
Groups Geom. Dyn. 11 (2017), 1113–1177

DOI 10.4171/GGD/424

Groups, Geometry, and Dynamics

© European Mathematical Society

Linear programming and the intersection of free subgroups

in free products of groups

Sergei V. Ivanov1

Mathematics Subject Classi�cation (2010). Primary 20E06, 20E07, 20F65; Secondary

68Q25, 90C90.

Keywords. Free products of groups, free and factor-free subgroups, rank of intersection of

factor-free subgroups, linear programming.

Abstract. We study the intersection of �nitely generated factor-free subgroups of free

products of groups by utilizing the method of linear programming. For example, we prove

that if H1 is a �nitely generated factor-free noncyclic subgroup of the free product G1 �G2

of two �nite groups G1, G2, then the WN-coe�cient �.H1/ of H1 is rational and can be

computed in exponential time in the size of H1. This coe�cient �.H1/ is the minimal

positive real number such that, for every �nitely generated factor-free subgroup H2 of

G1 � G2, it is true that Nr.H1; H2/ � �.H1/Nr.H1/Nr.H2/, where Nr.H/ D max.r.H/ � 1; 0/

is the reduced rank of H , r.H/ is the rank of H , and Nr.H1; H2/ is the reduced rank of the

generalized intersection of H1 and H2. In the case of the free product G1 �G2 of two �nite

groups G1, G2, it is also proved that there exists a factor-free subgroup H �
2

D H �
2

.H1/

such that Nr.H1; H �
2

/ D �.H1/Nr.H1/Nr.H �
2

/, H �
2

has at most doubly exponential size in the

size of H1, and H �
2

can be constructed in exponential time in the size of H1.
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1. Introduction

Let G˛ , ˛ 2 I , be some nontrivial groups and let F D
Q�

˛2I G˛ denote the free

product of these groups. According to the classic Kurosh subgroup theorem [20]

and [21], every subgroup H of F is a free product F.H/ �
Q�

t˛;
H˛;
 t�1
˛;
 , where

H˛;
 is a subgroup of G˛ , t˛;
 2 F, and F.H/ is a free subgroup of F such that,

for every s 2 F and 
 2 I , it is true that F.H/ \ sG
 s�1 D ¹1º. We say that

H is a factor-free subgroup of F if H D F.H/ in the above form of H , i.e., for

every s 2 F and 
 2 I , we have H \ sG
 s�1 D ¹1º. Let r.F / denote the rank of

a (�nitely generated) free group F . Since a factor-free subgroup H of F is free,

the reduced rank Nr.H/ WD max.r.H/ � 1; 0/ of H , where r.H/ is the rank of H ,

is well de�ned.

Let q� D q�.G˛; ˛ 2 I / denote the minimum of orders > 2 of �nite subgroups

of groups G˛, ˛ 2 I , and let q� WD 1 if there are no such subgroups. It is clear

that either q� is an odd prime or q� 2 ¹4; 1º. If q� D 1, de�ne q�

q��2
WD 1.

Dicks and the author [6] proved that if H1 and H2 are �nitely generated factor-

free subgroups of F, then

Nr.H1 \ H2/ � 2
q�

q� � 2
Nr.H1/Nr.H2/: (1)

Dicks and the author [6] conjectured that if groups G˛ , ˛ 2 I , contain no

involutions, then the coe�cient 2 could be left out and

Nr.H1 \ H2/ � q�

q� � 2
Nr.H1/Nr.H2/: (2)

This conjecture can be regarded as a far reaching generalization of the Hanna

Neumann conjecture [23] on rank of the intersection of subgroups in free groups.

Recall that the Hanna Neumann conjecture [23] claims that if H1, H2 are �nitely

generated subgroups of a free group, then Nr.H1 \ H2/ � Nr.H1/Nr.H2/. For more

discussion, partial results and proofs of this conjecture the reader is referred to

[4], [5], [8], [18], [22], [24], [27], and [28].

The conjecture (2) is established by Dicks and the author [7] in the case when

F is the free product of two groups of order 3 in which case q� D 3 and (2) turns

into

Nr.H1 \ H2/ � q�

q� � 2
Nr.H1/Nr.H2/ D 3Nr.H1/Nr.H2/:

Another special case in which the conjecture (2) is known to be true is the case

when F is the free product of in�nite cyclic groups, i.e., F is a free group, as

follows from Friedman’s [8] and Mineyev’s [22] proofs of the Hanna Neumann

conjecture, see also Dicks’s proof [5]. In this case q� D 1 and the inequality (2)

turns into

Nr.H1 \ H2/ � Nr.H1/Nr.H2/: (3)
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More generally, the inequality (3) also holds in the case when F is the free

product of right orderable groups as follows from results of Antolín, Martino,

and Schwabrow [1], see also [18]. We mention that it follows from results of [6]

that the conjectured inequality (2) is sharp and may not be improved.

In an attempt to improve on the bound (1) in a special case, Dicks and the

author [7] showed that

Nr.H1 \ H2/ �
�

2 � .4 C 2
p

3/p

.2p � 3 C
p

3/2

�

� p

p � 2
Nr.H1/Nr.H2/ (4)

for �nitely generated factor-free subgroups H1, H2 of the free product Cp � Cp of

two cyclic groups of prime order p > 2.

Note that for p D 3 the inequality (4) yields the conjectured inequality (2).

However, for prime p � 5, the problem whether the inequality (2) holds for the

free product of two cyclic groups of order p remains open and seems to be the

most basic and appealing case of the conjecture (2) for groups with torsion. In

this connection, we remark that the ideas of articles [1], [5], [8], and [22] do not

look to be applicable to the case of free products with torsion and shed no light

on the conjecture (2) for free products of groups with torsion, especially, for free

products of �nite groups.

In this article, however, we will not attempt to prove or improve on any upper

bounds. Instead, we will look at generalized intersections of �nitely generated

factor-free subgroups in free products of groups from a disparate standpoint and

prove results of quite di�erent �avor by utilizing the method of linear program-

ming.

First we recall a stronger version of the conjecture (2) that generalizes the

strengthened Hanna Neumann conjecture which was put forward by Walter Neu-

mann [24] for subgroups of free groups. Let H1 and H2 be �nitely generated

factor-free subgroups of an arbitrary free product F D
Q�

˛2I G˛ of groups G˛,

˛ 2 I , let the number q�

q��2
be de�ned for F as above, and let S.H1; H2/ denote

a set of representatives of those double cosets H1tH2 of F, t 2 F, that have the

property H1 \ tH2t�1 ¤ ¹1º. Then the strengthened version of the conjecture (2)

claims that

Nr.H1; H2/ WD
X

s2S.H1;H2/

Nr.H1 \ sH2s�1/ � q�

q� � 2
Nr.H1/Nr.H2/; (5)

where Nr.H1; H2/ is the reduced rank of the generalized intersection of H1 and H2

consisting of subgroups H1 \ sH2s�1, s 2 S.H1; H2/.

Let Kff.F/ denote the set of all �nitely generated noncyclic factor-free sub-

groups of the free product F. Pick a subgroup H1 2 Kff.F/. We will say that a
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real number �.H1/ > 0 is the Walter Neumann coe�cient for H1, or, brie�y, the

WN-coe�cient for H1, if, for every H2 2 Kff.F/, we have

Nr.H1; H2/ � �.H1/Nr.H1/Nr.H2/ (6)

and �.H1/ is minimal with this property. Clearly,

�.H1/ D supH2

° Nr.H1; H2/

Nr.H1/Nr.H2/

±

over all subgroups H2 2 Kff.F/.

For every integer d � 3, we also de�ne the number

�d .H1/ WD supH2

° Nr.H1; H2/

Nr.H1/Nr.H2/

±

(7)

over all subgroups H2 2 Kff.F; d /, whereKff.F; d / is a subset ofKff.F/ consisting

of those subgroups whose irreducible core graphs have all of its vertices of degree

at most d , see Section 2 for de�nitions. This number �d .H1/ is called the WNd -

coe�cient for H1. Since Kff.F; d / � Kff.F; d C 1/, it follows from the de�nitions

that �d .H1/ � �dC1.H1/ � �.H1/ and supd ¹�d .H1/º D �.H1/.

For example, it follows from results of [6] and [7] mentioned above that if

F D Cp � Cp is the free product of two cyclic groups of prime order p > 2 and

H1 2 Kff.F/, then

p

p � 2
� �d .H1/ � �.H1/ �

�

2 � .4 C 2
p

3/p

.2p � 3 C
p

3/2

�

� p

p � 2
:

The main technical result of this article is the following.

Theorem 1.1. Suppose that F D G1 � G2 is the free product of two nontrivial

groups G1; G2 and H1 is a �nitely generated factor-free noncyclic subgroup of F.

Then the following are true.

(a) For every integer d � 3, there exists a linear programming problem

(LP-problem)

P.H1; d / D max¹c.d/x.d/ j A.d/x.d/ � b.d/º (8)

with integer coe�cients whose solution is equal to ��d .H1/Nr.H1/.

(b) There is a �nitely generated factor-free subgroup H �
2 of F, H �

2 D H �
2 .H1/,

such that H �
2 corresponds to a vertex solution of the dual problem

P
�.H1; d / D min¹b.d/>y.d/ j A.d/>y.d/ D c.d/>; y.d/ � 0º
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of the primal LP-problem (8) of part (a) and

Nr.H1; H �
2 / D �d .H1/Nr.H1/Nr.H �

2 /:

In particular, the WNd -coe�cient �d .H1/ of H1 is rational.

Furthermore, if ‰.H1/ and ‰.H �
2 / denote irreducible core graphs represent-

ing subgroups H1 and H �
2 , resp., and jE‰j is the number of oriented edges

in the graph ‰, then

jE‰.H �
2 /j < 22jE‰.H1/j=4Clog2 log2.4d/

:

(c) There exists a linear semi-in�nite programming problem (LSIP-problem)

P.H1/ D sup¹cx j Ax � bº with �nitely many variables in x and with

countably many constraints in the system Ax � b whose dual problem

P
�.H1/ D inf¹b>y j A>y D c>; y � 0º

has a solution equal to ��.H1/Nr.H1/.

(d) Let the word problem for both groups G1; G2 be solvable and let an irre-

ducible core graph ‰.H1/ of H1 be given. Then the LP-problem (8) of

part (a) can be algorithmically written down and the WNd -coe�cient �d .H1/

for H1 can be computed. In addition, an irreducible core graph ‰.H �
2 / of

the subgroup H �
2 of part (b) can be algorithmically constructed.

(e) Let both groups G1 and G2 be �nite, let dm WD max.jG1j; jG2j/ � 3, and let

an irreducible core graph ‰.H1/ of H1 be given. Then the LP-problem (8)

of part (a) for d D dm coincides with the LSIP-problem P.H1/ of part (c)

and the WN-coe�cient �.H1/ for H1 is rational and computable.

It is worthwhile to mention that the correspondence between subgroups

H2 2 Kff.F; d / and vectors of the feasible polyhedron ¹y.d/ j A.d/>y.d/ D
c.d/>; y.d/ � 0º of the dual problem P

�.H1; d /, mentioned in part (b) of Theo-

rem 1.1, plays an important role in proofs and is reminiscent of the correspondence

between (almost) normal surfaces in 3-dimensional manifolds and their (resp. al-

most) normal vectors in the Haken theory of normal surfaces and its generaliza-

tions, see [10], [11], [12], [16], and [19]. In particular, the idea of a vertex solution

works equally well both in the context of almost normal surfaces [16], see also [11]

and [19], and in the context of factor-free subgroups, providing in either situation

both the connectedness of the underlying object associated with a vertex solution

and an upper bound on the size of the underlying object.

Relying on the linear programming approach of Theorem 1.1, in the following

Theorem 1.2, we look at the computational complexity of the problem to compute

the WN-coe�cient �.H1/ for a factor-free subgroup H1 of the free product of two

�nite groups and at other relevant questions.
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Theorem 1.2. Suppose that F D G1 � G2 is the free product of two nontrivial

�nite groups G1; G2 and H1 is a subgroup of F given by a �nite generating set S

of words over the alphabet G1 [ G2. Then the following are true.

(a) In deterministic polynomial time in the size of S, one can detect whether H1

is factor-free and noncyclic and, if so, one can construct an irreducible graph

‰o.H1/ of H1.

(b) If H1 is factor-free and noncyclic, then, in deterministic exponential time in

the size of S, one can write down and solve an LP-problem P D max¹cx j
Ax � bº whose solution is equal to ��.H1/Nr.H1/. In particular, the

W N -coe�cient �.H1/ of H1 is computable in exponential time in the size

of S.

(c) If H1 is factor-free and noncyclic, then there exists a �nitely generated factor-

free subgroup H �
2 D H �

2 .H1/ of F such that

Nr.H1; H �
2 / D �.H1/Nr.H1/Nr.H �

2 /

and the size of an irreducible core graph ‰.H �
2 / of H �

2 is at most doubly

exponential in the size of ‰.H1/. Speci�cally,

jE‰.H �
2 /j < 22jE‰.H1/j=4Clog2 log2.4dm/

;

where ‰.H1/ is an irreducible core graph of H1, jE‰j denotes the number

of oriented edges of the graph ‰, and dm WD max.jG1j; jG2j/.
In addition, an irreducible core graph ‰.H �

2 / of H �
2 can be constructed

in deterministic exponential time in the size of S or ‰.H1/.

It is of interest to observe that our construction of the graph ‰.H �
2 / is some-

what succinct (cf. the de�nition of succinct representations of graphs in [25])

in the sense that, despite the fact that the size of ‰.H �
2 / could be doubly exponen-

tial, we are able to give a description of ‰.H �
2 / in exponential time. In particular,

vertices of ‰.H �
2 / are represented by exponentially long bit strings and edges

of ‰.H �
2 / are drawn in blocks. As a result, we can �nd out in exponential time

whether two given vertices of ‰.H �
2 / are connected by an edge.

The situation with free products of more than two factors is more di�cult to

study and we will make additional e�orts to obtain the following results.

Theorem 1.3. Suppose that F D
Q�

˛2I G˛ is the free product of nontrivial groups

G˛ , ˛ 2 I , and H1 is a �nitely generated factor-free noncyclic subgroup of F.

Then there are two disjoint �nite subsets I1; I2 of the index set I such that if
yG1 WD

Q�
˛2I1

G˛ , yG2 WD
Q�

˛2I2
G˛ , and yF WD yG1 � yG2, then there exists a

�nitely generated factor-free subgroup yH1 of yF with the following properties.
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(a) Nr. yH1/ D Nr.H1/, �d . yH1/ � �d .H1/ for every d � 3, and �. yH1/ � �.H1/.

In particular, if the conjecture (5) fails for H1 then the conjecture (5) also

fails for yH1.

(b) If the word problem for every group G˛, where ˛ 2 I1 [ I2, is solvable and

a �nite irreducible graph of H1 is given, then the LP-problem P. yH1; d / for
yH1 of part (a) of Theorem 1.1 can be algorithmically written down and the

WNd -coe�cient �d . yH1/ for yH1 can be computed.

(c) Let every group G˛, where ˛ 2 I1 [ I2, be �nite, let H1 be given either by a

�nite irreducible graph or by a �nite generating set, and let

dM WD max¹jI1 [ I2j; max¹jG˛j j ˛ 2 I1 [ I2ºº:
Then �dM

. yH1/ � �.H1/ and there is an algorithm that decides whether the

conjecture (5) holds for H1.

We remark that the proofs of Theorems 1.2–1.3 provide a practical deterministic

algorithm (with exponential running time, though) to compute the WN-coe�cient

�.H1/ for a �nitely generated factor-free subgroup H1 of the free product of two

�nite groups and to determine whether a certain �nitely generated factor-free

subgroup of a free product of �nite groups satis�es the conjecture (5). It would

be of interest to implement this algorithm and experiment with it.

The article is structured as follows. In Section 2, we de�ne basic notions

and recall geometric ideas that are used to study �nitely generated factor-free

subgroups and their intersections in a free product F. In particular, we de�ne a

�nite labeled graph ‰.H/ associated with such a subgroup H of F. In Section 3,

we consider the free product F D G1 � G2 of two nontrivial groups G1; G2 and

introduce certain linear inequalities associated with the groups G1; G2 and with

the graph ‰.H1/ of H1, where H1 is a �nitely generated factor-free noncyclic

subgroup of F. Informally, these inequalities are used for construction of cores

of potential �ber product graphs ‰.H1/ � ‰.H2/, where H2 is another �nitely

generated factor-free subgroup of F, and for subsequent translation to linear

programming problems. More formally, these inequalities enable us to de�ne

an LP-problem max¹c.d/x.d/ j A.d/x.d/ � b.d/º, corresponding to ‰.H1/

and to an integer d � 3, and to de�ne an LSIP-problem sup¹cx j Ax � bº,
corresponding to ‰.H1/. We also consider and make use of the dual problems of

the primal problems

max¹c.d/x.d/ j A.d/x.d/ � b.d/º; sup¹cx j Ax � bº:
Basic results and terminology of linear programming are discussed in Section 4.

These LP-, LSIP-problems, and their dual problems are investigated in Sections 3

and 4. In Section 5, we look at the case of free products of more than two groups

and prove a few more technical lemmas. Proofs of Theorems 1.1–1.3 are given in

Section 6.
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2. Preliminaries

Let G˛, ˛ 2 I , be nontrivial groups, let F D
Q�

˛2I G˛ be their free product, and

let H be a �nitely generated factor-free subgroup of F, H ¤ ¹1º. Consider the

alphabet A D
S

˛2I G˛ , where G˛ \ G˛0 D ¹1º if ˛ ¤ ˛0.

Analogously to the graph-theoretic approach of articles [6], [7], [13], [14],

[15], [17], and [18], we �rst de�ne a labeled A-graph ‰.H/ which geometrically

represents H in a manner similar to the way Stallings graphs represent subgroups

of a free group, see [27].

