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1. Introduction

Let X be a compact connected CW complex, let zX be the universal covering and

let xX be a �nite sheeted Galois covering. In this paper we will de�ne the alpha

numbers p̨. xX/ 2 R in terms of the singular value decomposition of the p-th

cellular di�erential of xX . Intuitively, the de�nition of p̨. xX/ in terms of singular

values mimics the de�nition of Novikov–Shubin numbers ˛
.2/
p . zX/ in terms of

spectral distribution functions. A natural question then asks whether the Novikov–

Shubin numbers can be recovered asymptotically from the net of alpha numbers

. p̨. xXi //i2F of all �nite Galois coverings of X . We show that the answer is yes if

the fundamental group contains a cyclic subgroup of �nite index.

Theorem 1. Suppose �1.X/ is virtually cyclic and p̨. zX/ < 1C. Then

˛.2/
p . zX/ D lim sup

i2F
p̨. xXi /:

Moreover, we construct a CW complex X , obtained from S1 _ S2 by attaching

one 3-cell, such that ˛
.2/
3 . zX/ D 1 but 0 < lim infi2F ˛3. xXi / � 1

2
.
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1.1. The de�nition of alpha numbers. To construct the numbers p̨. xXi /,

we will have to take a close look on the de�nition of Novikov–Shubin numbers.

In doing so, let us go over from spaces to matrices which seem to form the appro-

priate setting for the approximation theory of L2-invariants.

Let G be a countable, discrete group and let A 2 M.r; sICG/ be a matrix

inducing the right multiplication operator r
.2/
AA� W .`2G/r ! .`2G/r given by x 7!

xAA�. Here the matrix A� is obtained from A by transposing and applying the

canonical involution .
P
�gg/

� D
P
�gg

�1 to the entries. Let ¹EAA�

�
º��0 be the

family of equivariant spectral projections obtained from r
.2/
AA� by Borel functional

calculus, EAA�

�
D �Œ0;��.r

.2/
AA�/, where �Œ0;�� is the characteristic function of the

interval Œ0; ��. Recall that the group von Neumann algebra N.G/ of G comes

endowed with a canonical �nite, faithful, normal trace trN.G/ which extends

diagonally to equivariant operators of .`2G/r .

De�nition 1. The function FAW Œ0;1/ ! Œ0;1/ given by � 7! trN.G/E
AA�

�2 is

called the spectral distribution function of the matrix A. The upper Novikov–

Shubin number of A is given by

N̨ .2/.A/ D lim sup
�!0C

log.FA.�/ � FA.0//

log�
2 Œ0;1�

unless FA.�/ D FA.0/ for some � > 0 in which case we set ˛.2/.A/ D 1C.

The lower Novikov–Shubin number
N
˛.2/.A/ ofA is de�ned similarly with “lim inf”

in place of “lim sup”. We say that A has the limit property if N̨ .2/.A/ D
N
˛.2/.A/.

In this case we simply call this common value the Novikov–Shubin number

˛.2/.A/.

The formal symbol “1C” indicates a spectral gap at zero. We adopt the con-

vention that c < 1 < 1C for all c 2 Œ0;1/. Novikov–Shubin num-

bers thus capture the polynomial growth rate near zero of the spectral distribu-

tion function FA. More precisely, if there are constants C; d; " > 0 such that

C�1�d � FA.�/ � FA.0/ � C�d for � 2 Œ0; "/, then A has the limit property and

˛.2/.A/ D d . We should say that while the distinction between upper and lower

Novikov–Shubin numbers is already contained in [7], the (somewhat arbitrary)

decision that ˛.2/.A/ should mean
N
˛.2/.A/ has become accepted in the literature.

LetG be residually �nite meaning there exists a residual system .Gi /i2I , an in-

verse system of �nite index normal subgroups directed by inclusion over a directed

set I with trivial total intersection. We obtain matrices Ai 2 M.r; sIC.G=Gi//

from A by applying the canonical projections CG ! C.G=Gi/ to the entries.

Set ni D ŒGWGi �. Then the group algebra C.G=Gi/ embeds as a subalgebra of

M.ni ; ni IC/ by means of the left regular representation of the �nite group G=Gi .

Accordingly, we can view Ai as lying in M.rni ; sni IC/. So we can consider the
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positive singular values

�1.Ai / � � � � � �ri
.Ai / > 0

ofAi given by �j .Ai / D
p
�j;i where the �j;i are the positive eigenvalues ofAiA

�
i

in non-ascending order and ri D rankC Ai . We denote the multiplicity of �j .Ai / as

mj .Ai/ D dimC ker.AiA
�
i ��j;i/ and setmri C1.Ai/ D dimC ker.AiA

�
i /. With this

data, the spectral distribution function FAi
can be described as a monotone, right

continuous step function with jumps at the singular values �j .Ai/ and jump size
mj .Ai /

ni
. It is known that these step functions approximate the spectral distribution

function FA. More precisely,

FA.�/ D lim
ı!0C

lim sup
i2I

FAi
.�C ı/ D lim

ı!0C
lim inf

i2I
FAi

.�C ı/

as is proven in [9, Theorem 2.3.1] for residual chains (when I is totally ordered),

the proof for residual systems being similar.

So we might want to think about the values FAi
.�j .Ai // D

P
k�j

mk.Ai /
ni

as

experimental samples of the function of interest FA. To extract the growth rate of

FA from these samples we do what every physicist would do: we measure the slope

of the regression line through the doubly logarithmic scatter plot of the samples.

The sample that is most valuable for our purposes is given by the �rst positive

singular value �C.Ai/ D �ri
.Ai/ with multiplicity mC.Ai / D mri

.Ai/.

De�nition 2. The alpha number of a nonzero Ai 2 M.r; sIC.G=Gi// is

˛.Ai/ D
log mC.Ai /

ŒGWGi �

log �C.Ai/
2 R:

Choosing the �rst positive singular value in the above de�nition serves a double

purpose. Firstly, this makes sure that the growth behavior close to zero is re�ected

because limi �C.Ai / D 0 whenever ˛.2/.A/ < 1C. Secondly, since therefore

log �C.Ai / tends to �1, the alpha number ultimately measures the slope of the

line through the origin which is parallel to the regression line and hence has

the same slope. Finally note that the embedding C.G=Gi/ � M.ni ; ni IC/ as a

subalgebra is unique up to conjugating with a permutation matrix and a diagonal

matrix with entries ˙1. Any two resulting embeddings M.r; sIC.G=Gi// �

M.rni ; sni IC/ are thus conjugate by a unitary transformation which leaves the

singular value decomposition una�ected. This shows that the alpha number is

well-de�ned.

