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does not necessarily act discontinuously, the quotient space cannot inherit a rich geometric

structure from the Teichmüller space. However, we introduce the set of points where

the action of the Teichmüller modular group is stable, and we prove that this region of
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appropriate moduli space of the quasiconformally equivalent complex structures admitted

on a topologically in�nite Riemann surface.

Mathematics Subject Classi�cation (2010). Primary: 30F60; Secondary: 37F30, 32G15.

Keywords. Teichmüller modular group, moduli space, Riemann surface of in�nite type,

quasiconformal deformation, hyperbolic geometry, length spectrum, limit set, region of

discontinuity.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Teichmüller spaces and modular groups . . . . . . . . . . . . . . . . . 4

3 Geometry of hyperbolic surfaces . . . . . . . . . . . . . . . . . . . . . 7

4 Isometries on complete metric spaces . . . . . . . . . . . . . . . . . . 14

5 Dynamics of Teichmüller modular groups and moduli spaces . . . . . 18

6 Elliptic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Isolated limit points and Tarski monsters . . . . . . . . . . . . . . . . 25

8 Exceptional limit points and density of generic limit points . . . . . . 29

9 Partial discreteness of the length spectrum . . . . . . . . . . . . . . . 32

10 Density of the region of stability . . . . . . . . . . . . . . . . . . . . . 36

11 Connectivity of the region of stability . . . . . . . . . . . . . . . . . . 39

12 Stabilized limit points are not dense . . . . . . . . . . . . . . . . . . . 43

13 The moduli space is not separable . . . . . . . . . . . . . . . . . . . . 52

14 The moduli space of the stable points . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



2 K. Matsuzaki

1. Introduction

The moduli space of an analytically �nite Riemann surface (i.e., a compact Rie-

mann surface from which at most a �nite number of points are removed) is a

complex analytic space whose singular points are normal. It has long been stud-

ied in various �elds of mathematics. However, once we extend our interest to

analytically in�nite surfaces, we recognize that their moduli spaces in the qua-

siconformal category no longer have such a researchable structure. In fact, they

have rarely appeared in the literature. This is in contrast to the situation of a Teich-

müller space, which is the universal covering of a moduli space. The Teichmüller

space T .R/ can also be de�ned for an analytically in�nite Riemann surface R

even though it has an in�nite-dimensional complex structure. From the viewpoint

of complex analysis, the complex structure of T .R/ is considered via an in�nite-

dimensional Banach space of Beltrami di�erentials on R, and we are able to de-

velop their theories in common for both �nite and in�nite Riemann surfaces. The

moduli space M.R/ is the quotient space of the Teichmüller space T .R/ by the

Teichmüller modular group Mod.R/, which is the covering transformation group

for the projection T .R/ ! M.R/ and is induced by the action of the quasicon-

formal mapping class group MCG.R/. When introducing the moduli space for

an analytically in�nite Riemann surface, a problem arises because Mod.R/ does

not necessarily act discontinuously, but it acts discontinuously on the Teichmüller

space of an analytically �nite Riemann surface.

In the �rst part of this paper, we investigate the action of modular groups

on in�nite-dimensional Teichmüller spaces for analytically in�nite Riemann sur-

faces. We generalize this analysis to a purely topological consideration of the dy-

namics of isometries acting on a complete metric space. In this general situation,

the comparison between countability and uncountability serves as a fundamental

basis for our arguments. This appears practically as the Baire category theorem

and formulates our fundamental principles (Theorems 4.4 and 4.5). When we ap-

ply these facts to the Teichmüller modular group, the countable compactness of

a Riemann surface represents the countable side, whereas the cardinality of the

mapping class group represents the uncountable side. In general, we �rst show

some consequences deduced from this topological structure of Riemann surfaces.

Then, we claim more speci�c results based on the hyperbolic geometric structure

on Riemann surfaces. For instance, if we impose boundedness on the hyperbolic

geometry ofR, which is roughly a condition that the injectivity radii are uniformly

bounded from below and above, the analysis of the dynamics of Mod.R/ becomes

simpli�ed. In particular, we will see that the discontinuity of the action of Mod.R/

is the same as its stability explained below (Theorem 5.3).

As in the case of Kleinian groups, we consider the set�.�/ of points in T .R/,

where a subgroup � of Mod.R/ acts discontinuously, and we call it the region of

discontinuity. Its complement is de�ned to be the limit set ƒ.�/. The action of

� is desirable on �.�/ in the sense that the quotient space �.�/=� inherits the
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geometric structure from T .R/. On the other hand, to investigate the complicated

action on the complement, we �rst classify the limit points and examine their

distribution. In contrast to the case of Kleinian groups, the setƒ1.�/ of stabilized

limit points, which are �xed by in�nitely many elements of �, is nowhere dense

in the limit set ƒ.�/ unless ƒ.�/ coincides with a certain exceptional set (this

result itself is proved later on in Theorem 12.1). Such limit points are due to in�nite

groups of conformal automorphisms of some Riemann surfaces quasiconformally

equivalent to R. Around these limit points, unusual phenomena occur, such as the

existence of non-closed orbits. This makes the analysis of the dynamics di�cult

and the quotient space exotic. Accordingly, the topological moduli spaceM.R/ is

not a T1-space in many cases (Corollary 6.5). In addition, we consider the problem

of determining whether an isolated limit point exists or not. If it exists, we see

that its isotropy subgroup is a very special group in a group theoretical sense,

which is related to the Burnside problem (Theorem 7.1). We conjecture that an

isolated limit point exists, but we only present evidence for it. By excluding such

exceptional limit points, we can conclude that, as in the case of Kleinian groups,

the accumulation points of orbits ƒ0.�/ (called generic limit points) are dense in

the limit set (Theorem 8.3).

It would be preferable if we could always make use of the region of disconti-

nuity � D �.Mod.R// for providing a geometric structure with the topological

moduli spaceM.R/. However,�may be empty. Instead, we introduce another cri-

terion of manageable action, i.e., stability. We say that a subgroup � of Mod.R/

acts at p 2 T .R/ stably if the orbit �.p/ is closed and the isotropy subgroup

Stab�.p/ is �nite. Under this condition, the quotient space has separability at

this point. The set ˆ.�/ of points where � acts stably is called the region of sta-

bility. Although stability is a weaker condition than discontinuity, we can prove

that ˆ D ˆ.Mod.R// is open (Theorem 5.2), dense, and connected in T .R/ for

every Riemann surface R. This genericity of ˆ in T .R/ ensures that the metric

completion of the quotient spaceMˆ.R/ D ˆ=Mod.R/ captures all points in the

moduli space. These properties (except openness) are demonstrated in the second

part of this paper (Corollaries 10.2 and 11.2). The main tool for their proofs is the

length spectrum LS.p/ at p 2 T .R/, which is the closure of the set of lengths

of all simple closed geodesics on the hyperbolic Riemann surface corresponding

to p 2 T .R/. The essential spectrum LSess.p/ is a subset of LS.p/ consisting

of all accumulation points of the spectra. We see that, if there is a discrete point

spectrum in LS.p/�LSess.p/, then Mod.R/ acts at p stably (Theorem 9.2). More-

over, we consider the variation of LSess.p/ under a quasiconformal deformation

and prove that it is invariant under any quasiconformal homeomorphism having a

compact support of the deformation (Theorem 9.5). By using such a deformation,

we produce a discrete point spectrum to claim the stability.

The closure equivalence relation is stronger than the orbit equivalence relation,

and two points p and q in T .R/ are related by the closure equivalence if they are

both contained in the closure of the same orbit under Mod.R/. The quotient space
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T .R/==Mod.R/ by the closure equivalence is called the geometric moduli space,

and it is denoted by M�.R/. The quotient distance is induced on M�.R/ from

the Teichmüller distance of T .R/. Since the closure equivalence and the orbit

equivalence are the same on the region of stability ˆ, we see that the moduli

space of the stable points Mˆ.R/ is isometrically embedded in M�.R/. From the

above-mentioned properties of ˆ, we prove thatM�.R/ coincides with the metric

completion ofMˆ.R/ (Theorem 14.3). We can regard this space as an appropriate

moduli space for a topologically in�nite Riemann surface R (in other words, R

is of in�nite topological type, which means that the fundamental group �1.R/

is in�nitely generated). In fact, it is possible to introduce a certain structure of a

complex analytic space toM�.R/ by a general theory, and when we assume thatR

satis�es the bounded geometry condition,M�.R/ is the completion of the complex

Banach orbifold �=Mod.R/. Moreover, by construction, M�.R/ is a type of

universal space for the geometric invariants of the moduli. On the other hand,

M�.R/ is so large that it does not satisfy the second countability axiom. Actually,

we prove that the topological moduli spaceM.R/ does not have a countable dense

subset in it (Theorem 13.1). Although the Teichmüller space T .R/ is non-separable

in this sense, it is not straightforward to show this property for M.R/.

The next two sections are devoted to introducing preliminaries for theories of

Teichmüller spaces and hyperbolic geometry on Riemann surfaces. A conformal

automorphism group G of a Riemann surface R de�nes an embedding of the

Teichmüller space of the orbifold R=G into the Teichmüller space of R, and we

will see that the embedded space T .R=G/ is a proper subset of T .R/ at many

places in our arguments. Lemma 2.1 will serve as a basic fact for this claim. By a

quasiconformal deformation ofR, the geodesic length of each simple closed curve

c changes. We have to estimate this variation frequently in this paper, especially

in the case where the support of the quasiconformal deformation is far from c.

Theorem 3.3 serves as a powerful tool for this purpose.

This research has been developed over many years, and preprint versions have

been extended and revised several times. The current revision remains largely

unchanged since 2010. A primary announcement of this research appeared in [21].

A survey partially based on the results of this paper was presented in [25].

2. Teichmüller spaces and modular groups

Throughout this paper, we assume that a Riemann surface R is hyperbolic, i.e., it

is represented by a quotient space H=H of the hyperbolic plane H by a torsion-

free Fuchsian group H . Moreover, we are mainly interested in the case where

H Š �1.R/ is in�nitely generated, i.e., R is topologically in�nite (R is of in�nite

topological type).
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The Teichmüller space T .R/ of R is the set of all equivalence classes of

quasiconformal homeomorphisms f of R onto other Riemann surfaces. Two

quasiconformal homeomorphisms f1 and f2 are de�ned to be equivalent if there

is a conformal homeomorphism gW f1.R/ ! f2.R/ such that f �1
2 ı g ı f1 is

homotopic to the identity on R. Here, the homotopy is considered to be relative

to the boundary at in�nity @1R D .@1H � ƒ.H//=H of R D H=H when

the limit set ƒ.H/ of the Fuchsian group H is a proper subset of the circle at

in�nity @1H of the hyperbolic plane. Earle and McMullen [7] proved that the

existence of the homotopy is equivalent to the existence of an isotopy to the

identity on R relative to @1R through uniformly quasiconformal automorphisms.

The equivalence class of f is called the Teichmüller class and denoted by Œf �.

We often represent the Riemann surface f .R/ as Rp for p D Œf � 2 T .R/. In this

case, a certain quasiconformal homeomorphism f in the Teichmüller class p is

assigned implicitly or the argument depends only on p.

The Teichmüller space T .R/ has a complex Banach manifold structure, which

is shown below. Moreover, it has a metric structure such that the distance between

p1 D Œf1� and p2 D Œf2� in T .R/ is de�ned by dT .p1; p2/ D logK.f /, where

f is an extremal quasiconformal homeomorphism in the sense that its maximal

dilatation K.f / is minimal in the homotopy class of f2 ı f �1
1 relative to the

boundary at in�nity. This is called the Teichmüller distance. By virtue of the

compactness property of quasiconformal maps, the Teichmüller distance dT is

complete on T .R/. This coincides with the Kobayashi distance on T .R/ with

respect to the complex Banach manifold structure. For further details on Teich-

müller spaces, readers may refer to monographs by Gardiner and Lakic [16] and

Lehto [18].

The quasiconformal mapping class group MCG.R/ is a group of all homotopy

classes Œg� of quasiconformal automorphisms g ofR, where the homotopy is again

relative to the boundary at in�nity @1R if it is not empty. Each element Œg� is called

a mapping class and acts on T .R/ from the left such that Œg��W Œf � 7! Œf ı g�1�.

It is evident from the de�nition that MCG.R/ acts on T .R/ isometrically with

respect to the Teichmüller distance. It also acts biholomorphically on T .R/.

Let �W MCG.R/ ! Aut.T .R// be the homomorphism de�ned by Œg� 7!  D
Œg��, where Aut.T .R// denotes the group of all isometric and biholomorphic

automorphisms of T .R/. The image Im � � Aut.T .R// is called the Teichmül-

ler modular group and denoted by Mod.R/. Except for a few low-dimensional

cases, � is injective. In particular, if R is topologically in�nite, then � is always

injective. This was �rst proved by Earle, Gardiner, and Lakic [6], and another

proof was given by Epstein [8]. Moreover, � is surjective except for the case

of dim T .R/ D 1, which was �nally proved by Markovic [19] after a series of

pioneering studies. Hence, when there is no confusion, we identify MCG.R/with

Mod.R/ D Aut.T .R// if R is topologically in�nite.

The group of all conformal automorphisms ofR is denoted by Conf.R/. Since

each element of Conf.R/ determines a mapping class ofR and each mapping class
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contains at most one conformal automorphism, we can identify Conf.R/ with a

subgroup of MCG.R/. In general, for each p D Œf � 2 T .R/, the group of all

conformal automorphisms ofRp is denoted by Conf.Rp/ and the mapping classes

in f �1 Conf.Rp/f determine a subgroup MCGp.R/ of MCG.R/. If Œg� belongs to

MCGp.R/ for some p 2 T .R/, we say that Œg� is a conformal mapping class. Note

that the group MCGp.R/ itself is determined by the Teichmüller class p, but the

correspondence between the elements in Conf.Rp/ and MCGp.R/ depends on the

homotopy class of f ; only the conjugacy class is well de�ned by the Teichmüller

class p. We denote the isomorphism de�ned by the inverse of this correspondence

by

ef W MCGp.R/ �! Conf.Rp/:

Furthermore, under the identi�cation �W MCG.R/ ! Mod.R/, the subgroup

MCGp.R/ is identi�ed with the isotropy (stabilizer) subgroup Stab.p/ of Mod.R/

for p 2 T .R/. We remark that, since the action of Mod.R/ on T .R/ is not neces-

sarily transitive, isotropy subgroups are not conjugate to each other in general.