If � is a graph, V � denotes the vertex set of � and E� denotes the set of

oriented edges of �. For e 2 E� let e�, eC denote the initial, terminal, resp.,

vertices of e and let e�1 be the edge with the opposite orientation, where e�1 ¤ e

for every e 2 E�, .e�1/� D eC, .e�1/C D e�.

A path p D e1 : : : ek in � is a sequence of edges e1; : : : ; ek such that .ei/C D
.eiC1/�, i D 1; : : : ; k � 1. De�ne p� WD .e1/�, pC WD .ek/C, and jpj WD k,

where jpj is the length of p. We allow the possibility that p D ¹p�º D ¹pCº
and jpj D 0. A path p is closed if p� D pC. A path p is called reduced if p

contains no subpaths of the form ee�1, e 2 E�. A closed path p D e1 : : : ek is

cyclically reduced if jpj > 0 and both p and the cyclic permutation e2 : : : eke1

of p are reduced paths. The core of a graph �, denoted core.�/, is the minimal

subgraph of � that contains every edge e which can be included into a cyclically

reduced path in �.

Let ‰ be a graph whose vertex set V ‰ consists of two disjoint nonempty parts

VP ‰; VS‰, so V ‰ D VP ‰ [ VS‰. Vertices in VP ‰ are called primary and

vertices in VS‰ are called secondary. Every edge e 2 E‰ connects primary and

secondary vertices, hence, ‰ is a bipartite graph.

‰ is called a labeled A-graph, or brie�y A-graph, if ‰ is equipped with

functions

'W E‰ �! A; � W VS‰ �! I

such that, for every edge e 2 E‰, it is true that

'.e/ 2 A D
[

˛2I

G˛; '.e�1/ D '.e/�1;

and, if eC 2 VS‰, then '.e/ 2 G˛, where ˛ D �.eC/.

If eC 2 VS‰, de�ne

�.e/ WD �.eC/; �.e�1/ WD �.eC/

and call �.eC/, �.e/ the type of a vertex eC 2 VS‰ and of an edge e 2 E‰. Thus,

for every e 2 E‰, we have de�ned an element '.e/ 2 A, called the label of e, and

an element �.e/ 2 I , called the type of e.
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The reader familiar with van Kampen diagrams over a free product of groups,

as de�ned in [21], will recognize that our labeling function 'W E‰ ! A is

de�ned in the way analogous to labeling functions on van Kampen diagrams

over free products of groups. Recall that van Kampen diagrams are planar 2-

complexes whereas graphs are 1-complexes, however, apart from this, the ideas of

cancellations and edge folding work equally well for both diagrams and graphs.

An A-graph ‰ is called irreducible if the following properties (P1)–(P3) hold

true.

(P1) If e; f 2 E‰, e� D f� 2 VP ‰, and eC ¤ fC, then �.e/ ¤ �.f /.

(P2) If e; f 2 E‰, e ¤ f , and eC D fC 2 VS‰, then '.e/ ¤ '.f / in G�.e/.

(P3) ‰ has no multiple edges, deg‰v > 0 for every v 2 V ‰, and there is at most

one vertex of degree 1 in ‰ which, if exists, is primary.

Suppose ‰ is a connected �nite irreducible A-graph and a primary vertex

o 2 VP ‰ is distinguished so that deg‰ o D 1 if ‰ happens to have a vertex of

degree 1. Then o is called the base vertex of ‰ D ‰o.

As usual, elements of the free product F D
Q�

˛2I G˛ are regarded as words

over the alphabet A D
S

˛2I G˛ , where G˛ \ G˛0 D ¹1º if ˛ ¤ ˛0. A syllable of a

word W over A is a maximal nonempty subword of W all of whose letters belong

to the same factor G˛. The syllable length kW k of W is the number of syllables

of W , while the length jW j of W is the number of all letters in W . For example,

if a1; a2 2 G˛, then ja11a2j D 3, ka11a2k D 1, and j1j D k1k D 1.

A nonempty word W over A is called reduced if every syllable of W consists

of a single letter. Clearly, jW j D kW k if W is reduced. Note that an arbitrary

nontrivial element of the free product F can be uniquely written as a reduced

word. A word W is called cyclically reduced if W 2 is reduced. We write U
0D W

if words U , W are equal as elements of F. The literal (or letter-by-letter) equality

of words U , W is denoted U � W .

If p D e1 : : : ek is a path in an A-graph ‰ and e1; : : : ; ek are edges of ‰, then

the label '.p/ of p is the word '.p/ WD '.e1/ : : : '.ek/.

The signi�cance of irreducibleA-graphs for geometric interpretation of factor-

free subgroups H of F is given in the following lemma.

Lemma 2.1. Suppose H is a �nitely generated factor-free subgroup of the free

product F D
Q�

˛2I G˛ , H ¤ ¹1º. Then there exists a �nite connected irreducible

A-graph ‰ D ‰o.H/, with a base vertex o, such that a reduced word W over the

alphabet A belongs to H if and only if there is a reduced path p in ‰o.H/ such

that p� D pC D o, '.p/
0D W in F, and jpj D 2jW j.



1122 S. V. Ivanov

In addition, assume that all factors G˛ , ˛ 2 I , are �nite and V1; : : : ; Vk are

words over A. Then there is a deterministic algorithm which, in polynomial

time depending on the sum jV1j C � � � C jVk j, decides whether the subgroup

HV D hV1; : : : ; Vki, generated by V1; : : : ; Vk, is factor-free and, if so, constructs

an irreducible A-graph ‰o.HV / for HV .

Proof. The proof is based on Stallings’s folding techniques and is somewhat

analogous to the proof of van Kampen lemma for diagrams over free products

of groups, see [21] (in fact, it is simpler because foldings need not preserve the

property of being planar for diagrams).

Let HV D hV1; : : : ; Vki be a subgroup of F, generated by some words

V1; : : : ; Vk overA. Without loss of generality we can assume that V1; : : : ; Vk are re-

duced words. Consider a graph z‰ which consists of k closed paths p1; : : : ; pk such

that they have a single common vertex o D .pi /�, and jpi j D 2jVi j, i D 1; : : : ; k.

We distinguish o as the base vertex of z‰ and call o primary, the vertices adja-

cent to o are called secondary vertices and so on. Denote V � ai;1 : : : ai;`i
, where

ai;j 2 A are letters, i D 1; : : : ; k, and let pi D ei;1fi;1 : : : ei;`i
fi;`i

, where ei;j ; fi;j

are edges of the path pi . The labeling functions '; � on the path pi are de�ned so

that if ai;j 2 G˛.i;j /, then

�.ei;j / WD ˛.i; j /; �.fi;j / WD ˛.i; j /;

'.ei;j / WD ai;j b�1
i;j ; '.fi;j / WD bi;j ;

where bi;j is an element of the group G˛.i;j /.

Clearly, '.pi /
0D Vi in F for all i D 1; : : : ; k.

It is also clear that z‰ D z‰o is a �nite connected A-graph with the base vertex

o that has the following property.

(Q) A word W 2 F belongs to H if and only if there is a path p in z‰o such that

p� D pC D o and '.p/
0D W .

However, z‰o need not be irreducible and we will do foldings of edges in
z‰o which preserve property (Q) and which are aimed to achieve properties (P1)

and (P2).

Assume that property (P1) fails for edges e; f with e� D f� 2 VP
z‰o so that

eC ¤ fC and �.e/ D �.f /. Let us rede�ne the labels of all edges e0 with e0
C D eC

so that '.e0/'.e/�1 does not change and '.e/ D '.f / in G�.e/. This can be done

by multiplication of '-labels on the right by '.e/�1'.f /. Since '.e/ D '.f / and

�.e/ D �.f /, we may now identify the edges e, f and vertices eC, fC. Observe

that this folding preserves property (Q) ((P2) might fail) and decreases the total

edge number jE z‰oj. This operation changes the labels of edges and can be done

in time polynomial in jV1jC � � �C jVkj if all factors G˛ , ˛ 2 I , are �nite. Note that
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if G˛ were not �nite, then there would be a problem with increasing space needed

to store '-labels of edges and subsequent computations with larger labels.

If property (P2) fails for edges e; f and '.e/ D '.f / in G�.e/, then we identify

the edges e; f . Note property (Q) still holds ((P1) might fail) and the number

jE z‰oj decreases.

Suppose property (P3) fails and there are two distinct edges e; f in z‰o such

that e� D f� and eC D fC 2 VS
z‰o. If '.e/ ¤ '.f / in G�.e/, then a conjugate

of '.e/'.f /�1 2 G�.e/ is in HV , hence we conclude that HV is not factor-free.

So we may assume that '.e/ D '.f / in G�.e/. Then we identify the edges e; f ,

thus preserving property (Q) and decreasing the number jE z‰oj. If property (P3)

fails so that there is a vertex v of degree 1, di�erent from o, then we delete v along

with the incident edge. Clearly, property (Q) still holds and the number jE z‰oj
decreases.

Thus, by induction on jE z‰oj in polynomially many (relative to
Pk

iD1 jVi j)
steps as described above, we either establish that the subgroup HV is not factor-

free or construct an irreducible A-graph ‰o with property (Q).

It follows from the de�nitions and from property (Q) of the graph ‰o that HV

is factor-free (see also Lemma 2.2). Other stated properties of ‰o are straightfor-

ward.

Finally, we observe that if all factors G˛, ˛ 2 I , are �nite, then the space

required to store the '-label of an edge of intermediate graphs is constant and

multiplication (or inversion) of '-labels would require time bounded by a constant.

Therefore, the above procedure implies the existence of a polynomial algorithm

for �nding out whether a subgroup HV D hV1; : : : ; Vki of F is factor-free and for

construction of a �nite irreducible A-graph ‰o for HV . �

The following lemma further elaborates on the correspondence between �nitely

generated factor-free subgroups of the free product F and �nite irreducible A-

graphs.

Lemma 2.2. Let ‰o be a �nite connected irreducibleA-graph with the base vertex

o and let H D H.‰o/ be a subgroup of the free productF that consists of all words

'.p/, where p is a path in ‰o such that p� D pC D o. Then H is a factor-free

subgroup of F and Nr.H/ D ��.‰o/, where

�.‰o/ D jV ‰oj � 1

2
jE‰oj

is the Euler characteristic of ‰o.

Proof. This follows from the facts that the fundamental group �1.‰o; o/ of ‰o at

o is free of rank ��.‰o/ C 1 and that the homomorphism �1.‰o; o/ ! F, given

by p ! '.p/, where p is a path with p� D pC D o, has the trivial kernel in view

of properties (P1) and (P2). �
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Suppose H is a nontrivial �nitely generated factor-free subgroup of a free

product F D
Q�

˛2I G˛ , and ‰o D ‰o.H/ is a �nite irreducible A-graph for H as

in Lemma 2.1. We say that ‰o.H/ is an irreducible graph of H .

Let ‰.H/ WD core.‰o.H// denote the core of an irreducible graph ‰o.H/ of

H . Clearly, ‰.H/ has no vertices of degree � 1 and ‰.H/ is also an irreducible

A-graph. We say that ‰.H/ is an irreducible core graph of H .

It is easy to see that an irreducible graph ‰o.H/ of H can be obtained back

from an irreducible core graph ‰.H/ of H by attaching a suitable path p to ‰.H/

so that p starts at a primary vertex o, ends in pC 2 VP ‰.H/, and then by doing

foldings of edges as in the proof of Lemma 2.1, see Figure 2.1.

‰o.H/

‰.H/ D
core‰o.H/

po

Figure 2.1

Now suppose H1, H2 are nontrivial �nitely generated factor-free subgroups

of F. Consider a set S.H1; H2/ of representatives of those double cosets H1tH2

of F, t 2 F, that have the property H1 \ tH2t�1 ¤ ¹1º. For every s 2
S.H1; H2/, de�ne the subgroup Ks WD H1 \ sH2s�1. Similarly to articles

[13], [14], [15], [17], and [18] and analogously to the case of free groups, see [4]

and [24], we now construct a �nite irreducible A-graph ‰.H1; H2/, also denoted

core.‰.H1/ � ‰.H2//, whose connected components are irreducible core graphs

‰.Ks/, s 2 S.H1; H2/.

First we de�ne an A-graph ‰0
o.H1; H2/. The set of primary vertices of

‰0
o.H1; H2/ is VP ‰0

o.H1; H2/ WD VP ‰o1
.H1/ � VP ‰o2

.H2/. Let

�i W VP ‰0
o.H1; H2/ �! VP ‰oi

.Hi/

denote the projection map, �i ..v1; v2// D vi , i D 1; 2.

The set of secondary vertices VS‰0
o.H1; H2/ of ‰0

o.H1; H2/ consists of equiv-

alence classes Œu�˛, where u 2 VP ‰0
o.H1; H2/, ˛ 2 I , with respect to the

minimal equivalence relation generated by the following relation
˛� on the set

VP ‰0
o.H1; H2/. De�ne v

˛� w if and only if there are edges ei ; fi 2 E‰oi
.Hi/

such that

.ei /� D �i .v/; .fi /� D �i .w/; .ei /C D .fi/C
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for each i D 1; 2, the edges ei ; fi have type ˛, and '.e1/'.f1/�1 D '.e2/'.f2/�1

in G˛. It is easy to see that the relation
˛� is symmetric and transitive on pairs and

triples of distinct elements (but it could lack the re�exive property).

The edges in ‰0
o.H1; H2/ are de�ned so that the vertices

u 2 VP ‰0
o.H1; H2/ and Œv�˛ 2 VS‰0

o.H1; H2/

are connected by an edge if and only if u 2 Œv�˛.

The type �.Œv�˛/ of a vertex Œv�˛ 2 VS‰0
o.H1; H2/ is ˛ and if

e 2 E‰0
o.H1; H2/; e� D u; eC D Œv�˛;

then '.e/ WD '.e1/, where e1 2 E‰o1
.H1/ is an edge of type ˛ with .e1/� D

�1.u/, when such an e1 exists, and '.e1/ WD g˛ , where g˛ 2 G˛, g˛ ¤ 1,

otherwise.

It follows from the de�nitions and properties (P1) and (P2) of ‰oi
.Hi /,

i D 1; 2, that ‰0
o.H1; H2/ is an A-graph with properties (P1) and (P2). Hence,

taking the core of ‰0
o.H1; H2/, we obtain a �nite irreducible A-graph which we

denote by ‰.H1; H2/ or by core.‰.H1/ � ‰.H2//.

It is not di�cult to see that, when taking the connected component

‰0
o.H1; H2; o/

of ‰0
o.H1; H2/ that contains the vertex o D .o1; o2/ and inductively removing

from ‰0
o.H1; H2; o/ the vertices of degree 1 di�erent from o, we will obtain an

irreducible A-graph ‰o.H1 \ H2/ with the base vertex o that corresponds to the

intersection H1 \ H2 as in Lemma 2.1.

It follows from the de�nitions and property (P1) for ‰.Hi /, i D 1; 2, that, for

every edge e 2 E‰.H1; H2/ with e� 2 VP ‰.H1; H2/, there are unique edges

ei 2 E‰.Hi / such that �i .e�/ D .ei /�, i D 1; 2. Hence, by setting �i .e/ D ei ,

�i .eC/ D .ei/C, i D 1; 2, we extend �i to the graph map

�i W ‰.H1; H2/ �! ‰.Hi /; i D 1; 2: (9)

It follows from the de�nitions that �i is locally injective and �i preserves syllables

of the word '.p/ for every path p with primary vertices p�; pC.

Lemma 2.3. Suppose H1, H2 are �nitely generated factor-free subgroups of the

free product F and S.H1; H2/ ¤ ¿. Then the connected components of the

graph ‰.H1; H2/ are core graphs ‰.H1 \ sH2s�1/ of subgroups H1 \ sH2s�1,

s 2 S.H1; H2/. In particular,

Nr.H1; H2/ WD
X

s2S.H1;H2/

Nr.H1 \ sH2s�1/ D ��.‰.H1; H2//:

Proof. This is straightforward, details can be found in [18]. �
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3. The system of linear inequalities SLIŒY1�

In this section, we let F2 D G1 � G2 be the free product of two nontrivial groups

G1; G2, let A WD G1 [ G2 be the alphabet, G1 \ G2 D ¹1º, and let Y1 be a �nite

connected irreducible A-graph such that core.Y1/ D Y1 and Nr.Y1/ WD ��.Y1/ > 0.

In particular, Y1 has no vertices of degree 1 and Y1 contains a vertex of degree > 2.

Let S2.G˛/, where ˛ D 1; 2, denote the set of all �nite subsets of G˛ of

cardinality � 2 and let S1.VP Y1/ denote the set of all nonempty subsets of VP Y1.

For a set T 2 S2.G˛/, consider a function

�T W T �! S1.VP Y1/:

We also consider a relation ��T
on the set of all pairs .a; u/, where a 2 T

and u 2 �T .a/, de�ned as follows. Two pairs .a; u/, .b; v/ are related by ��T
,

written .a; u/��T
.b; v/, if and only if the following holds. Either .a; u/ D .b; v/

or, otherwise, there exist edges e; f 2 EY1 with the properties that e� D u,

f� D v, the secondary vertex eC D fC has type ˛, and '.e/'.f /�1 D ab�1 in

G˛ , see an example depicted in Figure 3.1. It is easy to see that the relation ��T

is an equivalence one.

u2

u5

u8

u1 u2 u3

u3

u4

u5

u1u6u7

e1

e2

e3

e4

T D ¹g1; g2; g3; g4º � G˛;

�T .g1/ D ¹u1; u2; u3º;
�T .g2/ D ¹u3; u4; u5º,
�T .g3/ D ¹u1; u6; u7º,
�T .g4/ D ¹u2; u5; u8º,

�T .gi / � VP Y1; '.ei / D gi ; i D 1; 2; 3; 4,

.g1; u2/ ��T
.g2; u4/; .g3; u6/ ��T

.g4; u5/.

