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1. Introduction

In [16] Tits introduced geometries of Coxeter type, which are geometries which

locally are buildings. In particular, buildings are examples of such geometries.

The motivation for these objects comes from applications to (�nite) group theory,

see for example [6, C.7].

Flag-transitive �nite geometries of type C3 have been classi�ed by Aschbacher

and Yoshiara in [1] and [17]. Such a geometry is either a building, or it is

isomorphic with the Neumaier geometry on seven points (see [9]).

In the compact connected case a similar classi�cation has been obtained by

Kramer and Lytchak in [7] (albeit missing one of the two exceptional cases). The

eventual conclusion here is that such a geometry is either covered by a building,

or it is isomorphic to one of two exceptional geometries. It are precisely these

geometries which are the subject of the current paper.

The two exceptional geometries were �rst encountered in the study and clas-

si�cation of polar actions on manifolds, see [11], [4] and [5]. They are associated

to actions of SU.3/ � SU.3/ and SO.3/ � G2 on the Cayley plane OP
2.

In this paper we provide a uniform description for both geometries, and use

this to show that these geometries are simply connected. This answers Problem 5

of [7]. We also use this description to obtain their full automorphism groups.

In Sections 2 and 3 we introduce basic notions needed later on. In Section 4

both of the exceptional geometries are constructed in an uniform way, and we

discuss brie�y their structure. Section 5 discusses the automorphism group, the

last section 6 is devoted to the proof of their simple connectedness.
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2. Composition algebras

Let A be a composition algebra over the real numbers R, so A is either R itself or

C, H or O (by Hurwitz’s theorem). The algebra A comes equipped with a norm

j � jWA ! R and standard involution N� . Let k be either R of C and assume that k

is a sub�eld of A.

The norm onA induces a positive-de�nite R-bilinear form h�; �iWA�A ! R on

Awhen interpreted as anR-vector space. Therefore we can consider orthogonality

in A. The orthogonal complement of a subspaceK in A is denoted by ?A K.

We de�ne the k-pure elements in A as Puk.A/ ´?A k. In particular we have

a direct sum decomposition

A D k ˚ Puk.A/:

Note that the standard involution acts on Puk.A/ as the map x 7! �x.

We now de�ne an Hermitian inner product .� j �/WA� A ! k on A (as a right

vector space) over k by setting .xjy/ to be the k-part of the product xy. Note

that if k D R, then h�; �i and .� j �/ agree. This Hermitian inner product has the

following properties:

Re.ajb/ D ha; bi; (1)

j.ajb/j � jaj � jbj; (2)

j.ajb/j D jaj � jbj () a; b are k-linearly dependent, (3)

.aja/ D jaj2; (4)

where a; b 2 A. Proofs of these are either direct or are basic properties of inner

products. For an element a 2 Puk.A/ we denote the orthogonal complement of

the vector line ak in Puk.A/ by a?.

The following result will be crucial for our construction.

Proposition 2.1. Let A and B be two composition algebras over R, both contain-

ing a common sub�eld k which is either R or C. Assume additionally that the

dimension of A over k is four, and that the dimension of A over B is at least the

k-dimension of A. Let a; c 2 Puk.A/ and b; d 2 Puk.B/ be of norm 1 such that

.ajc/ D .bjd/ and ak ¤ ck. Then there exists a k-algebra morphism of A into B

mapping the pair .a; c/ to .b; d/.
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Proof. Note that bk ¤ dk by equation 3. We may assume without loss of

generality that .ajc/ D .bjd/ D 0 by replacing c with a suitable scalar multiple of

c � .ajc/a being of unit norm (and similarly for d ). In particular this implies that

ac is again in Puk.A/, see e.g. Proposition 11.10 of [12].

The elements 1; a; c and ac then form a k-basis for A, satisfying the following

identities:

Na D a�1 D �a;

Nc D c�1 D �c;

ac D Nc Na D ca D �ac;

le D �le D �Ne Nl D e Nl;

where l 2 k and e 2 Puk.A/. Note that these relations completely determine A

as a k-algebra. As analogous properties hold for b and d , we can extend the map

.1; a; c; ac/ 7! .1; b; d; bd/ to a k-algebra morphism from A into B. �

3. Geometries

A geometry over a set I is a system � ´ .V; �; �/, consisting of a set V , a

surjective map � WV ! I , and a binary symmetric relation � on V such that for

any two elements x; y of V whose images under � are identical, the relation x � y
holds if and only if x D y. The relation ‘�’ is the incidence relation, the image

by � of an element or a subset of V is its type.

A �ag of the geometry � is a set of pairwise incident elements of V . The type

of a �ag is its image under � . The corank of a �ag is jI j minus the size of its type.

Let X be a �ag, and let Y be the set of all elements of V n X incident to X . The

system �X WD .Y; � jY ; � \ .Y � Y // forms a geometry over I n �.X/ and is called

the residue of X in �. For a J � I , the set of all �ags of the type J as subset of

V J is called the �ag variety VJ .

The geometry � is connected if the graph with vertices V and adjacency

relation ‘�’ is connected. A geometry is thick if every �ag of corank 1 is contained

in at least three maximal �ags.

A generalized n-gon (with 2 � n < 1) is a thick rank 2 geometry such that the

associated graph has girth 2n (i.e. the smallest cycle has length 2n) and diameter n.

Generalized triangles correspond exactly with (axiomatic) projective planes.

We call the geometry � a compact geometry if the set of vertices V carries

a compact Hausdor� topology such that for every J � I the �ag variety VJ is

closed in the compact product space V J .
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3.1. Geometries of type C3. A connected geometry over the set ¹1; 2; 3º is a

geometry of type C3 if

� the residue of a vertex of type 1 is a generalized quadrangle,

� the residue of a vertex of type 2 is a generalized digon,

� the residue of a vertex of type 3 is a generalized triangle.

One often calls the vertices of type 1 the points, those of type 2 lines, and of

type 3 planes. In this sense we can speak of collinearity of points and coplanarity

of lines.

By a result of Tits ([16, 6.2.3]), the buildings of type C3 are precisely those

geometries of type C3 in which no pair of points is incident with more than one

common line.

