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a natural in�nite presentation for V as a group generated by these “transpositions,” which
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generators and eight relations, and a Tietze-derived presentation with two generators and
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1. Introduction

In this article, we investigate R. Thompson’s group V from a mostly-unexplored

perspective. As a consequence we derive new, and hopefully elegant, presenta-

tions of this well-known group and introduce a simple and dextrous notation for

handling computations in V .

Recall that the group V �rst appears in Thompson’s 1965 notes [23] and is

given there as one of two “�rst-examples” of in�nite �nitely presented simple

groups (along with its simple subgroup T , called “C” in those notes). Since then,

it has been the focus of a large amount of subsequent research (see, for example,

[4, 5, 6, 13, 15, 18, 24] for a small part of that research). Thompson’s group V

arises in various other settings, for example, Birget [2, 3] investigates connections

to circuits and complexity while Lawson [19] considers links to inverse monoids

and étale groupoids.

We shall demonstrate that one can considerV as a symmetric group acting, not

on a �nite set, but instead on a Cantor algebra (the algebra of basic clopen sets in a

Cantor space). We focus upon certain well-known properties of a �nite symmetric

group, namely being generated by transpositions and being transitive in its natural

action. Re�ecting these two fundamental properties, a �nite symmetric group

possesses a Coxeter-type presentation, with generating set T corresponding to a

set of appropriate transpositions and relations t2 D 1 for all t 2 T, .tu/2 D 1when

t; u 2 T correspond to transpositions of disjoint support and .tu/3 D 1when t ¤ u

but the corresponding transpositions have intersecting support. If we exploit the

fact that these generators have order 2, this third type of relation can be rewritten as

t�1ut D u�1tu and indeed in the symmetric group this conjugate equals another

transposition v, namely that whose support satis�es suppv D .supp t /u.

In the context of a Cantor algebra, the analogues of transpositions are piecewise

a�ne maps which “swap” a pair of basic open sets. We shall observe that

Thompson’s group V is generated by such transpositions of the standard Cantor

algebra and hence derive an in�nite Coxeter-like presentation for V , as appears in

Theorem 1.1 below.

As is well known, the standard Cantor algebra admits a natural tree-structure

where the nodes correspond to the basic open sets in Cantor space C and these

nodes are indexed by �nite words in the alphabet X D ¹0; 1º. Consequently, we

label our transpositions by two incomparable words ˛ and ˇ from X�. Indeed, for

such ˛ and ˇ, we write t˛;ˇ for the element of V that is the transposition de�ned

in equation (2.1). We shall also write s˛;ˇ and .˛ ˇ/ for symbols representing

elements in two abstract groups whose presentations we give in Theorems 1.1

and 1.2, respectively. We speci�cally use di�erent notations for each of these

elements so as to distinguish between the elements of each abstract group and the

actual transformations of Cantor space. The thrust of our work is to demonstrate

that the two abstract groups are isomorphic to V and that under the isomorphisms

these three elements s˛;ˇ , .˛ ˇ/ and t˛;ˇ correspond. The �rst two of our families
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of relations appearing in Theorem 1.1 re�ect that these t˛;ˇ act as transpositions so

have order 2, commute when their supports are disjoint, and conjugate in a manner

analogous to transpositions in symmetric groups when their supports intersect

appropriately.

Passing from the setting of actions of �nite permutation groups on �nite sets

to the setting of corresponding actions of in�nite groups on Cantor algebras has

further implications for the resulting presentation. Namely, due to the self-similar

nature of Cantor space, each generating transposition can be factorised. To be

precise, each t˛;ˇ satis�es what we call a split relation: t˛;ˇ D t˛0;ˇ0 t˛1;ˇ1. This

provides the third family of relations that are seen in Theorem 1.1. They have

the consequence that not only is every element of V a product of our transposi-

tions t˛;ˇ , but also we can re-express any such product as one that involves an

even number of transpositions. Thus one can simultaneously view R. Thomp-

son’s group V as an in�nite analogue of both the �nite alternating groups and of

the �nite symmetric groups.

It follows quite easily from the presentation in Theorem 1.1 that any transpo-

sition t;ı can be obtained by conjugation using only those t˛;ˇ with j˛j; jˇj 6 3,

for example, and this motivates an e�ort to �nd a �nite presentation involving

permutations and their relations, where these permutations involve only the nodes

in the �rst three levels of the tree. Theorem 1.2 provides this presentation (in-

volving three generators and eight relations). Note here that we depart slightly

from the Coxeter-style of presentation: we exploit the presence of the symmetric

group of degree 4 acting upon X2 to reduce further the presentation, at the cost

of employing a “three-cycle” as a generator. Of note, this human-interpretable

presentation is much smaller than the currently known �nite presentation for V

(given by Thompson [23] and discussed in detail in Cannon, Floyd and Parry’s

survey [12]), which has four generators and fourteen relations.

As a technical exercise, we further reduce the presentation in Theorem 1.2 to

a 2-generator and 7-relation presentation, found in Theorem 1.3. The resulting

presentation is small, but not so readily interpretable by humans.

Our in�nite presentation in Theorem 1.1 bears comparison with Dehornoy’s

in�nite presentation for V (see [13, Proposition 3.20]). Dehornoy’s presentation

highlights di�erent aspects as to why the group V can be considered as a funda-

mental object in group theory, and even in mathematics, bearing out, as it does,

the connection of V to systems with equivalences under associativity and com-

mutativity.

Our viewpoint of V as a form of a symmetric or alternating group perhaps

hints at why V arose as one of �rst two known examples of an in�nite simple

�nitely presented group. Permuting sets is a basic activity, and the Cantor algebra

represents a fundamental way to pass from a �nite to an in�nite context, thus it

seems natural that researchers eventually noticed V . To give further background,

we note there are many generalisations of V to in�nite simple �nitely presented

groups, all of which owe their simplicity to the same fundamental idea (similar to
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the reason why the alternating groups are simple). One such family is the Higman–

Thompson groups Gn;r for which V D G2;1, see [15]. (The group Gn;r is simple

for n even. When n is odd, one must pass to the commutator subgroup of index 2,

re�ecting the observation that the corresponding split relations in Gn;r do not

change the parity of any decomposition as a product of transpositions.) Other

families include the Brin–Thompson groups nV for which V D 1V , see [6], and

the groups nVm;r that generalise the previous two families, see [20], and where we

have similar simplicity considerations, see [7]. The �nite presentability of these

groups comes from the much stronger fact that they are all in fact F1 groups.

(There is a beautiful argument of the F1 nature of these groups given in [24],

which applies to many of these “relatives” of V . In many speci�c cases, F1

arguments already exist for individual groups and for classes of groups in these

families. See, for example, [1, 8, 9, 17].) The ideas of this paper ought to apply to all

of these groups of “Thompson type” in aiding in the discovery of natural and small

presentations. On the other hand, the in�nite family of �nitely-presented in�nite

simple groups arising from the Burger–Mozes construction and following related

work (see, e.g., [10, 11, 21]) are of an entirely di�erent nature, and the methods

employed here do not seem appropriate to that context.

We mention here a debt to Matatyu Rubin and Matthew G. Brin. Rubin

indicated to Brin a proof of the simplicity of V , which uses the generation of V

by transpositions with restricted support on Cantor space. Brin set this proof out

brie�y in his paper [6] and developed the ideas to extend the proof to the groups

nV , which he carries out in the short paper [7]. It is not a stretch to say that the

current article would not exist without that thread of previous research.

1.1. A note on content. The �rst two sections of this article are intended for

the interested mathematician and provide structure and insights into these sorts

of groups. The outline of the proofs of the theorems are found towards the end

of Section 2. The sections that follow are more technical and verify the details

required for those proofs.

1.2. Statement of results and some notation. Let X D ¹0; 1º. We write X�

for all �nite sequences x1x2 : : : xk where k > 0 and each xi 2 X . In particular,

we assume that X� contains the empty word ". We view the elements of X� as

representing the nodes on the in�nite binary rooted tree with edges between nodes

if they are represented by words which di�er by a su�x of length 1. (Figure 1

illustrates this tree together with the nodes labelled by elements ofX�.) Similarly,

we give the standard de�nition of the Cantor set C as X! , the set of all in�nite

sequences x1x2x3 : : : of elements of X under the product topology (starting with

X endowed with the discrete topology). Thus points in C correspond to boundary

points of the in�nite binary rooted tree.
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If ˛ 2 X� and ˇ 2 X� [ X! , then we write ˛ˇ for the concatenation of the

two sequences. We denote by ˛C the set of elements of C with initial pre�x ˛.

This set is a basic open set in the topology on C and is itself homeomorphic to C.

We shall write ˛ � ˇ to indicate that ˛ is a pre�x of ˇ (including the possibility

that the two sequences are equal). This notation then means that ˇ D ˛ for

some  2 X� [ X! . Moreover, when ˇ 2 X�, then ˛ and ˇ represent nodes on

the in�nite binary rooted tree such that ˇ lies on a path descending from ˛ (see

Figure 2(i)), and therefore ˇC � ˛C.

We also write ˛ ? ˇ to denote that both ˛ 6� ˇ and ˇ 6� ˛. Then we shall

say that ˛ and ˇ are incomparable. In this case, the paths to ˛ and to ˇ from the

root separate at some node above both ˛ and ˇ (as shown in Figure 2(ii)), so that

˛C \ ˇC D ¿ (for such ˛; ˇ 2 X�).

