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Abstract. We consider a random walk on the mapping class group of a surface of �nite

type. We assume that the random walk is determined by a probability measure whose

support is �nite and generates a non-elementary subgroup H . We further assume that

H is not consisting only of lifts with respect to any one covering. Then we prove that

the probability that such a random walk gives a non-minimal mapping class in its �bered

commensurability class decays exponentially. As an application of the minimality, we prove

that for the case where a surface has at least one puncture, the probability that a random

walk gives mapping classes with arithmetic mapping tori decays exponentially. We also

prove that a random walk gives rise to asymmetric mapping tori with exponentially high

probability for closed case.
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1. Introduction

Let S be an orientable surface of �nite type .g; n/, where g is the genus and n

is the number of punctures. We consider a random walk on the mapping class

group G WD Mod.S/ which is determined by a probability measure on G whose

support generates a non-elementary subgroup. It has been shown that such a ran-

dom walk gives rise to pseudo-Anosov elements with asymptotic probability one

[18, 21, 22, 30]. Let � be a probability measure on G. A subset A � G is said to

be exponentially small (with respect to �) if the probability that the random walk

determined by � visits A decays exponentially with the number of steps. A subset

is called exponentially large (with respect to �) if its complement is exponentially

small. The work of Maher [22] can be stated as “the set of pseudo-Anosov ele-

ments is exponentially large.” In this paper, we consider �bered commensurability,

a notion introduced by Calegari, Sun, and Wang [7], of random mapping classes.

Roughly, a mapping class � is said to cover another mapping class ' if � is a power



1254

of some lift of ' with respect to some �nite covering of underlying surfaces. The

commensurability with respect to this covering relation is called �bered commen-

surability. Each commensurability class enjoys an order by the covering relation.

It has been shown [7, 24] that for pseudo-Anosov case, each commensurability

class contains a unique minimal (orbifold) element (see Theorem 2.3). Our aim

is to prove that the set of minimal elements is exponentially large with respect to

any measure which satis�es a suitable condition (Condition 1.2). As an applica-

tion of the minimality, we also show a result on arithmeticity of random mapping

tori. By using random walks on G, we may generate randomly 3-manifolds by

taking mapping tori. The work of Thurston [31] together with [22] shows that

the set of mapping classes with hyperbolic mapping tori is exponentially large.

A cusped hyperbolic 3-manifold is called arithmetic if it is commensurable to a

Bianchi orbifold (see §5.1). Several distinguished hyperbolic 3-manifolds, for ex-

ample the complement of the �gure eight knot or the Whitehead link, are known to

be arithmetic. However, a “generic” hyperbolic 3-manifold is believed to be non-

arithmetic. The minimality of random mapping classes together with the work by

Bowditch, Maclachlan, and Reid [5] enables us to prove that the set of mapping

classes with arithmetic mapping tori is exponentially small if S has at least one

puncture. We also prove that the set of mapping classes with asymmetric mapping

tori is exponentially large for closed case.

The paper is organized as follows. In §2, we prepare several de�nitions and

facts about random walks on groups and mapping class groups. Note that to prove

that a given mapping class � is minimal, it su�ces to show that � is primitive and

not symmetric. In §3 we prove the primitivity of random mapping classes.

Theorem 1.1. Let � be a probability measure on G whose support is �nite and

generates a non-elementary subgroup. Then the set of primitive elements in G is

exponentially large with respect to �.

Next, we prove that random mapping classes are not symmetric in §4. We

call a mapping class symmetric if it is a lift with respect to some �nite covering

� W S ! S 0. We need further assumption for the measure � to avoid the case that

there is some �nite covering � W S ! S 0 such that every element in the support

of � is a lift of a mapping class on S 0. Let PMF.S/ denote the set of projective

measured foliations on S , where in the case of orbifolds, we consider the one for

the surface we get by puncturing the orbifold points. Each covering � W S ! S 0

determines a map …WPMF.S 0/ ! PMF.S/ so that a 2 ….PMF.S 0// if and only

if �.a/ 2 PMF.S 0/. Let gr (resp. sgr.�/) denote the group (resp. semigroup)

generated by the support of �. The condition for the measure � which we need is

the following.

Condition 1.2. The support is �nite, and generates a non-elementary subgroup

of G. Moreover, for any (possibly orbifold) covering � W S ! S 0, sgr.�/ contains

a pseudo-Anosov element whose �xed points set is disjoint from ….PMF.S 0//.
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Note that since ….PMF.S 0// is closed (see e.g. [15, §2.2]) and the set of

all stable and unstable foliations of all pseudo-Anosov elements are dense [20,

Lemma 3.4], Condition 1.2 is satis�ed if � has �nite support which generates G.

In §4, we prove:

Theorem 1.3. Let � be a probability measure on G which satis�es Condition 1.2.

Then the set of symmetric elements is exponentially small with respect to �.

Putting Theorems 1.1 and 1.3 together, we have:

Theorem 1.4. Let � be a probability measure on G which satis�es Condition 1.2.

Then the set of minimal elements in their �bered commensurability class is expo-

nentially large with respect to �.

Finally in §5.1, we prove the following theorem.

Theorem 1.5. Suppose that S has at least one puncture. Let � be a probability

measure on G which satis�es Condition 1.2. Then the set of mapping classes with

arithmetic mapping tori is exponentially small with respect to �.

In §5.2, it is proved that closed random mapping tori are asymmetric.

2. Preliminary

In this section, we summarize several de�nitions and facts that we use throughout

the paper. Interested readers may refer to several papers regarding to random walks

on the mapping class groups (for example [16, 21]) in which there are detailed

expositions of basic theory of both random walks and mapping class groups.

2.1. Random walks on groups. We recall the de�nitions and terminologies of

random walks. See [33] for more details about random walks on groups. Let

G be a countable group. A (possibly in�nite) matrix P D .pg;h/g;h2G is called

stochastic if every element is non-negative and

X

h2G

pg;h D 1

for all g 2 G. For a given probability measure � on G, by putting pg;h D �.g�1h/,

we have a stochastic matrix P� D .pg;h/g;h2G . Let Pn denote the probability

measure on .Gn; 2Gn

/ de�ned by

Pn.A/ D
X

.g1;:::;gn/2A

pid;g1
pg1;g2

� � � pgn�1;gn
for A 2 2Gn

:
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Note that by de�nition, we have PnC1.A � G/ D Pn.A/ for any A 2 2Gn

. Let

B.GN/ denote the �-algebra generated by cylinder sets, where a cylinder set is a

subset de�ned as

¹! D .!n/n2N 2 GN j .!1; : : : ; !n/ 2 Aº

for some A � Gn. Then by the Kolmogorov extension theorem, there exists a

unique measure P on .GN;B.GN// which satis�es

P.A � GN/ D Pn.A/ for all n 2 N and A 2 2Gn

:

For ! D .!n/ 2 GN, we de�ne G-valued random variables Xn on .GN;B.GN//

by Xn.!/ D !n. Thus we have a stochastic process ¹Xnºn2N which is a Markov

chain with the transition matrix P�. We call this Markov chain ¹Xnºn2N the

random walk determined by �.

Let us �x a probability measure � and the random walk determined by �. Each

element .!n/n2N 2 GN is called a sample path. Let A � G. By abbreviation of

notations, we write P.!n 2 A/ to mean P.Gn�1 � A � GN/. A subset A � G

is called exponentially small (with respect to �) if there exist c < 1; K > 0

which depend only on � and A such that P.!n 2 A/ < Kcn. A subset is called

exponentially large (with respect to �) if its complement is exponentially small.

Let Q be a property for elements in G. We say that the random walks determined

by � has property Q with exponentially high probability if SQ WD ¹g 2 G j
g is Qº is exponentially large. It can be readily seen that if A; B � G are both

exponentially small (resp. large), then so is A [ B (resp. A \ B).

2.2. Mapping class groups and curve graphs. For more details about topics

in this subsection, one may refer to the books [3, 9]. Let S WD Sg;n be an

orientable surface of �nite type .g; n/ where g is the genus and n is the number of

punctures. In this paper, we always suppose 3g�3Cn > 0 unless otherwise stated.

The mapping class group Mod.S/ is the group of isotopy classes of orientation

preserving automorphisms on S . A mapping class is called pseudo-Anosov if it is

aperiodic and has no �xed 1-dimensional submanifold of S . Thurston [32] showed

that each pseudo-Anosov mapping class has exactly two �xed points Fs;Fu in the

spacePMF.S/ of projective measured foliations. A subgroup of Mod.S/ is called

non-elementary if it contains two pseudo-Anosov mapping classes with disjoint

�xed points in PMF.S/.