�T .g1/

�T .g2/

�T .g3/

�T .g4/

Figure 3.1

Let Œ.a; u/���T
denote the equivalence class of .a; u/ and let

jŒ.a; u/���T
j

denote the cardinality of Œ.a; u/���T
. It follows from the de�nitions that

1 � jŒ.a; u/���T
j � jT j: (10)
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We will say that the equivalence class Œ.a; u/���T
is associated with a secondary

vertex w 2 VSY1 of type ˛ if w D eC, where e 2 EY1 and e� D u. It is easy

to see that the de�nition of the secondary vertex w is independent of the primary

vertex u in Œ.a; u/���T
.

A function �T W T ! S1.VP Y1/, T 2 S2.G˛/, is called ˛-admissible if

jŒ.a; u/���T
j � 2

for every equivalence class Œ.a; u/���T
, where a 2 T , u 2 �T .a/. The set of all

˛-admissible functions is denoted �.Y1; ˛/, ˛ D 1; 2.

Let �T 2 �.Y1; ˛/ be an ˛-admissible function, T 2 S2.G˛/, and let

N˛.�T / WD
X

.jŒ.a; u/���T
j � 2/ (11)

denote the sum of cardinalities minus two over all equivalence classes Œ.a; u/���T
,

where a 2 T and u 2 �T .a/, of the equivalence relation ��T
.

Let r be the number of all equivalence classes Œ.a; u/���T
of the equivalence

relation ��T
, where a 2 T and u 2 �T .a/. If r � jVP Y1j, then it follows

from (11) and de�nitions that

N˛.�T / D
X

.jŒ.a; u/���T
j � 2/ � jT j � jVP Y1j � 2r � .jT j � 2/jVP Y1j:

On the other hand, if r � jVP Y1j, then it follows from (10) and (11) that

N˛.�T / D
X

.jŒ.a; u/���T
j � 2/ � .jT j � 2/r � .jT j � 2/jVP Y1j:

Thus, in any case, it is shown that

N˛.�T / � .jT j � 2/jVP Y1j: (12)

For every set A 2 S1.VP Y1/, we consider a variable xA. We also introduce a

special variable xs. Now we will de�ne a system of linear inequalities in these

variables.

For every ˛-admissible function �T , where T 2 S2.G˛/ and ˛ D 1; 2, we

denote T D ¹b1; : : : ; bkº and we set Ai WD �T .bi /, i D 1; : : : ; k.

If ˛ D 1, then the inequality, corresponding to the ˛-admissible function �T ,

is de�ned as follows.

� xA1
� � � � � xAk

� .k � 2/xs � �N1.�T /: (13)

If ˛ D 2, then the inequality corresponding to the ˛-admissible function �T

is de�ned as follows.

xA1
C � � � C xAk

� .k � 2/xs � �N2.�T /: (14)
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Let

SLIŒY1� (15)

denote the system of linear inequalities (13)–(14) over all ˛-admissible functions

�T , where �T 2 �.Y1; ˛/ and ˛ D 1; 2. Since the set S2.G˛/ is in general in�nite

(unless G˛ is �nite) and the set S1.VP Y1/ is �nite (because Y1 is �nite), it follows

that SLIŒY1� is an in�nite system of linear inequalities with integer coe�cients

over a �nite set of variables xA; A 2 S1.VP Y1/, xs.

Let d � 3 be an integer and let

SLId ŒY1� (16)

denote the subsystem of the system (15) whose linear inequalities (13)–(14) are

de�ned for all ˛-admissible functions �T , where �T 2 �.Y1; ˛/ and ˛ D 1; 2,

such that jT j � d .

If q is an inequality of SLId ŒY1� then the coe�cient of xs in the left hand side

of q is the integer �k C 2, where

2 � k D k.q/ D jT j � d;

and the right hand side of q is the integer �N˛.�T /, where

0 � N˛.�T / � .d � 2/jVP Y1j;

as follows from inequality (12). Also, the number of subsets A � VP Y1 that index

variables ˙xA in the left hand side of q is �nite and the total number of occurrences

of such variables ˙xA in q is k D jT j � d . Therefore, SLId ŒY1� is a �nite system

of linear inequalities and

SLIŒY1� D
1
[

dD3

SLId ŒY1�:

Consider the following property of a graph Y2 (which need not be connected).

(B) Y2 is a �nite irreducibleA-graph, the map �2W core.Y1�Y2/ ! Y2 is surjective,

core.Y2/ D Y2, and Nr.Y2/ WD ��.Y2/ > 0.

For example, Y1 has property (B).

If � is a �nite graph, let deg � denote the maximum of degrees of vertices of �.

Recall that the degree of a vertex v 2 V � is the number of edges e 2 E� such

that eC D v. For later references, we introduce one more property of a graph Y2.

(Bd) Y2 has property (B) and deg Y2 � d , where d � 3 is an integer.
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Suppose Y2 is a graph with property (B). For a secondary vertex u 2 VSY2 of

type ˛, we consider all edges e1; : : : ; e`, where deg u D `, such that

u D .e1/C D � � � D .e`/C

and denote vj WD .ej /�, j D 1; : : : ; `. De�ne

Tu WD ¹'.e1/; : : : ; '.e`/º:

Clearly, Tu � S2.G˛/. For every j D 1; : : : ; `, let ��1
2 .vj / denote the full

preimage of the vertex vj in core.Y1 � Y2/. De�ne the sets

Aj .u/ WD �1��1
2 .vj / � VP Y1 (17)

for j D 1; : : : ; ` and consider the function

�Tu
W Tu �! S1.VP Y1/ (18)

so that �Tu
.'.ej // WD Aj .u/.

It is easy to check that �Tu
is ˛-admissible. Since every ˛-admissible function

� 2 �.Y1; ˛/ gives rise to an inequality (13) if ˛ D 1 or to an inequality (14) if

˛ D 2 and every secondary vertex u 2 VSY2 of type ˛ de�nes, as indicated

above, an ˛-admissible function �Tu
, it follows that every u 2 VSY2 is mapped

to a certain inequality of the system SLIŒY1�, denoted inqS .u/. Thus we obtain a

function

inqS W VSY2 �! SLIŒY1� (19)

de�ned from the set VSY2 of secondary vertices of a �nite irreducible A-graph Y2

with property (B) to the set of inequalities of SLIŒY1�.

If q is an inequality of the system SLIŒY1�, denoted q 2 SLIŒY1�, we let qL

denote the left hand side of q, let qR denote the integer in the right hand side of q

and let k.q/ � 2 denote the parameter k for q, see the de�nition of inequalities (13)

and (14).

Lemma 3.1. Suppose Y2 is a �nite irreducible A-graph such that the map

�2W core.Y1 � Y2/ ! Y2 is surjective, core.Y2/ D Y2 and deg Y2 � d . Then

inqS .VSY2/ � SLId ŒY1�. Furthermore,

X

u2VS Y2

inqS .u/L D �2Nr.Y2/xs;

X

u2VS Y2

inqS .u/R D �2Nr.core.Y1 � Y2//:
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Proof. The inclusion inqS .VSY2/ � SLId ŒY1� is evident from the de�nitions.

Suppose v 2 VP Y2 and let e1, e2 be the edges such that .e1/� D .e2/� D v and

u˛ WD .e˛/C, ˛ D 1; 2, is a secondary vertex of type ˛ in Y2. Clearly, '.e˛/ 2 G˛

for ˛ D 1; 2. Denote Av WD �1��1
2 .v/. It follows from the de�nitions that

Av 2 S1.VP Y1/ and that the variables �xAv
, xAv

occur in inqS .u1/L, inqS .u2/L,

resp., and will cancel out in the sum inqS .u1/L C inqS .u2/L. It is easy to see that

all occurrences of variables ˙xA, A 2 S1.VP Y1/, in the formal sum

X

u2VS Y2

inqS .u/L; (20)

before any cancellations are made, can be paired down by using primary vertices

of Y2 as indicated above. Since every secondary vertex u of Y2 contributes

�.deg u � 2/ to the coe�cient of xs in the sum (25) and

X

u2VS Y2

.deg u � 2/ D 2Nr.Y2/; (21)

it follows that the �rst equality of Lemma 3.1 is true. The second equality follows

from the analogous to (21) formula

X

u2VS .core.Y1�Y2//

.deg u � 2/ D 2Nr.core.Y1 � Y2//;

and from the de�nition (11) of numbers N˛.�Tu
/, u 2 VSY2. Here the function

�Tu
is de�ned for u as in (18). �

Let A be a �nite set. A combination with repetitions B of A, which we denote

B D ŒŒb1; : : : ; b`�� v A;

is a �nite unordered collection of multiple copies of elements of A. Hence, bi 2 A

and bi D bj is possible when i ¤ j . If B D ŒŒb1; : : : ; b`�� is a combination with

repetitions then the cardinality jBj of B is jBj WD `.

Observe that a �nite irreducible A-graph Y2 with property (Bd) can be used to

construct a combination with repetitions, denoted

inqd .VSY2/;

of the system SLId ŒY1�, whose elements are individual inequalities of SLId ŒY1� so

that every inequality q D inqS .u/ of SLId ŒY1�, see (19), occurs in inqd .VSY2/ as

many times as the number of preimages of q in VSY2 under inqS . Note that, in

general, inqd .VSY2/ ¤ inqS .VSY2/ because inqS .VSY2/ is a subset of SLId ŒY1�

while inqd .VSY2/ is a combination with repetitions of SLId ŒY1�.
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It follows from Lemma 3.1 that if inqd .VSY2/ D ŒŒq1; : : : ; q`�� is a combination

of SLId ŒY1�, then
X

q2inqd .VS Y2/

qL WD
m

X

j D1

qL
j D �2Nr.Y2/xs:

In the opposite direction, we will prove the following.

Lemma 3.2. Suppose Q is a nonempty combination with repetitions of SLId ŒY1�

and
X

q2Q

qL D �C.Q/xs; (22)

where C.Q/ > 0 is an integer. Then there exists a �nite irreducible A-graph Y2;Q

with property (Bd) such that, letting zQ D inqd .VSY2;Q/, one has j zQj D jQj and

X

q2Q

qL D
X

q2 zQ

qL D �2Nr.Y2;Q/xs; (23)

X

q2Q

qR �
X

q2 zQ

qR D �2Nr.core.Y1 � Y2;Q//: (24)

Proof. We will construct an A-graph Y2;Q whose secondary vertices uj are in

bijective correspondence

uj 7�! qj ;

where j D 1; : : : ; jQj, with elements of the combination

Q D ŒŒq1; : : : ; qjQj�� v SLId ŒY1�

so that the secondary vertices of type ˛ D 1 in Y2;Q correspond to the inequalities

of type (13) in Q, and the secondary vertices of type ˛ D 2 in Y2;Q correspond to

the inequalities of type (14) in Q.

To �x the notation, we let the inequality qj of Q be de�ned by means of an

j̨ -admissible function

�Tj
W Tj �! S1.VP Y1/;

where Tj 2 S2.G
j̨
/ and Tj D ¹b1;j ; : : : ; bkj ;j º, 2 � kj � d , bi;j 2 G

j̨
. Here

kj D k.qj / denotes the parameter k for qj , see (13) and (14).

Consider a secondary vertex uj of type j̨ and kj edges e1;j ; : : : ; ekj ;j whose

terminal vertex is uj and whose '-labels are

'.e1;j / D b1;j ; : : : ; '.ekj ;j / D bkj ;j :

This is the local structure of the graph Y2;Q around its secondary vertices.
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Now we will identify in pairs the initial vertices of the edges e1;j ; : : : ; ekj ;j ,

j D 1; : : : ; jQj, which will form the set of primary vertices VP Y2;Q of the graph

Y2;Q. In the notation introduced above, it follows from the de�nitions (13) and (14)

that a typical term ˙xA of qL
j has the form .�1/ j̨ xA, where A D �Tj

.bi;j / for

some i D 1; : : : ; kj .

It follows from the equality (22) that there is an involution � on the set of all

terms ˙xA of the formal sum
jQj
X

j D1

qL
j (25)

such that � takes every term ˙xA of qL
j1

to a term �xA of qL
j2

, j1 ¤ j2, and �2 D id.

Therefore, if

.�1/ j̨1 x�Tj1
.bi1;j1

/ and .�1/ j̨2 x�Tj2
.bi2;j2

/

are two terms of the formal sum (25) which are �-images of each other, then

¹ j̨1
; j̨2

º D ¹1; 2º and �Tj1
.bi1;j1

/ D �Tj2
.bi2;j2

/:

We identify the initial vertices of the edges ei1;j1
, ei2;j2

so that the vertex

.ei1;j1
/� D .ei2;j2

/�

becomes a primary vertex of Y2;Q. We do this identi�cation of the initial vertices

of all pairs of edges, corresponding as described above to all pairs of terms ˙xA,

�xA in (25) that are �-images of each other. As a result, we obtain an A-graph

Y2;Q. It is clear from the de�nitions that Y2;Q is a �nite irreducible A-graph such

that the degree of any secondary vertex uj of Y2;Q is kj such that

2 � kj D jTj j � d;

and the degree of every primary vertex of Y2;Q is 2.

Looking at the coe�cients of �xs in (25), we can see from (22), (13), and (14)

that

C.Q/ D
jQj
X

j D1

.kj � 2/ > 0:

Hence, the graph Y2;Q has a vertex of degree at least 3.

Therefore, Y2;Q is a �nite irreducible A-graph such that core.Y2;Q/ D Y2;Q

and Nr.Y2;Q/ > 0. Note that Y2;Q is not uniquely determined by Q (because there

are many choices to de�ne the involution �, i.e., to do cancellations in the left hand

side of (22)).
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Consider the graph core.Y1 � Y2;Q/ and the associated graph maps

˛1W core.Y1 � Y2;Q/ �! Y1; ˛2W core.Y1 � Y2;Q/ �! Y2;Q:

It follows from the de�nitions, in particular, from the ˛-admissibility of functions

�T1
; : : : ; �TjQj

, that ˛2 is surjective. Hence, Y2;Q has property (Bd).

Let the sets A1.uj /; : : : ; Akj
.uj / be de�ned for a secondary vertex uj of Y2;Q

as in (17) so that Ai .uj / is de�ned by means of the primary vertex .ei;j /�, where

i D 1; : : : ; kj . It is not di�cult to see from the de�nitions that

�Tj
.b1;j / � A1.uj /; : : : ; �Tj

.bkj ;j / � Akj
.uj /:

This observation means that if zQ WD inqd .VSY2;Q/ then j zQj D jQj and Y2; zQ D
Y2;Q for a suitable involution Q� D Q�. zQ/.

Hence, if qj has the form (13), where kj D k.qj / as before, then we have

inqS .uj /L D �xA1.uj / � � � � � xAkj
.uj / � .kj � 2/xs;

where �Tj
.bi;j / � Ai .uj / for i D 1; : : : ; kj , and

N1.�Tj
/ � N1. z�Tj

/ D � inqS .uj /R;

here z�Tj
is the function,

z�Tj
W ¹b1;j ; : : : ; bkj ;j º �! S1.VpY1/;

de�ned by z�Tj
.bi;j / WD Ai.uj / for i D 1; : : : ; kj .

Analogously, if qj has the form (14), where kj D k.qj /, then we have

inqS .uj /L D xA1.uj / C � � � C xAkj
.uj / � .kj � 2/xs;

where �Tj
.bi;j / � Ai .uj / for i D 1; : : : ; kj , and

N1.�Tj
/ � N1. z�Tj

/ D � inqS .uj /R;

here z�Tj
is the function,

z�Tj
W ¹b1;j ; : : : ; bkj ;j º �! S1.VpY1/;

de�ned by z�Tj
.bi;j / WD Ai.uj / for i D 1; : : : ; kj .

Therefore,
X

q2inqd .VS Y2;Q/

qR D
X

q2 zQ

qR �
X

q2Q

qR:

Now both (23)–(24) follow from Lemma 3.1. �
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We summarize Lemmas 3.1–3.2 in the following.

Lemma 3.3. The function

inqd W Y2 7�! inqd .VSY2/ D Q

from the set of �nite irreducible A-graphs Y2 with property (Bd) to the set

of combinations Q with repetitions of the system SLId ŒY1� with the property
P

q2Q qL D �C.Q/xs, where C.Q/ > 0 is an integer, is such that

X

q2inqd .VS Y2/

qL D �2Nr.Y2/xs and
X

q2inqd .VS Y2/

qR D �2Nr.core.Y1 � Y2//:

In addition, for every Q in the codomain of the function inqd , there exists a

graph Y2;Q in the domain of inqd such that, letting zQ D inqd .VSY2;Q/, one has

j zQj D jQj and

X

q2Q

qL D
X

q2 zQ

qL D �2Nr.Y2;Q/xs;

X

q2Q

qR �
X

q2 zQ

qR D �2Nr.core.Y1 � Y2;Q//:

Proof. This is straightforward from Lemmas 3.1 and 3.2 and their proofs. �

4. Utilizing linear and linear semi-in�nite programming

First we brie�y review relevant results from the theory of linear programming

(LP) over the �eld Q of rational numbers. Following the notation of Schrijver’s

monograph [26], let A 2 Qm0�n0
be an m0 � n0-matrix, let b 2 Qm0�1 D Qm0

be

a column vector, let c 2 Q1�n0

be a row vector, c D .c1; : : : ; cn0/, and let x be a

column vector consisting of variables x1; : : : ; xn0 , so x D .x1; : : : ; xn0/>, where

M > means the transpose of a matrix M . The inequality x � 0 means that xi � 0

for every i .