Teichmüller spaces can be realized in certain Banach spaces by the Bers

embedding. For an arbitrary hyperbolic Riemann surface R, take a torsion-free

Fuchsian group H acting on the upper half-plane model U of the hyperbolic

plane such that U=H D R. For an element p D Œf � of the Teichmüller space

T .R/, lift the quasiconformal homeomorphism f to U such that it extends to a

quasiconformal automorphism F of the Riemann sphere yC mapping the lower

half-plane L conformally. Then, the Schwarzian derivative '.z/ D SF .z/ of

the restriction of F to L is a holomorphic function satisfying the automorphic

condition

.h�'/.z/ WD '.h�1.z//.h�1/0.z/2 D '.z/

for every h 2 H and the norm condition

k'kB WD sup ��2.z/j'.z/j �
3

2

for the hyperbolic metric �.z/jdzj on L. Let B.H/ be the Banach space of all

holomorphic functions ' on L satisfying the automorphic condition for H and

k'kB < 1. Then, the correspondence ˇWT .R/ ! B.H/ by Œf � 7! SF gives a

homeomorphism of T .R/ onto a bounded contractible domain inB.H/ containing

the origin, which is called the Bers embedding.

The Banach space B.H/ is a subspace of the Banach space B.1/ of all holo-

morphic functions ' on L with k'kB < 1. For a conformal automorphism of

R D U=H , its lift to U is the restriction of a Möbius transformation g of yC,

which is also regarded as a conformal automorphism of L. Then, g belongs to

the normalizer N.H/ of H in Conf.L/, and vice versa. Thus, we identify the

group Conf.R/ of all conformal automorphisms of R with the quotient group

N.H/=H . It is known that N.H/ is discrete if H is non-elementary. Conse-

quently, we see that Conf.R/ is also discrete. For every g 2 N.H/, the linear
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isometry g�WB.1/ ! B.1/ keeps the subspace B.H/ invariant. For any subgroup

G of Conf.R/, there is a subgroup yH of N.H/ containing H such that yH=H is

isomorphic to G. Then, B. yH/ coincides with a subspace consisting of all ele-

ments in B.H/ that are �xed by g� for any lift g 2 N.H/ of each conformal

automorphism of R.

The Teichmüller space T D T .U/ is called the universal Teichmüller space. It

is known (see [18]) that, for any Riemann surface R D U=H , the Bers embedding

ˇ.T .R// � B.H/ coincides with ˇ.T / \ B.H/, where ˇ.T / � B.1/ is the Bers

embedding of the universal Teichmüller space T . The covering relation R2 ! R1
of Riemann surfaces gives the inclusion relation H1 � H2 of their Fuchsian

groups. Hence, B.H1/ � B.H2/ induces the inclusion relation T .R1/ � T .R2/

of the Teichmüller spaces via the Bers embedding. Moreover, for a subgroupG of

Conf.R/, we can consider the Teichmüller space T .R=G/ of the orbifold R=G.

The image of T .R=G/ under the Bers embedding ˇWT .R/ ! B.H/ coincides

with ˇ.T /\B. yH/, where yH is the intermediate subgroup betweenH and N.H/

satisfying yH=H Š G. If we identify G � Conf.R/ with a subgroup of MCG.R/

and de�ne a subgroup� D �.G/ of Mod.R/, then the subspaceT .R=G/ coincides

with a locus Fix.�/ of T .R/ consisting of the points �xed by all  2 �.

With regard to the properness of the inclusion relation stated above, we can

show the following lemma as a consequence of Theorem 1 in [22].

Lemma 2.1. Let G1 and G2 be subgroups of Conf.R/ for a Riemann surface

R. If G1 ¥ G2 and if the orbifold R=G2 is of non-exceptional type, then

T .R=G1/ ¤ T .R=G2/. In particular, if dimT .R=G2/ � 4 or if the index

ŒG1 W G2� is su�ciently large, then T .R=G1/ ¤ T .R=G2/ is satis�ed.

Proof. We can choose Fuchsian groups H1 and H2 such that U=H1 D R=G1,

U=H2 D R=G2 with H1 ¥ H2 and ŒH1 W H2� D ŒG1 W G2�. If R=G2 is of

non-exceptional type, then H2 and hence H1 are non-exceptional. By Theorem 1

in [22], we have B.H1/ ¤ B.H2/; thus, T .U=H1/ ¤ T .U=H2/ follows. This

proves the �rst statement. Exceptional Fuchsian groups are listed (Proposition 1

in [22]); in particular, we see that the orbifold R=G2 D U=H2 is of exceptional

type only when 0 � dimT .R=G2/ � 3. In this case, e.g., if ŒG1 W G2� > 84, then

T .R=G1/ ¤ T .R=G2/ can be veri�ed directly. �

3. Geometry of hyperbolic surfaces

The hyperbolic geometrical aspects of Riemann surfaces re�ect certain properties

of Teichmüller spaces and their modular groups. In this section, we prepare several

assertions concerning the geometry of topologically in�nite Riemann surfaces,

which are utilized later. Let dh denote the hyperbolic distance on the hyperbolic

plane H as well as on a hyperbolic Riemann surface R D H=H .
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Let c be a free homotopy class of non-trivial, non-cuspidal, simple closed

curves on R, and let be S.R/ the family of all such free homotopy classes. We

always ignore the orientation of c and identify c and c�1. In each class c in

S.R/, there is a unique geodesic representative, which we denote by the same

letter c. Let `.c/ be the geodesic length of the free homotopy class c on R.

By �xing an arbitrary c 2 S.R/, we have a function p̀.c/ WD `.f .c// on the

Teichmüller space T .R/, where p D Œf � 2 T .R/ is the Teichmüller class of a

quasiconformal homeomorphism f and f .c/ is the corresponding free homotopy

class on Rp D f .R/. This is called the length function. We remark that, even

though the free homotopy class f .c/ is determined by the homotopy class of f ,

its geodesic length is well de�ned by the Teichmüller class p.

By taking the union over all c 2 S.R/, we have a family of the lengths of all

simple closed geodesics on Rp (counting multiplicity). Moreover, we de�ne the

closure of the set of their logarithmic lengths as

LS.p/ D Cl ¹ log p̀.c/ j c 2 S.R/º � R;

and we call it the length spectrum for p 2 T .R/. Actually, LS.p/ is determined

by the underlying complex structure of p. If R is topologically �nite (i.e., �1.R/

is �nitely generated), then the lengths of all simple closed geodesics are known

to be discrete; hence, so is the length spectrum LS.p/. In fact, the lengths of all

closed geodesics that are not necessarily simple are also discrete (see Buser [5]).

The length spectrum de�nes a new distance on T .R/. For p; q 2 T .R/, set

dLS.p; q/ WD sup¹ j log p̀.c/ � log `q.c/j j c 2 S.R/º;

which is called the length spectrum distance. It is known that dLS.p; q/ satis-

�es the axiom of distance. Since LS.p/ is determined by the underlying com-

plex structure, the distance dLS is invariant under the action of Mod.R/. The

following formula attributed to Sorvali [30] and Wolpert [32] gives the inequality

dLS.p; q/ � dT .p; q/ between the Teichmüller distance and the length spectrum

distance.

Proposition 3.1. Let f WR ! R0 be a K-quasiconformal homeomorphism for

K � 1. Then, for every simple closed geodesic c, the geodesic lengths satisfy

1

K
`.c/ � `.f .c// � K`.c/:

It follows that

e�dT .p;q/
p̀.c/ � `q.c/ � edT .p;q/ p̀.c/

for each c 2 S.R/ and for any p and q in T .R/.

On the other hand, Basmajian [2] provided the following estimate for the

distance between two simple closed geodesics.
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Proposition 3.2. Let f WR ! R0 be a K-quasiconformal homeomorphism for

K � 1. Then, for any simple closed geodesics c and c0, the distance between the

corresponding simple closed geodesics f .c/ and f .c0/ satis�es

1

K
dh.c; c

0/ � b � dh.f .c/; f .c
0// � Kdh.c; c

0/C b;

where b � 0 is a constant depending only on K continuously such that b ! 0 as

K ! 1 monotonously.

For a simple closed geodesic c on R, a subdomain ¹a 2 R j dh.a; c/ < !º is

called a collar of c with width ! > 0 if it becomes an annular neighborhood of c.

The collar lemma asserts that a collar always exists for the width

! D arcsinh
1

sinh.`.c/=2/
;

which we call the canonical collar, denoted by A�.c/. Actually, the collar

lemma further claims that, if we take a family of mutually disjoint simple closed

geodesics, then their canonical collars are mutually disjoint (see [5]).

We may assume that the simple closed geodesic c corresponds to a hyperbolic

element h.z/ D kz .k > 1/ acting on the upper half-plane model U of the

hyperbolic plane. Let A.c/ D U=hhi be the annular cover of R D U=H , whereH

is the Fuchsian group containing h. Let .l; �/ be the (logarithmic) polar coordinate

of U; the canonical coordinate .x; y/ for y > 0 and the polar coordinate .l; �/ for

0 < � < � are transformed by xC iy D exp.lC i�/. Since the polar coordinate is

conformal to the canonical coordinate, we have a conformal coordinate .l; �/ on

A, where l is taken modulo `.c/ D log k. Let

A .c/ D
°
.l; �/ 2 A.c/

ˇ̌
ˇ �
2

�
 

2
< � <

�

2
C
 

2

±

be a subdomain of A.c/ with a positive angle  .� �/. The collar lemma asserts

thatA .c/ is conformally embedded inR by the covering projectionA.c/ ! R for

any angle  � 2 arctan.sinh!/, where sinh! D 1= sinh.`.c/=2/. Hence, every

collar in the canonical collar A�.c/ � R can be identi�ed with A .c/ � A.c/ for

an angle  .

For an annular domain A, the conformal modulus m.A/ is de�ned to be log r

if A is conformally mapped onto ¹z 2 C j 1 < jzj < rº. Then, the conformal

modulus m.A .c// of A .c/ is 2� =`.c/. In particular, m.A.c// D 2�2=`.c/

and

m.A�.c// D
4�

`.c/
arctan

1

sinh.`.c/=2/
:

Let f WR ! R0 be a K-quasiconformal homeomorphism. Since f lifts to a

K-quasiconformal homeomorphism Qf WA.c/ ! A.f .c// between the annular
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covers of R and R0 and since any K-quasiconformal homeomorphism between

annuli changes their moduli at most by a factor of K, we have

K�1m.A.c// � m.A.f .c/// � Km.A.c//:

This is equivalent to the estimate given in Proposition 3.1.

Let F be the family of all closed recti�able curves in an annular domain A that

separate the two boundary components of A. Then, the extremal length for F is

de�ned by

L.F/ D sup
�

.infˇ2F

R
ˇ
�.z/jdzj/2

’
A �.z/

2dxdy
;

where the supremum is taken over all measurable conformal metrics �.z/jdzj on

A. When �.z/jdzj attains the supremum, it is called an extremal metric. It is

known that the extremal length L.F/ for the curve family F in A.c/ is directly

proportional to the geodesic length `.c/ and hence inversely proportional to the

conformal modulus m.A.c//.

We re�ne Proposition 3.1 as follows. The argument originally presented in this

paper has been further developed in [11], [24], and [14].

Theorem 3.3. Let Qf be a lift of a K-quasiconformal homeomorphism f of R to

its annular cover A.c/ with respect to c 2 S.R/. If Qf is conformal on A .c/, then

�

K.� �  /C  
`.c/ � `.f .c// �

�

K�1.� �  /C  
`.c/

is satis�ed.

Proof. For the �rst inequality in the statement, since the geodesic length `.c/ is

proportional to the extremal length L.F/ for the family F of all closed recti�able

curves in A.c/ that separate the two boundary components of A.c/, we consider

L.F/ instead. The extremal metric �0.z/jdzj on A.c/ for this extremal length is

the Euclidean metric with respect to the polar coordinate .l; �/.

Set a conformal metric �0.�/jd�j on A.f .c// with respect to the canonical

coordinate � D � C i� on U by

�0.�/ WD
�0. Qf �1.�//

j@ Qf . Qf �1.�//j � jN@ Qf . Qf �1.�//j
:

Since jd�j � .j@ Qf .z/j � jN@ Qf .z/j/jdzj, we have

Z

Qf .ˇ/

�0.�/jd�j �

Z

ˇ

�0.z/jdzj
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for an arbitrary curve ˇ 2 F. On the other hand,

“

A.f .c//

�0.�/2d�d� D

“

A.c/

�0.z/
2 j@ Qf .z/j C jN@ Qf .z/j

j@ Qf .z/j � jN@ Qf .z/j
dxdy

�

“

A .c/

�0.z/
2dxdy CK

“

A.c/�A .c/

�0.z/
2dxdy

D
� 
�

CK
� �  

�

� “

A.c/

�0.z/
2dxdy:

Thus, we have

L.f .F// �
�

K.� �  /C  
L.F/;

which yields the �rst inequality.

For the second inequality in the statement, we consider the modulus m.A.c//

instead, as it is inversely proportional to the geodesic length `.c/. By well-known

inequalities on modulus (see Vasil0ev [31]), we have

m. Qf .A .c/// D m.A .c// D
 

�
m.A.c//I

m. Qf .A.c/ � A .c/// � K�1m.A.c/ � A .c// D
K�1.� �  /

�
m.A.c//I

m.A.f .c/// � m. Qf .A .c///Cm. Qf .A.c/ � A .c///:

Then,

m.A.f .c/// �
K�1.� �  /C  

�
m.A.c//;

which yields the second inequality. �

Corollary 3.4. Let ! D dh.c; E/ be the hyperbolic distance between a simple

closed geodesic c and a compact subset E in R. If f is a K-quasiconformal

homeomorphism of R that is conformal on R �E, then

1

˛
`.c/ � `.f .c// � ˛0`.c/

is satis�ed for constants

˛ D K C .1�K/
2

�
arctan.sinh!/ � 1;

˛0 D
h 1
K

C
�
1�

1

K

� 2
�

arctan.sinh!/
i�1

� 1

depending only on K and !. These constants tend to 1 as ! ! 1.
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Proof. If the distance between c and E is !, then no lift of E intersects the

annulusA .c/ in the annular coverA.c/ ofR, where  D 2 arctan.sinh!/. Then,

Theorem 3.3 yields the assertion. �

Grafting by an amount � > 0 (or �-grafting in brief) with respect to c 2 S.R/

is a procedure for inserting an annulus after cutting a hyperbolic surface R along

a simple closed geodesic c. Here, the inserted annulus occupies the portion

R=`.c/�.��=2; �=2/ in the original polar coordinate .l; �/ on the canonical collar

A�.c/. The resulting Riemann surface is denoted by R.c; �/ and the extended

collar in R.c; �/ is de�ned by

A�.c; �/ WD R=`.c/ �
�

�
 C �

2
;
 C �

2

�
;  D 2 arctan

1

sinh.`.c/=2/
:

A canonical quasiconformal homeomorphism �c;� WR ! R.c; �/ for this grafting,

which itself is called a grafting, is de�ned by linearly stretching A�.c/ to A�.c; �/

along the direction of � and by leavingR�A�.c/ identical. The maximal dilatation

K.�c;�/ of �c;� is . C �/= .

