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Which geodesic �ows are left-handed?
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Abstract. We prove that the geodesic �ow on the unit tangent bundle to a hyperbolic

2-orbifold is left-handed if and only if the orbifold is a sphere with three cone points. As a

consequence, on the unit tangent bundle to a 3-conic sphere, the lift of every �nite collection

of closed geodesics is a �bered link.
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1. Introduction

Left-handed �ows are a particular class of non-singular 3-dimensional �ows on
rational homology spheres introduced by Étienne Ghys [18]. This topological
property roughly means that every pair of periodic orbits has negative linking
number. It implies that every �nite collection of periodic orbits bounds a so-
called Birkho� section (i.e., a global section with boundary) for the �ow, and
therefore forms a �bered link. In short, a left-handed �ow can be written as an
almost-suspension �ow in as many ways as one can hope. The �rst examples
of left-handed �ows are the Seifert �ows on S3 and the Lorenz �ow (although
the second is not strictly speaking left-handed because of its �xed points). This
gives an alternative proof that all torus links and all Lorenz links are �bered [4,
Theorem 5.2].

A natural question is then to look for other examples of left-handedness and to
wonder whether such �ows are abundant. The geodesic �ow on the unit tangent
bundle to any 2-dimensional sphere whose curvature is everywhere close to 1

is also left-handed [18]. This gives in�nitely many examples of non-conjugated

1 Many thanks to Étienne Ghys for raising the question addressed in this article and for
numerous conversations. This article was written during a one-semester visit at the Laboratoire
J.-V. Poncelet (CNRS UMI-2615) in Moscow. I thank the laboratoire and the CNRS for their
support.



1348 P. Dehornoy

left-handed �ows. The geodesic �ow on the unit tangent bundle to the modular
surface H2=PSL2.Z/ gives another example since its periodic orbits are isotopic
to periodic orbits of the Lorenz �ow [17, §3.5]. The cases of the almost-round
spheres and of the modular surface lead to

Question 1.1 (Ghys). Which geodesic �ows are left-handed?

The goal of this article is to give a complete answer in the negatively curved
case. Strictly speaking, the unit tangent bundle to an orientable Riemanian surface
is a 3-dimensional homology sphere if and only if the surface is a 2-sphere. But
geodesic �ows are naturally de�ned on a larger class, namely on 2-dimensional
orbifolds, that is, surfaces locally modeled on a Riemannian disc or on the quotient
of a disc by a �nite rotation group – the so-called cone points of the 2-orbifold
(we restrict our attention here to orientable 2-orbifolds). In this larger class
the unit tangent bundle is always a 3-manifold and it is a rational homology
sphere if and only if the 2-orbifold is a 2-sphere with a �nite number, say n, of
cone points – what we now call an n-conic 2-sphere (see Lemma 2.1 below).
An n-conic 2-sphere admits a negatively curved metric if and only if n > 3

(in the case n D 3 the orders of the cone points have to satisfy the additional
constraint 1

p
C 1

q
C 1

r
< 1 and in the case n D 4 the quadruple .2; 2; 2; 2/ is

prohibited). Since the geodesic �ows associated to di�erent negatively curved
metrics are all topologically conjugated [19], one can speak of the geodesic �ow
on a hyperbolic n-conic 2-sphere. Our main result is the following theorem.

Theorem 1. Let † be a hyperbolic n-conic 2-sphere. Then for n D 3 the geodesic

�ow on T1† is left-handed and for n > 4 the geodesic �ow is neither left-handed

nor right-handed.

From the point-of-view of left-handedness, Theorem 1 contains good and bad
news. Good news is that it provides in�nitely many new examples of left-handed
�ows on in�nitely many di�erent 3-manifolds. Bad news is that the answer
to Question 1.1 is not as simple as one could hope. Indeed, a particular case
of Theorem 1 was proven in [9], namely that the geodesic �ow on a 3-conic
2-sphere with cone points of order 2; 3; 4g C 2 is left-handed. Also a historical
construction of Birkho� [3] (generalized by Brunella, see [6, Description 2])
implies that many collections of periodic orbits of the geodesic �ow bound a
surface that intersects negatively any other orbit of the geodesic �ow, hence have
negative linking number with any other periodic orbit. (The collections having
this property are those that are symmetric, i.e., such that if they contain the lift of
an oriented geodesic they also contain the lift of the geodesic with the opposite
orientation, and whose projections on the surface induce a checkerboard coloring
of the complement.) Thus the most optimistic conjecture was that the geodesic
�ow on any hyperbolic n-conic 2-sphere is left-handed [9, Question 1.2]. Our
present result states that this conjecture is false when the sphere has at least four
cone points.
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As mentioned before, left-handedness implies that, in the complement of every
�nite collection of periodic orbits, there is a global section for the �ow. This global
section is a surface whose boundary is a multiple of the considered collection of
periodic orbits: it is a Birkho� section for the �ow [14, 18]. Near the boundary of
this surface, the �ow induces a �rst-return map that is close to a rotation. If there
is no mulitplicity (i.e., if the boundary of the section is exactly the considered
collection of periodic orbits), then the �rst-return map is close to the identity near
the boundary. Therefore we get an open book decomposition of the underlying
3-manifold (see [29, 12]). This restriction on the mulitplicy is achieved exactly
when the integral homology class of the collection of periodic orbits is zero.
Hence Theorem A directly implies

Corollary 2. For †p;q;r a 3-conic 2-sphere with hyperbolic metric, the lift

in T1†p;q;r of every �nite collection of oriented geodesics on †p;q;r whose class

is zero in H1.†p;q;r IZ/ is the binding of an open book decomposition of T1†p;q;r .

Since T1†2;3;7 is an integral homology sphere, Corollary 2 implies that every
collection of orbits of the geodesic �ow in T1†2;3;7 is the binding of an open book
decomposition.

The proof of Theorem 1 has two independent parts. The �rst part consists in
proving that the geodesic �ow on a hyperbolic n-conic 2-sphere with n > 4 is
not left-handed. For this it is enough to �nd pairs of periodic orbits with linking
number of arbitrary sign, and we do it by using an elementary construction. The
second part is more di�cult and consists in proving that any two periodic orbits of
the geodesic �ow on a hyperbolic 3-conic 2-sphere has negative linking number.
Our proof heavily relies on the main result of [10] where we constructed a template

with two ribbons for the geodesic �ow on every 3-conic 2-sphere. Using this
template, we estimate the linking number of every pair of orbits, and prove that it
is always negative.

The plan follows the above scheme: in Section 2, we recall the necessary
de�nitions, in particular what are geodesic �ows (§2.1) and left-handed �ows

(§2.3). We prove the n > 4-part of Theorem 1 in §2.4. In §2.6 we present the
template for the geodesic �ow on a hyperbolic 3-conic 2-sphere constructed in [10].
Section 3 then contains the proof of the n D 3-part of Theorem 1.

2. Preliminaries

2.1. Orbifolds, unit tangent bundles, and geodesic �ows. A 2-dimensional

orientable orbifold is a topological surface equipped with a metric that is locally
isometric to the quotient of a Riemannian disc by a �nite-order rotation group.
It is hyperbolic if the metric has everywhere negative curvature. The type of the
orbifold is .gI p1; : : : ; pn/, where g is the genus of the underlying surface and
p1; : : : ; pn are the orders of the cone points of the orbifold.
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The unit tangent bundle T1D to a disc D equipped with a Riemannian metric
is the set of tangent vector of length 1, hence it is homeomorphic to the solid
torus D � S1. If a �nite group Z=kZ acts by rotations on D, then it acts faithfully
on T1D. The quotient T1D=.Z=kZ/ is then a 3-manifold. Actually it is also a
solid torus which admits a Seifert �bration whose �bers are the �bers of the points
of D=.Z=kZ/.

The unit tangent bundle to a 2-dimensional orbifold is the 3-manifold that is
locally modeled on the quotient of the unit tangent bundle to a Riemannian disc
by a �nite-order rotation group. So it is a Seifert �bered space.

Lemma 2.1. The unit tangent bundle to an orientable 2-orbifold † of type

.gI p1; : : : ; pn/ is a rational homology sphere if and only if g D 0.

Proof. If † is not a topological 2-sphere, it contains a nonseparating simple closed
curve. The lift of this curve in T1† yields a non-trivial element of H1.T1†IQ/.
So if T1† is a homology 3-sphere, then † is a topological 2-sphere.