A typical LP-problem asks about the maximal value of the objective linear

function

cx D c1x1 C � � � C cn0xn0

over all x 2 Qn0

subject to a �nite system of linear inequalities Ax � b. This

value (and often the LP-problem itself) is denoted

max¹cx j Ax � bº:
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We write max¹cx j Ax � bº D �1 if the set ¹cx j Ax � bº is empty. We

write max¹cx j Ax � bº D C1 if the set ¹cx j Ax � bº is unbounded from above

and say that max¹cx j Ax � bº is �nite if the set ¹cx j Ax � bº is nonempty and

bounded from above. The notation and terminology for an LP-problem

min¹cx j Ax � bº D � max¹�cx j Ax � bº

is analogous with �1 and C1 interchanged.

If max¹cx j Ax � bº is an LP-problem as de�ned above, then the problem

min¹b>y j A>y D c>; y � 0º;

where y D .y1; : : : ; ym/>, is called the dual problem of the primal LP-problem

max¹cx j Ax � bº.
The (weak) duality theorem of linear programming can be stated as follows,

see [26, Section 7.4].

Theorem A. A Let max¹cx j Ax � bº be an LP-problem and let min¹b>y j
A>y D c>; y � 0º be its dual LP-problem. Then for every x 2 Qn0

such

that Ax � b and for every y 2 Qm0
such that A>y D c>, y � 0, one has

cx D y>Ax � b>y and

max¹cx j Ax � bº D min¹b>y j A>y D c>; y � 0º (26)

provided both polyhedra ¹x j Ax � bº and ¹y j A>y D c>; y � 0º are not empty.

In addition, the minimum, whenever it is �nite, is attained at a vector yy which is

a vertex of the polyhedron ¹y j A>y D c>; y � 0º.

Since the system of inequalities SLIŒY1�, as de�ned in Section 3, is in�nite in

general, we also recall basic terminology and results regarding duality in linear

semi-in�nite programming (LSIP), see [2], [3], and [9]. Consider a generalized

LP-problem max¹cx j Ax � bº that has countably many linear inequalities in the

system Ax � b while the number of variables in x is still �nite. Hence, in this

setting, A is a matrix with countably many rows and n0 columns, or A 2 Q1�n0
is

an 1 � n0-matrix, b 2 Q1�1 D Q1, or b is an in�nite column vector, c 2 Q1�n0

is a row vector, and x D .x1; : : : ; xn0/>.

A typical LSIP-problem over Q asks about the supremum of the objective

linear functional cx over all x 2 Qn0
subject to Ax � b. This number and

the problem itself is denoted sup¹cx j Ax � bº. As above, we write sup¹cx j
Ax � bº D �1 if the set ¹cx j Ax � bº is empty, sup¹cx j Ax � bº D C1 if

the set ¹cx j Ax � bº is not bounded from above and say that sup¹cx j Ax � bº is

�nite if the set ¹cx j Ax � bº is nonempty and bounded from above. The notation

and the terminology for an LSIP-problem inf¹cx j Ax � bº D � sup¹�cx j
Ax � bº is analogous with �1 and C1 interchanged. Let Ai denote the
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submatrix of A of size i �n0 whose �rst i rows are those of A and bi is the starting

subcolumn of b of length i . Then max¹cx j Aix � biº is an LP-problem which is

called the i-approximate of the LSIP-problem sup¹cx j Ax � bº.
Let Mi D max¹cx j Aix � biº denote the optimal value of the i-approximate

LP-problem max¹cx j Aix � biº and M is the number sup¹cx j Ax � bº. Clearly,

for every i , Mi � MiC1 � M . Note that in general limi!1 Mi ¤ M , see [2], [3].

Similarly to [2], [3], [9], we say that if sup¹cx j Ax � bº is an LSIP-problem

as above, then the problem

inf¹b>y j A>y D c>; y � 0º;

where y D .y1; y2; : : : /> is an in�nite vector whose set of nonzero components

is �nite, is called the dual problem of sup¹cx j Ax � bº.
For later references, we state the analogue of Theorem A for linear semi-in�nite

programming which, in fact, is an easy corollary of Theorem A.

Theorem B. Suppose that sup¹cx j Ax � bº is an LSIP-problem whose set

¹cx j Ax � bº is nonempty and bounded from above and whose dual problem is

inf¹b>y j A>y D c>; y � 0º. Then

sup¹cx j Ax � bº � inf¹b>y j A>y D c>; y � 0º (27)

and the equality holds if and only if sup¹cx j Ax � bº is equal to limi!1 Mi ,

where Mi WD max¹cx j Aix � bi º is the optimal solution of the i-approximate

LP-problem max¹cx j Aix � biº of the primal LSIP-problem sup¹cx j Ax � bº.

In the situation when the inequality (27) is strict, the di�erence

inf¹b>y j A>y D c>; y � 0º � sup¹cx j Ax � bº > 0

is called the duality gap of the LSIP-problem sup¹cx j Ax � bº.
We now consider the problem of maximizing the objective linear function

cx WD �xs

over all rational vectors x, x 2 Qn0
for a suitable n0, subject to the system of linear

inequalities SLIŒY1�, see (15), as an LSIP-problem sup¹cx j Ax � bº.
We also consider a subsequence of minq;d -approximate LP-problems

max¹cx j Aminq;d
x � bminq;d

º

of the LSIP-problem sup¹cx j Ax � bº whose systems Aminq;d
x � bminq;d

of

inequalities are �nite subsystems SLId ŒY1� of SLIŒY1�, where d D 3; 4; : : : , as

de�ned in (16).
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It is straightforward to verify that the dual problem

inf¹b>y j A>y D c>; y � 0º

of this LSIP-problem sup¹cx j Ax � bº can be equivalently stated as follows.

1
X

j D1

yj qR
j �! inf subject to y � 0;

1
X

j D1

yj qL
j D �xs; (28)

where almost all yj , j D 1; 2; : : : , are zeros. We rewrite (28) in the form

inf
° 1

X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

1
X

j D1

yj qL
j D �xs

±

: (29)

Analogously, the dual problem of the minq;d -approximate LP-problem

max¹cx j Aminq;d
x � bminq;d

º

can be stated in the form

minq;d
X

j D1

yj qR
j �! min subject to y � 0;

minq;d
X

j D1

yj qL
j D �xs

which we write as follows:

min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

: (30)

In Lemma 3.3, we established the existence of a function

inqd W Y2 7�! inqd .Y2/

from the set of �nite irreducible A-graphs Y2 with property (Bd) to a certain set of

combinations with repetitions of SLId ŒY1�. Now we will relate these combinations

with repetitions of SLId ŒY1� to solutions of the dual LP-problem (30).

Consider a combination with repetitions Q of SLId ŒY1� that has the property

that
X

q2Q

qL D �C.Q/xs; (31)

where C.Q/ > 0 is an integer. As above in (30), let the inequalities of SLId ŒY1�

be indexed and let

SLId ŒY1� D ¹q1; : : : ; qminq;d
º:
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Let �j .Q/ denote the number of times that qj occurs in Q, and let �j be the

coe�cient of xs in qj . Then it follows from the de�nitions and (31) that

X

q2Q

qL D
minq;d
X

j D1

�j �j .Q/xs D �C.Q/xs: (32)

Consider the map

sold W Q 7�! yQ D .yQ;1; : : : ; yQ;minq;d
/>; (33)

where yQ;j WD �j .Q/

C.Q/
for j D 1; : : : ; minq;d . It follows from the de�nitions that

yQ is a rational vector, yQ � 0 and, by (32), yQ satis�es the condition

minq;d
X

j D1

yQ;j qL
j D �xs:

Hence, yQ is a vector in the feasible polyhedron

°

y
ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

(34)

of the dual LP-problem (30).

Note that, in place of (33), we could also write

sold W Q 7�! C.Q/�1�.Q/>; (35)

where �.Q/ D .�1.Q/; : : : ; �minq;d
.Q//, as yQ D C.Q/�1�.Q/>.

Conversely, let z D .z1; : : : ; zminq;d
/> be a vector of the feasible polyhe-

dron (34) of the dual LP-problem (30). Let C > 0 be a common multiple of

positive denominators of the rational numbers z1; : : : ; zminq;d
. Consider a combi-

nation with repetitions Q.z/ of SLId ŒY1� such that every qj of SLId ŒY1� occurs in

Q.z/ exactly C zj D nj many times. Then it follows from the de�nitions that

X

q2Q.z/

qL D
minq;d
X

j D1

nj qL
j D

minq;d
X

j D1

C zj qL
j D C

minq;d
X

j D1

zj qL
j D �Cxs: (36)

Now we can see from
�j .Q.z//

C
D C zj

C
D zj ; (37)

where j D 1; : : : ; minq;d , that the vector yQ.z/ D sold .Q.z//, de�ned by (33) for

Q.z/, is equal to z.
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Lemma 4.1. The map

sold W Q 7�! yQ

de�ned by (33) is a surjective function from the set of combinations Q with

repetitions of SLId ŒY1� that satisfy the equation
P

q2Q qL D �C.Q/xs, where

C.Q/ > 0 is an integer, to the feasible polyhedron (34) of the dual LP-prob-

lem (30). Furthermore, the composition of the maps inqd and sold ,

sold ı inqd W Y2 7�! sold .inqd .Y2// D yY2
;

is a function from the set of graphs with property (Bd) to the feasible polyhe-

dron (34) of the dual LP-problem (30). Under this map, the value of the objective

function
Pminq;d

j D1 yY2;j qR
j of the dual LP-problem (30) at yY2

satis�es the equality

minq;d
X

j D1

yY2;j qR
j D �Nr.core.Y1 � Y2//

Nr.Y2/
: (38)

In addition, for every z in the polyhedron (34), there is a vector Qz in (34) such

that Qz D sold .inqd .Y2// for some graph Y2 with property (Bd) and

minq;d
X

j D1

Qzj qR
j �

minq;d
X

j D1

zj qR
j :

Proof. As was observed above, see (36) and (37), sold is a surjective function.

Consider a �nite irreducible A-graph Y2 with property (Bd) and de�ne

Q WD inqd .Y2/; yY2
WD sold .Q/:

It follows from Lemma 3.3 that

X

q2Q

qL D �2Nr.Y2/xs and
X

q2Q

qR D �2Nr.core.Y1 � Y2//: (39)

It follows from (32) and (39) that C.Q/ D 2Nr.Y2/. Hence, using the de�nition (33)

and equalities (39), we obtain

minq;d
X

j D1

yY2;j qR
j D

X

q2Q

qR

C.Q/
D �Nr.core.Y1 � Y2//

Nr.Y2/
;

as required in (38).

To prove the additional statement, consider a vector z in the polyhedron (34).
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Since sold is surjective, there is a combination with repetitions Q such that

sold .Q/ D z. By Lemma 3.3 for this Q, there is a graph Y2;Q such that if

inqd .VSY2;Q/ D zQ then j zQj D jQj and

X

q2Q

qL D
X

q2 zQ

qL D �2Nr.Y2;Q/xs D �C.Q/xs D �C. zQ/xs; (40)

X

q2Q

qR �
X

q2 zQ

qR D �2Nr.core.Y1 � Y2;Q//: (41)

Let Qz WD sold . zQ/. Then, in view of (40)–(41), we obtain

minq;d
X

j D1

Qzj qR
j D

X

q2 zQ

qR

C. zQ/
�

X

q2Q

qR

C.Q/
D

minq;d
X

j D1

zj qR
j ;

as required. �

We will say that a real number �.Y1/ � 0 is the WN-coe�cient for Y1 if

Nr.core.Y1 � Y2// � �.Y1/Nr.Y1/Nr.Y2/

for every �nite irreducible A-graph Y2 with property (B) and �.Y1/ is minimal

with this property.

We also consider the WNd -coe�cient �d .Y1/, where d � 3 is an integer, for

Y1 de�ned so that

Nr.core.Y1 � Y2// � �d .Y1/Nr.Y1/Nr.Y2/

for every �nite irreducible A-graph Y2 with property (Bd) and �d .Y1/ is minimal

with this property.

It is clear from the de�nitions that

�d .Y1/ � �dC1.Y1/ � �.Y1/

for every d D 3; 4; : : : and

supd ¹�d .Y1/º D �.Y1/: (42)

Observe that

�.Y1/ D supY2

° Nr.core.Y1 � Y2//

Nr.Y1/Nr.Y2/

±

over all �nite irreducible A-graphs Y2 with property (B). Similarly,

�d .Y1/ D supY 0
2

° Nr.core.Y1 � Y 0
2//

Nr.Y1/Nr.Y 0
2/

±

(43)

over all �nite irreducible A-graphs Y 0
2 with property (Bd).
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Lemma 4.2. Both optima

max¹�xs j SLId ŒY1�º and min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

are �nite and satisfy the following inequalities and equalities

�2
q�

q� � 2
Nr.Y1/ � sup¹�xs j SLIŒY1�º

� max¹�xs j SLId ŒY1�º

D min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

D ��d .Y1/Nr.Y1/:

(44)

Furthermore, the minimum is attained at a vector QyV D QyV .d/ of the feasible

polyhedron (34) of the dual LP-problem (30) such that there is a graph Y2;QV
that

has property (Bd), QyV D sold .inqd .Y2;QV
// and the following hold

inf
° 1

X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

1
X

j D1

yj qL
j D �xs

±

D ��.Y1/Nr.Y1/

� min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

D ��d .Y1/Nr.Y1/:

(45)

In particular, �d .Y1/ � �.Y1/ � 2 q�

q��2
.

Proof. Recall that every primary vertex of Y1 has degree 2 and d � 3. Hence, if

the graph Y1 contains a vertex u of degree > d , then u is secondary and we may

take some edges out of Y1 to get a subgraph yY1 of Y1 such that jE yY1j < jEY1j,
Nr. yY1/ > 0 and core. yY1/ D yY1. It is clear that the natural projection

�2W core.Y1 � yY1/ �! yY1

is surjective. Hence, either the graph yY1 has property (Bd) or, otherwise, yY1 has

a vertex of degree greater than d . Iterating this argument, we can prove that Y1

contains a subgraph Y1;d with property (Bd).
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Setting Y2 WD Y1;d , we obtain, by Lemma 4.1, a solution yy D sold .inqd .Y2//

to the equalities and inequalities that de�ne the feasible polyhedron (34) of (30).

Hence, both sets

°

y
ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

;
°

y
ˇ
ˇ
ˇ y � 0;

1
X

j D1

yj qL
j D �xs

±

are not empty.

To see that the sets ¹x j SLIŒY1�º, ¹x j SLId ŒY1�º are not empty either, we

will show that the vector yx, whose components are yxA WD 0 for every nonempty

A � VP Y1 and yxs WD 2 q�

q��2
Nr.Y1/, is a solution both to SLId ŒY1� and to SLIŒY1�.

To do this, we will check that every inequality of SLIŒY1� is satis�ed with these

values of variables, that is,

�.k � 2/ � 2q�

q� � 2
Nr.Y1/ � �N˛.�T / (46)

for every ˛-admissible function

�T W T �! S1.VP Y1/;

where T 2 S2.G˛/ and jT j D k.

Let T D ¹a1; : : : ; akº, k � 2, ai 2 G˛ , and �T .ai / D Ai , i D 1; : : : ; k.

Consider a secondary vertex u of Y1, suppose deg u D ` and let e1; : : : ; e` be

all edges of Y1 such that u D .e1/C D � � � D .e`/C. Denote

B WD ¹'.e1/; : : : ; '.e`/º:

It is not di�cult to see from the de�nition (11) of the number N˛.�T / that the

contribution to the sum N˛.�T /, made by those equivalence classes that are

associated with the vertex u 2 VSY1, does not exceed

X

g2G˛

max.jT \ Bgj � 2; 0/:

Hence, it follows from the de�nition of the number q�

q��2
, see (1), and from the

results of Dicks and the author [6, Corollary 3.5] that

X

g2G˛

max.jT \ Bgj � 2; 0/ � q�

q� � 2
.jT j � 2/.jBj � 2/

D q�

q� � 2
.k � 2/.` � 2/:

(47)
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Therefore, summing up inequalities (47) over all u 2 VSY1, we obtain

N˛.�/ � q�

q� � 2
.k � 2/ � 2Nr˛.Y1/

� q�

q� � 2
.k � 2/ � 2Nr.Y1/;

where 2Nr˛.Y1/ is the sum
P

u.deg u � 2/ over all secondary vertices u 2 VSY1 of

type ˛. This proves (46) and also shows that

� 2q�

q� � 2
Nr.Y1/ � sup¹�xs j SLIŒY1�º (48)

because Ox with Oxs D 2q�

q��2
Nr.Y1/ is a solution to SLIŒY1�.

Therefore, both sets ¹x j SLIŒY1�º and ¹x j SLId ŒY1�º are not empty as required.

According to Theorem A, the maximum and minimum in (44) are �nite and

equal. The �rst inequality in (44) is shown in (48) and the second one follows

from the de�nitions.

It follows from the de�nition (43) and Lemma 4.1 that the supremum

supY2

° Nr.core.Y1 � Y2//

Nr.Y2/

±

D �d .Y1/Nr.Y1/ D � infY2

°

� Nr.core.Y1 � Y2//

Nr.Y2/

±

over all graphs Y2 with property (Bd) is equal to

�d .Y1/Nr.Y1/ D � inf
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

D � min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±

;

as stated in the last equality of (44).

The inequalities and equalities of (44) are now proven.

By Theorem A, the minimum in (45) of the LP-problem (30) is attained at a

vertex yV D yV .d/ of the feasible polyhedron (34).

