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Long and thin covers for flow spaces

Daniel Kasprowski and Henrik Riiping

Abstract. Long and thin covers of flow spaces are important ingredients in the proof of the
Farrell-Jones conjecture for certain classes of groups, like hyperbolic and CAT(0)-groups.
In this paper we provide an alternative construction of such covers which holds in a more
general setting and simplifies some of the arguments.
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1. Introduction

In this paper G will always denote a discrete and countable group. A flow space
X for G is a metric space X together with a continuous action of G x R, such
that the action of G = G x 0 on X is isometric and proper. We call the action
of R on X the flow and denote the image of x € X under r € R by ®;x. See
Notation 2.1.2—4 for the definition of a Vcyc-cover.

Theorem 1.1 (main theorem). Let X be a finite-dimensional, second-countable
and locally compact flow space for a group G and let o, § be positive real numbers.
Then there is a Vcyc-cover U of X of dimension at most 7dim(X) + 7 such that
for every point x € X there is an open set U € U with ®_q o1(x) € U and for
every U € U there is a point x € X with U C Bs(Dr(x)).

The flow defines a foliation of X whose leaves are the flow lines ®g(x) for
x € X. Even if X is a nice topological space, the orbit space R\ X can be very
wild. For example R\ X will not be Hausdorff in general. When approximating
the orbit map by continuous maps f: X — V into a simplicial complex V we
can therefore not expect a whole flow line to map to a single point but only to
capture arbitrary large parts of the flow. By taking maps into the nerves of the
covers the main theorem produces a sequence of continuous G-equivariant maps
fa: X — V,, where V,, is a simplicial complex of dimension at most 7 dim(X) + 7
whose G-action has virtually cyclic stabilizers. More details on the construction
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of the maps f, are given in Section 9. This gives an approximation of the orbit
map X — R\ X in the following sense: for every point x € X there is a vertex
v € V, with @, »,)(x) € f, ' (St(v)) and for every vertex v € V,, there exists
x € X such that the preimage of the star St(v) is contained in Bs(®Pgr(x)). Note
that virtually cyclic stabilizers are the smallest stabilizers one can obtain, since
the stabilizers of 1/, not only have to contain the finite stabilizers of X but also an
additional infinite cyclic subgroup coming from a possible translation along the
flow.

The existence of covers as in Theorem 1.1 is a main ingredient in the proof of
the Farrell-Jones conjecture for hyperbolic groups by Bartels, Reich and Liick [5]
and CAT(0)-groups by Bartels and Liick [2] and Wegner [15]. Long thin cell struc-
tures, a predecessor of long and thin covers, were first constructed in [8, Section 7].
The Farrell-Jones conjecture was first introduced in [9, Sections 1.6 and 1.7]. For
this application long and thin covers do not actually have to be thin, i.e. the con-
dition on the cover U that U € Bs(Pr(x)) for every U € U is not needed. But
they cannot be too large because of the restriction on the stabilizers. The flow
space X is decomposed in the part with a short G-period and the part without, see
Definition 2.2. So far a general construction was only given for the part without
short G-period by Bartels, Liick and Reich in [4]. Here we give an alternative
construction which leads to a shorter and cleaner proof.

The cover of the part with short G-period was previously only constructed for
special groups. We give a construction that holds for all groups and thus giving
a result Arthur Bartels asked for in [1, Remark 1.5.9]. In Section 9 we explain
how this can be used to generalize [3, Proposition 5.11] and obtain the following
corollary; see Section 9 for appearing notation.

Corollary 1.2. If X is a cocompact, finite-dimensional flow space for the group
G, which admits strong contracting transfers, then G is strongly transfer reducible
with respect to the family Vcyc, in particular G satisfies the Farrell-Jones con-
Jecture with finite wreath products.

In [10] the authors use this to extend the proof of the Farrell-Jones conjecture
for CAT(0)-groups to a larger class of groups. In particular, giving a unified proof
for hyperbolic and CAT(0)-groups and proving the Farrell-Jones conjecture for all
groups acting properly and cocompactly on a finite product of hyperbolic graphs.

The proof of Theorem 1.1 will decompose the flow space into three parts;
the part without a short G-period in Section 5, the nonperiodic part with short
G-period in Section 6 and the periodic part with short G-period in Section 7.
We will construct a cover for each of the three parts and take their union.

The construction for the cover of the part without short G-period is based
on an idea of Arthur Bartels and Roman Sauer. We begin by constructing a
countable, locally finite cover which is long in direction of the flow but has
arbitrary dimension. By cutting overlapping subsets from previous elements of
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the cover we obtain a disjoint collection of subsets. Enlarging them in direction
of the flow will produce a collection of subsets which is a long cover except for a
subspace of lower dimension. Since all intersections are obtained by enlarging in
direction of the R-action we get an estimate of the dimension independent of X .
Proceeding by induction we will cover the part without short G-period in at most
dim(X) + 1 steps. To make the argument precise we will need the notion of small
inductive dimension, see Section 3.

For the part with short G-period the key idea is that passing to the quotient
of this subspace by the flow does not increase the dimension. This allows us to
construct covers of the quotient and pull them back.

Acknowledgements. We would like to thank Arthur Bartels and Roman Sauer
for explaining to us their idea to use the small inductive dimension to construct
covers. Furthermore, we thank Svenja Knopf, Malte Pieper and the referee for
helpful comments and suggestions. The first author was supported by the Max-
Planck-Society.

2. Basic properties of flow spaces and notations

Notation 2.1. We will use the following notations.

(1) We will denote the image of x € X under the action of g € G by gx and the
image of x € X under the action of t € R by ®,x. The action of R will also
be called flow.

(2) A family F of subgroups of G is a collection of subgroups which is closed
under conjugation and taking subgroups;

(3) examples are the family Fin of all finite subgroups and the family Vcyc of all
virtually cyclic subgroups.

(4) An F-subset U of a G-space is a subset with gU NU # @ = gU = U and
Gy ={g | gU = U} € F. An F-collection is an equivariant collection of
F-subsets. An F-cover is an F-collection which covers the whole space.

(5) For a subset B € X we denote by B the interior of B.
(6) For U C X let dyU denote the boundary of U as a subset of X.

(7) A G-action on X is called cocompact if G\ X is compact. If the G-action on
a flow space X is cocompact we call X a cocompact flow space.

(8) A G-action on X is called proper if for every compact subspace K C X the
set{g € G | KN gK # @} is finite.
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Definition 2.2. For x € X define the period of x as inf{s | t > 0,x = D;x}.
If that set is empty, we say that the period of x is co. The G-period of x is the
period of Gx € G\ X with respect to the induced flow on the quotient. The flow
line through a point is its orbit under the flow.

Notation 2.3. For y € R we will consider the following subspaces of X satisfying
the stated restrictions on the period and G-period. Here — denotes that there is no
condition on the period or G-period.

Notation | period | G-period

Xﬁy - [0! V]
Xoy - (v, o<]
Xc/yc [Ov OO) -

Xéxes S [Ov OO)

chc,y [0, OO) [0, V]
chc,y,>0 (O, OO) (0’ V]
Xaxes,y oo [0,y]

All above subspaces are invariant under the G x R-action. We will denote the
quotients of these subspaces under the R-action by Y<,, Y, etc. The quotient
spaces are again G-spaces.

Later we will omit y from the notation if y is fixed. By Lemma 6.1 and
Lemma 7.1 we will see that X<, is topologically the disjoint union of X, and
Xaxes,y- We will construct the covers for the two components separately and then
take their union.

