compact. By [12, Exercise 3 on p.205] every lo-

cally compact, Hausdor� space is regular. Second-countable spaces are Lindelöf

spaces. A regular Lindelöf space is paracompact by [12, Theorem 41.5]. All para-

compact Hausdor� spaces are normal by [12, Theorem 41.1]. �

Lemma 7.5. We have that dim.GnYcyc;>0/ � dim.Ycyc;>0/ � dim.X/.

Proof. We start with the second inequality. Let y 2 Ycyc;>0 be any point and let

x be a preimage. Pick a box B around x and consider the map induced by p

p0W SB �! p.SB/:

Note that p.U / D p.ˆ.�";"/U / and p is open since it is the quotient by a group

action. Thus the map p0 is a continuous open surjection.
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Pick some y0 2 p0.SB/ and some preimage x0. Since B is a box of length lB ,

any two points of the set

S D ¹t 2 R j ˆt .x
0/ 2 SBº

have distance at least lB=2 and thus it is discrete. Let M be the period of x0. Thus,

¹x00 2 SB j p.x00/ D y0º D ¹ˆs.x
0/ j s 2 Sº D ¹ˆs.x

0/ j s 2 S \ Œ0; M�º

is �nite. Thus we have a continuous surjection between paracompact, normal

spaces where every point has �nitely many preimages. Thus by [14, Proposi-

tion 9.2.16] we get that dim.p.SB// � dim.SB/ � dim.X/. Since p0. VSB/ D p0. VB/

is open and x was arbitrary, we get that locdim.Ycyc;>0/ � dim.X/.

The space Ycyc;>0 is paracompact and normal and by [14, Proposition 3.4] this

implies dim.Ycyc;>0/ D locdim.Ycyc;>0/ � dim.X/.

The �rst inequality follows the same way. Note that every point in Ycyc;>0

has a compact, Fin-neighborhood K. To understand the local dimension, we can

consider the map K ! GKnK � GnYcyc;>0. �

Lemma 7.6. Let ı > 0 be given. There is a G-invariant Fin-cover Vcyc of Xcyc of

dimension at most 2 dim.X/C1 such that we can �nd for every x 2 Xcyc a V 2 Vcyc

containing ˆR.x/ and for every V 2 Vcyc a point x 2 X with V � Bı.ˆR.x//.

Proof. We will �rst deal with the subspace XR which is independent of 
 . Let

� W XR ! GnXR denote the quotient map. Since the group action is proper,

we get that the quotient is metrizable. For any point Gx 2 GnX pick a com-

pact neighborhood K of a preimage. The quotient map K ! GnGK is a con-

tinuous, �nite-to-one, open surjection. Thus by [14, Proposition 9.2.16] we get

that dim.GnGK/ � dim.K/ � dim.X/. Since x was arbitrary, we get that

locdim.GnXR/ � dim.X/.

The space GnXR is paracompact and normal and by [14, Proposition 3.4] this

implies dim.GnXR/ D locdim.GnXR/ � dim.X/. Pick a Fin-cover V of XR and

re�ne ¹�.V \ Bı=2.x// j V 2 V; x 2 XRº to a cover U of dimension at most

dim.X/. Since U is a re�nement of ¹�.V / j V 2 Vº, we can �nd for every U 2 U

a VU 2 V with U � �.VU /. Then the open Fin-cover of XR given by

UXR D ¹��1.U / \ gVU j U 2 U; g 2 Gº

is at most dim.X/ dimensional.

Now let us look at Xcyc;>0. Let pW Xcyc;>0 ! Ycyc;>0 be the quotient

map. Since the G-action on Ycyc;>0 is proper, we can �nd a re�nement V of

¹p.Bı=2.ˆR.x/// j x 2 Xcyc;>0º that is a Fin-cover of Ycyc;>0.

Let us look at the quotient by the group action

� W Ycyc;>0 �! GnYcyc;>0:
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PushV down to the quotient by the G-action and re�ne it to a coverU of dimension

at most dim.X/ using Lemma 7.5. Being a re�nement means that we can �nd for

every U 2 U a VU 2 V with ��1.U / � G.VU /. Then the open Fin-cover

UYcyc;>0
D ¹��1.V / \ gUV j V 2 V; g 2 Gº

is a cover of dimension at most dim.X/ of Ycyc;>0. Pulling it back to Xcyc;>0

gives an open Fin-cover UXcyc;>0
of Xcyc;>0. Now use Lemma 2.7 to extend the

collections UXR ;UXcyc;>0
to open subsets of Bı=2.XR/\Xcyc and Bı=2.Xcyc;>0/\

Xcyc respectively and take Vcyc as their union. The construction in Lemma 2.7 is

made in such a way that set V 2 Vcyc is still contained in Bı.ˆR.x// for some

x 2 Xcyc. �

8. Proof of the Main Theorem

We can now use the previous sections to prove the main theorem.