It follows from Lemma 4.1 that, for the vertex yV , there exists a vector QyV in

the polyhedron (34) such that

minq;d
X

j D1

QyV;j qR
j �

minq;d
X

j D1

yV;j qR
j :

and QyV D sold .inqd .Y2;QV
// for some graph Y2;QV

with property (Bd). Hence,

the minimum in (45) is also attained at QyV .
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In view of the last equality of (44) and (42), we obtain

inf
d

°

min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±±

D inf
d

¹��d .Y1/Nr.Y1/º

D ��.Y1/Nr.Y1/

� min

²minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

³

D ��d .Y1/Nr.Y1/:

(49)

On the other hand, it is clear that

inf
° 1

X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

1
X

j D1

yj qL
j D �xs

±

D inf
d

°

min
°

minq;d
X

j D1

yj qR
j

ˇ
ˇ
ˇ y � 0;

minq;d
X

j D1

yj qL
j D �xs

±±

:

(50)

Now the equalities and inequalities (45) follow from (49) and (50)

The inequalities �d .Y1/ � �.Y1/ � 2 q�

q��2
follow from (44) and (42). �

Lemma 4.3. There exists a �nite irreducible A-graph Y2;QV
D Y2;QV

.Y1/ with

property (Bd) such that

Nr.core.Y1 � Y2;QV
// D �d .Y1/Nr.Y1/Nr.Y2;QV

/;

Y2;QV
is connected, and

jEY2;QV
j < 22jEY1j=4Clog2 log2.4d/

:

Proof. According to Lemma 4.2 and to Theorem A, we may assume that the

minimum of the dual LP-problem (30) is attained at a vertex yV of the feasible

polyhedron (34) of (30).

It is convenient to switch back to the general LP and LSIP notation as was

introduced in the beginning of this section. In particular, let Aminq;d
x � bminq;d

be the matrix form of the system (16). Since yV is a vertex solution of the

LP-problem (30) and (30) is stated in the form

min¹b>
minq;d

y j A>
minq;d

y D c>; y � 0º;
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it follows that the vertex solution yV will satisfy minq;d equalities among

A>
minq;d

y D c>; yj D 0; j D 1; : : : ; minq;d ;

whose left hand side parts are linearly independent (as formal linear combinations

in variables y1; : : : ; yminq;d
). We call these minq;d equalities distinguished.

The foregoing observation implies that there are r , r � minq;d , distinguished

equalities in the system A>
minq;d

y D c> such that the submatrix A>
minq;d ;r of

A>
minq;d

, consisting of the rows of A>
minq;d

that correspond to the r distinguished

equalities, has the following property. The rank of A>
minq;d ;r is r and deletion of the

columns of A>
minq;d ;r , that correspond to the variables yj that in turn correspond

to the distinguished equalities yj D 0, produces an r � r matrix A>
minq;d ;r�r with

det A>
minq;d ;r�r ¤ 0. Reordering the equalities in the system A>

minq;d
y D c> and

variables yj if necessary, we may assume that A>
minq;d ;r consists of the �rst r rows

of A>
minq;d

and A>
minq;d ;r�r is an upper left submatrix of A>

minq;d
.

Let

NyV D .yV;1; : : : ; yV;r/

be the truncated version of yV consisting of the �rst r components. It follows from

the de�nitions that NyV contains all nonzero components of yV and

A>
minq;d ;r�r NyV D Nc> D .c1; : : : ; cr/>:

Since
Pminq;d

j D1 yV;j qL
j D �xs, it follows that ci D 0 if ci corresponds to a

variable xB and ci D �1 if ci corresponds to the variable xs. Since yV ¤ 0

following from the de�nition of the LP-problem (30), we conclude that Nc> ¤ 0,

i.e., one of ci is �1 and all other entries in Nc> are equal to 0.

Note that every row of Aminq;d ;r�r contains at most d C 1 nonzero entries such

that one is �.k � 2/, where 2 � k � d (this is the coe�cient of xs that could be

zero), and the other nonzero entries have the same sign and their sum is at least

�d and at most d , see the de�nitions (13) and (14). Hence, the standard Euclidian

norm of any row of Aminq;d ;r�r is at most

.d 2 C .d � 2/2/1=2 < 2d

as d � 3. Hence, by the Hadamard’s inequality, we have that

j det Aminq;d ;r�r j < .2d/r : (51)

Invoking the Cramer’s rule, we further obtain that

yV;j D
det A>

minq;d ;r�r;j . Nc>/

det Aminq;d ;r�r

; (52)
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where A>
minq;d ;r�r;j . Nc>/ is the matrix obtained from A>

minq;d ;r�r by replacing the

j th column with Nc>, j D 1; : : : ; r . Since Nc> has a unique nonzero entry which is

�1, we have from the Hadamard’s inequality, similarly to (51), that

j det Aminq;d ;r�r;j . Nc>/j < .2d/r�1: (53)

In view of (51)–(53), we can see that there is a common denominator C > 0

for the rational numbers yV;1; : : : ; yV;r that satis�es C < .2d/r and that the

nonnegative integers CyV;1; : : : ; CyV;r are less than .2d/r�1.

Hence, it follows from the de�nition of the function sold , see also Lemma 4.1,

that if QV is a combination such that yV D sold .QV / and jQV j is minimal with

this property, i.e., the entries of �.QV / are coprime, then

jQV j < r.2d/r�1: (54)

Recall that the cardinality jQj of a combination with repetitions Q is de�ned so

that every q 2 Q is counted as many times as it occurs in Q.

We now construct a graph Y2;QV
from QV as described in the proof of

Lemma 3.2. Recall that if inqd .VSY2;QV
/ D zQV then zQV could be di�erent

from QV but j zQV j D jQV j and Y2;QV
could also be constructed by means of zQV .

It follows from the de�nitions and Lemmas 4.1 and 4.2 that if

QyV WD sold .inqd .VSY2;QV
//

then the minimum of the dual LP-problem (30) is also attained at QyV and this

minimum is equal to ��d .Y1/Nr.Y1/. Hence,

Nr.core.Y1 � Y2;QV
// D �d .Y1/Nr.Y1/Nr.Y2;QV

/:

Since jVSY2;QV
j D jQV j and the degree of every secondary vertex of Y2;QV

is at most d , it follows from (54) that

jEY2;QV
j � 2d jVSY2;QV

j D 2d jQV j < r.2d/r : (55)

Note that r does not exceed the total number ninq of variables of SLIŒY1�. Since

every primary vertex of Y1 has degree 2 and edges of Y1 are oriented, we have

jEY1j D 4jVP Y1j. Since each variable xB of SLIŒY1�, di�erent from xs , is indexed

with a nonempty set B � VP Y1, it follows that

r � ninq � .2jVP Y1j � 1/ C 1 D .2jEY1j=4 � 1/ C 1 D 2jEY1j=4: (56)



Linear programming and the intersection of free subgroups 1147

Finally, we obtain from (55) and (56) that

jEY2;QV
j < r.2d/r

� 2jEY1j=4 � .2d/2jEY1j=4

D 2jEY1j=4 � 2.log2.2d//�2jEY1 j=4

< 2.log2.2d/C1/�2jEY1 j=4

D 22jEY1j=4Clog2 log2.4d/

;

(57)

as desired.

It remains to show that the graph Y2;QV
is connected.

Arguing on the contrary, assume that the graph Y2;QV
is the disjoint union of

its two subgraphs Y3 and Y4. First we assume that

Nr.Y3/ > 0 and Nr.Y4/ > 0: (58)

Clearly, Y3 and Y4 are graphs with property (Bd). Recall that the secondary

vertices of the graph Y2;QV
bijectively correspond to the inequalities of the com-

bination QV , see the proof of Lemma 3.2. In particular, we can consider the com-

binations Q3 and Q4, whose inequalities bijectively correspond to the secondary

vertices of Y3 and Y4, resp. It is clear that QV is the union of the combinations

Q3 and Q4 and

�.QV / D �.Q3/ C �.Q4/: (59)

We specify that by the union B1 t B2 of two combinations B1; B2 we mean the

combination whose elements are all elements of both B1 and B2, in particular,

jB1 t B2j D jB1j C jB2j.
Furthermore, the graphs Y3 and Y4 could be constructed from Q3 and Q4,

resp., in the same manner as Y2;QV
was constructed from QV . In particular, the

combinations Q3 and Q4 belong to the domain of the function sold .

Invoking Lemma 4.1, denote yV .j / WD sold .Qj /, j D 3; 4. We also denote

X

q2QV

qL D �C.QV /xs ;
X

q2Qj

qL D �C.Qj /xs;

where j D 3; 4.

Since QV D Q3 t Q4, it follows that C.QV / D C.Q3/ C C.Q4/. According

to the de�nition (33) of the function sold , we have

yV;i D �i .QV /

C.QV /
; yV;i .j / D �i .Qj /

C.Qj /
(60)
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for all suitable i; j . Hence, in view of (59), for every i D 1; : : : ; minq;d , we obtain

yV;i D �i .QV /

C.QV /

D �i .Q3/ C �i .Q4/

C.QV /

D C.Q3/

C.QV /
� �i.Q3/

C.Q3/
C C.Q4/

C.QV /
� �i .Q4/

C.Q4/

D �3yV;i .3/ C �4yV;i .4/;

(61)

where �3 D C.Q3/
C.QV /

and �4 D C.Q4/
C.QV /

are positive rational numbers that satisfy

�3 C �4 D 1.

The equalities (61) imply that

yV D �3yV .3/ C �4yV .4/: (62)

Since yV is a vertex of the polyhedron (34), yV .3/ and yV .4/ are vectors

in (34), and 0 < �3; �4 < 1, �3 C �4 D 1, it follows from (62) that

yV .3/ D yV .4/ D yV :

Hence, in view of (60), the tuples �.QV /, �.Q3/, �.Q4/ that have integer entries

are rational multiples of each other. Referring to (59), we conclude that the entries

of �.QV / are not coprime, contrary to the de�nition of the combination QV . This

contradiction completes the case (58).

We now assume that the graph Y2;QV
is the disjoint union of its two subgraphs

Y3 and Y4 such that

Nr.Y3/ > 0 and Nr.Y4/ D 0: (63)

Let 2QV denote the combination such that �.2QV / D 2�.QV /, i.e., to get

2QV from QV we double the number of occurrences of each inequality in QV .

Using this combination 2QV , we can construct, as in the proof of Lemma 3.2, a

graph Y2;2QV
which consists of two disjoint copies of Y2;QV

, denoted NY2;QV
and

yY2;QV
. Since Y2;QV

D Y3 [ Y4, we can represent the graph Y2;2QV
in the form

Y2;2QV
D Y5 [ Y6;

where Y5 WD NY3 [ NY4 [ yY4 and Y6 WD yY3

Clearly, Nr.Y5/ > 0, Nr.Y6/ > 0, and both Y5; Y6 have property (Bd). As above,

we remark that the secondary vertices of Y2;2QV
are in bijective correspondence

with the inequalities of 2QV . Hence, the combination 2QV is the union of the
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combinations Q5 and Q6 that consist of those inequalities that correspond to the

secondary vertices of Y5 and Y6, resp., and that can be used to construct the graphs

Y5 and Y6 in the same manner as Y2;QV
was constructed from QV .

As above, we can write

�.2QV / D �.Q5/ C �.Q6/: (64)

Note that the combinations Q5 and Q6 belong to the domain of the function

sold . Using Lemma 4.1, denote yV .j / WD sold .Qj /, j D 5; 6. As above, denote
X

q22QV

qL D �C.2QV /xs;
X

q2Qj

qL D �C.Qj /xs;

where j D 5; 6.

Since 2QV D Q5 tQ6, it follows that C.2QV / D C.Q5/CC.Q6/. According

to the de�nition (33) of the function sold , we have

yV;i D �i .QV /

C.QV /
D �i .2QV /

C.2QV /
; yV;i .j / D �i .Qj /

C.Qj /
(65)

for all suitable i; j . Hence, in view of (64), for every i D 1; : : : ; minq;d , we obtain

yV;i D �i .2QV /

C.2QV /

D �i .Q5/ C �i .Q6/

C.2QV /

D C.Q5/

C.2QV /
� �i.Q5/

C.Q5/
C C.Q6/

C.2QV /
� �i .Q6/

C.Q6/

D �5yV;i .5/ C �6yV;i .6/;

(66)

where �5 D C.Q5/
C.2QV /

and �6 D C.Q6/
C.2QV /

are positive rational numbers that satisfy

�5 C �6 D 1.

The equalities (66) imply that

yV D �5yV .5/ C �6yV .6/: (67)

Since yV is a vertex of the polyhedron (34), yV .5/ and yV .6/ are vectors in the

polyhedron (34), and 0 < �5; �6 < 1, �5 C �6 D 1, it follows from (67) that

yV .5/ D yV .6/ D yV :

Hence, in view of (65), the tuples �.2QV /, �.Q5/, �.Q6/ that have integer entries

are rational multiples of each other. Referring to (64) and keeping in mind that

the entries of �.QV / are coprime, we conclude that

�.QV / D �.Q5/ D �.Q6/; (68)
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i.e., QV D Q5 D Q6. However, Y6 D yY3 and yY3 is a subgraph of yY2;QV
that

consists of several connected components of yY2;QV
and yY3 ¤ yY2;QV

. Hence,

Q5 ¤ QV . This contradiction to (68) completes the second case (63). Thus the

graph Y2;QV
is connected. The proof of Lemma 4.3 is complete. �

5. More lemmas

We now let F D
Q�

˛2I G˛ be an arbitrary free product of nontrivial groups G˛,

˛ 2 I , and jI j > 1. Let H be a �nitely generated factor-free subgroup of F. As in

Section 2, let ‰o.H/ denote an irreducible A-graph of H , where A D
S

˛2I G˛,

with the base vertex o and let ‰.H/ denote the core of ‰o.H/.

Let I.H/ denote a subset of the index set I such that ˛ 2 I.H/ if and only if

there is a secondary vertex u 2 VS‰.H/ of type ˛. Since H is �nitely generated,

it follows that the set I.H/ is �nite.

Let us �x a �nitely generated factor-free subgroup H1 of F with positive

reduced rank Nr.H1/ D ��.‰.H1// > 0.

We say that a �nitely generated factor-free subgroup H2 of F has property (B)

(relative to H1) if the core graph ‰.H2/ of H2 has the original property (B) in

which the graphs Y1 and Y2 are replaced with core graphs ‰.H1/ and ‰.H2/,

resp., i.e., Nr.H2/ D ��.‰.H2// > 0 and the map

�2W core.‰.H1/ � ‰.H2// �! ‰.H2/

is surjective.

Let d � 3 be an integer. Analogously, we say that a �nitely generated factor-

free subgroup H2 of F has property (Bd) (relative to H1) if the core graph ‰.H2/

of H2 has the original property (Bd) in which the graphs Y1 and Y2 are replaced

with core graphs ‰.H1/ and ‰.H2/, resp., i.e.,

Nr.H2/ D ��.‰.H2// > 0; deg ‰.H2/ � d

and the map �2W core.‰.H1/ � ‰.H2// ! ‰.H2/ is surjective.

Recall that if � is a �nite graph then deg � is the maximum degree of a vertex

of �.

Lemma 5.1. Suppose H2 is a �nitely generated factor-free subgroup ofF such that

deg ‰.H2/ � d , where d � 3 is an integer or d D 1, Nr.H2/ D ��.‰.H2// > 0,

and the map

�2W core.‰.H1/ � ‰.H2// �! ‰.H2/

is not surjective. Then there exists a �nitely generated factor-free subgroup H4 of

F with property (Bd) if d < 1 or with property (B) if d D 1 such that

Nr.H1; H4/

Nr.H4/
>

Nr.H1; H2/

Nr.H2/
: (69)



Linear programming and the intersection of free subgroups 1151

Proof. Recall that Nr.H1; H2/ D Nr.core.‰.H1/ � ‰.H2/// and Nr.Hi / D Nr.‰.Hi //,

i D 1; 2. If Nr.core.‰.H1/ � ‰.H2/// D 0, then we may take H4 D H1 and the

inequality (69) holds. Assume that Nr.core.‰.H1/�‰.H2/// > 0 and that the map

�2W core.‰.H1/ � ‰.H2// �! ‰.H2/

is not surjective. Consider the subgraph � WD �2.core.‰.H1/ � ‰.H2/// of

‰.H2/. It follows from the de�nitions and assumptions that Nr.�/ < Nr.‰.H2//

and

Nr.core.‰.H1/ � �// D Nr.core.‰.H1/ � ‰.H2/// > 0;

whence Nr.�/ > 0. It is also clear that core.�/ D �. Therefore,

Nr.core.‰.H1/ � �//

Nr.�/
>

Nr.core.‰.H1/ � ‰.H2///

Nr.‰.H2//
: (70)

Let �1; : : : ; �k be connected components of the graph �. Since

Nr.core.‰.H1/ � �// > 0;

it follows that Nr.�/ > 0. Note that the graph

core.‰.H1/ � �/

consists of disjoint graphs core.‰.H1/ � �j /, j D 1; : : : ; k. In particular,

Nr.�/ D
k

X

j D1

Nr.�j /; Nr.core.‰.H1/ � �// D
k

X

j D1

Nr.core.‰.H1/ � �j //;

hence,

Nr.core.‰.H1/ � �//

Nr.�/
D

k
X

j D1

Nr.core.‰.H1/ � �j //

k
X

j D1

Nr.�j /

: (71)

Note that if Nr.�j / D 0 then Nr.core.‰.H1/ � �j // D 0.

