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Abstract. The geometric dimension for proper actions gd.G/ of a group G is the minimal

dimension of a classifying space for proper actions
x
EG. We construct for every integer

r � 1, an example of a virtually torsion-free Gromov-hyperbolic group G such that for

every group � which contains G as a �nite index normal subgroup, the virtual cohomo-

logical dimension vcd.�/ of � equals gd.�/ but such that the outer automorphism group

Out.G/ is virtually torsion-free, admits a cocompact model for
x
E Out.G/ but nonetheless

has vcd.Out.G// � gd.Out.G// � r .

Mathematics Subject Classi�cation (2010). Primary: 20F65; Secondary: 20J05.

Keywords. Outer automorphism groups, geometric dimension for proper actions, virtual
cohomological dimension.

1. Introduction

Let G be a discrete virtually torsion-free group. A classifying space for proper
actions of G, also called a model for

x
EG, is a proper G-CW-complex X such that

the �xed point set XH is contractible for every �nite subgroup H of G. Such a
model X is called cocompact, if the orbit space G n X is compact. The geometric
dimension (for proper actions) gd.G/ of G is the smallest dimension of a model
for

x
EG. This invariant is bounded from below by the virtual cohomological

dimension vcd.G/ of G, which is the cohomological dimension of any �nite index
torsion-free subgroup of G, and in many interesting cases these two quantities
are in fact equal (e.g. see [15, 9, 1, 19, 27, 2]). On the other hand, there are by
now a number of examples showing that gd.G/ can be strictly larger than vcd.G/

(see [17, 22, 10, 16]).
Our main goal in this paper is to provide other examples of groups where the

geometric dimension is strictly larger than the virtual cohomological dimension.
These examples will arise as groups of (outer) automorphisms of certain Gromov-
hyperbolic groups. Before going any further, recall that there is equality between

1 The �rst author was supported by the Danish National Research Foundation through the
Centre for Symmetry and Deformation (DNRF92).
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geometric and virtual cohomological dimensions for groups of automorphisms of
prominent hyperbolic groups such as free groups ([19, 27]) and surface group ([2]).
On the other hand, the construction in [16] can be adapted to yield center free
hyperbolic groups G with �nite Out.G/ and for which we have gd.G/ > vcd.G/.
For any such group G we have a fortiori gd.Aut.G// > vcd.Aut.G//. Our groups
are di�erent. We will namely consider automorphisms groups of hyperbolic
groups which are dimension rigid in the following sense.

De�nition. We say a virtually torsion-free group G is dimension rigid if one has

gd.�/ D vcd.�/ for every group � which contains G as a �nite index normal

subgroup.

Remark. The notion of dimension rigidity arises naturally when one investigates
the behaviour of the geometric dimension under group extensions. Indeed, it
follows from [10, Corollary 2.3] that if G is dimension rigid and

1 �! G �! � �! Q �! 1

is a short exact sequence, then gd.�/ � gd.G/ C gd.Q/.

We now state our main result.

Theorem 1.1. For every r � 0, there exists a dimension rigid CAT.0/ Gromov-

hyperbolic group G such that Out.G/ is virtually torsion-free, admits a cocompact

model for
x
E Out.G/ and satis�es

vcd.Out.G// � gd.Out.G// � r:

Finally, the same result holds if we consider Aut.G/ instead of Out.G/.

Before commenting on the proof of Theorem 1.1, let us point out that there
are a number of groups which are dimension rigid in the sense above. For in-
stance, �nitely generated abelian groups are dimension rigid. More generally,
all elementary amenable groups of type FP1 are dimension rigid ([15]). Also,
the solution of the Nielsen realisation problem implies that surface groups are
dimension rigid. The same argument applies to free groups as well. Mostow’s
rigidity theorem implies the dimension rigidity of cocompact irreducible lattices
in semisimple Lie groups non isogenous to SL2 R and without compact factors.
As we will see in this paper, certain right angled Coxeter groups are dimension
rigid as well (Corollary 3.1). We will prove that, under certain assumptions, dimen-
sion rigidity is preserved when taking free products (Proposition 5.1). Naively, one
could take this last statement to suggest that groups constructed using dimension
rigid groups should be dimension rigid. However, already Theorem 1.1 disproves
this claim: the group G is dimension rigid but Out.G/ is not. In fact, in the course
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of the proof of the Theorem 1.1 we will also encounter other incarnations of this
phenomenon. For instance, dimension rigidity is not preserved under direct prod-
ucts.

Theorem 1.2. There are dimension rigid groups G; G0 such that G � G0 is not

dimension rigid.

The groups G1 and G2 from Theorem 1.2 will arise as certain right angled
Coxeter groups. In fact, we will recover the following result from [16].

Theorem 1.3. For every integer r � 0, there is a group G which contains a

product of right angled Coxeter groups as a �nite index normal subgroup, admits

a cocompact model for
x
EG and for which we have gd.G/ � vcd.G/ C r .

We should give [16] the appropriate credit: while working on this paper, we
had present all the time the examples in that paper. Theorem 1.2 and Theorem 1.3
will be proven in Section 3.

We will now outline the strategy of the proof of our main theorem. First recall
that by work of Bestvina-Feighn [4, Corollary 1.3] and Paulin [25], every Gromov-
hyperbolic group G with in�nite Out.G/ splits over a virtually cyclic group.
In our case, the group G arises as a free product

G D G1 � � � � � Gr

of pairwise distinct, dimension rigid, one-ended Gromov-hyperbolic groups sat-
isfying suitable cohomological properties. Actually, each Gi will be a �nite ex-
tension of a right angled Coxeter group.

We consider the action of Out.G/ on the (spine of the) outer space of free
splittings O constructed by Guirardel and Levitt [14]. The space O is contractible.
This implies that we can compute via a spectral sequence the cohomology of
Out.G/ in terms of the cohomology of the stabilizers Stab.�/ of simplices � in the
spine of O. These stabilizers turn out to be virtually isomorphic to direct products
G

n1

1 �� � ��G
nr
r for suitable choices of the exponents n1; : : : ; nr . The groups Gi are

constructed so that their top cohomology with group ring coe�cients is torsion of
orders prime to each other. This implies that the virtual cohomological dimension
of the product is smaller than the sum of the dimensions. On the other hand, the
groups Gi are also constructed so that the geometric dimension of the product
equals the sum of the dimensions of the factors.

Armed with these bounds on the virtual cohomological and geometric dimen-
sions of the stabilizers we get, by analysing the aforementioned spectral sequence
together with a combinatorial argument, that there is simplex � in the spine of O
such that

vcd.Out.G// D vcd.Stab.�// � gd.Stab.�// � r � gd.Out.G// � r:
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At this point it only remains to prove that G is dimension rigid and that Out.G/

admits a cocompact model for
x
EOut.G/. This is done in the last section of this

paper.

Acknowledgements. The second author would like to thank Vincent Guirardel
for many interesting conversations. The �rst author is grateful for a visit to the
IRMAR during which the bulk of the work on this paper was done.

2. Cohomological tools

In this section we recall the cohomological tools needed in this paper.

