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1. Historical prelude and introduction

We begin by presenting some of the history of the ideas around the so called

“Mautner phenomenon,” Moore ergodicity theorem, the Howe–Moore theorem

and related topics. This mixture of ideas and techniques fascinatingly relates er-

godic theory, representation theory, topological group theory and metric geome-

try.

The term “Mautner phenomenon” is used to describe the idea behind the

following easy lemma and its various generalizations.

Lemma 1.1. Let G be a topological group acting isometrically on a metric space
.X; d/ such that the homomorphismG ! Iso.X/ is continuous. Assume that .an/

is a sequence inG, and u 2 G is an element such that limn u
an D e inG. If x 2 X

satis�es limn anx D x then ux D x.

The beautiful one line proof is given by

d.ux; x/ D lim
n
d.ua�1

n x; a�1
n x/

D lim
n
d.uanx; x/

D d.lim
n
uanx; x/

D d.ex; x/

D 0:

It seems to us that the �rst documented use of this idea is from 1950 by Segal
and von Neumann, see [37, Lemma 1]. Mautner used the “Mautner phenomenon”
in his 1957 paper [27] to establish the ergodicity of the geodesic �ow on �nite
volume locally symmetric spaces, applying it to the dynamics of the associated
semisimple Lie group on a corresponding unitary representation. Mautner’s result
dramatically generalizes Hopf’s result [21] which treats the rank one case, by a
beautiful geometric argument. The powerful idea of using unitary representations
for the study of ergodicity of the geodesic �ow is due to Gelfand and Fomin [17]
who used it for the special case of manifolds of dimension 2 and 3, using the
explicit classi�cation of the irreducible representation of SL2.R/ and SL2.C/.

Mautner’s work was shortly after generalized by Moore who showed in [32]
that for every ergodic probability measure preserving action of a simple Lie group,
every one parameter subgroup is mixing. Moore’s work, in turn, was generalized
by Zimmer and Howe who obtained independently the following well known
theorem.

Theorem 1.2 ([40, Theorem 5.2] and [22, Theorem 5.1]). In a unitary represen-
tation of a simple Lie group which has no non-zero invariant vectors, the matrix
coe�cients tend to 0 at in�nity.
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Zimmer’s proof relies on a theorem proved independently in [38, Theorem 1]
and [33, Theorem 8], describing the restriction of a unitary representation of a
simple Lie group to a maximal split torus. The approach of Howe–Moore is
based on the Mautner phenomenon and works for uniformly bounded Hilbert
representations and over any local �eld. A main extra technical ingredient there
is the reduction of the statement to a statement about SL2, via the Jacobson–
Marozov theorem.

It is interesting to note that the tone in [22] is apologetic. Before stating their
Theorem 5.1 they write: “Our only excuse for including this in view of the fact that
more precise results are known (but involving some e�ort and machinery) is that it
is simple and direct and already contains useful information.” The “more precise
results” they refer to are results of Cowling and Wallach regarding the asymptotic
behavior of matrix coe�cients of irreducible uniformly bounded representations,
e.g that the matrix coe�cients are in Lp for some p, see [9] for the archimedean
case and [4] for the general case.

The Howe–Moore theorem was soon generalized by Veech who obtained in
[39] a similar theorem applicable for any uniformly bounded representation on
any re�exive Banach space. Veech’s result is again an elaboration on the Mautner
phenomenon, now applied in the context of the WAP (Weakly Almost Periodic)
compacti�cation of a semisimple group. The WAP compacti�cation of a group is a
universal semi-topological, semi-group compacti�cation which was studied by de
Leeuw and Glicksberg, following a fundamental work of Eberlein, Grothendieck
and others on WAP functions on groups. Matrix coe�cients of uniformly bounded
re�exive representations are WAP functions, thus the WAP compacti�cqation
gathers information on all re�exive representations. It is interesting to note that
by the main theorem of [11], the converse is also true: every WAP function is
a matrix coe�cient of a re�exive representation, see [31] (check also [23]). In
[10] Cowling proves a similar, though slightly weaker theorem: he considers
the Fourier–Stieltjes compacti�cation of a semisimple Lie group and proves a
parallel result to Veech’s. His proof is representation theoretic. Veech’s result was
reproduced and put in a conceptual context by Ellis and Nerurkar in [14]. We �nd
the papers [39] and [14] very appealing and we are surprised how little attention
they got. For example, when we wrote [2], together with Furman and Monod,
we included an appendix, based on an observation of Shalom, which reproduced
the so called Howe–Moore Theorem in the restrictive context of super-re�exive
Banach spaces, see [2, Theorem 9.1]. No one ever, till this day, had brought to
our attention that this result is subsumed in [39]. After the publication of [2]
we realized that Theorem 9.1, with the same proof essentially, could be easily
generalized to all re�exive representations, with the aid of one extra ingredient:
the Ryll-Nardzewski Theorem. This already brought us to consider the WAP
compacti�cation. Considering the latter, we soon came across [39].
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From the late 70’s to this day the Howe–Moore theorem stands as a corner stone
in the analytic theory of semisimple groups. For example, it is a key ingredient in
Margulis’ proof of his celebrated super-rigidity theorem. It has numerous other
applications. Let us mention here only two very easy ones. The �rst one is the
easy proof of an older result due to Tits and Prasad [36]: every proper open
subgroup of a simple group over a local �eld is compact. Indeed, this follows
at once by considering the matrix coe�cients of the corresponding quasi-regular
representation. The second application, given in [40, Theorem 7.3], could be seen
as a strengthening of simplicity: for a simple group over a local �eld, every non-
trivial continuous homomorphism with dense image into a locally compact group
is an open bijection. This follows by considering the regular representation of the
target group. Let us elaborate on this last application.

Already in 1966, Omori had proved that every continuous homomorphism
from a semisimple Lie group (with �nite center) into any �rst countable topo-
logical group has a closed image, [34]. This generalizes previous results of van
Est (proving a similar theorem with Lie group targets, [15]) and Gotô (same with
locally compact targets, [18] and [20]). See [19] for a general discussion. Groups
satisfying the property that every injective image in a topological group is closed
are called “absolutely closed.” Their group topology is called “minimal.” For a
recent extensive survey on the subject, see [12]. As mentioned above, Zimmer
reproved Gotô’s result, as a corollary of the Howe–Moore theorem. In [22, Theo-
rem 2.1] it is also shown that the image of a homeomorphism of a simple Lie group
in the unitary group of a Hilbert space is closed. It seems that the three authors
were unaware of Omori’s result from 1966, [34]. A more systematic attempt to
relate the notion of coarse group topologies and the study of matrix coe�cients is
given in [28] for connected Lie groups. It seems that for general locally compact
groups there is still unexplored ground in this direction. Here we observe that
Omori’s theorem (even without the �rst countability assumption) is an immediate
application of the following theorem.

Theorem 1.3. Let G be a simple group over a local �eld. Assume G acts
equicontinuously and without �xed points on a uniform space. Then every orbit
is closed and all the point stabilizers are compact.

Indeed, given a continuous homomorphism into a topological group,G ! H ,
endowing H with its left uniform structure and consider the left action of G on
H we get that the orbit of e 2 H , that is the image of G, is closed. We get the
following extension of Omori’s theorem.

Corollary 1.4. A simple group over a local �eld is absolutely closed.

Our main contribution in this paper is the formulation of Theorem 4.1, which
is a simultaneous generalization of Veech’s theorem and Theorem 1.3 above.
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Theorem 4.1 discusses an action of a group on a space with two compatible
structures: a uniform structure and a compatible (typically weaker) topology. The
reader familiar with the classical Howe–Moore theorem should have in mind the
two compatible structures on the unit ball of a Banach space: the norm and the
weak topologies. We will not formulate Theorem 4.1 in this introduction, due to
its technical nature. Instead we choose to demonstrate it by proving a toy case,
which already contains most of the ideas of the proof. For a generalization of the
next theorem, see Theorem 6.1.

Theorem 1.5 (toy case). Assume the group G D SL2.R/ is acting continuously
by isometries on a metric space X . Let x0 2 X be a point. Then either x0 is a
global �xed point or its stabilizer group is compact.

Note that every metric space has a canonical uniform structure, and every
isometric action is equicontinuous, thus Theorem 1.5 is an immediate corollary
of Theorem 1.3. To the best of our knowledge, even this very speci�c result has
not been formulated in the past literature. Here is a complete proof.

Proof. Suppose that the stabilizer group Gx0
is not compact and let gn 2 Gx0

be
a sequence tending to in�nity. Write gn D knank

0
n with kn; k

0
n 2 SO.2/ and

an D

�

˛n 0

0 ˛�1
n

�

with ˛n ! 1. Up to replacing gn by a subsequance we may suppose that kn ! k

and k0
n ! k0. Set x1 D k0 � x0 and x2 D k�1 � x0.

Let mWN ! N be a function tending su�ciently fast to 1 so that

ˇn WD
˛m.n/

˛n

�! 1;

and set bn D am.n/a
�1
n , that is

bn D

�

ˇn 0

0 ˇ�1
n

�

:

Since the action G Õ X is continuous by isometries, and since an � x1 ! x2 and
a�1

n � x2 ! x1, we see that bn � x2 ! x2, as well as b�1
n � x2 ! x2. Note that for

uC.t / D

�

1 t

0 1

�

and u�.t / D

�

1 0

t 1

�

we have limn!1 b�1
n uC.t /bn D limn!1 uC.

t

ˇ2
n

/ D e, thus by Lemma 1.1,

uC.t /x2 D x2. Similarly, we have that limn!1 bnu�.t /b
�1
n D e, hence

u�.t /x2 D x2. SinceG is generated by uC.t / and u�.t /we deduce thatG D Gx2
.