Let �j � be chosen so that Nr.�j �/ > 0 and the ratio

Nr.core.‰.H1/ � �j �//

Nr.�j �/

is maximal over those graphs �j with Nr.�j / > 0. It follows from

Nr.�/ D
k

X

j D1

Nr.�j / > 0
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that such j � does exist. It is not di�cult to see that

k
X

j D1

Nr.core.‰.H1/ � �j //

k
X

j D1

Nr.�j /

� Nr.core.‰.H1/ � �j �//

Nr.�j �/
:

This, together with (70) and (71), implies that

Nr.core.‰.H1/ � �j �//

Nr.�j �/
� Nr.core.‰.H1/ � �//

Nr.�/
>

Nr.core.‰.H1/ � ‰.H2///

Nr.‰.H2//
:

Hence, picking an arbitrary primary vertex v 2 VP �j � in �j � as a base vertex,

and letting H4 WD H.�j �;v/, as in Lemma 2.2, we obtain a subgroup H4 with the

desired inequality (69). �

Lemma 5.2. The supremum

supH3

° Nr.H1; H3/

Nr.H3/

±

over all �nitely generated factor-free subgroups H3 of F such that Nr.H3/ > 0

and deg ‰.H3/ � d , where d � 3 is an integer or d D 1, is equal to

supH2

®
Nr.H1;H2/

Nr.H2/

¯

over all �nitely generated factor-free subgroups H2 of F that

possess property (Bd) when d < 1 or property (B) when d D 1, and satisfy the

condition I.H2/ � I.H1/. In particular, we have

�d .H1/Nr.H1/ D �d .‰.H1//Nr.‰.H1//;

�.H1/Nr.H1/ D �.‰.H1//Nr.‰.H1//:

Proof. The �rst claim follows from Lemma 5.1 and the observation that if the map

�2W core.‰.H1/ � ‰.H2// �! ‰.H2/

is surjective then I.H2/ � I.H1/. The equalities follow from the �rst claim,

the de�nitions of the numbers �d .H1/, �.H1/, �d .‰.H1//, �.‰.H1//, and

Lemma 5.1. �

In view of Lemma 5.2, when investigating the supremum

supH3

° Nr.H1; H3/

Nr.H3/

±
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over all �nitely generated factor-free subgroups H3 of F with Nr.H3/ > 0 and

deg ‰.H3/ � d , we may assume that the index set I is �nite, i.e., I D I.H1/, say,

I D ¹1; : : : ; mº, and so F D G1 � G2 � : : : � Gm.

Furthermore, in order to be able to make use of results of Sections 3 and 4,

we consider F as the following free product

F2.1/ D G1 � G.2; m/

of two groups G1 and G.2; m/ WD G2 � : : : � Gm. Let g˛ 2 G˛ be some nontrivial

element of G˛ , ˛ 2 I D ¹1; : : : ; mº. For every a˛ 2 G˛ , consider the map

a˛ 7! .g˛C1 : : : gmg1 : : : g˛/�1a˛g˛C1 : : : gmg1 : : : g˛; (72)

where g˛C1 : : : gmg1 : : : g˛ is a cyclic permutation of the word g1g2 : : : gm.

Recall that a subgroup K of a group G is called antinormal if, for every g 2 G,

gKg�1 \ K ¤ ¹1º implies g 2 K.

Lemma 5.3. Let jI j D m � 3 and let H1 be a �nitely generated factor-free

subgroup of F. Then the map (72) extends to monomorphisms

�WF �! F; �2WF �! F2.1/

that have the following properties.

(a) A word U 2 F with jU j > 1 is cyclically reduced if and only if �.U / is

cyclically reduced.

(b) The subgroups �2.F/ and �.F/ are antinormal in F2.1/ and F, resp.

(c) �2.H1/ is a factor-free subgroup of F2.1/ and �.H1/ is factor-free in F.

Furthermore, deg ‰.H1/ D deg ‰.�2.H1//.

(d) If K1 and K2 are �nitely generated factor-free subgroups of F, then

Nr.K1; K2/ D Nr.�2.K1/; �2.K2//:

(e) The supremum

supH2

° Nr.H1; H2/

Nr.H2/

±

over all �nitely generated factor-free subgroups H2 of F such that Nr.H2/ > 0

and deg ‰.H2/ � d , where d � 3 is an integer, does not exceed the

supremum

supK2

° Nr.�2.H1/; K2/

Nr.K2/

±

over all �nitely generated factor-free subgroups K2 of F2.1/ with prop-

erty (Bd) relative to �2.H1/. In particular,

�d .H1/ � �d .�2.H1// and �.H1/ � �.�2.H1//:
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Proof. It is clear that the map (72) extends to homomorphisms

�WF �! F; �2WF �! F2.1/:

Note that if a1 2 G˛1
and a2 2 G˛2

are nontrivial elements and ˛1 ¤ ˛2, then

�.a1/�.a2/ is a cyclically reduced word. This remark implies that the kernels of

the maps �; �2 are trivial, whence �; �2 are monomorphisms.

(a) It follows from the foregoing remark that a word U 2 F with jU j > 1 is

cyclically reduced if and only if �.U / is cyclically reduced.

(b) Let U1; U2 2 F be reduced words and W�.U1/W �1 D �.U2/ in F. Using

induction on jU1j C jU2j, we will prove that W 2 �.F/.

Suppose U1 is not cyclically reduced and

U1 � a1U3a2;

where a1; a2 2 G˛n¹1º are letters of U1. Then we can replace U1 with U 0
1 WD U3a3,

where a3 2 G˛ , a3 D a2a1 in G˛ if a3 ¤ 1 or with U 0
1 WD U3 if a3 D 1, and we

replace W with W 0 WD W�2.a1/. This way we obtain an equality

W 0�.U 0
1/.W 0/�1 0D �.U2/

in F in which jU 0
1j C jU2j < jU1j C jU2j. Hence, it follows from the induction

hypothesis that W 2 �.F/, as required. If U2 is not cyclically reduced, then,

analogously to what we did above for U1, we can decrease the sum jU1j C jU2j
and use the induction hypothesis.

Thus we may assume that both words U1; U2 are cyclically reduced. By

part (a), the words �.U1/, �.U2/ are also cyclically reduced. Observe that if

W V1W �1 0D V2

in F, where V1; V2 are cyclically reduced and W is reduced, then V2 is a cyclic

permutation of V1. More speci�cally, there is a factorization

V1 � V11V12

and an integer k such that if k � 0 then W � V12V k
1 and if k � 0 then

W � V �1
11 V k

1 . In either case, V2 � V12V11. Applying this observation to the

equality

W�.U1/W �1 0D �.U2/

in F, we can see from (72), when m � 3, that a cyclic permutation of �.U1/

equal to �.U2/ must have the form �. NU1/, where NU1 is a cyclic permutation of

U1. For similar reasons, W � �.V / for some V 2 F and part (b) is proven for the

subgroup �.F/. It now follows that �2.F/ is also antinormal in F2.1/.
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(c) Arguing on the contrary, suppose H is a factor-free subgroup of F and one

of �.H/, �2.H/ is not factor-free in F, F2.1/, resp. Then it follows from the

de�nitions that �2.H/ is not factor-free in F2.1/. Hence, there is a reduced word

U such that U is not conjugate in F to a word of length � 1 and

�.U /
0D W V W �1 (73)

in F, where W is either empty or reduced and V is either a letter of G1 n ¹1º or V

is a reduced word with no letters of G1. Thus, V is reduced and either V 2 G1 or

V 2 G.2; m/.

Assume that the word U in (73) is not cyclically reduced. Then

U � a1U1a2;

where a1; a2 2 G˛n¹1º are letters of U . If a1a2 D a3 in G˛ and a3 2 G˛ n¹1º, then

the word U 0 � U1a3, similarly to U , is not conjugate to F to a word of length � 1

and �.U 0/, being conjugate to �.U / in F, has a representation of the form (73),

so U can be replaced with U 0. If a1a2 D 1 in G˛ , then the word U1 can be taken

as U . Hence, by induction on jU j, we may assume that U is cyclically reduced.

If the word W V W �1 in (73) is not reduced, then there are words W 0, V 0 such

that

�.U /
0D W 0V 0.W 0/�1;

W 0, V 0 have the foregoing properties of W , V , resp., and

2jW 0j C jV 0j < 2jW j C jV j:

Indeed, if, say W � W1a1 and V � a2V1, where a1; a2 2 G˛ n ¹1º, then we set

W 0 WD W1 and V 0 is a reduced word equal in F to a1a2V1a�1
1 . Note that W 0, V 0

have the foregoing properties of W , V , resp., and

jW 0j D jW j � 1; jV 0j � jV j C 1;

whence 2jW 0j C jV 0j < 2jW j C jV j. Thus, by induction on 2jW j C jV j, we may

assume that the word W V W �1 in (73) is reduced.

Since U is cyclically reduced and jU j > 1, it follows from part (a) that �.U /

is cyclically reduced. Hence, the word W is empty and �.U / � V , where V is a

single letter of G1 n ¹1º or V has no letters of G1. However, neither situation is

possible by the de�nition (72). This contradiction completes the proof of the �rst

statement of part (c).

Now we will prove the equality

deg ‰.H1/ D deg ‰.�2.H1//

of part (c). It follows from the de�nition (72) that the graph ‰.�2.H// can be

visualized as a graph obtained from ‰.H/ by subdivision of edges of ‰.H/ into



1156 S. V. Ivanov

paths in accordance with formula (72) and subsequent “mergers” of edges that

have labels in G2 [ � � � [ Gm. In particular, for every vertex v 2 V ‰.H/ with

deg v > 2, there will be a unique vertex u D u.v/ 2 VS‰.�2.H// of degree

deg u D deg v and this map v 7! u.v/ is bijective on the sets of all vertices

of ‰.H/, ‰.�2.H// of degree > 2. Hence, the maximal degree of vertices of

‰.�2.H// is equal to that of ‰.H/, as claimed.

(d) By part (c), the subgroups �2.K1/; �2.K2/ of F2.1/ are factor-free and the

subgroups �.K1/, �.K2/ of F are also factor-free. Let

T .�2.K1/; �2.K2//

be a set of representatives of those double cosets �2.K1/U�2.K2/ of F2.1/, where

U 2 F2.1/, that have the property

�2.K1/ \ U�2.K2/U �1 ¤ ¹1º:

If T 2 T .�2.K1/; �2.K2//, then it follows from the de�nition of the set T .�2.K1/,

�2.K2// that there are nontrivial Vi 2 Ki , i D 1; 2, such that

T�2.V2/T �1 D �2.V1/ ¤ 1

in F2.1/. By part (b), such an equality implies T 2 �2.F/ (note �2 could be

replaced with �). Now we can see that there is a set S.K1; K2/ � F such that

�2.S.K1; K2// D T .�2.K1/; �2.K2//

and S.K1; K2/ is a set of representatives of those double cosets K1SK2 of F,

S 2 F, that have the property K1 \ SK2S�1 ¤ ¹1º. Therefore,

Nr.K1; K2/ WD
X

S2S.K1;K2/

Nr.K1 \ SK2S�1/ D Nr.�2.K1/; �2.K2//;

as desired.

(e) This follows from Lemma 5.2, parts (c)–(d) and de�nitions. �

6. Proofs of theorems

For the reader’s convenience, we restate Theorems 1.1–1.3 before proving them.

Theorem 1.1. Suppose that F D G1 � G2 is the free product of two nontrivial

groups G1; G2 and H1 is a �nitely generated factor-free noncyclic subgroup of F.

Then the following are true.



Linear programming and the intersection of free subgroups 1157

(a) For every integer d � 3, there exists a linear programming problem

(LP-problem)

P.H1; d / D max¹c.d/x.d/ j A.d/x.d/ � b.d/º (8)

with integer coe�cients whose solution is equal to ��d .H1/Nr.H1/.

(b) There is a �nitely generated factor-free subgroup H �
2 of F, H �

2 D H �
2 .H1/,

such that H �
2 corresponds to a vertex solution of the dual problem

P
�.H1; d / D min¹b.d/>y.d/ j A.d/>y.d/ D c.d/>; y.d/ � 0º

of the primal LP-problem (8) of part (a) and

Nr.H1; H �
2 / D �d .H1/Nr.H1/Nr.H �

2 /:

In particular, the WNd -coe�cient �d .H1/ of H1 is rational.

Furthermore, if ‰.H1/ and ‰.H �
2 / denote irreducible core graphs represent-

ing subgroups H1 and H �
2 , resp., and jE‰j is the number of oriented edges

in the graph ‰, then

jE‰.H �
2 /j < 22jE‰.H1/j=4Clog2 log2.4d/

:

(c) There exists a linear semi-in�nite programming problem (LSIP-problem)

P.H1/ D sup¹cx j Ax � bº with �nitely many variables in x and with

countably many constraints in the system Ax � b whose dual problem

P
�.H1/ D inf¹b>y j A>y D c>; y � 0º

has a solution equal to ��.H1/Nr.H1/.

(d) Let the word problem for both groups G1; G2 be solvable and let an irre-

ducible core graph ‰.H1/ of H1 be given. Then the LP-problem (8) of

part (a) can be algorithmically written down and the WNd -coe�cient �d .H1/

for H1 can be computed. In addition, an irreducible core graph ‰.H �
2 / of

the subgroup H �
2 of part (b) can be algorithmically constructed.

(e) Let both groups G1 and G2 be �nite, let dm WD max.jG1j; jG2j/ � 3, and let

an irreducible core graph ‰.H1/ of H1 be given. Then the LP-problem (8)

of part (a) for d D dm coincides with the LSIP-problem P.H1/ of part (c)

and the WN-coe�cient �.H1/ for H1 is rational and computable.
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Proof of Theorem 1.1. We start with part (a). Assume that

I D ¹1; 2º; F D G1 � G2

and H1 is a �nitely generated factor-free noncyclic subgroup ofF. As in Section 2,

let ‰o.H1/ denote a �nite irreducibleA-graph of H1 and let ‰.H1/ denote the core

of ‰o.H1/. Conjugating H1 if necessary, we may assume that ‰o.H1/ D ‰.H1/.

Denote Y1 WD ‰.H1/ and pick an integer d � 3. As in Sections 3 and 4,

consider the system of linear inequalities SLId ŒY1�, see (16), and the LP-problem

max¹�xs j SLId ŒY1�º: (74)

According to Lemma 4.2, the maximum of the LP-problem (74) is equal to

��d .Y1/Nr.Y1/;

where

�d .Y1/Nr.Y1/ D supY2

° Nr.core.Y1 � Y2//

Nr.Y2/

±

over all �nite irreducible A-graphs Y2 with property (Bd) relative to Y1.

By Lemma 5.2, we have

�d .Y1/Nr.Y1/ D �d .H1/Nr.H1/;

as desired in part (a). Part (a) is proven.

We will continue to use below the notation introduced in the proof of part (a).

Part (b) follows from Lemmas 4.2, 4.3 and their proofs in which the construc-

tion of the graph Y2;QV
is based on a vertex solution yV to the dual LP-prob-

lem (30). To de�ne the desired subgroup H �
2 of F for H1, we can use the graph

Y2;QV
of Lemma 4.3 as an irreducible A-graph ‰o�.H �

2 /. By Lemmas 4.2, 4.3,

and 5.2, the subgroup H �
2 has all of the desired properties. Part (b) is proven.

To prove part (c), we note that it follows from Lemmas 4.2 and 5.2 that the

dual problem (29) of the LSIP-problem sup¹�xs j SLIŒY1�º, where Y1 D ‰.H1/

as above, has the in�mum equal to ��.Y1/Nr.Y1/ D ��.H1/Nr.H1/: This proves

part (c).

Now we turn to parts (d)–(e) of Theorem 1.1. First we discuss how to algorith-

mically write down inequalities of the system SLId ŒY1�, where d � 3 is a �xed

integer. Recall that every inequality of SLIŒY1� is written in the form (13)–(14)

and there are �nitely many subsets A � S1.VP Y1/ that are indices of k variables

˙xA in the left hand sides of inequalities (13) and (14), where 2 � k D jT j � d .
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The coe�cient of xs is the integer �.k�2/ and the right hand side of (13) and (14)

is an integer �N.�T /˛, where

0 � N.�T /˛ � .d � 2/jVP Y1j;

see (12). This information is su�cient to conclude that the set of inequalities

in the system SLId ŒY1� is �nite. However, this information is not su�cient to

algorithmically write down inequalities of SLId ŒY1� because the set of available

sets T is in�nite whenever the union G1 [ G2 is in�nite.

To algorithmically write down the system SLId ŒY1�, we assume that the word

problem for both groups G1; G2 is solvable and we will look more closely into the

de�nition of inequalities (13) and (14).

Recall that inequalities (13) and (14) are de�ned in Section 3 by using an ˛-

admissible function �T W T ! S1.VP Y1/, where T 2 S2.G˛/ and ˛ 2 I D ¹1; 2º.

We also recall that ��T
denotes an equivalence relation on the set of all pairs

.a; u/, where a 2 T and u 2 �T .a/, see Section 3. Making use of the equivalence

relation ��T
, we de�ne a relation � on the set T so that a � b if and only if there

are u 2 �T .a/ and v 2 �T .b/ such that

.a; u/ ��T
.b; v/:

Note that this relation � is re�exive and symmetric. The transitive closure of

the relation � is an equivalence relation on T which we denote by ��T
. The

equivalence class of a 2 T is denoted Œa���T
. It follows from the de�nition

of Œa���T
and from the property of being ˛-admissible for �T that, for every

b1 2 Œa���T
, there is an element b2 2 Œa���T

such that b2 ¤ b1 and there are

edges e1; e2 2 EY1 such that .e1/C D .e2/C 2 VSY1, the vertex .e1/C has type ˛,

.ei /� 2 �T .bi /, i D 1; 2, and

b1b�1
2 D '.e1/'.e2/�1 (75)

in G˛ . Note that if we connect every two such elements b1; b2 2 Œa���T
by an

edge, then the graph �.�T /, whose vertex set is T , will have connected compo-

nents whose vertex sets are equivalence classes Œa���T
of T . This connectedness

of subgraphs of �.�T / on vertex sets Œa���T
obviously implies the following.

Lemma 6.1. Equations (75) can be used to determine all elements of the equiva-

lence class Œa���T
for given a 2 G˛ .

Proof. This easily follows from the de�nitions. Recall that the word problem is

solvable in G˛ . 4
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Let C.˛; d/ be a subset of G˛ of cardinality

jC.˛; d/j D d 2 C d;

where ˛ D 1; 2 and d � 3 is a �xed integer. In the arguments below, this set

C.˛; d/ will be held �xed. Note that if jG˛j < d 2 C d , so it is not possible to

choose d 2 C d distinct elements in G˛, then all inequalities (13) if ˛ D 1 or (14)

if ˛ D 2 for k � d , where as before k D jT j, can be written down e�ectively for

the following reasons. The sets

S2.G˛/ and ¹�T j �T W T �! S1.VP Y1/; T 2 S2.G˛/º

are �nite, they can be written down explicitly, and it is possible to verify whether

given function

�T W T �! S1.VP Y1/

is ˛-admissible.