We estimate the maximal dilatation K.f / of an extremal quasiconformal

homeomorphism f WR ! R.c; �/ homotopic to �c;� . A lower estimate is given

by an upper estimate of the geodesic length `.f .c//. This has been proved by

McMullen [26] as follows.

Lemma 3.5. Let �c;� WR ! R.c; �/ be the �-grafting with respect to c 2 S.R/.

Then, the geodesic length p̀.c/ for p D Œ�c;� � 2 T .R/ satis�es

p̀.c/ �
�

� C �
`.c/:

Hence, for an extremal quasiconformal homeomorphism f WR ! R.c; �/ homo-

topic to �c;� , the maximal dilatation K.f / satis�es

� C �

�
� K.f / �

 C �

 
;

where  D 2 arctan¹1= sinh.`.c/=2/º.

Proof. Consider the annular cover A.c/ of R with respect to c. If we graft A.c/

along c by an amount � > 0, we have a new annulus A.c; �/. Its conformal

modulus ism.A.c; �// D 2�.�C�/=`.c/. Hence, the geodesic length of the core

curve c in the hyperbolic annulus A.c; �/ is equal to

2�2

m.A.c; �//
D

�

� C �
`.c/:

By considering projective universal covers of R.c; �/ and A.c; �/ such that the

former contain the latter, we see from the monotonicity of the hyperbolic metric
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that the geodesic length p̀.c/ of c inR.c; �/ is not greater than that of c in A.c; �/

(see [26]). Hence, we have the �rst statement. Then, by Proposition 3.1, we have

K.f / �
`.c/

p̀.c/
�
� C �

�
;

which is the lower estimate in the second statement. The upper estimate obviously

follows from K.f / � K.�c;�/. �

Remark. In Lemma 3.5, we consider the grafting with respect to a single simple

closed geodesic. However, if a quasiconformal homeomorphism f is obtained

by multiple graftings with respect to mutually disjoint, and possibly in�nitely

many, simple closed geodesics ¹ciº by amounts ¹�iº, then we have the same length

inequality as that in Lemma 3.5 for each i by the same proof.

Next, we consider moderate assumptions concerning the geometry on hyper-

bolic Riemann surfaces, which make the analysis of Teichmüller modular groups

easier. Typical conditions of this type are as follows.

De�nition. We say that a hyperbolic Riemann surfaceR satis�es the lower bound-

edness condition if the injectivity radius at every point ofR is uniformly bounded

away from 0 except in horocyclic cusp neighborhoods of area 1. We say that R

satis�es the upper boundedness condition if there exists a connected subsurface

R� of R such that the injectivity radius at every point ofR� is uniformly bounded

from above and the inclusionR� ! R induces a surjection �1.R
�/ ! �1.R/. We

say that R satis�es the bound geometry condition if both the lower and the upper

boundedness conditions are satis�ed and if the boundary at in�nity @1R is empty.

These conditions are quasiconformally invariant; hence, we may regard them

as conditions for the Teichmüller space T .R/. For example, a non-universal

normal cover of an analytically �nite hyperbolic Riemann surface satis�es the

bound geometry condition.

The virtue of assuming the bounded geometry condition lies in the next theo-

rem, which was proved by Fujikawa, Shiga, and Taniguchi [15] and [10]. For any

c 2 S.R/, we de�ne a subgroup of MCG.R/ consisting of all mapping classes that

preserve c:

MCGc.R/ D ¹Œg� 2 MCG.R/ j g.c/ � cº;

where � denotes the free homotopy equivalence. The corresponding subgroup

�.MCGc.R// of Mod.R/ is denoted by Modc.R/.

Theorem 3.6. Assume that a Riemann surface R satis�es the bounded geometry

condition. Then, no sequence of distinct elements n 2 Modc.R/ for c 2 S.R/

satis�es n.p/ ! p as n ! 1 for some p 2 T .R/.

Thus, under the bounded geometry condition, Modc.R/ acts on T .R/ discon-

tinuously. A precise de�nition for this property will be given in the next section.
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4. Isometries on complete metric spaces

Let X D .X; d/ be a complete metric space with a distance d in general, and

let Isom.X/ be the group of all isometric automorphisms of X . For a subgroup

� � Isom.X/, the orbit of x 2 X under � is denoted by �.x/ and the isotropy

(stabilizer) subgroup of x 2 X in � is denoted by Stab�.x/. For an element

 2 Isom.X/, the set of all �xed points of  is denoted by Fix./.

For a subgroup � � Isom.X/ and for a point x 2 X , a point y 2 X is a limit

point of x for � if there exists a sequence ¹nº of distinct elements of � such that

n.x/ converges to y as n ! 1. The set of all limit points of x for � is denoted

byƒ.�; x/, and the limit set for � is de�ned byƒ.�/ D
S
x2X ƒ.�; x/. From this

de�nition, it is clear that if � 0 is of �nite index in �, thenƒ.� 0/ D ƒ.�/. It is said

that x 2 X is a recurrent point for � if x 2 ƒ.�; x/, and the set of all recurrent

points for � is denoted by Rec.�/. It is evident that Rec.�/ � ƒ.�/, and these

sets are �-invariant.

The following fact appeared in Fujikawa [9] and [13].

Proposition 4.1. For a subgroup � � Isom.X/, the limit setƒ.�/ coincides with

Rec.�/ and it is a closed set. Moreover, x 2 X is a limit point of � if and only if

either the orbit �.x/ is not discrete or the isotropy subgroup Stab�.x/ consists of

in�nitely many elements.

A limit point x 2 ƒ.�/ is called a generic limit point if �.x/ is not a discrete

set and a stabilized limit point if Stab�.x/ is in�nite. The set of all generic limit

points is denoted by ƒ0.�/ and the set of all stabilized limit points is denoted by

ƒ1.�/. By Proposition 4.1, we see that ƒ.�/ D ƒ0.�/ [ ƒ1.�/; however, the

intersection ƒ0.�/ \ƒ1.�/ can be non-empty. Furthermore, ƒ1.�/ is divided

into two disjoint subsets ƒ11.�/ and ƒ21.�/ as in [9]. A limit point x 2 ƒ1.�/

belongs toƒ11.�/ if there is an element of in�nite order in Stab�.x/; otherwise, it

belongs to ƒ21.�/. In other words, ƒ11.�/ D
S

Fix./, where the union is taken

over all elements  2 � of in�nite order.

Here, we introduce discontinuity and a weaker property de�ned as stability for

the action of �.

De�nition. Let � be a subgroup of Isom.X/. We say that � acts at x 2 X

(a) discontinuously if �.x/ is discrete and Stab�.x/ is �nite;

(b) weakly discontinuously if �.x/ is discrete;

(c) stably if �.x/ is closed and Stab�.x/ is �nite;

(d) weakly stably if �.x/ is closed.
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If � acts at every point x in X (weakly) discontinuously or (weakly) stably, then

we say that � acts on X (weakly) discontinuously or stably. The set of points

x 2 X where � acts discontinuously is denoted by �.�/ and called the region of

discontinuity for �. The set of points x 2 X where � acts stably is denoted by

ˆ.�/ and called the region of stability for �.

The inclusion relation �.�/ � ˆ.�/ is immediately known from the corre-

sponding de�nitions. Furthermore, it is clear that, if �1 � �2, then �.�1/ �
�.�2/. However, for the region of stability, �1 � �2 does not necessarily imply

that ˆ.�1/ � ˆ.�2/. A counter-example will be given in the next section.

The discontinuity of the action is usually de�ned in another way (as condi-

tion (2) below, which is equivalent to proper discontinuity if X is locally com-

pact); however, as stated by the following proposition, these de�nitions are all

equivalent (see [9]).

Proposition 4.2. For a subgroup � � Isom.X/ and a point x 2 X , the following

conditions are equivalent:

(1) � acts at x discontinuously;

(2) there exists an open ball U centered at x such that the number of elements

 2 � satisfying .U / \ U ¤ ; is �nite;

(3) x is not a limit point of �.

Hence, the region of discontinuity �.�/ is the complement of the limit set ƒ.�/,

which is an open subset of X .

Similar statements hold for weak discontinuity.

Proposition 4.3. For a subgroup � � Isom.X/ and a point x 2 X , the following

conditions are equivalent:

(1) � acts at x weakly discontinuously;

(2) there exists an open ball U centered at x such that .U / D U for every

 2 Stab�.x/ and .U / \ U D ; for every  2 � � Stab�.x/;

(3) x is not a generic limit point of �.

Discontinuity and stability have the obvious inclusion relation mentioned

above. The following theorem states that the converse inclusion holds under a

certain countability assumption. This fact is based on the Baire category theorem

and uncountability of perfect closed sets.

Theorem 4.4. Assume that � � Isom.X/ contains a subgroup �0 of countable

index, i.e., the cardinality of the cosets �=�0 is countable, such that �0 acts at

x 2 X weakly discontinuously. If � acts at x (weakly) stably, then � acts at x

(weakly) discontinuously. In particular, this claim is always satis�ed if � itself is

countable.
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Proof. We consider the coset decomposition of � by �0:

� D 1�0 t 2�0 t 3�0 t � � � :

Then, �.x/ D
S1
iD1 i�0.x/, where each i�0.x/ is discrete and especially closed

because �0 acts at x weakly discontinuously. Since �.x/ is closed by assumption,

we can regard �.x/ as a complete metric space by the restriction of the distance

d on X . By the Baire category theorem, there exists an integer i 2 N, say i D 1,

such that 1�0.x/ has an interior point y in �.x/. Since 1�0.x/ is discrete, y

is an isolated point of �.x/. By the group invariance, this implies that �.x/ is

discrete. �

While the region of discontinuity �.�/ is always an open set, the region of

stability ˆ.�/ becomes an open set under a certain condition upon �. This is also

based on the Baire category theorem.

Theorem 4.5. If � � Isom.X/ contains a subgroup �0 of countable index such

that �0 acts on X stably, then the region of stability ˆ.�/ is open. In particular,

this claim is always satis�ed if � itself is countable.

Proof. Take a point x 2 ˆ.�/ and consider the isotropy subgroup Hx D

Stab�.x/, which is a �nite group. We consider the two-sided coset decomposi-

tion of � by �0 and Hx:

� D �01Hx t �02Hx t �03Hx t � � � :

Since �0 is of countable index in �, we see that the cardinality of the cosets

�0n�=Hx is also countable.

According to this coset decomposition, the closed orbit �.x/ is decomposed

into the disjoint union

�.x/ D �01.x/ t �02.x/ t �03.x/ t � � � :

Here, each �0i .x/ is closed because �0 acts on X stably. Then, by the Baire

category theorem, at least one orbit, say�01.x/, has an interior point with respect

to the relative topology on �.x/. This means that there exists a neighborhood

U � X of  0
1.x/ for some  0

1 2 �01 satisfying U \ �.x/ D U \ �01.x/.

Since the action is isometric, we can choose a neighborhood V of x and a

smaller neighborhood U 0 � U of  0
1.x/ such that  0

1.y/ 2 U 0 and U 0 \ �.y/ D

U 0 \ �01Hx.y/ for every y 2 V . Here, �01Hx.y/ is closed because it is the

�nite union of the closed sets �01.y/ taken over  2 Hx. In other words, the

orbit �.y/ is closed if it is restricted to U 0. However, by the group invariance, this

implies that the entire orbit �.y/ is closed itself.

Moreover, we see thatHy D Stab�.y/ is �nite. Indeed, every element  0 2 Hy
satis�es  0

1
0.y/ 2 U 0; hence,  0 is in . 0

1/
�1�01Hx. In particular,  0

1.y/ is in the
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orbit �01.y/ for some  2 Hx. The stability of �0 then implies that there are

only �nitely many choices for 0 2 �0 to satisfy this relation. Hence, the number

of elements  0 that belong to . 0
1/

�1�01Hx is �nite, which means that Hy is

�nite.

We have seen that, for every y 2 V , �.y/ is closed and Hy is �nite. This

implies that y 2 ˆ.�/; hence, ˆ.�/ is open. �

Next, we consider certain quotient spaces of the complete metric space .X; d/

by the isometric group action. For an arbitrary subgroup � of Isom.X/, we de�ne

two points x and y inX to be equivalent, which is denoted by x � y, if there exists

a sequence of elements n of � not necessarily distinct such that n.x/ converges

to y. In particular, all points in the same orbit of � are mutually equivalent. It is

easy to check that this satis�es the axiom of equivalence relation, which is called

the closure equivalence. An equivalence class coincides with the closure of the

orbit �.x/ of some point x 2 X . This means that �.x1/\�.x2/ ¤ ; is equivalent

to �.x1/ D �.x2/ as well as x1 � x2.

The closure equivalence is stronger than the ordinary orbit equivalence under

the group action of�. The ordinary quotient space by� is denoted byX=� and the

quotient space by the closure equivalence is denoted byX==�. The projections are

denoted by �1WX ! X=� and �2WX ! X==�, respectively. Then, the projection

N� WX=� ! X==� is well de�ned by �2 ı .�1/
�1. The inverse image N��1.s/ for

s 2 X==� coincides with the closure ¹�º � X=� for any point � 2 N��1.s/.

Clearly, ¹�º D ¹�º if and only if the corresponding orbit �.x/ is closed for any

x 2 ��1
1 .�/.

The distance d induces pseudo-distances d1 on X=� and d2 on X==� as

d1.�1.x/; �1.y// WD inf¹d.x0; y0/ j x0 2 �.x/; y0 2 �.y/ºI

d2.�2.x/; �2.y// WD inf¹d.x0; y0/ j x0 2 �.x/; y0 2 �.y/º:

Here, d2 always becomes a distance by virtue of the manner of de�ning the closure

equivalence. Hence, .X==�; d2/ is a complete metric space.

A theorem on general topology implies the following.

Proposition 4.6. For a subgroup � � Isom.X/ and a point x 2 X , the following

conditions are equivalent:

(a) � acts at x weakly stably;

(b) there exists no point �1.y/ di�erent from �1.x/ such that

d1.�1.x/; �1.y// D 0I

(c) for every point �1.y/ di�erent from �1.x/, there exists a neighborhood of

�1.y/ that separates �1.x/, or equivalently, the one-point set ¹�1.x/º is

closed in X=�.
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Corollary 4.7. For a subgroup � � Isom.X/ and the quotient space X=�, the

following conditions are equivalent:

(1) � acts on X weakly stably;

(2) the pseudo-distance d1 on X=� is a distance;

(3) X=� satis�es the �rst separation .T1/ axiom, or equivalently, every point

constitutes a closed set in X=�.