"

0

00

000

:::
:::

001

:::
:::

01

010

:::
:::

011

:::
:::

1

10

100

:::
:::

101

:::
:::

11

110

:::
:::

111

:::
:::

Figure 1. The in�nite binary rooted tree with nodes labelled by elements of X�

:::
:::

:::

˛

ˇ

„ ƒ‚ …

ˇC

:::
:::

:::

˛

ˇ

Figure 2. (i) ˛ � ˇ (and the paths representing elements of ˇC); and (ii) ˛ ? ˇ
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If m is a positive integer, we shall also use Xm to denote the collection of all

�nite sequences x1x2 : : : xm of length m with xi 2 X for each i . We write j˛j for

the length of the sequence ˛ 2 X�.

Motivated by the well-known fact (see, for example, [13]) that R. Thompson’s

group V has a partial action on the set of �nite binary rooted trees and equally on

the set X�, we shall use the notation  � .˛ ˇ/, for ˛; ˇ;  2 X�, de�ned by

 � .˛ ˇ/ D

8

ˆ̂
ˆ
<

ˆ
ˆ̂
:

ˇı if  D ˛ı for some ı 2 X�;

˛ı if  D ˇı for some ı 2 X�;

 if both  ? ˛ and  ? ˇ;

unde�ned otherwise:

(1.1)

Thus  �.˛ ˇ/ is unde�ned precisely when  � ˛ or  � ˇ and when it is de�ned it

represents a pre�x substitution replacing any occurrence of ˛ by ˇ and vice versa.

The notation appearing in equation (1.1) above is motivated via our anticipated

isomorphism between V and the abstract group de�ned by the presentation in

Theorem 1.2. The map t˛;ˇ is taken to the element .˛ ˇ/ and the above formula

re�ects the e�ect of applying t˛;ˇ to a point in the partial action of V on X�.

Note also that we are choosing to write our maps on the right since in our opinion

this enables one to more conveniently compose a number of maps and such a

convention is consistent with denoting an element of V by tree-pairs with the

domain on the left and the codomain on the right. Nevertheless, we still view

maps in V as being given by pre�x substitutions of the in�nite sequences that

are elements of the Cantor space so as to be consistent with other work on these

groups.

Our results are as follows.

Theorem 1.1. Let A to be the set of all symbols s˛;ˇ where ˛; ˇ 2 X� with ˛ ? ˇ.
Then R. Thompson’s group V has an in�nite presentation with generating set A
and relations

s2˛;ˇ D 1; (1.2a)

s�1
;ı s˛;ˇ s;ı D s˛�. ı/;ˇ �. ı/; (1.2b)

s˛;ˇ D s˛0;ˇ0 s˛1;ˇ1 (1.2c)

where ˛, ˇ,  and ı range over all sequences in X� such that ˛ ? ˇ,  ? ı, and
˛ � . ı/ and ˇ � . ı/ are de�ned.

Our primary �nite presentation for the group V has three generators a, b and c,

but, as mentioned above, it is most naturally expressed in terms of a “permutation-

like” notation extending the transpositions in the in�nite presentation. Our genera-

tors a, b and c then correspond to permutations that we denote .00 01/, .01 10 11/
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and .1 00/, respectively, and the relations are similarly expressed in terms of ele-

ments .˛ ˇ/ that we de�ne fully in Section 2. This “human-readable” presentation

is as follows.

Theorem 1.2. R. Thompson’s group V has a �nite presentation with three gener-
ators

.00 01/; .01 10 11/; .1 00/

and eight relations

R1. .00 01/2 D .01 10 11/3 D
�

.00 01/ .01 10 11/
�4

D 1;

R2. .1 01/.1 00/ D .00 01/;

R3. .1 00/ D .10 000/ .11 001/;

R4. Œ.00 010/; .10 111/� D Œ.00 011/; .10 111/� D 1;

R5. Œ.000 010/; .10 110/� D 1.

We shall provide words in terms of the generators a, b and c to express these

relations later in equation (2.3). Observe that the relations R1 tells us that .00 01/

and .01 10 11/ satisfy the relations of the symmetric group S4, so the subgroup

that they generate is isomorphic to some quotient of S4. In fact, it will turn out

that this subgroup is isomorphic to S4.

The element .˛ ˇ/ will correspond to the element of Thompson’s group V

that maps a point of the Cantor set that has pre�x ˛ to a point with pre�x ˇ and

vice versa. Relations R4 and R5 then re�ect the fact that certain elements of V

commute because they have disjoint support.

Figure 3. Two elements given by tree-pairs that generate for R. Thompson’s group V

We show that V is generated by the two elements u and v described by the

tree-pairs in Figure 3. Transforming the presentation in Theorem 1.2 to one using

these two generators via Tietze transformations (as described in Corollary 5.2)

and reducing the nine resulting relations using the Knuth–Bendix algorithm, as

implemented in the GAP package KBMAG [14, 16], results in the surprising two

generator and seven relation presentation given below.
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Theorem 1.3. R. Thompson’s group V has a �nite presentation with two genera-
tors u and v and the seven relators

u6;

v3;

.u3v/4;

v�1u.u2v�1/2u3vu�1v�1u3vu.uvu2.uv�1u3v/3/2uv�1u3v�1;

uv�1u3v�1u�2v�1uvu2v�1u�1vu2v�1uvu�1.u�1v�1/2u3vu�1;

v.uv�1u3v�1/2u�1v�1u3v�1u�1v�1u3v;

uvu3vuv�1u�2v�1u.u2v/2.u2v�1/2u3vu�2v�1u3v:

This reduction to seven relations caught the authors by surprise, but per-

haps it is not so unexpected in view of the de�ciency (as de�ned, for example,

in [22, §14.1]) of the presentations in Theorems 1.2 and 1.3 both being �5.

2. Further preliminaries and the proofs of the main theorems

This section contains the heart of the mathematics within the article. We present

all the remaining preliminaries required to fully understand the statements of the

theorems listed in the introduction, in particular, unpacking the presentations that

we use. We then provide the proofs, subject to deferring technical calculations to

the sections that follow.

2.1. R. Thompson’s group V . One view of Thompson’s groupV is as a group of

certain homeomorphisms of the Cantor set C, namely those that are �nite products

of the elements t˛;ˇ , for ˛; ˇ 2 X� with ˛ ? ˇ, de�ned as follows

xt˛;ˇ D

8

<̂

:̂

ˇy if x D ˛y for some y 2 CI

˛y if x D ˇy for some y 2 CI

x otherwise

(2.1)

(see Brin [6, Lemma 12.2]). Note that the map t˛;ˇ has the e�ect of swapping

those elements of C that have an initial pre�x ˛ with those that have an initial

pre�x ˇ and �xing all other points in C. A general element of V is often denoted

by a pair of �nite binary rooted trees representing the domain and codomain of

the map. We label the leaves of these two trees by the numbers 1, 2, . . . , n (for

some n) and this then speci�es that our element of V has the e�ect of substituting
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the pre�x from X� corresponding to the node in the domain tree labelled i by the

member ofX� corresponding to the node in the codomain tree with the same label

(for each i). For example, Figure 4 provides such tree-pairs for the map t100;11 as

just de�ned.

Figure 4. The map t100;11 denoted using tree-pairs

From the de�nition, it is visible that t2
˛;ˇ

D 1. Equations of this type (as

˛ and ˇ range over all incomparable pairs from X�) will form our family of order
relations.

If we shift our attention to conjugation, it is a straightforward calculation

in V , along the lines of the familiar one concerning conjugation of permutations

demonstrated to undergraduates in a �rst course on group theory, to verify that

t�1;ı t˛;ˇ t;ı D t˛�. ı/;ˇ �. ı/

whenever ˛ � . ı/ and ˇ � . ı/ are both de�ned. We call this resultant family of

relations in V our conjugacy relations. At this point, we also note that we will use

an exponential notation for conjugation, so the left-hand side of the above relation

will also be denoted by t˛;ˇ
t;ı in what follows.

Our �nal family of relations exploit the action of our elements t˛;ˇ on basic

open sets of the Cantor set C and the self-similar structure of this space. Speci�-

cally, if ˛ 2 X�, then the basic open set ˛C splits into two subsets, namely the set

of all elements of C with initial pre�x ˛0 and those with initial pre�x ˛1. In view

of this, we obtain the equation

t˛;ˇ D t˛0;ˇ0 t˛1;ˇ1 (2.2)

when ˛; ˇ 2 X� with ˛ ? ˇ. We refer to the family of these relations as split
relations.

2.2. Deriving the presentations for V . One of the presentations that we use in

this article is that found by R. Thompson and discussed in Cannon–Floyd–Parry

(see [12, Lemma 6.1]). This presentation has four generators A, B , C and �0 and

fourteen relations. We state these relations when we need them at the start of

Section 4 below.
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As described in Theorem 1.1, the �rst of our new presentations involves the

order relations, conjugacy relations and split relations of V just described. To

be precise, we de�ne P1 to be the group having the in�nite presentation with

generating set A D ¹ s˛;ˇ j ˛; ˇ 2 X�; ˛ ? ˇ º and the relations listed

in equation (1.2). Of course, we already know that that V is generated by the

maps t˛;ˇ and that these satisfy the order, conjugacy and split relations. This

ensures that there is a surjective homomorphism �WP1 ! V given by s˛;ˇ 7! t˛;ˇ
for ˛; ˇ 2 X� with ˛ ? ˇ. When establishing Theorem 1.1, we shall be observing

that � is actually an isomorphism.