1.2. Approximating Novikov–Shubin numbers by alpha numbers. The canon-

ical example of a residual system is the full residual system .Gi /i2F of all �nite

index normal subgroups of G. We ask the following question.



1234 H. Kammeyer

Question 1. Let G be a residually �nite group, let Q � F � C be a �eld and let

A 2 M.r; sIFG/. Suppose that N̨ .2/.A/ < 1C. Is it true that

(a) N̨ .2/.A/ D lim supi2F ˛.Ai/?

(b)
N
˛.2/.A/ D lim infi2F ˛.Ai/?

In this paper we answer Question 1 for virtually cyclic groups.

Theorem 2. LetG be a virtually cyclic group and let Q � F � C be an arbitrary

�eld. Then the answer to Question 1 (a) is positive and the answer to Question 1 (b)

is negative.

We remark that the related approximation conjecture for Fuglede–Kadison deter-

minants [11, Conjecture 6.2] is likewise only known for virtually cyclic groups [12].

Though the class of groups is small, the proof of Theorem 2 is nontrivial and re-

quires number theoretic input. Here also lies the reason for the symmetry breaking

answer which at �rst glance might come as a surprise. It is the existence of in-

�nitely many good rational approximations to a given irrational number which

tears the lower limit apart from the upper one. But for virtually cyclic G it is

easy to see that every A 2 M.r; sICG/ has the limit property. So even for virtu-

ally cyclic groups the equality ˛.2/.A/ D lim supi2F ˛.Ai / cannot be improved to

˛.2/.A/ D limi2F ˛.Ai/. However, for F D Q we can show that lim infi2F ˛.Ai/

is always positive as a consequence of a result in transcendence theory. We will

discuss this in a moment but �rst let us return from matrices to spaces and explain

that the case F D Q of Theorem 2 gives Theorem 1 and the example below it.

Let X be a connected �nite CW complex with G D �1.X/ residually

�nite. Choosing a cellular basis of X gives rise to an isomorphism that iden-

ti�es the p-th cellular chain module Cp. zX/ of the universal covering with the

standard left ZG-module .ZG/Np . Here Np is the number of p-cells of X or,

equivalently, the number of G-equivariant p-cells of the G-CW complex zX . Un-

der this isomorphism the G-equivariant di�erential dp WCp. zX/ ! Cp�1. zX/ of

the chain complex C�. zX/ is represented by right multiplication with a matrix

A. zX; p/ 2 M.Np ; Np�1IZG/. We de�ne the p-th Novikov–Shubin number of zX

as ˛
.2/
p . zX/ D ˛.2/.A. zX; p//. Note that in [10, De�nition 2.16, p. 81] one restricts

the induced operator dp W `2.G/Np ! `2.G/Np�1 to the orthogonal complement of

im dpC1 to make sure the spectral distribution function takes the value b
.2/
p . zX/ at

zero. For the Novikov–Shubin numbers this is of course irrelevant.

Given a �nite index normal subgroup Gi � G we can construct the �nite

covering space xXi with deck transformation group G=Gi as Gin zX . The cho-

sen cellular basis of X identi�es Cp. xXi / Š .Z.G=Gi //
Np and the di�erential

d i
p WCp. xXi / ! Cp�1. xXi / is thus represented by right multiplication with a ma-

trix A. xXi ; p/ which coincides with the matrix A. zX; p/i obtained from A. zX; p/
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by applying the canonical projection ZG ! Z.G=Gi / to the entries. We de�ne

the p-th alpha number of xXi as p̨. xXi / D ˛.A. xXi ; p//. Both Novikov–Shubin

numbers and alpha numbers are well-de�ned because the isomorphisms Cp. zX/ Š

.ZG/Np and Cp. xXi / Š .Z.G=Gi //
Np are unique up to unitaries.

With these de�nitions it is immediate that Theorem 2 implies Theorem 1.

It is moreover well-known that matrices inM.r; sIZG/ can be realized as cellular

di�erentials of G-CW complexes, compare [10, Lemma 10.5, p. 371]. In this way

the counterexample we will construct for Question 1 (b) translates to the example

mentioned below Theorem 1.

1.3. The role of the coe�cient �eld. This realization of matrices over ZG as

di�erentials of based G-CW complexes is why Theorem 1 is actually equivalent

to (a positive answer to) Question 1 (a) for F D Q. Similarly, the aforementioned

determinant approximation conjecture [11, Conjecture 6.2] is formulated for coef-

�cients in Q. It is remarkable that for coe�cients in C the statement of the deter-

minant approximation conjecture is wrong, even in the case of a .1 � 1/-matrix

over CŒZ�, see [10, Example 13.69, p. 481]. This is just one instance showing that

coe�cients matter for approximation questions. In the “topological case” F D Q,

there are results in the theory of linear forms in (two) logarithms which are of

value to us. They allow at least the conclusion that lim infi2F ˛.Ai/ is positive, as

it should be, because so is every ˛.2/.A/.

Theorem 3. Let G be a virtually cyclic group and let A 2 M.r; sIQG/ with

˛.2/.A/ < 1C. Then lim infi2F ˛.Ai/ > 0.

For Theorem 1 this says that while it can happen that lim infi2F p̨. xXi / <

lim supi2F p̨. xXi /, at least we have lim infi2F p̨. xXi / > 0. In fact, the number

theory involved gives something stronger than Theorem 3, namely the existence

of some D > 0 such that lim infi2F ˛.Ai/ � ˛.2/.A/
DC1

together with some explicit

bounds for the constant D in terms of degree and height of a certain polynomial

associated with A. For the precise statement see Corollary 1.

1.4. Outline and organization of the paper. Our proofs of Theorem 2 and

Theorem 3 rely on methods from Diophantine approximation and transcendence

theory. Since these are topics that tend to fall short in a typical topologist’s

curriculum, we give a brief recap in Section 2 and recall the theorems of Dirichlet,

Kronecker, Gelfond–Schneider and a baby version of Baker’s theorem. We also

�x the terminology we use in the context of nets.