Definition 2.4. Let g € G. We call ¢ € X an axis of g if there is t > 0 with
®,;x = gc. In this case we define /(g,c¢) := t. The space X],., consists of
all points that are an axis for some element of G. Note that /(g, ®;c) = I(g,c)
for all € R, since g&;c = P,g¢c = P, Pjg,c)¢c = Dy(g,c)Psc. Furthermore,
I(hgh™!, hc) equals I(g, ).

The quotient of a metric space X by a proper and isometric group action of a
group G is metrizable using

d(Gx,Gy) = inf d(x, gy).
geG

Lemma 2.5. Let X be a metric space with a proper, cocompact and isometric
G-action. Then X is second-countable and locally compact.
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Proof. Let m: X — G\X be the projection. The family {7 (B;/,(x))}xex is an
open cover of G\ X for every n € N. Since G\ X is compact there exists a finite
subcover, i.e. a finite subset I, € X with X = G (¢, Bi/n(x)). A countable
basis for the topology is given by U := {gB1/,(x) | g € G,n € N, x € I,,}.

Letx € X.
Claim. There exists € > 0 such that S := {g € G | Be(x) N gBe(x) # 0} is finite.

Otherwise there exists a sequence x, converging to x and g, € G with
gn F# gm for n # m such that g, x, converges to x.

K’ :={gnxn |n e N} U{x, | n e N} U {x}

is compact and g,x, € K’ N g, K’. Since the G-action is proper the set {g, | n €
N} has to be finite, a contradiction to the assumption that all g, are different.
Now let ¢ > 0 be such that S := {g € G | Be(x) N gBc(x) # @} is finite.
And let x, € B¢/»(x) be any sequence. Since G\X is compact there exists a
subsequence x,, converging in the quotient to some z € G\ X. Thereis y € B(x)
mapping to z and there exist s, € S with s,, x,, converging to y. Since S is finite
there exists s € S and again a subsequence such that sx,, converges to y. This
implies that x,, converges to s~'y and since X is metric B¢»(x) is therefore
compact. O

Remark 2.6. A group action on a locally compact space is proper, if and only
if we can find for every point x a small open neighborhood U such that the set
{g € G| gUNU # @} is finite.

In the situation where the group action is cocompact, proper and isometric
Proposition 2.5 implies that the above definition of cocompact is equivalent to the
existence of a compact subset K € X with GK = X.

The following lemma will be useful to extend open covers of the subspaces
from Notation 2.3 to the entire space.

Lemma 2.7. Let X be a metrizable space and V, A be subsets such that V is an
open subset of A. Then the open subset Uy C X given by

Uy ={xeX|dxV)<dx A\ V)}

for some metric d on X has the following properties.
(1) Wehave Uy NA=V.

(2) Two such extensions Uy, Uy of V,V' C A intersect if and only if V, V'
intersect.
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(3) If G acts isometrically on X and A is a G-subspace, we have gUy = Ugy.
In particular,

{geGlgVnV #0}={geG|gUyNUy #0}.

(4) The boundary of Uy intersects A exactly in the boundary of V (as a subspace
of A), i.e.
(@xUy) N A = 04(V).
Proof.

(1) A point x in A is either in V' in which case d(x, V) < d(x, A\ V) since
the right hand side is positive or it is not in V, in which case d(x,V) >
d(x,A\V).

(2) If V, V' intersect, also Uy, Uy intersect since they contain V and V' respec-
tively.

Now suppose V N V' = @. In this case d(x,4 \ V) < d(x,V’) and
d(x,A\ V') <d(x,V) forall x € X. Hence for x € Uy we get

d(x, A\V') <d(x,V) <d(x,A\ V) < d(x,V)

and x ¢ Uyp.

(3) Since G acts isometrically and A is G-invariant we get
xegly < dg'x,V)<d(g'x,A\ V)
= dx,gV) <d(x,g(A\V)) =d(x,A\gV)
— X € Ugv.
(4) Using (1) we obtain

(0xUy) =Uy N X \ Uy

DUyrNnAN(X\Uy)N A
—VAANV = (V)

Thus d4 (V) is contained in (dy Uy) N A. Conversely, we have

x(Uy)NACixeX |dx,V)=dx, A\ V)N A4
—{xed|dx,V)=dx, A\ V) =0}

and the latter is just d4 (V). O
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3. Dimension theory
Let us recall the definition of the small inductive dimension.

Definition 3.1 ([7, Definition 1.1.1]). To every regular space X we assign the small
inductive dimension ind(X) € N U {—1, oo} given by the following properties:

(1) ind(X) = —1if and only if X = ¢;

(2) ind(X) < n, where n € N if for every point x € X and each neighborhood
V C X of the point x there exists an open set U € X suchthatx e U C V
and ind(0U) <n —1;

3) ind(X) = n if ind(X) < n and ind(X) > n — 1, i.e., the inequality
ind(X) <n — 1 does not hold;

4) ind(X) = oo ifind(X) >n foralln e NU{-1}.
The elementary fact that for A, B C X we have
(AN B),d(AUB),0(A\ B) CIAUOIB and 04(AN B) C dxB

and the following theorems will be used repeatedly to estimate the inductive
dimension in the sequel.

Theorem 3.2 (subspace theorem [7, Theorem 1.2.2]). For every subspace M of
a regular space X we have ind(M) < ind(X).

Theorem 3.3 (sum theorem [7, Theorem 1.5.3]). If a second-countable metric
space X can be represented as the union of a sequence Fy,k € N of closed
subspaces such that ind(Fy) < n, for every k € N, then ind(X) < n.

Theorem 3.4 (Cartesian product theorem [7, Theorem 1.5.16]). For every pair
X,Y of second-countable metric spaces of which at least one is non-empty we
have

ind(X xY) <ind(X) + ind(Y).

Theorem 3.5 ([7, Theorem 1.7.7]). The inductive dimension of a second-countable
metric space agrees with its covering dimension.

4. Boxes

To construct the open sets for the long part, we need the notion of a box and some
of its basic properties.
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Definition 4.1 ([4, Definition 2.3]). Let X be a flow space. A box B is a subset
B C X with the following properties:

(1) B is a compact Fin-subset;

(2) there exists a real number /p > 0, called the length of the box B, with the
property that for every x € B there exist real numbers a_(x) < 0 < a4 (x)
and €(x) > 0 satisfying

Ip = a4 (x) —a—(x);
®,(x) e B fort efa_(x),ar(x)];
P, (x) ¢ B fort e (a—(x) —e(x),a—(x)) U (at+(x),a+(x) + €(x)).
To a box B we can assign the central slice
Sg={x € B|a_(x)+as+(x)=0}.
We abuse notation and define S := 0B N Sp and §B = BN SB.

Lemma 4.2 ([4, Lemma 2.6]). The map
np:Spx [-13/2.18/2) = B, (x.1) — ®;(x)
is a Gp-homeomorphism.
Consequently, we can define a projection prp to the central slice, via
prg: B —> Sp, x> pr; oz (x).

By definition of up this is the same as x d)_prz(ugl () (X)-
Definition 4.3. An open box is the interior of a box.

Lemma 4.4 ([4, Lemma 2.16]). For every x € X, and for every0 <[ <y there
exists a box B of length | with x € 5’3 and Gg = Gy.

Remark 4.5. In [4, Lemma 2.16] the space X \ X R js assumed to be locally
connected. This is only needed to find a box as in Lemma 4.4 with the additional
assumption that Sp is connected. Furthermore, in [4, Lemma 2.16] the lemma is
only stated for / < y. Since x € X, is also in X, 4, for ¢ small enough, it
follows that the lemma also holds for [ = y.
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Lemma 4.6. Let X be a locally compact, second-countable flow space and
a,6 > 0. Then there is a countable collection of compact subsets (S;)ien and
(xi)ieN with x; € X such that

(1) P—10a,1001(Si) S Bs(®P[—104,100](Xi)) is a box of length 20a with central
slice S;;

(2) the interiors of the smaller boxes ®[_y 1(S;) form a locally finite cover of
X>20a3
(3) for any two S;, S; the set

{t € [3a, 3] | there exists x € S; such that ®;(x) € Sj} € R

has diameter less than a.