We now describe our primary �nite presentation for V , which has three gen-

erators a, b and c and eight relations but, more importantly, can be readily un-

derstood by a human. The majority of our calculations will take place with this

presentation and so, as indicated above, we develop a helpful notation that is par-

allel to that used in �nite permutation groups. It is a consequence of Higman [15]

that all the relations that hold in V can be detected as consequences of products

using tree-pairs of some bounded size. This motivates our presentation which

employs essentially a �nite subcollection of the order, conjugacy and split rela-

tions from P1 and involving only some swaps .˛ ˇ/ all satisfying j˛j; jˇj 6 3.

(To aid reducing the number of relations required we encode a copy of the sym-

metric group of degree 4, corresponding to acting onX2, within our presentation.)

Accordingly, the three generators a, b and c of the group P3 that we de�ne

will represent cyclic permutations of basic open sets. As stated above, we shall

write .00 01/, .01 10 11/ and .1 00/ for a, b and c, respectively. This re�ects

the fact that, under the isomorphism that we shall establish between P3 and V ,

the element a corresponds to the map t00;01 that interchanges the basic open sets

00C and 01C, b corresponds to the product t01;10 t01;11 (inducing a 3-cycle of the

sets 01C, 10C and 11C), and c corresponds to t1;00. We extend this notation by

de�ning elements .˛ ˇ/ that we will refer to as swaps below and a formula for

each in terms of a, b and c will be extracted from the de�nitions we make. The

element .˛ ˇ/ will correspond to t˛;ˇ under the isomorphism. It is these swaps

that appear in our list of relations found in Theorem 1.2 above.

Once we have de�ned the swaps below, we can translate the relations R1–R5

into words in a, b and c. The result is the following restatement of Theorem 1.2:

Theorem 2.1. R. Thompson’s group V has a �nite presentation with three gener-
ators a, b and c and the following eight relations:

a2 D b3 D .ab/4 D 1; (2.3a)

cac D a; (2.3b)

c D abcacaa
ba

ab
�1cacaab�1 a

; (2.3c)
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Œabcac ; ab
�1cacabab�1a

� D 1; (2.3d)

Œab
�1cac ; ab

�1cacabab�1a

� D 1; (2.3e)

Œabca
bca

; abcaca
bab�1a

� D 1: (2.3f)

The careful reader will doubtless have observed that the eighth relation can be

shortened by conjugating by a. The presentation as listed is a direct consequence

of the interpretation of Theorem 1.2 in terms of a, b and c. No e�ort has been

made in its statement to reduce the length of the relations.

Having found this nice presentation for V , we felt obligated to reduce the re-

lations employing the available technology, speci�cally the Knuth–Bendix Algo-

rithm. This algorithm shortens the above relations, although the results are no

longer particularly transparent. To carry out these reductions, we used the imple-

mentation of the algorithm found in the freely available KBMAG package [16]

in GAP [14] in the following way. Denote the eight relators corresponding to the

equations in (2.3) by r1, r2, . . . , r8. We can construct a rewriting system associated

to each of the groups Qi D h a; b; c j r1; r2; : : : ; ri�1; riC1; : : : ; r8 i for i D 4, 5,

. . . , 8 in sequence. The systems that KBMAG constructs are not con�uent, but

nevertheless enable us to replace each ri by a Tietze-equivalent (in the groupQi )

shorter relation. This process is repeated until the resulting relations stabilise. As

a consequence, the normal closure, in the free group on ¹a; b; cº, of the following

eight relations is identical to that of our original list:

a2 D b3 D .ab/4 D 1; (2.4a)

c�1.ac/2a D 1; (2.4b)

.cab�1aba/2cb.cabab�1a/2 D 1; (2.4c)

a.cb/2a.b�1c/2bcabcb�1cab�1acb�1.cb/2ab�1 D 1; (2.4d)

ab�1cbc.ab�1/2cbcb�1a.b�1c/2babcb�1cab�1 D 1; (2.4e)

ca.b�1c/2bacabacbc.b�1ca/2b.cb�1/2.acb/2cb�1cab�1 D 1: (2.4f)

We observe this mechanical process produces considerably shorter relations than

our original eight in equation (2.3).

The presentation in Theorem 1.3 is deduced in a manner that similarly depends

upon the use of the Knuth–Bendix Algorithm. One �rst applies Tietze transfor-

mations to pass to a 2-generator presentation employing generators u and v and

relations deduced from the list (2.4). We shall describe these Tietze transforma-

tions by expressing u and v in terms of a, b and c (adding extraneous generators),

and expressing a, b and c in terms of u and v (removing extraneous generators).
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The relevant formulae are

u D a.abab
�1

/caca
bab�1a

; v D b

and

a D u3; b D v; c D .u3/vu
�2vu3

.u3/vu
�1vu3v:

These formulae can be deduced by direct calculation in V . This application of

Tietze transformations is expanded upon a little in Section 5 and Corollary 5.2

provides the intermediate step to the theorem. (This corollary is established by

purely theoretical means and does not rely upon computer calculation.)

We then employ the same relation reduction process using KBMAG as

described earlier and this shows that two of the nine relations resulting from the

Tietze transformations are extraneous. In this manner we have deduced Theo-

rem 1.3 from Theorem 1.2.

We now proceed to formally de�ne the swaps .˛ ˇ/ for ˛; ˇ 2 X� with ˛ ? ˇ

and j˛j; jˇj 6 3 in terms of our generators a, b and c in order to present the

group P3. To start o�, we de�ne swaps .˛ ˇ/ for ˛; ˇ 2 X2 as follows:

.00 01/ D a; (2.5a)

.00 10/ D ab; (2.5b)

.00 11/ D ab
�1

(2.5c)

.01 10/ D aba; (2.5d)

.01 11/ D ab
�1a; (2.5e)

.10 11/ D abab (2.5f)

Here, and in all that follows, we shall also adopt the convention that the swap .ˇ ˛/

coincides with .˛ ˇ/whenever the latter has already been de�ned. We write T2 for

the set of swaps .˛ ˇ/ with ˛; ˇ 2 X2.

The swaps in T2 and their e�ect when conjugating will be of fundamental

importance in our calculations. Accordingly we spend a little time expanding upon

the above de�nitions before we de�ne the remaining swaps. In the relations R1,

we have assumed that a and b satisfy the relations of the symmetric group S4 and

the formulae on the right-hand side of equation (2.5) are those that correspond

to transpositions in S4. Consequently, when we multiply and conjugate elements

of T2, they behave in exactly the same way as transpositions do. In particular, we

can view individual elements of T2, and, by extension, products of such swaps,

as transformations of the set X2. Indeed, our notation  � .˛ ˇ/, as de�ned in

equation (1.1), when ˛; ˇ;  2 X2, is precisely the formulae for these maps.
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Our assumption of relations R1 justi�es our using products of swaps from T2

as maps X2 ! X2, as we shall do explicitly, for example, in Lemma 3.4 below.

Similarly, we have written .01 10 11/ for the generator b, since it follows from the

relations R1 that b is equal to the product .01 10/ .01 11/, which induces a 3-cycle

on X2.

To de�ne the remaining swaps .˛ ˇ/, where j˛j; jˇj 6 3, we need one further

piece of notation. If x 2 X , we de�ne Nx to be the other element in X ; that is,

Nx D

´

1 if x D 0;

0 if x D 1:

Then for any x; y; z 2 X , we make our de�nitions in the following order:

.0 1/ D .00 10/ .01 11/I (2.6)

.1 00/ D c; (2.7a)

.1 01/ D .1 00/.00 01/; (2.7b)

.0 1x/ D .1 0x/.0 1/I (2.7c)

.1 00x/ D .00 1x/.1 00/; (2.8a)

.1 01x/ D .1 00x/.00 01/; (2.8b)

.0 1xy/ D .1 0xy/.0 1/I (2.8c)

.00 01x/ D .1 01x/.1 00/; (2.9a)

.01 00x/ D .00 01x/.00 01/; (2.9b)

.1x 1 Nxy/ D .0x 0 Nxy/.0 1/; (2.9c)

.1x 0yz/ D .0 Ny 0yz/.0 Ny 1x/; (2.9d)

.0x 1yz/ D .1x 0yz/.0 1/I (2.9e)

.000 001/ D .1 000/.1 001/; (2.10a)

.000 010/ D .1 000/.1 010/; (2.10b)

.000 011/ D .1 000/.1 011/; (2.10c)

.001 011/ D .1 001/.1 011/; (2.10d)

.xy0 xy1/ D .000 001/.00 xy/: (2.10e)
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Finally, for distinct �; � 2 X2, �x a product ��� of swaps from T2 that moves 00

to � and 01 to � when viewed, as described above, as a map X2 ! X2. De�ne

.�x �y/ D .00x 01y/��� (2.11)

for .x; y/ 2 ¹.0; 0/; .0; 1/; .1; 1/º. In this way, we have now de�ned all swaps .˛ ˇ/

where j˛j; jˇj 6 3.

Having made these de�nitions, it is a straightforward matter to convert the

relations R1–R5 into the list (2.3) of actual words expressed in the generators a, b

and c, completing the translation of Theorem 1.2 into Theorem 2.1.

2.3. Proofs of the main theorems. We now provide the proofs of the main the-

orems (that is, Theorems 1.1 and 1.2), subject to information that we shall establish

in the sections of the paper that follow. Here we link the groups V , P3 and P1.