Finally, it follows that x2 D x0, hence x0 is a global �xed point. �
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In the above proof, note the role of the sequence .bn/ which zig-zags between
the accumulation points x1 and x2. This is the only novel ingredient in the
following short list which summarizes the main ingredients appearing in the above
proof.

� the KAK decomposition,

� the Mautner phenomenon,

� a zig-zaging argument, and

� the generation of G by opposite unipotents.

In the proof of Theorem 4.1, the zig-zaging argument will come about by the use
of Lemma 2.2.

Finally note that for the proof we don’t need the precise structure of the
group G, only the properties allowing us to use the ingredients above. This
observation was used before by several authors, generalizing the Howe–Moore
theorem to various non-algebraic groups, notably groups acting on trees, see [25].
We will prove our main theorems for groups having these appropriate properties,
which we call “quasi-semisimple,” or shortly qss groups. A similar axiomatic
approach is taken in the recent preprint [8].

1.1. The structure of the paper. The �rst half of the paper is devoted to the
formulation and proof of the main Theorem 4.1 about equicontinuous actions of
semisimple (and, more generally, qss) groups, including a presentation of the basic
notions and necessary background. The second half (§5 and further) is dedicated
to various applications of Theorem 4.1. The very last section deals with some
further generalizations of our axiomatic scheme.

§2 summarizes some well-known background material. In §3 we present
the class of quasi-semisimple groups, the class to which we apply our main
theorems proven in §4. In §5 we prove the inexistence of weak topologies on qss
groups improving old results of Omori and Gotô. In §6 we establish new results
concerning metric ergodicity of analytic semisimple groups and their lattices. In
§7 we review the theory of monoid compacti�cations of a group and reprove (and
slightly extend) Veech’s theorem. We apply these results in §8 in order to gain
information about Banach representations. In §9 we reprove the results of §8
directly from Theorem 4.1, for the bene�t of the reader who wishes to avoid the
abstract setting of §7. In §10 we discuss the extension of our results to the class of
hereditary quasi-semisimple groups.

Acknowledgments. We thank Amos Nevo for an enlightening conversation re-
garding the history and Gil Go�er and the excellent referee for many remarks and
suggestions for improvements. We thank Michael Megrelishvili for some helpful
suggestions and references. We are grateful to Meny Shlossberg for spotting a gap
in the proof of Theorem 5.1 in an earlier version of this paper.
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2. Preliminaries

2.1. On nets convergence. Recall that a net in a topological space is a map to
the space from a directed set, where a directed set is a pre-ordered set in which
every two elements have an upper bound. Typically we denote a directed set by
the symbol .˛/where ˛ denotes a generic element in the directed set, and for a net
in the topological spaceX we use symbols as .x˛/, representing the map ˛ 7! x˛.

The net x˛ converges to x, to be denoted x˛ ! x, if for every neighborhood
U of x there exists ˛0 2 .˛/ such that for every ˛ � ˛0, x˛ 2 U .

A net .xˇ / is said to be a subnet of the net .x˛/ if it is obtained as the
composition of an order preserving co�nal map .ˇ/ ! .˛/ with the map ˛ 7! x˛.
It is well known and easy to check that a net converges if and only if all of its
subnets converge and to the same point. Less well known is the fact that every net
which majorizes a subnet of a converging net converges as well.

Lemma 2.1. Let nW .˛/ ! X be a net converging to x. Let f W .ˇ/ ! .˛/ be an
order preserving co�nal map. Let f 0W .ˇ/ ! .˛/ be another map, satisfying for
every ˇ, f 0.ˇ/ � f .ˇ/. Then the net n ı f 0 converges to x.

Proof. Fixing a neighborhood U of x we need to show that there exists ˇ0 2 .ˇ/
such that for every ˇ � ˇ0, xf 0.ˇ/ 2 U . Indeed, by the convergence of the net x˛

there exists ˛0 2 .˛/ such that for every ˛ � ˛0, x˛ 2 U , and by the co�nality
of f , there exists ˇ0 2 .ˇ/ such that f .ˇ0/ � ˛0. Then for every ˇ � ˇ0,
f 0.ˇ/ � f .ˇ/ � ˛0 implies xf 0.ˇ/ 2 U . �

In a locally compact space X , a net is said to converge to in�nity if for every
compact subset K there exists ˛0 such that for every ˛ � ˛0, x˛ … K. The
following technical lemma will be of use.

Lemma 2.2 (Zig-Zag lemma). Let G be a locally compact group acting on a
topological space X . Let g˛ be a net in G converging to in�nity and assume that
for some x; y 2 X , the net .g˛x/ converges to y in X . Then there exists a directed
set .ˇ/ and two nets n; n0W .ˇ/ ! G satisfying n.ˇ/x ! y and n0.ˇ/x ! y in X
and n.ˇ/�1n0.ˇ/ ! 1 in G.

Proof. We let C be the directed set of compact subsets of G, ordered by reversed
inclusion, and set .ˇ/ D .˛/ � C endowed with the product order. We let
f W .ˇ/ ! .˛/ be the projection on the �rst variable. This is obviously an
order preserving co�nal map. For every .˛0; K/ 2 .ˇ/ we use the fact that the
subnet .g˛/˛�˛0

converges to in�nity in G to �nd an element ˛1 � ˛0 satisfying
g˛1

… g˛0
K. We denote ˛1 D f 0.˛0; K/. The lemma now follows from

Lemma 2.1, setting n.ˇ/ D gf .ˇ/ and n0.ˇ/ D gf 0.ˇ/. �
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2.2. Uniform structures and compatible topologies. Recall that a uniform
structure on a set X is a symmetric �lter S of re�exive relations on X , such that
for every U 2 S there is U 0 2 S with U 0U 0 � U . Here

U1U2 D ¹.u1; u2/ j there exists u3 such that .u1; u3/ 2 U1; .u3; u2/ 2 U2º:

Let .X; S/ be a uniform space.

De�nition 2.3. We will say that a topology T on X is S -compatible if for every
V 2 T and a point y 2 V , there exists y 2 V 0 2 T and U 2 S such that UV 0 � V ,
where

UV 0 D ¹v j there exists v0 2 V 0 such that .v; v0/ 2 U º:

We shall denote by TS the S -topology on X , i.e. the topology generated by the
sets

U.x/ WD U ¹xº; x 2 X; U 2 S:

Obviously, we have:

Example 2.4. The S -topology TS is S -compatible.

A topological group action on a topological space G Õ .X; T / is said to
be jointly continuous or simply continuous if the action map G � X ! X is
continuous as a function of two variables.

Example 2.5. Given an action of a topological group G on a set X we de�ne the
action uniform structure SG on X to be the uniform structure generated by the
images of the sets U �X under the map

G �X �! X �X; .g; x/ 7�! .x; gx/;

where U runs over the identity neighborhoods in G. A topology T on X is
SG-compatible if and only if the action of G on .X; T / is continuous.

A group action on a uniform space G Õ X is said to be equicontinuous
(or sometimes uniformly continuous) if for every U 2 S , also the set ¹.u; v/ j

for all g 2 G; .gu; gv/ 2 U º is in S . This means that S has a basis consisting of
G-invariant uniformities.

Example 2.6. For a topological group G, setting X D G, the right regular action
de�nes a uniform structure on G, as in Example 2.5. This structure is called the
left uniform structure. Note that the left regular action is equicontinuous with
respect to that structure.
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Lemma 2.7. Assume G acts on .X; S/ uniformly. Denote by X=G the space of
orbits and denote by � WX ! X=G the natural quotient map. Then the collection
¹.� � �/.U / j U 2 Sº de�nes a uniform structure on X=G, to be denoted ��S ,
and the associated topology on X=G, T��S coincides with the quotient topology
��TS .

Proof. Left to the reader. �

Lemma 2.8. An equicontinuous action of a topological group is ( jointly) contin-
uous with respect to the S -topology if (and only if ) the orbit maps are continuous.

Proof. For any y 2 X and a neighborhood of the form U.y/ associated with a
uniformity U 2 S , there exists a G-invariant uniformity U 0 such that U 0U 0 � U .
For any .g; x/ with gx D y, let � � G be the pre-image of U 0.y/ under the
x-orbit map. Then � �U 0.x/ is a neighborhood of .g; x/ in G �X whose image
under the action map is contained in U.y/. Indeed, for .g0; x0/ 2 � � U 0.x/,
.x0; x/ 2 U 0 implies that .g0x0; g0x/ 2 U 0 which together with .g0x; y/ 2 U 0 gives
.g0x0; y/ 2 U . �

Lemma 2.9. LetG Õ .X; S/ be an equicontinuous action. LetT be anS -compat-
ible topology on X . Let .˛/ be a directed set. Assume that x˛ is a TS -converging
net in X with TS - lim x˛ D x, and that g˛ is a net in G. Then T - lim g˛x˛ exists
if and only if T - lim g˛x exists, in which case they are equal.

Proof. Let x0
˛ be an arbitrary net in X which TS -converges to x. Suppose that

T - lim g˛x˛ exists and denote it by y. Let V 2 T be a neighborhood of y. We
will show that there exists ˛0 such that ˛ � ˛0 implies g˛x

0
˛ 2 V . Fix V 0 2 T

around y and a G-invariant uniformity U 2 S so that UV 0 � V . Let U 0 2 S be
a symmetric uniformity with U 0U 0 � U . By the assumptions there exists ˛0 such
that for every ˛ � ˛0,

g˛x˛ 2 V 0; .x˛; x/ 2 U 0 and .x0
˛; x/ 2 U 0:

Thus .x˛; x
0
˛/ 2 U and, by the G-invariance of U , also .g˛x

0
˛; g˛x˛/ 2 U .