Proof. By Lemma 4.4 we can find for every point x € X>204 @ boX ®[—100,100] 5%
of length 20« such that x is in the interior of this box and in the central slice.
Furthermore, we can choose them in such a way that S;, = gS}.. We can assume

P—100,100] (S%) € Bs(P[—10q,104] (X)).

since otherwise we can replace Sy by S; N ();c(—10a.100] P—t (Bs(P:x)). Now
consider the open cover
{(qD[—a,a]Sglc)o | X € X}

and push it along the quotient map 7 to the quotient G\ X. The quotient G\ X is
metrizable and hence second-countable and paracompact by [14, Corollary 2.1.8].
We can thus find a countable, locally finite refinement {V(n) | n € N} of this
cover. Being a refinement means that we can find for every n an x(n) with
7 V() € 77 (@ (Pla.adSpn)?) = G - (P01 S, y)°- Now define a cover

Vi={x"'(V(n)) N g(P0.a]Sy(m)° | € € G.n €N}

This is a countable, locally finite, G-invariant open cover of X. Choose an
enumeration V = {V; | i € N}. We can enlarge these sets by first projecting
the closure of V; = n= 1 (V(ni)) N gi (P[—g,a] S;(ni))° to the central slice gS;(ni)
and then letting it flow by [—«, ¢]. Call the resulting box C; and its central slice
D;. Let C be the collection of boxes {C; | i € N}.

To show that it is locally finite at some point x, pick a compact neighborhood
K and note that if K N C; # @, then ®@_o4.24](K) N V; # 0. Since P24, 24](K)
is compact and the collection {V; | i € N} locally finite, this can happen only for
finitely many 7.

It remains to establish Lemma 4.6(3). To achieve this we have to subdivide the
central slices D; into finitely many compact sets S; 1, ..., Sin,. We will do this
by induction over i € N. If there is a g € G such that gD; = D, for some j < i,
define S; x := gS; k. Otherwise proceed as follows.
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Define for j € N a continuous function
fi,jiDi N ®_3434)(D;) — [-3a,3a], x+—1t with ®;(x) € D;.

There is precisely one such ¢ since there is a box of length 6o with central
slice D;. This map is continuous by [4, Definition 4.14]. For every x €
D; N ®_3¢,30)(D;) there is a small, open Fin-neighborhood U; ;. in D; N
®[_30,30](D;) such that f; ;(U; j,x) has diameter less than «. This neighborhood
can be extended by Lemma 2.7 to an open neighborhood U} jx in D; such that
Ui/,j,x N cI>[—30t,30t] (Dj) = Ui,j,x'

The set J; = {j | Di N P_34,3¢)(D;) # O} is finite and thus U; x, =
(\jes; Ui ;. is still an open neighborhood. Let Wi x == (jeq,,. h='U; jpx. This
collection is Gp;,-invariant. Since D; is compact we can find é finite subcover
/T Wi,xmi- This can be chosen in a Gp,-equivariant way. This yields a
Fin-cover of D;. The new collection

{Sitien = Wax, |n €N, 1 <k <m;}.

does the job. Note that, since every element of the collection {S;};eN is a subset
of some S,, x € X considered in the beginning, we have ®[_19a,1041(Si) S
Bs(®[—10q,10a1(x)) for some x € X. O

5. Covering X,

We will now construct covers for the part without a short G-period. Here X
denotes a second-countable, locally compact flow space of dimension n and let
« > 0 be given. Let y be 20« and (S;);en be a collection of compact subsets of
X as in Lemma 4.6. Fix these choices for the rest of this section.

Lemma 5.1. Let (A;)ien be a collection where A; is a compact Gg,-invariant
o
subset of S; of inductive dimension at most k for some k > 0. Then there is a
o
collection of open Gg, -invariant subsets B; C S; such that

(1) A; \ UjeN’geG D (_30,30)(gBj) has inductive dimension at most k — 1 for
every i,

(2) any point is contained in at most 5 sets of the collection

{®(—4a,4a)(gBi) | i €N, g €G}.
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Proof. Let

A= or(g4)):
jeN,geG

Ap=85nA =S NO_1yaza1gd-
jeN,zeZ,geG

Since S; and thus also ®;_,g~!S; is the central slice of a box of length greater
than «, the projection @jgq4A; — Aj restricted to ®;1_,g7'S; N Do 14, is
injective. The intersection ®;_,g~1S; N (9,41 A; is compact and A; is Hausdorff.
Hence ®;_,g7'S; N ®[0,a1A4; is homeomorphic to its image in A;. Therefore, the
union in the displayed equation above is a countable union of compact spaces
homeomorphic to subspaces of A;. Thus by Theorem 3.2 and Theorem 3.3 we
have that ind(4]) < k.

For every x € A; we can find an open neighborhood U, C A such that we have

ind(aA; Uy) <k—1and BA; U, C §i. We can choose those such that Ugy = gU,
for g in the finite group Gg, by replacing U, by ﬂgeGsl. g W,y

By compactness we can find a finite Gg,-subset F; C A; such that V; =
User, Ux contains 4;. By Lemma 2.7, the open G, -subset

Up={xeS;|dxV)<d(x, A\ Vi)}

of S; has the following properties:

e U; N A; =V
e (05,Ui) N A} = aA;,(U,' N A}).
Thus,

ind((9s,U) N A7) = ind(@4, (V) < ind (] 04 (U0) =k =1, (5.1)

x€F;

where the last inequality follows from Theorem 3.3 since d A (Uy) is closed in A}.
Define inductively Gg, -invariant subsets

B, =U; \U q>(—30t,30t)gB_j
j<i,geG
20,2018 B; NU; #0

=U; \ (Si N U q>(—3a,3a)gB_j)'
j<i,geG
¢[—2a,2a]g?iji¢@
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Now since S; and g B; are both compact and the G-action on the space  is proper,
there are only finitely many g € G such that the intersection ®[_,4 241 Bj N U; is
not empty. We want to show by induction on i that ind(4} N ds, B;) < k — 1:

0s; Bi € 95, Ui U | J 05, (Si N ©(_30,30)8 B;)
j<i,geG
P[_24,2018 B NU; #0

C s, U; U U Si N 0x (P(—30,30)8 B)
j<i,geG
<I>[—20(.20(]4?371'mUi #0

€ 05, Ui U Si N ((230)8B) U P (30,30 (805, B))).
j<i,geG
D[_20,2018 B; NU; #0

By Lemma 4.6(3) and ®[_242418B;j N U; # 0, we get that S; N Oy 348 B; is
empty.

Consider the following equation, where the first and fourth equality are from
expanding the definitions of 4} and A4’, the second equality follows from A’ being
R-invariant, the third equality follows from ds; B; C §; and the last equality is
given by writing R as a union of the intervals [z, z + 1].