In Section 3 we start with the proof of Theorem 2. As a warm-up we consider

the case of the easiest polynomial p.z/ D z� 1 and show that Dirichlet’s theorem

easily answers Question 1 (b) in the negative. To answer Question 1 (a) a�rma-

tively, we then move on with the case of a .1�1/-matrix over the group ring CŒZ�.
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It turns out that again one runs into a problem of Diophantine approximation:

Can one �nd a sequence of regular i-gons whose vertices are far away from given

elements of the unit circle? Solving this problem amounts to understanding how

the rational dependency of coordinates of a torus point determines the closure of

its Z-orbit. This is what Kronecker’s theorem accomplishes.

In Section 4 we perform the passage to .r�s/-matrices overCŒZ�. The methods

are singular value inequalities and another simple but e�ective tool that is widely

employed in Diophantine approximation: the pigeon hole principle.

Section 5 reduces the general case of a virtually cyclic group to the case of the

group Z and thereby �nishes the proof of Theorem 2.

Finally, Section 6 discusses the case of rational coe�cients. The little Baker

theorem and thus the theory of bounding linear forms in (two) logarithms is what

allows in this case the conclusion of Theorem 3.

1.5. Acknowledgements. I am indebted to Yann Bugeaud, Wolfgang Lück,

Malte Pieper, Henrik Rüping, Roman Sauer and Thomas Schick for helpful con-

versations.

2. Preliminaries

2.1. Some facts from Diophantine approximation. For a real number x let kxk

denote the distance to the closest integer. It is easy to see that the usual triangle

equality kxC yk � kxk C kyk holds. From this it follows that knxk � jnjkxk for

any integer n. Dirichlet famously concluded the following result from the pigeon

hole principle.

Theorem 4 (Dirichlet, �1840). Given real numbers l1; : : : ; lu and a natural num-

ber N , there is 1 � q � N such that kqlik � N� 1
u for all i D 1; : : : ; u.

Dirichlet’s theorem will be key for constructing a counterexample to Question 1 (b)

in Section 3. We are moreover interested in an inhomogeneous variant of this

problem of simultaneous Diophantine approximation: If additionally real numbers

x1; : : : ; xu and " > 0 are given, does there exist q 2 Z with kqli � xik < " for all

i D 1; : : : ; u? The answer cannot be an unconditional “yes” because there might

be integers A1; : : : ; Au with the property that the linear combination
Pu

iD1Ai li is

an integer as well. If the desired conclusion held true, we would get

kA1x1 C� � �CAuxuk D kA1.ql1 �x1/C� � �CAu.qlu �xu/k � .jA1jC� � �CjAuj/"

which says that
Pu

iD1Aixi is an integer, too. The good news is that this necessary

condition is also su�cient.
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Theorem 5 (Kronecker, 1884). Let l1; : : : ; lu and x1; : : : ; xu be real numbers. The

following are equivalent:

(i) for every " > 0 there is q 2 Z such that kqli � xi k < " for i D 1; : : : ; u;

(ii) for every u-tuple .A1; : : : ; Au/ 2 Zu with the property that
Pu

iD1Ai li is an

integer, the linear combination
Pu

iD1Aixi is an integer as well.

A proof can be found in [3, Theorem IV, p. 53]. We remark that Kronecker’s

theorem is usually given in a slightly more general version where the real numbers

li are replaced by linear forms but as of now we do not need this. Kronecker’s

theorem will become handy for understanding torus orbits in Section 3.

Theorem 6 (Gelfond–Schneider, 1934). Let ˛1; ˛2 2 xQ be di�erent from 0 and 1

such that (some �xed values of ) log ˛1 and log ˛2 are linearly independent over

Q. Then log ˛1 and log˛2 are linearly independent over xQ.

This theorem has the equivalent formulation that for ˛1; ˛2 as above and addition-

ally ˛2 irrational, any value of ˛
˛2

1 is transcendental. As such, it yields the positive

answer to Hilbert’s seventh problem. For applications to Diophantine equations

not only the nonvanishing of the linear form in two logarithms

ƒ D b1 log˛1 C b2 log˛2

is important but also explicit lower bounds on ƒ in terms of the heights and

degrees of b1; b2 2 xQ are relevant. For our purposes it is enough to consider

the special case where b1 and b2 are rational integers.

Theorem 7. Let ˛1; ˛2 2 xQ be di�erent from 0 and 1 and let b1; b2 be rational

integers such that ƒ ¤ 0. Set B D max¹jb1j; jb2jº. Then there is a constant D

depending only on the heights and degrees of ˛1 and ˛2 such that

jƒj > B�D:

It is hard to track down where exactly in the involved history of bounding loga-

rithms in linear forms the theorem in this formulation was included for the �rst

time. Gelfond already gave the weaker estimate jƒj > Ce�.log B/�
with im-

provements on the constant � over two decades [4, 5, 6]. But the above theo-

rem is de�nitely a special case of Baker’s celebrated theorem from 1966–1967,

see [2, Theorem 2] for a strong version and information on the constant D.

Let us refer to any D D D.˛1; ˛2/ � 1 satisfying the inequality of the theo-

rem as a Baker constant of the pair .˛1; ˛2/. Theorem 7 will be crucial for the

proof of Theorem 3 in Section 6.
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2.2. Nets and cluster points. The �nite index normal subgroups of a group and

thereby the �nite Galois coverings of a space are natural examples of directed sets.

A set I is called directed if it comes with a re�exive, transitive binary relation

“�” such that any two elements a; b 2 I have a common upper bound c 2 I with

a � c and b � c. A function from a directed set .I;�/ to a topological space

X is called a net in X . If .xi /i2I is a net in X , then a point c 2 X is called a

cluster point if for every neighborhood U of c and for every i 2 I there exists

j � i with xj 2 U . The set of cluster points is closed. In the special case X D R

we de�ne lim supi2I xi and lim infi2I xi as the largest and the smallest cluster

point, respectively. Here, we also allow the values ˙1 as cluster points in the

natural way, so that both lim supi2I xi and lim infi2I xi are guaranteed to exist. If

the latter two are equal, we say the net is convergent and write limi2I xi for the

common value. Alternatively, we clearly have the description

lim inf
i2I

xi D sup
i2I

inf
i�j

xj and lim sup
i2I

xi D inf
i2I

sup
i�j

xj :

For the set of natural numbers N we will have occasion to deal with two

di�erent directions. One is the usual total order “a � b” in which all the above

notions reduce to the familiar ones from sequences. The other is divisibility

“a j b” and arises when we identify N with the full residual system F of the

group Z. We should clarify the relation between the resulting upper and lower

limits in order to dispel any possible confusion from the very start.