It follows that g˛x
0
˛ 2 UV 0 � V .

By switching the roles of x˛ and x0
˛ we deduce that limT g˛x˛ exists if and

only if limT g˛x
0
˛ exists, in which case they are equal. The lemma follows by

specializing to the constant net x0
˛ � x. �

Lemma 2.10 (a variant ot Mautner’s lemma). LetG be a topological group. LetX
be a G-space equipped with a uniform structure S and an S -compatible topology
T . Assume that the action is continuous with respect to both topologies T and TS

and equicontinuous with respect to S . Let g˛ be a net in G and assume for some
points x; y 2 X , y D T -limg˛x. Assume g 2 G satis�es lim gg�1

˛ D e. Then
gy D y.
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Proof. By continuity of the action G Õ .X; TS/ we have .TS - lim/gg�1
˛ x D x.

Applying Lemma 2.9 to the net g˛ in G and the net gg�1
˛ x in X , we deduce that

indeed

gy D g.T -lim/g˛x D .T -lim/gg˛x D .T -lim/g˛ � gg�1
˛ x D .T -lim/g˛x D y:

�

Lemma 2.11. LetG Õ .X; S/ be an equicontinuous action. Assume that for some
net .g˛/ in G and x; y 2 X , .TS -lim/g˛x D y. Then .TS -lim/g�1

˛ y D x.

Proof. For every neighborhood V of x there exists a G-invariant uniformity U
with U.x/ � V . By g˛x ! y there exists ˛0 such that for every ˛ � ˛0,
g˛x 2 U.y/, that is .g˛x; y/ 2 U . By G-invariance we get .x; g�1

˛ y/ 2 U and by
symmetry .g�1

˛ y; x/ 2 U . Therefore for every ˛ � ˛0, g�1
˛ y 2 U.x/ � V . �

2.3. Universally closed maps and actions. Recall that a continuous map
� WX ! Y between topological spaces is called proper if the preimage of a com-
pact set is compact, and closed if the image �.A/ of every closed set A � X is
closed in Y . Under mild assumptions on Y , it is automatic that a proper map is
closed. This is the case if Y is a K-space, e.g when Y is either locally compact or
satis�es the �rst axiom of countability, see [35]. In general however, a proper map
is not necessarily closed. The current section deals with the general case. Recall
the following classical theorem:

Theorem 2.12. A topological space K is compact if and only if for every topo-
logical space Z, the projection map K �Z ! Z is closed.

Note that we do not assume any separation property of the topological spaces
involved. Since we are not aware of a reference for 2.12 in this generality, we add
a proof for the convenience of the reader.

Proof. The fact that if K is compact then for every Z, K � Z ! Z is closed is
standard and easy. Assume now K is not compact and pick a directed set .˛/ and
a net .x˛/ in K which has no converging subnet. For every x 2 K we can �nd a
neighborhood Ux and ˛x such that for every ˛ � ˛x , x˛ … Ux . Consider the poset
obtained by adding to .˛/ a maximal element, 1. Observe that the collection
consisting of all intervals in .˛/ of the form Œ˛;1� forms a base for a topology.
Let Z be the topological space thus obtained. Check that 1 2 Z is not isolated.
Let A � X � Z be the complement of the open set

S

x.Ux � Œ˛x ;1�/. Observe
that A \X � ¹1º D ; and for each ˛, .x˛; ˛/ 2 A, thus the projection of A to Z
consists of the subset Z � ¹1º, which is not closed. �
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Here is another basic result of point-set topology for which we couldn’t �nd a
proper reference.

Theorem 2.13. Let � WX ! Y be a continuous map between topological spaces.
The following are equivalent.

(1) For every topological spaceZ, the map � � idZ WX �Z ! Y �Z is a closed
map.

(2) � is closed and proper.

(3) For every net .x˛/ in X which has no converging subnet, the net .�.x˛// has
no converging subnet in Y .

Proof. (1) H) (2). By taking Z to be a point we see that � is closed. In order to
see that � is proper, consider an arbitrary compact subsetK � Y and an arbitrary
topological space Z. The projection map ��1.K/ � Z ! Z is closed, being
the composition of the closed maps ��1.K/ � Z ! K � Z ! Z. Thus, by
Theorem 2.12, ��1.K/ is compact.

(2) H) (3). Assume by contradiction that .x˛/ is a net in X which has no
converging subnet and �.x˛/ ! y 2 Y . Denote Xy D ��1.¹yº/. Since � is
closed and proper, Xy is non-empty and compact. For every x 2 Xy we can
�nd an open neighborhood Ux of x and ˛x such that ˛ � ˛x ) x˛ … Ux.
By compactness of Xy we can �nd a �nite set F � Xy such that Xy �

S

x2F Ux.
We let

V D Y n �
�

X n
[

x2F

Ux

�

:

Since � is closed V is an open neighborhood of y in Y . Note that U D ��1.V / �
S

x2F Ux . Let ˛0 be an index satisfying ˛0 � ˛x for every x 2 F . Then for
every ˛ � ˛0, x˛ … U and thus �.x˛/ … V , contradicting the assumption that
�.x˛/ ! y.

(3) H) (1). LetA � X�Z be a closed set. Assume, by way of contradiction,
that .� � idZ/.A/ is not closed in Y � Z and pick a net .y˛; z˛/ 2 .� � idZ/.A/

converging to a point .y; z/ … .� � idZ/.A/. Pick lifts .x˛/ of .y˛/ such that
.x˛; z˛/ 2 A. By our assumption, since .y˛/ converges, .x˛/ has a converging
subnet. Abusing the notation we assume that .x˛/ ! x. It follows that .x˛; z˛/ !
.x; z/. Since A is closed, .x; z/ 2 A and thus .y; z/ D .� � idZ/.x; z/ 2

.� � idZ/.A/. A contradiction. �

De�nition 2.14. A map satisfying the above properties is called “universally
closed.”
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Recall that a continuous action of G on X is called a proper action if the map

G �X �! X �X; .g; x/ 7�! .x; gx/; (1)

is a proper map. Similarly, we say that the action is universally closed is the map (1)
is universally closed. Every universally closed action is proper.

Proposition 2.15. If G acts on X and the action is universally closed then the
point stabilizers are all compact and the quotient topology on the orbit space
X=G is Hausdor�. In particular, every orbit is closed.

Proof. The fact that stabilizers are compact follows from the properness of the
action. To show thatX=G is Hausdor�, observe that the setX �X n Im.G�X/ is
open in X �X and hence its image under the open map to X=G � X=G is open.
Thus its complement, the diagonal of X=G �X=G, is closed. �

The following is a useful variant.

Proposition 2.16. Suppose a topological group G acts on X and T; T 0 are two
topologies on X such that the map

G � .X; T / �! .X; T / � .X; T 0/; .g; x/ 7�! .x; gx/;

is universally closed. Assume that points in X are T -closed. Then the stabilizers
are compact and the G-orbits in X are T 0-closed.

Proof. Again, compactness of the stabilizers follows from properness. Given a
point x0 2 X , the image of G � ¹x0º, that is ¹x0º � Gx0, is a closed subset
of .X; T / � .X; T 0/ and its preimage in X under the continuous map .X; T 0/ !
.X; T / � .X; T 0/, x 7! .x0; x/ is the orbit Gx0. �

3. Quasi-semisimple groups

The main objects of this paper are semisimple Lie groups over local �elds. How-
ever, much of the things we prove are based on two speci�c properties, namely:

� the existence of a Cartan KAK decomposition for G,

� for every a 2 A, the group G is generated by elements g such that1
limn!1 anga�n D 1, limn!�1 anga�n D 1 or supn2Z kanga�nk < 1.

1 In the classical case one can deduce this property using a root space decomposition of the
Lie algebra.
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This observation encourages us to introduce an axiomatic approach. Indeed,
formulating (variants of) the above as axioms will, on one hand, make our future
arguments cleaner and more transparent, while on the other hand, our results will
be more general, and apply for other classes of groups. Our axiomatic approach
is in�uenced by [8].

Given a topological group G and a net g˛ in G we de�ne the following three
groups:

U
.g˛/
C D ¹x 2 G j g�1

˛ xg˛ ! eº;

U .g˛/
� D ¹x 2 G j g˛xg

�1
˛ ! eº;

and

U
.g˛/
0 D ¹x 2 G j every subnet of both nets g�1

˛ xg˛ and g˛xg
�1
˛

admits a converging subnetº:

The following lemma is obvious and left as an exercise to the reader.

Lemma 3.1. Let G be a topological group and g˛ a net in G. The U .g˛/
C , U .g˛/

�

and U .g˛/
0 de�ned above are indeed groups and the group U .g˛/

0 normalizes both

groups U .g˛/
C and U .g˛/

� .

De�nition 3.2. A locally compact topological group G is said to be quasi-
semisimple (qss, for short) if there exists a closed subgroup A < G satisfying
the following axioms.

� There exists a compact subset C � G such that G D CAC .

� For every net a˛ in A with a˛ ! 1, there exists a subnet aˇ such that the

group U
.aˇ/

C is not pre-compact and the group generated by the three groups

U
.aˇ/

C , U .aˇ/
� and U

.aˇ/

0 is dense in G.

Remark 3.3. The class QSS of quasi-semisimple groups is closed under �nite
direct products. Every compact group is qss and in addition if H D G=O where
O C G is a compact normal subgroup, then H is qss i� G is qss.