Speci�cally, we build homomorphisms between these groups as indicated in the

following diagram:

P3 xP3

h xA; xB; xC; N�0i hs00;01; s01;10; s10;11; s1;00i

V P1

// // //
�

Tietze
** **❚❚

❚❚
❚❚

❚❚
❚ �

' �

44❥❥❥❥❥❥❥❥❥

i0

G g

tt❥❥❥
❥❥
❥❥
❥❥i1jjjj❚❚❚❚❚❚❚❚❚

 

oooo
�

(2.12)

We already know that �WP1 ! V is a surjective homomorphism. We now

describe the other parts of the hexagon of maps.

The majority of the work in Sections 3–5 involves the presentation for the

group P3, where we establish information about the swaps .˛ ˇ/ de�ned above.

In Section 3, we verify that these swaps satisfy the order relations, conjugacy

relations and split relations of R. Thompson’s group V , providing we restrict to

those involving only swaps .˛ ˇ/with j˛j; jˇj 6 3. Then in Section 4, we establish

that four speci�c elements xA, xB , xC and N�0 in P3 satisfy the fourteen relations

listed in Cannon–Floyd–Parry [12] that de�ne the group V . In that section, we

ensure that we only rely upon the consequencesof our relationsR1–R5 established

in Section 3. This then guarantees the existence of a surjective homomorphism

 WV ! h xA; xB; xC; N�0i.

In the �nal section, we establish that h xA; xB; xC; N�0i coincides with the group P3
(see Proposition 5.1), from which it follows that the natural inclusion map i0 is also

surjective.

Amongst the generators for P3 are the elements a D .00 01/ and b D

.01 10 11/, which satisfy the relations of the symmetric group S4 (relations R1).

Of course, S4 also enjoys a presentation in terms of transpositions involving
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only order and conjugacy relations. Accordingly, we apply Tietze transforma-

tions to convert the presentation for P3 into one for a group xP3 with genera-

tors .00 01/, .01 10/, .10 11/ and .1 00/ and some order, conjugacy and split

relations (speci�cally translations of R2–R5, together with the new ones to re-

place R1). Thus we have on the one hand, an isomorphism � WP3 ! xP3 and,

on the other, a surjective homomorphism � W xP3 ! hs00;01; s01;10; s10;11; s1;00i

(a subgroup of P1), since the relations de�ning xP3 all hold in P1.

We can now deduce that P3 D h xA; xB; xC; N�0i is not trivial, since successively

composing the appropriate maps in (2.12) sends, for example, a D .00 01/ to

the non-identity element t00;01 in V . Hence, from simplicity of V , we conclude

P3 Š V and therefore, subject to the work in Sections 3–5, establish Theorem 1.2.

Finally, it is relatively straightforward to observe that if ˛ is a non-empty se-

quence in X�, then there is a productw involving only the swaps .00 01/, .01 10/,

.10 11/ and .1 00/ such that 00 � w D ˛. From this, one quickly deduces, princi-

pally relying upon the conjugacy relations, that one can conjugate s00;01 by some

element of hs00;01; s01;10; s10;11; s1;00i to any generator s˛;ˇ where .˛; ˇ/ ¤ .0; 1/.

This ensures that the inclusion i1 is surjective. Hence P1 Š V also and we have

established Theorem 1.1.

The remaining sections are perhaps technical, but carry out the deferred work

just as described above. We hope that these sections will quickly impress the

reader with the utility of the permutation notation .˛ ˇ/ in performing calculations

within R. Thompson’s group V .

Remarks (i) If our goal had been simply to establish Theorem 1.1, then our

work in the next two sections would have been greatly reduced. Indeed, it is

actually rather easy to show that the group P1 de�ned by all the relations listed in

Theorem 1.1 is isomorphic to V (for example, the relations that Dehornoy [13] lists

are particularly straightforward to deduce). However, from the viewpoint of the

high transitivity of the action of V on the Cantor set C, one expects that it would

be enough to restrict to relations involving swaps .˛ ˇ/ with j˛j and jˇj bounded.

Indeed, this is what leads to our presentation for the group P3 and the small set

of relations, R1–R5, where we are relying upon a small subset involving only

swaps .˛ ˇ/ with j˛j; jˇj 6 3. Establishing that this set of relations is su�cient is

the delicate business of Sections 3 and 4.

(ii) Now that we have established that the groups P3, P1 and V are all isomor-

phic, it is safe to use the notation .˛ ˇ/ as a convenient notation for the map t˛;ˇ as

de�ned earlier. We can then perform computations within R. Thompson’s groupV

employing this notation, for example, along the lines of those in the sections that

follow, and we hope this will be of use to those working with elements in this

group.
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3. Veri�cation of relations to level 3

Our principal aim is to establish that all the relations holding in R. Thompson’s

group V can be deduced from relations R1–R5. In this section, we complete

the �rst stage of our technical calculations by establishing essentially a subset

of the in�nitely many relations in the list (1.2), namely those order relations,

the conjugacy relations and the split relations involving only swaps .˛ ˇ/ with

j˛j; jˇj 6 3. It will turn out that these are enough to then deduce the fourteen

relations for V found in [12] as we shall see in Section 4.

Accordingly, in this section, we shall verify all relations of the form

.˛ ˇ/2 D 1;

.˛ ˇ/. ı/ D .˛ �. ı/ ˇ �. ı//;

.˛ ˇ/ D .˛0 ˇ0/ .˛1 ˇ1/

whenever any swap .� �/ appearing above satis�es j�j; j�j 6 3. (So, for exam-

ple, the split relation .˛ ˇ/ D .˛0 ˇ0/ .˛1 ˇ1/ needs only to be veri�ed for

j˛j; jˇj 6 2 in order that the swaps on the right-hand side of the equation ful�l

this requirement.) The main focus throughout the section will be in establishing

all the conjugacy relations � � D � and we will consider these relations when we

select � , � and � from the following sets:

T2 D ¹ .˛ ˇ/ j .˛; ˇ/ D .0; 1/ or ˛; ˇ 2 X2 º;

T3 D ¹ .˛ ˇ/ j ˛; ˇ 2 X3 º;

Tmn D ¹ .˛ ˇ/ j ˛ 2 Xm; ˇ 2 Xn º; where 1 6 m < n 6 3:

We start our veri�cation by �rst noting that .1 00/ is a conjugate of .00 01/ by

relation R2 and hence has order dividing 2 by the �rst relation in R1. From this

and the de�nitions of the swaps, we now know that .˛ ˇ/2 D 1 whenever ˛ ? ˇ

with j˛j; jˇj 6 3. We will use this fact throughout the rest of this section.

We step through the various relations, essentially introducing “longer” swaps

through the stages. Accordingly, we start with relations involving only swaps from

T12[T2, then introducing swaps from T13, and so on. We need to take various side-

trips from this general direction in order to successfully establish all the relations

we want.

3.1. Relations involving T12 and T2 only. With careful analysis, one can soon

establish which conjugacy relations involve only swaps selected from T12 [ T2.
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These are, for x; y 2 X , the following three relations:

.x Nxy/.0 1/ D . Nx xy/; (3.1)

.x Nxy/. Nxy Nx Ny/ D .x Nx Ny/; (3.2)

.x Nxy/.x Nx Ny/ D . Nxy Nx Ny/: (3.3)

These are actually very easy to verify. For example, equation (3.1) simply follows

from our de�nition of .0 1x/ (for x 2 X) in (2.7), while we can establish

equation (3.2) using our de�nition of .1 01/ in (2.7) and then conjugating, if

necessary, by .0 1/ and using the now established equation (3.1). We now have

the �rst step in our veri�cation and results along the lines of the following lemma

will occur throughout our progress.

Lemma 3.1. All conjugacy relations of the form � � D � where �; � 2 T12 and
� 2 T2 can be deduced from relations R1–R5. �

This lemma contributes now to establishing equation (3.3), since we observe

that, for the case x D 1 and y D 0, the equation is relation R2 and that the

general equation can then be deduced by conjugating by a product of elements

from T2. Speci�cally, conjugating by .0 1/ gives .0 11/.0 10/ D .10 11/ and

then subsequently the two equations now established by .00 01/ and .10 11/,

respectively, establishes the �nal cases.

3.2. Relations involving T12, T13 and T2 only. When we introduce swaps

from T13, in addition to those from T12 andT2, the relations that need to be veri�ed

are, for x; y; z 2 X , the following:

.x Nxyz/.0 1/ D . Nx xyz/; (3.4)

.x Nxyz/. Nxy Nx Ny/ D .x Nx Nyz/; (3.5)

.x Nxyz/.x Nxy/ D .xz Nxy/: (3.6)

Both equations (3.4) and (3.5) follow quickly from the de�nitions in (2.8). They

establish:

Lemma 3.2. All conjugacy relations of the form � � D � where �; � 2 T13 and
� 2 T2 can be deduced from relations R1–R5. �

If we expand the de�nition of .1 00z/ from equation (2.8), we obtain

.1 00z/.1 00/ D .00 1z/ for z 2 X . Now conjugate by an appropriate product

of elements from T2, using Lemmas 3.1 and 3.2 similarly to the argument used for

equation (3.3), to establish equation (3.6).
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3.3. First batch of relations involving T2 and T23 only. We now turn to

relations involving swaps from T23. There are additional relations that we shall

establish later involving only swaps from T2 and T23, but for now we are concerned

with the following equations (in particular, the �rst of our split relations) for

x; y 2 X , for distinct �; �; � 2 X2, and for any � 2 T2 for which the �rst is

de�ned:

.� �x/� D .� �� .�x/��/; (3.7)

.x Nxy/ D .x0 Nxy0/ .x1 Nxy1/; (3.8)

.� �x/.� �x/ D .� �/: (3.9)

We shall need the following lemma to be able to manipulate the initial swaps

from T23 from which the others are built, as given in (2.9). We shall then establish

equation (3.7) in the form of Lemma 3.4 below.