Conversely, if † is of type .0I p1; : : : ; pn/ its unit tangent bundle is the Seifert
�bered space with presentation .Oo0 j 2�nI .p1; 1/; : : : ; .pn; 1// in the notation
of [26, p. 140] (see p. 183 for a proof). By [30, p. 4] it is a Q-homology sphere. �

Remark 2.2. We can also use [30, p. 4] to see that T1†0Ip1;:::;pn
can be a

Z-homology sphere only for n D 3. Indeed, the order of H1.T1†0Ip1;:::;pn
IZ/

is j.n � 2/p1 : : : pn �
P

i p1 : : : Opi : : : pnj. The condition j.n � 2/p1 : : : pn �
P

i p1 : : : Opi : : : pnj D 1 then implies that the pi ’s must be pairwise coprime and,
by the pigeonhole principle, that one of them must be smaller than n

n�2
. For n D 3,

we �nd the two solutions .2; 3; 5/ – which corresponds to Poincaré dodecahedral
space – and .2; 3; 7/. For n > 4, these conditions cannot be ful�lled. So Theorem 1
concerns only one integral homology sphere.

Thurston showed [31] that an orientable 2-orbifold of type .0I p1; : : : ; pn/

admits a hyperbolic metric if and only if n > 5 or n D 4 and .p1; : : : ; p4/ ¤

.2; 2; 2; 2/ or n D 3 and 1
p1

C 1
p2

C 1
p3

< 1. In this case the orbifold is covered

by the hyperbolic plane and it is isometric to H2=Gp1;:::;pn
for some Fuchsian

group Gp1;:::;pn
.

For every unit tangent vector to H2, there exists a unique geodesic oriented by
this tangent vector, so that every point of T1H2 can be written in a unique way
in the form ..0/; P.0// where  is a geodesic travelled at speed 1. The geodesic

�ow ' on T1H2 is then de�ned by 't ..0/; P.0// WD ..t/; P.t//. Since every
Fuchsian group G acts by isometries on H2, we can de�ne the geodesic �ow
on T1H2=G by modding out. The important property for our purpose is that an
orbit of the geodesic �ow is the lift of an oriented geodesic, and therefore that
periodic orbits of the geodesic �ow are lifts of oriented closed geodesics.
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2.2. Linking number in homology spheres. Given two disjoint oriented closed
curves 1; 2 in a closed 3-manifold whose rational homology classes are trivial
(in particular any disjoint closed curves if M is a rational homology sphere), their
linking number lkM .1; 2/ is de�ned as the intersection number of 1 with a
(rational) 2-chain bounded by 2. It is a rational number whose denominator
divides the order of the torsion part of H1.M IZ/. The nullity of Œ1� 2 H1.M IQ/

implies that this intersection number does not depend on the choice of the 2-chain.
The same de�nition extends for 1; 2 two homologically trivial �nite collections
of oriented closed curves.

Example 2.3. Assume that † is a genus g-surface with g > 2 and f1; f2 are
the trigonometrically oriented �bers of two generic points x1; x2. Since �.†/ is
non-zero, there exists a vector �eld Y1 on † with only one singularity and we can
assume that this singularity is at x1. By the de�nition of Euler characteristics,
the singularity has index �.†/. So Y1 lifts in T1† to a 2-chain whose boundary
is ��.†/ f1. This implies that f1 is homologically trivial. Moreover, since the lift
of Y1 has intersection C1 with any other generic �ber, in particular with f2, we
have lkT1†.��.†/f1; f2/ D C1, and lkT1†.f1; f2/ D �1=�.†/.

When † is any orientable 2-orbifold we also have lkT1†.f1; f2/ D �1=�.†/.
The proof is similar, except that we have to consider a multivalued vector �eld.

2.3. Left-handed and Anosov �ows. We now recall the notion of left-handed

�ow, based on [18]. The reader in a hurry can directly take Lemma 2.5 as a
de�nition, since it is all we need in the sequel.

Roughly speaking, a 3-dimensional �ow in a Q-homology sphere is left-
handed if all pairs of periodic orbits are negatively linked. However taking this as
a de�nition would produce some strange results as, for example, a �ow with no
periodic orbit would be left-handed. The precise de�nition actually involves in-
variant measures, which can be seen as generalizations of periodic orbits (indeed
a periodic orbit induces a canonical invariant measure: the linear Dirac measure
whose support coincide with the periodic orbit). Invariant measures form a non-
empty convex cone.

A Gauss linking form on a Q-homology sphere M is a .1; 1/-form on C.2; M/

– the con�guration space of pairs of disjoint points – whose integral on the product
of two disjoint curves gives their linking number. Gauss linking forms always exist
(Gauss gave the �rst example on R3, see also [11] for explicit examples on S3 and
H3 and [23] for a construction on an arbitraryQ-homology sphere). Given a vector
�eld X on M , the linking number of two X-invariant measures �; �0 not charging
the same periodic orbits is then de�ned by

lkM;X.�; �0/ WD

“

!.X.x/; X.y//d�.x/d�.y/;

where ! is any di�use Gauss linking form (the integral always converges).
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De�nition 2.4 ([18]). A non-singular vector �eld X on a Q-homology sphere M

is left-handed if for every invariant measures �; �0 not charging the same periodic
orbits we have lkM;X.�; �0/ < 0.

Our goal here is not to paraphrase [18]. Let us just repeat that left-handed
�ows have very nice topological properties. In particular every �nite collection of
periodic orbits forms a �bered link whose �ber surfaces are Birkho� sections for
the �ow (i.e., intersect every orbit with a bounded �rst-return time).

In general the space of invariant measures of a vector �eld is huge (in�nite
dimensional) and hard to determine. However when X is of Anosov type – as in
particular the geodesic �ow on a negatively curved 2-orbifold – left-handedness
reduces to a property of periodic orbits. The reason is the shadowing property,
namely that every invariant measure is the weak limit of a sequence of (Dirac
measures supported by) periodic orbits.

Lemma 2.5 ([9, Lemma 2.1]). A non-singular Anosov vector �eld X on a Q

homology sphere is left-handed if and only if every pair of periodic orbits of X

has negative linking number.

2.4. 2-spheres with at least four cone points. We now prove the elementary
part of Theorem 1, namely that the geodesic �ow on T1H2=Gp1;:::;pn

is neither
left-handed nor right-handed for n > 4. Since the geodesic �ows corresponding to
di�erent hyperbolic metrics on the same orbifold are topologically conjugated, we
can choose our preferred metric. We then choose the metric so that H2=Gp1;:::;pn

is the union of two n-gons F1; F2 in H2 with angles �=p1; : : : ; �=pn glued along
their boundaries. The polygons F1; F2 have n vertices P1; : : : ; Pn and are then
images one from the other in a mirror (see Figure 1).

Lemma 2.6. With the above metric, there exists two periodic geodesics on

H2=Gp1;:::;pn
that do not intersect.

Proof. For n > 5 (see Figure 1 left), it is enough to choose �ve consecutive sides
e1; : : : ; e5 of F1, to consider s1 the shortest segment connecting e1 to e3 and s2

the shortest segment connecting e3 to e5. The two segments s1; s2 do not intersect
on F1 and their symmetrics do not intersect on F2 as well. The union of s1 with its
symmetric on F2 yields a closed geodesic on H2=Gp1;:::;pn

that does not intersect
the union of s2 with its symmetric on F2.