It is well known that Zariski connected semisimple groups over local �elds are
qss. This follows for example from [26, Ch. I, Proposition (1.2.1)]. In particular
every Zariski connected semisimple Lie group with �nite center is qss. It is not
clear to us whether any quotient group of a general qss group is qss as well. For
a surjective map �WG ! H , where G is qss relatively to a subgroup A < G, it
is reasonable to expect thatH would be qss relatively to �.A/. The only problem

that might occur is that for some net �.aˇ / ! 1, the group U
�.aˇ /

C would be
precompact in H . This problem never occurs for semisimple groups.
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Theorem 3.4. LetH be a locally compact topological group. Let k be a local �eld
and G a Zariski connected, semi-simple algebraic group de�ned over k. Assume
there is a continuous surjection G.k/ � H . Then H is qss. In particular every
Zariski connected semi-simple Lie group with �nite center is qss.

Remark 3.5. We will see in Corollary 5.2 that the assumption that H is locally
compact is in fact redundant.

Proof. Since G.k/ is locally compact, by a standard Baire category argument,H
is isomorphic as a topological group to G.k/=N for some closed normal subgroup
N C G.k/. We denote by �W G.k/ ! G.k/=N the natural surjection. Recall that
G contains a closed normal subgroup G.k/C such that G.k/=G.k/C is abelian and
compact, and even �nite when char.k/ D 0. The group G.k/ is the image of the
natural isogeny QG.k/ ! G.k/ where QG is the simply connected form of G. By
[26, Ch. I, Proposition 1.5.4(vi)], G.k/ D G.k/C � ZG.S/.k/ where S is a k-split
torus. We let A D �.S.k//. In view of the discussion above, our only task is to
show that for a net .s˛/ in S.k/which tends to 1 mod N , one can pass to a subnet
.sˇ / such thatU �.sˇ / is not precompact. We abuse notation and view S a subgroup
of QG. Consider the preimage of N in QG.k/ and mod out the �nite center. This is
a normal subgroup in a product of simple non-abelian groups, thus consists of a
product of factors. Moding out these factors, we still have that s˛ ! 1. The
non-pre-compactness of U �.sˇ / follows by a standard root space decomposition
argument. �

Remark 3.6 (Adelic groups are qss). Let K be a global �eld and G a Zariski
connected, simply connected, semisimple K-algebraic group. Assume that G

has no anisotropic factor. Let A D AK be the associated ring of adels. Then
G.A/ is qss. To see this recall that G.A/ is the restricted topological product of
G.Kv/ relative to the open compact subgroups G.Ov/ < G.Kv/ where v runs
over the �nite valuations, and Ov is the local ring of Kv. The reason G.A/ is qss
is that the same subgroups G.Ov/ used in the construction of restricted topological
product can be used in the associatedCAC (or ratherKAK) decomposition of the
corresponding factors G.Kv/. It is easy to verify the details.

Another family of qss groups is given by the following (see [8] and [7]):

Theorem 3.7. LetG be a group acting strongly transitively on an a�ne building.
Then G is qss. In particular every group of automorphisms of a simplicial tree
whose action on the boundary of the tree is 2-transitive is qss.

We note that the �rst ones to implicitly use the qss axioms for a boundary 2-
transitive tree group are Burger and Mozes, in their proof of the Howe–Moore
property for such groups in [5].
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4. The main theorem

The main result of this paper is the following general statement:

Theorem 4.1. Let G be a quasi-semisimple group. Let X be a G-space equipped
with a uniform structure S and an S -compatible topology T . Assume that the
action is continuous with respect to both topologies T and TS and equicontinuous
with respect to S . Suppose that no non-compact normal subgroup of G admits a
global �xed point in X . Then the map

�WG � .X; TS/ �! .X; TS/ � .X; T /; .g; x/ 7�! .x; gx/;

is universally closed. In particular, it is proper.

Applying Proposition 2.16 we get the following.

Corollary 4.2. Under the conditions of Theorem 4.1,

(1) the stabiliser in G of every point in X is compact, and

(2) the G-orbits in X are T -closed.

In the special case where T D TS we obtain Theorem 1.3 presented in the
introduction. Moreover, we get:

Corollary 4.3. With respect to the quotient topology induced from TS , the orbit
space X=G is Hausdor� and completely regular.

By Lemma 2.7, X=G admits a uniform structure, hence it is Hausdor� and
completely regular given that it is T0, but it is T1 by the above discussion. To see
directly the Hausdor� property of X=G, consider two points x; y which do not
belong to the same orbit. Since Gy is closed, we have an open neighborhood V
of x which is disjoint from Gy. Consider a G-invariant uniformity U such that
UU.x/ � V and pick a symmetric uniformity U 0 contained in U . It is easy to
verify that the open sets GU 0.x/ and GU 0.y/ are disjoint.

Proof of Theorem 4.1. By way of contradiction we assume that the map � is not
universally closed and show eventually the existence of a point �xed by some non-
compact normal subgroup of G. The proof consists of four steps.

Throughout the proof we let A < G be the subgroup guaranteed by the qss
assumption, and let C be a compact subset of G such that G D CAC .

Step 1. There exist points x; y 2 X and a net a˛ 2 A satisfying a˛ ! 1 and
.T - lim/a˛x D y.
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In view of Theorem 2.13, the assumption that � is not universally closed is
equivalent to the existence of a directed set .˛/ and a net .g˛; x˛/ which has no
converging subnet, such that the net .x˛; g˛x˛/ converges in the TS �T -topology.

Let g˛ D c˛a˛c
0
˛ be a corresponding CAC expression of the elements g˛ .

Upon passing to a subnet we may assume that both c˛ and c0
˛ converge in C . Note

that necessarily a˛ has no converging subnet in A, that is a˛ ! 1.
Denote

c D lim c˛ and c0 D lim c0
˛;

and set

x D c0.S - lim/x˛ and y D c�1.T - lim/g˛x˛:

Since G acts continuously on .X; TS/, we have

.TS -lim/c0
˛x˛ D x:

Since G acts continuously on .X; T /, we have

.T -lim/a˛c
0
˛x˛ D .T -lim/c�1

˛ � g˛x˛

D lim c�1
˛ � .T -lim/g˛x˛

D c�1.T -lim/g˛x˛

D y:

Applying Lemma 2.9 to the net a˛ in G and the net c0
˛x˛ which TS -converges to

x in X , we deduce that y D .T - lim/a˛x.

Step 2 (reducing to the case T D TS ). The action of G on .X; TS/ is not
universally closed.

By Step 1, and by the second property in De�nition 3.2, replacing the net .a˛/

by a subnet .aˇ /, we have in addition to

� aˇ ! 1 and

� .T - lim/aˇx D y,

that

� U
.aˇ/

C is not precompact.

For g 2 U
.aˇ/

C we have lim g
a�1

ˇ D 1, hence by Lemma 2.10, gy D y. Thus the
stabilizer of y is non-compact. By Proposition 2.15 it follows that the action of G
on .X; TS/ is not universally closed.
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Step 3. There exist a point x 2 X and a net aˇ 0 2 A satisfying aˇ 0 ! 1 and
.TS - lim/aˇ 0x D x.

By Step 2 we know that the map

G � .X; TS/ �! .X; TS/ � .X; TS/; .g; x/ 7�! .x; gx/;

is not universally closed. We thus may apply Step 1 in the special case T D TS and
obtain points x; y 2 X and a net a˛ 2 A satisfying a˛ ! 1 and .TS - lim/a˛x D

y. By Lemma 2.2, there exists a directed set .ˇ0/ and two nets n; n0W .ˇ0/ ! A

satisfying n.ˇ0/x ! y and n0.ˇ0/x ! y inX (all limits inX here are with respect
to TS ) and n.ˇ0/�1n0.ˇ0/ ! 1 in A. By Lemma 2.11, n.ˇ0/�1y ! x. Applying
Lemma 2.9 (in the special case T D TS ) with respect to the directed set .ˇ0/, the
net n0.ˇ0/x in X and the net n.ˇ0/�1 in A, we conclude that n.ˇ0/�1n0.ˇ0/x ! x.
We are done by setting aˇ 0 D n.ˇ0/�1n0.ˇ0/.

Step 4. There exists a point in X which is �xed by a non-compact normal
subgroup of G.

We let x be a point as obtained in Step 3. We will show that its stabilizer Gx

contains a normal non-compact subgroup of G. By replacing the net obtained in
Step 3 by a subnet, using the qss second axiom we get a net .a˛0/ in A satisfying
the following properties:

� a˛0 ! 1;

� .TS - lim/a˛0x D x;

� U
.a˛0 /

C is not precompact;

� the group generated by the three groups U
.a˛0 /

C , U .a˛0 /
� and U

.a˛0 /

0 is dense
in G.

In view of Lemma 2.10, U
.a˛0 /

C < Gx. Moreover, by Lemma 2.11 we also have

.TS - lim/a�1
˛0 x D x;

which by Lemma 2.10 gives U .a˛0 /
� < Gx . By Lemma 3.1, the closed group

generated by the subgroups U
.a˛0 /

C and U .a˛0 /
� is normal in G. It is non-compact

as U
.a˛0 /

C is not precompact. We conclude thatGx contains a normal non-compact
subgroup of G, completing the argument by contradiction. �
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5. Images of homomorphisms

The main result of this section is the following theorem, whose proof will be
completed at the end of the section.

Theorem 5.1. Let G be a qss group and H an arbitrary Hausdor� topological
group. Let �WG ! H be a continuous homomorphism. Then �.G/ is closed.
If further G is separable then the induced map G= ker.�/ ! �.G/ is a homeo-
morphism and in particular �.G/ is locally compact.