Let G be a discrete group. A classifying space for proper actions of G, also
called a model for

x
EG, is proper G-CW-complex X such that the �xed point

set XH is contractible for every �nite subgroup H of G. Such a model X is
called cocompact, if the orbit space G n X is compact. The geometric dimension
(for proper actions) gd.G/ of G is the smallest possible dimension of a model
for

x
EG. Note that if there exists a cocompact model for

x
EG, then there also exists

a cocompact model for
x
EG of dimension gd.G/. We refer the reader to the survey

paper [19] for more details and terminology about classifying spaces for proper
actions. The geometric dimension has a certain algebraic counterpart, namely the
Bredon dimension for proper actions cd.G/. Next, we brie�y recall the de�nition
of this quantity, and its relation to cohomology with compact support.

2.1. Bredon cohomology. Let F be the family of �nite subgroups of G. The
orbit category OFG is the category whose objects are left coset spaces G=H with
H 2 F and where the morphisms are all G-equivariant maps between the objects.
An OFG-module is a contravariant functor

M W OFG �! Z-mod

to the category of Z-modules. The category of OFG-modules, denoted by
Mod-OFG, has as objects all theOFG-modules and all the natural transformations
between these objects as morphisms. One can show that Mod-OFG is an abelian
category that contains enough projective modules to construct projective resolu-
tions. Hence, one can construct functors ExtnOFG.�; M/ that have all the usual
properties. The n-th Bredon cohomology of G with coe�cients M 2 Mod-OFG

is by de�nition

Hn
F.G; M/

def
D ExtnOFG.

x
Z; M/;

where
x
Z is the functor that maps all objects to Z and all morphisms to the identity

map.
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The Bredon cohomology of G can be somewhat more concretely expressed
with the help of a model X for

x
EG. Indeed, the augmented cellular chain

complexes C�.XH / ! Z of the �xed point sets XH , for all H 2 F, assemble
to form a projective (even free) resolution C�.X�/ !

x
Z. We thus have that

Hn
F.G; M/ D Hn.HomOFG.C�.X�/; M//

def
D Hn

G.X; M/:

For more details, we refer the reader to [18, Section 9] and [13].
The Bredon cohomological dimension of G for proper actions, denoted by

cd.G/ is de�ned as

cd.G/ D sup¹n 2 N j there exists M 2 Mod-OFG such that Hn
F.G; M/ ¤ 0º:

The invariant cd.G/ should be viewed as the algebraic counterpart of gd.G/.
Indeed, by [20] (see also [5]) we have

cd.G/ � gd.G/ � max¹3; cd.G/º:

Since the cohomological dimension and the Bredon cohomological dimensions
are identical for torsion-free groups, it follows that vcd.G/ � cd.G/ when G is
virtually torsion-free.

2.2. Compactly supported cohomology. Let X be C W -complex and let A be a
subcomplex of X . We denote by H�

c .X/ and H�
c .X; A/ respectively, the compactly

supported cohomology of X and the relative compactly supported cohomology of
the pair .X; A/. In both cases with Z-coe�cients. In the presence of a cocompact
model X for

x
EG one can compute the Bredon cohomological dimension in terms

of cohomology with compact support of certain subspaces of X .

Theorem 2.1 ([9, Theorem 1.1]). Let G be a group that admits a cocompact model

X for
x
EG. Then

cd.G/ D max¹n 2 N j there exists K 2 F such that Hn
c .XK ; XK

sing/ ¤ 0º

where F is the family of �nite subgroups of G and where XK
sing is the subcomplex

of XK consisting of those cells that are �xed by a �nite subgroup of G that strictly

contains K.

One should think of Theorem 2.1 as being the analogue of the formula

vcd.G/ D max¹n 2 N j Hn
c .X/ ¤ 0º (2.1)

where X is any contractible proper cocompact G-CW-complex (e.g. see [6, Corol-
lary 7.6]), Hn

c .X/ Š Hn.G;ZŒG�/ and G is assumed to be virtually torsion-free.
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We �nish this section with a lemma that will be used later on to analyse the
possible di�erence in behaviour between the virtual cohomological dimension and
the Bredon cohomological dimension, when taking direct products. The lemma
is well-known to experts and we will therefore only give a sketch of the proof.

Lemma 2.1. Let G1; : : : ; Gr be a collection of virtually torsion-free groups and

let ¹n1; : : : ; nrº be a collection of non-zero natural numbers. Assume that each

Gi admits a cocompact di -dimensional model for proper actions Xi such that

Hdi
c .Xi / is a non-trivial �nite group of exponent ni and Hdi

c .Xi ; Xi;sing/ contains

an element of in�nite order.

(a) If all the numbers in ¹n1; : : : ; nrº are pairwise coprime, then one has

vcd.G1 � � � � � Gr/ �

r
X

iD1

di � r C 1:

(b) If all the numbers in ¹n1; : : : ; nrº have a non-trivial common divisor, then

vcd.G1 � � � � � Gr/ D

r
X

iD1

di

and

Hd1C���Cdr .G1 � � � � � Gr ;ZŒG1 � � � � � Gr �/

is torsion with exponent gcd.n1; : : : ; nr/.

(c) One has

cd.G1 � � � � � Gr / D

r
X

iD1

di :

Here and in the sequel we set, for typographical reasons, Xi;sing instead of
.Xi /sing. Denote also by Zn the cyclic group of order n.

Proof. First note that X D X1 � � � � � Xr is a
Pr

iD1 di -dimensional cocompact
model for proper actions for G D G1 � � � � � Gr , that

Zn ˝ Zm D TorZ1 .Zn;Zm/ D Zgcd.n;m/

for all integers n; m � 1, and that if G and H are two groups of type FP1, there
is a Künneth formula (e.g. see [6, Proposition 0.8 and Exercise V.2.2])

0 �!
M

pCqDn

Hp.G;ZŒG�/ ˝ Hq.H;ZŒH �/ �! Hn.G � H;ZŒG � H�/

�!
M

pCqDnC1

TorZ1 .Hp.G;ZŒG�/; Hq.H;ZŒH �// �! 0:

Using these observations together with (2.1), both (a) and (b) follow by induction
on r .
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Finally to prove (c), note that we already know that

cd.G/ � dim X D

r
X

iD1

di :

To obtain the other inequality, recall that by [9, Theorem 2.4] one has

Hn
c .Xi ; Xi;sing/ D Hn

F.Gi ; Fi /

for the free module Fi D ZŒ�; Gi=e�. Moreover, under the given �niteness as-
sumptions, there is also a Künneth formula in Bredon cohomology (e.g. following
[13, Chapter 3, Section 13]) that implies

Hd1C���Cdr

G .X; F1 ˝ � � � ˝ Fr / Š Hd1

G1
.X1; F1/ ˝ � � � ˝ Hdr

Gr
.Xr ; Fr/:

The assumption that the Hdi
c .Xi ; Xi;sing/ contain an in�nite order element implies

that Hd1C���Cdr

F
.G; F1 ˝ � � � ˝ Fr / D Hd1C���Cdr

G .X; F1 ˝ � � � ˝ Fr / contains such
an element and is a fortiori non-trivial. Altogether we get that

cd.G/ �

r
X

iD1

di ;

as we needed to prove. �

3. Construction of certain dimension rigid groups

The purpose of this section is to prove the following proposition.