A; N Si N P_3q,30] (g9s; Bj)
= S; N A" N P[_30,341(g0s; B;)
= 8i N ®[_3q,34](A" N gds; B)
= 8i N P[_30,30)(A" N gS; N gds; B))

= U Si N Pp_34,34] (Pr(1A4x) N gS;j N gds, B)
heG,keN

= U Si N P—30,30] (Pz,z+1](hAR) N gS; N gds; B)).
heG,keN,zeZ

Arguing as at the beginning of the proof, the compact space
Si N P[—3q,30] (Pz,z+11(hAx) N gS; N gds; Bj)

is homeomorphic to a subspace of (P, ;41)(hAx) N gS;) N gds; Bj < g(A} N
ds; Bj). Thus we know that A; N d, (B;) is contained in the union of a countable
collection compact subsets of A} N ds;(B;) with j < i which have inductive
dimension at most k — 1 by induction assumption and the space dg, U; N A} whose
inductive dimension is at most k — 1 by (5.1). We would like to apply Theorem 3.3,
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but ds, U; N A} might not be a closed subspace of S;. This problem can be overcome
by writing A as a union of countably many compact spaces as in the beginning
of the proof. Thus we obtain

ind(4; N ds, (B;)) <k — 1.

This completes the induction.
Now let us show (1). We have the following inclusion. The individual steps
are explained afterwards.

Aj; \ U ¢(—3a,3a) (gBJ)
jeN,geG

C Ai\|J 23030 (€B))
Jj<i,geG

= (Ai \ ®(30,30) (Ui \ U cI)(—304,304)837')) \ U D (_34,30)(gB))

j<i,geG j<i,geG
D[_2¢,2018 B;NU; #0

c (Az \ (Ui \ U q)(—3(x,3(x)gB_j>> \U ¢(—3a,3a) (gBJ)
j<i,geG j<i,geG
P[_20.2018 B; NU; #0

c (Ai N (U q>(—3a,3a)gB_j>> \ U D(_34,30)(gB))

j<i,geG j<i,geG
C AN U ¢(—3a,30t)g(Fj \ Bj)
j<i,geG

c U Ai N P_34,34)80s; B -
j<i,geG

The first and second inclusion comes from removing a smaller set. The first
equality is given by removing first ® 34 34)gB; and inserting the definition of B;.
The third inclusion follows from the fact that A; € U;. The last two inclusions are
obvious.

The set A; N P[_34,34]80s - Bj is homeomorphic to a compact subset of A'N
ds;gB; = g(A}; N ds; B;) and thus its inductive dimension is at most k — 1. So
Ai\Ujen g6 P(=3e.30)(gB;) embeds into a space of inductive dimension at most
k — 1. Thus we have shown (1).

To show (2) we first want to show that the collection

C:={PqqgBi | g €G,i eN}
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consists of pairwise disjoint sets. Since Bj; is a Gg; -invariant subset of the central
slice of a box of length 2«, we know that g®_y o1 Bj N &' P[—y,a1Bj # 9 if and
only if gg'~! € Gs;, in which case the two sets are equal. By definition of B; we
have that for j < i

qu[_a,a] B; N g/q)[_a,a]Bj = 0.

Thus the collection € consists of pairwise disjoint sets. Now let us consider the
collection

¢ = {P-40,4018Bi | g € G,i € N}.

If x is contained in ®|_4q,40)¢B; then there is a B € {—4a, —2a, Or, 20, 4o} such
that ®g(x) € P[_y,01¢Bi and thus x is contained in at most 5 sets of €. O

Theorem 5.2. For every o, § > 0 there is a Fin-cover of X~20 of dimension at
most 5(ind(X) + 1) with the following property: for every point x € X~pq there
is an open set in this cover containing ®(_ o) (x) and for every open set U in this
cover there is an element x € X with U C Bs(PRr(x)).

Proof. Let y := 20«. First consider the collection of subsets 2l := {§l~ | i € N}
as in Lemma 4.6. We can find a sequence &; > 0 such that A? = {x € §; |
d(x,dS;) > &;} has the property that

{P[-20,201(84]) | g € G.i €N}

still covers the whole of X,. Note that A? is a compact, G, -invariant subset of
o
S; of inductive dimension at most ind(X).

o
By Lemma 5.1 we can find a collection Bi0 C S; as in the lemma. Define new
compact subsets

Al =A%\ U P (_30,30) (g B})
jeN,geG

and iterate the process. Note that Af.‘ = @ for k > ind(X) since its dimension is
—1. By Lemma 5.1 (1) we know that any point in X, is contained in an open
set of the form ®(_34,3q) (gBik) forsome g € G,i € N,k €0,...,ind(X). Now
consider the collection

B = {D(404a)BF | i €N,k €0,...,ind(X)}.

Thus for every point x we can find an open set U € B with ®[_, 4)(x) € U. Every
point is contained in at most 5-(ind (X )+ 1) sets of this collection by Lemma 5.1 (2).
By construction each element in B is a subset of ®[_44,44](S;) and in particular
contained in Bs(®[—10q,10¢](X)) for some x € X by Lemma 4.6(1). O
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6. Axes with bounded G-period

In this section we will construct the cover for X,xes,,. From now on we will fix
y > 0 and omit it from the notation.

Lemma 6.1. The G-subspace Xyxes € X is
(1) closed,
(2) second-countable and

(3) locally compact.

First we need to prove that [3, Lemma 4.6, Corollary 4.7] still hold without the
assumption that the metric space is proper.

Lemma 6.2. Let (Z,d) be a metric space with a proper isometric G-action.
If (zn)nen and (gn)neN are sequencesin Z and G such that z, convergestoz € Z
and gnz, converges to z' € Z, then {g, | n € N} is finite and for every g € G
such that g, = g for infinitely many n € N we have gz = z’.

Proof. Define K := {z,}U{gnz,}U{z, z’}. Then K is compactand g, KNK # 0,
thus the set {g, | n € N} is finite. If g, = g for infinitely many n € N, then
z' = limy 00 gnzn = limy 00 g2p = g2. u

Corollary 6.3. Let (Z,d) be a metric space with a proper isometric G-action.
If L C Z is compact, then HL C Z is closed for any subset H C G.

Proof. Let h,z, be converging to z with h, € H,z, € L. After passing to a
subsequence z, converges to z’ € L and by Lemma 6.2 we can pass to a further
subsequence with i, = h. Thus z = hz’ € HL. O

Proof of Lemma 6.1. (1) Let ¢, € Xaxes be a sequence that converges to ¢ € X.
There are g, € G,t, € (0,y] such that g,¢, = P;,c,. We can pass to a
subsequence and assume that ¢, converges to ¢. Then g,c, = ®;,c, converges
to ®;c. Since G acts properly and isometrically on X we can apply Lemma 6.2
and assume after passing to a subsequence that g, = g is constant. We have

gc =limgpc, = lim @y, ¢, = Dsc.

Since the group action is proper and g has infinite order, ¢ can not be zero.
(2) Subspaces of second-countable spaces are again second-countable.

(3) Closed subspaces of locally compact spaces are again locally compact. O
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Lemma 6.4. Ifthere are g € G,0 <t € Rwith ®,;c = gc, then grc is closed.

Proof. We have ®rc = |J,cz 8" Pjo,;jc. The group (g) also acts properly and
isometrically. The set ®[y ;jc is compact. Hence ®rc is closed by Corollary 6.3.
O

Lemma 6.5. The subspace {t € R | &, L N L' # @} of R is compact for every
two compact subspaces L, L’ C Xyxes.

Proof. Since this set is closed, it suffices to show that it is bounded. Furthermore
itisasubsetof { e R | ®,(LUL)YN(LUL') # @} and thus it suffices to consider
the case L’ = L # @. In this case the set is symmetric at 0 and thus it suffices to
find an upper bound.