We know by Theorem 3.4 that every locally compact image of a semisimple
group is qss. Applying the above theorem we obtain:

Corollary 5.2. Let G be a semisimple analytic group with a �nite center (the
k points of a Zariski connected semisimple algebraic group G, de�ned over a
local �eld k). Let H be a Hausdor� topological group. Let �WG ! H be
a continuous homomorphism. Then �.G/ is closed in H and the induced map
G= ker.�/ ! �.G/ is a homeomorphism. In particular, �.G/ is locally compact
and it is also qss.

Another corollary of Theorem 5.1 regards minimality of group topologies.
Given a group G, a group topology on G is a topology with respect to which
G becomes a topological group. We say that a Hausdor� topological group G is
topologically-minimal if there are no weaker Hausdor� group topologies on G.

Corollary 5.3. Every factor group of a separable qss group is topologically-
minimal.

Proof. Let G be a separable qss group and let N C G a closed normal subgroup.
Denote the quotient topology on G=N by T . Let T 0 � T be a Hausdor� group
topology on G=N . By setting H D .G=N; T 0/ and applying Theorem 5.1 we
conclude that T 0 D T . �

5.1. Closed images. We �rst prove the �rst part of Theorem 5.1.

Proposition 5.4. Let G be a qss group, H an arbitrary Hausdor� topological
group and �WG ! H a continuous injective homomorphism. Then �.G/ is closed
in H .

Proof. Set X D H and consider the left G action on X . Endow H with the left
uniform structure described in Example 2.6. This uniform structure is invariant
for the left regular action of H , and in particular under the G action, thus the
assumptions of Theorem 4.1 hold. By Corollary 4.2 theG-orbits are closed. Since
the image of � coincides with the orbit of the identity 1H , the proposition is
proved. �
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Note that a similar theorem was proven by Omori [34] for a class of connected
Lie groups, including all connected semisimple Lie groups with �nite center, un-
der the assumption that the target groupH satis�es the �rst axiom of countability.

5.2. Group topologies. In this subsection we set some preliminaries regarding
group topologies. If T is a group topology onG, setting T .e/ D ¹U j e 2 U 2 T º
where e 2 G denotes the identity element, it is standard that T D ¹gU j g 2 G,
U 2 T .e/º and

(1) for all U 2 T .e/ there exists V 2 T .e/ such that V � V � U and

(2) for all U 2 T .e/ and g 2 G also U�1; U g 2 T .e/.

The following lemma is straightforward and we leave its veri�cation to the reader.

Lemma 5.5. Let T be a group topology onG and A � G a dense subset. Assume
C � T .e/ is a collection satisfying

(1) for all U 2 C there exists V 2 C such that V � V � U and

(2) for all U 2 C and g 2 A also U�1; U g 2 C .

Then the topology generated by the collection ¹gU j g 2 A; U 2 C º is a group
topology on G (included in T ).

A topology is said to be countably generated (or second countable) if it is
generated as a topology by a countable sub-collection. The following proposition
is a useful step in the proof of the second part of Theorem 5.1.

Proposition 5.6. Let G be a group and T be a separable group topology on G.
Let D � T be a countable sub-collection. Then there exists a group topology
T 0 � T which is countably generated and such that D � T 0.

Proof. Choose a countable dense subsetA � G. For each elementU � D choose
gU 2 A \ U and set C1 D ¹g�1

U U j U 2 Dº. Clearly C1 � T .e/ is countable
and D � ¹gU j g 2 A; U 2 C1º. We construct countable collections Cn � T .e/

inductively as follows: given Cn, for eachU 2 Cn we choose VU 2 T .e/ such that
VU � VU � U and set

CnC1 D ¹VU j U 2 Cnº [ ¹U�1 j U 2 Cnº [ ¹U g j U 2 Cn; g 2 Aº:

Setting C D [Cn, it follows from Lemma 5.5 that the topology generated by the
countable collection ¹gU j g 2 A; U 2 C º is a group topology on G, which
contains D. �
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5.3. Completions. Given a uniform space, as in the case of a metric space, one
can consider Cauchy nets, that is nets .x˛/ such that for every uniformity U there
exists some ˛U such that for every ˛; ˛0 � ˛U , .x˛; x

0
˛/ 2 U . The uniform space

is said to be complete if every Cauchy net converges. Any uniform space could
be completed by adding ideal points: equivalence classes of Cauchy nets. Two
Cauchy nets .x˛/ and .yˇ / are equivalent if for any uniformity U there are ˛U and
ˇU such that for every ˛ � ˛U and ˇ � ˇU , .x˛; yˇ / 2 U .

Fix a topological groupG and recall the de�nition of the left uniform structure
given in Example 2.6. If it is complete than G is said to be Weil-complete (or
left-complete). Other uniform structures of interest on a topological group are
the right uniform structure, de�ned similarly to the left one, and the two sided
uniform structure, which is the �nest uniform structure contained in both the left
and the right ones. A group is said to be Raikov-complete if its two sided uniform
structure is complete. It is known (see e.g [1, Chapter 3.6]) that a Weil-complete
group is also Raikov-complete (and right-complete).

Proposition 5.7. Let G be a qss group. Let T be group topology on G included
in the original topology of G. Then .G; T / is Weil-complete. In particular it is
Raikov-complete.

Proof. Set X to be the completion of G with respect to the left uniform structure
associated with the group topology T and note that the left action of G on itself
extends to an action of G on X which satis�es the assumptions of Theorem 4.1.
Thus G � X is a closed G-orbit. Since G is dense in X , we conclude that
X D G, thus G is Weil-complete. As remarked above, it follows that G is also
Raikov-complete. An alternative way to see that G is Raikov-complete would be
by repeating the argument taking X to be the completion of G with respect to the
two sided uniform structure. �

5.4. Baire property. Recall that a topological group is said to be a Baire group
if its underlying topological space is a Baire space, that is the Baire Category
Theorem holds true.

A uniform structure is said to be countably generated if it contains a countable
collection of uniformities which is not contained in any proper sub-uniform-
structure. It is a standard fact that a countably generated uniform structure is
given by an equivalent pseudo metric on the space, which is a true metric i� the
generating uniformities separate points. The proof of the following Lemma is an
obvious adjastment of the standard proof that a complete metric space is Baire.
Alternatively, one can reduce it to the metric case by introducing an equivalent
metric.

Lemma 5.8. The underlying topological space of a complete, countably gener-
ated uniform space is Baire.
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Noticing that the left and right uniform structures of a topological group are
countably generated i� the topology is �rst countable (the identity has a countable
basis of neighborhoods) we get:

Corollary 5.9. A Raikov-complete �rst countable group is Baire. In particular, a
Weil-complete �rst countable is Baire.

The �nal step in the proof of Theorem 5.1 is given by:

Proposition 5.10. Let G be a separable qss group. Let T be a group topology on
G included in the original topology of G. Then .G; T / is a Baire group.

Proof. Let Un be a countable collection of open dense sets in T and denote by V
the complement of the T -closure of their intersection. Set D D ¹V º [ ¹Un j nº
and use Proposition 5.6 to �nd a �rst countable group topology T 0 on G such
that D � T 0 � T . Note that .G; T 0/ is Weil-complet by Proposition 5.7. We
deduce that V ¤ G by the fact that .G; T 0/ is a Baire group which follows from
Corollary 5.9. �

The above result is related to [6, Corollary 3.3].

5.5. Proof of Theorem 5.1. In view of Proposition 5.4 we only need to verify the
last sentence, namely that, assumingG is separable, the induced mapG= ker.�/ !
�.G/ is a homeomorphism. Note that G, being seprable, is �-compact. Note
further that �.G/ has the Baire property, by Proposition 5.10. In such a case it is
well known that �WG ! �.G/ is open, and the proof follows.

6. Measurable metrics and metric ergodicity

Theorem 4.1 and Corollary 4.2 (1) could be applied in the case whereX is a metric
space, taking the metric uniform structure and T D TS . We obtain:

Theorem 6.1. Let G be a quasi-semisimple group. Assume that G acts isomet-
rically and continuously on a metric space X and suppose that no non-compact
normal subgroup of G admits a global �xed point in X . Then the G-orbits are
closed in X and the points stabilizers are compact in G.

The following theorem has many ergodic theoretical applications.

Theorem 6.2. Let G be a Zariski connected, semisimple analytic group with a
�nite center (the k point of a Zariski connected semisimple algebraic group G,
de�ned over a local �eld k). LetH < G be a closed subgroup. Suppose thatG=H
admits a G-invariant, separable, measurable metric. ThenH contains a factor of
G as a cocompact subgroup.
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In case the metric is continuous, this theorem is an immediate application of
Theorem 6.1. Indeed, the associated uniform structure onG=H is G-invariant and
continuous. Replacing G by G=N where N is the action kernel, using the fact
that G=N is qss (Theorem 3.4) we see thatH , being the stabiliser of a point, must
be compact. The fact that the theorem applies also for measurable metrics is a
consequence of the following:

Lemma 6.3. Let G be a locally compact group and H < G a closed subgroup.
Denote by T the standard topology on G=H . Let d be a G-invariant, separable,
measurable metric on G=H . Then d is T -continuous.

Proof. We will prove that Td � T . Let � WG ! G=H be the quotient map. By the
de�nition of the topology T on G=H , � is T -open, so it is enough to show that �
is Td -continuous. By G-invariance it is enough to show continuity at e. Denote
by B.�/ the d -ball of radius � centered at �.e/. We need to �nd for every � > 0

an identity neighborhood U in G whose image is in B.�/. For a given � > 0 �x a
countable cover of G=H by balls of radius �=2. At least one of the preimages of
the balls is not Haar null, hence also the set A D ��1.B.�=2// is not null. One
easily checks that A D A�1 and �.AA/ � B.�/. Moreover, it is well known that
AA�1 contains an identity neighborhood U , as desired. �

Theorem 6.4. Let G be a semisimple analytic group with a �nite center (the k
point of a Zariski connected semisimple algebraic group G, de�ned over a local
�eld k). Let H < G be a closed subgroup. Assume there exists a metric d on G
which is separable, measurable, left G-invariant and right H -invariant. Then H
is compact.