Proposition 3.1. For every odd prime p there exists a dimension rigid one-ended

CAT.0/ Gromov-hyperbolic group Gp which admits a 3-dimensional cocompact

model for proper actions Xp such that

H3
c.Xp/ Š Zp and H3

c.Xp ; Xp;sing/ ˝Z Q ¤ 0:

Moreover, Out.Gp/ is �nite.

The group Gp of Proposition 3.1 will be obtained as a semi-direct product

Wp Ì Zp

of a dimension rigid right angled Coxeter group Wp and the cyclic group Zp

of order p. Before launching the proof of Proposition 3.1, we use it to prove
Theorem 1.2 and Theorem 1.3 from the introduction.
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Proof of Theorem 1.2. Let G3 and G5 be provided by Proposition 3.1. Both groups
are dimension rigid by assumption and it follows from Lemma 2.1 (a) that

vcd.G3 � G5/ � dim X3 C dim X5 � 1:

Part (c) of the same lemma shows that

cd.G � G0/ D dim.X3/ C dim.X5/:

Moreover, since W3�W5 is a �nite index normal subgroup of G3�G5, we conclude
that W3 and W5 are dimension rigid, but W3 � W5 is not. �

Proof of Theorem 1.3. The same argument, applied to G D Gp1
� � � � � GprC1

where p1; : : : ; prC1 are pairwise distinct odd primes, yields that

vcd.G/ �
�

X

i

vcd.Gpi
/
�

� r D cd.G/ � r

Moreover, as we mentioned after the statement of Proposition 3.1, each Gpi
con-

tains a certain right angled Coxeter group Wpi
as a normal subgroup. It follows that

the Coxeter group Wp1
� � � � � WprC1

is a �nite index normal subgroup in G. �

Now continue with the same notation and note that from part (b) in Lemma 2.1
we get that vcd.Gn

p / D 3n and that H 3n.Gn
p ;ZŒGn

p �/ ' Zp where Gn
p is the n-fold

product of Gp with itself. In particular, the same arguments we just used to prove
Theorem 1.2 and Theorem 1.3 can also be used to prove the following fact that we
state here simply for further reference.

Lemma 3.1. Let ¹p1; : : : ; prº be a �nite collection of pairwise distinct odd prime

numbers and let ¹n1; : : : ; nrº be a collection of natural numbers. Then

vcd
�

r
Y

iD1

Gni
pi

�

� 3

r
X

iD1

ni � r C 1;

but

cd
�

r
Y

iD1

Gni
pi

�

D 3

r
X

iD1

ni :

Here G
ni
pi

is the ni -fold product with itself of the group Gpi
provided by Proposi-

tion 3.1.

The remainder of this section is devoted to proving Proposition 3.1. We start
by reminding the reader some basic facts about right angled Coxeter groups. For
more details and proofs we refer the reader to [8].
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3.1. Right angled Coxeter groups. Let G be a �nite graph, L the associated �ag
complex whose 1-skeleton is G, and set

d D dim.L/:

Denote the vertex and edge sets of G by V D V.G/ and E D E.G/ respectively.
The right angled Coxeter group determined by G is the Coxeter group W D WG

with presentation

W D hV j s2 for all s 2 V and .st/2 if .s; t / 2 Ei:

Note that W �ts into the short exact sequence

1 �! N �! W
�

�!
M

s2V

Z2 �! 1 (3.1)

where � takes s 2 V to the generator of the Z2-factor corresponding to s. A subset
J � V is called spherical if the subgroup WJ D hJ i is �nite. Equivalently, J is
spherical if it empty or if it spans a simplex in L. The empty subset of V is by
de�nition spherical. If J is spherical, then WJ is called a spherical subgroup of
W and a coset wWJ 2 W=WJ with J is spherical is called a spherical coset.

Let S be the poset of spherical subsets of V ordered by inclusion, identify each
non-empty � 2 Swith the associated simplex of L and let Ln� be its complement.
Denote by K the geometric realization of S and note that K equals the cone over
the barycentric subdivision of L. In particular, K is contractible. Let W S be the
poset of all spherical cosets ordered by inclusion and † its geometric realization.
The group W acts by left multiplication on W S and thus on † such that K is
a strict fundamental domain for the action W Õ †. The simplicial complex †

is called the Davis complex of the Coxeter group W . It is a proper cocompact
W -CW-complex. Moreover, since † admits a complete W -invariant CAT.0/-
metric, it follows that † is a cocompact model for

x
EW (see [8, Theorem 12.1.1

and Theorem 12.3.4]). In particular, †F is non-empty for every �nite subgroup
F of W , meaning that every �nite subgroup of W is sub-conjugate to a spherical
subgroup of W . This implies that the kernel N above is torsion-free, and hence
that W is virtually torsion-free.

It is known that the Coxeter group W is Gromov-hyperbolic if and only if any
cycle of length 4 in G has at least one diagonal (e.g. see [8, Corollary 12.6.3]).
The center of a right angled Coxeter group is trivial as long as G has radius at
least 2, i.e. there is no vertex which is connected to every other vertex by an edge.
Finally, W is one-ended if and only if G does not have a separating clique, i.e. if the
complement L n � of every simplex � in L is connected (see [8, Theorem 8.7.2]).

Since the Coxeter group W is virtually torsion-free, it has a well-de�ned
virtual cohomological dimension vcd.W /. In [8, Corollary 8.5.3] Davis gives
a formula to compute vcd.W / and in [9, Theorem 5.4] it is shown that the
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virtual cohomological dimension vcd.W / of W always coincides with the Bredon
cohomological cd.W /. Combing these references, we immediately obtain the
following lemma, where H

�
denotes reduced cohomology with Z-coe�cients.

Lemma 3.2. Let d D dim.L/. If H
d

.L/ ¤ 0 then vcd.W / D cd.W / D dim.†/ D

d C 1. If moreover, H
d

.L n �/ D 0 for every non-empty simplex � 2 S, then

HdC1.W;ZŒW �/ Š H
d

.L/:

Continuing with the same notation, let Aut.G/ be the �nite group of graph
automorphism of G and note that Aut.G/ D Aut.L/ because L is �ag. Since every
graph automorphism of G naturally gives rise to a group automorphism of W , one
can form the semi-direct product

� D W Ì Aut.G/:

The action of the Coxeter group W on the poset W S extends to an action � Õ W S

via
.w; '/ � w0WJ D w'.w0/W'.J /

and '.;/ D ; for every .w; '/ 2 � and every wWJ 2 W S. This implies that
� acts properly isometrically and cocompactly on the Davis complex † of W ,
extending the action of W . Note that, since † is CAT.0/, it follows again that †

is a cocompact model for
x
E�. We record this fact for later reference.

Lemma 3.3. The action W Õ † extends to a proper, cocompact, isometric action

� D W Ì Aut.G/ Õ †. The Davis complex † thus becomes a cocompact model

for
x
E�.