Clearly, the same conclusion as above holds if both G1; G2 are �nite but in the

arguments below we will only need the equality jC.˛; d/j D d 2 C d , hence we

can just assume that jG˛j � d 2 C d .

Consider a subset C � C.˛; d/, where 1 � jC j � k � d , and let Z D
¹z1; : : : ; zk�jC jº be a set of indeterminates . Note that jC [ Zj D k. Consider a

function

�C[Z W C [ Z �! S1.VP Y1/: (76)

Similarly to the relation ��T
de�ned in Section 3, we introduce a relation

��C[Z
on the set of all pairs .a; u/, where a 2 C [ Z and u 2 �C[Z.a/, de�ned

as follows. Two pairs .a; u/ and .b; v/ are related by ��C[Z
if and only if either

.a; u/ D .b; v/ or, otherwise, there exist edges e; f 2 EY1 such that e� D u,

f� D v and the secondary vertex eC D fC has type ˛.

We also consider an analogue �Z of the relation � de�ned above so that

a �Z b, where a; b 2 C [ Z, if and only if there are

u 2 �C[Z.a/; v 2 �C[Z.b/

such that .a; u/ ��C[Z
.b; v/: As before, the relation �Z is re�exive and symmet-

ric. By taking the transitive closure of the relation �Z we obtain an equivalence

relation on the set C [ Z which is denoted by ��C[Z
.

We will say that a function �C[Z, as in (76), is unacceptable if there is an

equivalence class Œ.a; u/���C[Z
of ��C[Z

with a single element in it or there is

an equivalence class Œa���C[Z
of the relation ��C[Z

that contains no elements

of C . Note that, when given a function �C[Z as in (76), we can algorithmically

check whether or not �C[Z is unacceptable.
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If now the function �C[Z is not found to be unacceptable, then we attempt to

construct a function

�W Z �! G˛

by using the following algorithm.

First, we set �0.c/ WD c if c 2 C and let

C0 WD C; Z0 WD ¿:

Consider the set of all triples .a; u; `/, where a 2 C [ Z, u 2 �C[Z.a/,

1 � ` � d C 1, and do the following. By induction on i � 0, assume that the sets

Ci � G˛; Zi � Z

are constructed and a bijective function

�i W C0 [ Zi �! Ci

is de�ned so that the restriction of �i on C0 is �0. For every unordered pair

¹.a; u; `/; .b; v; `/º of distinct triples with a �xed ` (�rst we use ` D 1, then ` D 2

and so on up to ` D d C 1), we check whether there are edges e; f 2 EY1 such

that

e� D u; f� D v; eC D fC;

and eC D fC 2 VSY1 has type ˛. If there are no such edges, then we pass on

to the next pair ¹.a; u; `/; .b; v; `/º. If there are such edges e; f , then we consider

three Cases 1–3 below, perform the described actions and pass on to the next pair.

We remark that these actions can be algorithmically implemented as follows from

the solvability of the word problem for groups G1; G2 and the availability of the

graph Y1 D ‰.H1/.

Case 1. If both a; b 2 C [ Zi , then we check whether the equality

�i .a/�i.b/�1 D '.e/'.f /�1

holds in G˛. If this equality is false, then we conclude that the function �C[Z is

unacceptable and stop. Otherwise, we set

ZiC1 WD Zi ; CiC1 WD Ci ; �iC1 WD �i :

Case 2. Suppose that exactly one of a; b is in C [Zi , say b 2 C [Zi . Then it is

clear that a 2 Z n Zi and we can uniquely determine an element �.a/ by solving

the equation �.a/�i .b/�1 D '.e/'.f /�1. If �.a/ 2 Ci , then we conclude that the

function �C[Z is unacceptable and stop. Otherwise, we set

ZiC1 WD Zi [ ¹aº; CiC1 WD Ci [ ¹�.a/º
and de�ne a function �iC1 on the set C [ ZiC1 so that �iC1.a/ WD �.a/ and the

restriction of �iC1 on C [ Zi is �i .
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Case 3. If both a; b 62 C [ Zi , then we set

ZiC1 WD Zi ; CiC1 WD Ci ; �iC1 WD �i :

Cases 1–3 are complete.

Since every equivalence class Œa���C[Z
contains an element of C , it follows

from the de�nitions that while this algorithm runs over all pairs for a �xed `0 D
1; : : : ; d , one of the following three Cases (C1)–(C3) will occur.

(C1) For some i , jZiC1j D jZi j C 1.

(C2) The set �C[Z is found to be unacceptable.

(C3) For the index i , corresponding to the last pair ¹.a; u; `0/; .b; v; `0/º for pa-

rameter ` equal to `0, one has Zi D Z.

Since jZj � d � 1, we can see that it is not possible for Case (C1) to

occur for all `0 D 1; : : : ; d . Hence, running this algorithm consecutively for

`0 D 1; : : : ; d , results either in conclusion that the function �C[Z is unacceptable

or in construction of a bijective function

� D �i W C [ Z �! Ci � G˛;

where Zi D Z, in which case we say that the function �C[Z is acceptable.

Furthermore, setting

T WD �.C [ Z/ and �T .�.a// WD �C[Z.a/

for every a 2 C [Z, we obtain an ˛-admissible function �T on the set T , T � G˛.

Observe that the set of all such functions

�C[Z W C [ Z �! S1.VP Y1/;

where C � C.˛; d/ and Z D ¹z1; : : : ; zk�jC jº, see (76), is �nite (recall the

set C.˛; d/ is �xed) and that all such functions can be written down explicitly.

Moreover, using the foregoing algorithm, we can verify whether a function �C[Z

is acceptable and, when doing so, construct a unique function

�W C [ Z �! S1.VP Y1/;

where T WD �.C [ Z/, so that �T .�.a// WD �C[Z.a/ for every a 2 C [ Z and

�.c/ D c if c 2 C . Therefore, in order to establish that inequalities (13)–(14) can

be algorithmically written down, it remains to prove the following.
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Lemma 6.2. For every ˛-admissible function

�T 0 W T 0 �! S1.VP Y1/;

where T 0 � G˛ and 2 � jT 0j D k � d , there exists an acceptable function

�C[Z W C [ Z �! S1.VP Y1/;

where C � C.˛; d/ and Z D ¹z1; : : : ; zk�jC jº, with the following property.

Let T WD �.C [ Z/ and let

�T W T �! S1.VP Y1/

be the ˛-admissible function, de�ned by �T .�.a// WD �C[Z.a/ for every a 2
C [ Z and �.c/ D c for c 2 C . Then the two inequalities (13), that correspond to

�T 0 and to �T if ˛ D 1, or the two inequalities (14), that correspond to �T 0 and

to �T if ˛ D 2, are identical.

To prove Lemma 6.2, we �rst establish an auxiliary lemma.

Lemma 6.3. Suppose

�T 0 W T 0 �! S1.VP Y1/

is an ˛-admissible function, where 2 � jT 0j � d , and T 0 D E1 [ � � � [ Er is a

partition of T 0 into equivalence classes Œa���
T 0

of the equivalence relation ��T 0 .

Then there are elements h1; : : : ; hr 2 G˛ such that the set

T WD E1h1 [ � � � [ Erhr

has the cardinality jT j D jT 0j and every set Eihi , i D 1; : : : ; r , contains an

element from the set C.˛; d/.

Proof. By induction on i , where 1 � i � r , we will prove the existence of

elements h1; : : : ; hi 2 G˛ with the property that the set E1h1 [ � � � [ Ei hi has

the cardinality
i

X

j D1

jEj hj j

and every set Ej hj , j D 1; : : : ; i , contains an element from C.˛; d/.

If i D 1, then we set h1 WD b�1c, where b 2 E1 and c 2 C.˛; d/.

Making the induction hypothesis, assume that there are elements h1; : : : ; hi 2
G˛ with the desired properties.
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To make the induction step from i to i C 1, denote

Ci .˛; d/ WD C.˛; d/ \ .E1h1 [ � � � [ Ei hi/

and let b 2 EiC1. For an element c 2 C.˛; d/ n Ci .˛; d/, we consider the set

Rc WD EiC1b�1c:

Clearly, Rc contains an element from C.˛; d/ and if Rc is disjoint from the set

E1h1 [ � � � [ Ei hi , then we can set

hiC1 WD b�1c:

Therefore, we may assume that Rc contains an element from E1h1 [ � � � [ Eihi

for every c 2 C.˛; d/ n Ci .˛; d/.

Suppose that elements in E1h1 [ � � � [ Ei hi are indexed by integers from 1 to

jE1h1 [ � � � [ Eihi j and elements in Rc D EiC1b�1c, where b and c are chosen

as above, are indexed by integers from 1 to jEiC1j so that, for every e 2 EiC1, the

index of eb�1c 2 Rc is equal to that of e 2 EiC1. In other words, we wish to keep

indices stable when multiplying EiC1 by b�1c.

Making use of these indices, we �x an element b 2 EiC1 and, for every

c 2 C.˛; d/ n Ci .˛; d/;

we consider the pair .jR.c/; jE.c// of indices jR.c/; jE.c/ in Rc D EiC1b�1c

and in E1h1 [ � � � [ Ei hi , resp., of an element of the intersection

Rc \ .E1h1 [ � � � [ Ei hi /

which is not empty as was assumed above.

Suppose that .jR.c1/; jE .c1// D .jR.c2/; jE.c2//. Then it follows from the

de�nitions that if e1; e2 2 EiC1 are such that

e1b�1c1 2 Rc1
\ .E1h1 [ � � � [ Ei hi/;

e2b�1c2 2 Rc2
\ .E1h1 [ � � � [ Ei hi/;

then e1 D e2 and e1b�1c1 D e2b�1c2 in G˛. These equalities imply that c1 D c2.

Therefore, for distinct elements c1; c2 2 C.˛; d/ n Ci .˛; d/, the pairs

.jR.c1/; jE.c1//; .jR.c2/; jE .c2//

are also distinct. However, the number of elements c in C.˛; d/ n Ci .˛; d/ is

jC.˛; d/j � jCi .˛; d/j � .d 2 C d/ � d D d 2

and the number of all such pairs .jR.c/; jE.c// is less than d 2. This contradiction

completes the induction step and Lemma 6.3 is proved. 4
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Proof of Lemma 6.2. Utilizing the notation of Lemma 6.3, we let

T 0 D E1 [ � � � [ Er

and let h1; : : : ; hr 2 G˛ be elements such that the set

T WD E1h1 [ � � � [ Erhr

has cardinality jT j D jT 0j D k and every set Eihi , i D 1; : : : ; r , contains an

element from C.˛; d/.

De�ne a function
y�W T �! S1.VP Y1/

so that if a 2 Ei , i D 1; : : : ; r , then y�.ahi/ WD �T 0.a/.

De�ne C WD C.˛; d/ \ T and let C D ¹c1; : : : ; cjC jº. Introducing more

notation, denote

T D ¹c1; : : : ; cjC j; b1; : : : ; bk�jC jº
and Z D ¹z1; : : : ; zk�jC jº.

We also de�ne a function

�C[Z W C [ Z �! S1.VP Y1/

by setting �C[Z.ci / WD y�.ci / and �C[Z.zj / WD y�.bj / for all i; j . In view

of Lemma 6.1, it is not di�cult to see that the function �C[Z is acceptable,

�.C [ Z/ D T , and if

�T W T �! S1.VP Y1/

is the function de�ned by �T .�.a// WD �C[Z.a/ for every a 2 C [ Z, where

�.c/ D c for c 2 C , then the following hold true. The function �T is ˛-admissible,

�T D y�, and the two inequalities (13) if ˛ D 1 or the two inequalities (14) if

˛ D 2, corresponding to �T 0 and to �T , are identical. Lemma 6.2 is proved. 4

To �nish the proof of part (d) of Theorem 1.1, we remark that, by Lemma 6.2,

the LP-problem max¹�xs j SLId ŒY1�º can be algorithmically written down.

Solving this LP-problem we obtain, by Lemma 4.2, the number ��d .Y1/Nr.Y1/

which is equal to ��d .H1/Nr.H1/ by Lemma 5.2. Since the number Nr.Y1/ D Nr.H1/

is readily computable o� the graph Y1 (recall Nr.Y1/ D jEY1j=2�jV Y1j), it follows

that the coe�cient �d .Y1/ is also computable.

Since the LP-problem max¹�xs j SLId ŒY1�º can be e�ectively written down,

its dual problem (30) can also be e�ectively constructed. Using the notation

of the foregoing proof of parts (a)–(c), we observe that a vertex solution yV D
yV .d/ to (30) can be computed, see [26]. Hence, a combination with repetitions

QV , such that sold .QV / D yV and all entries in �.QV / are coprime, is also

computable, see Lemma 4.1.
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Now, as in the proof of Lemma 3.2, we can construct a graph Y2;QV
D ‰.H �

2 /

from QV and observe that this construction can be done algorithmically. The

proof of part (d) is complete.

To show part (e), we note that if both groups G1; G2 are �nite then any

irreducible �nite A-graph ‰ has the property that deg u � max¹jG1j; jG2jº for

every secondary vertex u 2 VS‰. Hence, setting

dm WD max¹jG1j; jG2jº;

we obtain that SLIŒY1� D SLIdm
ŒY1� and so, by Lemma 4.2, �.Y1/ D �dm

.Y1/.

Since the coe�cient �dm
.Y1/ D �dm

.H1/ is rational and computable by part (d),

the number �.H1/ D �.Y1/ is also rational and computable. Theorem 1.1 is

proved. �

Theorem 1.2. Suppose that F D G1 � G2 is the free product of two nontrivial

�nite groups G1; G2 and H1 is a subgroup of F given by a �nite generating set S

of words over the alphabet G1 [ G2. Then the following are true.

(a) In deterministic polynomial time in the size of S, one can detect whether H1

is factor-free and noncyclic and, if so, one can construct an irreducible graph

‰o.H1/ of H1.

(b) If H1 is factor-free and noncyclic, then, in deterministic exponential time in

the size of S, one can write down and solve an LP-problem P D max¹cx j
Ax � bº whose solution is equal to ��.H1/Nr.H1/. In particular, the

W N -coe�cient �.H1/ of H1 is computable in exponential time in the size

of S.

(c) If H1 is factor-free and noncyclic, then there exists a �nitely generated factor-

free subgroup H �
2 D H �

2 .H1/ of F such that

Nr.H1; H �
2 / D �.H1/Nr.H1/Nr.H �

2 /

and the size of an irreducible core graph ‰.H �
2 / of H �

2 is at most doubly

exponential in the size of ‰.H1/. Speci�cally,

jE‰.H �
2 /j < 22jE‰.H1/j=4Clog2 log2.4dm/

;

where ‰.H1/ is an irreducible core graph of H1, jE‰j denotes the number

of oriented edges of the graph ‰, and dm WD max.jG1j; jG2j/.
In addition, an irreducible core graph ‰.H �

2 / of H �
2 can be constructed

in deterministic exponential time in the size of S or ‰.H1/.
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Proof of Theorem 1.2. Part (a) follows from Lemma 2.1.

To show part (b), we �rst observe that, in the case when G1 and G2 are �nite, we

can e�ectively write down the system SLIdm
ŒY1�, where dm D max¹jG1j; jG2jº,

and this can be done in exponential time in the size of Y1 WD ‰.H1/. Indeed, the

number of all functions

�T W T �! S1.VP Y1/;

where T 2 S2.G˛/ and jT j � dm, is bounded above by 2dm2jVP Y1jdm D
2dm2.jEY1j=4/dm

. Hence, we can construct all such functions in exponential time.

We can also check whether every such function is ˛-admissible in polynomial time

in the size of Y1. Note that the input is the generating set Swhile the orders of �nite

groups G˛ , ˛ D 1; 2, and the parameter dm are regarded as constants. Hence, all

inequalities of the system SLIdm
ŒY1� that are de�ned by means of ˛-admissible

functions � as above, see de�nitions (13)–(14), can be computed in exponential

time in the size of Y1.

Furthermore, by Lemma 2.1, the size of the graph Y1 is polynomial in the size

of the generating set S. By Theorem 1.1(e), SLIŒY1� D SLIdm
ŒY1�. Hence, the size

of the system SLIŒY1� D SLIdm
ŒY1� is exponential in the size of S. It is clear that

the size of the primal LP-problem max¹�xs j SLIdm
ŒY1�º as well as the size of

the dual problem (30) are also exponential in the size of Y1 or in the size of S.

By Theorem 1.1 and Lemma 5.2, an optimal solution to the dual problem (30) is

equal to

��dm
.Y1/Nr.Y1/ D ��dm

.H1/Nr.H1/ D ��.Y1/Nr.Y1/ D ��.H1/Nr.H1/:

It remains to mention that an LP-problem max¹cx j Ax � bº can be solved in

polynomial time in the size of the problem, see [26], and that the reduced rank

Nr.Y1/ D Nr.H1/ can be computed in polynomial time in the size of Y1.

To prove part (c), we recall that the size of the dual LP-problem (30), similarly

to the size of the primal LP-problem max¹�xs j SLIdm
ŒY1�º, is exponential (in

the size of Y1 or S) that a vertex solution yV D yV .dm/ to (30) can be computed

in polynomial time in the size of the dual LP-problem (30), see [26]. Note that

here and below we use the notation of the proofs of proofs of Lemmas 3.2 and 4.3.

Hence, a vertex solution yV to (30) can be computed in exponential time (in the

size of Y1 or S). Using the function soldm
, we can compute a combination with

repetitions QV , such that soldm
.QV / D yV and entries of QV are coprime, in

polynomial time in the size of yV . The size of the vertex yV , as was established

in the proof of Lemma 4.3, see (51)–(53), (56), is exponential. Hence, the

combination QV can also be computed in exponential time.