For n D 4, we have to re�ne the idea (see Figure 1 right). We will �nd two
disjoint closed geodesics g12; g34 which are close to the sides of P1P2 and P3P4

respectively. First suppose that the orders p1 and p2 are both even, then the side
P1P2 actually supports a closed geodesics that we choose for g12. Now if p1 is
odd and p2 is even, there is a geodesic starting at P2 and winding p1�1

2
times

around P1 before coming back to P2, and then makes the trip in the opposite
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Figure 1. Two non-intersecting geodesics on H2=Gp1;:::;pn
for n > 4 on the left and n D 4

on the right (on this picture all corners but the bottom left have odd order).

direction (as along P1P2 on Figure 1 right). We choose it for g12. Finally if p1; p2

are both odd, then there is a closed geodesic that starts on the edge P1P2, winds
p1�1

2
times around P1, comes back to its initial point, then winds p2�1

2
around P2

and comes back to its initial points with its initial direction (as along P3P4 on
Figure 1 right). We choose it for g12. Applying the same strategy for g34 we
check that, since g12 stays close to P1P2 and g34 stays close to P3P4, they do not
intersect. (Of course, the same strategy works also for n > 5, but we had an easier
construction in that case.) �

Proof of Theorem 1 for n > 4. Consider two non-intersecting closed geodesics 1

and 2 on H2=Gp1;:::;pn
(they exist by Lemma 2.6). Denote by

$
1 the set in

T1H2=Gp1;:::;pn
of those unit vectors that are tangent to 1 regardless of the

orientation, we call it the symmetric lift of 1. It is a 2-component link if 1

does not visit a cone point of even order, and a knot otherwise. Now consider
the set S$

1

of all unit tangent vectors based on points of 1 (see Figure 2). This

is the union of two immersed annuli that we orient so that the boundary of the

integral 2-chain S$
1

is 2
$
1. Since S$

1

lies only in the �bers of the point of
$
1 and

since 2 does not intersect 1, the intersection of
$
2 with S$

1

is empty. Therefore

lkT1H2=Gp1;:::;pn
.

$
1;

$
2/ D 0. �

Figure 2. The surface S$
1

consists of two annuli. Its oriented boundary is 2
$
1.
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Remark 2.7. The reader may be frustrated that in the above proof we exhibited
only pairs of periodic orbits with linking number zero and not with positive linking
number. Actually, this is only to simplify the presentation. Indeed, if 1; 2 are

two disjoint oriented geodesics on H2=Gp1;:::;pn
, then

!
1 is homologous in the

complement of
!
2 to the multiple of some �bers, say �1f1, and similarly

!
2 is

homologous to some �2f2. Since the linking number of two regular �bers is �1=�,

we have lkT1H2=Gp1;:::;pn
.

!
1;

!
2/ D ��1�2=�. In the proof of Theorem 1, we had

chosen the geodesics 1; 2 so that �1 D �2 D 0. By adding some winding
around the cone points, we can make �1; �2 arbitrarily large in the positive or in
the negative direction, keeping 1 and 2 disjoint.

However, notice that if 1 and 2 intersect, the symmetry between positive and
negative is broken, as intersection points add a negative contribution to the linking

number (namely a J �-move [2] on 1 or 2 adds �1 to lkT1H2=Gp1;:::;pn
.

!
1;

!
2/).

This explains why linking numbers of lifts of long geodesics are likely to be
negative.

2.5. The template Tp;q;r and its extremal orbits. Now we turn to orbifolds of
type H2=Gp1;p2;p3

, that we prefer to denote by H2=Gp;q;r , and we denote by 'p;q;r

the geodesic �ow on T1H2=Gp;q;r . We �rst recall two results of [10] that describe
the isotopy class of all periodic orbits of 'p;q;r .

Lemma 2.8 ([10, Proposition 2.4]). The unit tangent bundle T1H2=Gp;q;r is

obtained from S3 by surgeries of index p�1; q�1; r�1 on the three components of

a positive Hopf link.

A template (see [4, 15]) in a 3-manifold is an embedded branched surface made
of �nitely many rectangular ribbons that are glued along their horizontal sides in
such a way that every gluing point is on the bottom side of at most one ribbon
(but may be on the top side of several ribbons). A template is equipped with the
vertical bottom-to-top �ow on each rectangle. This is actually only a semi-�ow
since orbits in negative time are not uniquely de�ned when crossing a branching
line. Given a labeling of the ribbons of the template, the code of an orbit is the
in�nite sequence that describes the consecutive ribbons used by the orbit. The
kneading sequences (see [7, 21]) are the codes of the leftmost and rightmost orbits
of every ribbon. (Sometime [4, 15] it is required that the gluing map be Markovian,
namely that the top side of every ribbon be glued to the union of the full bottom
sides of several ribbons. Here we remove this condition, this is in a sense the price
to pay for having a template with only two ribbons.)
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Call Tp;q;r the template with two ribbons whose embedding in T1H2=Gp;q;r

is depicted on Figure 3, whose left and right ribbons are labelled by a and b

respectively, and whose kneading sequences are the words uL; uR; vL; vR given
by Table 1 (p. 1357).

Figure 3. The template Tp;q;r in T1H2=Gp;q;r . The 3-manifold T1H2=Gp;q;r is obtained
from S3 by surgeries on a three-components Hopf link (green) with the given indices. The
template Tp;q;r is characterized by its embedding in T1H2=Gp;q;r and by the kneading
sequences that describe the orbits of the extremities of the ribbons. In case r is in�nite,
T1H2=Gp;q;r is the open manifold obtained by removing the bottommost component of
the link. In the case p D 2, the exit side of the left ribbon is strictly included into the
entrance side of the right ribbon.

Theorem 2.9 ([10, Theomem A]). Up to one exception, there is a one-to-one cor-

respondence between periodic orbits of the geodesic �ow 'p;q;r on T1H2=Gp;q;r

and periodic orbits of the template Tp;q;r such that its restriction to every �nite

collection is induced by an isotopy (which depends on the collection).

The exception mentioned in the statement consists of two orbits of the template
that correspond to the same orbit of the geodesic �ow. In the sequel, we only need
to consider the knots and links in Tp;q;r since our strategy is now to prove that
any orbits of Tp;q;r have negative linking number in T1H2=Gp;q;r . The exception
is therefore not a problem as we will just prove twice that a given orbit links
negatively with all others.
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2.6. Computing linking numbers in T1H2=Gp;q;r . Our goal is to estimate
linking numbers of orbits of the template Tp;q;r . The latter sits in T1H2=Gp;q;r ,
but is depicted in S3. Therefore we need a formula that gives the linking number
after surgery in terms of information that can be read directly on Figure 3, namely
the linking number before surgery and the linking numbers of the links with
the di�erent components of the Hopf link H

C
3 . The next result provides such a

formula. An analog statement holds in any two manifolds related by surgeries,
but we prefer to state in the case which we are interested in. Denote by �p;q;r

the number pqr � pq � qr � pr D pqr
�

1 � 1
p

� 1
q

� 1
r

�

. It is the order of the

group H1.T1H2=Gp;q;r IZ/. Denote by Q0
p;q;r the bilinear form on R3 described

by the matrix
0

@

qr � q � r r q

r pr � p � r p

q p pq � p � q

1

A :

Lemma 2.10 (evolution of linking numbers). For L1; L2 two disjoint links in S3

that are also disjoint from the Hopf linkHC
3 , their linking number after performing

surgeries of respective index .p � 1; q � 1; r � 1/ on the components .H1; H2; H3/

of HC
3 is given by

lkT1H2=Gp;q;r
.L1; L2/

D lkS3.L1; L2/ C
1

�p;q;r

Q0
p;q;r

0

B

@

0

B

@

lkS3.L1; H1/

lkS3.L1; H2/

lkS3.L1; H3/

1

C

A
;

0

B

@

lkS3.L2; H1/

lkS3.L2; H2/

lkS3.L2; H3/

1

C

A

1

C

A
:

Proof. Let S2 be a simplicial integral 2-chain in S3 bounded by �p;q;rL2.
After possibly canceling pairs of intersection points with di�erent orientations
by tunneling, we can assume that S2 intersects each component Hi of the Hopf
link in jlkS3.L2; Hi/j points. Let �.HC

3 / be a tubular neighborhood of HC
3 . The

boundary of S2 in S3 n �.HC

3 / is then made of lkS3.L2; Hi/ meridian circles on
every component Hi .

Let D1 be a punctured disc in S3 n �.HC
3 / bounded by a longitude of H1, a

meridian of H2 and a meridian of H3. De�ne similarly D2 and D3. For a1; a2; a3

in Z, the boundary of the 3-chain a1D1 Ca2D2 Ca3D3 then consists of a cycle of
a1 longitudes and a2 C a3 meridians of H1, a2 longitudes and a1 C a3 meridians
of H2, and a3 longitudes and a1 C a2 meridians of H3.