Lemma 3.3. We have

(i) .1 00/, .10 000/ and .11 001/ all commute;

(ii) .01 00x/.1 00/ D .01 1x/.

Proof. (i) Using relation R3 and the fact that all the swaps involved have order

dividing 2, we conclude that .10 000/ and .11 001/ commute. It then follows,

again using R3, that .1 00/ also commutes with these elements.

(ii) Pull apart the formula for .01 00x/ using the de�nitions in (2.9), and then

apply relation R2 and equation (3.6) as follows:

.01 00x/.1 00/ D .1 01x/.1 00/ .00 01/ .1 00/ D .1 01x/.1 01/ D .01 1x/: �

Lemma 3.4. All conjugacy relations of the form � � D � where �; � 2 T23 and
� 2 T2 can be deduced from relations R1–R5.

Proof. The �rst half of the proof deals with the case when � D .� �0/ for

distinct �; � 2 X2. To establish this, we must �rst verify that the swap .00 010/

commutes with .10 11/. However, to achieve this, we actually work �rst with the

swap .10 000/. Indeed,

.10 000/ .01 11/ D .1 00/ .11 001/ .01 11/ by R3

D .1 00/ .01 11/ .01 001/ by the de�nition of .11 001/ in (2.9)

D .01 001/ .01 11/ .1 00/ by Lemma 3.3(ii) twice

D .01 11/ .11 001/ .1 00/ by the de�nition in (2.9)

D .01 11/ .10 000/ by Lemma 3.3(i) and R3.
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As the de�nition of .10 000/ in equation (2.9) is .00 010/.00 01/ .01 10/, we conclude

that .00 010/ commutes with .01 11/.01 10/ .00 01/ D .10 11/.

So we now turn to the required relation when � D .� �0/ for distinct �; � 2 X2.

As described earlier, we view � as a permutation of X2. As such a map, suppose

� maps � and � to � and �, respectively. Then by the de�nition in equation (2.9)

there are products �1 and �2 of elements from T2 such that

.� �0/ D .00 010/�1 and .� �0/ D .00 010/�2 :

Speci�cally, �1 and �2 are products that, when viewed as permutations ofX2, map

00 and 01 to � and � and to � and �, respectively. Then �1��
�1
2 2 h.10 11/i since

it �xes both 00 and 01. Hence, by our previous calcuation, .00 010/ commutes

with �1��
�1
2 , so

.� �0/� D .00 010/�1� D .00 010/�2 D .� �0/: (3.10)

Thus, we have established equation (3.7) in the case when x D 0.

To deduce the equation for x D 1, we proceed similarly and �rst need to

establish that .00 011/ commutes with .10 11/. We calculate as follows:

.10 000/.01 000/ D .10 000/.1 00/ .01 10/ .1 00/ by Lemma 3.3(ii)

D .10 000/.01 10/ .1 00/ by Lemma 3.3(i)

D .01 000/.1 00/ by equation (3.10)

D .01 10/ by Lemma 3.3(ii):

Conjugate by .01 10/ and use equation (3.10) again to establish the formula

.01 000/.10 000/ D .01 10/. Now we �nd

.11 001/ .01 10/ D .10 000/ .1 00/ .01 10/ by R3

D .10 000/ .01 000/ .1 00/ by Lemma 3.3(ii)

D .01 10/ .10 000/ .1 00/ as just established

D .01 10/ .11 001/ by R3.

Thus Œ.11 001/; .01 10/� D 1, and then using the de�nition of .11 001/ in (2.9)

and the relations R1, we deduce Œ.00 011/; .10 11/� D 1. We then proceed as in

the �rst half of the proof, using this new equation, and we establish equation (3.7)

when x D 1, completing the proof of the lemma. �
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Equation (3.8) now follows by conjugating relation R3 by an appropriate

product of elements from T2 using Lemmas 3.1 and 3.4.

The establishment of equation (3.9) requires an intermediate observation �rst.

We use Lemma 3.4 to tell us that .11 001/ commutes with .01 10/, so

.01 10/ .11 001/ D .11 001/ .01 10/

D .10 000/ .1 00/ .01 10/ by R3

D .10 000/ .01 000/ .1 00/ by Lemma 3.3(ii)

D .10 000/ .01 000/ .10 000/ .11 001/ by R3.

Hence .01 000/.10 000/ D .01 10/. By a similar sequence of calculations we

establish

.10 000/ .01 11/ D .01 11/ .10 000/ by Lemma 3.4

D .01 11/ .1 00/ .11 001/ by R3

D .1 00/ .01 001/ .11 001/ by Lemma 3.3(ii)

D .10 000/ .11 001/ .01 001/ .11 001/ by R3;

so .01 001/.11 001/ D .01 11/. We now have two equations that, once we conjugate

by a product of elements from T2, yield the general form of equation (3.9) using

Lemma 3.4 and relations R1.

3.4. Relations involving T12, T2 and T23. The relations that involve swaps

from T12, T23 and T2 and that de�nitely include at least one swap from each of

the �rst two sets are, for x; y; z; t 2 X , the following:

.xy Nxz/.x Nx Nz/ D . Nxz Nx Nzy/; (3.11)

.xy Nxzt/.x Nxz/ D .xt Nxzy/: (3.12)

To establish equation (3.11), �rst calculate

.00 1x/.1 01/ .1 00/ D .00 1x/.1 00/ .00 01/ D .1 00x/.00 01/ D .1 01x/

using relation R2 and the de�nitions in (2.8). Hence

.00 1x/.1 01/ D .1 01x/.1 00/ D .00 01x/

by the de�nitions in (2.9). This is equation (3.11) in the case when x D 1 and

z D 0. The general equation then follows by conjugating by a suitable product of

elements from T2 and using Lemmas 3.1 and 3.4.
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To establish equation (3.12), we �rst deal with the case when x D 1 and z D 0.

We calculate

.1y 00t/.1 00/ D .01 00t/.01 1y/ .1 00/

D .01 00t/.1 00/ .01 00y/

D .01 1t/.01 00y/

D .1t 00y/

using the de�nitions in (2.9), equation (3.11) (twice) and (3.9). Now conjugate

by an appropriate product of elements from T2, using Lemmas 3.1 and 3.4, to

conclude that equation (3.12) holds.

3.5. Intermediate relations. Our current goal at this stage is to complete the

establishment of relations involving swaps from T2 and T23 to supplement Equa-

tions (3.7)–(3.9) already obtained. However, in order to achieve this, we need

some intermediate relations involving swaps from T3 of the form .�0 �1/ for some

� 2 X2, speci�cally for x; y 2 X and distinct �; � 2 X2:

.� �x/.� � Nx/ D .�0 �1/; (3.13)

.� �x/.�0 �1/ D .� � Nx/; (3.14)

Œ.x Nxy/; . Nx Ny0 Nx Ny1/� D 1: (3.15)

We start by establishing a helpful lemma, analogous to Lemmas 3.3 and 3.4,

concerning the swaps of the form .�0 �1/.

Lemma 3.5. We have

(i) .000 001/.1 00/ D .10 11/;

(ii) .000 001/ commutes with .01 10/, with .01 11/, and with .10 11/;

(iii) all conjugacy relations of the form � � D � , where �; � 2 T3 have the
form .�0 �1/ for some � 2 X2 and � 2 T2, can be deduced from rela-
tions R1–R5.

Proof. (i) This follows using the de�nitions in (2.8) and (2.10):

.000 001/.1 00/ D .1 000/.1 001/ .1 00/

D .1 000/.1 00/ .00 11/

D .00 10/.00 11/

D .10 11/:
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(ii) First we know, by Lemma 3.4, that .10 11/ commutes with .01 00x/ for

any x 2 X . Conjugating by .1 00/, using part (i) and Lemma 3.3(ii), establishes

that .000 001/ commutes with .01 1x/.

Then we perform the following calculation:

.000 001/ .10 11/ D .1 00/ .10 11/ .1 00/ .10 11/ by part (i)

D .10 000/ .11 001/ .10 11/ .1 00/ .10 11/ by R3

D .10 11/ .11 000/ .10 001/ .1 00/ .10 11/ by Lemma 3.4

D .10 11/ .1 00/ .10 001/ .11 000/ .10 11/ by (3.12)

D .10 11/ .1 00/ .10 11/ .11 001/ .10 000/ by Lemma 3.4

D .10 11/ .1 00/ .10 11/ .1 00/

by Lemma 3.3(i) and R3

D .10 11/ .000 001/ by part (i).

Thus .000 001/ commutes with .10 11/.

(iii) This follows by the same argument as used in Lemma 3.4, noting that if a

product � of elements from T2 �xes 00 then it lies in the subgroup generated by

.01 10/, .01 11/ and .10 11/ and so commutes with .000 001/ by part (ii). �

For equation (3.13), start with the equations .01 1x/.01 1 Nx/ D .10 11/ and then

conjugate by .1 00/. Use Lemmas 3.3(ii) and 3.5(i) to conclude

.01 00x/.01 00 Nx/ D .000 001/

for any x 2 X . The required equation now follows by conjugating by a product of

elements from T2 and using Lemmas 3.4 and Lemma 3.5(iii).