3.2. Automorphisms of right angled Coxeter groups. Continuing with the
same notation, we recall a few facts concerning the group of automorphisms
Aut.W / of a right angled Coxeter group W . We begin with the following result
by Tits.

Theorem 3.1 (Tits [26]). There is a split short exact sequence

1 �! Aut0.W / �! Aut.W /
�

�! Aut.S/ �! 0;

where Aut0.W / consists of those automorphisms of W that map each generator

s 2 V to a conjugate element, and where Aut.S/ is the group of automorphisms of

S viewed as a commutative groupoid under the operation of symmetric di�erence

u�v D .unv/[ .v nu/, de�ned whenever all three sets u; v and u�v belong to S.
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Given an automorphism ' 2 Aut.W /, �.'/ 2 Aut.S/ is de�ned as follows: for
a J 2 S, we note that '.WJ / is �nite and hence there exist a unique minimal T D

�.'/.J / 2 S such that '.WJ / is sub-conjugate to WT . Conversely, if ' 2 Aut.S/,
then we one can de�ne an automorphism i.'/ of W by setting i.'/.s/ D

Q

t2'.s/ t

for every s 2 V . This yields a homomorphism i W Aut.S/ ! Aut.W / such that
� ı i D Id.

We will return shortly to the group Aut.S/, but �rst note that the group
Inn.W / of inner automorphisms W is contained in Aut0.W /. Mühlherr proved
that Aut0.W / is generated by partial conjugations. Before making this precise,
recall that V is the set of vertices of G and that the star StG.s/ of s 2 V is the set
of edges adjacent to s.

Theorem 3.2 (Mühlherr [24]). The group Aut0.W / is generated by automor-

phism of the form 's;U , where s 2 V , U is a connected component of G n StG.s/

and 's;U .t / D sts if t 2 U and 's;U .t / D t if t … U .

Note in particular that Mühlherr’s theorem implies that Aut0.W / D Inn.W / as
long as GnStG.s/ is connected for every vertex s 2 V . Since L is the �ag complex
associated to G, this is the case if and only if L n StL.s/ is connected for every s.
We conclude the following.

Lemma 3.4. Inn.W / D Aut0.W / whenever L n StL.s/ is connected for every

s 2 V .

Returning to the other factor, note that the group Aut.G/ of graph automor-
phism of G is contained in Aut.S/. We prove next that both groups actually agree
as long as the graph G satis�es some not very stringent conditions.

Lemma 3.5. If L is a �nite �ag complex such that every non-maximal simplex of

L is contained in at least 2 maximal simplices, then Aut.S/ D Aut.G/.

Before we start the with the proof of the lemma, note that the condition of
the lemma is equivalent to asking that L is a �nite �ag complex such that every
simplex of L is uniquely determined by the set of those maximal simplices it is
contained in. Indeed, assume that every non-maximal simplex is contained in
at least 2 maximal simplices. Now let v be a non-maximal simplex, let M D

¹m1; : : : ; mrº be the set of distinct maximal simplices that contain v and assume
that v is not uniquely determined by M , i.e. v ¨

Tr
iD1 mi . Denote w D

Tr
iD1 mi

and let w0 be the simplex of m1 determined by all vertices of v and all vertices
of m1 that are not vertices of w. Then w0 is a proper face of m1 that contains v

and such that that vertices of w0 and w span m1. By our assumptions, w0 must
be contained in another maximal simplex besides m1. Since w0 contains v this
other maximal simplex must be some mj , with j ¤ 1. But since w is contained
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in mj , this means that m1 is contained in mj . Hence m1 D mj by maximality,
which is a contradiction. On the other hand, if there is a non-maximal simplex
that is contained in exactly one maximal simplex, then that non-maximal simplex
is certainly not uniquely determined by the set of those maximal simplices it is
contained in.

Proof. As Aut.L/ D Aut.G/ � Aut.S/, it su�ces to prove that any arbitrary
� 2 Aut.S/ induces an automorphism of the complex L. Since S is the set of all
simplices of L, it su�ces to show that � preserves inclusions.

Recall that the composition in the groupoid S is given by the symmetric
di�erence u�v D .u n v/ [ .v n u/: More precisely, if u; v; u�v 2 S then the
composition u�v in S of u and v is de�ned as u�v D u�v. The basic observation
to keep in mind is the following easily checked fact:

u�v 2 S () u [ v 2 S; u; v 2 S:

Now suppose that u; v 2 S are such that u � v. Then u � w is de�ned for every
w 2 S for which v � w is de�ned. Moreover, if u ¤ v then, by the condition on L,
there is some maximal simplex which contains u but does not contain v. It follows
that u � w is de�ned for an strictly larger set of w’s than v � w. On the other hand,
if u is not contained in v there is by the condition in the lemma some maximal
simplex w with v�w 2 S but u�w … S. In other words we have

u ¨ v () ¹w 2 S j u�w 2 Sº © ¹w 2 S j v�w 2 Sº:

The automorphism ' 2 Aut.S/ preserves the right side of this equivalence and
thus also the left one. In other words, ' preserves inclusions between simplices,
as we needed to prove. �

We now come to the main observation we will need below.

Proposition 3.2. Let L be a connected �nite �ag complex such that

� every non-maximal simplex of L is contained in at least two maximal sim-

plices,

� the graph G D L1 has radius at least 2, and

� G n StG.s/ is connected for every vertex of G.

If we denote the right angled Coxeter group determined by G by W , then

Aut.W / D W Ì Aut.G/

and every extension of a �nite group by W acts properly, isometrically and

cocompactly on the Davis complex † of W .
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Proof. Recall �rst that the assumption that G has at least radius 2 implies that
the center of W is trivial and hence that we can identify the latter group with
the subgroup Inn.W / of Aut.W / of inner automorphisms. That fact that W !

Inn.W / has trivial kernel implies that every extension of a �nite group by W maps
into Aut.W / with �nite kernel. Hence it su�ces to prove that Aut.W / itself acts
properly, isometrically and cocompactly on the Davis complex †. To see that
this is the case, note that under the given assumptions, Lemma 3.4, Lemma 3.5
and Theorem 3.1 imply that Aut.W / D Inn.W / Ì Aut.S/ D W Ì Aut.G/. The
proposition now follows directly from Lemma 3.3. �

Combining Proposition 3.2 and Lemma 3.2, we obtain the following.

Corollary 3.1. Suppose that L is a d -dimensional �ag complex that satis�es the

conditions from Proposition 3.2 and such that H
d

.L/ ¤ 0. Then the right angled

Coxeter group W determined by the 1-skeleton L1 of L is dimension rigid.