The 2-chain S2 C a1D1 C a2D2 C a3D3 can then be completed by adding
meridian discs into a 2-chain NS2 in T1H2=Gp;q;r whose boundary only consists
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of �p;q;rL2 if and only if the restriction of the boundary of

S2 C a1D1 C a2D2 C a3D3

to @�.HC

3 / consists of curves with slope p � 1 on @H1 (resp. q � 1 on @H2, resp.

r � 1 on @H3), so if and only if a1; a2; a3 satisfy the system

�p;q;r lkS3.L2; H1/ C a2 C a3 D .p � 1/a1;

�p;q;r lkS3.L2; H2/ C a1 C a3 D .q � 1/a2;

�p;q;r lkS3.L2; H3/ C a1 C a2 D .r � 1/a3:

Since
0

@

1 � p 1 1

1 1 � q 1

1 1 1 � r

1

A

�1

D
�1

�p;q;r

0

@

qr � q � r r q

r pr � p � r p

q p pq � p � q

1

A ;

the solution of the system is given by

0

@

a1

a2

a3

1

A D

0

@

qr � q � r r q

r pr � p � r p

q p pq � p � q

1

A

0

B

@

lkS3.L2; H1/

lkS3.L2; H2/

lkS3.L2; H3/

1

C

A
:

Finally, the 1-chain L1 intersects �p;q;r lkS3.L1; L2/ times S2, and lkS3.L1; Hi/

times the disc Di for every i , so its intersection with NS2 is equal to

�p;q;r lkS3.L1; L2/ C
X

i

ai lkS3.L1; Hi/:

Dividing by �p;q;r yields the desired formula. �

Let us test the above formula on Example 2.3: the linking number between
any two regular �bers of the unit tangent bundle T1† equals �1=�.†/ on any n-
conic sphere †, so the linking number equals pqr

�p;q;r
when † D H2=Gp;q;r . In

our presentation, two �bers of the unit tangent bundle correspond to two �bers
of the Hopf �bration, thus have linking number C1 in S3 and C1 with every
component of the Hopf link. By Lemma 2.10 their linking number is equal to
1 C 1

�p;q;r
Q0

p;q;r ..1; 1; 1/; .1; 1; 1// D pqr
�p;q;r

in T1†, as expected.
Lemma 2.10 admits a simpler expression when it is applied to some orbits of

the template Tp;q;r . For  an orbit of Tp;q;r , denote by ]a and ]b the respective
numbers of letters a and b in the code of  . Denote by Qp;q;r the bilinear form
on R2 given by the matrix

�

qr � q � r �r

�r pr � p � r

�

:
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For ;  0 two orbits of Tp;q;r , denote by cr.;  0/ their crossing number on Tp;q;r ,
that is, the number of double points using the standard projection of the template
(as in Figure 3).

Lemma 2.11. For ;  0 two orbits of Tp;q;r , one has

lkT1H2=Gp;q;r
.;  0/ D �

1

2
cr.;  0/ C

1

�p;q;r

Qp;q;r

�

.]a; ]b/; .]a 0; ]b 0/
�

: (*)

Proof. Since all crossings onTp;q;r are negative, one has lkS3.;  0/ D �1
2
cr.;  0/.

Also, one checks on Figure 3 that lkS3.; H1/ D �]a; lkS3.; H2/ D ]b and
lkS3.; H3/ D 0. Plotting these formulas into Lemma 2.10, we obtain

lkT1H2=Gp;q;r
.;  0/

D �
1

2
cr.;  0/ C

1

�p;q;r

Q0
p;q;r ..�]a; ]b; 0/; .�]a 0; ]b 0; 0//

D �
1

2
cr.;  0/ C

qr � q � r

�p;q;r

.]a/.]a 0/ �
r

�p;q;r

.]a/.]b 0/

�
r

�p;q;r

.]b/.]a 0/ C
pr � p � r

�p;q;r

.]b/.]b 0/

D �
1

2
cr.;  0/ C

1

�p;q;r

Qp;q;r ..]a; ]b/; .]a 0; ]b 0//: �

3. Main computation

In this section we prove the hard part of Theorem 1, namely that the linking number
of any two periodic orbits ofTp;q;r is negative. In Lemma 2.11, the term �1

2
cr.;  0/

contributes with the desired sign to the linking number, whereas the second term
contributes positively when, for example,  and  0 contains only the letter a. We
will see that this contribution is always compensated by the �rst term. However,
this compensation only holds for the orbits of Tp;q;r , not for two arbitrary words,
so we will use in a crucial way the fact that Tp;q;r is a strict subtemplate of the
Lorenz template. In particular, it is necessary that the orbits are balanced in the
sense that the code of an orbit cannot contain only one letter.

The notion of concatenation of words plays a central role in our proof. For u,
v two �nite words, their concatenation uv is the word obtained by reading �rst
u and then v. In our context the point is that if an in�nite word w1 describes a
periodic orbit on a Lorenz-like template and if w is long enough, then the �nite
word w may be decomposed as a concatenation w D uv such that u1 and v1 also
describe two periodic orbits of the same Lorenz-like template (Section 3.2 below
is hopefully self-contained, but one may also consult [15, Section 3.1.2]). This
phenomenon can be seen as a consequence of the existence of Markov partitions
for Anosov �ows [28].
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We �rst detail the scheme of the proof in the case 3 6 p 6 q 6 r in §3.1,
and prove the needed lemmas in the next subsections. Finally in §3.6 we adapt the
proof to the case p D 2. For simplicity, we now write lk instead of lkT1H2=Gp;q;r

.

3.1. Proof of Theorem 1 in the case p; q; r > 3. By Lemma 2.5 it is enough
to prove that the linking number of every pair of periodic orbits of the geodesic
�ow on T1H2=Gp;q;r is negative. By Theorem 2.9 it is then enough to prove that
the linking number of every pair .;  0/ of periodic orbits of the template Tp;q;r is
negative.

The strategy is as follows. We use equation (*) of Lemma 2.11. First we
show that the expression �1

2
cr.;  0/ behaves subadditively when concatenating

words (Lemma 3.2). Since the form Qp;q;r behaves addititively under concate-
nation, by Lemma 2.11, lk.;  0/ also behaves subadditively. For p; q; r �xed
we can then restrict our attention to the set of extremal orbits, which are deter-
mined in Lemma 3.3: extremal orbits are encoded by the words .ap�1b/kaibj or
.abq�1/kaibj with .i; j; k/ 2 .ŒŒ1; p � 1�� � ŒŒ1; q � 1�� n ¹.1; q � 1/; .p � 1; 1/º/ �

ŒŒ0; r�2
2

��, or .ap�1b/k.abq�1/l for .k; l/ in ŒŒ1; r�2
2

�� � ŒŒ1; r�2
2

��.
We then show that the linking numbers of all pairs of such extremal orbits are

negative. We cover all possibilities in four separate statements (the most critical
case is covered by Lemma 3.7).

.ap�1b/kaibj .abq�1/kaibj .ap�1b/k.abq�1/l

.ap�1b/kaibj Lemma 3.7 Lemma 3.8 Lemma 3.10

.abq�1/kaibj Lemma 3.7 Lemma 3.10
.ap�1b/k.abq�1/l Lemma 3.9

The rest of the section is dedicated to proving these four lemmas.

Remark 1. For p; q; r �xed, Lemmas 3.7, 3.8, 3.9 and 3.10 are statements that
involve �nitely many computations only. On the one hand, the proofs we propose
here are rather heavy and we are not fully satis�ed with them. On the other
hand, the crossing number of a pair of orbits of a Lorenz-type template is easy
to compute, therefore, using equation (*), the inequalities in the lemmas are
easily checked. We did so into a Sage1 worksheet available on our website2. It
took about 25 seconds on a laptop to check the validity of these lemmas for all
p 6 4; q 6 5; r 6 7 and about 2 hours for all p 6 6; q 6 8; r 6 10.

1 http://www.sagemath.org

2 http://www-fourier.ujf-grenoble.fr/~dehornop/maths/ComputationsLinkingTpqr.sws

http://www.sagemath.org
http://www-fourier.ujf-grenoble.fr/~dehornop/maths/ComputationsLinkingTpqr.sws
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3.2. Reducing to a �nite number of estimations. The next two results of this
section imply that for proving that any two orbits of Tp;q;r have negative linking
number (p; q; r being �xed), it is enough to restrict our attention to an explicit
�nite list of orbits.

De�nition 3.1. A cut of a �nite word w in the alphabet ¹a; bº is a pair of words u; v,
called the factors, such that

� w is obtained by cyclic permutation of the letters of uv,

� u and v end with the letters a and b respectively,

� u and v satisfy u1 < v1,

� no shift of u1 or v1 lies between u1 and v1 in the lexicographic order.