The next lemma captures part of the structure of these geometries, which is

well known, see e.g. [10, Exercise 7.7].

Lemma 3.1. Let � be a geometry of type C3.

(i) For a point p and a line L there exists at least one point q incident with L

and collinear with p.

(ii) For a point p and plane � , there exists at least one line L incident with �

and having a common incident plane with p.

Proof. Since the geometry is connected and since the residue of a vertex of type

3 is a generalized triangle (i.e. a projective plane) there exists a (�nite) path

from p to L in the incidence graph alternating between points and lines. Let

a � D � b � E � c � F be a path where a; b; c are points and D;E; F are lines.

Consider a plane � � F . Since the residue of c is a generalized quadrangle there

exist a plane � 0 � E with � 0 \ � D Lc . Since the residue in b is a generalized

quadrangle there exists a plane � 00 � D with � 0 \ �" D Lb. Then d 2 Lb \ Lc

is a point in � collinear with a. Considering the residue in d yields there exists a

plane containing a intersecting � in a line Ld . Since � is a projective plane the

intersection Ld \ F contains a point e. Hence we have found a shorter path from

a to F , namely a � ha; ei � e � F , which implies (i).

For (ii) consider any line L in � . Then by (i) there is a point q incident with L

and collinear with p. Considering the residue of q proves the statement. �

3.2. Coverings. Let � ´ .V; �; �/ be a geometry of type C3. From � one

can construct a connected simplicial complex with vertices the elements of V

and simplices the �ags of �. We denote the metric realization of this simplicial

complex by j�j. Connected covers of j�j then correspond with 2-covers of the

geometry � (see [10, Ch. 12]), which are again geometries of type C3.

By this correspondence one can consider the universal cover z� of �, and say

that the geometry is simply connected if it is its own universal cover.
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4. Geometries from composition algebras

In this section we construct a class of geometries of type C3 starting from two

composition algebras with a common sub�eld. The construction itself is contained

in Section 4.1, the veri�cation of the claim in Section 4.2.

Lastly, in Section 4.3, we list the di�erent possibilities for the composition

algebras and show the existence of a compact �ag-transitive automorphism group.

4.1. Construction of � . We de�ne a geometry � as follows. Let A and B be

two composition algebras over R, containing a common sub�eld k which we

assume to be either R or C, such that A is four-dimensional over k and where the

(k-)dimension of B is at least the (k-)dimension of A.

Scalar multiplication, as well as projectivization, is always understood to be

over k.

� The points are the vector lines in Puk.A/ as vector space over k.

� Lines are of the form Œa; b�where a 2 Puk.A/, b 2 Puk.B/ and jaj D jbj ¤ 0,

up to multiplication by a common scalar multiple.

� The planes of the geometry are formed by the embeddings �WA ! B as

composition algebras over k.

Incidence is de�ned as follows. Every point is incident with every plane, a

point uk D hui (u 2 Puk.A/) is incident with a line Œa; b� if and only if a 2 u?.

A line Œa; b� and a plane � are incident if and only if �.a/ D b.

Remark 4.1. Often one calls a geometry of type C3 where every point is incident

with every plane �at (see for example [10, 4.3.2]). A second property that our

geometry � has is that if two lines are incident with at least two common points,

then every point incident with one line is also incident with the other. (Another

way to say this is that the point shadows of both lines agree in this case.) The set

of points of � and the set of point shadows of lines (with duplicity removed) form

a projective plane over k.

4.2. � is a geometry of type C3. Before we prove that � is indeed a geometry

of type C3, we obtain a criterion for coplanarity of lines. (Note that this criterion

is not in�uenced by taking scalar multiples.)

Lemma 4.2. Two lines Œa; b� and Œc; d � are coplanar if and only if .ajc/ D .bjd/.

Proof. The ‘only if’ direction is clear as embeddings of composition algebras

preserve the inner product. The other direction follows from Proposition 2.1. �
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Proposition 4.3. The geometry � is of type C3.

Proof. Clearly � is thick, connected, with the residue of any given line being a

digon, and the residue of any plane being a projective plane over k. So it remains

to verify that the residue of a given point hui is a generalized quadrangle.

All planes belong to this residue and a line Œa; b� belongs to it if and only if

a 2 u?.

In order to verify that the residue is a generalized quadrangle consider a plane

� and a line Œa; b� with �.a/ ¤ b. It su�ces to show existence and uniqueness

of a line Œc; �.c/� (so incident with �) such that .ajc/ D .bj�.c// (up to taking a

scalar product of c) which states that Œc; �.c/� coplanar with Œa; b�.

This is equivalent to .�.a/�bj�.c// D 0, which implies that �.c/ is contained

in the hyperplane � WD .�.a/ � b/? of Puk.A/.

In order to have a unique possibility for c (up to scalar products), it su�ces

that the subspace � 0 D �.u?/ intersects � \ �.Puk.A// in a vector line. This is

equivalent with � 0 ¤ � \ �.Puk.A//.

Assume by way of contradiction that we do have equality. Then �.a/, which is

an element of � 0, is also contained in �. This would imply that .�.a/�bj�.a// D 0,

which is equivalent to .b; �.a// D j�.a/j2. As jbj D jaj, the Cauchy-Schwarz

inequality now implies that b D l�.a/, with l 2 k of unit norm. Plugging this

back into .�.a/ � bj�.a// D 0 yields that l D 1 or equivalently b D �.a/, which

is a contradiction. This proves the proposition. �

Remark 4.4. Another way to get the same conclusion is to interpret the condition

jaj D jbj for the lines through a �xed point as a Hermitian form on a .dimk A C
dimk B�3/-dimensional vector space over k, and obtain a generalized quadrangle

in this way.