3.3. Proof of Proposition 3.1. We are now ready to prove Proposition 3.1. To
do so, we need to construct for each odd prime number p a group Gp . So �x an
odd prime p. We start considering the action of the cyclic group Zp by rotations
on a regular p-gon A and let P be the cone of A. In more concrete terms, P

is nothing more than a regular p-gon considered as a 2-dimensional object. The
action Zp Õ A extends to a simplicial action Zp Õ P . Now let Z be the quotient
of P obtained by identifying points of A � P that lie in the same Zp-orbit. Note
that the space Z is still a Zp-CW complex and that the singular set

Zsing D ¹x 2 Z j StabCp
.x/ ¤ ¹eºº

is the disjoint union of the circle A=Cp and a point coming form the center of P .
Moreover,

H1.Z/ D 0 and H2.Z/ D Zp:

Now Zp-equivariantly subdivide the cellular structure on Z to obtain an �ag
triangulation L of Z whose 1-skeleton Gp has at least radius 2, such that every
cycle of length 4 in Gp has at least one diagonal, such that the complement
Gp n StGp

.s/ of the star of every vertex s of Gp is connected and such that G
does not have any separating cliques. For instance, one can take L to be the third
barycentric subdivision of Z. All this implies that the right angled Coxeter group
Wp determined by Gp is Gromov-hyperbolic, center-free and one-ended. Since we
clearly also have that every non-maximal simplex of L is contained in at least 2

maximal simplices, it follow from Proposition 3.2 that Wp is dimension rigid with
�nite Out.Wp/ such that every �nite extension of Wp acts isometrically, properly
and cocompactly on the Davis complex † of Wp. This applies in particular to the
semi-direct product

Gp D Wp Ì Zp

arising from the action Zp Õ L. Moreover, The CAT.0/-property of † ensures
that † is a cocompact model for

x
EGp .
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Since L n � is homotopic to a one-dimensional space, for any simplex � of L,
it follows from Lemma 3.2 that vcd.Gp/ D gd.Gp/ D 3 and

H3
c.†/ D H3.Gp;ZŒGp�/ D H2.L/ D Zp:

Since the group Gp contains Wp as a subgroup of �nite index, one can imme-
diately conclude that Gp has trivial center, is Gromov-hyperbolic and one-ended.
Moreover, by [14, Lemma 5.4], we have that Out.Gp/ is also �nite. Since Wp is
generated by elements of order 2 and p is an odd prime, it follows that Wp is not
only normal but also characteristic in Gp. This implies that if a group � contains
Gp as a normal subgroup of �nite index, Wp is also normal in �. We can therefore
conclude that Gp is also dimension rigid.

It remains to show that H3
c.†; †sing/ ˝Z Q ¤ 0, where † is viewed as a Gp-

space. Let K be the cone over the barycentric subdivision L0 of L and recall that
K is a strict compact fundamental domain for the Wp-action on †. Moreover, L0 is
a strict fundamental domain for the singular set of † viewed as a Wp-space. Using
these observation and denoting Ksing D †sing \ K we deduce that

†sing D
[

w2W

wKsing

and
Ksing D L0 [L0

sing
C.L0

sing/ (3.2)

where
Lsing D ¹x 2 L j StabCp

.x/ ¤ ¹eºº

is homeomorphic to Zsing and hence to the disjoint union of a circle and point,
and C.�/ denotes taking the cone with same conepoint as K D C.L0/. Now note
that the map

H�
c

�

†; †sing [
[

w2W n¹eº

wK
�

�! H�
c .K; Ksing/;

induced by the inclusion of pairs

.K; Ksing/ �! .†; †sing/ �!
�

†; †sing [
[

w2W n¹eº

wK
�

;

precomposed with the isomorphism

H�
c .K; Ksing/ �! H�

c

�

†; †sing [
[

w2W n¹eº

wK
�

;

obtained by cellular excision, is the identity map. This implies that the by inclusion
induced map

H�
c .†; †sing/ �! H�

c .K; Ksing/
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is surjective. Hence it su�ces to show that H3.K; Ksing/ ˝Z Q ¤ 0. Using the
fact that K is acyclic we conclude that

H3.K; Ksing/ Š H2.Ksing/:

Moreover, the Mayer–Vietoris long exact cohomology sequence associated to (3.2)
yields an exact sequence

H1.L/ �! H 1.Lsing/ �! H2.Ksing/:

Since H1.L/ D 0 and H 1.Lsing/ Š Z, we have H2.Ksing/ ˝Z Q ¤ 0. This
concludes the proof of Proposition 3.1.

4. The outer space of a free product

Suppose that G1; : : : ; Gr are non-trivial, center-free, �nitely generated, and pair-
wise non-isomorphic one-ended groups, and let

G D G1 � � � � � Gr

be their free product. Note that the groups G1; : : : ; Gr are in�nite and not abelian,
and that G is center-free. In this section we recall a few features of the outer space

O of free splittings of G and of the associated action Out.G/ Õ O. We refer to [14]
(and also [7]) for details.

4.1. Outer space. As a set, O D O.G/ is the set of all equivariant isometry
classes of minimal G-actions G Õ T on metric simplicial trees T with trivial
edge stabilizers and such that all vertex stabilizers are either trivial or conjugate
to one of the groups Gi . The triviality of edge stabilizers of the action G Õ T

implies that for every i D 1; : : : ; r , there is a unique G-orbit of points in T with
stabilizer conjugate to Gi . We denote the corresponding vertex in GnT by ŒGi �

and refer to ŒG1�; : : : ; ŒGr � as the special vertices of GnT . Note that GnT is a �nite
tree and that by minimality, all vertices of degree 1 and 2 represent vertices in T

with non-trivial stabilizer.
The group Aut.G/ acts on O by precomposition, that is

.�; ¹G Õ T; .g; x/ 7�! g � xº/ 7�! ¹G Õ T; .g; x/ 7�! �.g/ � xº:

The group Inn.G/ of inner automorphisms acts trivially and hence we obtain
a well-de�ned action Out.G/ Õ O.G/. If we endow O with the equivariant
Gromov-Hausdor� topology, then Out.G/ Õ O is continuous.
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The action Out.G/ Õ O is far from being free. In fact, in [14], Guirardel and
Levitt prove that the stabilizer Stab.T / D StabOut.G/.T / of T 2 O is isomorphic
to the product (see the remark below)

Stab.T / '

r
Y

iD1

MdegGnT ŒGi �.Gi / (4.1)

where degGnT ŒGi � is the degree of the special vertex ŒGi � in GnT and where

MdegGnT ŒGi � D G
degGnT ŒGi ��1

i Ì Aut.Gi /:

Note that MdegGnT ŒGi �.Gi / also �ts into the exact sequence

1 �! G
degGnT ŒGi �

i �! MdegGnT ŒGi �.Gi/ �! Out.Gi / �! 1:

In particular, it follows that if Out.Gi / is �nite for all i D 1; : : : ; r; then Stab.T /

has a �nite index subgroup isomorphic to
Qr

iD1 G
degGnT ŒGi �

i .

Remark. In [14], it is only claimed that
Qr

iD1 MdegGnT ŒGi �.Gi / has �nite index in
Stab.T /. In the present setting we have equality because we are assuming that the
groups are pairwise non-isomorphic.