The set

S ={g€G[gLNPy,yL # 0}

is finite since the group action is proper. Furthermore we have S = S~!. Since
every point in L is an axis for some group element, the set S contains at least
one element of infinite order. Let m be the maximal integer such that there is an
element g € S of infinite order with g”* € S. Now let + > 0 be given such that
there is an x € L with ®;(x) € L. Since x is an axis, we can find a g € G with
gx = Py x)x for 0 < I(g,x) < y. Hence g has infinite order and g € S. Now
write ¢ in the form 1 = m'l(g, x) + r withm’ € Z,r € [0,1(g, x)]. By assumption
®,(x) € L. Furthermore we have

D/ (x) = g" @ (x) € g™ Pyy)(L).
Thus g~ € S and by symmetry we have g” € S. Hence m’ < m and thus
t=m'l(g,x)+r <m + 1)y <(m+ 1y. O
Lemma 6.6. The space Yaxes is locally compact and metrizable.

Proof. The space X,xes is second-countable by Lemma 6.1. The quotient map
D: Xaxes —> Yaxes 1S Open, because it is the quotient by the action of the group
R. Let y be a point in Yaxes and ¢ € Xaxes be a preimage. Let U be an open
neighborhood of y. Let L € p~!(U) be a compact neighborhood of ¢ and since
p is continuous and open p(L) is a compact neighborhood of y. Thus Yxes is
locally compact.

Points in Yyxes are closed, since ®re C X is closed for every ¢ € Xaxes by
Lemma 6.4. For a closed subset A C Yy and p(c) ¢ A there is an € > 0 such
that B¢(c) is compact and B¢(c) N p~'(A) = @ and thus also p(Be(c)) N A = @.
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Claim. The set B := p(B¢/2(c)) is closed.

Then the complement of B is an open neighborhood of A and it is disjoint
from the open neighborhood p(B¢/2(c)) of p(c). Hence, Yaxes is regular. Yaxes
is second-countable since it is a quotient of a subspace of a second-countable
space. By Urysohn’s metrization theorem [12, Theorem 34.1] the quotient Yyes is
metrizable.

It remains to prove the claim. Let ¢; be a sequence in p~!(p(Be/2(c))) which
is converging to ¢’ in Xaxes. Let #, € Rbe such that &y, ¢, € Be/2(c). Let§ > 0 be
such that Bg(c’) is compact and N € N be such that d(c,,c¢’) < § foralln > N.
By Lemma 6.5 there isaty > 0 such that ®;(Bs(c’)) N Be/2(c) = @ forall [t] > |to]
and thus |t,| < |to| for all » > N. Therefore, there is a subsequence #,, converging
to t’ € R. Thus for n large enough we have ®,/¢, € P ](Be/2(c)), which is
compact. So also the limit ®;¢’ = lim,_ o0 Psrc, lies in P ¢)(Be/2(c)) and
thus ¢’ is an element of p~! p(B¢2(c)). O

Proposition 6.7. Let § > 0 be given. There is an open ®-invariant Vcyc-cover
U of Xaxes Whose dimension is at most dim(X) and for each U € U there exists
x € X with U C Bg(Pr(x)).

To prove this we need the following lemmas.

Lemma 6.8. Forall y € Yyxes the stabilizer Gy, :={g € G | gy = y} is virtually
cyclic of type I and Gy C Yyxes is closed and discrete.

Proof. The space y = ®r(c) = Ris a closed Gy-invariant subspace of X. Thus
the group action of G, on y is proper. Furthermore we have a homomorphism
Gy, - R, g — I(g,y), where we set [(g,y) = 0if gy = y. Since ¢ is not
fixed under the flow, we can find a small ¢ such that ®;(c) ¢ Gc¢ forall ¢t € (0,¢)
and thus the image of this homomorphism is discrete. It is nontrivial since c is
G-periodic. Thus it must be infinite cyclic. Since the G-action on X is proper the
kernel of this map is finite. Hence G, is virtually cyclic of type I.

Next suppose that we have a sequence g; @, (c) € p~'(Gy) with g; € G that
converges to some ¢’ € Xyxes. Pick g € G such that ¢ is an axis for g with
l(g,c) < y. Then by replacing g; by g;g™ for some m; € Z we can assume
ti € [0,y]. We have gic € ®_,, 01B1(c’) =: L for n big enough. Since the action
is proper and L is compact we can find a subsequence with g; = h. Furthermore
we can pick a subsequence such that lim; N #; exists. Thus 2 ®;, ¢ converges to ¢’
and ¢’ = P,y hiCc € p~Y(Gy). Therefore, Gy is closed. And since we can
always find a subsequence with g; = h every converging sequence in Gy already
contains its limit point infinitely often. This implies that Gy is discrete. O
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Lemma 6.9. The space G\ Yaxes is locally compact and metrizable.

Proof. The space X,xes is second-countable by Lemma 6.1. The quotient map
P Xaxes = G\ Yaxes i Open, because it is the quotient by a group action. Let y be
a point in G\ Yaxes and ¢ € Xyxes be a preimage. Let U be an open neighborhood
of y andlet L € p~!(U) be a compact neighborhood of ¢. Since p is continuous
and open, p(L) is a compact neighborhood of y. Thus G\ Yyxes is locally compact.

Points in G\ Yaxes are closed, since Gy C Yixes is closed for every y € Yyxes by
Lemma 6.8. For a closed subset A C G\ Yaxes and ¢ € Xaxes With p(c) ¢ A there
is an € > 0 such that B¢(c) is compact and B¢(c) N p~'(A) = @ and thus also
P(Be(c))NA=0.

Claim. The set B := p(B¢/2(c)) is closed.

Then the complement of B is an open neighborhood of 4 and it is disjoint from
the open neighborhood p(B¢/2(c)) of p(c). Hence, G\Yaxes is regular. G\ Yaxes
is second-countable since it is a quotient of a subspace of a second-countable
space. By Urysohn’s metrization theorem [12, Theorem 34.1] the quotient G\ Yyxes
is metrizable.

It remains to prove the claim. Let ¢; be a sequence in B/»(c), ; € R, g € G
such that the sequence g; ®;,c; is converging to ¢’ € Xaxes. Let h; € G be
given such that ¢; is an axis for 4;, then there are m; € Z,t] € [0, y] such that
gi®sci = gihl’."i <I>,lgc,-, therefore we can assume #; € [0, y]. Since B¢ »(c) and
[0, ¥] are compact we can assume that ¢; converges to k and ¢; converges to .
By Lemma 6.2 there is g € G such that ¢/ = g¢.k € p~1(p(Bej2(c))). This
proves the claim. O

The big difference to [3] is that there assumptions on the geometry are used to
define a metric on G\ Yaxes. Here we just use metrization theorems and thus get
rid of those assumptions.

Lemma 6.10. We have dim(G\Yaxes) < dim(X).

Proof. Xaxes is a metric space and hence completely regular. For every x € Xgxes
there is a compact neighborhood L of x. The space Hy :={t e R| ;LN L # @}
is compact by Lemma 6.5. This implies by [13, Theorem 2.3.2] that there is a
slice at x, i.e. there exists Sy C Xaxes containing x such that ®rSy C Xaxes
is open and an R-equivariant map f: ®gS, — R such that f~1(0) = S,. For
Y € Yaxes let U := p(PrSy) for some x € Xyxes With p(x) = y. This is an open
neighborhood of y. We can define a section s: U — Xaxes by s(¥') = SxNp~1(y")
for all y’ € U. The continuity of the section follows from the alternative definition
s(y") = O_rxnx’ for some x” with p(x’) = y’. Since Yaxes is locally compact
by Lemma 6.6 there is for each y a compact neighborhood K, of y and a section
51Ky — Xaxes.
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By Theorem 3.2 and Theorem 3.5 this implies that dim(K) < dim(Xaxes) <
dim(X) and therefore locdim(Yyxes) < dim(X). Since Yyxes is metrizable it is
paracompact and normal. This implies dim(Yaxes) = locdim(Yyxes) < dim(X) by
[14, Proposition 3.4].