4.3. Possibilities for k, A and B. By Hurwitz’s theorem on composition alge-

bras we only have the following three possibilities for k, A and B (up to isomor-

phism):

k D R; A D H; B D H;

k D R; A D H; B D O;

k D C; A D O; B D O:

In each of these cases one can construct the following compact �ag-transitive

automorphism group of the associated geometry �. Set G D AutkA � AutkB,

and the action of an element g ´ .˛; ˇ/ 2 G on the geometry to be

� points: ka 7! ˛.ka/;

� lines: Œa; b� 7! Œ˛.a/; ˇ.b/�;

� planes: � 7! ˇ�˛�1.
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It is straightforward to check this action is bijective and preserves incidence.

As AutRH ' SO.3/, AutRO ' G.2/ and AutCO ' SU.3/ (see [12]), we obtain the

following possibilities for G (using the same ordering as before):

SO.3/ � SO.3/; SO.3/ � G2; SU.3/ � SU.3/:

Remark 4.5. The action is faithful except in the last case, for which the action

has a kernel of size three.

The group G clearly admits a compact topology and acts continuously for the

standard topology on�. Flag-transitivity is easily seen by the transitivity of AutkA

on Puk.A/, and the fact that, when assuming A to be a k-subalgebra of B, each

k-algebra injective morphism from A into B extends to an automorphism of B.

We can hence apply the classi�cation made in Theorem A of [7] and conclude

that the geometry � is either covered by a building, or is one of two unique

exceptional geometries of type C3. Our last two possibilities correspond with

the two exceptional geometries, the geometry for the �rst possibility is therefore

covered by a building of type C3.

4.4. The case G D SO.3/ � SO.3/. For this case we provide an explicit descrip-

tion of the covering. The covering geometry is the projective quadric � de�ned

by the following equation.

Q.X0; X1; X2; X3; X4; X5; X6/ D X2
0 CX2

1 CX2
2 �X2

3 � X2
4 �X2

5 �X2
6 D 0

The group SO.4/ acts on the last four coordinates, in particular on the unit

sphere S3 in the three-dimensional space spanned by these. Let H be the sub-

group of left isoclinic rotations (which is isomorphic with SU.2/ as well as the

multiplicative group of unit quaternions, which themselves can be identi�ed with

the sphere S3). This group H acts sharply transitive on S3.

Let G be the group SO.3/ � SO.4/ (where SO.3/ acts on the �rst three coordi-

nates, and SO.4/ is as before). Then H � G and the quotient G=H is isomorphic

to SO.3/ � SO.3/.

The action of G on � is well-understood in the context of Veronese and polar

representations, in particular one has the following lemma.

Lemma 4.6. The groupG acts chamber-transitively on the projective quadric�.

If we can show that the group H does not �x any point, line or plane, then

the quotient geometry �0 is a C3 geometry on which the group quotient G=H '
SO.3/ � SO.3/ acts chamber-transitively.

Lemma 4.7. No non-identity element ofH maps a point of� to a collinear point

on it.



1384 J. Schillewaert and K. Struyve

Proof. Suppose that an element g 2 G maps some point p of � to a collinear

point q. By Lemma 4.6 and the fact that H is a normal subgroup of G we may

assume w.l.o.g. that the point p is represented by .1; 0; 0; 1; 0; 0; 0/. The point q

can then be represented by .1; 0; 0; a; b; c; d/where a2 C b2 C c2 C d2 D 1.

In order for these points to be collinear on � we need that for the associated

bilinear form B.x; y/ D 1
2
.Q.xC y/�Q.x/�Q.y// we have B.p; q/ D 0. This

implies that 1
2
.4 � .1 C a/2 � b2 � c2 � d2/ D 0. Combined with the previous

condition a2 C b2 C c2 C d2 D 1 it follows that a D 1 and hence b D c D d D 0,

so p D q. As H acts sharply transitive on the sphere S3, we have that g is the

identity element. This proves the lemma. �

Proposition 4.8. The group H acts freely on the projective quadric �.

Proof. This follows directly from the previous lemma. �

One can verify that the geometry and group action constructed in this section

is the same one as in Section 4.3 by comparing the stabilizer of a chamber and the

subsimplices of it.

5. The full automorphism group of the geometry �

This section is devoted to determining the full automorphism group Aut.�/ of �,

which will turn out to be very close to the compact group given in Section 4.3.

5.1. Statement of results. We claim that the full automorphism group is given

by the following table (listed case-by-case):

k D R; A D H; B D HW SO.3/ � SO.3/;

k D R; A D H; B D OW SO.3/ � G2;

k D C; A D O; B D OW ..SU.3/ � SU.3//=C3/ Ì C2:

The cyclic group C2 consisting of two elements arises from complex conju-

gation. The cyclic group C3 is the kernel of the map of the group SU.3/ to its

projectivization PSU.3/, i.e. the center of SU.3/, matrices �I , where � is a third

root of unity and I is the identity matrix.

From the results of Section 4.3 it easily follows that these are indeed automor-

phism groups of the associated geometries. It only remains to check if these are

the full groups.
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5.2. Image into P�L.3; k/. The set of points and the set of point shadows of

lines (removing duplicity) form a projective plane † over k, see also Remark 4.1.

Hence the automorphism group of � can be mapped into the full automorphism

group Aut.†/ of this plane, which is P�L.3; k/. We aim to show that the image of

Aut.�/ into Aut.†/ is contained in the centralizer of the polarity induced by the

Hermitian inner product .�j�/, as expected.

As the compact automorphism group listed in Section 4.3 is �ag-transitive, we

may �x the point x ´ hai, and line L ´ Œa0; b�, where a; a0; a00 is an orthogonal

k-basis for Puk.A/. Let M be a second line with the same point shadow as L,

which we may assume to be of the form M ´ Œa0; d �.

Consider the lines N through x which are coplanar with both L and M . Such

a line is of the form Œc; f �.

Lemma 5.1. The point shadows for varying N are all identical if and only if

hbi D hd i. In this case the common point shadow is formed exactly by the points

corresponding to the vector lines in the k-span of ¹a; a0º.

Proof. The point shadows are identical if and only if there is a unique solution for

c up to scalar multiples.

The equations that have to be satis�ed in order for a lineN ´ Œc; f � go through

x and being coplanar with both L and M are the following:

c 2 ha0; a00iI

.a0jc/ D .bjf / D .d jf /:

Note that c … ha0i. If c D a0l C a00 is a valid solution, then c D a0l � a00 is also.