The curve graph C.S/ of S is a graph whose vertices consist of isotopy

classes of simple closed curves, and two vertices are connected by an edge if

the corresponding curves can be disjointly represented on S . By giving length

1 to every edge, the curve graph enjoys a metric dC.S/.�; �/. If S is an annulus,

then vertices of C.S/ are essential arcs, considered up to isotopy relative to their

boundary. Edges are placed between vertices with representatives having disjoint

interiors.
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Let .X; dX/ be a metric space. For a �xed point p 2 X , the Gromov product

.x � x0/p of two points x; x0 2 X is de�ned by

.x � x0/p D 1

2
.dX .x; p/ C dX .x0; p/ � dX .x; x0//:

Then for r > 0, a shadow Sp.x; r/ � X is de�ned by

Sp.x; r/ WD ¹y 2 X j .x � y/p � rº:

Note that this de�nition of shadow is not standard in the literature (see e.g. [23]

for the standard one). We use this de�nition for the convenience of the proof

(c.f. [22]). If we have another metric space .Y; dY /, a map f W X ! Y is said to

be Q-quasi-isometric if for any x; x0 2 X ,

dX .x; x0/=Q � Q � dY .f .x/; f .x0// � QdX .x; x0/ C Q:

Such f is called Q-quasi-isometry if it further satis�es that for any y 2 Y , there

exists x 2 X such that dY .y; f .x// < Q. Two metric spaces are said to be quasi-

isometric if there is a Q-quasi-isometry between the two. Suppose further that X

is a geodesic space. Then X is called ı-hyperbolic if every geodesic triangle is

ı-thin; one side of a geodesic triangle is contained in the ı-neighborhood of the

other two sides. X is called hyperbolic if it is ı-hyperbolic for some ı � 0. Two

geodesics in X are said to be asymptotic if they are �nite Hausdor� distance apart.

We de�ne the Gromov boundary as the set of asymptotic classes of geodesics.

Hyperbolicity is invariant under quasi-isometries, and a quasi-isometry induces

a homeomorphism of the Gromov boundaries. For two points x; x0 in a geodesic

space X , we denote by Œx; x0� a geodesic connecting x and x0. Note that there can

be many such geodesics, and Œx; x0� is an arbitrarily chosen one. We suppose that

if a; b 2 Œx; x0�, then Œa; b� � Œx; x0�.

Remark 2.1. It is well known that if X is ı-hyperbolic, the Gromov product

.x; x0/p is equal to the distance from p to Œx; x0� up to additive constant K which

depends only on ı (c.f. Lemma 4.13). By this fact, a shadow Sp.x; r/ for x 2 X and

r > 0 can be (coarse equivalently) regarded as the set of x0 2 X such that every

geodesic connecting p and x0 passes through a point in the .dX .x; p/ � r C C /-

neighborhood of x for some C depending only on ı.

In [25], Masur-Minsky proved that the curve graph C.S/ is hyperbolic. The

mapping class group G WD Mod.S/ acts isometrically on C.S/. Using this action,

by �xing a base point p 2 C.S/, G admits a ı-hyperbolic (improper) metric which

we denote again by dC.S/;

dC.S/.g; h/ D dC.S/.gp; hp/:
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2.3. Commensurability of mapping classes. In [7], Calegari, Sun, and Wang

de�ned commensurability of mapping classes on possibly distinct surfaces as

follows.

De�nition 2.2 ([7]). Let S1 and S2 be orientable surfaces of �nite type. A map-

ping class �1 2 Mod.S1/ covers �2 2 Mod.S2/ if there exists a �nite covering

� W S1 ! S2 and k 2 Z n ¹0º such that a lift ' of �2 with respect to � satis�es

'k D �1. Two mapping classes are said to be commensurable if there exists a

mapping class that covers both.

Since this gives commensurability of the monodromies of �bers on orientable

surface bundles over the circle, this notion is also called �bered commensurability.

Commensurability gives rise to an equivalence relation by taking transitive clo-

sure. We consider conjugacy classes in order to have each commensurability class

enjoy an order by covering relation (see [7] for a detail). We call a mapping class

minimal if it is a minimal element with respect to the order in its commensurabil-

ity class. By extending our category to the orbifolds and orbifold automorphisms,

for the cases where mapping classes are pseudo-Anosov, we have the following

uniqueness of minimal element.

Theorem 2.3 ([7, 24]). If � 2 Mod.S/ is pseudo-Anosov, then the commensura-

bility class of � contains a unique minimal (orbifold) element.

Note that a mapping class � is minimal if it is primitive (i.e. if 'k D �, then

k D 1 and � D ', or k D �1 and � D '�1) and it is not a lift of any orbifold

automorphism.

3. Random mapping classes are primitive

Throughout this section, let us �x an orientable surface S of �nite type and denote

by G the mapping class group Mod.S/. To prove the primitivity, we consider

the action of G on the curve graph C.S/. We shall �x a base point p 2 C.S/.

For g 2 G, the translate gp 2 C.S/ is also denoted by g by abuse of notation.

We abbreviate the distance on C.S/ to dC.�; �/. In this section, unless otherwise

stated, we consider the random walk determined by a probability measure � on G

with �nite support which generates a non-elementary subgroup.

3.1. Random mapping classes do not (anti-)align. We �rst recall the work of

Calegari and Maher [6].

De�nition 3.1. Let p0; : : : ; pn be points in C.S/ and 
 D Œp0; pn�. A point y 2 


is D-proximal (with respect to p0; : : : ; pn) if dC.y; pi/ < D for some 0 � i � n.

Let 
D denote the subset of D-proximal points of 
 .
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Let ! D .!n/ be a sample path in GN, then for large enough n, Calegari-Maher

proved that most part of Œ!0; !n� should be D-proximal with exponentially high

probability.

Lemma 3.2 ([6, Lemma 5.14]). There are constants C1; K > 0 and c < 1 so

that for any � > 0, there is a further constant D depending on C1 and � with the

following property. Let 
 WD Œ!0; !n� and 
D denote the set of D-proximal points

on 
 with respect to !0; : : : !n 2 C.S/. Then

P..length.
/ � C1n/ ^ .length.
D/=length.
/ � 1 � �// � 1 � Kcn:

Lemma 3.2 shows that coarsely, any random walk fellow travels with a geo-

desic connecting the endpoints with exponentially high probability.

We also recall the work of Maher which shows that each shadow is exponen-

tially small.

Lemma 3.3 ([22]). There are constants K > 0 and c < 1 such that for any

q 2 C.S/ and any r ,

P.!n 2 S1.q; r// < Kcr :

Throughout in this section, we suppose that a path in C.S/ is a continuous

map Œ0; 1� ! C.S/. Hence for a given path 
 , 
.0/ denotes the initial point and


.1/ denotes the terminal point. Two paths 
1 and 
2 are said to be D-aligned

(resp. D-anti-aligned) if there exists h 2 G such that dC.h
1.0/; 
2.0// < D and

dC.h
1.1/; 
2.1//<D (resp. dC.h
1.1/; 
2.0//<D and dC.h
1.0/; 
2.1// < D).

Lemma 3.4 below looks quite similar to [6, Lemma 5.26] showing the proba-

bility that a random walk has two anti-aligned subpaths decays polynomially.

Lemma 3.4 shows the probability that a random walk has aligned subpaths de-

cays exponentially. The order of the decay is exponential since we consider the

case that a random walk has aligned subpaths of length of linear order (see prop-

erty (1) of Lemma 3.4) while in [6], the order was of logarithm. Although one can

prove Lemma 3.4 by almost the same argument as in [6], we include a proof for

completeness. Recall that by the work of Bowditch [4], the action of G on C.S/ is

acylindrical; for any C1 > 0, there are constants C2; C3 such that for a; b 2 C.S/

with dC.a; b/ � C2, there are at most C3 elements h 2 G with dC.a; ha/ � C1

and dC.b; hb/ � C1.

Lemma 3.4 (c.f. [6, Lemma 5.26]). Fix D; M > 0. Then there is a constant

c1 < 1, K > 0 such that the following holds. Consider the collection of indices

a < a0 < b < c < c0 < d for which there are geodesics ˛ WD Œ!a; !b� and

ˇ WD Œ!c ; !d � with the following properties:

(1) length.˛/ � Mn and similarly for ˇ;

(2) there is t 2 Œ0:1; 0:2� so that dC.!a0 ; ˛.t// � D and dC.!c0 ; ˇ.t// � D;

(3) there is some h 2 G so that dC.h˛.0/; ˇ.0// � D, and dC.h˛.1/; ˇ.1// � D.