Proof of Theorem 1.1. Let 
 WD 20˛. Let U>
 be the open cover of X>
 from

Theorem 5.2. Its dimension is at most 5.ind.X/ C 1/ D 5 dim.X/ C 5. Recall that

by Lemma 6.1 and Lemma 7.1 we have X�
 D Xaxes q Xcyc and X�
 is closed

in X . Thus the elements of U>
 are open in X .

To cover X�
 we can use the covers from Lemma 7.6 and Proposition 6.7

with ı=2 instead of ı and take their union. The union has dimension at most

2 dim.X/ C 1. Extend it to a Vcyc-collection U�
 of open subsets of X using

Lemma 2.7 for X�
 � Bı=2.X�
 / and de�ne U WD U�
 [ U>
 . It has dimension

at most 7 dim.X/ C 7. Since we are only extending to a ı=2-neighborhood the

construction in Lemma 2.7 will enlarge sets by no more than ı=2 and each U 2 U

is still contained in Bı.ˆR.x// for some x 2 X . �

Remark 8.1. Only the construction for the nonperiodic part with short G-period

produces a Vcyc-cover. For the other parts the construction produces a Fin-cover

instead. Therefore, only those virtually cyclic subgroups of G appear as stabilizers

of the cover for which there exists an axis.

If the �ow space is cocompact, then it also is locally compact and second-

countable by Proposition 2.5 and as in [3, Lemma 5.8] we obtain the following

corollary.

Corollary 8.2. Let X be a �nite-dimensional and cocompact �ow space X and ˛

be a number greater than 0. Then there is an " > 0 and a Vcyc-cover U of X such

that for every point x 2 X there is an open set U 2 U with B�.ˆŒ�˛;˛�.x// � U

of dimension at most 7 dim.X/ C 7.
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9. Applications

Approximating the orbit space. Let U be a simplicial complex and v 2 U a

vertex. The open star St.v/ of v consists of all simplices of U containing v. Note

that this is in general not a subcomplex. From Theorem 1.1 we obtain the following

approximation of the orbit space RnX already eluded to in the introduction.

Theorem 9.1. Let X be as in Theorem 1.1. Then there exists a sequence of G-

equivariant maps fnW X ! Vn into simplicial complexes Vn with dimension at

most 7 dim X C 7 and Vcyc-stabilizers such that for every vertex v 2 V there is

x 2 X with f �1
n .St.v// � Bı.ˆR.x// and for every x 2 X there exists a vertex

v 2 Vn with ˆŒ�n;n�.x/ � f �1
n .St.v//.

Proof. Let Un be a cover as in Theorem 1.1 such that for each x 2 X there exists

U 2 Un with ˆŒ�n;n�.x/ � U . Let Vn be the nerve of Un, i.e. the simplicial

complex with vertex setUn and the elements U1; : : : ; Un span a simplex if and only

if
Tn

iD1 Ui ¤ ;. For x 2 X let d.x/ WD
P

U 2Un
d.x; X n U /. We have d.x/ 2 R,

since the cover is locally �nite. De�ne fnW X ! Vn by x 7!
P

U 2Un

d.x;XnU /
d.x/

U .

Then f �1
n .St.U // D U and hence Vn satis�es the properties in the theorem. �

The Farrell–Jones conjecture. The Farrell–Jones conjecture for a group G says

that the K-theoretic assembly map

H
G
� .EVcycGI KA/ �! H

G
� .pt I KA/ D Kalg

� .AŒG�/

and the L-theoretic assembly map

H
G
� .EVcycGI LA/ �! H

G
� .pt I LA/ D Lh�1i

� .AŒG�/

are isomorphisms for any additive G-categoryA (with involution), see [6, Conjec-

tures 3.2 and 5.1]. The Farrell–Jones conjecture implies several other conjectures.

See [11] for details.

As in [16, De�nition 2.15] we say that a group G satis�es the Farrell–Jones

conjecture with �nite wreath products if for any �nite group F the wreath product

G o F satis�es the K- and L-theoretic Farrell–Jones conjecture. We will use the

abbreviation FJCw for “Farrell–Jones conjecture with �nite wreath products.”