Hence in order to have unicity for c up to scalar multiples we need that l D 0,

or equivalently that .bjf / D 0 for every f such that .bjf / D .d jf /. The latter

condition can be rewritten as .b�d jf / D 0. As the subspace .b�d/? is contained

in b? if and only if the vector lines through b and d are identical, it follows that

hbi D hd i.
The element c is then a scalar multiple of a00, which determines the point

shadow of N . �

Note that the point shadow of such an N forms a line through x orthogonal to

the point shadow of L. One can hence recognize the polarity �.

We conclude that the image of Aut.�/ in Aut.†/ is contained in SO.3/ if

k D R, and PSU.3/ Ì C2 if k D C, where the cyclic group C2 corresponds with

complex conjugation. Note that this corresponds with the possibilities listed in

Section 5.1.



1386 J. Schillewaert and K. Struyve

5.3. Kernel of the map. In this section we take a look at the kernel of the map

into P�L.3; k/ as considered in Section 5.2. If we can show that this is exactly

AutkB, then the claim from Section 5.1 readily follows. As the kernels for the

groups of automorphisms listed in Section 5.1 still act transitive on the set of planes

of the geometry �, we may restrict ourselves to considering the stabilizer of one

such plane. This choice of a plane corresponds with an embedding of A into B,

hence we may assume that A is a k-subalgebra of B.

Let H be the stabilizer of the plane corresponding with the (natural) embed-

ding of A into B in the kernel of the map into P�L.3; k/. SoH �xes every line of

the form Œa; a� (a 2 Puk A), as well as every point of �.

Let a in Puk.A/ be an element of unit norm, and consider the set of lines

K ´ ¹Œa; b�jb 2 Puk.B/; jaj D jbj D 1º, which is naturally parametrized by the

elements in Puk.B/ of unit norm and stabilized by H . In the next few lemmas we

investigate how H acts on K, which via the parametrization corresponds with an

action of H on the elements of unit norm in Puk.B/.

Lemma 5.2. The action of H on the set K preserves the intersection of vector

subspaces of Puk.B/ (as a vector space over k) with the subset of elements of unit

norm.

Proof. The lines Œa; b� in K coplanar with some given line Œc; d � are determined

by the linear equation .ajc/ D .bjd/ over k by Lemma 4.2. We can therefore rec-

ognize the hyperplanes, and hence any vector subspace of Puk.B/[¹0º intersected

with the elements of unit norm. �

Lemma 5.3. The action of H on K preserves orthogonality.

Proof. Consider a setK 0 ´ ¹Œc; d �jb 2 Puk.B/; jcj D jd jº of lines with the same

point shadow, where a and c are not scalar multiples of each other.

Then for a �xed line Œa; b� 2 K, the lines in K which are coplanar with a line

in K 0 which is on its turn coplanar to Œa; b� are those lines Œa; f � where f is such

that there exists a d 2 Puk.B/ with jd j D jf j D jaj and .ajc/ D .bjd/ D .f jd/.
If this is not the entirety of lines in K, it will certainly not contain those lines

Œa; f � with .cjf / D 0. This characterizes exactly those lines. �

Lemma 5.4. Let a 2 Puk A and b 2 Puk B such that jaj D jbj. It is then possible

to reconstruct the lines of the form Œc; d � where d is a scalar multiple of b from

the geometry.

Proof. We �rst consider the case where .cja/ D 0. The line Œa; b� is coplanar

with a line Œc; f � (f 2 Puk B and jf j D jcj) if and only if .f jb/ D 0. As one

can recognize orthogonality by Lemma 5.3, it follows that one can reconstruct the

lines Œc; d � where d is a scalar multiple from b from this.
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The case where .cja/ ¤ 0 follows from applying the previous case twice to

an element e in Puk A such that .eja/ D .ejc/ D 0, which is always possible

to �nd (as .eja/ D .ejc/ D 0 de�ne two linear equations in a three-dimensional

space). �

5.3.1. The case dimk B D 4. We start by considering the case where B is four-

dimensional over k, or, by the assumptions at the beginning of Section 5.3, that A

equals B. We will show thatH acts trivially on any line and plane of the geometry,

which proves the claim.

Assume that Œa; b� is line of the geometry � (so jaj D jbj) not �xed by a certain

element h 2 H . By Lemma 5.4 and the fact that A D B the element h can map

this line only to a line Œa; bl�, with l 2 k and jl j D 1.

The lines of type Œc; c� (c 2 Puk A) (which are �xed by H ) coplanar with

Œa; b� are those lines such that .cja/ D .cjb/. Note that there exists such c up

to scalar multiples, by considering the residue of a point incident with Œa; b�,

which is a generalized quadrangle. If .cja/ ¤ 0, then we would have that

.cjb/ D .cjbl/ D .cjb/l implying that l D 1 and that Œa; b� is �xed by h, which is

a contradiction.

If there are only such coplanar lines Œc; c�where .cja/ D 0, then, by considering

the residue of each point incident with Œa; b�, the line Œa; b� is coplanar with each

line of the form Œc; c� containing the point hai. So a and b are orthogonal to the

same elements and are hence scalar multiples from each other. Such a line is

however also coplanar with �xed lines of the form Œc; d � where c and d are not

scalar multiples of each other, and where .cja/ ¤ 0. As before one deduces that

the line Œa; b� is �xed.

From this it follows that every line, and by extension every plane of � will be

�xed by H . This proves the claim.

5.3.2. The case dimk B D 8. We now assume that dimk B D 8. In particular

this implies that k D R, A D H and B D O. The following lemma allows us to

recognize quaternion subalgebras of B.

Lemma 5.5. The action ofH onK preserves the intersection with 4-dimensional

k-subalgebras of B.

Proof. Let a0 and a00 be elements of unit norm in Puk.A/ such that .aja0/ D 0 and

a00 D aa0. So 1; a; a0 and a00 form an orthonormal k-basis for A.