For every y € Yaxes there is a compact neighborhood L of y. Since the
G-action on Yyyes has closed, discrete orbits by Lemma 6.8 the map p: L — G\GL
is finite-to-one. Both L and G\ GL are metrizable by Lemma 6.6 and Lemma 6.9
and thus paracompact and normal. This implies

dim(L) = dim(G\GL)
by [14, Proposition 9.2.16]. As above we get
dim(G\ Yaxes) = locdim(G \ Yaxes) = dim(Yaxes) < dim(X). U

Lemma 6.11. Let ¢ € X<, and let I be a family of subgroups. For any open
JF-neighborhood U C X<, of ®rc there exists an open F-neighborhood V.C U
of ®rc which is invariant under the flow.

Proof. Let C be the complement of GU and let V' be the intersection of U with
the complement of ®rC. Then V contains Prc and is an F-subset. It remains to
show that V' is open or equivalently that ®rC is closed. Since every element has
G-period at most y and C is G-invariant we have that ®RC = P ,,jC. This is
closed since [0, y] is compact and C is closed. |

Proof of Proposition 6.7. Let y € Yyxes be given. By Lemma 6.8 the set Gy \ {y}
is closed and therefore p~1'(y) and p~!(Gy\y) are closed. Let ¢ € p~l(y)
and g € G be such that ¢ is an axis for g. There is § > ¢ > 0 such
that we have Be(®pg(g.c¢) N p~1(Gy\y) = 0. Since Gy\y is invariant un-
der g and g”(Be(CI)[O,](g’C)]C)) = Be(qD[nl(g,c),(n—}—l)l(g,c)]C) we conclude that
also Be(p~'(»)) N p~'(Gy\y) = @. It follows that B./»(p~'(y)) is an open
Vcyc-neighborhood of p~!(y) and thus by Lemma 6.11 contains an open
Veye-neighborhood V) which is invariant under the flow.

Then V), := p(VJj) is a Veyc-neighborhood of y. Because 7: Yixes — G\ Yaxes
is open, {m(V}) | y € Yaxes} is an open cover of G\Yaxes. By Lemma 6.10 there
is a refinement W of dimension less or equal to dim(X). For any W e W pick
Yw € Yaxes such that W € 7 (V). Now define

V={n'W)ngV,, | WeW,geG).

This is an open Vcyc-cover because each V), is an open Vcyc-set. Its dimension is
bounded by dim(X) because the dimension of W is bounded by dim(X) and for
all g € G,y € Yaxes we have either V), = gV, or V), N gVy, = @. Itis G-invariant
because each 7~ 1 (W) is G-invariant. By construction p~!(z~ (W) N gV},,) C
Vi, S Bs (p~'(yw)). Pulling the cover V back along the quotient by the flow
Xaxes = Yaxes yields the desired Vcyc-cover. O
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7. Compact flow lines with bounded G-period

In this section we want to cover the periodic part Xy with small G-period. In [3]
and [4] this subspace was just the fixed points of the flow, but here we do not want
to assume this. In this section p: X¢ye — Yeye denotes the quotient map.

Lemma 7.1. The subspace Xcyc € X is closed.

Proof. Let x, € Xcyc be a sequence converging to x € X. We want to show that
X € Xeye = XC’yC N X<,. There are g, € G,s, € [y/2,y] with g,x, = Dy, x,.
If we have gy, s, with s, € [y/4,y/2] we take g2, 2s, and so on. After passing
to a subsequence we can assume s, converges to s € [y/2, y]. Then the sequence
gnP_s, xn = x, converges to x and thus also g, 1®,x converges to x. Since the
G action is proper, we can find a subsequence with g, = g. Therefore, ®;x = gx
and x € X<y. The subgroup generated by g acts properly on the compact space
®Rr(x,) and thus g has finite order. This implies ®,,;x = x, where m is the order

of g. Hence x € X/ O

cyc*

In general X{. € X need notbe closed, as the example of the geodesic flow on
the unit tangent bundle of the two dimensional flat torus shows. Thus the bound
on the G-period is really crucial.

Lemma 7.2. The spaces Ycyc and G\Ycyc are locally compact and the induced
G-action on Yy is proper.

Proof. Since Xy is closed in X and X is locally compact, also Xy is locally
compact. Let y € Yy respectively y € G\ Yy and let x € Xy be a preimage of
y. Let U be an open neighborhood of y. Then x has a compact neighborhood L
contained in the preimage of U. The image of L in Yy respectively G\ Ycyc is a
compact neighborhood of y, since quotient maps by group actions are open.

Now let y € Yy be given. Since Xy is locally compact this implies that
p~(y) has a compact neighborhood L,. To show that G acts properly on Yeyc, it
suffices to show that the set

T :={g<cG|gp(Ly)Np(Ly) # 9}
= {g € G | there exists x € L,,t € Rsuch that gx € &;L,}

is finite for any point y € Y¢yc. Let
S :={g | thereexistsc € L.t € [0, y] such that ;c = gc}.

This set is a subset of S := {g € G | gPoy1Ly N Ppo,y1L, # ¥} and the
latter is finite, since G acts properly on X and ®g ,,1 L, is compact. So § is finite.
Any g € S has finite order since (g) acts properly on the compact space ®rc for
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¢ € Ly C Xcyc with ®;¢ = gc. Thus the set S* = {g" | g € §,m € Z} is also
finite. Now let us show that 7 € S’ - S*. For g € T choose x € L,,t € R such
that gx € ®,L,. Since x has G-period < y, we can find an & € G, such that
hx = ®,x for some ¢’ € (0, y]. Usually ¢’ is the G-period of x; if that period is
0, we can choose ¢’ as any positive number. By definition of S we have i € S.
We get

gh"x = g®pyx = Opyrgx € Pryyr4s Ly

and if we choose m € Z suitably, we have mt’ + ¢t € [0, y] and thus gh™x €
®p9,41Ly and thus gh™ < S’. Hence

g=(gh™-hmeS .85* O
Lemma 7.3. The space Ycyc,~o and its quotient by the G-action are Hausdorff.

Proof. Pick two different points y, y’ € Yeye,>0 and let x,x" € Xcye >0 be two
preimages. Thus ®r(x) and ®gr(x’) are compact. There exist open disjoint Fin-
neighborhoods U, U’ of ®g(x) and ®r(x’). By Lemma 6.11 they contain open
Fin-neighborhoods V, V" which are invariant under the flow. Their images under
p then are the desired disjoint open sets.

We still have to show that the quotient by the G-action is Hausdorff. Let points
Gy # Gy’ € G\Ycye >0 be given. Let x, x’, U, U’ be as above. Since the G-action
is proper, we can assume U NgU’ = @ for all g € G. Doing the same construction
as above and pushing it to the quotient, we end up with separating neighborhoods
for Gy and Gy’. Thus G\Ycyc >0 is Hausdorft. O

Lemma 7.4. The spaces Ycyc >0 and its quotient by the G -action are paracompact
and normal.

Proof. Since Ycyc,>0 and G\Ycyc >0 are open subsets of Yeye and G\ Yy respec-
tively, both are again locally compact. By [12, Exercise 3 on p.205] every lo-
cally compact, Hausdorff space is regular. Second-countable spaces are Lindelof
spaces. A regular Lindelof space is paracompact by [12, Theorem 41.5]. All para-
compact Hausdorff spaces are normal by [12, Theorem 41.1]. |

Lemma 7.5. We have that dim(G\Ycyc >0) < dim(Ycye,>0) < dim(X).