The probability that this collection of indices is non-empty is at most Kcn
1 .
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Proof. We �rst �x a < a0 < b < c < c0. To satisfy conditions (2) and (3), we

need to have h 2 G such that dC.h!a; !c/ � C1 and dC.h!a0 ; !c0/ � C1 for

some constant C1 depending only on D and the hyperbolicity constant ı. Hence,

the acylindricity of the action of G on C.S/ implies that if ˛ D Œ!a; !b� is long

enough, there is a set A � C.S/ of at most C3 points so that !d should be in

D neighborhood of some point x 2 A where C3 depends only on D and ı. By

Remark 2.1, it follows that !d 2 S!c0
.x; dC.!c0 ; x/ � C / for some C depending

only on ı. Then by Lemma 3.3, the probability that a random walk from !c0 is in

S!c0
.x; dC.!c0 ; x/ � C // decays exponentially since dC.!c0 ; x/ is at least 8Mn=10

by the conditions (1) and (2). Since the number of elements of A is universally

bounded, the probability that a < a0 < b < c < c0 will be followed by some d

which satis�es (1)-(3) is less than K 0cn
2 for some K 0 > 0 and c2 < 1 which depend

only on D; ı and M but not on n and a < a0 < b < c < c0. The number of all

possible choices of a < a0 < b < c < c0 is of order n5. We may �nd some K > 0

and c1 < 1 such that n5K 0cn
2 < Kcn

1 . Thus we complete the proof. �

Remark 3.5. As shown in [6], almost the same argument shows anti-aligned

version of Lemma 3.4. Namely, we may replace the conditions (2) and (3) of

Lemma 3.4 with

(2)0 there is t 2 Œ0:1; 0:2� so that dC.!a0 ; ˛.1 � t // � D and dC.!c0 ; ˇ.t// � D,

(3)0 there is some h 2 G so that dC.h˛.0/; ˇ.1// � D, and dC.h˛.1/; ˇ.0// � D,

to have the probability that we have indices satisfying (1), (2)0, and (3)0 decays

exponentially.

3.2. Proof of Theorem 1.1. For g 2 G, let �.g/ denote the translation length

�.g/ WD lim
n!1

dC.gn.p/; p/

n

of g on the curve graph C.S/. Maher and Tiozzo proved that the translation length

grows linearly [23].

Lemma 3.6 ([23]). There exist L > 0, K > 0 and c < 1 which only depend on S

and � such that

P.�.!n/ < Ln/ < Kcn:

We �rst prepare an elementary observation for an action of a group on a

ı-hyperbolic space.
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Proposition 3.7 (c.f. [21, Lemma 3.3]). Let H be a group acting isometrically on

a ı-hyperbolic space .Y; dY / with a base point x. Fix h 2 H . Suppose that h has

a geodesic axis ˛, i.e. a geodesic satisfying hn.˛/ � N2ı.˛/ for all n 2 Z where

N2ı.˛/ denotes the 2ı neighborhood of ˛. Let q be a nearest point projection of

x to ˛. If dY .q; hq/ > 28ı, the following holds. There exist D1; D2 � 0 which

depend only on ı such that the geodesic 
 D Œx; hx� can be decomposed into three

subsegments 
 D 
1
2
3 so that

� the distance dY .
1.1/; q/ � D1 and dY .
3.0/; hq/ � D1, and

� 
2 � ND2
.˛/ and length.
2/ � dY .q; hq/ � 28ı.

Proof. Any side of a geodesic quadrilateral in a ı-hyperbolic space is in the

2ı neighborhood of the other three sides. We consider a geodesic quadrilateral

whose vertices are x; q; hq; hx. Since q; hq are nearest point projections, if a point

s 2 Œq; hq� is at least 4ı apart from q and hq, then dY .s; 
/ � 2ı. This is because

if dY .s; 
/ > 2ı, then there must be s0 2 Œx; q� [ Œhq; hx� such that dY .s; s0/ � 2ı,

which contradicts the fact that q and hq are nearest point projections to ˛. Let q1

(resp. q2) denote the point on Œq; hq� that is exactly 4ı apart from q (resp. hq).

Let x0
1 (resp. x0

2) be a nearest point projection to 
 of the point q1 (resp. q2).

Then dY .x0
i ; q/ � 6ı for i D 1; 2. By ı-hyperbolicity, if a point a 2 Œx0

1; x0
2� is

at least 4ı away from both x0
1 and x0

2, then dY .a; Œq; hq�/ � 2ı. Let x1 (resp. x2)

denote the point on Œx0
1; x0

2� exactly 4ı away from x0
1 (resp. x0

2). Put 
1 WD Œx; x1�,


2 WD Œx1; x2� and 
3 WD Œx2; hx�. Note that dY .xi ; q/ � 10ı for i D 1; 2, so

we put D1 WD 10ı. By ı-hyperbolicity, except for the 3ı neighborhood of hq,

points on Œq; hq� is in the ı neighborhood of ˛. Hence by putting D2 WD 3ı, we

have 
2 � ND2
.˛/. Let q0

1; q0
2 be nearest point projections of x1; x2 to Œq; hq�

respectively. Then dY .q; q0
1/ � dY .q; q1/ C dY .q1; x0

1/ C dY .x0
1; x1/ C 2ı �

12ı. By symmetry we have dY .q0
2; hq/ � 12ı. By triangle inequality, we have

length.
2/ � dY .q0
1; q0

2/ � dY .x1; q0
1/ � dY .x2; q0

2/ � dY .q; hq/ � 28ı. Thus we

have a required decomposition. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose !n D �k for some � 2 G and k > 1. Let � be a

geodesic axis of �, and 
 D Œ!0; !n�. By Lemma 3.6, 
2 of the decomposition

of 
 D 
1
2
3 from Proposition 3.7 has length at least Ln for some L > 0

with exponentially high probability. Let L0 WD length.
2/. Then by applying

Lemma 3.2 for small enough �, say 1=100, we may �nd D0 > 0 such that

length.
D0/=length.
/ � 1 � � with exponentially high probability. Then we can

�nd a D0-proximal point qa 2 
2 such that dC.qa; 
2.0// � L0�. Let a denote the

index that dC.!a; qa/ � D0. Similarly we can �nd a point qb 2 
2 such that

� Ln
4

� dC.qa; qb/ � Ln
4

C L0�,

� qb is D0-proximal so that dC.!b; qb/ � D0 for a < b.
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We consider translating Œqa; qb� � 
2 by ' WD �bk=2c where bk=2c is the largest

integer among all integers smaller than k=2. Note that

�.!n/

3
� �.'/ � �.!n/

2
:

By perturbing at most L0� if necessary, we may assume that both '.!a/ and

'.!b/ are within at most 2D2 C 2ı distance from D0-proximal points qc; qd 2 
2

respectively. The constant D2 is from Proposition 3.7. Hence there exist indices

c; d with a < b < c < d such that dC.!i ; qi/ � D0 C2D2 C2ı for i 2 ¹a; b; c; dº.
Let ˛ WD Œ!a; !b� and ˇ WD Œ!c; !d �. By ı-hyperbolicity, we can decompose

˛ D ˛1˛2˛3 so that length.˛1/; length.˛3/ < D0 C 2D2 C 4ı and ˛2 � N2ı.
/.

Hence if n is large enough, then for some t 2 Œ0:1; 0:2� we can �nd a D0-proximal

point qa0 2 
2 with dC.qa0 ; ˛.t// � 2ı. Similarly, we can also �nd a D0-proximal

point qc0 such that dC.qc0 ; ˇ.t// � 2ı. Thus we have indices a0 and c0 such that

dC.!a0 ; ˛.t// � D0 C 2ı and dC.!c0 ; ˇ.t// < D0 C 2ı. Thus if !n is not primitive

we can �nd indices satisfying conditions (1)-(3) of Lemma 3.4 for M D L=4 and

D D D0 C 2D2 C 2ı. Therefore the probability that !n is not primitive decays

exponentially. �

4. Random mapping classes are not symmetric

The goal in this section is to prove Theorem 1.3. We �x a (possibly orbifold) �nite

covering � W S ! S 0. A simple closed curve a 2 C.S/ is called symmetric if �.a/ is

also a simple closed curve on S 0 (see §4.2 for more detail). The �rst step is to show

the exponential decay of the shadow of the set of symmetric curves in C.S/. To

show the exponential decay, we prepare two lemmas (Lemma 4.2 and Lemma 4.5)

in §4.1 and §4.2. Then §4.3 will be devoted to the proof of the exponential decay.