Let 1; b; b0 and b00 ´ bb0 be an orthonormal k-basis for a four-dimensional k-

subalgebra of B. We are going to construct the line Œa; b00l 00� (so b00 up to a scalar

product) given the lines Œa; b� and Œa; b0� in K. By Lemma 5.4 we can construct

lines Œa0; bl� and Œa00; b0l 0� from these lines. The unique plane containing both
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Œa0; bl� and Œa00; b0l 0� is given by the embedding de�ned by

�W

8

ˆ

ˆ

<

ˆ

ˆ

:

a 7�! b00l l 0;

a0 7�! bl;

a00 7�! b0l 0:

The unique line of the form Œa; f � incident with the plane is the line Œa; b00l l 0�,
as desired. The statement of the lemma now follows from Lemma 5.2. �

This lemma allows us to consider the subgeometry of � corresponding with

the choice B D A D H, and conclude by the results of Section 5.3.1 that this

subgeometry is completely �xed by H .

Recall the three cases we are considering and their proposed group of auto-

morphism, see Section 5.1:

k D R; A D H; B D HW SO.3/ � SO.3/;

k D R; A D H; B D OW SO.3/ � G2;

k D C; A D O; B D OW ..SU.3/ � SU.3//=C3/ Ì C2:

The proposed group of automorphisms acts sharply transitively on the ele-

ments in B of unit norm and orthogonal to all elements in A (see for exam-

ple [2, 4.1]), so �x such an element b 2 B.

Let H 0 be the stabilizer of a line Œc; b� with jcj D jbj. (Note that the choice

of c does not matter.) Each element a 2 Puk A of unit norm generates a four-

dimensional k-subalgebra of B together with b, which we can recover geomet-

rically in the form of subgeometry � 0 �xed by H 0 by Lemma 5.5. As we know

that the group of automorphisms �xing all points of this subgeometry will be the

group SO.3/, and that H additionally �xes the lines Œa; a� and Œa; b� of � 0, we

conclude that H 0 �xes the subgeometry � 0. Repeating this argument for di�erent

subgeometries we obtain that H 0 acts trivially on �, whence the claim.

6. On simple connectedness of the geometry �

In this section we prove that the geometry � ´ .V; �; �/ of type C3 constructed in

Section 4.1 is either simply connected, or covered by a building.

Sketch of proof. We start by considering the edge-path group of �, which we use

to study the universal cover z�. From Proposition 6.1 (proved in Sections 6.4 up

to 6.6) we show that this cover admits a compact topology with a �ag-transitive

continuous group acting on it. Such a geometry is subject to the classi�cation of

Kramer and Lytchak ([7]) and is hence known, from which one concludes that the

cover is either a building or the exceptional geometry itself. �
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6.1. The edge-path group of � . Instead of working with the fundamental group

of j�j it makes more sense to work with the equivalent edge-path group, which is

more natural in the simplicial setting. We refer to [14, Chapter 44] or to [13] for a

detailed exposition.

For us, an edge path is a �nite sequence of vertices in V such that each two

subsequent vertices are incident. (Note that such a sequence de�nes a unique

sequence of edges on j�j.) The length of a path is the number of vertices in it

minus one.

We now introduce two kinds of elementary combinatorial deformations. These

are:

(i) replacing a subpath .u/ with .u; v; u/, where u and v are incident, or the

converse operation;

(ii) replacing a subpath .u; v/ with .u; w; v/, where w is incident with both

u and v (which is equivalent with ¹u; v; wº being a �ag), or the converse

operation.

Two edge paths  and  0 which can be transformed into each other by a �nite

number of elementary combinatorial deformations are said to be combinatorially

homotopic. An edge path is contractible if it is combinatorially homotopic to

a path of length zero. As combinatorial homotopies do not alter the begin or

endpoint of a path, this implies that a contractible edge path begins and ends at

the same point.

For a �xed vertex v 2 V , the edge path group E.�; v/ consists of the equiva-

lence classes of combinatorially homotopic edge paths starting and ending at the

vertex v. The group multiplication is de�ned as concatenation.

6.2. The universal cover z� . It will be useful to have a concrete model of the

universal cover. We will do this by constructing a geometry z� ´ . zV; Q�; Q�/ using

edge paths.

Fix a point x 2 V . The set of vertices zV consists of the equivalence classes of

edge paths starting at x under combinatorial homotopy. We set the type (i.e. its

image under Q�) of such an equivalence class of edge paths to be the type of the last

vertex in any path in the class. Two equivalence classes of edge paths are incident

if one can �nd an edge path of length k in one class, and an edge path of length

kC 1 in the other class from which the �rst path can be obtained by removing the

last vertex in the path.

Finally, the covering map �W zV ! V is then de�ned by mapping an equivalence

class of edge paths to the last vertex of any path in it.

6.3. Lifting the compact topology to the universal cover. The goal of this

section is to de�ne a compact topology T on zV starting from the compact topology

on V . Our approach is based on Section 4 of [4] and Section 8 of [8].

Proving the following proposition will be the subject of Sections 6.4 up to 6.6.
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Proposition 6.1. For every natural number k there exists a natural numberD.k/

with the following property. Any two edge paths  and  0 in the universal cover
z� of length at most k with the same extremities are homotopic by a combinatorial

homotopy consisting of at most D.k/ elementary combinatorial deformations.

We �x a point Qx in the universal cover z�, such that x ´ �. Qx/ is its image under

the covering map �.

We say that a sequence of vertices . Qvn/n2N of vertices in z� converges to a

vertex Qv 2 zV , if one can choose representative edge paths .x; un
1; u

n
2; : : : ; u

n
k
/ for

each Qvn, all of the same length k, and such that each of the sequences .un
i /n2N

converges to some vertex ui (in the compact topology on V ) and .x; u1; : : : ; uk/

is a valid edge path representing Qv.

This notion of convergence de�nes closed sets and hence a topology T on zV .

This topology is sequentially compact, as the set of paths of �xed length k starting

at x is closed in V kC1. The topology admits a dense countable subset as this also

holds for V , and by the fact that every vertex in zV can be represented by an edge

path whose length is globally bounded.

Remark 6.2. One can de�ne the topology T in a slightly di�erent way as follows.