Lemma 1. Let aWN ! R be a function which we interpret either as the sequence

.ai /i�0 or as the net .ai /i2F . Then

lim inf
i!1

ai � lim inf
i2F

ai � lim sup
i2F

ai � lim sup
i!1

ai

where each inequality can be strict.

Proof. Let c 2 R be a cluster point of the net .ai /i2F . By de�nition this means

that for all " > 0 and for all k 2 F D N there is l 2 N such that jakl � cj < ".

In particular, we obtain a subsequence .aik /k�0 of .ai /i�0 which converges to c.

Thus any cluster point of the net .ai /i2F is a cluster point of the sequence .ai /i�0.

This gives the two outer inequalities of the lemma.

Consider the example ai D .�1/i . Then the leftmost inequality is strict for .ai /

and the rightmost inequality is strict for .�ai/. To see that the middle inequality

can be strict, consider ai D .�1/Ni where Ni is the number of prime factors

of i . �
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3. The case of a single Laurent polynomial

In this section we give a proof of Theorem 2 for r D s D 1. Consider an element

A 2 M.1; 1ICŒZ�/. The full residual system is given by Gi D iZ for i 2 F D N

directed by divisibility. We identify the group ring CŒZ� with the ring of Laurent

polynomials CŒz; z�1�. Moreover, Fourier transform identi�es the Hilbert space

`2.Z/with L2.S1; �/, the space of square integrable complex valued functions on

the unit circle with respect to the probability Haar measure �, factoring out those

function which vanish almost everywhere.

3.1. Two examples. Let us sneak up on the proof by considering the �rst non-

trivial case A D .p.z// with p.z/ D z � 1. The operator r
.2/
AA� is then given

by multiplying functions with jz � 1j2. We have ˛.2/.A/ D 1 as can be seen

from the proof of [10, Lemma 2.58, p. 101]. By �nite Fourier transform, the ma-

trices AiA
�
i 2 M.1; 1ICŒZ=iZ�/ � M.i; i IC/ are diagonal with entries j�k

i � 1j2

where �i is one of the two primitive i-th roots of unity that enclose the small-

est angle with 1 2 C, where k D 0; : : : ; i � 1 and say i � 3. Thus we have

�C.Ai / D j�i � 1j D 2 sin
�

�
i

�
and mC.Ai / D 2. By L’Hôpital’s rule and substi-

tuting x D �
i

the ordinary limit of the sequence .˛.Ai//i�0 is

lim
i!1

˛.Ai/ D lim
i!1

log
�

2
i

�

log
�
2 sin

�
�
i

�� D lim
i!1

i tan
�

�
i

�

�
D lim

x!0C

tan.x/

x
D 1:

By Lemma 1 the net .˛.Ai//i2F has limit limi2F ˛.Ai/ D 1 as well. So in this

simplest possible case of Question 1 the answer is “yes” for both part (a) and

part (b).

Now we can already give the counterexample for Question 1 (b). Consider

A D .p.z// with the polynomial p.z/ D 5z2 � 6z C 5. The roots of p.z/ are

given by a D 3
5

C 4
5
i and its complex conjugate. Let l 2 .0; 1/ be determined by

a D e2�il . Since a is not a root of unity, the number l is irrational. Let K be a

positive integer. Then Theorem 4 provides us with a sequence of positive integers

.ij / such that 0 < kijKlk � 1
ij

. This implies that we can �nd a Kij -th root of

unity �Kij with 0 < j�Kij � aj � 2 sin
�

�

Ki2
j

�
� 2�

Ki2
j

. For su�ciently large j we

obtain

�C.AKij / � jp.�Kij /j D 5j�Kij � Naj j�Kij � aj � 5 � 2 �
2�

Ki2j

which gives

˛.AKij / �
log

�
2

Kij

�

log
�

20�

Ki2
j

�

hence infKji ˛.Ai / � 1
2
. Thus lim infi2F ˛.Ai/ D supK2F infKji ˛.Ai / � 1

2

whereas ˛.2/.A/ D 1.
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3.2. General Laurent polynomials. Still let G D Z but now let A D .p.z// for

a general Laurent polynomial

p.z/ D czk

sY

rD1

.z � ar /
�r

with c 2 C, k 2 Z and the distinct roots ar 2 C� of p.z/ of multiplicities �r .

We rearrange the roots of p.z/ so that a1; : : : ; au 2 S1 and auC1; : : : ; as … S1

for some 0 � u � s. By [10, Lemma 2.58, p. 100] and its proof we have that

˛.2/.p.z// D 1
max¹�1;:::;�uº

if u � 1 and ˛.2/.p.z// D 1C otherwise.

To compute the alpha number of Ai in the case u � 1, note that the singular

values of Ai 2 M.i; i IC/ are given by jp.�k
i /j D jcj

Qs
rD1 j�k

i � ar j�r for

k D 0; : : : ; i � 1. Let d > 0 and D > 0 be given by the minimum and the

maximum, respectively, of
Qs

rDuC1 jz � ar j�r for z 2 S1. Let r0 � u be an index

such that ar0
is a root on the unit circle of maximal multiplicity �0 D �r0

. If ar0

is an i-th root of unity, we have j�k
i � ar0

j D 2 sin
�

�
i

�
where �k

i is either of the

two i-th roots of unity adjacent to ar0
. If ar0

is not an i-th root of unity, then it lies

in the open circle segment above one particular edge of the regular i-gon so that

j�k
i � ar0

j < 2 sin.�
i
/ for either of the two roots of unity �k

i spanning the segment.