A cut is admissible if the two factors code orbits of Tp;q;r , that is, if all their shifts
are between the kneading sequences given by Table 1.

Graphically, if w1 is the code of an orbit  , a cut correspond suppressing from
 a corner of the bottom border of the diagram of  (see Figure 4).

Figure 4. A cut of the word aajabbjabbababbab (on the left) creates the two new words
abbababbabaa and abb (on the right).

It may not be obvious how a cut could not be admissible. The point is that
cutting an orbit creates two orbits, one which corresponds to a part of the original
orbit and is moved slightly to the left, and the other one which is moved to the
right. This moving could make one of the two new orbits exit the template.

By extension, for v; w two �nite words, we denote by cr.v1; w1/ the crossing
number of the two orbits of the Lorenz template that are coded by v1 and w1.
The key-property of cuts is

Lemma 3.2 (superadditivity of the crossing number). Assume that u; v are the

factors of a cut. Then for every �nite word x, we have

cr..uv/1; x1/ > cr.u1; x1/ C cr.v1; x1/:
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Proof. Call an (elementary) arc a piece of orbit of the template delimited by
two (consecutive) intersections points with the branching arc of the template.
An elementary arc then corresponds to a letter of its code. The orbit coded
by .uv/1 is parallel and situated on the left of u1 for the �rst juj elementary
arcs and then parallel and to the right of v1 for the next jvj elementary arcs. Thus
the correspondence between the letters of uv and the letters of u and v induces
a canonical correspondence between elementary arcs of .uv/1 and elementary
arcs of u1 or of v1. Call the intermediate zone the zone situated between the
elementary arcs of .uv/1 and the corresponding arcs of u1 or of v1 (in blue and
green on Figure 5).

First suppose that no arc of x1 travels in the intermediate zone. Then an
elementary arc of x1 intersects an elementary arc of .uv/1 if and only if it
intersects the corresponding elementary arc of u1 or of v1. Therefore we have
cr..uv/1; x1/ D cr.u1; x1/ C cr.v1; x1/ in this case.

Figure 5. Proof of the superadditivity lemma: when an arc of x1 (in red) visits the region
between u1 and .uv/1 (in blue), either it crosses .uv/1 twice and does not cross u1

(on the left), or it crosses both orbits once (on the right).

In the general case, an arc of x1 can only enter the intermediate zone by
intersecting an arc of .uv/1. If it exists the zone by intersecting an arc of u1

or v1, then these two points are canonically associated. Otherwise it exits by
cutting another arc of .uv/1 and then we get two more intersection points with
.uv/1 than with the union of u1 and v1. In both cases, the inequality holds. �

Call a periodic orbit of the template Tp;q;r extremal if it has no admissible cut.
Such extremal orbits correspond to the elementary loops of Fried [13].

Lemma 3.3. A periodic orbit of Tp;q;r is extremal if and only if its code is of the

form aibj .ap�1b/k or aibj .abq�1/k with

.i; j; k/ 2 .J1; p � 1K � J1; q � 1K n ¹.1; q � 1/; .p � 1; 1/º/ � J0; r�2
2

K;

or .ap�1b/k.abq�1/l for .k; l/ in J1; r�2
2

K � J1; r�2
2

K.
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Proof. Let  be an extremal orbit and denote by w its code. By Theorem 2.9 and
Table 1, the word w does not contain more than p � 1 consecutive a and q � 1

consecutive b. Also it does not contain more than r�2
2

consecutive blocks of the
form ap�1b or abq�1.

First suppose that w contains no syllable of the form ap�1b or abq�1. Decom-
pose the axis of the template into the union of segments, corresponding to orbits
starting with ap�1b, ap�2b; : : : ; ab, ba; b2a; : : : ; bq�2a, bq�1a (see Figure 6).

Figure 6. Division of the axis of Tp;q;r into segments corresponding to orbits starting with
a3b; a2b; ab; ba; b2a; b3a, and b4a here.

Now travel along  starting from the leftmost point and consider the points
where it intersects the axis of the template. By the hypothesis that  is the leftmost
orbit in the corresponding subsegment, then either  is always the leftmost orbit
of each of the visited subsegments, in which case  comes back to its initial
point after having visited at most once every subsegment, and in this case w

is of the form aibj . Or at some point  stops being the leftmost orbit in the
corresponding subsegment, which means that some arc comes from the right to
pass over  and sits just to the left of  in the corresponding subsegment. This
determines a place to cut  . Since the two arcs that intersect at that cut are in the
same subinterval, they correspond to letters of w that are followed by the same
number of letters of the same type. Therefore cutting at this place amounts to
factor w D ai1bj1 : : : ainbjn into aik bjk : : : ail bjl and ailC1bjlC1 : : : aik�1bjk�1 .
These two words still encode orbits of the template, so the cut is admissible.
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Now allow w to contain syllables of the form ap�1b or abq�1. We apply the
same strategy for �nding an admissible cut works, except that we have to forget
about the blocks of the form .ap�1b/k or .abq�1/k. Namely, we follow the orbit 

encoded by w starting from its leftmost point, but we consider only the relative
place of  in the corresponding subsegments when we are visiting syllables of the
form .ap�1b/k or .abq�1/k . One still �nds a cut. By our assumption, this cut takes
place between two letters of  not belonging to a syllable of the form .ap�1b/k

or .abq�1/k . �

3.3. Estimating lk.ai bj ; ai 0

bj 0

/. Since any word can be decomposed as a
product of syllables of the form aibj , using the subbativity of linking numbers
(Lemma 3.2), it is enough for proving Theorem 1 to show that lk.aibj ; ai 0

bj 0

/ is
negative for all possible values of .i; j; i 0; j 0/. Unfortunately, this is not the case:
using Lemma 2.11, one sees that �p;q;r lk.ap�1b; aibj / D qi �jp and in particular
we have lk.ap�1b; ap�1b/ D .pq � p � q/=�p;q;r > 0. This formula is not a
surprise since the code ap�1b actually corresponds to a C2�=r-rotation around
the order r-point of H2=Gp;q;r , hence the curve with code .ap�1b/r is isotopic to
a �ber, and we know that the linking number between two �bers is positive (by
Example 2.3). However, the next two lemmas state that this situation is almost the
only bad case.

Lemma 3.4 (easy case). If i < i 0; j < j 0, then lk.aibj ; ai 0

bj 0

/ is negative.

Proof. Figure 7 shows that we have cr.aibj ; ai 0

bj 0

/ D 2.i C j / in this case.

Figure 7. Crossing number between two orbits of codes aibj (red) and aibj 0

(black), with
i < i 0; j < j 0 on the left and i 6 i 0; j > j 0 on the right. The double points are encircled,
they are 2.i C j / on the left and 2.i C j 0 � 1/ on the right.

By Lemma 2.11, we have

�p;q;r lk.aibj ; ai 0

bj 0

/

D �iqr
�

1 �
1

q
�

1

r
�

j

iq

�

.p � i 0/ � jpr
�

1 �
1

p
�

1

r
�

i

jq

�

.q � j 0/:
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Suppose i; j > 2 and .i; q; r/; .j; p; r/ ¤ .2; 3; 4/; .2; 3; 5/. Since j < q, we
have j

iq
< 1

i
, and therefore 1 � 1

q
� 1

r
� j

iq
> 1 � 1

q
� 1

r
� 1

i
> 0. Since i 0 < p,

the term �iqr
�

1 � 1
q

� 1
r

� j
iq

�

.p � i 0/ is always negative. Similarly for the term

�jpr
�

1 � 1
p

� 1
r

� i
jq

�

.q � j 0/. Then lk.aibj ; ai 0

bj 0

/ is the sum of two negative
terms, hence is negative

If i D 1, since j 6 q � 2, we have

1 �
1

q
�

1

r
�

j

iq
D 1 �

j C 1

q
�

1

r
> 1 �

q � 1

q
�

1

r
D

1

q
�

1

r
:

Using the assumption q 6 r , we still have a non-positive term. The same holds for
j D 1. Note that the equality holds only for j D q �2 (resp. i D p �2), therefore
the sum can be equal to 0 only if i D j D 1 D p � 2 D q � 2 and p D q D r ,
which forces p D q D r D 3. These values do not correspond to a hyperbolic
orbifold.