Observe that that the stabilizer (4.1) lifts to Aut.G/. We will need this fact for

degGnT ŒG1� D r � 1 and degGnT ŒG2� D � � � D degGnT ŒGr � D 1

and describe brie�y the lifting in this concrete situation. For each i let Xi

be an Eilenberg-Mac Lane space of type K.Gi ; 1/. Fix r � 1 distinct points
p2

1 ; : : : ; pr
1 2 X1 and a further point pi 2 Xi for each i � 2. The space

Z D .X1 t X2 t � � � t Xr /=pi �pi
1

for i�2

is an Eilenberg-Mac Lane space of type K.G; 1/ and Mr�1.G1/ � M1.G2/ � � � � �

M1.Gr/ is isomorphic to the group of self-homotopy equivalences of Z which
map each piece Xi to itself. Since each such homotopy equivalence also �xes the
points pi D pi

1 we get the desired action of Mr�1.G1/ � M1.G2/ � � � � � M1.Gr/

on G D �1.Z; p2/ and thus a homomorphism making the following diagram
commute

Aut.G/

��

Mr�1.G1/ � M1.G2/ � � � � � M1.Gr / //

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Out.G/:
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Finally, recall that in [14], Guirardel and Levitt prove that the outer space O is
contractible. To do so, they choose some base point T0 and give for all T 2 O

a path t 7! T .t/ in O with T .0/ D T0 and T .1/ D T . It is immediate from
their construction [14, p. 698] that the whole path is invariant under a subgroup
K � Out.G/ if both endpoints T0 and T are. In other words, the �xed point
set OK is either empty or contractible. In Section 5.1 we will argue that OK is
non-empty and hence contractible when F is a �nite subgroup of Out.G/.

4.2. The spine of outer space. We now describe the spine S of O together with
its simplicial structure. To begin with let PO be the set of all G-trees T 2 O such
the quotient tree T=G has total length 1. The set PO is preserved by the action
of Out.G/ and in fact there is an Out.G/-equivariant retraction from O to PO. In
particular, PO is also contractible.

Given any G-tree T 2 PO, let �.T / � PO be the set of G-trees T 0 2 PO

which are G-equivariantly homeomorphic to T , and note that a tree T 0 2 PO

belongs to �.T / if and only if we can obtain T 0 from T by equivariantly changing
the lengths of the edges. In particular, we can parametrize �.T / by the open
simplex ¹` 2 .0; 1/E.T=G/ j

P

e `e D 1º where E.T=G/ is the set of edges of
the graph T=G. Allowing some edges to have length 0, we have that every vector
` 2 ¹` 2 R

E.T=G/
C j

P

e `e D 1º in the closed simplex determines a semi-distance
d` on T=G and hence a G-invariant semi-distance (still denoted d`) on T . The
associated metric space T` D T=d`D0 is the G-tree obtained by collapsing all
degenerate edges to points. The tree T` belongs to PO if and only if all paths
in T=G joining special vertices ŒGi � and ŒGj � have positive d`-length. In other
words, the closure x�.T / of �.T / in PO can be identi�ed with the complement in
the closed simplex ¹` 2 R

E.T=G/
C j

P

e `e D 1º of some of its faces. Note that for
all T 0 2 �T we have that x�.T 0/ � x�.T / is a “face” of x�.T /, in the sense that it is
the intersection of x�.T / with a face of ¹` 2 R

E.T=G/
C j

P

e `e D 1º.
The sets x�.T / behave almost like the simplices of a simplicial structure onPO,

but not quite. In order to get an honest such structure one proceeds as follows.
Consider �rst for each T the �rst barycentric subdivision of the closed simplex
¹` 2 R

E.T=G/
C j

P

e `e D 1º and let �T be the subcomplex thereof consisting of
simplices which are contained in x�.T /. The union

S D
[

T 2PO

�T � PO

has the structure of a simplicial complex, called the spine of PO. By construction,
S is an Out.G/-equivariant retract of PO. It follows that the spine S is contractible
and Out.G/-invariant such that the Out.G/ action on S is simplicial and cocom-
pact. Finally, note that for every cell � of S contained in x�.T /, one has

dim � � jE.T=G/j � r C 1: (4.2)
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4.3. Computing dimensions of Out.G/. Our next goal is to prove the following.

Proposition 4.1. Let p1; : : : ; pr be pairwise distinct odd primes, for each i let

Gi D Gpi
be the group provided by Proposition 3.1, and set

G D G1 � � � � � Gr :

Then Out.G/ is virtually torsion-free with

vcd.Out.G/// � 5r � 5 but 6r � 6 � cd.Out.G//:

Before launching the proof of Proposition 4.1 we need to establish the following
combinatorial lemma.

Lemma 4.1. Suppose that G1; : : : ; Gr are non-trivial, centre-free, �nitely gener-

ated, and pairwise non-isomorphic one-ended groups, consider their free product

G D G1 � � � � � Gr , and let O D O.G/ be the associated outer space. We have

X

i

degGnT ŒGi � � 2r � 2 � dim.�/

for every cell � in the spine S of O and for every tree T 2 � n @� .

Proof. Given any T 2 � n @� , let F � GnT be the forest spanned by the vertices
of GnT corresponding to vertices of T with trivial G-stabilizer. Let T 0 2 O be
the tree obtained by collapsing each component of the preimage under T ! GnT

of F and note that
X

i

degGnT ŒGi � D
X

i

degGnT 0 ŒGi �: (4.3)

Let V0 � V.GnT 0/ be the set of those vertices of GnT 0 corresponding to vertices
in T 0 with trivial stabilizer and note that by construction we have T 0 nV0 D T nF .
For each v 2 V0 choose an edge ev 2 E.GnT 0/ adjacent to v. If we collapse all
the edges in T 0 which represent one of the edges in ¹ev j v 2 V0º, we get a tree
T 00 which is still in O but where no further edge can be collapsed. It means that
GnT 00 has exactly r � 1 edges, and hence that GnT 0 and GnT have respectively

jE.GnT 0/j D jV0j C r � 1 and jE.GnT /j D jE.F /j C jV0j C r � 1

edges, where E.F / � E.GnT / is the set of those edges of GnT contained in F .
From (4.2) we get that the cell � satis�es

dim � � jE.F /j C jV0j:
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Note at this point that, since each vertex of F has degree at least 3, it follows that
T 0 nV0 has at least 3jV0jC jE.F /j connected components. Every such component
is the union of a subtree of T 0nG where all vertices are of type ŒGi � together with
some additional edges joining the subtree to V0. Let s be the total number of
additional edges and note that there are at least as many such edges as connected
component of T 0 n V0, so

s � 3jV0j C jE.F /j:

Putting all of this together we have

r
X

iD1

degGnT 0.ŒGi �/ D
�

X

v2V.GnT 0/

degGnT 0.v/
�

� s

D 2jE.GnT 0/j � s

� 2jV0j C 2r � 2 � .3jV0j C jE.F /j/

D 2r � 2 � jV0j � jE.F /j

� 2r � 2 � dim.�/:

The lemma now follows from (4.3). �

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. First note that it follows from [14, Theorem 6.1] that
Out.G/ is virtually torsion-free and has �nite virtual cohomological dimension.
Since the spine S is contractible and Out.G/ acts simplicially and cocompactly
on S with stabilizers that are of type FP1, it follows that Out.G/ is also of type
FP1. We conclude that

vcd.Out.G// D max¹n 2 N j Hn.Out.G/;ZŒOut.G/�/ ¤ 0º < 1:

Denoting M D ZŒOut.G/�, the action of Out.G/ on S gives rise to is a
convergent spectral sequence (e.g. see [6, Chapter VII.7])

E
p;q
1 D

Y

�2�p

Hq.Stab.�/; M/ �! HpCq.Out.G/; M/:

Here �p is a set of of representatives of Out.G/-orbits of p-simplices of S.
Suppose that we have a simplex � 2 S. By the discussion earlier, the group

Stab.�/ � Out.G/ has a �nite index subgroup isomorphic to
Qr

iD1 G
degGnT ŒGi �

i ,
where degGnT ŒGi � is the degree of the vertex ŒGi � in GnT . We get from Lemma 3.1
that

vcd.Stab.�// D vcd
�

r
Y

iD1

G
degGnT ŒGi �

i

�

� 3
�

r
X

iD1

degGnT ŒGi �
�

� r C 1:
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Now, taking into account the bound
P

i degGnT ŒGi � � 2r � 2 � dim.�/ provided
by Lemma 4.1, we get that

vcd.Stab.�// � 5r � 5 � 3 dim.�/:

It follows in particular that

vcd.Stab.�// C dim.�/ � 5r � 5:

Since Hq.Stab.�/; M/ D 0 for all q > vcd.Stab.�//, we conclude that
E

p;q
1 D 0 for all p and q with p C q > 5r � 5. This implies automatically

that E
p;q

k
D 0 for all k and p C q > 5r � 5. The convergence of the spectral

sequence therefore implies that

HpCq.Out.G/; M/ D 0

whenever p C q > 5r � 5, which proves that vcd.Out.G/// � 5r � 5.
Note now that there is a G-tree T 2 S such that ŒG1�; : : : ; ŒGr � are the only

vertices of GnT , where ŒG2�; : : : ; ŒGr � are leaves and where ŒG1� is connected to
ŒGi � for all i � 2. It follows that n1 D r � 1 and n2 D � � � D nr D 1. In particular,
Stab.T / contains a copy of the direct product Gr�1

1 � G2 � � � � � Gr . The second
claim of Lemma 3.1 implies that

cd.Out.G// � cd.Stab.T // � cd.Gr�1
1 � G2 � � � � � Gr/ D 6r � 6

which is what we needed to prove. �

5. Dimension rigidity and free products

The aim of this section is to prove the following proposition and to �nalize the
proof of the main theorem.

Proposition 5.1. Let G1; : : : ; Gr be a collection of one-ended, �nitely presented,

virtually torsion-free, pairwise non-isomorphic groups. If the groups Gi are

dimension rigid, then their free product G D G1 � � � � � Gr is dimension rigid

as well.

The proof of this proposition will require an analyses of the �xed point sets
OF for �nite subgroups F of Out.G/.

5.1. Fixed points in O and extensions. Suppose from now on that the groups
G1; : : : ; Gr are one-ended, �nitely presented and pairwise non-isomorphic groups.
Let G D G1 � � � � � Gr be their free product and consider an extension

1 �! G �! � �! F �! 1
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with F �nite. Since � is quasi-isometric to G, it follows that � is �nitely presented
and has in�nitely many ends. It therefore follows from Dunwoody’s accessibility
theorem that � acts cocompactly on a simplicial tree T such that all edge stabilizers
are �nite and all vertex stabilizers have at most one end. Since all the Gi are one-
ended it follows that each Gi is contained in a vertex stabilizer of T . Moreover,
the assumption that G has �nite index in �, together with the fact that �-vertex
stabilizers in T are one-ended implies that Gi and gGj g�1 have a common �xed-
point in T if and only if i D j and g 2 Gi . We have proved that the induced graph
of groups decomposition of G has the groups Gi as vertex groups. In particular,
G Õ T 2 O and �nT is a �nite tree. We deduce that � can be written as an
amalgam

� Š .� � � .�1 �F1
�2/ �F2

� � � / �Fr�1
�r

such that the F1; : : : ; Fr�1 are �nite and for each i D 1; : : : ; r , the group
�i contains (up to possibly relabeling) Gi as �nite index normal subgroup.
We summarize our observations in the following lemma.

Lemma 5.1. If � is an extension of a �nite group F by G1 � � � � � Gr , then

� Š .� � � .�1 �F1
�2/ �F2

� � � / �Fr�1
�r

such that the F1; : : : ; Fr�1 are �nite and (after possibly relabeling) �i contains

Gi as �nite index normal subgroup for each i D 1; : : : ; r .

Suppose that F � Out.G/ is �nite and consider its preimage QF under the
homomorphism Aut.G/ ! Out.G/. Applying the argument above to � D QF we
get a tree T 2 O on which not only G but also the whole group QF acts isometrically.
In other words, T is a �x point of the �nite group F , meaning that OF ¤ ; and
hence contractible. Since the spine S is an Out.G/-equivariant retract of O, we
can immediately conclude the following.

Lemma 5.2. The �xed point set SF is contractible for every �nite subgroup F of

Out.G/.

The argument to prove Lemma 5.2, and thus basically also the proof of
Lemma 5.1, was explained to us by Vincent Guirardel.

5.2. Proof of Proposition 5.1. Starting with the proof of the proposition, sup-
pose that we have an extension � of a �nite group by G. Our goal is to construct
a model for

x
E� of dimension

vcd.G/ D max¹vcd.Gi / j i D 1; : : : ; rº:

By Lemma 5.1 we know that � is of the form

� Š .: : : .�1 �F1
�2/ �F2

: : :/ �Fr�1
�r
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such that each is Fi is �nite and each �i contains Gi as �nite index normal
subgroup. Now de�ne a chain of subgroups �.1/ � �.2/ � � � � � �.r/ D �

as follows
�.1/ D �1 and �.i/ D �.i�1/ �Fi�1

�i :

We are going to prove by induction that

gd.�.i// D max¹vcd.G1/; : : : ; vcd.Gi /º

for i D 1; : : : ; r . The base case follows because �.1/ D �1 is an extension of a
�nite group by G1, and the latter is assumed to be dimension rigid. It thus su�ces
to establish the induction step. Since �.i/ is the amalgamated product over the
�nite group Fi�1 of �.i�1/ and �i , and since

gd.�.i�1// D max¹vcd.G1/; : : : ; vcd.Gi�1/º by induction,

and

gd.�i / D vcd.Gi/ because Gi is dimension rigid,

we see that the induction step and hence the proposition follow from Lemma 5.3
below.

Lemma 5.3. If G D G1 �F G2 is a group which arises as the proper amalgamated

product over a �nite group F of two groups G1; G2, then we have

gd.G/ D max¹gd.G1/; gd.G2/; 1º:

Here proper means that F ¤ G1 and F ¤ G2.

Before launching the proof of Lemma 5.3 we make two observations. First,
note that in the case that one of the groups G1; G2 is in�nite, the claim reduces to

gd.G/ D max¹gd.G1/; gd.G2/º:

The case that both factors Gi are �nite is well-known for in this case G is virtually
free and thus has geometric dimension 1. Secondly, we point out that the cor-
responding cohomological statement cd.G/ D max¹cd.G1/; cd.G2/; 1º follows
from [11, Corollary 8]. The lemma follows from this cohomological statement,
as long as cd.G/ � 3, which covers the case in which we will need Lemma 5.3.
Below the interested reader can �nd a geometric proof of Lemma 5.3, in general.