In these cases, the closure equivalence is the same as the orbit equivalence; hence,

N� WX=� ! X==� is a homeomorphism.

5. Dynamics of Teichmüller modular groups and moduli spaces

For an analytically �nite Riemann surface R, the Teichmüller modular group

Mod.R/ acts on T .R/ discontinuously. Although Mod.R/ has �xed points on

T .R/, each orbit is discrete and each isotropy subgroup is �nite. Hence, an

orbifold structure on the moduli spaceM.R/ is induced from T .R/ as the quotient

space by Mod.R/. However, these are not always satis�ed for analytically in�nite

Riemann surfaces.

We introduce the concepts (limit set and so on) de�ned in the previous sections

for the Teichmüller space X D T .R/ with the Teichmüller distance d D dT
and the Teichmüller modular group Mod.R/ � Isom.X/. Then, the results

presented in the previous section are all applicable to this case. Moreover, the

following property of Mod.R/ enables us to draw more interesting conclusions

from Theorems 4.4 and 4.5.

Theorem 5.1. The subgroup Modc.R/ for each c 2 S.R/ is of countable index in

Mod.R/. Moreover, Modc.R/ acts stably on T .R/.

Proof. Number all free homotopy classes of S.R/ by ¹ci º
1
iD1. For each i , consider

a subset

¹Œg� 2 MCG.R/ j g.c/ � ciº D Œgi � � MCGc.R/;

where Œgi � is any element of MCG.R/ satisfying gi .c/ � ci . Since MCG.R/ is the

disjoint union of all these subsets taken over i , we get the coset decomposition of

MCG.R/ by MCGc.R/, whose cardinality is countable. Hence, Modc.R/ is also

of countable index in Mod.R/.

For p D Œf � 2 T .R/, consider the orbit �.p/ for � D Modc.R/. Suppose that

a sequencepn D n.p/ for n D Œgn�� 2 � converges to a point q D Œf1� 2 T .R/.
Then, we may choose f , f1, and gn in each Teichmüller and mapping class

such that the maximal dilatation K.hn/ of hn WD f ı g�1
n ı f �1

1 converges to 1.

On the other hand, every gn preserves the free homotopy class c. Hence, a sub-

sequence of hn converges locally uniformly to a quasiconformal homeomorphism
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hW f1.R/ ! f .R/ such that h ı f1.c/ � f .c/ and K.h/ D 1, i.e., h is con-

formal. Consider a quasiconformal automorphism g D f �1
1 ı h�1 ı f of R,

which preserves c, and set  WD Œg�� 2 �. Then, f ı g�1 D h ı f1; thus,

.p/ D Œf ı g�1� D Œf1� D q. This proves that the orbit �.p/ is closed.

Next, we consider the case where all pn and q coincide with p in the above

proof, i.e., we assume that all hn are conformal automorphisms of Rp. They have

a convergent subsequence, as we have seen above. On the other hand, Conf.Rp/

is discrete (we have seen this claim before by the Fuchsian model, but another

explanation for it is to use the fact that a conformal automorphism �xing the

homotopy class of a pair of pants is the identity). This means that Stab�.p/

consists only of �nitely many elements. Therefore, � D Modc.R/ acts stably

on T .R/. �

Remark. We call a subgroup G � MCG.R/ and its representation � D �.G/ �

Mod.R/ stationary if there exists a compact subsurfaceV with boundary inR such

that every representative g of every mapping class Œg� 2 G satis�es g.V /\V ¤ ;.

The subgroup Modc.R/ in Theorem 5.1 is stationary. In general, for an arbitrary

stationary subgroup �, there exists a minimal stationary subgroup x� � Mod.R/

that contains � and acts on T .R/ stably, which can be de�ned as the closure of �

in Mod.R/. A proof of this fact can be given similarly as in the arguments above

(see also Corollary 2.24 in [25]).

By virtue of the existence of the subgroup Modc.R/, Theorem 4.5 becomes

the following assertion in our case.

Theorem 5.2. The region of stability ˆ.�/ for � D Mod.R/ is an open subset of

T .R/.

Proof. By Theorem 5.1, � D Mod.R/ has the subgroup Modc.R/ of countable

index, which acts stably. Then, by Theorem 4.5, ˆ.�/ is open. �

If R satis�es the bounded geometry condition, then Theorem 3.6 states that

Modc.R/ acts on T .R/ discontinuously. Hence, Theorem 4.4 yields the following.

Theorem 5.3. Assume that R satis�es the bounded geometry condition or a

subgroup � of Mod.R/ is countable. If � acts at p 2 T .R/ (weakly) stably,

then � acts at p (weakly) discontinuously. In other words, the stability for � is

equivalent to the discontinuity.

Proof. The intersection of � with the subgroup Modc.R/ is of countable index in

� by Theorem 5.1, and it acts on T .R/ discontinuously by Theorem 3.6. Hence,

the stability and the discontinuity are equivalent by Theorem 4.4. �

Corollary 5.4. IfR satis�es the bounded geometry condition, thenˆ.�/ D �.�/

for every subgroup � of Mod.R/.
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Note that one cannot remove the assumptions on R and � in Theorem 5.3. In

other words, there is an example of an uncountable subgroup � � Mod.R/ for

some R without the bounded geometry condition that acts on T .R/ stably but not

discontinuously.

Example. Assume that R has a sequence of mutually disjoint, simple closed

geodesics ¹ciº
1
iD1 whose geodesic lengths `.ci / tend to 0. Let G be a station-

ary subgroup of MCG.R/ consisting of all mapping classes represented by the

composition of simultaneous Dehn twists along possibly in�nitely many curves

in ¹ciº. Set the subgroup �.G/ of Mod.R/ by �. Then, the orbit �.p/ for every

p 2 T .R/ is closed but not discrete. Since Stab�.p/ D ¹idº, this group � acts on

T .R/ stably but not discontinuously.

There exists a subgroup � 0 � � that does not act stably on T .R/. Indeed, let

G0 be a countable subgroup ofG that is generated by all Dehn twists along each ci
and set� 0 D �.G0/. Then, � 0 does not act discontinuously either; hence, it does not

act stably by Theorem 5.3. Here, � is actually the closure � 0 of � 0 in the sense of

the de�nition in the remark above. For these groups, we see that ˆ.�/ 6� ˆ.� 0/;

thus, this is an example where the inclusion of the regions of stability does not

conversely follow the inclusion of the subgroups.

The bounded geometry condition is satis�ed for any non-universal normal

cover R of an analytically �nite Riemann surface (see [10]). In this case, Mod.R/

acts weakly discontinuously at the origin o D Œid� of T .R/.

Lemma 5.5. Let � be a subgroup of Mod.R/. Assume that the isotropy subgroup

Stab�.o/ at the origin o 2 T .R/ is identi�ed with G0 � Conf.R/ and the orbifold

R=G0 is analytically �nite. Then, � acts at o weakly discontinuously.

Proof. Suppose that � does not act at o weakly discontinuously. Then, there is a

sequence of elements n D Œgn�� 2 � such that pn D n.o/ ¤ o converges to o

as n ! 1. For a simple closed geodesic c 2 S.R/, Proposition 3.1 implies that

p̀n.c/ D `.g�1
n .c// converges to `.c/. Since the lengths of all closed geodesics

not necessarily simple on R=G0 are still discrete, we see that `.g�1
n .c// D `.c/

for all su�ciently large n. Then, there are a �nite number of simple closed

geodesics ¹ciº
k
iD1 � S.R/ with `.ci / D `.c/ such that, for each su�ciently

large n, there are an element hn 2 G0 and an integer i.n/ with 1 � i.n/ � k

satisfying hn ı g�1
n .c/ D ci.n/. By passing to a subsequence, we may assume that

hn ı g�1
n .c/ D h1 ı g�1

1 .c/ for all n. Then, Œhn ı g�1
n � 2 Œh1 ı g�1

1 � � MCGc.R/.

Since R satis�es the bounded geometry condition, Modc.R/ acts discontinuously

on T .R/ by Theorem 3.6. However, from pn D Œgn��.o/ ! o, it follows that

Œgnıh�1
n ��.o/ ! o as n ! 1. This contradicts the discontinuity of Modc.R/. �
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In the remainder of this section, we consider moduli spaces associated with

a Riemann surface R. Regardless of how far the action of Mod.R/ is from

discontinuity, the moduli space M.R/ is a topological space by the quotient

topology induced by the projection

�1 D �M WT .R/ �! M.R/ D T .R/=Mod.R/:

We call M.R/ the topological moduli space. Moreover, a pseudo-distance d1 D

dM on M.R/ is induced from the Teichmüller distance d D dT on T .R/.

We de�ne two open subregions in M.R/: M�.R/ D �.�/=� and Mˆ.R/ D
ˆ.�/=� for � D Mod.R/. The region M�.R/ inherits the geometric structure

from �.�/ � T .R/. In particular, M�.R/ is a complex Banach orbifold. The

moduli space of the stable points Mˆ.R/ is the maximal open subset of M.R/

where the restriction of the pseudo-distance dM becomes a distance.

The geometric moduli space M�.R/ is a complete metric space, which is the

quotient by the closure equivalence with the projection

�2 D �M�
WT .R/ �! M�.R/ D T .R/==Mod.R/:

The distance d2 D dM�
is induced from d D dT . Let N� WM.R/ ! M�.R/ be the

canonical projection. We will consider the projection N� in further detail later on

and see that the metric completion of Mˆ.R/ is isometric to M�.R/.

By Corollary 4.7, we have the following theorem. Note that a su�cient

condition for Mod.R/ to not act on T .R/weakly stably will be given in Section 6.

Theorem 5.6. For the Teichmüller modular group Mod.R/ acting on T .R/ and

for the moduli spacesM.R/ andM�.R/, the following conditions are equivalent:

(a) Mod.R/ acts on T .R/ weakly stably;

(b) the pseudo-distance dM on M.R/ is a distance;

(c) M.R/ satis�es the �rst separation .T1/ axiom, or equivalently, every point

constitutes a closed set in M.R/;

(d) the projection N� WM.R/ ! M�.R/ is an isometric homeomorphism.

We can also consider quotient spaces de�ned by certain proper subgroups �

of Mod.R/. The following space has been de�ned in [14] for the investigation of

the asymptotic Teichmüller space, which is a deformation space of the complex

structures outside any compact subsurfaces in R.

Example. For a topologically in�nite Riemann surface R, let MCG1.R/ be the

subgroup of MCG.R/ consisting of all mapping classes Œg� such that a represen-

tative g is the identity outside some topologically �nite subsurface with bound-

ary in R. This is called the stable mapping class group, which is countable

and normal in MCG.R/. The corresponding subgroup in Mod.R/ is denoted
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by Mod1.R/. If we assume that R satis�es the bounded geometry condition,

then Mod1.R/ acts on T .R/ discontinuously and freely. Then, the quotient space

T1.R/ D T .R/=Mod1.R/ is de�ned to be the enlarged moduli space. The quo-

tient group Mod1.R/ D Mod.R/=Mod1.R/ is isomorphic to the asymptotic

Teichmüller modular group.

For an arbitrary c 2 S.R/, Theorem 5.1 states that Modc.R/ is a subgroup of

countable index in Mod.R/ and it acts stably on T .R/. Moreover, if R satis�es

the bounded geometry condition, then it acts discontinuously on T .R/ by Theo-

rem 5.3. We consider the quotient space T c.R/ D T .R/=Modc.R/, which we call

the relative Teichmüller space with respect to c. This is a complete metric space

with the quotient distance Od . The relative Teichmüller space T c.R/ divides the

action of Mod.R/ on T .R/ into the stable part Modc.R/ and the countable part

Mod.R/=Modc.R/. In Section 13, we will investigate T c.R/ in order to see the

non-separability of the topological moduli spaceM.R/.

6. Elliptic subgroups

We say that a modular transformation in Mod.R/ is elliptic if it has a �xed

point p on the Teichmüller space T .R/. A mapping class corresponding to an

elliptic element is realized as a conformal automorphism of the Riemann surface

corresponding to p 2 T .R/. We call this a conformal mapping class at p.

Therefore, the following sentences have the same meaning for p D Œf � 2 T .R/

and  D Œg�� 2 Mod.R/: the Teichmüller class p belongs to Fix./; the

modular transformation  belongs to Stab.p/; the mapping class Œg� belongs to

MCGp.R/ Š Conf.Rp/. When R is topologically �nite, every elliptic element of

Mod.R/ is of �nite order because every conformal automorphism ofR is of �nite

order. However, when R is topologically in�nite, an elliptic element of Mod.R/

can be of in�nite order.

Remark. For an analytically �nite Riemann surface R, there are two types of

classi�cation of the elements in MCG.R/ and Mod.R/ related to each other: one

is topological classi�cation of the mapping classes according to Thurston and

the other is analytical classi�cation of the modular transformations according to

Bers [3]. We adopt the de�nition of ellipticity from the latter. For analytically in�-

nite Riemann surfaces, we have attempted to classify the modular transformations

in [23].

We say that a subgroup � � Mod.R/ is elliptic if it has a common �xed point

on T .R/. Let Fix.�/ denote the set of all common �xed points of � in T .R/.

As before, the following notations are equivalent for p D Œf � and � D �.G/:

p 2 Fix.�/; � � Stab.p/; G � MCGp.R/. Note that every elliptic subgroup
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is countable because so is every conformal automorphism group of a Riemann

surface. Assume that the origin o 2 T .R/ belongs to the �xed point locus Fix.�/.

Then, Fix.�/ coincides with the Teichmüller space T .R=G/ embedded in T .R/,

which has been explained in Section 2. In general, if p 2 Fix.�/, then Fix.�/ is

identi�ed with T .Rp=Gp/ for Gp D ef .G/.

In the analytically �nite case, the solution of the Nielsen realization problem

given by Kerckho� [17] asserts that � � Mod.R/ is elliptic if and only if � is a

�nite group. We generalize this fact to the analytically in�nite case. Here, we do

not have to restrict ourselves to �nite groups in this case. Note that, if � has a �xed

point on T .R/, then the orbit of � is clearly bounded since � acts isometrically.

Theorem 6.1. A subgroup � of Mod.R/ is elliptic if and only if the orbit �.p/ is

bounded for any p 2 T .R/.