In the case .i; q; r/ D .2; 3; 4/ or .2; 3; 5/, since j < j 0 < q, we nec-
essarily have j D 1; j 0 D 2. In this case, an easy computation leads to
�p;q;r lk.aibj ; ai 0

bj 0

/ D 6i 0 � 9p C 12. Since i 0 6 p � 1, we have 6i 0 � 9p C 12 6

�3p C 6 < 0. The case .j; p; r/ D .2; 3; 4/ or .2; 3; 5/ is treated in the same way.
Therefore, for i < i 0; j < j 0, we always have lk.aibj ; ai 0

bj 0

/ < 0. �

Lemma 3.5 (hard case). If i 6 i 0; j > j 0, then lk.aibj ; ai 0

bj 0

/ is negative, except

if .i; j / D .1; q � 1/ or .i 0; j 0/ D .p � 1; 1/.

Proof. Looking at Figure 7, we now have cr.aibj ; ai 0

bj 0

/ D 2.i C j 0 � 1/.
Then

�p;q;r lk.aibj ; ai 0

bj 0

/ D �Œ.qr � q � r/i � rj 0�.p � i 0/

� Œ.pr � p � r/j 0 � ri �.q � j /

� r.i 0 � i/.j � j 0/

C .pqr � pq � pr � qr/:

The expression is linear in the four variables i; j; i 0; j 0.
In order to prove the lemma, we have to prove that on the extremal points of

the region

Di;j;i 0;j 0 WD ¹.i; j; i 0; j 0/ji 6 i 0; j > j 0º n ¹.1; q � 1; �; �/º [ ¹.�; �; p � 1; 1/º;

the number �p;q;r lk.aibj ; ai 0

bj 0

/ is negative (a point of Di;j;i 0;j 0 being not ex-
tremal if it lies between two points of the domain that share 3 coordinates).

By linearity, for each value of .i; j /, the extremum is reached when .i 0; j 0/ is
one of the �ve points .i; j /; .i; 1/; .p � 2; 1/; .p � 1; 2/; .p � 1; j /. By symmetry,
we can restrict ourselves to the values .i; j /; .i; 1/, and .p � 2; 1/.
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� Case 1: .i 0; j 0/ D .i; j /. �p;q;r lk.aibj ; ai 0

bj 0

/ is then equal to

.qr � q � r/i2 C .pr � p � r/j 2 � 2rij � �p;q;r .i C j � 1/:

Since the coe�cients of i2 and j 2 are positive, the maximum is reached
on the boundary of the domain, hence we only have to check the points
.i; j / D .1; 1/; .p � 2; 1/; .p � 1; 2/; .p � 1; q � 1/; .2; q � 1/; .1; q � 2/.
By symmetry, we can actually only consider .1; 1/ and .p � 2; 1/.

– Case 1.1: .i; j; i 0; j 0/ D .1; 1; 1; 1/. We have

�p;q;r lk.a1b1; a1b1/ D �pqr C pq C 2pr C 2qr � p � q � 4r

D �.p � 2/.q � 2/.r � 2/ � .p � 3/.q � 3/ C 1:

The �rst term is always smaller than �1, the second is non-positive, so
the sum is negative.

– Case 1.2: .i; j; i 0; j 0/ D .p � 2; 1; p � 2; 1/. We have

�p;q;r lk.ap�2b1; ap�2b1/

D �pqr C 2pq C pr C 2qr � p � 4q � r

D �.p � 2/.q � 2/.r � 2/ � .p � 3/.r � 3/ C 1;

which is negative for the same reason as in Case 1.1.

� Case 2: .i 0; j 0/ D .i; 1/. �p;q;r lk.aibj ; ai 0

b1/ is then equal to

.pr � p � r/i2 � �p;q;r i C .pr � p � r/j � ri.j C 1/:

Since the coe�cient of i2 is positive, the maximum is reached on the
boundary of the domain, hence we only have to check the points .i; j / D

.1; 1/; .p � 2; 1/; .p � 2; q � 1/; .2; q � 1/; .1; q � 2/. (There is no more sym-
metry.)

– Case 2.1: .i; j; i 0; j 0/ D .1; 1; 1; 1/. This case is similar to Case 1.1.

– Case 2.2: .i; j; i 0; j 0/ D .p � 2; 1; p � 2; 1/. This case is similar to
Case 1.2.

– Case 2.3: .i; j; i 0; j 0/ D .p � 2; q � 1; p � 2; 1/. We have

�p;q;r lk.ap�2bq�1; ap�2b1/

D �pqr C pq C pr C 3qr C p � 4q � r

D �.p � 3/.q � 1/.r � 2/ � .p � 2/.q � 3/;

which is the sum of two non-positive terms.



Which geodesic �ows are left-handed? 1367

– Case 2.4: .i; j; i 0; j 0/ D .2; q � 1; 2; 1/. We have

�p;q;r lk.a2bq�1; a2b1/ D �pqr C pq C pr C 3qr C p � 4q � r

D �.p � 3/.q � 1/.r � 2/ � .p � 2/.q � 3/;

which is the sum of two non-positive terms.

– Case 2.5: .i; j; i 0; j 0/ D .1; q � 1; 1; 1/. We have

�p;q;r lk.a1bq�1; a1b1/ D pr C 2p � q C 2r

D �.p � 2/.r � 2/ � q C 4;

which is negative.

� Case 3: .i 0; j 0/ D .p � 2; 1/. �p;q;r lk.aibj ; ai 0

b1/ is then equal to

�.qr � 2q � r/i C .r � p/j:

By linearity, we only have to check the points .i; j / D .1; 1/; .p � 2; 1/,
.p � 1; 2/, .p � 1; q � 1/; .2; q � 1/; .1; q � 2/.

– Case 3.1: .i; j; i 0; j 0/ D .1; 1; p � 2; 1/. This case is symmetric to
Case 2.5.

– Case 3.2: .i; j; i 0; j 0/ D .1; q � 2; p � 2; 1/. We have

�p;q;r lk.a1bq�2; ap�2b1/ D �pq C 2p C 2q � r

D �.p � 2/.q � 2/ � r C 4;

which is negative.

– Case 3.3: .i; j; i 0; j 0/ D .2; q � 1; p � 2; 1/. We have

�p;q;r lk.a2bq�1; ap�2b1/ D �pq � qr C p C 4q C r

D �.q � 1/.p C r � 4/ C 4;

which is negative.

– Case 3.4: .i; j; i 0; j 0/ D .p � 1; q � 1; p � 2; 1/. We have

�p;q;r lk.ap�1bq�1; ap�2b1/ D �pqr C pq C pr C 2qr C p � 2q � 2r

D �.p � 2/.q � 1/.r � 1/ C 4;

which is negative.
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– Case 3.5: .i; j; i 0; j 0/ D .p � 1; 2; p � 2; 1/. We have

�p;q;r lk.ap�1b2; ap�2b1/ D �pqr C 2pq C pr C qr � 2p � 2q C r

D �.p � 1/.q � 1/.r � 2/ C 4;

which is negative.

– Case 3.6: .i; j; i 0; j 0/ D .1; q � 1; 1; 1/. This case is the same as
Case 2.5.

�

3.4. Estimating lk..ap�1b/kai bj ; .ap�1b/k0

ai 0

bj 0

/. As we have seen, sylla-
bles of the form ap�1b may contribute positively to the linking number. However,
using the information we have on the admissible codes, we know that there cannot
be more than r�2

2
consecutive such syllables. By the subadditivity of the linking

number and using the expression �p;q;r lk.ap�1b; aibj / D qi � jp, we have the
inequality

�p;q;r lk..ap�1b/kaibj ; .ap�1b/k0

ai 0

bj 0

/

6 �p;q;rkk0lk.ap�1b; ap�1b/ C �p;q;rklk.ap�1b; ai 0

bj 0

/

C �p;q;rk0lk.ap�1b; aibj / C �p;q;r lk.aibj ; ai 0

bj 0

/

D kk0.pq � p � q/ C k.qi 0 � pj 0/ C k0.qi � jp/

C �p;q;r lk.aibj ; ai 0

bj 0

/:

Unfortunately, the term �p;q;r lk.aibj ; ai 0

bj 0

/ is not always negative enough and
cannot always compensate the three �rst terms. So we need a better control than
the superadditivity lemma. The additional term 2 min.k; k0/ in the next lemma
will make the di�erence. By convention, for  a periodic orbit of Tp;q;r , we denote
by cr.; / twice the number of double points of  (this is the crossing of  with
a copy of itself slightly translated along the template).