Consider the set of edge paths starting at a single point p (denote this set by xV ).

One can interpret this a subset of the countable product space
Q1

iD0 V . On

this set of edge paths we de�ne equivalences as above, thus de�ning a quotient

topology T
0. Since countable products of second countable spaces are again

second countable, and since subspaces of second countable spaces are second

countable and since the quotient map de�ned by this equivalence relation is open,

T
0 is second countable. By Proposition 2.4 of [15] a convergent sequence in the

quotient topology lifts to a convergent sequence in the topology itself. As T was

described by convergence and since �rst countability implies that a set is closed if

and only if it is sequentially closed, we can conclude that T0 is equal to T. Hence

T is second countable.

This topology will have nice properties, as exhibited by the following lemmas.

Lemma 6.3. Each sequence has at most one limit.

Proof. Let . Qvn/n2N be a sequence of vertices, and let .x; un
1; u

n
2; : : : ; u

n
k
/ and

.x; u0n
1; u

0n
2 ; : : : ; u

0n
l / be two edge paths both representing Qvn, one of length k, the

other of length l , for every n 2 N. Suppose that the paths .x; un
1; u

n
2; : : : ; u

n
k
/

converge to an edge path .x; un
1 ; u

n
2; : : : ; u

n
k
/, and the paths .x; u0n

1 ; u
0n
2; : : : ; u

0n
l / to

an edge path .x; u0
1; u

0
2; : : : ; u

0
l
/. We have to proof that these two limit edge paths

are combinatorially homotopic.
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Each pair of paths .x; un
1 ; u

n
2; : : : ; u

n
k
/ and .x; u0n

1; u
0n
2 ; : : : ; u

0n
l / are combinato-

rially homotopic by a bounded number of elementary combinatorial deformations

(see Proposition 6.1). By sequential compactness these combinatorial homotopies

(which can be thought of as sequences of edge paths) for each n admit a convergent

subsequence, which will be the desired combinatorial homotopy. �

Lemma 6.4. The topology T is independent of the choice of points x and Qx.

Proof. For another point Qy 2 zV , where y ´ �. Qy/, and any vertex Qv in the cover,

we can extend an edge path starting from x and representing Qv to an edge path

starting from y, by adding a �xed path from y to x in front. This operation does

not in�uence the notion of convergence in T, hence this topology is independent

of the choice of x and Qx. �

Proposition 6.5. The universal cover z� of � admits a compact metrizable topol-

ogy with connected panels, invariant under a �ag-transitive automorphism group.

Proof. The topology T is second-countable by Remark 6.2 and hence Hausdor�

by Lemma 6.3, is separable and sequentially compact, hence this topology is

compact and metrizable. As the panels of � are connected, the panels of � 0 which

are homeomorphic are also connected.

By the results of Section 4.3 we know that a compact �ag-transitive group G

of continuous automorphisms acts on �. This group lifts to a group zG acting

�ag-transitively on the universal cover z�, where the kernel of the map zG ! G

is the group of deck transformations of the universal cover. As the topology

T is independent of the choice of x and Qx by Lemma 6.4, the group zG acts

continuously. �

We are now in the position to apply Theorem A of [7] yielding that the

geometry z� is either a building of type C3, or is one of two possible exceptional

geometries.

So if

k D R; A D H; B D H;

then � cannot be covered by one of the two exceptional possibilities (as the rank

two residues do not match), hence it is not simply connected and covered by a

building, and if

k D R; A D H; B D O;
or

k D C; A D O; B D O;

so where � is an exceptional geometry associated to the actions of SU.3/� SU.3/

or SO.3/ � G2 on the Cayley plane, then z� would be homeomorphic to � (as it

is shown in [7] that these cannot be covered by a building, and the fact that the
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rank two residues of the two cases are di�erent). As the universal cover is simply

connected by de�nition, we conclude that the geometry � is simply connected and

its own universal cover.

6.4. Reducing planes from edge paths. The goal from now on is to produce a

proof for Proposition 6.1. A �rst step is to reduce the set of edge paths one needs

to consider.

If .u; �; v/ is an edge path where u and v are two vertices incident with

a common plane � of the geometry �, then this edge path is combinatorially

homotopic to any edge path of the form .u; w1; w2; w3; : : : ; wk�1; v/ completely

contained in the residue of � (so assuming that each of the wi is incident with �)

by applying k elementary combinatorial deformations.

Hence, if an edge path  of length k does not start or end at a plane, we can

�nd a combinatorially homotopic edge path of length at most
�

3k
2

˘

containing

only points and lines using at most 3
�

k
2

˘

elementary combinatorial deformations

(as
�

k
2

˘

is the maximum amount of planes in  , and 3 is the diameter of a projective

plane).

Moreover if .u0; u1; : : : ; uk�1; uk/ and .v0 ´ u0; v1; : : : ; vl�1; vl ´ uk/ are

two edge paths both completely contained in the residue of some plane� , then they

are combinatorially homotopic by applying at most kCl elementary combinatorial

deformations.

6.5. Primitive edge paths. We call an edge path of the form .x; L; y;M; x/,

where L and M are two di�erent lines through two di�erent points x and y,

primitive.

In this section we want to show that if a primitive edge path in � is contractible,

then it can be reduced to the trivial edge path .x/ by at most K elementary

combinatorial deformations, where K is a universal constant. (Which is a special

case of Proposition 6.1.)

Two points x and y of � are said to be orthogonal if the corresponding vector

lines in Puk.A/ are orthogonal w.r.t. the inner product .�j�/.

Lemma 6.6. Every primitive edge path .x; L; y;M; x/ is homotopic (by using

at most 12 elementary combinatorial deformations) to some primitive edge path

.x; L0; y0;M 0; x/, where x and y0 are orthogonal.

Proof. If x and y are orthogonal, there is nothing to prove, so assume that this is

not the case. We start by noting that the polar line of x (i.e. the points orthogonal

to x), is a line of the projective plane obtained from projectivizing Puk.A/.