Let D ! R be the universal cover of a Riemann surface R and let H be the

corresponding Fuchsian group acting on the unit disk model D of the hyperbolic

plane. Let G be a subgroup of MCG.R/ and assume that the orbit �.p/ for

� D �.G/ is bounded for anyp 2 T .R/. We lift a quasiconformal automorphism g

of R representing each Œg� 2 G to D as a quasiconformal automorphism. We take

all such lifts for all Œg� 2 G and extend them to quasisymmetric automorphisms

of the boundary @D. Thus, we have a group QH of quasisymmetric automorphisms

that contain the Fuchsian group H as a normal subgroup such that QH=H is

isomorphic to G. Since the orbit �.p/ is bounded, we see that there exists a

uniform bound for the quasisymmetric constants of all elements of QH , i.e., QH

is a uniformly quasisymmetric group. Then, Theorem 6.1 is a consequence of the

following theorem proved by Markovic [20].

Theorem 6.2. For a uniformly quasisymmetric group QH acting on the unit circle

@D, there exists a quasisymmetric automorphism f of @D such that f QHf �1 is the

restriction of a Fuchsian group to @D.

Next, we consider the discreteness of the orbit for an elliptic subgroup of

Mod.R/. Note that, by Theorem 5.3, the discreteness is equivalent to the closed-

ness of the orbit for an elliptic subgroup since it is countable. For an elliptic cyclic

group of in�nite order, we have the following, which has appeared in [23].

Proposition 6.3. Let  2 Mod.R/ be an elliptic transformation of in�nite order.

Then, the cyclic group hi does not act weakly discontinuously on T .R/. In fact,

in every neighborhoodU of a �xed point p 2 Fix./, there exists q ¤ p such that

the orbit of q under hi is not a discrete set.

This is easily seen from the following more general assertion if we observe

that an in�nite cyclic group hi contains an in�nite descending sequence hi ¥
h2i ¥ h4i ¥ � � � .
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Theorem 6.4. Let �0 be a subgroup of the isotropy subgroup Stab.p/ � Mod.R/

at p 2 T .R/. If there exists an in�nite descending sequence

�0 ¥ �1 ¥ �2 ¥ � � � ¥ �n ¥ � � �

of subgroups of �0, then, in every neighborhood U of p, there exists q ¤ p such

that �0.q/ is not a discrete set, i.e., q 2 ƒ0.�0/.

Proof. We may assume that p is the origin of T .R/. Let G0 � Conf.R/ be the

group of conformal automorphisms of R identi�ed with �0. We also de�ne Gn
to be the corresponding subgroup to �n for each n � 1. By Lemma 2.1, if two

subgroups �1 and �2 satisfy the inclusion relation �1 ¥ �2 and if the index of

�2 in �1 is su�ciently large, then the �xed point loci Fix.�1/ D T .R=G1/ and

Fix.�2/ D T .R=G2/ in T .R/ satisfy the inclusion relation Fix.�1/ ¤ Fix.�2/.

Hence, by choosing a subsequence if necessary, we have an in�nite ascending

sequence

Fix.�0/ ¤ Fix.�1/ ¤ Fix.�2/ ¤ � � � ¤ Fix.�n/ ¤ � � �

of the �xed point loci. By considering the Bers embedding ˇ, we may regard each

of these �xed point loci Fix.�n/ D T .R=Gn/ as the intersection of the open subset

ˇ.T / with the closed subspace B.Hn/ in the Banach space B.1/, whereHn is the

Fuchsian group such that U=Hn D R=Gn.

Take the union F D
S1
nD1 Fix.�n/ of all these sets and consider its closure xF

in T .R/. Then, xF �F is not an empty set (in fact, this is a dense subset). Indeed, if

it is empty, then the complete metric space xF is composed of the countable union

of the closed subsets Fix.�n/. By the Baire category theorem, at least one of them

has a non-empty interior; however, this is impossible for the in�nite ascending

sequence of linear subspaces of a Banach space restricted to some open subset in

it. Hence, we have a point q 2 xF � F .

Take a point qn 2 Fix.�n/ for each n � 1 such that the Teichmüller distances

dT .q; qn/ converge to 0 as n ! 1. Then, since every element n of �n �xes qn,

we have

dT .q; n.q// � dT .q; qn/C dT .qn; n.qn//C dT .n.qn/; n.q// D 2dT .q; qn/:

Here, n.q/ is distinct from q because q does not belong to Fix.�n/. Hence,

n.q/ ¤ q converges to q, which means that the orbit �0.q/ is not a discrete

set. �

By applying Theorem 5.3 to the above theorem, we see that the topological

moduli space M.R/ D T .R/=Mod.R/ for a certain topologically in�nite Rie-

mann surface R is not a T1-space.

Corollary 6.5. We assume that R satis�es the bounded geometry condition and

Mod.R/ contains an elliptic element of in�nite order. Then,M.R/ does not satisfy

the �rst separation .T1/ axiom. In particular, for an in�nite cyclic cover R of an

analytically �nite Riemann surface, M.R/ is not a T1-space.
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Proof. Since Mod.R/ contains an elliptic element of in�nite order, it does not

act weakly discontinuously by Proposition 6.3. Since R satis�es the bounded

geometry condition, this implies that Mod.R/ does not act weakly stably by

Theorem 5.3. Then, Theorem 5.6 asserts that M.R/ does not satisfy the �rst

separation axiom. �

7. Isolated limit points and Tarski monsters

We investigate the dynamics of Teichmüller modular groups by attempting to �nd

an isolated point of the limit set. This problem itself does not a�ect the succeeding

arguments; however, it opens up an interesting group theoretical problem. First,

we give the necessary conditions for a limit point to be isolated in the limit set.

Theorem 7.1. Assume that p 2 T .R/ is an isolated point of the limit set ƒ.�/

for a subgroup � � Mod.R/. Then, the isotropy subgroup Stab�.p/ satis�es the

following conditions:

(1) the common �xed point of each in�nite subgroup in Stab�.p/ is only p;

(2) Stab�.p/ is a �nitely generated in�nite group but does not contain an element

of in�nite order;

(3) every subgroup of Stab�.p/ is either of �nite order or of �nite index.

Proof. Without loss of generality, we may assume that p is the origin of T .R/.

Let �0 be an in�nite subgroup of Stab�.p/ andG0 be the corresponding subgroup

of Conf.R/. Then, the �xed point locus Fix.�0/ coincides with the Teichmüller

space T .R=G0/ embedded in T .R/. Clearly, p 2 Fix.�0/ and Fix.�0/ � ƒ.�/.

Since p is isolated in ƒ.�/, we see that Fix.�0/ D ¹pº, which gives condition (1).

Suppose that p is a generic limit point, i.e., p 2 ƒ0.�/. Then, there exists a

sequence ¹nº in � such that pn D n.p/ ¤ p converge to p as n ! 1. However,

since pn 2 ƒ.�/, this violates the assumption that p is isolated inƒ.�/. Hence, p

must belong to ƒ1.�/, i.e., Stab�.p/ is an in�nite group. Assume that Stab�.p/

contains an element  of in�nite order. Then, by condition (1), Fix.�1/ D ¹pº
for the in�nite cyclic group �1 D hi � Stab�.p/ and Fix.�k/ D ¹pº for its

proper subgroup �k D hki with k � 2. However, this contradicts Lemma 2.1 for

a su�ciently large k. Thus, we see that Stab�.p/ has no element of in�nite order.

Moreover, assume that Stab�.p/ is in�nitely generated. Since an in�nitely

generated group always contains an in�nitely generated proper subgroup, we have

an in�nitely generated proper subgroup � 0
1 of Stab�.p/. Then, by applying the

above fact again to this � 0
1, we have an in�nitely generated proper subgroup � 0

2

of � 0
1. By repeating this process several times, we can �nd an in�nite subgroup

� 0
k

of Stab�.p/ with a su�ciently large index. Since Fix.Stab�.p// D ¹pº and
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Fix.� 0
k
/ D ¹pº by condition (1), this also contradicts Lemma 2.1. Hence, we see

that Stab�.p/ is �nitely generated. Thus, we obtain condition (2).

Assume that Stab�.p/ contains an in�nite subgroup�0 of in�nite index. Then,

Fix.Stab�.p// D Fix.�0/ D ¹pº by condition (1) as before. However, since the

index of �0 in Stab�.p/ is in�nite, this again contradicts Lemma 2.1 and hence

yields condition (3). �

In particular, condition (2) of this theorem implies the following.

Corollary 7.2. If p 2 ƒ.�/ is an isolated limit point for � � Mod.R/, then

p 2 ƒ21.�/.

We cannot determine whether an isolated limit point exists or not. In this sec-

tion, we will see that an abstract group satisfying conditions (2) and (3) in Theo-

rem 7.1 actually exists and can be realized as a group of conformal automorphisms

of a certain Riemann surface. The corresponding isotropy subgroup also satis�es

condition (1). Then, we examine the dynamics of the Teichmüller modular group

of this Riemann surface to seek an isolated limit point.

A �nitely generated group G is called a periodic group if the order of each

element of G is �nite and a bounded periodic group if the order is uniformly

bounded. For integers m � 2 and n � 2, let Fm be a free group of rank m and

let F
.n/
m be the characteristic subgroup of Fm generated by all the elements of the

form f n for f 2 Fm. Then, the quotient group B.m; n/ D Fm=F
.n/
m is an m-

generator group, all of whose elements are the identity by n-times composition.

This is called a Burnside group or a free periodic group. It is easy to see that, for

every bounded periodic group G, there exists a free periodic group B.m; n/ for

some positive integers m and n such that G is the image of a homomorphism of

B.m; n/. For m D 2, it is known that B.2; 2/, B.2; 3/, B.2; 4/, and B.2; 6/ are

�nite groups. On the other hand, Novikov and Adjan [27] proved the following.

Theorem 7.3. For all su�ciently large odd integers n 2 N, the free periodic

group B.2; n/ is in�nite.

A problem for seeking a stronger example of the �niteness aspect in an in�nite

group is whether there is an in�nite group G, all of whose proper subgroups

are �nite. For this problem, the strongest example was obtained so that every

proper subgroup is a cyclic group of prime order n. This was constructed as the

quotient of B.m; n/ by giving certain extra relations (see Adjan and Lysionok [1]

and Ol0shanskii [28]). Such a group is sometimes called a Tarski monster.

Theorem 7.4. For all su�ciently large primes n 2 N, there exists a 2-generator

Tarski monster of exponent n.
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A free periodic group and its quotient yB.m; n/ D hx1; : : : ; xm j r1; r2; : : :i,
such as a Tarski monster, can be realized as a group of conformal automorphisms

of some Riemann surface. Indeed, since the fundamental group of an .m C 1/-

times punctured sphere is isomorphic to the free group Fm, a covering Riemann

surface R corresponding to the normal closure N of the relators r1; r2; : : : has the

covering transformation group yB.m; n/ D Fm=N . This means that a subgroup of

Conf.R/ is isomorphic to yB.m; n/. Therefore, we consider the following Riemann

surface as a potential candidate for proving the existence of an isolated limit point

of Mod.R/.

Proposition 7.5. Let R be a Riemann surface that covers the three-times punc-

tured sphere with the covering transformation group G0 � Conf.R/ isomorphic

to a bounded periodic group yB.2; n/, all of whose proper subgroups are �nite.

Then, the isotropy subgroup Stab.o/ of Mod.R/ at the origin o 2 T .R/ satis�es

the three conditions stated in Theorem 7.1.

Proof. Let �0 be the subgroup of Stab.o/ corresponding to G0 � Conf.R/. From

the condition that R=G0 is the three-times punctured sphere whose Teichmüller

space is trivial, we see that

Fix.Stab.o// D Fix.�0/ D ¹oº

and G0 Š �0 is of �nite index in Conf.R/ Š Stab.o/. Since G0 has no

in�nite proper subgroup, every in�nite subgroup of Stab.o/ contains �0; hence,

condition (1) in Theorem 7.1 is satis�ed. SinceG0 satis�es algebraic conditions (2)

and (3), so does Stab.o/. �

We expect that, in the circumstances of Proposition 7.5 with an additional

assumption that the bounded periodic group yB.2; n/ is a Tarski monster given

by Theorem 7.4, the origin o 2 T .R/ should be an isolated limit point. In the next

lemma, we show that this statement is true under a certain extra hypothesis.

Lemma 7.6. Let R be a Riemann surface that covers the three-times punctured

sphere with the covering transformation group G0 � Conf.R/ isomorphic to a 2-

generator Tarski monster of prime exponent n. Let �0 be the subgroup of Stab.o/

corresponding to G0. Then, the origin o 2 T .R/ is an isolated limit point of

Mod.R/ if the union
S
2�0�¹idº Fix./ of the sets of all �xed points of the non-

trivial elements of �0 is closed in T .R/.

Proof. By Proposition 4.3 and Lemma 5.5, we see that there exists a neigh-

borhood U of the origin o that is precisely invariant under Stab.o/; in other

words, .U / D U for every  2 Stab.o/ and .U / \ U D ; for every

 2 Mod.R/ � Stab.o/. Hence, we have only to prove that o is an isolated

limit point of Stab.o/. Furthermore, since ƒ.Stab.o// D ƒ.�0/ for the subgroup
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�0 � Stab.o/ of �nite index, it su�ces to prove the same statement for �0. As-

sume that there exist a point p 2 U � ¹oº and a sequence ¹kº1
kD1

of �0 such that

k.p/ converges to p as k ! 1. We will show that p is a �xed point of some

non-trivial element of �0 that is accumulated by �xed points of other elements of

�0. Note that, since the exponent n is prime, every non-trivial element of G0 has

order n.

By the Bers embedding ˇWT .R/ ! B.H/, where we representR D U=H by a

Fuchsian groupH , the Teichmüller space T .R/ is regarded as a bounded domain

of the Banach space B.H/ and G0 � Conf.R/ acts on B.H/ as a group of linear

isometries. Let gk 2 G0 be the element corresponding to k 2 �0 for each k 2 N.

Then, for ' D ˇ.p/ 2 B.H/ � ¹0º, we have a sequence ¹.gk/�.'/º
1
kD1

in B.H/

that converges to '.

For each k, we take the average of the orbit ¹'; .gk/�.'/; : : : ; .gk/
n�1
� .'/º

under the cyclic group hgki of order n, i.e.,  k D 1
n

Pn�1
jD0.gk/

j
�.'/. This satis�es

.gk/�. k/ D  k , i.e.,  k is a �xed point of .gk/�. Moreover, we see that  k
converges to ' as k ! 1. Indeed, the di�erence between  k and ' is estimated

by

k k � 'kB �
1

n

n�1X

jD0

k.gk/
j
�.'/ � 'kB �

Pn�1
jD0 j

n
k.gk/�.'/ � 'kB :

In particular, this shows that  k 2 ˇ.T .R//, i.e.,  k represents a point of T .R/,

for any su�ciently large k because ˇ.T .R// is an open subset of B.H/. From

the assumption that the set of all �xed points for �0 � ¹idº is closed, we see that

' D ˇ.p/ is a �xed point of some non-trivial element g0 2 G0.