Proof. By Lemma 6.3, d is continuous. By Theorem 6.2, H contains cocom-
pactly a factor G1 of G. Let X be G1 endowed with the induced metric. X is a
G1 � G1-space for the left and right actions which preserve the metric. It follows
by Corollary 4.2 (1) that the stabilizer of e, namely the diagonal copy of G1, is
compact. It follows that H is compact as well. �

De�nition 6.5. Let G be a group. Let X be a G-Lebesgue space, that is a
standard Borel space endowed with a measure class, on whichG acts measurably,
preserving the measure class. The action of G on X is said to be metrically
ergodic if for every separable metric spaceU on whichG acts isometrically, every
G-equivariant measurable function from X to U is a.e. a constant.

Theorem 6.6. Let G be a semisimple analytic group with a �nite center (the
k point of a Zariski connected semisimple algebraic group G, de�ned over a
local �eld k). Let H < G be a closed subgroup. Endow G=H with the unique
G-invariant Radon measure class. Then G=H is G-metrically ergodic if and only
if the image of H=G1 is not precompact in G=G1 for every proper factor group
G1 C G.
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An ergodic G-Lebesgue space X is not metrically ergodic if and only if it
is induced from an ergodic H -space, for some closed subgroup H < G which
contains cocompactly a factor group G1 C G with G=G1 non-compact.

Proof. Let G1 C G be a proper normal subgroup and suppose that H 0 D
HG1=G1 is compact in G0 D G=G1. Pick a positive function f 2 L2.G0/ and
average it over the right action byH 0, using the Haar measure onH 0. The function
obtained is H 0-invariant, but not G0-invariant (as G0 is non-compact), thus pro-
vides a non-constant G0-equivariant map G0=H 0 ! L2.G0/. Precomposing with
the map G=H ! G0=H 0 we disprove the metric ergodicity of G=H .

In addition, given a G-space X of the form X D IndG
H .X

0/ where X 0 is
an H -space on which H acts with co-compact kernel. Since H contains the
unimodular group G1 as a cocompact subgroup, it must be unimodular as well,
and the procedure above produces a non-constant G-map from X to L2.G=H/.

Let now X be an ergodic G-Lebesgue space which is not metrically ergodic,
and let �WX ! U be a G-equivariant map to a separable metric G-space. Let G1

be the maximal factor of G for which the image of X is essentially contained in
UG1 and let G0 D G=G1. By ergodicity of X we assume as we may that �.X/
intersects nully the �xed points set of all proper factors of G0 in UG1 . Replacing
U with UG1 minus the union of these �xed points sets, we may assume that the
action of G on U factors through G0 and that proper factors of G0 have no �xed
points. By Corollary 4.3 U=G0 is Hausdor�. Hence by the ergodicity of X , �.X/
is essentially supported on a unique orbit, which we identify with G0=H 0 for some
closed subgroup H 0 < G0. By Corollary 4.2, H 0 is compact in G0. Letting H be
the preimage of H 0 in G, we deduce that X is induced from H .

In particular, it follows that ifX D G=H isG-metrically ergodic then the image
of H is not precompact in G=G1 for every proper factor group G1 C G. �

The fact that metric ergodicity is preserved by a restriction to a lattice is
general. We record it here for reference.

Corollary 6.7. Let G be a semisimple analytic group with a �nite center, and
� a lattice in G. Then every metrically ergodic G-space Y is also �-metrically
ergodic.

In particular � acts metrically ergodically on G=H whenever H � G is a
closed subgroup whose image in every proper quotient of G is not pre-compact.

Proof. Assume that �WY ! U is a�-equivariant measurable map into a separable
metric space on which� acts isometrically. Replacing if necessary the metric d on
U by min¹d; 1º we assume that d is bounded. Consider the space of �-equivariant
measurable maps, de�ned up to null sets, L.G; U /� , endowed with the metric

D.˛; ˇ/ D

s

Z

�nG

d.˛.x/; ˇ.x//2dx
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where the integration is taken over a fundamental domain for � in G. De�ne
the map  WY ! L.G; U /� by  .y/.g/ D �.gy/. Note that indeed,  .y/ is
�-invariant, and further  intertwines the G-action on Y and the G-action on
L.G; U /� coming from the right regular action of G. By G-metric ergodicity of
Y we conclude that  is essentially constant. The essential image is aG-invariant
function on G, thus a constant function to U . This constant in turn is the essential
image of �, thus � is essentially constant as well. �

Recall that for probability measure preserving actions, metric ergodicity is
equivalent to the weak mixing property.

Corollary 6.8. Let G be a semisimple analytic group with a �nite center and
no compact factors. Let � be an admissible probability measure on G. Let
.X; �/ be a G-Lebesgue space endowed with a �-stationary ergodic probability
measure. Then X is metrically ergodic. In particular, if the action on X is
measure preserving then X weakly mixing (and in fact it is mixing modulo the
action kernel).

In fact, in the measure preserving case, G0 Õ X is even mixing, as we shall
see in 8.4. Below we sketch the proof of the corollary. Since we do not want to
dive into the details of the subject here, we address the interested reader to [3]
for further details and clari�cations. Assume that X is not metrically ergodic.
By Theorem 6.6, there exists a (non-compact) quotient group G0, a compact
group H 0 < G0 and an equivariant map �WX ! G0=H 0. Denote �0 D ��.�/.
Since �0 is recurrent with respect to a random sequence in G, while the action
is dissipative, we get a contradiction. We further remark that by the theory of
Furstenberg–Poisson boundaries, it is a general fact that the question of metric
ergodicity of a stationary measure reduces to the invariant measure case. Indeed,
the Furstenberg–Poisson boundary of a group, with respect to an admissible
measure, is always a metrically ergodic action. It follows that for a stationary
spaceX and an equivariant map into a metric space,X ! U , the pushed measure
is invariant: the associated boundary map from the Furstenberg–Poisson boundary
to Prob.U / must be constant, due to the existence of a natural invariant metric on
Prob.U /. Thus the corollary above is reduced to the classical theorem of Howe–
Moore, Theorem 8.4 which we will prove independently.

Corollary 6.9. Let G be a semisimple analytic group with a �nite center. Let
Y be a metrically ergodic G-space. Let X be an ergodic probability measure
preserving G-Lebesgue space. Then the diagonal action of G on X � Y is
metrically ergodic.

Proof. Assume that �WX � Y ! U is a G-equivariant measurable map into a
separable metric space on which G acts isometrically. By replacing if necessary
the metric d on U by min¹d; 1º we may assume that d is bounded. Consider the
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space of measurable maps, de�ned up to null sets, L.X; U /, endowed with the
metric

D.˛; ˇ/ D

s

Z

X

d.˛.x/; ˇ.x//2dx:

De�ne the map  WY ! L.X; U / by  .y/.x/ D �.x; y/. Note that  is
G-equivariant. By the G-metric ergodicity of Y we conclude that  is essentially
constant. The essential image is a G-equivariant map from X to U . By Corol-
lary 6.8, X is metrically ergodic as well, thus the latter map is also essentially
constant. It follows that � was essentially constant to begin with. �

7. Monoid compacti�cations

7.1. Ellis joint continuity. Let G be a topological group, X a topological space
and G �X ! X an action. We will say that the action is separately continuous if
for every x0 2 X and g0 2 G both maps

G �! X; g 7�! gx0; and X �! X; x 7�! g0x;

are continuous. We will say that the action is jointly continuous if the map

G �X �! X; .g; x/ 7�! gx;

is continuous.

Lemma 7.1. LetG be a topological group,X a locally compact topological space
and G �X ! X a separately continuous action. Consider the left regular action
of G on C0.X/ endowed with the sup-norm topology. Then the following are
equivalent:

(1) the action of G on X is jointly continuous;

(2) for every f 2 C0.X/, the orbit map G ! C0.X/ given by g 7! f .g�1�/ is
continuous;

(3) the action of G on C0.X/ is jointly continuous.

Proof. The fact that (1) implies (3) is standard. Clearly (3) implies (2) (in fact,
the converse implication is given by Lemma 2.8). We prove that (2) implies (1).
By Urysohn’s lemma, the collection of subsets of X of the form f �1.W / for
f 2 C0.X/ and W open in C is a subbasis for the topology. Fixing f and W ,
our aim is to show that for every g 2 G and x 2 X with gx 2 f �1.W / there
exists an open set .g; x/ 2 U � V � G � X such that U � V � f �1.W /. Choose
� > 0 for which the disc B.f .gx/; �/ � W and let

V D .g�1f /�1.B.g�1f .x/; �=2//:



1028 U. Bader and T. Gelander

Let U�1 � G be the preimage of B.g�1f; �=2/ � C0.X/ under the f -orbit map
G ! C0.X/; h 7! h�1f . Then U is open by our continuity assumption, and for
h 2 U; y 2 V ,

jf .hy/ � f .gx/j � j.h�1f � g�1f /.y/j C jg�1f .y/ � g�1f .x/j

< kh�1f � g�1f k C �=2

< �;

i.e. f .hy/ 2 W . Thus, U � V � f �1.W /. �

Theorem 7.2 (Ellis). LetG be a locally compact group and X a locally compact
space. Then every separately continuous action of G on X is jointly continuous.