De�nition 9.2 ([15, De�nitions 2.1 and 2.3]). A strong homotopy action of a group

G on a topological space X is a continuous map

‰W
1
a

j D0

.G � Œ0; 1�/j � G � X �! X

with the following properties:
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(1) ‰.: : : ; gl ; 0; gl�1; : : :/ D ‰.: : : ; gl ; ‰.gl�1; : : ://,

(2) ‰.: : : ; gl ; 1; gl�1; : : :/ D ‰.: : : ; gl � gl�1; : : :/,

(3) ‰.e; tj ; gj �1; : : :/ D ‰.gj �1; : : :/,

(4) ‰.: : : ; tl ; e; tl�1; : : :/ D ‰.: : : ; tl � tl�1; : : :/,

(5) ‰.: : : ; t1; e; x/ D ‰.: : : ; x/,

(6) ‰.e; x/ D x.

For a subset S � G containing e,g 2 G and a k 2 N de�ne

Fg .‰; S; k/ WD ¹‰.gk ; tk; : : : ; g0; ‹/W X �! X j gi 2 S; ti 2 Œ0; 1�; gk : : : g0 D gº:

For .g; x/ 2 G � X we de�ne S0
‰;S;k

.g; x/ as ¹.g; x/º, S1
‰;S;k

.g; x/ � G � X as

the subset consisting of all .h; y/ 2 G � X with the following property. There

are a; b 2 S , f 2 Fa.‰; S; k/; f 0 2 Fb.‰; S; k/ such that f .x/ D f 0.y/ and

h D ga�1b.

For n � 2 de�ne inductively Sn
‰;S;k

.g; x/ D
S

.h;y/2Sn�1
‰;S;k

.g;x/ S1
‰;S;k

.h; y/.

The de�nition of a controlled N -dominated metric space can be found in [2,

De�nition 1.5].

De�nition 9.3 ([15, De�nition 3.1]). A group G is strongly transfer reducible over

a family F of subgroups if there exists a natural number N 2 N with the following

property: for every �nite symmetric subset S � G containing the trivial element

e and all n; k 2 N there are

� a compact, contractible, controlled N -dominated metric space X ,

� a strong homotopy G-action ‰ on X and

� an open F-cover U of G � X of dimension at most N such that for every

.g; x/ 2 G � X there exists U 2 U with Sn
‰;S;k

.g; x/ � U .

Every virtually cyclic group is a CAT.0/-group and therefore satis�es FJCw by

[16, Example 2.16(i)]. Thus, by [16, Proposition 2.20] a group G satis�es FJCw if

it is strongly transfer reducible over the family Vcyc of virtually cyclic subgroups.

We will now de�ne certain properties of �ow spaces under which Theorem 1.1

allows us to show strong transfer reducibility.

De�nition 9.4. Let X be a �ow space. The �ow is uniformly continuous if for

every ˛; " > 0 there is a ı > 0 such that for all z; z0 2 X with dX .z; z0/ � ı and

for any t 2 Œ�˛; ˛� we also get dX .ˆtz; ˆt z
0/ � ".

The following de�nition is a weakening of [3, De�nition 5.5]. We do not have

to assume the existence of covers of the periodic part anymore.
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De�nition 9.5. A �ow space X for a group G admits long F-covers at in�nity

if the following holds: there is M > 0 such that for every ˛ > 0 there is an F-

collection V of dimension at most M , a compact subset K � X and an " > 0 such

that for every z 2 X n GK there is a V 2 V with

B".ˆŒ�˛;˛�x/ � V:

Note that in the de�nition it makes no di�erence if we assume that collection

V consists of open F-sets.

Lemma 9.6. Let X be a �nite-dimensional, second-countable and locally com-

pact �ow space for the group G such that there are long F-covers at in�nity. Then

there is an N > 0 such that for every ˛ > 0 there is an " > 0 and an F [ Vcyc-

cover U of X of dimension at most N such that for every x 2 X there is a U 2 U

with

B".ˆŒ�˛;˛�x/ � U:

Proof. Let ˛ > 0 be given. Since X admits long covers at in�nity, we obtain an

M > 0 (which is independent of ˛), an F-collection V of dimension at most M ,

an "1 > 0 and a compact subset K as in De�nition 9.5. We can �nd a Vcyc-cover

V0 of X as in Theorem 1.1. Using [3, Lemma 5.8] we can �nd an "K > 0 such that

we have for every x 2 GK an open set U 2 V0 with B"K
.ˆŒ�˛;˛�.x// � U . Now

the F [ Vcyc-cover U WD V0 [ V has dimension at most N WD M C 7 dim.X/ C 8

and we can �nd for x 2 X an open set U 2 U with

B".ˆŒ�˛;˛�.x// � U

with " WD min."1; "K/. �

Morally, long covers at in�nity allow us to �nd an " as in the last lemma even

in the noncocompact setting.