For any non-trivial elements g and g0 of G0, we have Fix.g�/\ Fix.g0
�/ D ¹oº

if hgi ¤ hg0i. This is because hg; g0i D G0 by the property of Tarski monsters and

because the origin o is the only common �xed point forG0. For r D k'kB > 0, let

Sr be a sphere of radius r in B.H/ centered at the origin. Set I.g/ D Fix.g�/\Sr
for a non-trivial g 2 G0, which is a closed subset of Sr . Then, I.g/ and I.g0/ are

disjoint if and only if hgi ¤ hg0i.

From the fact proved above, the set I.g0/ containing ' is accumulated by other

I.gk/. By the group invariance, the situation is the same for every I.g/. Hence, for

the same reason as the fact that a perfect closed set in a complete metric space is

uncountable, the cardinality of ¹I.g/º taken over all non-trivial cyclic subgroups

hgi � G0 is uncountable. However, this is impossible, as G0 is countable. �

We will comment about the extra assumption on the closedness of the �xed

point set in Lemma 7.6 later on at the end of Section 12. Then, we will wait for

further arguments to complete the proof of the existence of an isolated limit point.
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8. Exceptional limit points and density of generic limit points

We wish to claim that the set ƒ0.�/ of all generic limit points for a subgroup

� � Mod.R/ is dense in ƒ.�/. However, for instance, since an isolated limit

point is not in the closure of ƒ0.�/, we have to make a certain modi�cation to

justify this density problem.

We have seen in Theorem 7.1 that, if p 2 ƒ.�/ is an isolated limit point

of � � Mod.R/, then Stab�.p/ must satisfy certain algebraic conditions. By

focusing on the occupation of limit points satisfying these algebraic conditions,

we present the following concept for limit points.

De�nition. A limit point p 2 ƒ.�/ for � � Mod.R/ is de�ned to be exceptional

if p … ƒ0.�/ and if there exists a neighborhood U of p in T .R/ such that

U \ ƒ.�/ � ƒ21.�/. The set of all exceptional limit points is called the

exceptional limit set and denoted by E.�/.

By this de�nition and Corollary 7.2, it is clear that

¹isolated limit pointsº � E.�/ � ƒ21.�/:

However, thus far, we are unaware of the existence of exceptional limit points, not

to mention isolated limit points.

First, we give a condition for a limit point to be exceptional in Lemma 8.2

below. The following lemma is crucial for that argument.

Lemma 8.1. For a countable subgroup � of Mod.R/, if ƒ.�/ D ƒ1.�/, then

they coincide with ƒ21.�/. More generally, for an open subset U in T .R/, if

U \ƒ.�/ D U \ƒ1.�/, then they coincide with U \ƒ21.�/.

Proof. We number the elements of in�nite order of � by ¹iºi2N and the elements

of �nite order of � � ¹idº by ¹ej ºj2N. Set Xi D Fix.i / for each i 2 N, which is

a closed subset of T .R/. Consider the union

1[

iD1

Xi D ƒ11.�/ D ƒ1.�/ �ƒ21.�/:

To prove that this is an empty set, we assume that
S1
iD1Xi ¤ ; and draw a

contradiction.

Set Yj D Fix.ej / \ ƒ11.�/ for each j 2 N, which is also closed. Since

ƒ11.�/ � ƒ.�/ D ƒ1.�/ by assumption, we have

ƒ11.�/ D

1[

iD1

Xi [

1[

jD1

Yj :
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We regard ƒ11.�/ as a complete metric space by the restriction of the Teich-

müller distance. Then, by the Baire category theorem, there exists at least one

Xi or Yj that contains an interior point p. This means that there exists an open

neighborhood V of p in T .R/ such that ƒ11.�/ \ V is contained in Xi or Yj .

First, assume that Xi D Fix.i / contains an interior point p for some i .

Consider Fix.ki / for a su�ciently large integer k, i.e., Xi 0 for some di�erent

integer i 0 ¤ i . Since Xi ¤ Xi 0 by Lemma 2.1, any neighborhood V of p

contains a point in ƒ11.�/ � Xi , which is a contradiction. Next, assume that

Yj D Fix.ej /\ƒ11.�/ contains an interior point p for some j . Then, there exists

an open subset V of T .R/ such that p 2 ƒ11.�/\ V � Fix.ej /. We choose some

Xi D Fix.i / � ƒ11.�/ that intersects V . In this situation, the cyclic group hi i is

a proper subgroup of hi ; ej i because the order of ej is �nite. Then, we see from

Lemma 2.1 again thatXi\Fix.ej / is properly contained inXi by replacing i with

some ki if necessary. This contradicts the fact that every point in Xi \ V is �xed

by ej .

The same proof can be applied if we restrict all the limit sets to an open subset

U . Thus, the general statement is also valid. �

Remark. The assumption of Lemma 8.1 that � is countable can be removed. This

will be seen in Section 12.

Lemma 8.2. Let � be a subgroup of Mod.R/. If p 2 ƒ.�/ � ƒ0.�/ has a

neighborhood U such that U \ƒ.�/ � ƒ1.�/, then p belongs to E.�/.

Proof. By Proposition 4.3, we may assume that the neighborhood U of p is

equivariant under �, i.e., .U / D U for every  in the isotropy subgroup �0 D

Stab�.p/ and .U /\U D ; for every  2 ���0. Then, U \ƒ.�/ D U \ƒ.�0/
and U \ ƒ1.�/ D U \ ƒ1.�0/. On the other hand, the assumption implies

that U \ ƒ.�/ D U \ ƒ1.�/. Hence, U \ ƒ.�0/ D U \ ƒ1.�0/. Since

�0 is countable, it follows from Lemma 8.1 that U \ ƒ1.�0/ D U \ ƒ21.�0/.

Here, again by the equivariance of U under �, we conclude that U \ ƒ1.�/ D

U \ƒ21.�/; thus, p belongs to E.�/ by de�nition. �

Now, we can formulate the density of generic limit points in the following

form. This is the best possible assertion if we assume the existence of exceptional

limit points.

Theorem 8.3. For a subgroup � of Mod.R/, the set of generic limit pointsƒ0.�/

is dense in ƒ.�/ �E.�/.

Proof. Take a limit pointp 2 ƒ.�/�E.�/�ƒ0.�/. If there exists a neighborhood

U of p such that U \ ƒ.�/ � ƒ1.�/, then p belongs to E.�/ by Lemma 8.2.

This is a contradiction; thus, there is no such neighborhood. This means that there

is a sequence of points in ƒ.�/ �ƒ1.�/ � ƒ0.�/ that converges to p. �
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In Proposition 4.3, we have seen certain equivalent conditions for the action

of an isometry group to be weakly discontinuous in a general setting on metric

spaces. Here, we add a speci�c condition obtained by Theorem 8.3 in the case of

a Teichmüller space.

Corollary 8.4. Let � be a subgroup of Mod.R/. Then, the following conditions

are equivalent:

(1) � acts weakly discontinuously on T .R/;

(2) ƒ0.�/ D ;;

(3) ƒ.�/ D E.�/.

In particular, condition (3) implies that ƒ.�/ D ƒ1.�/. We will consider the

converse implication later on in Section 12.

We will show that the isotropy subgroup of an exceptional limit point contains

a subgroup that has the same algebraic property as the isotropy subgroup of an

isolated limit point. Recall that the existence of such a group has been stated in

Section 7.

Theorem 8.5. For an exceptional limit point p 2 E.�/ of a subgroup � �

Mod.R/, the isotropy subgroup Stab�.p/ contains a �nitely generated in�nite

group �0 whose proper subgroups are all �nite.

Proof. Let ¹�nº
1
nD1 be the family of all in�nite subgroups of Stab�.p/. We will

show that the union
S1
nD1 Fix.�n/ of all �xed point loci of the subgroups �n is a

closed set. Let us suppose that the opposite is true. Then, there exists a sequence

¹pmº1
mD1 in

1[

nD1

Fix.�n/ �

1[

nD1

Fix.�n/

such that pm ! p as m ! 1 and pm 2 ƒ21.�/. Set Hm D Stab�.pm/ for each

m, which is an in�nite group. If p 2 Fix.Hm/, then Hm � Stab�.p/; however,

this contradicts pm …
S1
nD1 Fix.�n/. Hence, we have p … Fix.Hm/. This implies

that there is some m 2 Hm for each m such that m.p/ ¤ p. On the other hand,

m.pm/ D pm and pm ! p yield m.p/ ! p as m ! 1. However, since

p … ƒ0.�/, this is impossible. Thus, we have shown that
S1
nD1 Fix.�n/ is closed.

We apply the Baire category theorem to the complete metric spaceS1
nD1 Fix.�n/with the restriction of the Teichmüller distance, where each Fix.�n/

is a closed subset. Then, there is some �0 in the family ¹�nº
1
nD1 such that Fix.�0/

has an interior point in
S1
nD1 Fix.�n/. In particular, this implies that there is no

Fix.�n/ that contains Fix.�0/ properly. Thus, by possibly replacing �0 with a

subgroup of �nite index, we see from Lemma 2.1 that �0 has no proper in�nite

subgroup in it. This property also forces �0 to be �nitely generated. �
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Corollary 8.6. If a subgroup � of Mod.R/ does not contain a �nitely generated

in�nite group �0 whose proper subgroups are all �nite, then E.�/ D ;.

If the group structure does not allow � � Mod.R/ to have such a subgroup

�0, e.g., if � is abelian, then E.�/ D ;.

Finally, we give a necessary condition for � � Mod.R/ to act weakly discon-

tinuously on T .R/, which is equivalent to the condition ƒ.�/ D E.�/, in terms

of the algebraic properties of the isotropy subgroups.

Proposition 8.7. If a subgroup � of Mod.R/ acts on T .R/ weakly discontinu-

ously, then for every p 2 T .R/, the isotropy group �0 D Stab�.p/ has no in�nite

descending sequence of proper subgroups. In particular, every element of �0 is

of �nite order and every subgroup of �0 is �nitely generated.

Proof. If � acts weakly discontinuously, then the orbit �.q/ is a discrete set for

every q 2 T .R/. Then, by Theorem 6.4, �0 cannot contain an in�nite descending

sequence ¹�nº
1
nD1 of proper subgroups as in its statement. �

9. Partial discreteness of the length spectrum

For an analytically �nite Riemann surface R, it is well known that the length

spectrum LS.p/ is discrete (in a stronger sense, the multiplicity of each point

spectrum is at most �nite) for every p 2 T .R/, from which the discontinuity

of the action of Mod.R/ on T .R/ follows. Although LS.p/ is not necessarily

discrete for a Riemann surfaceR in general, the distribution of LS.p/ gives certain

information on the action of Mod.R/ locally at p 2 T .R/. Recall that LS.p/ is

de�ned as the closure of the set ¹log p̀.c/ºc2S.R/ of all point spectra.

De�nition. An accumulation point of LS.p/ is called an essential spectrum and

the closed subset of all essential spectra is denoted by LSess.p/. We assume that a

point of in�nite multiplicity is an essential spectrum. A point in the complement

LS.p/ � LSess.p/ is called a point spectrum. Let rx.p/ denote the Euclidean

distance from x 2 R to the closed set LSess.p/. For each c 2 S.R/, in particular,

we de�ne rc.p/ to be rx.p/ where x D log p̀.c/. Let r.p/ be the supremum of

rx.p/ taken over all the spectra:

r.p/ D sup¹rx.p/ j x 2 LS.p/º D sup¹rc.p/ j c 2 S.R/º:

This represents the gap of LSess.p/ relative to LS.p/.
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Proposition 9.1. The function r.p/ is invariant under Mod.R/ and continuous

on T .R/. More precisely, if r.p/ < 1 for every p 2 T .R/, then it satis�es

jr.p/� r.q/j � 2dLS.p; q/ � 2dT .p; q/:

If r.p/ D 1 for some p 2 T .R/, then r.p/ D 1 for every p 2 T .R/.

Proof. The invariance under Mod.R/ is obvious. The second inequality is due to

Proposition 3.1. We will prove the �rst inequality below.

Suppose that r.p/ < 1 for everyp 2 T .R/. For an arbitrary " > 0, there exists

c 2 S.R/ such that rc.p/ > r.p/ � ". Then, there is no point of LSess.p/ within

distance r.p/ � " from log p̀.c/, where at most �nitely many point spectra exist.

Thus, we see that there is no point of LSess.q/within distance r.p/�2dLS.p; q/�"

from log `q.c/. This implies that rc.q/ � r.p/ � 2dLS.p; q/ � "; hence, r.q/ �
r.p/�2dLS.p; q/�" for any q 2 T .R/. Since " is arbitrary, we have r.p/�r.q/ �

2dLS.p; q/. By exchanging the roles of p and q, we obtain the desired inequality.

If r.p/ D 1 for some p 2 T .R/, then for an arbitrary M > 0, there exists

c 2 S.R/ such that rc.p/ > M . By an argument similar to the one presented

above, we have r.q/ � M � 2dLS.p; q/ for any q 2 T .R/. This implies that

r.q/ D 1. �

If LS.p/ is discrete, i.e., LSess.p/ D ; or equivalently rc.p/ D 1 for all

c 2 S.R/, then r.p/ D 1. Conversely, we do not know whether r.p/ D 1
implies that LSess.p/ D ; or not. As the above proof indicates, these conditions

are independent of p 2 T .R/; if a condition is satis�ed for some p, then it

is satis�ed for all p. By contrast, there exists a case in which LS.p/ is totally

indiscrete, i.e., LSess.p/ D LS.p/. This is equivalent to the condition that

r.p/ D 0. For example, if p is a stabilized limit point of Mod.R/, then r.p/ D 0.

Here, we consider a situation where LS.p/ is partially discrete in the sense

that LSess.p/ ¤ LS.p/, or equivalently r.p/ > 0. We remark that the conditions

r.p/ > 0 and rc.p/ > 0 that appear below include the cases r.p/ D 1 and

rc.p/ D 1, respectively.

Theorem 9.2. If p 2 T .R/ satis�es r.p/ > 0, then p belongs to the region of

stability ˆ.�/ for � D Mod.R/. In addition, if R satis�es the bounded geometry

condition, then p belongs to the region of discontinuity �.�/.

Proof. Since r.p/ > 0, there exists c 2 S.R/ such that rc.p/ > 0. In the case

where rc.p/ D 1, we assume that rc.p/ takes an arbitrary positive constant.