In any case, we obtain that there exists 0 � k � i � 1 with

jp.�k
i /j � jcjD2�

�
sin

��
i

���0

where � D �1 C � � � C �u. Let us merge the constants to K D jcjD2�. Since

�C.Ai / � jp.�k
i /j and mC.Ai/ � 1, we have

˛.Ai / �
log

�
1
i

�

log
�
K

�
sin

�
�
i

���0
� D

log
�

1
i

�

�0 log
�
K

1
�0 sin

�
�
i

�� :

A computation similar to the one in Section 2 gives lim supi!1 ˛.Ai/ � 1
�0

, thus

also lim supi2F ˛.Ai / � 1
�0

by Lemma 1. To show equality (in both cases) it

remains to identify 1
�0

as a cluster point of the net .˛.Ai//i2F . This is the tricky

part.

Note that the notation kxk from Section 2 still makes sense and is well-de�ned

for x 2 R=Z D T. The same two inequalities from before hold true and even

better, the term kx�yk for x; y 2 T de�nes a metric inducing the given topology

on T.

Proposition 1. For all points z1; : : : ; zu 2 S1 � C on the circle there is 0 < R < 1
2

such that for each positive integer K there are in�nitely many positive integers ij
such that for all t D 1; : : : ; u and for all k D 1; : : : ; Kij either

zt D �k
Kij

or jzt � �k
Kij

j � 2 sin
�R�
Kij

�

where �Kij is a �xed primitive Kij -th root of unity.
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Proof. For what comes next it is preferable to think of the u-dimensional torus

as the additive group Tu D .R=Z/u. Accordingly, let us change the notation for

the point .z1; : : : ; zu/ in .S1/u to L D .L1; : : : ; Lu/ in Tu so that .zn
1 ; : : : ; z

n
u/

corresponds to nL D .nL1; : : : ; nLu/. The point L de�nes a homomorphism of

Z-modules (abelian groups) 'LWZu ! T D R=Z sending .a1; : : : ; au/ 2 Zu toPu
j D1 ajLj 2 T. Let ¹A1; : : : ; Akº � Zu be a basis of the free submodule ker'L

of Zu. Considering these basis elements as the columns of a .u�k/-matrix A, they

de�ne a homomorphism Ru ! Rk where we write elements of Ru and Rk as row

vectos and multiply them from the right with A. This homomorphism descends

to a homomorphism  AWTu ! Tk . Theorem 5 says precisely that the Z-orbit

BL D ¹nL 2 Tu j n 2 Zº of L in the u-torus Tu has closure BL D ker. A/.

It follows from this description that BL Š Tv ˚ Z=mZ for some m � 1,

compare also [1, Corollary 4.2.5, p. 209]. Here the dimension v is one less than

the dimension of the Q-vector space generated by 1;fL1; : : : ;fLu where each fLt is

some lift of Lt from T to R. Therefore v, depending on L, can take any value

between zero and u. For the moment, let us assume v � 1. Since the quotient

BL=BL
0

Š Z=mZ by the unit component is generated by LCBL
0
, it follows that

BmL D BL
0

Š Tv. Let

TmL D ¹.x1; : : : ; xu/ 2 Tu j xt D Œ0� if mLt D Œ0�º

be the unique minimal subtorus obtained from Tu by setting �xed coordinates

to zero under the side condition that it still contains BL
0
. It is then of course

necessary that 1 � v � l D dimTmL � u. In what follows we will delete the

zero coordinates from TmL. We can choose 0 < R < 1
2

so small that the interior

of the centered cube

KR D ¹.x1; : : : ; xl/ 2 TmL j kxt k � R for all t D 1; : : : ; lº:

contains ŒmL� and therefore intersectsBL
0

in the nonempty setUL. Next we claim

that for every nonzero K 2 Z we have BKmL D BmL D BL
0
.

Indeed, the inclusion BKmL � BmL is clear. For the other inclusion we note

that BmL D BL
0

Š Tv is a torus, hence is divisible. Thus for given x 2 BmL

and " > 0 there is y D .y1; : : : ; yu/ 2 BmL such that Ky D x and there is

N 2 Z such that kNmLt � yt k < "
jKj

for all t D 1; : : : ; u. It follows that

kN.KmLt / � xt k D kK.NmLt � yt /k < ", hence x 2 BKmL.

Since UL is open in BL
0
, it contains in�nitely many Z-translates of KmL.

Note moreover that UL D �UL, so we can pick a sequence ij of positive integer

multiples of m such that ijKL 2 UL for all j .
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By construction we have that for each ij either KijLt D Œ0�, meaning that

zt 2 S1 is a Kij -th root of unity, or kKijLtk � R, meaning that zt encloses an

angle of at least 2�R
Kij

with any Kij -th root of unity. This gives the assertion for

v � 1. In case v D 0we haveLt 2 Q=Z for all t D 1; : : : ; u or in other words each

zt 2 S1 is some kt -th root of unity. In that case setting ij D j lcm.k1; : : : ; ku/

does the trick for arbitrary 0 < R < 1
2
. �

To see that 1
�0

is a cluster point of the net .˛.Ai //i2F , for any given posi-

tive integer K we have to construct a sequence of positive integers ij such that

limj !1 ˛.AKij / D 1
�0

. So let the number 0 < R < 1
2

and the sequence .ij / be

speci�ed by a1; : : : ; au 2 S1 and byK according to Proposition 1. We now ask for

a lower bound on �C.AKij /. Let ı D min¹1
2
; �º where � is the minimum of the

pairwise Euclidean distances of the points ¹a1; : : : ; auº � S1. Let �Kij be (one of)

the Kij -th root(s) of unity for which �C.AKij / D jp.�Kij /j. For su�ciently large

j , there must be one and only one root ar on S1 within the open ı-ball around

�Kij , where r D r.j / depends on j . So if ar.j / is not a Kij -th root of unity, we

have j�Kij � ar.j /j � 2 sin R�
Kij

and if ar.j / is a Kij -th root of unity, we even have

j�Kij � ar.j /j � 2 sin �
Kij

. For su�ciently large j , this gives

jp.�Kij /j � jcjdı���r.j /

�
2 sin

�R�
Kij

���r.j /

� jcjdı�2�0

�
sin

�R�
Kij

���0

:

Since p is a polynomial, the function t 7! jp.e2�it /j is strictly monotonic on small

half-open intervals starting at the zeros and the function is bounded from below

outside these intervals. Thus for large j we have mC.AKij / � 2u. (Note that

we use the symbol “i” for the imaginary unit whereas the symbol “i” is reserved

for indices.) The same computation as above shows lim infj !1 ˛.AKij / � 1
�0

,

thus limj !1 ˛.AKij / D 1
�0

. This answers Question 1 (a) a�rmatively for the case

G D Z and r D s D 1.