Proof. For i D 1; 2 let Zi be a model of
x
EGi of dimension

dim.Zi / D gd.Gi /:

Choose a point pi 2 Zi �xed by the �nite subgroup F � Gi . Finally, let Xi be
a model for EGi and note that Xi � Zi , endowed with the diagonal Gi action, is
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also a model for EGi . Let XF for EF and note that, up to modifying Xi , we may
assume without loss of generality that there is an honest equivariant embedding
�i W XF ! Xi .

We get a model X for EG as the universal cover of the K.G; 1/ obtained as
follows

..X1 � Z1/=G1/ t ..XF =F / � Œ0; 1�/ t ..X2 � Z2/=G2/=�

where � is the equivalence relation generated by setting

.Œx�; 0/ � Œ.�1.x/; p1/� and .Œx�; 1/ � Œ.�2.x/; p2/� for all x 2 XF :

By construction, the space X is the union of copies of X1 � Z1, X2 � Z2 and
XF � Œ0; 1�. Denote by �BS the equivalence relation on X generated by asserting
that (1) any two points in a copy of the Xi � Zi are equivalent, and (2) any two
points of the form .x; t / and .x0; t / in any copy of XF � Œ0; 1� are equivalent. Then
T D X=�BS

is nothing but the Bass-Serre tree of the splitting G D G1 �F G2.
Note also that X is covered (one could think foliated) by disjoint copies of the

spaces X1; XF ; X2. We will refer to each one of these spaces as a leaf, and let
�F be the equivalence relation generated by declaring any two points in the same
leaf to be equivalent. We claim that the space Z D X=�F

is the desired model for

x
EG. To begin with note that the set of leaves of X is invariant under the action
G Õ X . We thus get an induced action G Õ Z. In fact, since �BS is coarser than
�F we have a commutative diagram of G-equivariant maps

X

�� ((PP
P
P
P
P
P
P
P
P
P
P
P
P

Z D X=�F

p
// T D X=�BS

:

Suppose now that K � G is a �nite group and note that K �xes a vertex v

in T . It follows that K is contained in a conjugate of G1; G2. Say for the sake
of concreteness that K � G1, meaning that v is the vertex of T corresponding
to the subgroup G1. Then K acts on p�1.v/ D Z1 and has a �xed point there
in because Z1 is a model for

x
EG1. Having proved that ZK ¤ ; for all K � G

�nite, it remains to be proved that ZK is contractible. Noting that .p�1.v//K

is contractible for every vertext v 2 T �xed by K, we get that ZK is a tree of
contractible spaces and thus contractible.

Having proved that Z is a model for
x
EG note that

dim.Z/ D max¹dim.Z1/; dim.Z2/; 1º D max¹gd.G1/; gd.G2/; 1º:

This proves that
gd.G/ � max¹gd.G1/; gd.G2/; 1º:

However, the other inequality also holds because G1; G2 � G and because the
amalgamated product is non-trivial. �
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5.3. Proof of Theorem 1.1. We conclude this paper by �nishing the proof of the
main theorem. Let p1; : : : ; prC1 be pairwise distinct odd primes and let Gi D Gpi

be the groups provided by Proposition 3.1. Note that Gi and Gj are isomorphic if
and only if i D j . We will consider the free product

G D G1 � � � � � GrC1:

Each one of the groups Gi is CAT.0/ and Gromov-hyperbolic and has �nite outer
automorphism group. In particular G is also CAT.0/ and Gromov-hyperbolic.
Moreover, each one of the groups Gi is dimension rigid, �nitely presented (since
Gromov-hyperbolic), and one-ended. In particular, we get from Proposition 5.1
that G is also dimension rigid.

Noting that we have r C 1 factors, we get from Proposition 4.1 that Out.G/

is virtually torsion-free with vcd.Out.G/// � 5r but cd.Out.G// � 6r , so we
conclude that

vcd.Out.G// � gd.Out.G// � r

as desired.
It remains to show that Out.G/ admits a cocompact model for

x
E Out.G/.

To this end, �rst note that the proof of [21, Proposition 5.1] in fact proves the
following result: Let � be a group and Z a cocompact �-CW-complex such that
ZF is contractible for every �nite subgroup F of � and such that the stabilizers
of the action of � on Z all admit cocompact models for proper actions. Now let X

be a model for
x
E� (which always exists, e.g. by [19, Theorem 1.9.]), then Z � X ,

equipped with the diagonal �-action is �-equivariantly homotopy equivalent to a
cocompact �-CW-complex. Since Z � X is also a model for

x
E�, we conclude

that � admits a cocompact model for
x
E�.

Since the action of Out.G/ on the spine S of the outer space O associated to
G1 � � � � � GrC1 is cocompact and the �xed point set SF is contractible for every
�nite subgroup F of Out.G/ by Lemma 5.2, we conclude that in order to show
that Out.G/ admits a cocompact model for

x
E Out.G/, it su�ces to show that that

the stabilizers of the action of Out.G/ on S admit a cocompact model for proper
actions.

As we discussed earlier, the stabilizers of this action are of the form

rC1
Y

iD1

Mni
.Gi /

where Mni
.Gi/ �ts into a short exact sequence

1 �! G
ni

i �! Mni
.Gi/ �! Out.Gi / �! 1:

Since Out.Gi / is �nite and Gi is Gromov-hyperbolic, we conclude that
QrC1

iD1 Mni
.Gi / is �nite index subgroup of a �nite product of Gromov-hyperbolic
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groups. Since any Gromov-hyperbolic group admits a cocompact model for proper
actions by [23], we are done for Out.G/.

We comment now brie�y on the proof for Aut.G/. First note that Aut.G/ is
virtually torsion free. For instance, this follows from the fact that Aut.G/ is a
subgroup of the virtually torsion free subgroup Out.G � Z=2Z/. Since Aut.G/ is
virtually torsion free we get from the exact sequence

1 �! G �! Aut.G/ �! Out.G/ �! 1

that
vcd.Aut.G// � vcd.G/ C vcd.Out.G// � 3 C 5r:

To get a lower bound for the geometric dimension we proceed as in the proof of
Proposition 4.1. Let T 2 S be a G-tree such that ŒG1�; : : : ; ŒGrC1� are the only
vertices of GnT , where ŒG2�; : : : ; ŒGrC1� are leaves and where ŒG1� is connected
to ŒGi � for all i � 2. As we mentioned in Section 4.1, the stabilizer

Stab.T / D Mr.G1/ � M1.G2/ � � � � � M1.GrC1/

of T lifts to Aut.G/. Moreover, Stab.T / contains the group Gr
1 � G2 � � � �� GrC1.

As in Proposition 4.1 we get thus that cd.Stab.T // � 6r and thus that

gd.Aut.G// D cd.Aut.G// � 6r:

The claim follows thus when we use r C 4 factors instead of only r C 1.
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