Fix a line N through y which is coplanar to both L and M . This is always

possible as the residue of y is a generalized quadrangle. The line N intersects

the polar line of x in some point y0. Let L0, respectively M 0, be the unique

lines through x and y0, in the unique plane containing L and N , respectively
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M and N . By Section 6.4 we know that .x; L; y;M; x/ and .x; L0; y0;M 0; x/
are combinatorially homotopic by performing twelve elementary combinatorial

deformations. This proves the lemma. �

Note that this lemma implies that if j elementary combinatorial deformations

su�ce for a contractible edge path .x; L; y;M; x/, then j C 12 elementary com-

binatorial deformations su�ce for the homotopic edge path .x; L0; y0;M 0; x/.
As the automorphism group G of � described in Section 4.3 acts transitively

on pairs of orthogonal points of X , we may �x an orthogonal pair of points x; y,

represented by vector lines hai and ha0i with a and a0 of unit norm in Puk.A/ with

.aja0/ D 0, and reduce the question to the problem whether there is a global

bound for the needed number of elementary combinatorial deformations for a

contractible primitive edge path .x; L; y;M; x/.

Let a00 ´ aa0 2 Puk.A/, then a00 is of norm one and orthogonal to both

a and a0, see Proposition 11.10 of [12]. We now can represent L and M by

respectively Œa00; b� and Œa00; c� (where b and c are of unit norm). By the action

of the k-automorphisms of B the orbit of a primitive edge path .x; L; y;M; x/

under the corresponding automorphisms of � (which �x x and y) is completely

determined by the inner product .bjc/. We call this inner product the PL-invariant

of .x; L; y;M; x/.

Lemma 6.7. If a primitive edge path .x; L; y;M; x/ with PL-invariant l is con-

tractible, where l 2 k n¹˙1º and jl j D 1, then there exists a contractible primitive

edge path .x; L0; y;M 0; x/ with PL-invariant l 0 with jl 0j < 1. Note that in order

for such an element l to exist it is necessary that k D C.

Proof. If we represent L by Œa00; b� (as before), then the condition on the PL-in-

variant implies that M is represented by Œa00; bl�.
Let b0 in Puk.B/ be of unit norm such that .bjb0/ D 0. The line N ´ Œa; b0� is

incident with the point y and coplanar with both L and M (for di�erent planes),

as

.a0ja/ D .a00ja/ D .bjb0/ D .bl jb0/ D 0;

where we make use of Lemma 4.2.

If we put b00 D bb0, then 1; b; b0 and b00 form an orthogonal k-basis of a

subalgebra of B. This leads to two embeddings

�W

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

a 7�! b0;

a0 7�! b00;

a00 7�! b;
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and

 W

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

a 7�! b0;

a0 7�! b00 Nl;

a00 7�! bl;

of A into B (similar as in the proof of Proposition 2.1). The corresponding planes

contain respectively the lines L, N and M;N . Set d ´ 1p
2
.a0 C a00/ (note that

this is of norm one and orthogonal to a). The lines

L0 ´ Œd; �.d/� D
h

d;
1p
2
.b C b00/

i

and

M 0 ´ Œd;  .d/� D
h

d;
1p
2
.bl C b00 Nl/

i

lie in a common plane with respectivelyL;N andM;N , contain x and a common

point y0 of N , which is orthogonal to x. By this reasoning .x; L; y;M; x/ will be

combinatorially homotopic with .x; L0; y0;M 0; x/, in particular the latter will be

contractible.

By using a suitable automorphism of our geometry we can map this last

primitive pl-path to a pl-path .x; L0; y0;M 0; x/, with PL-invariant

� 1p
2
.b C b00/

ˇ

ˇ

ˇ

1p
2
.bl C b00 Nl/

�

D 1

2
.l C Nl/ D Re.l/ < 1:

This proves the lemma. �

We can distinguish between two possibilities at the moment, either there ex-

ists some contractible primitive edge path .x; L; y;M; x/ (where L ¤ M ) with

PL-invariant di�erent from �1, or every such contractible edge path has

PL-invariant �1. (If the PL-invariant would be 1, then we would have that

L D M .)

In the second case the group of automorphisms �xing x and y acts transitively

on such paths, hence there exists a global bound on the number of elementary

combinatorial deformations needed to reduce a contractible primitive edge path

to the trivial path in this case.

In the remainder of the section we handle the �rst case.

Lemma 6.8. Fix an l 2 k. Let � be the directed graph where the vertices are the

norm one elements in Puk.B/, and where .b; c/ is a directed edge if .bjc/ D l .

If jl j < 1, then � is connected and of �nite diameter.
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Proof. The proof will go in di�erent steps, each one asserting that if .bjc/ equals

some l 0, then c can be reached from b using a �nite number of directed edges. We

call such an l 0 valid. By the action of the automorphism group of B over k, the

number of edges needed depends only l 0, not on c.

First we set l 0 D l2. Then we may assume without loss of generality, that

c ´ bl2 C b0r

where b, b0 and b00 are mutually orthogonal and of norm 1, and such that

jr j D
p

1 � jl j2. Set d ´ bl C b00r , then .b; d/ and .d; c/ are directed edges.

We conclude that l 0 is valid.

By repeating this argument we obtain that any power ln, where n is a power of

two, is valid. Note that jlnj approaches zero.

We now claim that 0 is valid. To see this we can take elements

b;

d ´ bln C b0p1 � jlnj2b0;

c ´ b0 ln
p

1� jlnj2
b0 C b00s;

where b, b0 and b00 are as before, and s is such that jcj D 1. The latter is only

possible when

ˇ

ˇ

ˇ

ˇ

lnp
1�jlnj2

ˇ

ˇ

ˇ

ˇ

� 1, which is true for a large enough n (which we

�x for the remainder of the proof). This proves that 0 is valid. In particular if

.bjc/ = 0, then c can be reached by at most 2n steps from b (as .bjd/ D ln and

.d jc/ D ln).