To establish equation (3.14), �rst use Lemma 3.4 to conclude that

.10 000/.10 11/ D .11 000/:

Now conjugate by .1 00/ and use equation (3.12) and Lemma 3.5(i) to establish the

formula .10 000/.000 001/ D .10 001/. Conjugating by an appropriate product of

elements from T2 and use of Lemmas 3.4 and 3.5(iii) establishes .� �0/.�0 �1/ D

.� �1/, which is su�cient to verify equation (3.14).

We deduce equation (3.15) by starting with Œ.00 01/; .10 11/� D 1 and conjugat-

ing by .1 00/ to yield Œ.1 01/; .000 001/� D 1, using relation R2 and Lemma 3.5(i).

Conjugating by an appropriate product of elements from T2 and using Lemmas 3.1

and 3.5(iii) establishes the required relation.
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3.6. Remaining relations involving T2 and T23. We now establish all the

relations remaining that involve just swaps from T2 and T23. Careful analysis

shows that the ones we are currently missing are, for x; y 2 X and distinct

�; �; �; � 2 X2, the following:

Œ.� �0/; .� �1/� D 1; (3.16)

Œ.� �x/; .� �y/� D 1: (3.17)

Note that in establishing these equations we are essentially establishing that swaps

from T23 that have disjoint support (or, more accurately, corresponding to maps

in V with disjoint support) commute.

Equation (3.16) simply follows from Lemma 3.3(i) using Lemma 3.4.

Use of Lemma 3.4 deduces Œ.� �0/; .� �1/� D Œ.� �1/; .� �1/� D 1 for

all distinct �; �; �; � 2 X2 from relations R4. Consequently, in the case of

equation (3.17), it remains to verify the relation in the case when x D y D 0.

First observe that

.11 011/.000 001/ D .11 011/.10 000/ .10 001/ .10 000/ D .11 011/

by use of equation (3.13) and then repeated use of the cases of equation (3.17) that

we already have; that is, Œ.11 011/; .000 001/� D 1. Now

.000 001/.10 010/ D .000 001/.1 01/ .11 011/ by equation (3.8)

D .000 001/.11 011/ by equation (3.15)

D .000 011/ as just established.

Thus, .10 010/ and .000 001/ commute. This means that when we conjugate the

relation Œ.10 010/; .11 001/� D 1, which is an instance of equation (3.17) that we

already know, by the swap .000 001/, we obtain

Œ.10 010/; .11 000/� D 1;

with use of equation (3.14). We now make use of Lemma 3.4 in our usual way to

establish the missing case of equation (3.17), namely when x D y D 0.

3.7. Relations involving T12, T13, T2 and T23. We now establish all the re-

lations we require that involve swaps from T12, T13, T2 and T23. In view of the

relations that we have already obtained, we can assume that at least one swap

from T13 and at least one from T23 occur within our relation. The relations we

need to establish are therefore, for x; y; z 2 X , the following:

Œ.x Nxyz/; . Nx Ny Nxy Nz/� D 1; (3.18)

.x Nxy/.x Nx Nyz/ D . Nxy Nx Nyz/; (3.19)

.x Nxy/. Nxy Nx Nyz/ D .x Nx Nyz/; (3.20)

.x Nxyz/.x Nx Ny/ D . Nx Ny Nxyz/: (3.21)
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For equation (3.18), take the equation

Œ.00 10/; .01 11/� D 1;

conjugate by .1 00/ and use the de�nition in (2.8) and Lemma 3.3(ii) to conclude

Œ.1 000/; .01 001/� D 1. The required equation then follows, as usual, by use of

Lemmas 3.2 and 3.4.

For equation (3.19), we calculate as follows:

.1 00/.1 01z/ D .1 00/.00 01/ .1 00z/ .00 01/ by the de�nition in (2.8)

D .1 01/.1 00z/ .00 01/ by the de�nition in (2.7)

D .1 01/.1 00/ .00 1z/ .1 00/ .00 01/ by the de�nition in (2.8)

D .01 1z/.1 00/ .00 01/ using R2 and R1

D .01 00z/.00 01/ by equation (3.11)

D .00 01z/ by Lemma 3.4.

The required equation now follows using Lemmas 3.1, 3.2, and 3.4.

For equation (3.20), our main calculation is

.1 00/.00 01z/ D .1 00/.1 00/ .1 01z/ .1 00/

D .1 00/.1 01z/ .1 00/

D .00 01z/.1 00/

D .1 01z/;

obtained by exploiting the de�nition of .00 01z/ in (2.9) and Equation (3.19)

above. The required equation again follows by Lemmas 3.1, 3.2, and 3.4.

Equation (3.21) follows from the de�nition of .1 01z/ as in equation (2.8) with

use of Lemmas 3.1, 3.2 and 3.4.

3.8. First relations involvingT2 andT3 only. We now introduce swaps from T3

into the relations we verify. The �rst step is to establish that swaps from T3 behave

well when we conjugate by one from T2 and then our other split relation. All

other relations involving just swaps from T2 and T3 will have to wait until we

have established some more intermediate relations. Accordingly, we start with the

following for x; y 2 X , distinct �; � 2 X2 and � 2 T2 for which equation (3.22)

is de�ned:

.�x �y/� D ..�x/�� .�y/��/; (3.22)

.� �/ D .�0 �1/ .�0 �1/: (3.23)

As with those from T23, we begin with a lemma to manipulate the basic

T3-swaps from the de�nition in (2.10). In particular, we will establish equa-

tion (3.22) as part (iv) in the lemma.
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Lemma 3.6. We have

(i) .000 01x/.1 00/ D .10 01x/, for any x 2 X ;

(ii) .001 011/.1 00/ D .11 011/;

(iii) .000 010/, .000 011/ and .001 011/ each commute with .10 11/;

(iv) all conjugacy relations of the form � � D � , where �; � 2 T3 and � 2 T2, can
be deduced from relations R1–R5;

(v) .001 010/.1 00/ D .11 010/.

Proof. (i) We calculate as follows:

.000 01x/.1 00/ D .1 000/.1 01x/ .1 00/ by the de�nition in (2.10)

D .1 000/.1 00/ .00 01x/ by equation (3.21)

D .00 10/.00 01x/ by the de�nition in (2.8)

D .10 01x/ by equation (3.9).

Part (ii) is established in exactly the same way.

(iii) We perform the following calculations:

.000 01x/.10 11/ .1 00/

D .10 01x/.1 00/ .10 11/ .1 00/ by part (i)

D .10 01x/.10 000/ .11 001/ .10 11/ .1 00/ by R3

D .11 01x/.11 000/ .10 001/ .1 00/ by Lemma 3.4

D .11 01x/.11 000/ .1 00/ by equation (3.17) twice

D .11 01x/.11 000/ .10 000/ .11 001/ by R3

D .11 01x/.10 000/ .10 11/ .11 001/ by equation (3.9)

D .11 01x/.10 11/ .11 001/ by equation (3.17)

D .10 01x/.11 001/ by Lemma 3.4

D .10 01x/ by equation (3.17).

Thus .000 01x/.10 11/ D .10 01x/.1 00/ D .000 01x/, again by part (i). A similar

argument, using (ii), shows that .001 011/ commutes with .10 11/.

(iv) When � (and �) has the form .�0 �1/, this result was established in

Lemma 3.5(iii). All remaining swaps in T3 are de�ned by conjugating one of

.000 010/, .000 011/ or .001 011/ by some product of elements from T2. The

result then follows by the same argument, but now relying upon part (iii).
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(v) appears to be similar to the �rst two parts of the lemma, but actually requires

a di�erent argument, based on what we have just established:

.001 010/.1 00/ D .000 011/.00 01/ .1 00/

D .000 011/.1 00/ .1 01/

D .10 011/.1 01/

D .11 010/;

by part (iv), relation R2, part (i) and equation (3.12). �

Equation (3.23) is now established by taking the equation

.1 01/ D .10 010/ .11 011/;

which is an instance of equation (3.8), and conjugating by .1 00/ to yield

.00 01/ D .000 010/ .001 011/;

using relation R2 and Lemma 3.6(i) and (ii). The required relation then follows

by conjugating by a product of elements from T2 and using the relations R1 and

Lemma 3.6(iv).

3.9. Further intermediate relations involving T23 and T3. Our principal di-

rection of travel at this stage is to complete the veri�cation of those relations in-

volving swaps from T2 and T3 to supplement those in Equations (3.22) and (3.23).

However, to achieve this we need some intermediate results making use of swaps

from T23, speci�cally, for x 2 X , distinct �; �; � 2 X2 and distinct ˛; ˇ 2 X3 for

which � ? ˛; ˇ, the following:

.� ˛/.� ˇ/ D .˛ ˇ/; (3.24)

.� ˛/.˛ ˇ/ D .� ˇ/; (3.25)

Œ.� �x/; .�0 �1/� D 1: (3.26)

For equation (3.24), �rst note that equation (3.13) deals with the case when

˛ and ˇ share the same two-letter pre�x. For the remaining cases, �rst observe

.10 000/.10 010/ .1 010/

D .10 000/.10 010/ .11 011/ .1 010/ by (3.16) and (3.17)

D .10 000/.1 01/ .1 010/ by (3.8)

D .10 000/.01 10/ .1 01/ by (3.6)

D .01 000/.1 01/ by Lemma 3.4

D .1 000/ by (3.21).