4. The case of a matrix of Laurent polynomials

For a general matrix A 2 M.r; sICŒZ�/ with arbitrary r; s we notice that the ring

of Laurent polynomials CŒZ�, being a localization of the polynomial ring CŒz�, is a

principal ideal domain. Therefore A can be transformed into Smith normal form.

This means there are invertible matrices S 2 M.r; r ICŒZ�/ and T 2 M.s; sICŒZ�/

such that SAT is an .r � s/-matrix of block form
�

P 0
0 0

�
where P is a diagonal

matrix with entries p1.z/; : : : ; pk.z/.
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The (Laurent) polynomials p1.z/; : : : ; pk.z/ are called the invariant factors

and satisfy the relation pl j plC1. Multiplying S or T by a diagonal matrix

with nonzero constant polynomials as entries, if need be, we can and will ad-

ditionally assume that jplC1.z/j � jpl .z/j for all z 2 S1 and l D 1; : : : ; k � 1.

By [10, Lemma 2.11 (9), p. 77, and Lemma 2.15 (1), p. 80] we get

˛.2/.A/ D ˛.2/.SAT / D min
lD1;:::;k

¹˛.2/.pl .z//º D ˛.2/.pk.z//:

The last equality holds because the maximal multiplicity of a root on the unit

circle can only increase from pl to plC1. The following proposition thus reduces

Question 1 for the .r � s/-matrix A to the same question for the .1 � 1/-matrix

.pk.z//. The latter was treated in the preceding section.

Proposition 2. Suppose ˛.2/.A/ < 1C. Then we have

lim inf
i2F

˛.Ai / D lim inf
i2F

˛.pk.z/i / and lim sup
i2F

˛.Ai/ D lim sup
i2F

˛.pk.z/i /

and the same statement holds replacing “i 2 F” with “i ! 1.”

The proof requires some labor. We prepare it with a lemma that captures those

properties of the functions t 7! jpl .e
i2�t /j that are relevant for computing alpha

numbers.

Lemma 2. Let p1.z/; : : : ; pk.z/ 2 CŒz; z�1� be complex Laurent polynomials.

Then there exists 0 < " < 1 and there exist constants d;D > 0 such that for every

polynomial pl .z/

(i) we have the inequality

d jt j� � jpl .ae
i2�t /j � Djt j�

for every root a ofpl .z/ on S1 and each t 2 .�"; "/where� is the multiplicity

of a,

(ii) the function jpl .ae
i2�t /j is monotone decreasing for t 2 .�"; 0� and mono-

tone increasing for t 2 Œ0; "/ for every root a of pl.z/ on S1,

(iii) the function jpl .e
i2�t /j is bounded from below by d"�0 on the complement

of all open "-balls around the roots of pl .z/ on S1 where �0 is the maximal

multiplicity among all the roots of all polynomials p1.z/; : : : ; pk.z/.

Proof. Let a 2 S1 be a root of pl .z/ of multiplicity �. Let 0 < ı < 2 be so small

that p.z/ has no second root in Bı.a/, the closed ı-ball around a. Let d 0 > 0

andD0 > 0 be given by the minimum and maximum, respectively, of
ˇ̌

p.z/
.z�a/�

ˇ̌
for
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z 2 Bı.a/. Set " D 1
�

arcsin
�

ı
2

�
, so that in particular " is bounded from above by

1
2
, and set d D d 04� and D D D0.2�/�. Then for jt j < " we have

jpl .ae
i2�t /j � D0jaei2�t � aj�

D D0jei2�t � 1j�

D D02�j sin.�t/j�

� D0.2�/�jt j�

D Djt j�

and similarly

jpl .ae
i2�t /j � d 02�j sin.�t/j� � d 04�jt j� D d jt j�:

We repeat this construction for all the remaining roots of pl .z/ on S1 and for

all the remaining polynomials. The minimal occurring " and d together with the

maximal occurringD will then work for all roots and polynomials and gives (i). It

is clear that since pl .z/ is a polynomial, we can additionally achieve (ii) and (iii)

by making " smaller, if necessary. �

Proof of Proposition 2. For any two matrices M;N 2 M.n; nIC/ we have the

inequalities of singular values for each t D 1; : : : ; n

�n.M/�t .N / � �t .MN/ � �1.M/�t .N /; (1)

�t .M/�n.N / � �t .MN/ � �t .M/�1.N /; (2)

as given for instance in [8, 24.4.7 (c), p. 24-8]. Here, as usual, the singular values

are listed in nonincreasing order. Of course the second inequality follows from

the �rst because �t .M/ D �t .M
>/. We apply these inequalities to our setting as

follows. Let m D max¹r; sº and view the matrices Ai as lying in M.mi;mi IC/

by embedding Ai in the upper left corner of an .mi � mi/-matrix, �lling up the

remaining entries with zeros. If r < s we consider Si as an element of GL.mi IC/

by overwriting the upper left block of an .mi � mi/-identity matrix with Si and

similarly for Ti in place of Si if r > s. Since both S and T are invertible over

the group ring CŒZ�, it follows from [10, Lemma 13.33, p. 466] that the spectrum

of r
.2/
SS� and r

.2/
T T � is contained in ŒC�1; C � for some C � 1. Since the operator

norm of the projection map L1.G/ ! L1.G=Gi / is bounded by one, it follows

that the eigenvalues of .SS�/i and .T T �/i are likewise constrained to lie within

ŒC�1; C �. Therefore C� 1
2 � �t .Si/; �t .Ti/ � C

1
2 for each t D 1; : : : ; mi so that

the inequalities (1) and (2) give

C�1�t ..SAT /i / � �t .Ai / � C�t ..SAT /i /: (3)
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The special case t D rankC.Ai / gives

C�1�C..SAT /i / � �C.Ai / � C�C..SAT /i /: (4)

Next we show that there is M > 0 such that

1 � mC.Ai / � M (5)

for all su�ciently large i . To this end, let ri D rankCAi so that �C.Ai / D �ri
.Ai /.

Let �0 be the maximal occurring multiplicity among the roots of pk.z/ on S1.