Finally we prove Theorem 1.3 in §4.4.

4.1. Set of symmetric projective measured foliations has �-stationary mea-

sure zero. Let � be a probability measure on the mapping class group G of

surface S of �nite type. In this section, we suppose that � satis�es Condition 1.2.

A measure � on PMF.S/ is called �-stationary if

�.X/ D
X

g2G

�.g/�.g�1X/

for any measurable subset X � PMF.S/. We �rst recall the work of Kaimanovich-

Masur. Recall that a projective measured foliation is said to be uniquely ergodic

if its supporting foliation admits only one transverse measure up to scale. We de-

note by UE.S/ � PMF.S/ the space of uniquely ergodic foliations with unique

projective measures.
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Theorem 4.1 ([16, Theorem 2.2.4(1)]). There exists a unique �-stationary proba-

bility measure � on PMF.S/. The measure � is non-atomic and concentrated on

the set of uniquely ergodic foliations UE.S/.

Similarly as simple closed curves, a projective measured foliation � is said to

be symmetric if �.�/ is also a projective measured foliation on S 0. In this subsec-

tion, we will measure by � the set of symmetric projective measured foliations.

We now recall the Teichmüller space of S . The Teichmüller space T.S/ is the

space of conformal structures on S . In this paper we consider the Teichmüller

metric on T.S/;

dT.�1; �2/ D 1

2
log inf

h
K.h/; �1; �2 2 T.S/;

where the in�mum is taken over all quasi-conformal maps hW �1 ! �2 homotopic

to the identity, and K.h/ is the maximal dilatation of h. Thurston (c.f. [9]) showed

that PMF.S/ compacti�es T.S/ so that the action of G WD Mod.S/ extends

continuously. This compacti�cation is called the Thurston compacti�cation. Let
ST.S/ WD T.S/ [ PMF.S/.

Note that our covering � W S ! S 0 may be an orbifold covering. If S 0 is

an orbifold, PMF.S 0/ and T.S 0/ are de�ned to be the ones on the surface that

we get by puncturing the orbifold points of S 0. The covering � determines

…WST.S 0/ ! ST.S/ so that X 2 ….T.S 0// if �.X/ 2 T.S/, and � 2 ….PMF.S 0// if

�.�/ 2 PMF.S 0/. As pointed out in [27, Section 7], … is an isometric embedding

of T.S 0/. We may also extend the �-stationary measure � in Theorem 4.1 to ST.S/

by �.A/ D �.A \PMF.S// for each subset A � ST.S/. Let ET WD ….ST.S 0//. Our

goal in this subsection is the following lemma.

Lemma 4.2. Let � be a probability measure on G which satis�es Condition 1.2,

and � the �-stationary measure on ST.S/ from Theorem 4.1. Then for any �nite

covering � W S ! S 0, we have for all g 2 G,

�.gET/ D 0:

Recall that PMF.S/ is homeomorphic to the sphere S6g�7C2n. Although the

image ….PMF.S 0// is a sphere of lower dimension, Lemma 4.2 is non-trivial.

This is because the �-stationary measure � is singular to the standard Lebesgue

measure on the sphere by the work of Gadre [10].

First, we give a su�cient condition for a subset of PMF.S/ to have � measure

zero.

Proposition 4.3 (c.f. [16, Lemma 2.2]). Let A be a measurable subset ofPMF.S/.

Suppose there exist in�nitely many disjoint translations of A by elements in gr.�/.

Suppose further that

(�) �.g1A \ g2A/ D 0 or �.g1A/ D �.g2A/ for all g1; g2 2 G.

Then �.A/ D 0.
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Proof. By (�), we see that there is some h 2 G such that A0 WD hA satis�es

�.A0/ � �.gA/ for all g 2 G. Then since � is �-stationary, we have

�.A0/ D
X

g2G

�.g/�.g�1A0/ �
X

g2G

�.g/�.A0/ D �.A0/:

Thus we see that �.g�1A0/ D �.A0/ for every g in the support of �. By discussing

the n-convolution �n of �, we see that �.g�1A0/ D �.A0/ for every g 2 sgr.�/.

Since we have in�nitely many disjoint translates of A0 by elements of gr.�/, we

see that we also have in�nitely many disjoint translates by elements of sgr.�/�1.

Hence we have �.A0/ D �.A/ D 0. �

To prove Lemma 4.2, we recall Teichmüller geodesics on the Teichmüller

space, see for example [9, 11, 16] for more details. Recall that S is a surface of �nite

type .g; n/. Teichmüller showed that for any given point � 2 T.S/, a holomorphic

quadratic di�erential q determines a geodesic �.q/ with respect to Teichmüller

metric. It is also proved that given two points �1; �2 2 T.S/, there exists a unique

Teichmüller geodesic �.�1; �2/ that connects the two.

For � 2 T.S/, let QD.�/ denote the Banach space of holomorphic quadratic

di�erentials on � with k ' kD
R

� j'j. Each ' 2 QD.�/ determines two measured

foliations, called the horizontal foliation and the vertical foliation. By Riemann-

Roch theorem, QD.�/ has complex dimension 3g � 3 C n. Let Q0 � QD.�/

denote the unit sphere. This Q0 compacti�es T .�/ which is called the Teichmüller

compacti�cation.

By the work of Hubbard-Masur (compact) and Gardiner (�nite type), we see:

Lemma 4.4 ([14], [11, Chapter 11]). For any � 2 T.S/ and F 2 PMF.S/, there is

a unique ' 2 QD.�/ whose horizontal foliation is F up to scale.

Proof of Lemma 4.2. The proof goes by induction. Let E 0
T

WD gET and d the

complex dimension of QD.� 0/ for any � 0 2 T.S 0/. We consider intersection

E 0 WD g1E 0
T

\ g2E 0
T

\ � � � \ gnE 0
T

. We �rst de�ne d.E 0/ 2 N. If E 0 \ PMF.S/

contains at most one uniquely ergodic foliation, then we de�ne d.E 0/ D 0. In this

case we also have �.E 0/ D 0 since � is non-atomic. If E 0 \ PMF.S/ contains

at least two uniquely ergodic foliations E1;E2, then there is a unique Teichmüller

geodesic 
 connecting E1 and E2 by [12]. Since covering maps induce isometric

embeddings of Teichmüller spaces [27, Section 7], any point of 
 is in E 0. In

particular E 0 \T.S/ is non-empty. For any � 2 E 0 \T.S/, each giE
0
T

determines

a subspace of Si.�/ � QD.�/ which consists of the lifts of holomorphic quadratic

di�erentials with respect to the covering � ı g�1
i . Let S.�/ WD \iD1;:::;nSi .�/

and d.�/ WD dim S.�/. Since d.�/ 2 N, there exists � 0 2 E 0 \ T.S/ such that

d.� 0/ � d.�/ for any � 2 E 0 \T.S/. We de�ne d.E 0/ WD d.� 0/. Then we explain

how the induction works by using a style of inductive algorithm, see Algorithm 1

which is named M�IT. By M�IT.E; d/, we have �.E/ D 0. Note that although

the depth of Algorithm 1 is �nite, the width is in�nite. �
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Algorithm 1 M�IT(Measure by � the Intersection of Translates)

Input: .E 0 WD g1E 0
T

\ g2E 0
T

\ � � � \ gnE 0
T

; d.E 0//.

Ensure: �.E 0/ D 0.

if d.E 0/ D 0 then

By the de�nition of d.E 0/ and Lemma 4.4, we have �.E 0/ D 0.

end if

for h1; h2 2 G do

Let E 0
1 WD h1E 0 and E 0

2 WD h2E 0. Note that since each g 2 G induces a vector

isomorphism between QD.�/ and QD.g�/, we have d.E 0
1/ D d.E 0

2/ D
d.E 0/.

if d.E 0
1 \ E 0

2/ D d.E 0/ then

We see that �.E 0
1/ D �.E 0

2/ by Lemma 4.4.

else

In this case we have d.E 0/ > d.E 0
1 \ E 0

2/. Then we apply

M�IT.E 0
1 \ E 0

2; d.E 0
1 \ E 0

2//, which proves �.E 0
1 \ E 0

2/ D 0.

end if

end for

We have seen that the condition .�/ of Proposition 4.3 is satis�ed. By Condi-

tion 1.2 and the north-south dynamics of pseudo-Anosov maps (see [32]), we

see that there are in�nitely many disjoint translates of E 0. Thus by Proposi-

tion 4.3, we have �.E 0/ D 0.