This implies that the directed graph � is connected and has diameter at

most 4n, as one can �nd for every pair of elements a mutually orthogonal ele-

ment. �

We now make use of the following observation. If the primitive edge paths

.x; L; y;M; x/ and .x;M; y; N; x/, both containing x and y, are both contractible,

then .x; L; y; N; x/ will be contractible as well. Moreover if the needed combi-

natorial homotopies of .x; L; y;M; x/ and .x;M; y; N; x/ both consist of at most

j elementary combinatorial deformations, then there exists a combinatorial ho-

motopy from .x; L; y; N; x/ to the constant path .x/ consisting of at most 2j C 2

elementary combinatorial deformations. (There are two of them needed to obtain

.x; L; y;M; x;M; y; N; x/, and then 2j deformations to reduce the subpaths.)

Combining this observation with Lemma 6.8 implies that every primitive

edge path is contractible using at mostK elementary combinatorial deformations

(where K is a constant).

Our claim holds in both cases, and hence in general.
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Remark 6.9. In the �rst case one can, at this point, directly show that � is simply

connected. This is done by exploiting the fact that every primitive edge path is

contractible.

6.6. Homotopy control. Throughout this section we work with edge paths in

the universal cover z� of �, in particular any two edge paths with same begin and

endpoint are homotopic.

We begin with some lemmas on edge paths consisting only of points and lines.

Lemma 6.10. Let  ´ .x; L; y;M; z/ be some edge path, and L0 a line (where

L ¤ L0) through x coplanar with L. Then there exists an edge path  0 ´
.x; L0; y0;M 0; z/ which can be obtained from  by 12 elementary combinatorial

deformations.

Proof. Let � be the plane incident with both L and L0. There exists some line N

incident with � and a plane � incident with both N and z (by Lemma 3.1). Let y0

be the intersection point of L0 and N and let M 0 be the line incident with � and

both points y0 and z.

With six elementary combinatorial deformations we get from .x; L; y;M; z/

to .x; L0; y0; N; y;M; z/, and with another six to .y; L0; y0;M 0; z/. �

Lemma 6.11. Let .x; L; y;M; z/ and .x; N; z/ be two edge paths starting and

ending at the same point, one of length four, the other of length two. Then we can

obtain one path out of the other with at most K C 30 elementary combinatorial

deformations.

Proof. By applying Lemma 6.10 at most twice, we may assume that L and N are

identical (at the cost of at most 24 elementary combinatorial transformations).

As the path .x; N; z/ is combinatorially homotopic with .x; N; y; N; z/ (using

six elementary combinatorial deformations), we are reduced with the question of

transforming the subpath .y;M; z/ to the subpath .y; N; z/, which takes at most

K elementary combinatorial homotopies. �

Lemma 6.12. Let .x; L; y;M; z/ and .x; L0; y0;M 0; z/ be two edge paths starting

and ending at the same point, both of length four. Then we can obtain one path

out of the other with at most K C 55 elementary combinatorial deformations.

Proof. As before we may assume by Lemma 6.10 that L and L0 are identical

(at the cost of at most 24 elementary combinatorial deformations). One additional

elementary combinatorial deformation transforms the path .x; L; y;M; z/ into

.x; L; y0; L; y;M; z/, which reduces the problem to the subpaths .y0; L; y;M; z/
and .y0;M 0; z/, which is covered by Lemma 6.11. �
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Lemma 6.13. If  ´ .x0; L1; x1; : : : ; xl/ is an edge path (containing only of

points and lines) of length 2l , with l � 3 then there is an edge path  0 of length

2l � 2 which one can be obtained from  by applying at most K C 56 elementary

combinatorial deformations.

Proof. Let y be a point on L3 collinear to x0 (which exists by Lemma 3.1), and

M a line incident with both y and x0. The subpath .x0; L1; x1; L2; x2/ is now

combinatorially homotopic to the path .x0;M; y; L3; x2/, using at most K C 55

elementary combinatorial deformations, by Lemma 6.12.

So the edge path .x0; L1; x1; L2; x2; L3; x3; : : : ; xl/ is combinatorially homo-

topic to .x0;M; y; L3; x2; L3; x3; : : : ; xl/, which in turn is combinatorially homo-

topic to the edge path .x0;M; y; L3; L3; x3; : : : ; xl/ of length l � 1. �

The following lemma yields a more general homotopy control.

Lemma 6.14. For every natural number k there is a number C.k/ with the

following property. Any two edge paths  and  0 starting at the same point and

ending at the same point, and containing only points and lines, in the universal

cover zX of length at most k are homotopic by a homotopy consisting of at most

C.k/ elementary combinatorial deformations.

Proof. Note that the length of such paths is necessarily even.

For k D 0, C.0/ D 0 trivially su�ces. For k D 2 we need C.2/ D K, and for

k D 4 we can set C.4/ D K C 55 by Lemmas 6.11 and 6.12.

For k � 6, we can reduce edge paths of length at most k to paths of length

at most four by applying at most .k�4/.KC56/
2

elementary homotopies by repeated

application of Lemma 6.13, which leaves us in the previously handled case of

k D 4. It hence su�ces to set C.k/ to be .k � 4/.K C 56/ C K C 55 in this

case. �

Finally, the next proposition removes the conditions concerning types, arriving

at our claim in Proposition 6.1.

Proposition 6.15. For every natural number k there is a number D.k/ with the

following property. Any two edge paths  and  0 with the same extremities are

homotopic by a homotopy consisting of at most D.k/ elementary combinatorial

deformations.

Proof. Let u and v be respectively the begin and end vertex of the edge paths 

and  0. If u is a line or a plane, then we can apply an elementary combinatorial

deformation to the beginning subpath .u/ of both  and  0 to the subpath .u; x; u/

where x is a point incident with u. If we apply a similar operation to the end vertex

v, we can by omitting the extremities reduce the question to two edge paths  and
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 0 of length at k C 2 starting and ending at a point (at the cost of at most four

elementary combinatorial deformations).

By applying Section 6.4 we may assume that  and  0 are edge paths of length

at most
�

3kC6
2

˘

consist of only points and lines (using at most 3
�

kC2
2

˘

elementary

combinatorial deformations).

At this point we can apply Lemma 6.14 and conclude that

D.k/ D C
�j3k

2

k�

C 4C 6
jk C 2

2

k

is su�cient. �
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