The in�nite simple group V 1427

Hence

.10 000/.10 010/ D .1 000/.1 010/ D .000 010/;

using the de�nition in equation (2.10). A similar argument establishes

.11 000/.11 011/ D .1 000/.1 011/ D .000 011/:

Equally we apply a variant of the argument to obtain further equations:

.10 011/.10 000/ .1 011/ D .10 011/.1 00/ .1 011/ arguing as before

D .10 011/.00 011/ .1 00/ by (3.21)

D .00 10/.1 00/ by (3.9)

D .1 000/ by the de�nition in (2.8).

Thus we obtain .10 011/.10 000/ D .1 000/.1 011/ D .000 011/. Similarly we

determine the equation .11 011/.11 001/ D .001 011/. Thus given any choice of

x; y 2 X , we have obtained one example of a relation

.� �x/.� �y/ D .�x �y/

(for some choice of distinct �, � and �.) We can then obtain all examples by use

of Lemmas 3.4 and 3.6(iv). This completes the establishment of equation (3.24).

Equation (3.14) is already equation (3.25) in the case when ˛ and ˇ share the

same two-letter pre�x. For the remaining cases, use equation (3.24) to tell us

.1x 000/.1x 01y/ D .000 01y/ for any x; y 2 X . Conjugate this equation by .1 00/

and use equation (3.12) and parts of Lemma 3.6 to establish .10 00x/.00x 01y/ D

.10 01y/. All cases of equation 3.25 now follow by conjugating by an appropriate

product of elements from T2.

For equation (3.26), start with the fact that .10 11/ commutes with .000 01x/

for any x 2 X (Lemma 3.6(iii)). Conjugate by .1 00/ and use Lemmas 3.5(i)

and 3.6(i) to conclude Œ.000 001/; .01 01x/� D 1. Then conjugating by a product

of swaps from T2 establishes the required equation.

3.10. Remaining relations involving only T2, T23 and T3. Having established

the intermediate relations, we can now establish all remaining relations involving

swaps only from T2 and T3. We obtain those also involving swaps from T23 at the

same time. When one analyses the relations required, we �nd that they are, for

x; y 2 X , distinct �; � 2 X2 and distinct ˛; ˇ; ; ı 2 X3, the following:

Œ.�0 �1/; .�x �y/� D 1; (3.27)

.�x �y/.�0 �1/ D .� Nx �y/; (3.28)

Œ.� ˛/; .ˇ /� D 1 for � ? ˛; ˇ; ; (3.29)

.˛ ˇ/.˛ / D .ˇ /; (3.30)

Œ.˛ ˇ/; . ı/� D 1: (3.31)
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We establish equation (3.27) by choosing � to be the element in X2 n ¹�; �; �º,

using equation (3.24) to tell us .�x �y/ D .� �x/.� �y/ and then, as equa-

tion (3.26) says that both .� �x/ and .� �y/ commute with .�0 �1/, we establish

equation (3.27).

By Lemma 3.4, .1x 01y/.10 11/ D .1 Nx 01y/ for any x; y 2 X . Con-

jugate by .1 00/ and use Lemma 3.5(i) and parts of Lemma 3.6 to conclude

.00x 01y/.000 001/ D .00 Nx 01y/. Equation (3.28) then follows.

Our �nal equation involving swaps from T23 and T3 is equation (3.29). We

need to establish this in a number of stages. If x 2 X , we know that .10 11/ com-

mutes with the swap .000 01x/ by Lemma 3.6(iii). If we conjugate by .1 00/ and

use Lemma 3.5(i) and Lemma 3.6(i), we conclude Œ.10 01x/; .000 001/� D 1. We

then deduce equation (3.29) in the case when ˇ and  share the same two-letter

pre�x in our now established manner.

The second case of the equation is when ˛ and ˇ share their two-letter pre�x.

Equation (3.17) tells us that Œ.1x 000/; .1 Nx 01y/� D 1 for any x; y 2 X . Now

conjugate by .1 00/ and use equation (3.12) and parts of Lemma 3.6 to conclude

Œ.10 00x/; .00 Nx 01y/� D 1. Equation (3.29) when ˛ and ˇ share their two-letter

pre�x then follows.

It remains to deal with the case when ˛, ˇ and  have distinct two-letter

pre�xes. One particular case is our relation R5: Œ.10 110/; .000 010/� D 1.

Conjugating by .110 111/, using equation (3.14) and (3.27), we deduce Œ.10 111/;

.000 010/�D1. Similarly, conjugating what we now have Œ.10 11x/; .000 010/�D1

for any x 2 X , by .000 001/ and use (3.26) and (3.28) to now conclude that

Œ.10 11x/; .00y 010/� D 1 for all x; y 2 X . Finally use the same argument,

conjugating by .010 011/, to conclude Œ.10 11x/; .00y 01z/�D1 for all x; y; z2X .

The remaining case of equation (3.29) now follows.

One case of equation (3.30), namely when ˛ and  share the same two-

letter pre�x, has already been established as equation (3.28). For the case when

˛ and ˇ share the same two-letter pre�x, start with the equation .10 11/.1x 01y/ D

.1 Nx 01y/, for x; y 2 X , as given by equation (3.9). Conjugate by .1 00/ and

use Lemma 3.5(i) and parts from Lemma 3.6 to conclude .000 001/.00x 01y/ D

.00 Nx 01y/. From this the general formula .�0 �1/.�x �y/ D .� Nx �y/ follows for

distinct �; � 2 X2.

For the case when ˛, ˇ and  have distinct two-letter pre�xes, say ˛ D �x,

ˇ D �y and  D �z, choose � to be the other element of X2. Then

.˛ ˇ/.˛ / D .�x �y/.�x �z/

D .�x �y/.� �x/ .� �z/ .� �x/

D .� �y/.� �z/ .� �x/

D .�y �z/.� �x/

D .�y �z/

D .ˇ /;

by equations (3.24) (used three times) and (3.29).
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Part of equation (3.31) has already been established as Equation (3.27), but

we shall deal with our required relation in full generality. Indeed, �rst assume

that ˛, ˇ,  and ı have between them at most three distinct two-letter pre�xes.

Let � 2 X2 be di�erent from those two-letter pre�xes. Then write . ı/ as

.� / .� ı/ .� /, by equation (3.24), and observe this commutes with .˛ ˇ/

using equation (3.29).

The case when ˛, ˇ,  and ı have four distinct two-letter pre�xes can then be

deduced as follows. Suppose as ˛ D �x for some � 2 X2 and x 2 X . By the

previous case, .˛ ˇ/ commutes with both .� Nx / and .� Nx ı/, and hence it also

commutes with . ı/ D .� Nx /.� Nx ı/, using equation (3.30).

3.11. Relations involving T3, at least one of T12, T13 andT23, and possiblyT2.

We now establish the �nal batch of relations for this section. These involve swaps

from T3 and at least one of T12, T13 andT23, and are the following for x; y; z; t 2 X

and distinct ˛; ˇ;  2 X3 satisfying x 6� ˛; ˇ;  :

. Nxy0 Nxy1/.x Nxy/ D .x0 x1/; (3.32)

Œ.x ˛/; .ˇ /� D 1; (3.33)

.x ˛/.˛ ˇ/ D .x ˇ/; (3.34)

.˛ ˇ/.x ˛/ D .x ˇ/; (3.35)

. Nxyz Nx Nyt/.x Nxy/ D .xz Nx Nyt/: (3.36)

Equation (3.32) follows from Lemma 3.5(i) by our standard T2-conjugation

argument.

Equation (3.33) follows by taking the relation Œ.00 1y/; .1 Ny 01z/� D 1 and the

relation Œ.00 1y/; .010 011/� D 1, which hold by Lemmas 3.4 and 3.6(iv) respec-

tively, and then conjugating by .1 00/ and proceeding as in previous arguments to

conclude that Œ.x �y/; .� Ny �z/� D 1 and Œ.x �y/; .�0 �1/� D 1 for any x; y; z 2 X

and any distinct �; � 2 X2 with x 6� �; �.

To establish equation (3.34), conjugate the already established equations

.00 1y/.10 11/ D .00 1 Ny/ and .00 1y/.1y 01z/ D .00 01z/;

for y; z 2 X , by .1 00/. This yields .1 00y/.000 001/ D .1 00 Ny/ and

.1 00y/.00y 01z/ D .1 01z/, which now yields the two forms of equation (3.34):

.x �y/.�0 �1/ D .x � Ny/ and .x �y/.�y �z/ D .x �z/ for any x; y; z 2 X and distinct

�; � 2 X2 with x 6� �; �.
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For equation (3.35), we shall show

.000 001/.1 00x/ D .1 00 Nx/ and .00x 01y/.1 01y/ D .1 00x/

for any x; y 2 X . Four of these occurrences are found in the de�nitions in (2.10),

while the other two are deduced by conjugating .10 11/.00 10/ D .00 11/ and

.11 010/.00 010/ D .00 11/ by .1 00/. The required equation then follows.

Finally, for equation (3.36), from Lemma 3.6: .00z 01t/.1 00/ D .1z 01t/ for

any z; t 2 X . Then as in the previous equations we conjugate by products of

elements from T2.

We have now established all required relations of the form � � D � where

� , � and � come from the sets T2, T12, T13, T23 and T3. This is the �rst stage

in establishing the existence of the homomorphism  in Diagram (2.12) and, in

particular, the veri�cation of Theorem 1.2.