Then, the length spectra belonging to an open interval I.log p̀.c/; rc.p/=2/ � R

with center log p̀.c/ and radius rc.p/=2 is �nite, and we denote the corresponding

elements in S.R/ by ¹c1; : : : ; ckº including c. Let U.p; rc.p/=2/ � T .R/ be

an open ball with center p D Œf � and radius rc.p/=2. If an orbit point .p/

is in U.p; rc.p/=2/ for  D Œg�� 2 �, then Proposition 3.1 implies that the
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quasiconformal automorphism g�1 ofRmust send c to one of ¹c1; : : : ; ckº. Hence,

f ı g�1 ı f �1 for all such g are quasiconformal automorphisms of Rp D f .R/

with bounded maximal dilatation and satisfy the stationary condition. As in the

proof of Theorem 5.1, it follows that the orbit �.p/ restricted to U.p; rc.p/=2/ is

closed and the isotropy subgroup Stab�.p/ is �nite. Since the same properties are

satis�ed for each point in the orbit �.p/, we conclude that p 2 ˆ.�/. The latter

statement then directly follows from Corollary 5.4. �

We can re�ne this conclusion quantitatively by the value r.p/.

Corollary 9.3. If p 2 T .R/ satis�es r.p/ > 0, then U.p; r.p/=2/ is contained

in ˆ.�/ for � D Mod.R/. In addition, if R satis�es the bounded geometry

condition, then U.p; r.p/=2/ � �.�/. When r.p/ D 1, the above conclusions

are expressed as ˆ.�/ D T .R/ and �.�/ D T .R/, respectively.

Proof. Suppose that r.p/ < 1. Every q 2 U.p; r.p/=2/ satis�es dT .p; q/ D
r.p/=2��=2 for some � > 0. By the de�nition of r.p/, there exists some c 2 S.R/

such that rc.p/ > r.p/ � �. Since j log p̀.c
0/ � log `q.c

0/j � r.p/=2 � �=2 for

every c0 2 S.R/ by Proposition 3.1, we see that rc.q/ > 0; hence, r.q/ > 0.

Then, from Theorem 9.2, we conclude that q 2 ˆ.�/. The additional statement

is due to Corollary 5.4. If r.p/ D 1, then r.q/ D 1 for every q 2 T .R/ by

Proposition 9.1. Hence, ˆ.�/ D T .R/ by Theorem 9.2. �

Based on a primary version of the above arguments, it was proved in [9] that

�.�/ is not empty for � D Mod.R/ and for a Riemann surface R satisfying

the bounded geometry condition. An application of the property �.�/ ¤ ; to

the in�nite-dimensional Teichmüller theory can be found in [12]. In the next two

sections, we will employ the above results to show more detailed properties of

ˆ.�/.

We de�ne the bottom of the spectra as

�0.p/ D inf¹x 2 R j x 2 LS.p/º D inf¹log p̀.c/ j c 2 S.R/º

and the bottom of the essential spectra as

�ess.p/ D inf¹x 2 R j x 2 LSess.p/º:

Obviously, �0.p/ � �ess.p/, and if �0.p/ < �ess.p/, then the partial discreteness

condition r.p/ � �ess.p/ � �0.p/ > 0 follows. Furthermore, they are continuous

functions on T .R/ invariant under Mod.R/ satisfying

j�0.p/ � �0.q/j; j�ess.p/ � �ess.q/j � dLS.p; q/ � dT .p; q/

if they are �nite over T .R/.

We investigate the variation of the bottom of the (essential) spectra under a

quasiconformal deformation. First, we consider the case that the bottom is �1 or
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C1. Note that the condition �0.p/ D �1 implies that the hyperbolic Riemann

surface Rp does not satisfy the lower boundedness condition for the injectivity

radii. Since any K-quasiconformal homeomorphism can move log p̀.c/ by at

most logK for each c 2 S.R/, the conditions �0.p/ D �1 and �ess.p/ D �1 are

consistent throughout p 2 T .R/. On the other hand, the condition �ess.p/ D C1

implies that LSess.p/ D ; and this is equivalent to the condition that LS.p/ is

discrete. For the same reason as that stated above, we see that this condition is

also consistent throughout p 2 T .R/. In other words, we see the following.

Proposition 9.4. If �ess.p/ D ˙1 for some p 2 T .R/, then �ess.p/ D ˙1 for

every p 2 T .R/. Hence, �ess.p/ D ˙1 is a property of the Teichmüller space

T .R/.

Next, we consider the general case. By virtue of Corollary 3.4, we have

the invariance of the bottom of the essential spectra under a quasiconformal

deformation whose support is on a compact subset.

Theorem 9.5. If there exists a quasiconformal homeomorphism f WRp ! Rq
between Riemann surfaces corresponding to p and q in T .R/ such that f is

conformal o� a compact subset E � Rp, then �ess.p/ D �ess.q/.

Proof. We have only to consider the case that �ess.p/ ¤ ˙1, and prove the claim

that, for every � > 0, the number of c 2 S.R/ satisfying log `q.c/ � �ess.p/ � �

is �nite. Then, we have �ess.p/ � �ess.q/. By exchanging the roles of p and q

considering f �1, we conclude that �ess.p/ D �ess.q/.

Let K � 1 be the maximal dilatation of the quasiconformal homeomorphism

f . If log p̀.c/ � �ess.p/ C logK, then log `q.c/ � �ess.p/ by Proposition 3.1.

Hence, we have only to consider such c 2 S.R/ that satisfy log p̀.c/ < �ess.p/C
logK. On the other hand, Corollary 3.4 asserts that, if c 2 S.R/ satis�es

log p̀.c/ � �ess.p/ � �=2 and log `q.c/ � �ess.p/ � �, then

log ˛ D log
°
K C .1�K/

2

�
arctan.sinhdh.c; E//

±
�
�

2
:

This implies that the distances dh.c; E/ are bounded above for such c. In addition,

their lengths are bounded above by K exp.�ess.p//. Hence, such c are �nitely

many. Since the number of c 2 S.R/ satisfying the condition log p̀.c/ <

�ess.p/ � �=2 is also �nite, we obtain the above claim. �
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Remark. By arguments similar to those presented above, we can extend Theo-

rem 9.5 to the claim that LSess.p/ D LSess.q/ is satis�ed under any quasicon-

formal homeomorphism f WRp ! Rq with the dilatation on a compact support.

Moreover, this is also true when f is an asymptotically conformal homeomor-

phism. The proof can be given by applying Lemma 3.7 in [11], which is a general-

ization of Corollary 3.4 in the present paper.

We conclude this section by presenting another continuous map on the Teich-

müller space T .R/ invariant under Mod.R/, which is given by using the length

spectrum. Let C.R/ be the family of all closed subsets in R equipped with the

Hausdor� distance H . We de�ne the map �WT .R/ ! C.R/ by p 7! LS.p/.

By Proposition 3.1, it is easy to see that � satis�es H.LS.p/;LS.q// � dT .p; q/;

in particular, � is Lipschitz continuous.

10. Density of the region of stability

In this section, we prove that the region of stabilityˆ.�/ for � D Mod.R/ is dense

in T .R/. Actually, we show the density of points q 2 T .R/ satisfying the partial

discreteness condition r.q/ > 0 for the length spectrum. Then, by Theorem 9.2,

we have the required result.

Theorem 10.1. In every neighborhood Up of every p 2 T .R/, there exists q such

that r.q/ > 0.

Corollary 10.2. The region of stability ˆ.�/ for � D Mod.R/ is dense in T .R/.

In addition, if R satis�es the bounded geometry condition, then the region of

discontinuity �.�/ is dense in T .R/.

The proof of Theorem 10.1 is divided into two cases according to the bottom

of the spectra: Lemma 10.3 deals with the case �ess.p/ > �1 for p 2 T .R/ and

Lemma 10.4 deals with the case �ess.p/ D �1 included in the case �0.p/ D �1

whereR does not satisfy the lower boundedness condition. Recall Proposition 9.4,

which states that these conditions are regarded as assumptions on the Teichmüller

space T .R/.

Lemma 10.3. Suppose that �ess.p/ > �1 for some p 2 T .R/. Then, for every

� > 0, there exist q 2 U.p; �/ and c 2 S.R/ such that

rc.q/ � �ess.q/ � log `q.c/ > 0:
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Proof. If �ess.p/ D 1, then the statement is clearly satis�ed. Hence, we may

assume that �ess.p/ < 1. Set an angle

 D 2 arctan
1

sinh.exp�ess.p//
:

Choose an amount � 2 .0; �/ such that log .1C �= / < �. Then, take c 2 S.R/

satisfying

log p̀.c/ � �ess.p/ < log
�
1C

�

�

�
< log 2:

Since p̀.c/=2 < exp�ess.p/, the collar lemma implies that there is a collar of the

angle  for the corresponding simple closed geodesic f .c/ on Rp D f .R/.

Consider the canonical quasiconformal homeomorphism�f .c/;� ofRp induced

by the �-grafting with respect to f .c/ and set q D Œ�f .c/;� ıf �. Then, dT .p; q/ �
log¹. C �/= º < �. By Lemma 3.5, the geodesic length `q.c/ satis�es

log `q.c/ � log p̀.c/ � log
� C �

�
< �ess.p/;

where �ess.p/ D �ess.q/ by Theorem 9.5. This implies that rc.q/ � �ess.q/ �
log `q.c/ > 0. �

Lemma 10.4. Suppose that �0.p/ D �1 for some p 2 T .R/. Then, for every

� > 0, there exist q 2 U.p; �/ and c 2 S.R/ such that rc.q/ > 0.

Proof. Take an element c 2 S.R/ of su�ciently small p̀.c/ satisfying

 WD 2 arctan
1

sinh.2 p̀.c//
�
11

12
�:

Choose an amount � 2 .0; �/ such that 3� WD log
�
1 C �

 

�
< �. Then, a simple

calculation gives

2� < log
�
1C

�

�

�
< log 2:

Consider an open interval I.x; �/ � Rwith center x WD log p̀.c/ and radius �. Let

¹ci º
1
iD1 be a family of all elements in S.R/ except c such that log p̀.ci / belongs to

I.x; �/. Since � < log 2=2 < log 4, it follows that p̀.ci /=2 < 2 p̀.c/, from which

the collar lemma ensures that there is a collar of the angle  > �=2 for each

simple closed geodesic f .ci / on Rp D f .R/. In particular, sinh. p̀.ci /=2/ < 1.

On the other hand, the width !i of the canonical collar of f .ci / satis�es

sinh!i D
1

sinh. p̀.ci /=2/
> 1:

This implies that !j > arcsinh 1 > p̀.ci /=2 for any i and j . If f .ci / intersects

a distinct f .cj /, it must take at least length 2!j to pass the canonical collar of

f .cj /. Hence, this inequality guarantees that the simple closed geodesics ¹ciº are

mutually disjoint.
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For each i 2 N, we perform a grafting by an amount � with respect to

f .ci /. This is obtained on the canonical collar A�.f .ci // as a quasiconformal

homeomorphism of the maximal dilatation not greater than . C�/= D exp.3�/.

Let � be the quasiconformal homeomorphism ofRp induced by all these graftings

with respect to ¹f .ci/º and set q D Œ� ı f �. Then, � is exp.3�/-quasiconformal;

hence, dT .p; q/ < �.

By Lemma 3.5 and the subsequent remark, the geodesic length `q.ci / satis�es

log `q.ci / � log p̀.ci / � log
� C �

�
< log p̀.ci / � 2�:

Hence, log `q.ci / … I.x; �/ for every i .

Next, we consider all c0 2 S.R/with log p̀.c
0/ 2 I.x; 4�/�I.x; �/ or with c0 D

c. Any other c00 2 S.R/ with log p̀.c
00/ … I.x; 4�/ does not satisfy log `q.c

00/ 2
I.x; �/ because � is exp.3�/-quasiconformal; hence, j log p̀.c

00/ � log `q.c
00/j �

3� by Proposition 3.1. Since 4� < log 4, we still have p̀.c
0/=2 < 2 p̀.c/, which

implies that each f .c0/ has a collar of the angle  disjoint from all A�.f .ci //.

Since � is conformal on A�.f .c0//, Theorem 3.3 yields

j log p̀.c
0/ � log `q.c

0/j � log
°
1C

.exp.3�/� 1/.� �  /

�

±

< .exp.3�/� 1/
� �  

�

< 6� �
1

12
D
�

2
:

This implies that log `q.c/ belongs to I.x; �=2/ but log `q.c
0/ does not belong to

I.x; �=2/ for any other c0 2 S.R/. Thus, we have rc.q/ > 0. �

Consider the projection � WT .R/ ! M.R/ and the moduli space of the stable

points Mˆ.R/ D �.ˆ.�//. Corollary 10.2 implies thatMˆ.R/ is dense in M.R/.

Moreover, since ˆ.�/ is open by Theorem 5.2, the complement M.R/ �Mˆ.R/

is closed; hence, it is nowhere dense. On the other hand, the moduli space M.R/

can fail the �rst separability axiom as Corollary 6.5 shows and the closure of a

point set can be a larger set in this case. However, we see that this closure cannot

be so large.

Proposition 10.5. The closure of a point set ¹�º for any � 2 M.R/ has no interior.

Proof. If � 2 Mˆ.R/, then the closure of ¹�º coincides with itself. If � 2 M.R/�
Mˆ.R/, then the closure of ¹�º is contained in the closed set M.R/ � Mˆ.R/,

which is nowhere dense. �

In Section 13, we will extend this result to any countable subset of M.R/.
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11. Connectivity of the region of stability

In this section, we will prove that the region of stability ˆ.�/ for � D Mod.R/

is connected. The method for showing this property is similar to the method pre-

sented in the previous section. Speci�cally, we again utilize the partial discrete-

ness of the length spectrum. In fact, we prove a stronger result than the global

connectivity of ˆ.�/ as follows.

Theorem 11.1. For every p 2 T .R/ and every r > 0, there exists a positive

number C > 0 depending continuously on p and r that satis�es the following

property: any distinct points q1 and q2 in U.p; r/ \ ˆ.�/ for � D Mod.R/ can

be connected by a path in ˆ.�/ whose length is less than CdT .q1; q2/.

Corollary 11.2. The region of stability ˆ.�/ for � D Mod.R/ is connected.

In addition, if R satis�es the bounded geometry condition, then the region of

discontinuity �.�/ is connected.

Proof of Theorem 11.1. We divide the proof into two cases as in the proof of

Theorem 10.1:

(a) �ess.p/ > �1;

(b) �0.p/ D �1.

We may also assume that �ess.p/ < 1. Fix � > 0 such that U.q1; �/ �

U.p; r/ \ˆ.�/ and U.q2; �/ � U.p; r/\ˆ.�/.