De�nition 9.7. A �ow space FS for a group G admits strong contracting transfers

if there is an N 2 N such that for every �nite subset S of G and every k 2 N there

exists ˇ > 0 such that the following holds. For every ı > 0 there is

(1) T > 0;

(2) a contractible, compact, controlled N -dominated space X ;

(3) a strong homotopy action ‰ on X ;

(4) a G-equivariant map �W G � X ! FS (where the G-action on G � X is given

by g � .g0; x/ D .gg0; x/) such that the following holds:

(5) for every .g; x/ 2 G � X; s 2 S; f 2 Fg.‰; S; k/ there is a � 2 Œ�ˇ; ˇ� such

that dFS.ˆT �.g; x/; ˆT C� �.gs�1; f .x/// � ı.



Long and thin covers for �ow spaces 1227

Lemma 9.8. Let FS be a �ow space for a group G with a uniformly continuous

�ow and assume that FS admits strong contracting transfers. Let " > 0; k; n 2 N

and a �nite subset S � G containing e be given. Let ˇ be as in De�nition 9.7 and

de�ne ˛ WD 2nˇ. Let ı be as in De�nition 9.4. Let T > 0; X; ‰ and � be as in

De�nition 9.7. Then for every .g; x/ 2 G � X and .h; y/ 2 Sn
‰;S;k

.g; x/ there is a

� 2 Œ�˛; ˛� such that

dFS.ˆT .�.g; x//; ˆT C� .�.h; y/// � 2n":

Proof. We will prove by induction on m D 0; : : : ; n that for every .h; y/ 2
Sm

‰;S;k
.g; x/ we can �nd a � 2 Œ�2mˇ; 2mˇ� such that

dFS.ˆT .�.g; x//; ˆT C� .�.h; y/// � 2m":

This is clear for m D 0. For .h; y/ 2 SmC1
‰;S;k

.g; x/ choose a .g0; x0/ 2 Sm
‰;S;k

.g; x/

with .h; y/ 2 S1
‰;S;k

.g0; x0/. Thus, there are a; b 2 S; f 2 Fa.‰; S; k/; f 0 2

Fb.‰; S; k/ such that f .x0/ D f 0.y/ and hb�1 D g0a�1. By induction assumption

and De�nition 9.7(5) there are � 2 Œ�2mˇ; 2mˇ�; �f ; �f 0 2 Œ�ˇ; ˇ� such that

dFS.ˆT .�.g; x//; ˆT C� .�.g0; x0/// � 2m";

dFS.ˆT �.g0; x0/; ˆT C�f �.ga�1; f .x0/// � ı;

dFS.ˆT �.h; y/; ˆT C�f 0
�.hb�1; f 0.y/// � ı:

By uniform continuity we get

dFS.ˆT C� �.g0; x0/; ˆT C�C�f �.ga�1; f .x0/// � ";

dFS.ˆT C�C�f ��f 0
�.h; y/; ˆT C�C�f �.hb�1; f 0.y/// � ":

Let � 0 WD � C �f C �f 0 2 Œ�2.m C 1/ˇ; 2.m C 1/ˇ� and by the triangle inequality

we obtain

dFS.ˆT .�.g; x//; ˆT C� 0.�.h; y/// � 2m" C " C " D 2.m C 1/": �

Lemma 9.6 is a generalization of [3, Theorem 5.7]. Using this and Lemma 9.8

instead of [3, Lemma 5.12] as in the proof of [3, Proposition 5.11] we obtain the

following proposition.

Proposition 9.9. Let X be a �nite-dimensional, second-countable and locally

compact �ow space for the group G such that

(1) the �ow is uniformly continuous,

(2) X admits strong contracting transfers and

(3) there are long F-covers at in�nity.

Then G is strongly transfer reducible with respect to the family Vcyc [ F.
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Corollary 9.10. If X is a cocompact, �nite-dimensional �ow space for the

group G, which admits strong contracting transfers, then G is strongly transfer

reducible with respect to the family Vcyc, in particular G satis�es FJCw.

Proof. By Proposition 2.5, X is locally compact and second-countable. Cocom-

pactness implies uniform continuity and choosing V D ; and K as a compact

subset of X with GK D X shows that X admits long covers at in�nity. Then G

satis�es the Farrell–Jones conjecture by [16, Proposition 2.20]. �
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