4. Verifying the Cannon–Floyd–Parry relations

In this section we describe how to verify that all the relations that hold in

R. Thompson’s group V can be deduced from those assumed in relations R1–R5.

We shall rely upon the work in the previous section. One might wonder whether it

is possible to proceed more directly to show, for example, that all relations holding

in V can be deduced from the in�nitely many in the presentation in Theorem 1.1.

It is a consequence of our results that this can be done, but our own attempt to

do so resulted in overly long arguments replicating those already found in Sec-

tion 6 of [12]. We have chosen the more direct method of verifying the �nite set

of relations known already to de�ne V .

In their paper (see [12, Lemma 6.1]), Cannon–Floyd–Parry provide the follow-

ing presentation for V . It has generators A, B , C and �0 and relations

CFP1. ŒAB�1; X2� D 1; CFP8. �1�3 D �3�1;

CFP2. ŒAB�1; X3� D 1; CFP9. .�2�1/
3 D 1;

CFP3. C1 D BC2; CFP10. X3�1 D �1X3;

CFP4. C2X2 D BC3; CFP11. �1X2 D B�2�1;

CFP5. C1A D C 22 ; CFP12. �2B D B�3;

CFP6. C 31 D 1; CFP13. �1C3 D C3�2;

CFP7. �21 D 1; CFP14. .�1C2/
3 D 1;

where the elements appearing here are de�ned by the following formulae Cn D

A�nC1CBn�1, Xn D A�nC1BAn�1 both for n > 1, �1 D C�1
2 �0C2 and

�n D A�nC1�1A
n�1 for n > 2.
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Recall from Section 2 thatP3 is the group presented by generators a D .00 01/,

b D .01 10/ .01 11/ and c D .1 00/ subject to relations R1–R5. De�ne four new

elements of P3 by

xA D .0 1/ .0 10/ .10 11/I xB D .10 11/ .10 110/ .110 111/I

xC D .10 11/ .0 10/I N�0 D .0 10/;

and then new elements xCn, xXn and N�n for n > 1 de�ned in terms of these four by

same formulae used when de�ning the relations for V .

It is a consequence of the relations involving swaps from the sets T2, T12, T13,

T23 and T3 established in the previous section (i.e., Equations (3.1)–(3.36)) that

the elements xA, xB , xC and N�0 satisfy CFP1–CFP14. To verify this is a sequence of

calculations. Below we present the veri�cation of CFP1 for these elements. For the

entertainment of the reader, relation CFP2 required the longest calculation whilst

the others are more straightforward. The following formulae are useful for this

work.

Lemma 4.1. The following formulae hold in G:

(i) xA xB�1 D .00 01/ .01 10/ .0 10/;

(ii) xX2 D .0 11/ .00 01/ .00 010/ .010 011/ .0 11/;

(iii) xX3 D .0 111/ .00 01/ .00 010/ .010 011/ .0 111/;

(iv) xC2 D .0 10/ .0 111/ .110 111/;

(v) xC3 D .0 110/ .10 111/ .0 100/ .0 101/ .10 110/ .110 111/;

(vi) N�1 D .10 110/;

(vii) N�2 D .0 11/ .00 010/ .0 11/;

(viii) N�3 D .0 111/ .00 010/ .0 111/.

Proof. We verify the two formulae, (i) and (ii), required to verify CFP1. Below, we

principally rely upon the conjugacy relations, although a split relation is applied

in one step. The other formulae listed are established similarly.

(i) We calculate

xA xB�1 D .0 1/ .0 10/ .10 11/ � .110 111/ .10 110/ .10 11/

D .0 1/ .0 10/ .100 101/ .11 100/

D .0 1/ .00 01/ .00 11/ .0 10/

D .00 10/ .01 11/ .00 01/ .00 11/ .0 10/

D .00 01/ .01 10/ .0 10/:
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(ii) We start with the de�nition of xA and xB:

xX2 D xA�1 xB xA

D .10 11/ .0 10/ .0 1/ � .10 11/ .10 110/ .110 111/ � .0 1/ .0 10/ .10 11/

D .10 11/ .0 10/ .00 01/ .00 010/ .010 011/ .0 10/ .10 11/

D .0 11/ .00 01/ .00 010/ .010 011/ .0 11/: �

We now verify that the elements xA, xB , xC and N�0 of our P3 satisfy the rela-

tion CFP1:

Œ xA xB�1; xX2� D .0 10/ .01 10/ .00 01/ � .0 11/ .010 011/ .00 010/ .00 01/ .0 11/

� .00 01/ .01 10/ .0 10/ � .0 11/ .00 01/ .00 010/ .010 011/

� .0 11/

D .0 11/ .10 11/ .10 111/ .110 111/ .010 011/ .00 010/ .00 01/

� .0 11/ .00 01/ .01 10/ .0 10/ .0 11/ .00 01/ .00 010/

� .010 011/ .0 11/

D .0 11/ .10 11/ .10 111/ .110 111/ .010 011/ .00 010/ .00 01/

� .110 111/ .10 111/ .10 11/ .00 01/ .00 010/ .010 011/ .0 11/

D .0 11/ .11 101/ .100 101/ .010 011/ .00 010/ .00 01/ .100 101/

� .11 101/ .00 01/ .00 010/ .010 011/ .0 11/

D .0 11/ .11 101/ .100 101/ .010 011/ .00 010/ .100 101/

� .11 101/ .00 010/ .010 011/ .0 11/

D .0 11/ .11 101/ .010 011/ .00 010/ .11 101/ .00 010/ .010 011/

� .0 11/

D .0 11/ .11 101/ .010 011/ .11 101/ .010 011/ .0 11/

D 1

(by �rst collecting .0 11/ to the left, then conjugating some swaps by .0 11/, some

by .10 11/, some by .00 01/, some by .100 101/, then single swaps by .00 010/

and by .11 101/, and �nally exploiting the fact our swaps have order 2).

Once we have established the fourteen relations CFP1–CFP14, it follows that

there is indeed a surjective homomorphism  WV ! h xA; xB; xC; N�0i, as indicated in

the Diagram (2.12) and used in the proof of Theorems 1.1 and 1.2.

5. Final details for the proofs

In this section, we complete the technical details relied upon in the proofs given

in Section 2.
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We �rst need to show that the subgroup h xA; xB; xC; N�0i coincides with the

group P3. Indeed observe this subgroup contains all the following elements:

N�0 D .1 00/ D c;

xC N�0 D .10 11/;

. xC N�0/
xA xC D .10 11/.0 1/ D .00 01/ D a;

N�
xB�1 xC
0 D .0 10/.110 111/ .10 110/ .0 10/ D .10 110/;

N�
xB�1 xC
0

xC N�0 xB D .110 111/;

and

.10 110/.110 111/ .10 11/ .0 10/ .10 11/ D .01 10/:

The relations R1 ensure that b 2 h.00 01/; .01 10/; .10 11/i, and so we now

conclude that this subgroup generated by xA, xB , xC and N�0 is the whole group P3.

This establishes the following result and means that we have now completed all

the details required for the proofs of Theorem 1.1 and 1.2.

Proposition 5.1. The elements xA, xB , xC and N�0, de�ned earlier, generate the
group P3. �

Finally, we deduce a 2-generator presentation for V from Theorem 1.2. As

noted in Section 2, the following is the intermediate step used to establish The-

orem 1.3. Although the latter depends on computer calculation, the following is

established by purely theoretical methods in line with our proofs of Theorems 1.1

and 1.2.

Corollary 5.2. R. Thompson’s group V has a �nite presentation with two gener-
ators and nine relations.

Proof. We work in the group P3. De�ne u and v to be the elements

u D .00 01/ .10 110/ .10 111/ and v D b D .01 10 /:

(When interpreted via the isomorphism from P3 to V , obtained by composing

the maps speci�ed in the diagram (2.12), these two elements correspond to the

element of V given by tree-pairs in Figure 3 in the Introduction.)

If we rely upon the relations that hold in P3 (i.e., simply calculating within

R. Thompson’s group V , as, by this stage, we have completed all steps in es-

tablishing Theorem 1.2), then we can obtain a formula for u as a product of the

generators a, b and c, for example,

u D w.a; b; c/ D a.abab
�1

/caca
bab�1a
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and the following formulae:

a D .00 01/ D u3;

.10 000/ D .u3/vu
�2vu3

;

.11 001/ D .u3/vu
�1vu3v:

Therefore

c D .u; v/ D .u3/vu
�2vu3

.u3/vu
�1vu3v:

If r1.a; b; c/, r2.a; b; c/, . . . , r8.a; b; c/ denote the words in a, b and c that de-

�ne our relations (see the Equations (2.4) in Section 2, or alternatively, Equa-

tions (2.3)), then applying Tietze transformations shows that

V Š hu; v j r1.u
3; v; .u; v//D r2.u

3; v; .u; v//

:::

D r8.u
3; v; .u; v//

D 1; u D w.u3; v; .u; v//i:

This establishes the corollary. �

As we described in Section 2, Theorem 1.3 is deduced from this presentation.

We produce the formulae ri
�

u3; v; .u; v/
�

, for i D 1, 2, . . . , 8, by taking ri to be

the formulae in (2.4). We then apply the process of producing equivalent relations

for this 2-generator presentation by repeatedly using the Knuth–Bendix Algorithm

as described in Section 2. It is during this process that we discover that two of

the relations can be omitted since the relevant word reduces to the identity. The

remaining seven relations reduce to those listed in Theorem 1.3.
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