Proof. We start with the second inequality. Let y € Ycyc >0 be any point and let
x be a preimage. Pick a box B around x and consider the map induced by p

p':Sp — p(Sp).

Note that p(U) = p(®U) and p is open since it is the quotient by a group
action. Thus the map p’ is a continuous open surjection.



1222 D. Kasprowski and H. Riiping

Pick some y’ € p’(Sp) and some preimage x’. Since B is a box of length I,
any two points of the set

S={teR|d(x) e Sp}
have distance at least /g /2 and thus it is discrete. Let M be the period of x’. Thus,
{x" € Sp | p(x") =y} ={Ps(x") | s € S} ={Ps(x) | s € S N[0, M]}

is finite. Thus we have a continuous surjection between paracompact, normal
spaces where every point has finitely many preimages. Thus by [14, Proposi-
tion 9.2.16] we get that dim(p(S)) < dim(Sg) < dim(X). Since p'(Sp) = p'(B)
is open and x was arbitrary, we get that locdim(Ycyc,>0) < dim(X).

The space Ycyc >0 is paracompact and normal and by [14, Proposition 3.4] this
implies dim(Ycyc,>0) = locdim(Yeye,~0) < dim(X).

The first inequality follows the same way. Note that every point in Ycyc >0
has a compact, Fin-neighborhood K. To understand the local dimension, we can
consider the map K — Gg\K € G\Ycyc >o. O

Lemma 7.6. Let § > 0 be given. There is a G-invariant Fin-cover Veyc of Xcye of
dimension at most 2 dim(X)+1 such that we can find for every x € XeyeaV € Veye
containing ®g(x) and for every V € Veye a point x € X with V C Bs(®Rr(x)).

Proof. We will first deal with the subspace X® which is independent of y. Let
7: X® — G\XR denote the quotient map. Since the group action is proper,
we get that the quotient is metrizable. For any point Gx € G\X pick a com-
pact neighborhood K of a preimage. The quotient map K — G\GK is a con-
tinuous, finite-to-one, open surjection. Thus by [14, Proposition 9.2.16] we get
that dim(G\GK) < dim(K) < dim(X). Since x was arbitrary, we get that
locdim(G\XR®) < dim(X).

The space G\ X R is paracompact and normal and by [14, Proposition 3.4] this
implies dim(G\X®) = locdim(G\ X®) < dim(X). Pick a Fin-cover V of X® and
refine {w(V N Bs/a(x)) | V € V,x € XR} to a cover U of dimension at most
dim(X). Since U is a refinement of {x (V) | V € V}, we can find for every U € U
a Vy € Vwith U € n(Vy). Then the open Fin-cover of XR given by

Uyr = {7 ' (U)NgVy |U e U, g € G}

is at most dim(X ) dimensional.

Now let us look at Xcye>o. Let p:Xcyeso — Yeye,>o be the quotient
map. Since the G-action on Y¢yc >0 is proper, we can find a refinement V of
{P(Bs/2(Pr(x))) | x € Xcye, >0} thatis a Fin-cover of Yeye >o.

Let us look at the quotient by the group action

T chc,>0 I G\chc,>0-
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Push V down to the quotient by the G-action and refine it to a cover U of dimension
at most dim(X) using Lemma 7.5. Being a refinement means that we can find for
every U € UWa Vy € V with 77 1(U) € G(Vy). Then the open Fin-cover

Uypyeoo ={m (V)N gUy |V €V.g €G)

is a cover of dimension at most dim(X) of Ycyc,~o. Pulling it back to Xcyc,>0
gives an open JFin-cover uxcywo of Xcyc,>0. Now use Lemma 2.7 to extend the
collections Uyr, chyc’w to open subsets of Bs/» (X R) N Xcye and Bs/2(Xeye,>0) N
Xcyc respectively and take Veyc as their union. The construction in Lemma 2.7 is
made in such a way that set V' € Vy is still contained in Bs(®gr(x)) for some
X € Xeye. O

8. Proof of the Main Theorem

We can now use the previous sections to prove the main theorem.

Proof of Theorem 1.1. Let y := 20a. Let U-, be the open cover of X, from
Theorem 5.2. Its dimension is at most 5(ind(X) + 1) = 5dim(X) + 5. Recall that
by Lemma 6.1 and Lemma 7.1 we have X<, = Xuxes LI Xcye and X<, is closed
in X. Thus the elements of U, are openin X.

To cover X<, we can use the covers from Lemma 7.6 and Proposition 6.7
with §/2 instead of § and take their union. The union has dimension at most
2dim(X) + 1. Extend it to a Vcyc-collection U<, of open subsets of X using
Lemma 2.7 for X<, € Bs/»(X<y) and define U := U<, U U, It has dimension
at most 7dim(X) + 7. Since we are only extending to a §/2-neighborhood the
construction in Lemma 2.7 will enlarge sets by no more than §/2 and each U € U
is still contained in Bs(®r(x)) for some x € X. O

Remark 8.1. Only the construction for the nonperiodic part with short G-period
produces a Vcyc-cover. For the other parts the construction produces a Fin-cover
instead. Therefore, only those virtually cyclic subgroups of G appear as stabilizers
of the cover for which there exists an axis.

If the flow space is cocompact, then it also is locally compact and second-
countable by Proposition 2.5 and as in [3, Lemma 5.8] we obtain the following
corollary.

Corollary 8.2. Let X be a finite-dimensional and cocompact flow space X and o
be a number greater than 0. Then there is an ¢ > 0 and a Vcyc-cover U of X such
that for every point x € X there is an open set U € U with Be(P[_g,q)(x)) € U
of dimension at most 7dim(X) + 7.
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9. Applications

Approximating the orbit space. Let U be a simplicial complex and v € U a
vertex. The open star St(v) of v consists of all simplices of U containing v. Note
that this is in general not a subcomplex. From Theorem 1.1 we obtain the following
approximation of the orbit space R\ X already eluded to in the introduction.

Theorem 9.1. Let X be as in Theorem 1.1. Then there exists a sequence of G-
equivariant maps f,: X — V, into simplicial complexes V, with dimension at
most 7dim X + 7 and Vcyc-stabilizers such that for every vertex v € V there is
x € X with f,71(St(v)) € Bs(®r(x)) and for every x € X there exists a vertex
v € Vy with @ »1(x) C f,71(St(v)).

Proof. Let U, be a cover as in Theorem 1.1 such that for each x € X there exists
U € U, with ®_, ,j(x) € U. Let V, be the nerve of Uy, i.e. the simplicial
complex with vertex set U, and the elements Uy, . .., U, span a simplex if and only
if (', Ui # 0. Forx € X letd(x) := > veu, d(x, X \ U). We have d(x) € R,

since the cover is locally finite. Define f,: X — V,, by x = > peqq, d(’;’é;m U.

Then £,7'(St(U)) = U and hence V,, satisfies the properties in the theorem. [

The Farrell-Jones conjecture. The Farrell-Jones conjecture for a group G says
that the K-theoretic assembly map

H (EveyeG: Ka) — HZ (pr:Ka) = KL (A[G])
and the L-theoretic assembly map
H (EveyeGiLa) — 3 (pt:La) = LN AIG))

are isomorphisms for any additive G-category A (with involution), see [6, Conjec-
tures 3.2 and 5.1]. The Farrell-Jones conjecture implies several other conjectures.
See [11] for details.

As in [16, Definition 2.15] we say that a group G satisfies the Farrell-Jones
conjecture with finite wreath products if for any finite group F the wreath product
G ¢ F satisfies the K- and L-theoretic Farrell-Jones conjecture. We will use the
abbreviation FICw for “Farrell-Jones conjecture with finite wreath products.”