This is a corollary of Ellis’ joint continuity theorem [13]. We give below an
independent short proof, assuming that G is �rst countable. We will relay on the
following well known fact.

Proposition 7.3. For a representation of a locally compact group on a Banach
space by bounded operators, the following are equivalent:

� the orbit maps are weakly continuous;

� the orbit maps are strongly continuous.

Proof. This is a standard approximate identity argument, see for example [24,
Theorem 2.8]. �

Proof of Theorem 7.2 for �rst countable groups. In view of Proposition 7.3 and
Lemma 7.1, it is enough to show that for f 2 C0.X/, the orbit map g 7! gf is
weakly continuous. By Riesz’ representation theorem every functional on C0.X/

is represented by a �nite complex measure and by the Hahn-Jordan decomposition
it is enough to consider a positive measure �. By the �rst countability of G it
is enough to prove that for a converging sequence in G, gn ! g, we have the
convergence

R

gnfd� !
R

gfd�. This indeed follows from Lebesgue’s bounded
convergence theorem. �

7.2. Monoids. Let .X; T / be a compact semi-topological monoid. By this we
mean thatX is a monoid and T is a compact topology on X for which the product
is separately continuous — for each y 2 X the functions

X �! X; x 7�! xy; and X �! X; x 7�! yx;

are both continuous, but the map X � X ! X may not be. Note that C.X/ is
invariant under left and right multiplication. For every f 2 C.X/ we denote
xf .y/ D f .yx/ and let Sf be the uniform structure obtained on X by pulling
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back the sup-norm uniform structure from C.X/ via the orbit map X ! C.X/,
x 7! xf . We let S be the uniform structure on X generated by all the structures
Sf , that is S D

W

f 2C.X/ Sf .

Lemma 7.4. The topology T is S -compatible.

Proof. Note that by Urysohn’s lemma T is the weakest topology on X generated
by the functions in C.X/. Thus it is enough to show that for a given f 2 C.X/,
the topology Tf , generated on X by f , is S -compatible. We will show that it is in
fact Sf -compatible.

Fix x 2 X and � > 0 and consider V D f �1.B.f .x/; �// 2 Tf . Set

V 0 D f �1.B.f .x/; �=2// 2 Tf and U D ¹.y; z/ j kyf � zf k < �=2º 2 Sf :

For y 2 UV 0 there exists some z 2 V 0 such that .y; z/ 2 U . Therefore

jf .y/ � f .x/j � jyf .e/� zf .e/j C jf .z/ � f .x/j < kyf � zf k C �=2 < �;

and thus y 2 V . It follows that UV 0 � V . �

Let now G be a locally compact group with a continuous monoid morphism
G ! .X; T /. Note that by Theorem 7.2 the product map G � X ! X is
continuous.

Lemma 7.5. The action of G on .X; S/ is continuous and equicontinuous.

Proof. It is enough to show that for every f 2 C.X/ the action of G on .X; Sf /

is continuous and equicontinuous. Fix f 2 C.X/. We �rst show that the action
on .X; Sf / is equicontinuous. For every � > 0 consider the uniformity

U D ¹.x; y/ j kxf � yf k < �º:

Then

gU D ¹.gx; gy/ j kxf � yf k < �º

D ¹.x; y/ j kg�1.xf � yf /k < �º

D ¹.x; y/ j kxf � yf k < �º

D U;

and uniform continuity follows. We now show that the action is continuous.
By Lemma 2.8 it is enough to show that for a given x 2 X the x-orbit map
G ! .X; TSf

/ is continuous. This is equivalent to showing that the xf -orbit
map G ! C.X/ is strongly continuous, which is given by Lemma 7.1. �
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Let us summarize the conclusions of this section:

Theorem 7.6. Let G be a locally compact group and .X; T / a compact semi-
topological monoid. Suppose we are given a continuous monoid representation
G ! X and let S be the associated uniform structure on X . Then

� T is an S -compatible,

� the left regular action G Õ X is jointly continuous with respect to both
topologies T and TS , and

� G Õ X is equicontinuous with respect to S .

7.3. Weakly almost periodic rigidity. Let G be a locally compact group. By a
monoid representation of G we mean a continuous monoid homomorphism from
G into a compact semi-topological monoid.

Example 7.7. If G is non-compact we denote by G� the one-point compacti�ca-
tion of G, G [ ¹1º, with the multiplication extended from that of G by

g1 D 1g D 11 D 1

for every g 2 G. We let i�WG ! G� be the obvious embedding. If G is compact
we set G� D G and i� D the identity map. In both cases, i�WG ! G� form a
monoid representation of G.

We will say that a monoid representation with dense image i WG ! X is
universal if for every monoid representation j WG ! Y there exists a unique
continuous monoid homomorphism kWX ! Y such that j D ki . The pair .i; X/
will be referred as a universal system.

Theorem 7.8. The locally compact groupG admits a universal monoid represen-
tation i WG ! X . Every two universal systems are uniquely isomorphic. Further-
more, i is a homeomorphism into its image and i.G/ is open and dense in X .

Proof. The collection of isomorphism classes of monoid representations of G
with dense images forms a set; it could be described for example as a subset of the
set of all norm closed subalgebras ofCb.G/. Pick one representative for each class
and consider the product space of those, let i be the diagonal morphism from G

to this product space and let X be the closure of i.G/. The existence of k follows
immediately. The uniqueness of k follows by the fact that i.G/ is dense in X , and
the uniqueness of the pair .i; X/ is obvious. That i.G/ is open follows from the
fact that G� is a factor of X . �
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De�nition 7.9. The representation alluded to in Theorem 7.8 is called WAP.G/.

The representation WAP.G/was de�ned and studied by de Leeuw and Glicks-
berg. Our presentation here is slightly di�erent from theirs.

Remark 7.10. By the Gelfand–Neumark theory, compacti�cations of G corre-
spond to point separating �-subalgebras ofCb.G/, where general �-subalgebras of
the latter correspond to compacti�cations of (topological) quotients of G, and the
Stone–Čech (the largest) compacti�cation correspond to the full algebra Cb.G/.
Among these, the monoid representations of G correspond to subalgebras carry-
ing an additional structure, and WAP.G/ corresponds to the largest such algebra.
It can be shown that it is the algebra of weakly almost periodic functions on G,
hence the notation. We will not elaborate on the point of view of almost periodic
functions on G.

De�nition 7.11. A group G will be said to be WAP-rigid if WAP.G/ ' G�.

Example 7.12. If G is compact then clearly WAP.G/ D G D G� and G is WAP-
rigid.

The following theorem, which was proved �rst in [39] and [14] (for simple Lie
groups), could be seen as a special case of Theorem 7.14 below. For clarity we
give a separate proof.

Theorem 7.13 ([39],[14]). Let G be an almost simple analytic group over a local
�eld. Then G is WAP-rigid.

Proof. We assume G is non-compact. Let j WG ! X be any monoid representa-
tion of G. We will construct a continuous monoid morphism kWG� ! X satis-
fying j D ki�. Such a morphism is clearly unique. In view of Theorem 7.6 we
are in the situation to apply Theorem 4.1 to either the left or the right actions of G
on X . Upon replacing X with X � G� we may assume that j.G/ D Ge D eG is
non-compact. We therefore get by Theorem 4.1 the existence of a point x 2 j.G/

which is rightG-invariant and a point y 2 j.G/which is leftG-invariant. By con-
tinuity of the product in X we have x D xy D y. It follows that x is the unique
left G-invariant point in j.G/. We then de�ne kWG� ! X by setting k.g/ D ge

for g 2 G and k.1/ D x. Clearly k is a continuous morphism. �

We now discuss semisimple (rather than simple) groups. Let G be a �nite
centred semisimple analytic group over a local �eld. Then G D G0G1 � � �Gn

where G0 is compact and G1; : : : ; Gn are the non-compact almost simple factors.
For each I � ¹1; : : : ; nº we let

GI D
Y

i2I

Gi < G and GI D G=GI :
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In particular, G¹1;:::;nº is a quotient of G0 hence a compact group. Note that
for I � J there is a natural homomorphisms �I

J WGI ! GJ . We denote
�J D �;

J WG ! GJ .
We de�ne

{G D
a

I�¹1;:::;nº

GI :

The sets of the form
[

J 0�J

.�J 0

J /
�1.U / and {G n

[

J 0�J

.�J 0

J /
�1.K/;

where J is a subset of ¹1; : : : ; nº, U � GJ is open and K � GJ is compact,
generate a compact Hausdor� topology on {G. We always refer to this topology
when regarding {G as a topological space. In order to understand this topology
it might be helpful to note that for I � ¹1; : : : ; nº and a sequence gn 2 GI ,
{G- lim gn D lim �J .gn/ if and only if the right hand side limit, which is the
standard limit in the group GJ , exists, where J is the minimal set satisfying
I � J � ¹1; : : : ; nº for which �I

J .gn/ is bounded.
We introduce a natural monoid structure on {G as follows. For I; J � ¹1; : : : ; nº

and g 2 GI , h 2 GJ we set gh D �I\J
I .g/�I\J

J .h/ 2 GI\J . This makes {G a
compact semi-topological monoid.

Theorem 7.14. WAP.G/ ' {G.