4.2. Upper bound for the number of parallel translates of the set of symmet-

ric curves. Recall that we have �xed a (possibly orbifold) covering � W S ! S 0.

If S 0 is an orbifold, we de�ne C.S 0/ as the curve graph of the surface that we

get by puncturing every orbifold point of S 0. We de�ne one to �nite relation

…CWC.S 0/ ! C.S/ as follows. A curve b 2 C.S/ is in …C.a/ for some a 2 C.S 0/

if �.a/ D b as isotopy classes of simple closed curves. In [27], Ra�-Schleimer

showed that …C is quasi-isometric (Theorem 4.9). Hence the map …C extends

continuously to the Gromov boundary @C.S 0/. Let E denote …C.C.S 0/ [ @C.S 0//.

We call elements in E symmetric. We consider translates gE’s of E by g 2 G.

Our aim in this subsection is to prove the following lemma.

Lemma 4.5. For any D0 > 0, there exist D1; D2 > 0 which depend only on S

and D0 such that for any a; b 2 C.S/ with dC.a; b/ > D1, the number of elements

in

P.a; b; D0/ WD ¹gE j dC.a; gE/ < D0 and dC.b; gE/ < D0º

is bounded from above by D2. Here we count the number of images i.e. if

g1E D g2E as subsets, we just count one time.
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For a proof, we need the notion of subsurface projection. A subsurface Y � S

is called essential if each component of @Y is an essential simple closed curve.

Unless otherwise stated, we always assume that subsurfaces are essential. Given

a subsurface Y � S which is not an annulus nor three holed sphere, we de�ne

subsurface projection �Y WC.S/ ! C.Y / as follows: given a curve a 2 C.S/ on S ,

arrange a so that it has minimal intersection with Y . Take a component a0 of Y \a

and consider a small neighborhood N of a0 [ @Y . Then �Y .a/ is de�ned to be a

component of N which is in C.Y /. If a does not intersect with Y , then we de�ne

�Y .a/ D ;. If Y is an annulus, we need special care, however we do not need the

detail for the proof, so we omit the de�nition. See for example [26, 29] for the

detail. If Y is a three holed sphere, subsurface projection is not de�ned. We call

a subsurface Y � S symmetric if it is a component of p�1.Y 0/ for some Y 0 � S 0.

Given two curves a; b 2 C.S/, we let dY .a; b/ WD diam.�Y .a/; �Y .b//. If Y is an

annulus with core curve ˛, we often use d˛ to denote dY . Ra�-Schleimer showed

the following lemma.

Lemma 4.6 ([27, Lemma 7.2]). There exists T1 which depends only on S and

the degree of � W S ! S 0 such that for any subsurface Y � S and a; b 2 E,

if dY .a; b/ � T1 then Y is symmetric.

We recall the work of Masur and Minsky [26].

Theorem 4.7 ([26, Theorem 3.1], bounded geodesic image). There exists a con-

stant M1 > 0 which depends only on S with the following property. Let Y � S be

a proper subsurface Y which is not a three holed sphere. Let 
 be a geodesic in

C.S/ with �Y .v/ 6D ; for all vertex v on 
 . Then

diamY .
/ � M1;

where diamY .
/ is the diameter of �Y .
/ in C.Y /.

Combining Lemma 4.6 and Theorem 4.7, we have the following.

Lemma 4.8. Given g 2 G, �x a; b 2 gE and D > 0. Suppose there ex-

ists a subsurface Y � S such that dY .a; b/ � T C 2M1 for T � T1, and

dC.¹a; bº; @Y / � D C 2. Then if there are c; d 2 hE for some h 2 G such

that dC.c; a/ � D and dC.d; b/ � D then we have dY .c; d/ � T . In particular Y

is symmetric for both �g�1 and �h�1.

Proof. Since we assume that @Y is far from a; b; c; d , we see that every vertex

on geodesics Œa; c� and Œb; d � intersects Y non-trivially. Hence by Theorem 4.7,

we see that dY .c; d/ � dY .a; b/ � dY .c; a/ � dY .b; d/ � T1. The last assertion

follows from Lemma 4.6. �



Random mapping tori 1267

We recall the following work of Ra� and Schleimer [27] and Ra� [29].

Theorem 4.9 ([27]). The covering relation …WC.S 0/ ! C.S/ is a Q-quasi-

isometric embedding. The constant Q depends only on S and the degree of

� W S ! S 0.

To state the work of Ra� [29], we need the notion of shortest markings. Given

a point � 2 T.S/, a shortest marking of � is the set of curves chosen as follows.

Consider � as a hyperbolic structure of S . First we greedily choose shortest curves;

let ˛1 be a shortest curve, then we choose ˛2 as a shortest curve on S n ˛1. We

proceed until ˛0
is give a pants decomposition of S . Then we choose ˇi as a shortest

curve among curves intersecting only ˛i . We denote a shortest marking of � by

�.�/. In the statement of Theorem 4.10, the function Œx�k is equal to zero when

x < k and is equal to x when x � k. We also modify the log in the statement so

that log x D 0 for x 2 Œ0; 1�.

Theorem 4.10 ([29]). There exists k0 > 0 such that for k > k0, for any �1; �2 2
T.S/, the following holds. Let A WD dT.�1; �2/, and

B WD
X

Y

ŒdY .�.�1/; �.�2//�k C
X

˛

logŒd˛.�.�1/; �.�2//�k :

Where in the �rst sum, Y is taken over all subsurfaces of S which are not three

holed spheres nor annuli, and in the second sum ˛ is taken over all essential simple

closed curves. Then there exist constants C; c > 0 which depend only on S and k

such that
1

C
A � c � B � CA C c:

We prepare one more lemma in order to prove Lemma 4.5.

Lemma 4.11. There exists K > 0 which depends only on S such that for any

q 2 QD.S/, ]¹gET j �.q/ � gETº < K.

Proof. By taking conjugation if necessary, we may suppose ET 2 ¹gET j �.q/ �
gETº. Recall that by integrating the square root, each non-zero element q 2
QD.S/ determines a singular Euclidean structure with horizontal and vertical

foliation. Let Sing.q/ denote the set of singular points of the singular Euclidean

structure. This Sing.q/ is �nite. Pick any s 2 Sing.q/, then we de�ne †1.s/ WD
��1�.s/ where � W S ! S 0 is the �nite covering we �xed above. Inductively de�ne

†iC1.s/ WD g ı ��1.� ı g�1.†i.s///. Since †i .s/ � †iC1.s/ � Sing.q/, we

eventually have †i .s/ D †iC1.s/.DW †.s// for large enough i . Next, we pick

any x 2 S n Sing.q/. There is a point s0 2 Sing.q/ such that we can connect x

and s0 by a single Euclidean geodesic 
 . The geodesic 
 has well de�ned angle
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�
 mod � . Let lq.
/ denote the Euclidean length of 
 . Since there are only

�nitely many points from †.s0/ with angle �
 and Euclidean distance lq.
/, we

get †.x/ � S n Sing.q/ in the same way as above. Thus we get an equivalence

relation x � y () y 2 †.x/ on S . Since this relation is de�ned by composing

local homeomorphisms g and � , the quotient map � 0W S ! S=� is a covering.

By construction, � 0 factors through � W S ! S 0 and we have two coverings

p; pg W S 0 ! S=� such that p ı � D pg ı � ı g as covering maps. Furthermore,

since for each x 2 S= �, we may �nd a small open neighborhood Ux such

that on all component of .� 0/�1.Ux/, we can identify the quadratic di�erentials

via � and �g�1, we have a quadratic di�erential q0 with .� 0/�1.q0/ D q. Let

us suppose that for p; pg W S 0 ! S= �, we have p�.�1.S 0// D .pg/�.�1.S 0//.