Let " > 0 and d;D > 0 be the constants from Lemma 2 applied to the polynomials

p1.z/; : : : ; pk.z/ which form the diagonal of the matrix SAT . Pick a positive

integer

K >
�C 2D

d

� 1
�0 C 1 (6)

and set ı D d
D
"�0 . Now we consider i so large that at least 2K of the i-th roots

of unity lie in any open ı-ball around any point on S1. By Lemma 2 (i) and (ii),

evaluating the function jpl .z/j in the 2K roots of unity closest to any root a 2 S1

gives values smaller than D
�

d
D
"�0

��
� d"�0 where � was the multiplicity of

a. So if N denotes the sum of the number of distinct roots of each pl .z/, then

by Lemma 2 (iii) the �rst 2KN (positive) singular values of .SAT /i are given

by evaluating some jpl .z/j within the "-ball of some root. By the pigeon hole

principle there is one root a 2 S1 of some pl.z/ such that K singular values

among the smallest 2KN singular values of .SAT /i are given by evaluating jpl .z/j

at the K closest i-th roots of unity on one side of the root a. Again we denote the

multiplicity of a by�. Using the monotonicity asserted by Lemma 2 (ii) this gives

�ri �2NK..SAT /i / � jpl .ae
˙i 2�

i
.K�1//j:

Applying Lemma 2 (i) and inequality (6) we get

jpl .ae
˙i 2�

i
.K�1//j � d

�K � 1

i

��

� d
�K � 1

i

��0

> C 2D
�1
i

��0

:

Let a0 2 S1 be any root ofpk.z/with multiplicity�0. There is an i-th root of unity

�i ¤ a0 which encloses an angle of at most 2�
i

with a0. Applying Lemma 2 (i)

again we obtain

C 2D
�1
i

��0

� C 2jpk.a0e
˙i 2�

i /j � C 2jpk.�i /j � C 2�C..SAT /i /:

So setting M D 2NK we have �ri �M ..SAT /i / > C
2�C..SAT /i/ for every large

enough i . From inequality (3) we conclude

�ri �M .Ai / � C�1�ri �M ..SAT /i / > C�
C..SAT /i / � �C.Ai /

which proves inequality (5).
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Finally note that the inequality jplC1.z/j � jpl .z/j gives

�C..SAT /i / D �C..pk.z//i/:

Inequalities (4) thus yields

log
�

mC.Ai /
i

�

log.C�1�C..pk.z//i//
� ˛.Ai / �

log
�

mC.Ai /
i

�

log.C�C..pk.z//i //
: (7)

We can rewrite the outer terms as

log
�

mC.Ai /
i

�

log.C˙1�C..pk.z//i //
D

log
�

mC.pk.z/i /
i

�
C log

�
mC.Ai /

mC.pk.z/i /

�

log
�
�C.pk.z/i /

��
1˙

log C

log.�C.pk.z/i //

� :

Since the multiplicities are bounded according to inequality (5), we see from this

that for an increasing sequence of positive integers .ij /we have limj !1 ˛.Aij / D

c if and only if limj !1 ˛.pk.z/ij / D c. As a consequence the sequences

.˛.Ai //i�0 and .˛.pk.z/i //i�0 share the same set of cluster points. Considering

integer sequences of the form .Kij / for any positive integer K, the same goes for

the nets .˛.Ai //i2F and .˛.pk.z///i2F . This clearly implies the proposition. �

This answers Question 1 (a) a�rmatively for the case G D Z.

5. The case of a virtually cyclic group

Finally let G be in�nite virtually cyclic so that G contains an in�nite cyclic

subgroup Z � G with ŒGWZ� D n < 1. By going over to the nor-

mal core, if need be, we can and will assume that Z is a normal subgroup.

We choose representatives gi 2 G such that ZnG D ¹Zg1; : : : ; Zgnº. Let

A 2 M.r; sICG/. Right multiplication withA de�nes a homomorphism .CG/r !

.CG/s of left CG-modules. If we consider CG, the free left CG-module of

rank one, as a left CZ-module, then it is free of rank n and a basis is given by

g1; : : : ; gn 2 CG. Accordingly, viewing right multiplication with A as a homo-

morphism .CZ/rn ! .CZ/sn of left CZ-modules, it is given by right multipli-

cation with the matrix resZ
G.A/ 2 M.rn; snICZ/ that results from A by replacing

the .p; q/-th entry
P

g2G �
p;q
g g with the .n � n/-matrix over CZ whose .u; v/-th

entry is
P

h2Z �
p;q

g�1
u hgv

h for 1 � u; v � n.

Let Zi be the unique subgroup of Z with ŒZ W Zi � D i . Then ŒG W Zi � D ni

and Zi is normal in G because Zi is characteristic in Z.
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Proposition 3. We have resZ
G.A/i D Ai as elements in M.rni; sni IC/.

Proof. We pick representatives ZinZ D ¹Zih1; : : : ; Zihiº and verify that for

1 � p � r and 1 � q � s as well as 1 � u; v � n we have

.resZ
G.A/i/.p�1/nCu;.q�1/nCv D

iX

lD1

� X

h2Zi

�
p;q

g�1
u hhlgv

�
Zihl :

Multiplication with a �xed coset Zihk gives

Zihk

iX

lD1

� X

h2Zi

�
p;q

g�1
u hhlgv

�
Zihl D

iX

lD1

� X

h2Zi

�
p;q

g�1
u h�1

k
hhl gv

�
Zihl :

Hence resZ
G.A/i is realized over C by replacing the entry at

..p � 1/nC u; .q � 1/nC v/

with a (circulant) .i � i/-matrix whose .k; l/-th entry is

X

h2Zi

�
p;q

g�1
u h�1

k
hhl gv

:

To realize Ai as a matrix over C we now use our chosen representatives to list

the cosets of ZinG in this order as

¹Zih1g1; : : : ; Zihig1; : : : ; Zih1gn; : : : ; Zihignº:

Again we compute for 1 � p � r and 1 � q � s as well as 1 � u; v � n and

1 � k � i that

Zihkgu

X

g2G

�p;q
g Zig D

X

g2G

�
p;q

.hkgu/�1g
Zig

D

nX

vD1

iX

lD1

X

h2Zi

�
p;q

g�1
u h�1

k
hhl gv

Zihlgv:

Thus Ai is realized over C by replacing the .p; q/-th entry with the .ni � ni/-

matrix whose entry at ..u � 1/i C k; .v � 1/i C l/ is
P

h2Zi
�

p;q

g�1
u h�1

k
hhl gv

. Thus

the C-matrices resZ
G.A/i and Ai coincide. �

Proposition 4. Let F.Z/ and F.G/ denote the full residual systems of Z and G,

respectively. Suppose ˛.2/.A/ < 1C, then

lim inf
i2F .Z/

˛.Ai/ D lim inf
i2F .G/

˛.Ai / and lim sup
i2F .Z/

˛.Ai/ D lim sup
i2F .G/

˛.Ai /:
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Proof. Let c be a cluster point of the net .˛.Ai//i2F .Z/ and let H E G be a

�nite index normal subgroup representing some element in F.G/. Then there are

upper bounds j of H \ Z in F.Z/ � F.G/ with ˛.Aj / arbitrarily close to c.