Lemma 3.6. The crossing number cr..ap�1b/kaibj ; .ap�1b/k0

ai 0

bj 0

/ is at least

equal to

kk0cr.ap�1b; ap�1b/ C kcr.ap�1b; ai 0

bj 0

/

C k0cr.ap�1b; aibj / C cr.aibj ; ai 0

bj 0

/ C 2 min.k; k0/:

Proof. Without loss of generality suppose k 6 k0 (if k D k0, also suppose i 6 i 0,
and if moreover i D i 0 suppose j > j 0). We make an induction on k. For k D 0,
the result is a particular case of Lemma 3.2.
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Now, consider the cut

.ap�1b/kai 0

bj 0

D ap�1jb.ap�1b/k�1ai 0

bj 0�1jb;

whose factors are then ap�1b and .ap�1b/k�1aibj (after cyclic permutation).
Note that this cut is not admissible since ap�1b does not lie on Tp;q;r . However the
statement only deals with crossing numbers on any Lorenz-type template, so that
we can work on a Lorenz template with trivial kneading sequences a1 and b1.

In the proof of Lemma 3.2 we introduced the intermediate zone and showed
that the crossing number cr..ap�1b/kaibj /; .ap�1b/k0

ai 0

bj 0

/ exceeds the sum
cr.ap�1b; .ap�1b/k0

ai 0

bj 0

// Ccr..ap�1b/k�1aibj ; .ap�1b/k0

ai 0

bj 0

// by twice the
number of arcs of the orbit .ap�1b/k0

ai 0

bj 0

that enter the intermediate zone by
crossing .ap�1b/kaibj (see Figure 5 left). By the assumption k 6 k0, the left-
most point of .ap�1b/k0

ai 0

bj 0

is to the left of .ap�1b/kaibj , so that there is one
arc of .ap�1b/k0

ai 0

bj 0

that enters the left part of the intermediate zone by cross-
ing .ap�1b/kaibj . Also, by k 6 k0, there is an arc of .ap�1b/k0

ai 0

bj 0

situated be-
tween b.ap�1b/k�1ai 0

bj 0�1 and b.ap�1b/k�1ai 0

bj 0

ap�1, so that there is also one
arc of .ap�1b/k0

ai 0

bj 0

that enters the right part of the intermediate zone by cross-
ing .ap�1b/kaibj . Therefore the number cr..ap�1b/kaibj /; .ap�1b/k0

ai 0

bj 0

/

exceeds cr.ap�1b; .ap�1b/k0

ai 0

bj 0

//C cr..ap�1b/k�1aibj ; .ap�1b/k0

ai 0

bj 0

// by
at least two. This concludes the induction step. �

Lemma 3.7. For 0 6 k; k0 6
r�2

2
, the number lk..ap�1b/kaibj ; .ap�1b/k0

ai 0

bj 0

/

is negative.

Proof. Without loss of generality, we assume k 6 k0. Thanks to Lemma 3.6, we
have

�p;q;r lk..ap�1b/kaibj ; .ap�1b/k0

ai 0

bj 0

/

D kk0.pq � p � q/ C k.qi 0 � pj 0/ C k0.qi � jp/

C �p;q;r lk.aibj ; ai 0

bj 0

/ C k.�pqr C pq C pr C qr/:

This expression is linear in k; k0. Therefore it is enough to evaluate it for
.k; k0/ D .0; 0/; .0; r�2

2
/; and

�

r�2
2

; r�2
2

�

.

� Case 1: .k; k0/ D .0; 0/. This corresponds to Lemmas 3.4 and 3.5.

� Case 2: .k; k0/ D
�

0; r�2
2

�

. We have

�p;q;r lk.aibj ; .ap�1b/
r�2

2 ai 0

bj 0

/

D .iq � jp/.r � 2/=2 C �p;q;r lk.aibj ; ai 0

bj 0

/:
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By subadditivity, the maximum is reached when .i; j / and .i 0; j 0/ are
extremal, that is, equal to .1; 1/; .p � 2; 1/; .p � 1; 2/; .p � 1; q � 1/,
.2; q � 1/; or .1; q � 1/. In all cases except .p � 2; 1/ and .p � 1; 2/ the term
.iq � jp/.r � 2/=2 is negative or clearly does not compensate the contri-
bution of �p;q;r lk.aibj ; ai 0

bj 0

/. Therefore, we have that the maximum of

lk.aibj ; .ap�1b/
r�2

2 ai 0

bj 0

/, if positive, is reached for .i; j; i 0; j 0/ D .p�1; 2,
p � 1; 2/; .p � 1; 2; p � 2; 1/; .p � 2; 1; p � 1; 2/; or .p � 2; 1; p � 2; 1/.

– Case 2.1: .i; j; i 0; j 0/ D .p � 1; 2; p � 1; 2/. Then

�p;q;r lk.ap�1b2; .ap�1b/
r�2

2 ap�1b2/

D .pq � 2p � q/.r � 2/=2 � pqr C 2pq C 2pr C qr � 4p � q � r

D �..p � 1/.q � 2/.r � 2/ � 2.q � 2//=2;

which is negative.

– Case 2.2: .i; j; i 0; j 0/ D .p � 1; 2; p � 2; 1/. Then

�p;q;r lk.ap�1b2; .ap�1b/
r�2

2 ap�2b1/

D .pq � 2p � q/.r � 2/=2 � pqr C 2pq C pr C qr � 2p � 2q C r

D �..p � 1/q.r � 2/ � 2r/=2;

which is negative.

– Case 2.3: .i; j; i 0; j 0/ D .p � 2; 1; p � 1; 2/. Then

�p;q;r lk.ap�2b1; .ap�1b/
r�2

2 ap�1b2/

D .pq � p � 2q/.r � 2/=2 � pqr C 2pq C pr C qr � 2p � 2q C r

D �.p.q � 1/.r � 2/ � 2r/=2;

which is negative.

– Case 2.4: .i; j; i 0; j 0/ D .p � 2; 1; p � 2; 1/. Then

�p;q;r lk.ap�2b1; .ap�1b/
r�2

2 ap�2b1/

D .pq � p � 2q/.r � 2/=2 � pqr C 2pq C pr C 2qr � p � 4q � r

D �..p � 2/q.r � 2/ C p C r/=2;

which is negative.
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� Case 3: .k; k0/ D
�

r�2
2

; r�2
2

�

. We have

�p;q;r lk..ap�1b/
r�2

2 aibj ; .ap�1b/
r�2

2 ai 0

bj 0

/

D .�pqr C pr C qr C 2p C 2q C 2q.i C i 0/

� 2p.j C j 0//.r � 2/=2 C �p;q;r lk.aibj ; ai 0

bj 0

/

Since i; i 0 6 p�1; j; j 0 > 1, we have 2q.i Ci 0/�2p.j Cj 0/ 6 2.pq�p�q/.
Actually, since both .i; j / and .i 0; j 0/ cannot be .p � 1; 1/, we even have
2q.i C i 0/ � 2p.j C j 0/ 6 max.4.pq � 2p � q/; 4.pq � p � 2q//. Since
�p;q;r lk.aibj ; ai 0

bj 0

/ is always negative (Lemmas 3.4 and 3.5), we have

�p;q;r lk..ap�1b/r=2aibj ; .ap�1b/r=2ai 0

bj 0

/

< .�pqr C 4pq C pr C qr � 6p � 2q � 4 min.p; q//.r � 2/=2

D .�.p � 2/.q � 2/.r � 5/ � .p � 2/.r � 5/ � .q � 2/.r � 5/

� .p � 3/.q � 3/ � 4 min.p; q/ C 9/.r � 2/=2

This last expression is clearly negative, for r > 5.

Since we assumed p; q 6 r , we are left with the cases .p; q; r/ D .3; 3; 4/,
.3; 4; 4/ and .4; 4; 4/. We check directly that in the cases .3; 3; 4/ and .4; 4; 4/

the expression is actually negative. In the case .3; 4; 4/, the expression is
equal to C2. Going through all cases of Lemmas 3.4 and 3.5, one checks
that �p;q;r lk.aibj ; ai 0

bj 0

/ is in this case always strictly smaller than �1, so
that �p;q;r lk..ap�1b/kaibj ; .ap�1b/k0

ai 0

bj 0

/ is always negative in this case.
This concludes the proof. �

3.5. Some additional computations. The other needed lemmas are easier.

Lemma 3.8. For k; k0 > 1, we have lk..ap�1b/kaibj ; .abq�1/k0

ai 0

bj 0

/ < 0.