Then there exists a homeomorphism fg W S 0 ! S 0 such that pg D p ı fg . We

further suppose that .fg ı �/�.�1.S// D ���1.S/ in �1.S 0/. Then we can

lift fg to Qfg W S ! S . By construction, . Qfg/�1g preserves q. Suppose there

is hET 6D gET 2 ¹gET j �.q/ � gETº such that hET determines the same

equivalence relation � and similarly as g, we have a map Qfh which is a lift of a

homeomorphism fhW S 0 ! S 0 and . Qfh/�1h preserves q. If . Qfg/�1g D . Qfh/�1h, we

have h�1g D . Qfh/�1 Qfg and hence hET D gET . Hence . Qfg/�1g 6D . Qfh/�1h. The

number of mapping classes that preserve q is universally bounded. Furthermore

the number of possibility of S=� is universally bounded and for each case the

number of coverings S 0 ! S=� is also universally bounded in terms of S . Since

the number of subgroups of a �xed degree in �1.S 0/ is also bounded, there is an

upper bound which depends only on S for the number of ¹gET j �.q/ � gETº.
The number of possible coverings from S is �nite and thus we complete the

proof. �

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. Throughout the proof, we call a constant universal if it only

depends on S and the degree of � W S ! S 0. For a given s 2 C.S/, let �.s; gE/

denote a point T.S/ so that a shortest marking �.s; gE/ WD �.�.s; gE// contains

a closest point projection of s to gE. Note that there may be several closest

projections. We choose one of them, and �x it. By considering the conjugacy

of the covering, we may suppose E 2 P.a; b; D0/.

We proceed by induction. First note that the statement of Lemma 4.5 is true

for annuli. Then we may suppose Lemma 4.5 holds for any subsurface of S which

is not a three holed sphere. Let D0
3 be the constant so that Lemma 4.5 holds for

D0 WD M1 and D1 WD D0
3 for any subsurface of S . Then let D3 WD max¹D0

3; T1º.
We now consider two cases. The �rst case is where we can �nd four subsur-

faces Yi .i D 1; 2; 3; 4/ such that

(1) dC.a; @Yi/ > 2D0 C 2; dC.b; @Yi/ > 2D0 C 2,

(2) dC.@Yi ; @Yj / > 3,

(3) dYi
.�.a; E/; �.b; E// � D3 C 6M1.
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Note that by the third condition and Theorem 4.7, any geodesic in C.S/ con-

necting �.a; E/ and �.b; E/ passes close to @Yi ’s, and we also suppose @Yi ’s ap-

pear in the order of the index. By Lemma 4.8 we see that for any gE 2 P.a; b; D0/,

we have dYi
.�.a; gE/; �.b; gE// � D3 C 4M1 and hence @Yi are all contained

in every gE 2 P.a; b; D0/. Then again by Theorem 4.7, we may choose com-

ponents y1 and y4 of @Y1 and @Y4 respectively so that dY2
.y1; y4/ � D3. Hence

for any gE 2 P.a; b; D0/, we have dY2
.�.y1; gE/; �.y4; gE// � D3. By induc-

tion, for gE 2 P.a; b; D0/, the restriction � ı g�1jY2 of the covering is one of

the universally bounded number of coverings from Y2. Moreover, once we �x

the topology of a subsurface Y 0, there are only �nitely many possible embedding

Y 0 ,! S 0 up to the action of mapping classes on S 0 that can be lifted to S via

� W S ! S 0. Let P.a; b; D0; Y2/ denote the subset of P.a; b; D0/ whose elements

correspond g’s that satisfy the following; �jY2 and � ı g�1jY2 are the same as

coverings from Y2, and the images of Y2 in S 0 by the coverings are related without

permuting boundary components by a mapping class �g which can be lifted to

S . We see that P.a; b; D0/ can be decomposed into universally bounded number

of subsets of type P.a; b; D0; Y2/. To �nd a universal bound for the cardinality

of P.a; b; D0/, we only need to �nd a universal bound for the cardinality of each

subset in the decomposition. Hence, it su�ces to �nd a universal bound for the

number of elements in P.a; b; D0; Y2/.

Let gE 2 P.a; b; D0; Y2/. Note that if e'W S ! S is a lift with respect to � ,

then e'E D E. Hence by precomposing suitable lift f�g of �g to g, which we again

denote by g by abuse of notation, we may suppose that �.g�1.Y2// D �.Y2/ and

�.yj / \ �.Y2/ D �g�1.yj / \ �.Y2/ for both j D 1; 4. Let y0
2 be a component of

@�.Y2/. Then by the above observation, we have for any component z2 of ��1.y0
2/,

i.y0
2; �.y1//

i.y0
2; �.y4//

D i.z2; ��1�.y1//

i.z2; ��1�.y4//
D i.g.z2/; ��1�.y1//

i.g.z2/; ��1�.y4//
: (1)

Note that since ��1.�.y1// and ��1.�.y4// �ll the surface S , it determines a

quadratic di�erential q with horizontal foliation ��1.�.y1// and vertical foliation

��1.�.y4//. Given a Teichmüller geodesic �WR ! T.S/, a simple closed

curve is said to be balanced at time t on � if the intersection number with

horizontal foliation and vertical foliation of quadratic di�erential determined by

� and t coincide. By (1), on the Teichmüller geodesic �.q/ determined by q, all

components of ��1.y0
2/ [ g��1.y0

2/ are balanced at the same time. By Theorem

[28, Theorem 6.1] applied to �.q/, we see that ��1.y0
2/ [ g��1.y0

2/ is a disjoint

union of simple closed curves. Since the number of disjoint simple closed curves

is universally bounded from above, we may further decompose P.a; b; D0; Y2/

into universally bounded number of subsets so that if g1E and g2E are in the

same subset, we have g1��1.y0
2/ D g2��1.y0

2/. We argue similarly for Y3 and

hence all we need is to �nd a universal bound for the number of ¹giEºi2I with
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� gi�
�1.y0

2/ D gj ��1.y0
2/, and

� gi�
�1.y0

3/ D gj ��1.y0
3/ for some component y0

3 of @�.Y3/

for any i; j 2 I . In this case, the Teichmüller geodesic determined by the quadratic

di�erential with horizontal foliation gi�
�1.y0

2/ and vertical foliation gi�
�1.y0

3/

is contained in giET for all i 2 I . Then by Lemma 4.11, we have a desired bound.

Thus we are done for the �rst case.

We now consider the case where we can not �nd subsurfaces satisfying the

conditions of the �rst case. The shadow of a Teichmüller geodesic � is the set of

all curves which are the shortest at some point on �. In [25], it is proved that the

shadow of any Teichmüller geodesic is a (unparametrized) quasi-geodesic. Hence

there exists a universal constant D4 such that for hE 2 P.a; b; D0/, the shadow of

the Teichmüller geodesic �.�.a; hE/; �.b; hE// is contained in D4-neighborhood

of the shadow of �.�.a; E/; �.b; E//. Then by assuming D1 in the statement large

enough, we may suppose that there are points �1; �2 on the Teichmüller geodesic

�.�.a; E/; �.b; E// such that

� dC.�.�1/; �.�2// > D4 C 2, and

� dY .�.�1/; �.�2// < D3 C 6M1 for all proper subsurface Y � S ,

� dY .�.�.�1/; hE/; �.�.�2/; hE// < D3 C 6M1 for all proper subsurface

Y � S .

Let D5 WD D3 C 6M1 and � 0
1 WD �.�.�1/; hE/. These condition together with

Theorem 4.7 imply that dY .�.�1/; �.� 0
1/; hE// < 2D5 C M1 for any proper

subsurface Y � S . Hence by Theorem 4.10, we see that there exists a universal

constant D6 and � such that dT.�1; � 0
1/ < D6 and the Teichmüller geodesic

connecting �1 and � 0
1 is contained in the �-thick part of T.S/.

Recall that the subgroup of Mod.S 0/ that can be lifted via � W S ! S 0 is of

�nite index, and the thick part of the moduli space of S 0 is compact. Hence

we can �nd h0 2 G such that h0�1 2 hET and we can connect � 0
1 and h0�1

by a Teichmüller geodesic which is contained in the �-thick part and of length

universally bounded from above. Thus we have a universal constant D7 such

that �1 and h0�1 can be connected by a path in the d�-thick part of length less

than D7. Again, by the compactness of the thick part of the moduli space of

S , the number of such mapping classes are universally bounded. Hence we

see that if hE 2 P.a; b; D0/, hE has to pass through one of the universally

bounded number of points. By assuming D1 large enough we may apply the

same argument to di�erent subarc of �.�.a; E/; �.b; E//, and hence we see that

there are two disjoint �nite subsets of T.S/ so that if hE 2 P.a; b; D0/, hE has

to pass through both subsets. Since two points in Teichmüller space determines

a quadratic di�erential, again by Lemma 4.11, we have a desired bound. This

completes the proof of Lemma 4.5. �
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4.3. Exponential decay for the shadow of E . By the work of Klarreich [17]

(see also Hamenstädt [13]), the Gromov boundary @C.S/ of C.S/ is identi�ed with

the space Fmin.S/ of minimal foliations. There is a natural measure forgetting

map from UE.S/ to Fmin.S/. Hence we may consider the push forward of �

to Fmin.S/, which we again write as � by abuse of notation. This � extends to
SC.S/ WD C.S/ [ @C.S/ by �.A/ D �.A \ @C.S// for A � SC.S/.