The inequality

jE‰.H �
2 /j < 22jE‰.H1/j=4Clog2 log2.4dm/

;

where, as above, dm D max.jG1j; jG2j/, follows from part (d) of Theorem 1.1.
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In view of inequalities (54) and (57), we obtain that

jQV j < r.2dm/r�1 < 22jEY1j=4Clog2 log2.4dm/

: (77)

This bound, in particular, means that every inequality q 2 SLIdm
.Y1/ occurs

in QV less than

22jEY1j=4Clog2 log2.4dm/

times, hence, the number nQV
.q/ of occurrences of q in QV can be written by

using at most 2jEY1j=4Clog2 log2.4dm/ bits.

As in the proofs of Lemmas 3.2 and 4.3, we construct a graph Y2;QV
whose

secondary vertices are in bijective correspondence with inequalities of QV and

whose primary vertices are de�ned by means of an involution �V on the set of

terms ˙xD of the left hand sides qL of the inequalities q 2 QV .

Lemma 6.4. The graph Y2;QV
can be constructed in deterministic exponential

time in the size of Y1.

Proof. We need to explain how to compute the involution �V as above in expo-

nential time (in the size of Y1). To do this, for each variable xD of the system

SLIdm
.Y1/, see (15), we consider a graph ƒD whose set of vertices is the subset

RV WD ¹q j q 2 QV º
of SLIdm

.Y1/ formed with the inequalities of QV . If q1; q2 2 RV are distinct, qL
1

contains the term xD and qL
2 contains the term �xD, then we draw an edge in ƒD

that connects q1 and q2. In other words, if there is a potential cancellation between

terms ˙xD in the sum qL
1 C qL

2 then ƒD contains an edge that connects q1 and

q2.

It is clear that ƒD is a bipartite graph so that every edge connects a vertex of

type (13) and a vertex of type (14).

Consider a weight function

!DW EƒD �! Z; (78)

where Z is the set of integers, such that !D.e�1/ D !D.e/ � 0 and
X

e�Dq

!D.e/ D nq.xD/nQV
.q/;

where nq.xD/ is the number of times the term xD or �xD occurs in qL and nQV
.q/

is the number of occurrences of q in QV . Clearly, nq.xD/nQV
.q/ is the total

number of occurrences of terms ˙xD in the subsum

qL C � � � C qL

„ ƒ‚ …

nQV
.q/ times

of the sum
P

q02QV
.q0/L. Note that nQV

.q/ D �j .QV / if q D qj in the notation

of (35).
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Our nearest goal is to show that such a weight function !D can be computed

in exponential time for every index D.

Let the edge set

EƒD D ¹e1; e�1
1 ; e2; e�1

2 ; : : : ; ejEƒDj=2; e�1
jEƒDj=2º

of the graph ƒD be indexed as indicated and let .ei /� be a vertex of type (13) for

every i .

We will de�ne the numbers !D.ei / by induction for i D 1; 2; : : : ; jEƒDj=2 by

the following procedure which also assigns intermediate weights !D.q/ to vertices

q 2 RV of ƒD .

Originally, we set

!D.q/ WD nq.xD/nQV
.q/

for every q 2 RV . For i � 1, if the edge ei connects q1 and q2 then we set

!D.ei/ WD min.!D.q1/; !D.q2//

and rede�ne the weights of q1 and q2 by setting

!0
D.q1/ WD !D.q1/ � min.!D.q1/; !D.q2//;

!0
D.q2/ WD !D.q2/ � min.!D.q1/; !D.q2//;

where !0
D.q1/ denotes the new weight.

Note that the assignment of a nonnegative weight !D.ei/ to the edge ei ,

connecting q1 and q2, can be interpreted as making !D.ei / cancellations between

terms ˙xD of the subsums

qL
1 C � � � C qL

1
„ ƒ‚ …

nQV
.q1/ times

and qL
2 C � � � C qL

2
„ ƒ‚ …

nQV
.q2/ times

of the sum in the left hand side of the equality

X

q2QV

qL D �2Nr.Y1/xs: (79)

Analogously, the intermediate weight !D.q1/ of a vertex q1 2 VƒD can be

interpreted as the number of terms ˙xD of the subsum

qL
1 C � � � C qL

1
„ ƒ‚ …

nQV
.q1/ times

which are still uncancelled in the left hand side of (79).
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Therefore, in view of the equality (79), in the end of this process, we will

obtain that the weights !D.q/ of all vertices q 2 RV are zeros, i.e., cancellations

of the terms ˙xD are complete, and the weights !D.ei / of all edges ei have desired

properties.

Clearly, the foregoing inductive procedure makes it possible to compute such a

weight function !D in polynomial time in the size of the graph ƒD and in the size

of numbers nQV
.q/, q 2 RV , written in binary. Hence, we can compute weight

functions !D for all D in exponential time.

Now we will de�ne the involution �V based on the weight functions !D.

Let elements of the set RV D ¹q1; : : : ; qjRV jº be indexed as indicated and let

elements of the combination

QV D ŒŒq1;1; q1;2; : : : ; q1;nQV
.q1/;

: : : ;

qi;1; qi;2; : : : ; qi;nQV
.qi /;

: : : ;

qjRV j;1; qjRV j;2; : : : ; qjRV j;nQV
.qjRV j/��;

(80)

where qi;j D qi 2 RV for all possible i; j , be double indexed as indicated

according to the indices introduced on elements of RV .

Since the secondary vertices of the graph Y2;QV
are in bijective correspon-

dence with elements of QV , see the proof of Lemma 3.2, we can also write

VSY2;QV
D ¹ui;j j 1 � i � jRV j; 1 � j � nQV

.qi/º;

where

ui;j 7�! qi;j (81)

under this correspondence.

Let qi 2 RV be �xed and let

qm1.i/; : : : ; qmti
.i/

be all vertices of ƒD, where m1.i/ < � � � < mti .i/, that are connected to qi by

edges f1; : : : ; fti , resp., in ƒD with positive weights !D.f1/; : : : ; !D.fti /, resp.

We assume that qi is the terminal vertex of the edges f1; : : : ; fti .

Recall that qL
i contains nqi

.xD/ � 1 terms ˙xD, here the sign is a minus if qi

has type (13) and the sign is a plus if qi has type (14).
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According to the weights !D.f1/; : : : ; !D.fti /, we will de�ne .D; i; t /-blocks

of consecutive terms ˙xD in the sum

qL
i;1 C qL

i;2 C � � � C qL
i;nQV

.qi /; (82)

see (80), in the following manner. (Here and below we disregard all terms ˙xB ,

where B ¤ D, in (82) when we talk about consecutive terms ˙xD in (82).)

The .D; i; 1/-block consists of the �rst !D.f1/ consecutive terms ˙xD in the

sum (82). The .D; i; 2/-block consists of the next !D.f2/ consecutive terms ˙xD

in the sum (82) and so on. Note that the �rst term ˙xD of the .D; i; 2/-block is

.!D.t1/ C 1/st term ˙xD in the sum (82) and the last term ˙xD of the .D; i; 2/-

block is the .!D.t1/ C !D.t2//th term ˙xD in the sum (82).

The .D; i; ti/-block consists of the last !D.fti / consecutive terms ˙xD in the

sum (82). Since
tiX

tD1

!D.ft / D nqi
.xD/nQV

.qi/

and !D.ft / > 0 for every t , it follows that these .D; i; t /-blocks, where t D
1; : : : ; ti and D; i are �xed, will form a partition of the sequence of terms ˙xD of

the sum (82) into ti subsequences. Note that the terms ˙xD of the same summand

qL
i;j of (82) could be in di�erent blocks when nqi

.xD/ > 1.

We emphasize that every .D; i; t /-block is associated with a vertex qi 2
VƒD D RV and with an edge ft of ƒD so that ft ends in qi and !D.ft / > 0. In

particular, for every .D; i; t /-block, associated with a vertex qi 2 RV and with an

edge ft of ƒD , we have another .D; i 0; t 0/-block, associated with a vertex qi 0 2 RV

and with an edge f 0
t 0 of ƒD, so that qi 0 ¤ qi and f 0

t 0 D f �1
t . Here f 0

1; : : : ; f 0
t 0
i0

are

the edges of ƒD de�ned for qi 0 in the same fashion as the edges f1; : : : ; fti of ƒD

were de�ned for qi . Note that i 00 D i and f 00
t 00 D ft in this notation.

We de�ne the involution �V so that all the terms ˙xD of the .D; i; t /-block are

mapped by �V to the terms �xD of the .D; i 0; t 0/-block in the natural increasing

order of elements in the block.

In other words, this de�nition of the involution �V means that the primary

vertices of the graph Y2;QV
, for details see the proof of Lemma 3.2, that are

connected by edges to the secondary vertices

ui;1; ui;2; : : : ; ui;nQV
.qi / (83)

of Y2;QV
, see (81), and that correspond to the terms ˙xD of the .D; i; t /-block,

will be identi�ed, in the increasing order, with the primary vertices that are

connected by edges to the secondary vertices

ui 0;1; ui 0;2; : : : ; ui 0;nQV
.qi0 / (84)

of Y2;QV
and that correspond to the terms �xD of the .D; i 0; t 0/-block.
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The labels to the edges of the graph Y2;QV
are assigned as described in the

proof of Lemma 3.2. Speci�cally, let e1;j ; : : : ; eki ;j be all the edges of Y2;QV
that

end in a secondary vertex ui;j , i.e.,

.e1;j /C D � � � D .eki ;j /C D ui;j ;

where ki D k.qi/. Furthermore, let ¹b1; : : : ; bki
º denote the domain of an ˛i -

admissible function

�Ti
W ¹b1; : : : ; bki

º �! S1.VP Y1/

that de�nes the inequality qi . Then we set

'.e1;j / WD b1; : : : ; '.eki ;j / WD bki
:

Note that the primary vertices that are discussed above and that are connected

by edges to vertices (83) will be precisely those e`;j , among .e1;j /�; : : :, .eki ;j /�

over all j D 1; : : : ; nQV
.qi /, for which

�Ti
.'.e`;j // D �Ti

.b`/ D D:

Similar remark can be made about the primary vertices that are discussed above

and that are connected by edges to vertices (84).

It is clear that the foregoing construction of the involution �V can be done

in polynomial time in the total size of graphs ƒD, weights !D.e/, e 2 EƒD ,

and numbers nQV
.q/, q 2 RV , written in binary. Therefore, we can compute

�V in exponential time in the size of Y1 (or S). Thus the graph Y2;QV
can also

be constructed in exponential time, as required. The proof of Lemma 6.4 is

complete. 4

Since the graph Y2;QV
can be constructed in exponential time in the size of the

generating set S, it follows from Lemma 4.3 that we can use Y2;QV
as an irreducible

A-graph ‰.H �
2 / of the subgroup H �

2 . Theorem 1.2 is proved. �

It is worthwhile to mention that our construction of the graph Y2;QV
is some-

what succinct (cf. the de�nition of succinct representations of graphs in [25]) in

the sense that, despite the fact that the size of Y2;QV
could be doubly exponential,

we are able to give a description of Y2;QV
in exponential time (in the size of Y1).

In particular, vertices of Y2;QV
are represented by exponentially long bit strings

and edges of Y2;QV
are drawn in blocks. As a result, we can �nd out in exponential

time whether two given vertices of Y2;QV
are connected by an edge labelled by

given letter g 2 G˛ .
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Theorem 1.3. Suppose that F D
Q�

˛2I G˛ is the free product of nontrivial groups

G˛ , ˛ 2 I , and H1 is a �nitely generated factor-free noncyclic subgroup of F.

Then there are two disjoint �nite subsets I1; I2 of the index set I such that if
yG1 WD

Q�
˛2I1

G˛ , yG2 WD
Q�

˛2I2
G˛ , and yF WD yG1 � yG2, then there exists a

�nitely generated factor-free subgroup yH1 of yF with the following properties.

(a) Nr. yH1/ D Nr.H1/, �d . yH1/ � �d .H1/ for every d � 3, and �. yH1/ � �.H1/. In

particular, if the conjecture (5) fails for H1 then the conjecture (5) also fails

for yH1.

(b) If the word problem for every group G˛, where ˛ 2 I1 [ I2, is solvable and

a �nite irreducible graph of H1 is given, then the LP-problem P. yH1; d / for
yH1 of part (a) of Theorem 1.1 can be algorithmically written down and the

WNd -coe�cient �d . yH1/ for yH1 can be computed.

(c) Let every group G˛, where ˛ 2 I1 [ I2, be �nite, let H1 be given either by a

�nite irreducible graph or by a �nite generating set, and let

dM WD max¹jI1 [ I2j; max¹jG˛j j ˛ 2 I1 [ I2ºº:
Then �dM

. yH1/ � �.H1/ and there is an algorithm that decides whether the

conjecture (5) holds for H1.

Proof of Theorem 1.3. (a) As in the proof of Theorem 1.1, we assume that the

subgroup H1 is given by an irreducible A-graph ‰.H1/ with core.‰.H1// D
‰.H1/, now the alphabet is A D

S

˛2I G˛ . Note that it is also possible to assume

that H1 is de�ned by a �nite generating set S whose elements are words over

the alphabet A. In the latter case, we could apply Lemma 2.1 which, when given a

�nite generating set of a subgroup H of F, veri�es that H is a factor-free subgroup

of F and, if so, constructs an irreducible A-graph of H .

Making use of the graph ‰.H1/ of H1, we switch from the original index set

I to its �nite subset I.H1/ and rename it by ¹1; : : : ; mº. Here and below we use

the notation introduced in Section 5. Without loss of generality, we may assume

that m � 3, otherwise, we set yH1 WD H1.

Consider the embedding

�2WF �! F2.1/

de�ned by means of the map (72), where

F2.1/ D G1 � G.2; m/ and G.2; m/ D G2 � � � � � Gm:

Denote yH1 WD �2.H1/. By Lemma 5.3, �2 is a monomorphism, hence, Nr. yH1/ D
Nr.H1/ and, by Lemma 5.3(e),

�d .H1/ � �d . yH1/

for every d � 3. Consequently, �.H1/ � �. yH1/ as well. This proves part (a).
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(b) Assume that the word problem is solvable in groups G˛ , ˛ 2 I.H1/.

Then the word problem is also solvable in factors G1; G.2; m/ of the free prod-

uct F2.1/ D G1 � G.2; m/. Furthermore, using the graph ‰.H1/ of H1

and the map (72), we can algorithmically construct a �nite irreducible graph

‰. yH1/ with core.‰. yH1// D ‰. yH1/. By Theorem 1.1(d), the LP-problem

P. yH1; d / D P.‰. yH1/; d/, associated with yH1, can be e�ectively constructed and

the coe�cient �d . yH1/ can be computed, as claimed in part (b).

(c) We will continue to use the notation introduced above. Suppose that all

factors G˛ , where ˛ 2 I.H1/ D ¹1; : : : ; mº, are �nite. We also assume that H1 is

given by an irreducible graph ‰.H1/ with core.‰.H1// D ‰.H1/ or H1 is given

by a �nite generating set. Note that Lemma 2.1 reduces the latter case to the former

one. By Lemma 5.2, when computing the number

�.H1/ D sup
H2

° Nr.H1; H2/

Nr.H1/Nr.H2/

±

over all �nitely generated factor-free subgroups H2 with Nr.H2/ > 0, we may

assume that the subgroup H2 has property (B) and satis�es the condition I.H2/ �
I.H1/. The condition I.H2/ � I.H1/ implies that the degree of every primary

vertex of ‰.H2/ does not exceed jI.H1/j. On the other hand, the degree of every

secondary vertex of ‰.H2/ does not exceed

max¹jG˛j j ˛ 2 I.H1/º:
Hence, the degree deg v of every vertex v of ‰.H2/ satis�es

deg v � dM WD max¹jI.H1/j; max¹jG˛j j ˛ 2 I.H1/º º: (85)

Thus, by Lemma 5.2, we may conclude that

�.H1/ D �dM
.H1/ D sup

H2

° Nr.H1; H2/

Nr.H1/Nr.H2/

±

;

where the supremum is taken over all subgroups H2 with property (Bd) in which

d D dM . Applying Lemma 5.3(e) to H1, we obtain

�.H1/ D �dM
.H1/ � �dM

. yH1/:

Recall that an irreducible graph ‰. yH1/ of yH1 D �2.H1/ can be algorithmically

constructed from ‰.H1/ (for details see the proof of Lemma 5.3(c)) and that the

word problem is solvable for factors of the free product

F2.1/ D G1 � G.2; m/:

Invoking Theorem 1.1(d), we see that the LP-problem

P. yH1; dM / D P.‰. yH1/; dM /

can be algorithmically written down and hence the coe�cient �dM
. yH1/ can be

computed. The proof of Theorem 1.3 is complete. �
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In conclusion, we mention that it is not clear whether there is a duality gap be-

tween the LSIP-problem sup¹�xs j SLIŒY1�º, introduced in Section 4, and its dual

problem (29) and it would be of interest to �nd this out. Another natural prob-

lem is to �nd an algorithm that solves the dual problem (29) of the LSIP-prob-

lem sup¹�xs j SLIŒY1�º and thereby e�ectively computes the WN-coe�cient

�.‰.H1// D �.H1/ for a �nitely generated factor-free subgroup H1 of the free

product of two groups (and, perhaps, more than two groups) which are not nec-

essarily �nite. It would also be interesting to �nd an algorithm that computes the

Hanna Neumann coe�cient N�.H1/ for a �nitely generated factor-free noncyclic

subgroup H1 of the free product F of two �nite groups which is de�ned as

N�.H1/ WD sup
H2

° Nr.H1 \ H2/

Nr.H1/Nr.H2/

±

over all �nitely generated factor-free noncyclic subgroups H2 of F.
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