Proof. By Lemma 3.2, we have

lk..ap�1b/kaibj ; .abq�1/k0

ai 0

bj 0

/

6 klk.ap�1b; .abq�1/k0

ai 0

bj 0

/ C lk.aibj ; .abq�1/k0

ai 0

bj 0

/:

By Lemma 3.7 the second term is negative, so we only have to show that
lk.ap�1b; .abq�1/k0

ai 0

bj 0

/ is negative. By Lemma 3.2, we have

lk.ap�1b; .abq�1/k0

ai 0

bj 0

/ 6 lk.ap�1b; .abq�1/k0

/ C lk.ap�1b; ai 0

bj 0

/

D k0.�pq C p C q/ C .qi 0 � pj 0/

6 �pq C p C q C qi 0 � pj 0

D q.i 0 � p C 1/ C p.1 � j 0/:

The latter expression is always negative. �



1372 P. Dehornoy

Lemma 3.9. For k; l; k0; l 0 > 1, we have

lk..ap�1b/k.ap�1b/l ; .abq�1/k0

.ap�1b/l 0

/ < 0:

Proof. Using the superidditivity Lemma 3.2 and the formula

�p;q;r lk.ap�1b; aibj / D qi � pj;

we get

�p;q;r lk..ap�1b/k.ap�1b/l ; .abq�1/k0

.ap�1b/l 0

/ 6 .pq � p � q/.k � l/.k0 � l 0/;

which is not always negative. So we need to add more precise information as we
did with Lemma 3.6. When following the orbit with code .ap�1b/k.ap�1b/l , we
roughly follow ap�1b for k iterations and then abq�1 for l iterations. But when
going from the �rst k blocks to the next l blocks, the orbit enters the intermediate
zone, and actually crosses min.l; l 0/ arcs of .ap�1b/k0

.ap�1b/l 0

, namely those arcs
that correspond to the last b in the �rst min.l; l 0/ blocks of .abq�1/l 0

. Similarly,
when the orbit goes from the the part .abq�1/l to .ap�1b/k, the corresponding
orbit crosses min.k; k0/ arcs of .ap�1b/k0

.ap�1b/l 0

. In this counting, one cross-
ing is counted twice. Thus the additional contribution to lk..ap�1b/k.ap�1b/l ;

.abq�1/k0

.ap�1b/l 0

/ is min.k; k0/ C min.l; l 0/ � 1. Then we have

�p;q;r lk..ap�1b/k.ap�1b/l ; .abq�1/k0

.ap�1b/l 0

/

D .pq � p � q/.k � l/.k0 � l 0/

C .�pqr C pq C qr C pr/.min.k; k0/ C min.l; l 0/ � 1/:

The �rst term is positive if k � l and k0 � l 0 are of the same sign. Without loss
of generality we then assume k > l; k0 > l 0 and k > k0. Depending whether l > l 0

or not, we have

�p;q;r lk..ap�1b/k.ap�1b/l ; .abq�1/k0

.ap�1b/l 0

/

D .pq � p � q/.k � l/.k0 � l 0/ C .�pqr C pq C qr C pr/.k0 C l 0 � 1/

or .pq � p � q/.k � l/.k0 � l 0/ C .�pqr C pq C qr C pr/.k0 C l � 1/. In both
cases, the coe�cients of k; k0; l and l 0 are respectively positive, positive, negative
and negative, so these expressions are maximal for k D k0 D r�2

2
; l D l 0 D 1.

They are then both equal to .pq � p � q/
�

r�4
2

�2
C .�pqr C pq C qr C pr/ r�2

2
.

The latter expression is negative for p; q > 3; r > 4. �
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Lemma 3.10. For k > 0; k0; l 0 > 1, we have

lk..ap�1b/kaibj ; .ap�1b/k0

.abq�1/l 0

/ < 0:

Proof. First assume k < k0. Lemma 3.2 then yields

cr..ap�1b/kaibj ; .ap�1b/k0

.abq�1/l 0

/ 6 2kk0.p � 1/ C 2kl C 2ik0 C 2l 0:

As in the previous proof, there is an additional term 2k C 2 due to the fact
that bj ai inserts itself in the last block of .ap�1b/k0

.abq�1/l 0

, so that we have
cr..ap�1b/kaibj ; .ap�1b/k0

.abq�1/l 0

/ D 2kk0.p �1/C2kl C2ik0 C2l 0 C2k C2.
We then obtain

�p;q;r lk.aibj ; .ap�1b/k0

.abq�1/l 0

/

D .k0 � l 0/.k.pq � p � q/ C qi � pj / � .k C 1/�p;q;r :

The latter expression is linear in i; j; k; k0; l 0, and it is maximal for i D p � 1,
j D 1; k D 0; k0 D r�2

2
and l D 1. One checks that even in this case, it is

negative.
Now assume k > k0. In this case the additional term is only 2k0. The we have

cr..ap�1b/kaibj ; .ap�1b/k0

.abq�1/l 0

/ D 2kk0.p � 1/ C 2kl C 2ik0 C 2l 0 C 2k0.
and thus obtain

�p;q;r lk.aibj ; .ap�1b/k0

.abq�1/l 0

/ D .k0�l 0/.k.pq�p�q/Cqi �pj /�k0�p;q;r :

This expression is linear in i; j; k; k0; l 0, and it is maximal for i D p � 1,
j D 1; k D r�2

2
; k0 D 1 and l 0 D 1. Even in this case it is negative. �

3.6. Proof of Theorem 1 in the case p D 2. First remark that, since the
orbifold †2;2q0;r has an order 2-covering by the orbifold †q0;q0;r , left-handedness
of the geodesic �ow on T1†2;2q0;r can be deduced from left-handedness of the
geodesic �ow on T1†q0;q0;r (see [9, §2.4]). Therefore the only case not covered
by the analysis when p > 3 is the case that q and r are odd.

Lemma 3.2 being also valid in the case p D 2, it is enough to compute
linking numbers between extremal orbits. The extremal orbits of Lemma 3.3 have
to be replaced by the periodic orbits whose codes are of the form abi .ab/k or
abi .abq�1/k with .i; k/ 2 J2; q � 2K � J0; r�3

2
K, or .ab/k.abq�1/l for .k; l/ in

J1; r�3
2

K � J1; r�3
2

K. The technics of Lemma 3.7, 3.8, 3.9 and 3.10 can then be
copied to prove that all linking numbers of pairs of extremal orbits are always
negative (there are four cases again). Rather than detailing these proofs here, we
refer to our Sage worksheet3 for numerical evidence. Also, the remark of §3.1 is
valid here: our computations give a proof for all cases that we have computer-
checked, here q 6 10; r 6 14.

3 http://www-fourier.ujf-grenoble.fr/~dehornop/maths/ComputationsLinkingTpqr.sws

http://www-fourier.ujf-grenoble.fr/~dehornop/maths/ComputationsLinkingTpqr.sws
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4. Conclusion: the quest of a Gauss linking form

A classical way of computing linking numbers is via a linking form (see §2.3).
By Ghys Theorem [18] a vector �eld X on a 3-manifold M induces a left-handed
�ow if and only if there exists a linking form !M that is everywhere negative
along X , i.e., such that !M .X.x/; X.y// < 0 for all x; y in M . Theorem 1 then
implies the existence of such a negative linking form on T1H2=Gp;q;r for every
hyperbolic 3-conic 2-sphere H2=Gp;q;r . It is then natural to wonder whether such
a form is canonical or easy-to-construct. For example, can it be constructed using
propagators [23]? or by integrating a canonical kernel [22, 11]? However, the fact
that such a negative Gauss form does not exist on T1H2=Gp1;:::;pn

for n > 4 could
be discouraging.

Very recently the quest of such an explicit form has been carried out on T1T2 by
Adrien Boulanger [5]. With his formulas it is then obvious that (almost) every null-
homologous pair of collections of periodic orbits of the geodesic �ow on T1T2

have negative linking number, so that this �ow is (almost) left-handed. This gives
a proof of [9, Theorem B] that is more natural, as well as some hope to exhibit a
natural Gauss form in the higher-genus case. The almost means that actually some
linking numbers are zero, so that some peculiar collections do not form �bered
links.
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