For a subset A � SC.S/, we de�ne the shadow Sp.A; r/ for r > 0 and

p 2 SC.S/ by

Sp.A; r/ WD
[

a2A

Sp.a; r/:

We �rst prove the following lemma, which is a key step for showing Theorem 1.3.

Lemma 4.12 (c.f. [22, Lemma 2.10]). Let � be a probability measure on G which

satis�es Condition 1.2, and � the �-stationary measure onST.S/ from Theorem 4.1.

Then there are constants K > 0 and c < 1, such that for any r > 0 and g 2 G,

�.S1.gE; r// < cr ;P.!n 2 .S1.gE; r/// < Kcr ;

and the constants K and c depend on � and � W S ! S 0 but not on r; g and n.

We prove Lemma 4.12 by borrowing several arguments from the proof of

[22, Lemma 2.10]. In [22], Maher uses several lemmas from [6], which are

applications of Lemma 4.13 below. Instead of using those lemmas, we only use

Lemma 4.13 since the proof of each lemma in [6] that we need is short and

elementary.

Lemma 4.13 (see for example [3, Proposition 6.7]). Let .X; dX / be a ı-hyperbolic

space. Then there is a constant K1 which depends only on ı with the following

property. For any four points x1; x2; x3; x4 2 X , there is an embedded tree T

connecting the four point such that

dT .xi ; xj / � dX .x; y/ C K1; (2a)

.xi � xj /xk
� 2K1 � .xi � xj /T

xk
� .xi � xj /xk

C K1; (2b)

for 1 � i; j � 4. Where dT denotes the distance in T , and for a; b; c 2 T , .a; b/T
c

denotes the Gromov product with respect to dT .

Note that the only combinatorial type of the tree up to reindexing is as depicted

in Figure 1.

Figure 1. Approximate tree.
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We will use the following lemma in [22].

Lemma 4.14 ([22, Proposition 2.12]). For any � > 0, there is a constant K2.�/

which depends on � and �, such that if r � K2.�/, then �.S1.x; r// < �.

For the proof of Lemma 4.12, we also prepare the following lemma.

Lemma 4.15. Let � be a probability measure on G which satis�es Condition 1.2,

and � the �-stationary measure onST.S/ from Theorem 4.1. Then there exist � > 0

and a constant K3 which depend only on � and � W S ! S 0, such that if r � K3,

then �.S1.gE; r// < 1 � � for any g 2 G.

Proof. First we prove that for a given g 2 G and � > 0, there is some number

rg;� such that �.S1.gE; rg;�// < �. The argument below is almost the same as

[22, Proposition 2.12]. Suppose contrary that there exists a sequence ¹riºi2I with

ri ! 1 and �.S1.gE; ri// � �. Then since S1.gE; ri/ � S1.gE; rj / if j > i , we

have U WD \i2I S1.gE; ri/ � �. But if � 2 U , there is a sequence ¹xiº of points in

gE such that .xi � �/1 ! 1. Since gE is a quasi-isometrically embedded image

of C.S 0/, we have � 2 gE. Hence U � gE. However, by Condition 1.2, we may

apply Lemma 4.2 to conclude �.gE/ D 0 and hence �.U / D 0. Thus we have a

contradiction.

Then recall that S1.a; r/ can also be regarded as the set of points with geodesics

connecting 1 and those points pass through certain neighborhood of a. This, to-

gether with the hyperbolicity of C.S/, and the fact gE is a quasi-isometrically

embedded image of C.S 0/, implies for su�ciently large r; K, if S1.gE; r/ inter-

sects both S1.a1; K/ and S1.a2; K/ with a1 and a2 su�ciently far apart, then

gE 2 P.a1; a2; D0/ for some constant D0 depending only on S but not on

dC.a1; a2/. Let us take a1 and a2 so that dC.a1; a2/ is su�ciently large so that

we can apply Lemma 4.5. Furthermore, we may choose a1; a2 from the semi-

group generated by the support of �. Then by [23, Proposition 5.4], we have

�.S1.ai ; K// > 0 for i D 1; 2 after taking K large enough if necessary. Let

� WD min.�.S1.a1; K/; �.S1.a2; K//. Then suppose S1.gE; r/ is disjoint from

S1.ai ; K/ for one of i D 1; 2, then �.S1.gE; r// < 1 � �. On the other hand, by

Lemma 4.5, there are only bounded number of many gj E such that S1.gj E; r/

intersects S1.ai ; K/ for both i D 1; 2. For each j there exists rj such that

�.S1.gj E; rj // < 1��. Then for K3 WD max.rj ; r/, we have �.S1.gE; r// < 1��

for any r > K3 and g 2 G. �

We recall the following lemma which is a version of the lemma due to Maher.

For later convenience, we slightly modify the constants in (4) and (5), but the proof

goes exactly the same way as [22].
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Lemma 4.16 ([22, Lemma 2.11]). Let � be a probability distribution of �nite

support of diameter D. Let X0 � X1 � X2 � : : : be a sequence of nested

closed subsets of SC.S/ with the following properties:

1 62 X0; (1)

.C.S/ n Xn/ \ XnC1 D ;; (2)

dC.C.S/ n Xn; XnC1/ � D: (3)

Furthermore, suppose there is a constant 0 < � < 1 such that, for any x 2
Xn n XnC1 which is the translate of the base point p by x 2 G,

�x.XnC2/ � 1 � �; (4)

�x.C.S/ n Xn�1/ � �=2; (5)

where �x.A/ WD �.x�1A/ for any A � SC.S/. Then there are constants c < 1 and

K, which depend only on � and �, such that �.Xn/ < cn and P.!i 2 Xn/ < Kcn

for all i 2 N.

Then, to prove Lemma 4.12, it su�ces to prove

Lemma 4.17. There exists L which depends on �; ı with the following property.

The sets Xn WD S1.gE; L.n C 1// for all n 2 N form a sequence of nested sets

which satis�es (1)–(5) in Lemma 4.16.

Proof. The proof goes in a similar way to [22, Lemma 2.13]. Let D be the

diameter of �. We use the constants K1; : : : ; K3 from Lemma 4.13-4.15. Let

L WD 4K1 C max¹D; K2.�=2/; K3; 2ıº.

(1) The Gromov product .1 � a/1 D 0 for all a 2 SC.S/. For all y 2 X0, there is

ey 2 gE such that .ey � y/1 � L > 0, hence 1 62 X0.

(2) If yi ! y 2 @G, then by the property of the Gromov product (see for

example [2, III.H 3.17(5)]), lim inf.x � yi /1 � .x � y/1 � 2ı. This implies

if y 2 XnC1, then for any sequence yi ! y, all but �nitely many yi ’s are in

Xn D S1.gE; L.nC1// since L > 2ı. Thus we have XnC1\.C.S/nXn/ D ;.

(3) Let a 2 XnC1, then there exists ea 2 gE such that a 2 S1.ea; L.n C 2//.

Let b 2 C.S/ n Xn, then for all e 2 gE, we have b 62 S1.e; L.n C 1//. In

particular b 62 S1.ea; L.nC1//. Then we consider a tree T1 from Lemma 4.13

that connects ¹1; b; a; eaº. Since .a �ea/1 � L.nC2/ and .b �ea/1 < L.nC1/,

by (2b), the only possible combinatorial type of T1 is the one we get by
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substituting .x1; x2; x3; x4/ D .1; b; a; ea/ in Figure 1. Then we see that

dC.a; b/ � dT1
.a; b/ � K1

� dT1
.p; q/ � K1

� .a � ea/1 � .b � ea/1 � 4K1

� L � 4K1;

where p; q are the trivalent vertices as depicted in Figure 1. Thus by the

de�nition of L, we have dC.a; b/ � D.