Conversely, let c be a given cluster point of the net .˛.Ai //i2F .G/ and consider

Zi E Z. Then Zi represents an element in F.G/, thus there are upper bounds

j of Zi in F.G/, which actually lie in F.Z/, with ˛.Aj / arbitrarily close to c.

Thus the set of cluster points agrees for the nets .˛.Ai//i2F .Z/ and .˛.Ai//i2F .G/

which in particular implies the proposition. �

Now we are in the position to complete the proof of our main result.

Proof of Theorem 2. It follows from [10, Theorem 1.12 (6), p. 22] that for the spec-

tral distribution functions we have FresZ
G

.A/.�/ D nFA.�/, hence ˛.2/.A/ D

˛.2/.resZ
G.A//. Together with the preceding section, Proposition 3 and Proposi-

tion 4 we obtain

˛.2/.A/ D ˛.2/.resZ
G.A//

D lim sup
i2F .Z/

˛.resZ
G.A/i/

D lim sup
i2F .Z/

˛.Ai/

D lim sup
i2F .G/

˛.Ai/:

This answers Question 1 (a) in the a�rmative for F D C and thus for any sub�eld.

In Section 3.1 we gave an example answering Question 1 (b) in the negative for

F D Q and thus for every larger �eld. �

6. The lower limit of alpha numbers

In this �nal section we give the proof of Theorem 3. Recall our de�nition of Baker

constants from the end of Section 2.1.

Theorem 8. Let a ¤ 1 be an algebraic number on the unit circle and let D be

a Baker constant of the pair .a;�1/. Then for all n � 2 with an ¤ 1 we have

jan � 1j � n�D

2
.

Proof. The principal value logarithm satis�es jlog.1C z/j � 2jzj for jzj � 1
2

and

is additive up to some integer multiple of 2�i. If jan � 1j > 1
2
, there is nothing to

prove. Otherwise we have

1 � 2jan � 1j � jlog.an/j D jn log aC 2�ikj D jn log a C 2k log.�1/j;
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so if an ¤ 1, Theorem 7 gives 2jan � 1j � max¹n; 2jkjº�D. Moreover, the

inequalities 1 � jn log a C 2�ikj and jlog aj � � imply

jkj �
1C njlog aj

2�
�

1

2�
C
n

2

which is equivalent to jkj � n
2

because k and n are integers. Thus we obtain

2jan � 1j � n�D as desired. �

The mere existence of some D > 0 giving the estimate of the theorem also

serves as the main ingredient for [10, Lemma 13.53, p. 478]. The latter is just the

.1�1/-case of the Fuglede–Kadison determinant approximation conjecture for the

group Z. We recapped a proof here, however, in order to identify the constant D

as the Baker constant in Theorem 7. This has the virtue that the many estimates on

D in the literature lead to explicit lower bounds on our lim infi2F ˛.Ai/ as we will

see in the subsequent corollary. We admit that the practical value of these bounds

is limited because the values forD given in the literature are typically astronomic.

The constant in [2, Theorem 2], for example, isD D .32d/400 times a logarithmic

function in the height of a, where d is the degree of a.

Corollary 1. Let G be a virtually cyclic group and let A 2 M.r; sIQG/ with

˛.2/.A/ < 1C. Choose an in�nite cyclic normal subgroup Z E G of �nite index

and let pk.z/ be the maximal invariant factor of resG
Z.A/. We denote the zeros of

pk.z/ on S1 by a1; : : : ; au and let D be the maximal occurring Baker constant

D D D.at ;�1/ for at ¤ 1. Then

lim inf
i2F

˛.Ai/ �
˛.2/.A/

1CD
:

Proof. Again let �0 be the maximal multiplicity amongst the roots a1; : : : ; au of

the polynomial pk.z/ which lie on S1. As explained in the previous two sections

we have

˛.2/.A/ D ˛.2/.resZ
G.A// D ˛.2/.pk.z// D 1

�0
:

Fix " > 0 and consider i � 2
1
" . Let �i be a primitive i-th root of unity. For every at

which is not an i-th root of unity, Theorem 8 gives us jai
t � 1j � 1

2
i�D � i�.DC"/

and therefore

jat � �l
i j D

jai
t � 1j

ˇ̌ Pi�1
j D0 a

i�j �1
t �

lj
i

ˇ̌ �
1

iDC1C"
(8)

for every l D 0; : : : ; i � 1. Let �i be the (or an) i-th root of unity for which

�C.pk.z/i / D jpk.�i /j. Let c, d , � and ı be the constants from below the proof

of Proposition 1. As before, for large enough i there is one and only one root ar.i/

of pk.z/ with multiplicity �r.i/ that lies within the open ı-ball around �i . If ar.i/
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is an i-th root of unity and i is large enough, then �i must be one of the two i-th

roots of unity adjacent to ar.i/ so that we get

jar.i/ � �i j D 2 sin
��
i

�
�
1

i
: (9)

So in any case, either from equation (8) or from equation (9), we get

�C.pk.z/i / D jpk.�i /j �
jcjdı���r.i/

i .DC1C"/�r.i/
�

jcjcdı�

i .DC1C"/�0
:

Since again mC.pk.z/i / � 2u for large i , it follows that

lim inf
i!1

˛.pk.z/i / �
1

.D C 1C "/�0

D
˛.2/.A/

.D C 1C "/
:

with arbitrary " > 0. Lemma 1, Proposition 2, Proposition 3 and Proposition 4

�nish the proof. �

Of course, this also completes the proof of Theorem 3.
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