Definition 9.2 ([15, Definitions 2.1 and 2.3]). A strong homotopy action of a group
G on a topological space X is a continuous map

o0
v [(Gx[0.1) xGxX — X
Jj=0

with the following properties:
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1 W(....8.0,8-1,..) =¥(..,8. V(g-1.-..)),

@) Y(...g. 1 g-1,..) =Y(...8 " 8g1-1... ),

() We. tj. gj-1....) = W(gj-1....)s

@) Y(....t1, e tp—q,..)=V(..,t;-tj—1,...),

O) v(...,t1,e,x) =VY(...,x),

(6) Y(e,x) =x.

For a subset S € G containing e,g € G and a k € N define

Fo(W, S k) ={V(gk.tk,....80.D): X — X | g €5.t;, €[0,1], gk ... 80 = g}

For (g, x) € G x X we define S Sk(g,x) as {(g,x)}, Sq,Sk(g,x) CGxXas
the subset consisting of all (4, y) € G x X with the following property. There
area,b € S, f € F,(¥,S.k), f' € Fp(¥,S,k) such that f(x) = f'(y) and
h = ga'h.

For n > 2 define inductively Sy ¢ , (g, x) = U(h,y)eS\’i,__Sl_k(g,x) Sw.sis ).

The definition of a controlled N-dominated metric space can be found in [2,
Definition 1.5].

Definition 9.3 ([15, Definition 3.1]). A group G is strongly transfer reducible over
a family F of subgroups if there exists a natural number N € N with the following
property: for every finite symmetric subset S € G containing the trivial element
e and all n, k € N there are

e a compact, contractible, controlled N-dominated metric space X,
e a strong homotopy G-action W on X and

e an open JF-cover U of G x X of dimension at most N such that for every
(g,x) € G x X there exists U € U with S(I’,,S,k(g,x) cUu.

Every virtually cyclic group is a CAT(0)-group and therefore satisfies FICw by
[16, Example 2.16(i)]. Thus, by [16, Proposition 2.20] a group G satisfies FJCw if
it is strongly transfer reducible over the family Vcyc of virtually cyclic subgroups.
We will now define certain properties of flow spaces under which Theorem 1.1
allows us to show strong transfer reducibility.

Definition 9.4. Let X be a flow space. The flow is uniformly continuous if for
every «, ¢ > 0 there is a § > 0 such that for all z, z’ € X with dx(z,z’) < § and
for any ¢ € [—«, o] we also get dx (D,z, D,z') < .

The following definition is a weakening of [3, Definition 5.5]. We do not have
to assume the existence of covers of the periodic part anymore.
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Definition 9.5. A flow space X for a group G admits long F-covers at infinity
if the following holds: there is M > 0 such that for every o > 0 there is an F-
collection V of dimension at most M, a compact subset K € X and an ¢ > 0 such
that for every z € X \ GK thereisa VV € V with

Be(Plg,a1X) S V.

Note that in the definition it makes no difference if we assume that collection
V consists of open F-sets.

Lemma 9.6. Let X be a finite-dimensional, second-countable and locally com-
pact flow space for the group G such that there are long F-covers at infinity. Then
there is an N > 0 such that for every o > 0 there is an ¢ > 0 and an F U Vcyc-
cover U of X of dimension at most N such that for every x € X thereisalU € U
with

Be(®—q,41x) € U.

Proof. Let @ > 0 be given. Since X admits long covers at infinity, we obtain an
M > 0 (which is independent of «), an F-collection V of dimension at most M,
an &, > 0 and a compact subset K as in Definition 9.5. We can find a Veyc-cover
V' of X as in Theorem 1.1. Using [3, Lemma 5.8] we can find an ex > 0 such that
we have for every x € GK an open set U € V' with B, (P[—g,q](x)) S U. Now
the F U Vcyc-cover U := V' U 'V has dimension at most N := M + 7dim(X) + 8
and we can find for x € X an open set U € U with

Be(Pl-a,a)(x) S U
with ¢ := min(eo, £K). O

Morally, long covers at infinity allow us to find an ¢ as in the last lemma even
in the noncocompact setting.

Definition 9.7. A flow space FS for a group G admits strong contracting transfers
if there is an N € N such that for every finite subset S of G and every k € N there
exists B > 0 such that the following holds. For every § > 0 there is

() T > 0;
(2) acontractible, compact, controlled N -dominated space X;
(3) astrong homotopy action W on X;

(4) a G-equivariant map t: G x X — FS (where the G-action on G x X is given
by g-(g’,x) = (gg’, x)) such that the following holds:

(5) forevery (g.x) e G x X,s €S, f € Fo(¥,S,k) thereisa t € [-f, B] such
that dps(Pri(g. x), Prict(gs™, f(x))) <.
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Lemma 9.8. Let FS be a flow space for a group G with a uniformly continuous
flow and assume that FS admits strong contracting transfers. Let ¢ > 0,k,n € N
and a finite subset S C G containing e be given. Let 8 be as in Definition 9.7 and
define o = 2nf. Let § be as in Definition 9.4. Let T > 0, X,V and ¢ be as in
Definition 9.7. Then for every (g,x) € G x X and (h,y) € S\’f,’s’k (g,x) thereis a
T € [—«, «] such that

drs(Pr(1(8. X)), Pr4c(1(R, y))) < 2ne.

Proof. We will prove by induction on m = 0,...,n that for every (h,y) €
S\’ﬁs,k(g’ x) we can find a t € [-2mf, 2mp] such that

drs (1 (1(g, X)), Pr42(t(h, ))) < 2me.

This is clear for m = 0. For (h, y) € S\’I,”’;lk(g, x) choose a (g, x') € SU.sx(8 x)

with (h,y) € Sy ¢, (¢.x). Thus, there are a,.b € S, f € Fo(W,S.k), f' €
Fy (¥, S, k) suchthat f(x') = f/(y)and hb~! = g’a~!. By induction assumption
and Definition 9.7(5) there are © € [-2mpB,2mp], t¢, 7, € [, B] such that
drs (7 (1(g, X)), @T4:(1(g', X)) < 2me,
des(Pre(g . xX). Pryr,t(ga", (X)) < 6.

dps(Pri(h, y), DT, t(hb™", /(1)) < 6.

By uniform continuity we get
dis(P74:0(8'. X). Pryrie, (g™, (X)) < e,
dFS(¢T+T+Tf‘_T_/‘/l(h’ )/), ¢T+‘[+Tfl(hb_l’ f/(y))) =&

Let ¢ := v+ tf + 15 € [-2(m + 1)B,2(m + 1)B] and by the triangle inequality
we obtain

des(®7(t(g, x)), @14 (t(h, ¥))) <2me+¢e+¢e=2(m+ 1e. O

Lemma 9.6 is a generalization of [3, Theorem 5.7]. Using this and Lemma 9.8
instead of [3, Lemma 5.12] as in the proof of [3, Proposition 5.11] we obtain the
following proposition.

Proposition 9.9. Let X be a finite-dimensional, second-countable and locally
compact flow space for the group G such that

(1) the flow is uniformly continuous,

(2) X admits strong contracting transfers and

(3) there are long F-covers at infinity.

Then G is strongly transfer reducible with respect to the family Vcyc U F.
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Corollary 9.10. If X is a cocompact, finite-dimensional flow space for the
group G, which admits strong contracting transfers, then G is strongly transfer
reducible with respect to the family Vcyc, in particular G satisfies FJCw.

Proof. By Proposition 2.5, X is locally compact and second-countable. Cocom-
pactness implies uniform continuity and choosing V = @ and K as a compact
subset of X with GK = X shows that X admits long covers at infinity. Then G
satisfies the Farrell-Jones conjecture by [16, Proposition 2.20]. |
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