(4) Let x 2 Xn n XnC1 and y 2 XnC2. Then there exists ey 2 gE such that

.ey � y/1 � L.n C 3/ and .x � ey/ < L.n C 2/. Then, similarly as (3), by

Lemma 4.13, we see that there is a tree T2 with .x1; x2; x3; x4/ D .1; x; y; ey/

in Figure 1. Then we have

.ey � y/x � .ey � y/T2

x � K1

� dT2
.p; q/ � K1

� .ey � y/1 � .ey � x/1 � 4K1

� L � 4K1:

Hence Sx.gE; L � 4K1/ � XnC2. This implies that

�x.XnC2/ � �x.Sx.gE; L � 4K1// D �.S1.x�1gE; L � 4K1//:

Then by Lemma 4.15, we have �x.XnC2/ � �.S1.x�1gE; L � 4K1// < 1 � �

since L � 4K1 � K3.

(5) Since x 2 Xn n XnC1, there is e 2 gE such that .x � e/1 � L.n C 1/. Let

y 62 Xn�1, which implies .y � e/1 < Ln. Similarly as (3) and (4), we have a

tree T3 for .x1; x2; x3; x4/ D .1; y; x; e/ in Figure 1. Then we have

.1 � y/x � .1 � y/T3

x � K1 � dT3
.p; q/ � 4K1 � L � 4K1:

Thus, we see y 2 Sx.1; L � 4K1/. Hence we have

SC.S/ n Xn�1 � Sx.1; L � 4K1/:

Since we have chosen L � 4K1 C K2.�=2/, we see that by Lemma 4.14

�x.SC.S/nXn�1/ � �x.Sx.1; L�4K1// D �.S1.x�1; L�4K1// < �=2: �

Proof of Lemma 4.12. By Lemma 3.6, we may suppose for some L0 > 0,

�.!n/ � L0n with exponentially high probability. This implies that if !n 2 gE,

then !n must be in XbL0=Lcn�1, where Xi WD S1.gE; L.i C 1// as in Lemma 4.17.

Therefore by Lemma 4.17, we have

P.!n 2 gE/ � P.!n 2 XbL0=Lcn�1/ C P.dC.!n; !0/ < L0n/ � Kcn

for some K > 0 and c < 1. �
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4.4. Proof of Theorem 1.3. We are now ready to prove Theorem 1.3. The proof

goes similarly as the proof of Theorem 1.1. First we prepare an alternative of

Lemma 3.4.

Lemma 4.18. Fix D0; M > 0. Then there is a constant D1 > 0, c1 < 1, K > 0

such that the following holds. Consider the collection of indices a < b < c with

the following properties:

(1) dC.!a; !b/ � D1,

(2) dC.!b; !c/ � Mn, and

(3) there exists a covering � W S ! S 0 such that dC.!i ; ….C.S 0/// � D0 for all

i 2 ¹a; b; cº.
Then the probability that this collection of indices is non-empty is at most Kcn

1 .

Proof. The number of possible types of orbifolds which may be covered by S

is �nite. Furthermore, for each such an orbifold, there are only �nitely many

possible covering maps up to conjugacy. This is because the number of subgroups

of bounded index in a �nitely generated group is �nite. Hence it su�ces to �x a

covering � W S ! S 0 and consider only its conjugates. Let E WD ….C.S 0// and D

be a constant that Lemma 4.5 works for P.x; y; D/ of any covering from S .

Suppose we have indices a; b which satisfy condition (1). Then by Lemma 4.5,

the cardinality of P.!a; !b; D/ is universally bounded. Hence to have a index c

which satis�es condition (2) and (3), the random walk that starts from !b must

get into S!b
.gE; Mn/ for some gE 2 P.!a; !b; D/. Since number of elements

in P.!a; !b; D/ is universally bounded, and the number of possible choices of

indices a; b is of order n2, by Lemma 4.12 we complete the proof. �

Proof of Theorem 1.3. Similarly to the proof of Theorem 1.1, we consider the

action of G on C.S/. For the readability of the proof we will not explicitly write the

constants. One can compute constants in a similar way to the proof of Theorem 1.1.

We consider ! D .!n/ 2 GN. We may suppose !n is pseudo-Anosov. Suppose

!n is symmetric. Since the stable and unstable measured foliations of !n are in

some gE \ @C.S/, and gE is quasi-convex, any geodesic axis of !n fellow travels

with gE. By Lemma 3.2 and Proposition 3.7, we see that we can �nd some indices

that satis�es the conditions of Lemma 4.18 for suitable constants. Hence !n is not

symmetric with exponentially high probability. �

5. Applications

5.1. Cusped random mapping tori are non-arithmetic. First, we recall the

de�nition of non-compact arithmetic 3-manifolds, see [19] for more details and

properties of arithmetic 3-manifolds. Let d be a positive square-free integer and
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Od denote the ring of integers of Q.
p

�d/. A Bianchi group is a subgroup of

PSL.2;C/ which is of the form PSL.2;Od /. One can show that every Bianchi

group is a lattice. The quotient H3=PSL.2;Od / is called a Bianchi orbifold, where

H3 is the hyperbolic 3-space. A non-compact hyperbolic 3-manifold M D H3=�

of �nite volume is arithmetic if a conjugate of � in PSL.2;C/ is commensurable to

some Bianchi group PSL.2;Od /. Recall that two subgroups of PSL.2;C/ are said

to be commensurable if their intersection is a �nite index subgroup in both. Let S

be an orientable surface of �nite type with at least one puncture. For � 2 Mod.S/,

the mapping torus M.S; �/ is de�ned by

M.S; �/ D S � Œ0; 1�=.x; 1/ � .�.x/; 0/:

Two mapping tori M.S; �1/ and M.S; �2/ are said to be cyclic commensurable

if there exists k1; k2 2 Z n ¹0º such that M.S; �
k1

1 / D M.S; �
k2

2 /. Bowditch-

Maclachlan-Reid proved the following theorem.

Theorem 5.1 ([5, Theorem 4.2]). Let S be an orientable surface of �nite type with

at least one puncture. There are at most �nitely many cyclic commensurability

classes of arithmetic mapping tori with �ber S .

Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Note that if two mapping classes give rise to cyclic com-

mensurable mapping tori, then they are �bered commensurable. By Theorem 1.4,

it su�ces to discuss minimal mapping classes in their commensurability classes.

The uniqueness of the minimal element (Theorem 2.3) implies that two minimal

mapping classes give rise to cyclic commensurable mapping tori if and only if

they are conjugate. Hence there are at most �nitely many conjugacy classes of

minimal elements that give arithmetic mapping tori by Theorem 5.1. Hence there

is an upper bound of the translation length for minimal mapping classes to have

arithmetic mapping tori. Then Lemma 3.6 applies to complete the proof. �

Remark 5.2. For S closed, one can prove similar statement as Theorem 5.1 with

upper bound for the degree of the invariant trace �elds, see [5, Corollary 4.4]. For

S closed, we do not know if the set of a random mapping classes with arithmetic

mapping tori is exponentially small or not.

5.2. Closed random mapping tori are asymmetric. It is well known that the

isometry group of any closed hyperbolic 3-manifold is �nite. A closed hyperbolic

3-manifold is called asymmetric if the isometry group is trivial. As a corollary of

Theorem 1.4 and the work of Bachman and Schleimer [1], we have the following.

Theorem 5.3. Let � be a probability measure on G which satis�es Condition 1.2.

Then the set of mapping classes with asymmetric mapping tori is exponentially

large with respect to �.
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Proof. By Lemma 3.6, the translation length �.!n/ grows linearly with n with

exponentially high probability. By the work of Bachman and Schleimer [1, Theo-

rem 3.1], we see that if the translation distance of �.�/ of � is greater than ��.S/

then any isometry of M.S; �/ must map each �ber to a �ber. Theorem 1.4 implies

that the probability that M.S; !n/ has an isometry h which maps each �ber to a

�ber and the quotient by hhi is a 2-orbifold bundle over the circle decays expo-

nentially. The only case remained is when M.S; !n/ admits an isometry of type

.x; t / 7! .ˇx; 1� t / for some involution ˇW S ! S , in other words when M.S; !n/

admits a quotient which is a 2-orbifold bundle over the 1-orbifold S1=Z2. Note

that we may suppose !n is pseudo-Anosov. In this case we have ˇ!nˇ D !�1
n and

especially ˇ permutes the elements in Fix.!n/ � PMF.S/. Hence around geo-

desic axes of !n in the curve complexC.S/, ˇ coarsely acts as a re�ection. Then by

taking conjugate by !k
n for some k 2 Z if necessary, we may suppose coarse �xed

points of ˇ are on the 
2 of the decomposition of Œ!0; !n� from Proposition 3.7.

Then with Remark 3.5, we have desired conclusion by a similar argument to the

proof of Theorem 1.1. �
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