Proof. We prove the theorem by induction on n, the number of non-compact
simple factors of G. The induction basis is the case n D 1 which follows
from Theorem 7.13. We let j WG ! X be a monoid representation. For any
I ¨ ¹1; : : : ; nº we have by our induction hypothesis WAP.GI / D {GI . In particular
WAP.GI / has a unique left GI -�xed point which is also a unique right GI -�xed
point (as GI has no compact factor). It follows that there is a unique left GI -�xed
point which is also a unique right GI -�xed point in j.GI /. We denote it by eI .
We de�ne a map {G ! X by sending g 2 GI to geI . One checks that this is a
continuous morphism. �

8. WAP representations and mixing

Let k be a topological �eld. Let V; V 0 be k-vector spaces and h�; �iWV � V 0 ! k a
bilinear form. For v 2 V and � 2 V 0 we denote �.v/ D hv; �i. We assume that
the elements of V 0 separate the points in V and the elements of V separate the
points of V 0. We denote by End.V /V

0

the algebra of endomorphisms T 2 End.V /
satisfying for every � 2 V 0 that � ı T is represented by an element (necessarily
unique) of V 0, to be denoted T�.
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We endow V with the weak topology, namely the weakest topology for which
every � 2 V 0 is a continuous function to k. Note that the elements of End.V /V

0

are continuous functions from V to V . Considering the Tychono� topology on
.V;weak/V , using the embedding End.V / ! V V , T 7! .T v/v, we obtain the
weak operator topology on End.V /, and in particular on End.V /V

0

. Check that the
composition operation on End.V /V

0

is continuous (separately) in each variable,
thus End.V /V

0

becomes a semi-topological monoid. Note that A � End.V /V
0

is
precompact if and only if Av is precompact in V for every v.

Let G be a topological group. By a continuous representation of G to V we
mean a continuous monoid homomorphism �WG ! End.V /V

0

. The represen-
tation � is said to be weakly almost periodic, or WAP, if �.G/ is precompact in
End.V /V

0

, or equivalently, if �.G/v is precompact in V for every v 2 V . In that
case, �.G/ is a semi-topological compact monoid.

A representation of G on a Banach space V is said to be a Banaach WAP
representaton if it is WAP with respect to the pairing of V with V �, the space of
bounded functionals on V .

Example 8.1. Let U be a Banach space, and consider a strongly continuous
homomorphism G ! Iso.U /. Let V D U � and V 0 D U , the pairing be the usual
one, and the representation � be the contragradient representation. By Banach–
Alaoglu theorem, � is a WAP representation. A special case of this example is
any isometric representation on a re�exive Banach space, and in particular any
unitary representation on a Hilbert space. In these cases � is a Banach WAP
representation.

The following is an immediate application of Theorem 7.8.

Corollary 8.2. Let G be a locally compact topological group and let i WG ! X

be its universal monoid representation into a compact semi-topological monoid.
Then every WAP-representation �WG ! End.V /V

0

factors as a representation of
X , that is there exists a continuous monoid homomorphism �0WX ! End.V /V

0

such that � D �0 ı i .

For a locally compact topological group G, �WG ! End.V /V
0

is said to be
mixing if for every v 2 V , � 2 V 0,

lim
g!1

hgv; �i D 0:

Theorem 7.14 gives a structure theorem of representation of semisimple groups.

Theorem 8.3. Let G be a semisimple group and let �WG ! V be a WAP
representation. Then V decomposes as a direct sum of representations V D
L

I�¹1;:::;nº VI such that on VI the G-representation factors through GI and
proper factors of GI have no �xed points in VI . Furthermore, for every I , the
representation VI is GI mixing.
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A special case of Theorem 8.3 is the classical theorem of Howe–Moore [22].

Theorem 8.4 ([22, Theorem 5.1]). Let G be a semisimple analytic group with
a �nite center (the F point of a Zariski connected semisimple algebraic group
G, de�ned over a local �eld F ) and no compact factor. Then every ergodic
probability preserving action is mixing modulo the action kernel.

Proof. Apply the last corollary to the Koopman representation. �

9. Banach modules

We shall now concentrate on the special case of uniformly bounded representa-
tions on Banach spaces. The main result of this section, Theorem 9.2, is a straight-
forward consequence of Theorem 8.3, when G is a semisimple group. However,
because of the importance of this special case, and for the convenience of the
users, we decided to give a self contained discussion that avoids the more general
notion of WAP representations. In particular, we shall provide an alternative proof
for Theorem 9.2. Since we shall rely in this section only on Theorem 4.1, we can
state the results for the class of quasi-semisimple groups rather than semisimple
groups.

Let V be a Banach space and S the norm uniform structure on V . We denote
by B.V / the algebra of bounded linear operator on V and by GL.V / the group of
invertibles inB.V /. A group representation �WG ! GL.V / is said to be uniformly
bounded if

sup
g2G

k�.g/kop < 1;

i.e. if it induces a uniform action on .V; S/. We denote by ��WG ! GL.V �/

the dual (contragradient) representation. Since k�.g/�kop D k�.g/kop, �� is
uniformly bounded i� � is. We will focus on the case where G is a topological
group and the representation � is continuous with respect to the strong operator
topology.

De�nition 9.1. We will say that .V; �/ is a G-Banach module if V is a Banach
space, G is a topological group and �WG ! GL.V / is a uniformly bounded
representation which is continuous in the sense that the mapG�V ! V; .g; v/ 7!

�.g/.v/ is continuous. We will say that .V; �/ is a G-Banach �-module if also the
dual representation ��WG ! GL.V �/ is continuous in the same sense.

By Lemma 2.8, � is continuous i� its orbit maps are continuous. We note that
by [29, Corollary 6.9] if V is Asplund (e.g if V is re�exive) and G is an arbitrary
topological group then every G-Banach module is automoatically a �-module.
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Apart from the norm topology, V and V � are equipped with the weak and the
weak� (hereafter w and w�) topologies. It is obvious that these topologies are
compatible with the norm uniform structure. IfG is locally compact, it follows by
a standard argument of approximating identity in L1.G/ that a uniformly bounded
representation is strongly continuous i� it is weakly continuous, see for example
[24, Theorem 2.8]. This is also the case when V is re�exive and G is arbitrary,
see [30, 31].

Theorem 9.2. Let G be a quasi-semisimple group. Let .V; �/ be a G-Banach
�-module. Assume that no point in V � n ¹0º is �xed by a non-compact normal
subgroup of G. Then for every f 2 V �,

Gf
w�

D Gf [ ¹0º;

and � is mixing in the sense that all matrix coe�cients tend to 0.

Proof. Given f 2 V � n ¹0º, consider the spaceX D conv.Gf /n ¹0º. Let S be the
norm uniform structure on X and T the weak*-topology. By the Hahn–Banach
and Alaoglu’s theorems .X; T / is locally compact. By Corollary 4.2,Gf is weak*-
closed in X and homeomorphic to the coset space G=Gf , where the stabiliser Gf

is compact. Thus the orbit Gf is non-compact. It follows that it is not weak*-

closed in the compact space conv.Gf /, and hence that Gf
w�

D Gf [ ¹0º. Since
the latter is compact while Gf is a proper G space, it follows that gf ! 0 (in the
weak-� sense) when g ! 1 in G. �

Remark 9.3. It follows, for instance, that for a non-compact QSS simple groupG,
the existence of a nonzero invariant vector (or more generally a vector with a non-
compact stabiliser) in a Banach �-module V implies the existence of a non-zero
invariant vector in V �. This property does not hold for general groups; for example
consider the regular representation of a discrete non-amenable group � on the
space L1.�/.

When V is re�exive, the a priory weaker assumption thatG doesn’t �x a vector
in V , is actually su�cient.

Lemma 9.4. Let L be a group and �WL ! GL.V / a uniformly bounded linear
representation on a re�exive Banach spaceV . IfL has a non-zero invariant vector
in V � then it has a non-zero invariant vector in V .

Proof. Suppose that f 2 V � is anL-invariant norm one functional. The invariant
set of supporting unit vectors

Sf D ¹v 2 V W hf; vi D kvk D 1º
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is non-empty by the Hahn–Banach theorem and weakly compact by Alaoglu’s
theorem. Hence the Ryll-Nardzewski �xed-point theorem implies that L admits a
�xed point in Sf �

Corollary 9.5 (Howe–Moore’s theorem for re�exive Banach spaces, [39]). LetG
be a quasi-semisimple group. Let .V; �/ be a re�exiveG-Banach module. Assume
that no point in V n ¹0º is �xed by a non-compact normal subgroup of G. Then

for every f 2 V �, Gf
w�

D Gf [ ¹0º, and � is mixing.

We conclude this paper by remarking that for every group G, every WAP
function on G appears as a matrix coe�cient of some re�exive representation.
This result is due to [31], following the important main theorem of [11]. In this
regard, one reverses the logical order and use Corollary 9.5 in order to prove results
on WAP compacti�cations.

10. Further discussion

In writing this paper, our general attitude was to use the axiomatic approach as
long as it simpli�es and clari�es the discussion, but to keep in mind that the main
objects of interest are the classical semisimple groups over local �elds. We held,
until now, the temptation of further generalize and axiomatize the results in the
price of possibly obscuring their formulation. We will do this (generalize and
obscure) in this section.

De�nition 10.1. A locally compact group is called hereditary qss (or hqss) if every
non-compact quotient of it is qss.

It is clear that semisimple groups over local �elds are hqss. We invite the
enthusiastic reader to check that (mutatis mutandis) Theorem 6.2, Theorem 6.4,
Theorem 6.6, Corollary 6.7, Corollary 6.8, Corollary 6.9 and Theorem 8.4 are all
still valid for the class of hqss group.

Obviously, every simple qss group is hqss (more generally: almost simple qss
groups, qss groups for which every proper normal subgroup is precompact), thus
the examples discussed in Theorem 3.7 are hqss. Note also that the class HQSS
consisting of hqss groups is closed under taking products (and quotients). The
reader is also invited to check that Theorem 7.13 is valid for (almost) simple qss
groups and Theorem 7.14 for products of such.
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