Case (a). By Lemma 10.3, for each i D 1; 2, there exist q0
i D Œfi � 2 U.qi ; �/

and ci 2 S.R/ such that �ess.q
0
i/ � log `q0

i
.ci / > 0. Moreover, we can choose c1

and c2 such that the hyperbolic distance dh.c1; c2/ is su�ciently large. Take a K-

quasiconformal homeomorphism f of Rq0
1

D f1.R/ onto Rq0
2

D f2.R/ such that

0 < logK < dT .q1; q2/C 2�.

Set � WD .K2 � 1/� and consider a one-parameter family of the canonical

quasiconformal homeomorphisms �f1.c1/;t� ofRq0
1

D f1.R/ induced by the .t�/-

grafting with respect to f1.c1/ for 0 � t � 1. This de�nes a path ¹˛.t/º0�t�1 in

T .R/ by ˛.t/ D Œ�f1.c1/;t� ıf1�. By Lemma 3.5, the geodesic length of c1 satis�es

`˛.t/.c1/ �
�

� C t�
`˛.0/.c1/ � `q0

1
.c1/:

Since �ess.˛.t// D �ess.˛.0// D �ess.q
0
1/ for every t by Theorem 9.5, we see that

rc1.˛.t// � �ess.˛.t//� log `˛.t/.c1/ > 0;

which implies that the path ˛.t/ is contained in ˆ.�/. Moreover, for t D 1, we

have

�ess.˛.1//� log `˛.1/.c1/ > log
� C �

�
D 2 logK:
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Let  be the angle of the canonical collar A�.f1.c1//. Since each �f1.c1/;t� is

obtained by linearly stretching A�.f1.c1//, we can estimate the distance between

any two points on the path ˛ and hence the length of ˛ (alternatively, we may

consider a Beltrami disk D ! T .R/ de�ned by the complex dilatation of �f1.c1/;�
and obtain this estimate as explained below). It is bounded above by logK 0 for

K 0 D
 C �

 
D 1C

.K2 � 1/�

 
;

which is the maximal dilatation of � D �f1.c1/;� . Here, the angle  of A�.f1.c1//

is estimated by

 D 2 arctan
1

sinh.`q0
1
.c1/=2/

> 2 arctan
1

sinh¹exp.�ess.p/C r/=2º
:

Next, we consider a deformation of Rq0
2

D f2.R/. De�ne a Beltrami co-

e�cient � on Rq0
2

by � D 0 on Rq0
2

� f .A�.f1.c1/// and � D ��ıf�1

on f .A�.f1.c1///, where ��ıf �1 denotes the complex dilatation of � ı f �1.

Then, take a one-parameter family of quasiconformal deformations ht of Rq0
2

for

0 � t � 1, where ht is the quasiconformal homeomorphism with the complex

dilatation t�. This de�nes a path ¹ˇ.t/º0�t�1 in T .R/ by ˇ.t/ D Œht ı f2�. Under

this deformation, Corollary 3.4 ensures that the geodesic length `ˇ.t/.c2/ does not

change signi�cantly and hence satis�es the condition �ess.q
0
2/� log `ˇ.t/.c2/ > 0,

since we have chosen the hyperbolic distance dh.c1; c2/ to be su�ciently large.

Again, by �ess.ˇ.t// D �ess.ˇ.0// D �ess.q
0
2/, we have

rc2.ˇ.t// � �ess.ˇ.t//� log `ˇ.t/.c2/ > 0;

which implies that the path ˇ.t/ is contained in ˆ.�/. Moreover, the length of

ˇ is bounded above by logK.� ı f �1/ � logK 0 C logK. Indeed, we consider a

holomorphic map (Beltrami disk) from the unit disk D into T .R/ by assigning z 2
D to a quasiconformal deformation of Rq0

2
with a Beltrami coe�cient z�=k�k1.

Then, the path ˇ.t/ is the image of the interval Œ0; k�k1� � D, and the contraction

of the Kobayashi distance, which coincides with the Teichmüller distance, gives

the claim.

Finally, we connect ˛.1/ and ˇ.1/ by a path in ˆ.�/. We de�ne a Beltrami

coe�cient �0 on R˛.1/ D �.Rq0
1
/ by �0 D 0 on �.A�.f1.c1/// and �0 D �f ı��1

on �.Rq0
1

� A�.f1.c1///. Then, take a one-parameter family of quasiconformal

deformations h0
t of R˛.1/ for 0 � t � 1, where h0

t is the quasiconformal home-

omorphism with the complex dilatation t�0. This de�nes a path ¹�.t/º0�t�1 in

T .R/ by �.t/ D Œh0
t ı � ı f1� with �.0/ D ˛.1/ and �.1/ D ˇ.1/. We remark that

the maximal dilatation of h0
t is bounded above by K because ��1 is conformal
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outside �.A�.f1.c1///. Hence,

rc1.�.t// � �ess.�.t//� log `�.t/.c1/

� .�ess.�.0//� logK/ � .log `�.0/.c1/C logK/

D �ess.˛.1// � log `˛.1/.c1/ � 2 logK > 0

for every t . This implies that the path �.t/ is contained in ˆ.�/. For the same

reason as before, the length of � is bounded above by logK.

Therefore, q0
1 and q0

2 are connected by the composition of the paths ˛ � � � ˇ�1

in ˆ.�/ whose length is bounded above by

2 logK C 2 logK 0 D 2 logK C 2 log
�
1C

.K2 � 1/�

 

�

D 2
�
1C

2�

 

�
.logK � ".K;  //;

where ".K;  / is some positive function of K > 1 and 0 <  < 2� . Hence,

q1 and q2 can be connected by a path in ˆ.�/ whose length is 2� greater than

that of the above path. Recall that logK < dT .q1; q2/ C 2�. Since � > 0 can be

taken to be arbitrarily small, we set � D ".K;  /=3. Then, we conclude that the

length of this path in ˆ.�/ connecting q1 and q2 is less than CdT .q1; q2/, where

C D 2.1C 2�= / depends only on p and r .

Case (b). By Lemma 10.4, for each i D 1; 2, there exist q0
i D Œfi � 2 U.qi ; �/ and

ci 2 S.R/ such that rci .q
0
i/ > 0. We also require that there is another c0 2 S.R/

such that rc0.q
0
1/ > 0 and that the geodesic length of c0 is su�ciently small. This

is possible by arguments similar to Lemma 10.4 for �nding q0
1 that makes the two

spectra isolated simultaneously. Take a K-quasiconformal homeomorphism f of

Rq0
1

D f1.R/ onto Rq0
2

D f2.R/ such that logK < dT .q1; q2/C 2�.

We de�ne a one-parameter family of quasiconformal deformations �t of Rq0
1

for 0 � t � 1 as follows. Consider all c0 2 S.R/ except c0 such that log `q0
1
.c0/

belongs to an open interval I D I.log `q0
1
.c0/;

9
4

logK/. Since c0 can be taken to

be arbitrarily short, we may assume that all c0 are mutually disjoint and that c1
and c2 are not among such c0. Set � WD .K9=2 � 1/� and perform grafting by an

amount t� with respect to each f1.c
0/. In each canonical collar A�.f1.c

0//, we

take a smaller collar A��.f1.c
0// with a uniform angle  D  .K/ such that the

distance to the boundary @A�.f1.c
0// is su�ciently large and is su�ciently close

to � . The collar lemma makes this possible by choosing c0 to be arbitrarily short.

Then, �t is de�ned to be a quasiconformal homeomorphism obtained through

linear stretching of all A��.f1.c
0// by t�. This determines a path ¹˛.t/º0�t�1 in

T .R/ by ˛.t/ D Œ�t ı f1�.
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Since the support of �t is taken to be far from any simple closed geodesic

disjoint from all c0, Corollary 3.4 implies that this grafting process does not

in�uence the value rc1 signi�cantly. Hence, the condition rc1.˛.t// > 0 is

maintained throughout; thus, the path ˛.t/ is contained in ˆ.�/. By Lemma 3.5,

we have

log `˛.0/.c
0/ � log `˛.1/.c

0/ � log
� C �

�
D
9

2
logK:

This implies that log `˛.1/.c
0/ … I for all c0. Owing to the slight in�uence on

the other geodesic lengths, again we see that the di�erence between log `˛.1/.c0/

and any other log `˛.1/.c/ .c ¤ c0/ is greater than 17
8

logK, which implies that

rc0.˛.1// > 2 logK. The length of ˛ is bounded above by logK 0 for the maximal

dilatation K 0 D . C �/= of � D �1. Since  D  .K/ is arbitrarily close to

� and � is chosen to be .K9=2 � 1/� , we can represent K 0 D K5= exp.".K// by

using a positive function ".K/ of K > 1.

The deformation of Rq0
2

is de�ned similarly to case (a). Set a Beltrami co-

e�cient � on Rq0
2

by � D 0 on Rq0
2

� f .
S
A��.f1.c

0/// and � D ��ıf �1 on

f .
S
A��.f1.c

0///, where the union is taken over all c0 for which grafting has

been performed. Then, take a one-parameter family of quasiconformal deforma-

tions ht of Rq0
2

with the complex dilatation t� for 0 � t � 1. This de�nes a path

¹ˇ.t/º0�t�1 in T .R/ by ˇ.t/ D Œht ı f2�. Corollary 3.4 again states that ht does

not change the value of rc2 signi�cantly; hence, rc2.ˇ.t// > 0 for every t , which

implies that the path ˇ.t/ is contained in ˆ.�/. The length of ˇ is bounded above

by logK.� ı f �1/ � logK 0 C logK.

We connect ˛.1/ and ˇ.1/ by a path in ˆ.�/. As before, a Beltrami coe�cient

�0 onR˛.1/ D �.Rq0
1
/ is de�ned by�0 D 0 on �.

S
A��.f1.c

0/// and�0 D �f ı��1

on �.Rq0
1
�

S
A��.f1.c

0///. Then, take a one-parameter family of quasiconformal

deformations h0
t of R˛.1/ with the complex dilatation t�0 for 0 � t � 1. This

de�nes a path ¹�.t/º0�t�1 in T .R/ by �.t/ D Œh0
t ı � ı f1� with �.0/ D ˛.1/ and

�.1/ D ˇ.1/. Since rc0.�.0// D rc0.˛.1// > 2 logK and the maximal dilatation

of h0
t is bounded above byK, we see that rc0.�.t// > 0 for every t ; hence, the path

�.t/ is contained in ˆ.�/. The length of � is bounded above by logK.

Therefore, q0
1 and q0

2 are connected by the composition of the paths ˛ � � � ˇ�1

in ˆ.�/ whose length is bounded above by

2 logK C 2 logK 0 D 2 logK C 2 log
� K5

exp.".K//

�
D 12 logK � 2".K/:

Hence, q1 and q2 can be connected by a path in ˆ.�/ whose length is 2� greater

than that of the above path. Since logK < dT .q1; q2/C2� and � > 0 can be taken

to be arbitrarily small, we set � D ".K/=13. Then, we conclude that the length of

this path in ˆ.�/ connecting q1 and q2 is less than 12dT .q1; q2/. �
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Remark. The positive number C > 0 in Theorem 11.1 has been taken locally

uniformly in case (a) but globally uniformly in case (b). We expect that there

should be a globally uniform constant C for every Teichmüller space.

12. Stabilized limit points are not dense

We will prove that the set of stabilized limit points is not dense in the limit set.

This is in contrast to the nature of familiar dynamics, such as Kleinian groups and

iterations of rational maps. Strictly speaking, exceptional cases might exist where

the above statement is not true, e.g., the case in which ƒ.�/ coincides with the

exceptional limit setE.�/. Hence, a certain restriction on the limit set is necessary

to justify the claim.

De�nition. For a subgroup � � Mod.R/, a limit point p 2 ƒ.�/ belongs to the

practically exceptional limit set denoted by ŒE�.�/ if p … ƒ0.�/ and if there exists

a neighborhood U of p in T .R/ such that U \ƒ.�/ � ƒ21.�/.

By de�nition, E.�/ � ŒE�.�/ is obvious. We expect these sets to be coin-

cident, but do not pursue this problem herein. Hence, we employ the practically

exceptional limit set ŒE�.�/ instead of E.�/ for our arguments and formulate our

statement as follows.

Theorem 12.1. For a subgroup � of Mod.R/, ifƒ.�/� ŒE�.�/ is not empty, then

the stabilized limit set ƒ1.�/ is nowhere dense in ƒ.�/ � ŒE�.�/.

First, we consider the subset ƒ11.�/ of ƒ1.�/ and prove that ƒ11.�/ is

nowhere dense in the entire limit set ƒ.�/. This is a crucial step in the proof

of Theorem 12.1.

Theorem 12.2. Let p0 be a point in ƒ11.�/ for a subgroup � of Mod.R/. Then,

in every neighborhood U of p0, there exists a generic limit point q 2 ƒ0.�/ that

does not belong to the closure ƒ1.�/ of the stabilized limit set. In particular,

ƒ11.�/ is nowhere dense in ƒ.�/.

In particular, this result implies that the limit set ƒ.�/ contains a strictly

smaller �-invariant closed subsetƒ11.�/whenever� contains an elliptic element

of in�nite order. Hence, in this case, the orbit of any limit point of � is not

dense in ƒ.�/. Moreover, Theorem 12.2 extends Lemma 8.1, where we imposed

countability on the subgroup �.

Corollary 12.3. For an arbitrary subgroup � of Mod.R/ and for every open

subsetU of T .R/, ifU \ƒ.�/ D U \ƒ1.�/, then they coincide withU \ƒ21.�/.
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In Corollary 8.4, we had given conditions equivalent to weak discontinuity.

Theorem 12.1 further yields the relationship of these conditions with the full-

ness of the stabilized limit set as in the following corollary. We remark that

ŒE�.�/ D E.�/ is satis�ed under the assumption that ƒ.�/ D ƒ1.�/ because

this assumption is equivalent to the condition ƒ.�/ D ƒ21.�/ by Corollary 12.3.

Corollary 12.4. The conditionƒ.�/ D E.�/ equivalent to the weak discontinuity

of � � Mod.R/ satis�es the following implication:

ƒ.�/ D E.�/ H) ƒ.�/ D ƒ1.�/ H) ƒ.�/ D E.�/:

We expect the �rst implication above to be strict, but we do not expect the

second one to be strict.

Proof of Theorem 12.2. Without loss of generality, we may assume p0 2 ƒ11.�/

to be the origin o of the Teichmüller space T .R/. There is a conformal automor-

phism g 2 Conf.R/ � MCG.R/ of in�nite order such that Œg�� 2 �.

We will �nd a simple closed geodesic c on R in the following manner. If the

set of lengths of all simple closed geodesics on R modulo multiplicity by hgi has

an isolated point, then we choose c corresponding to this point. Otherwise, (a) if

the lengths of simple closed geodesics on R are bounded from below, then we

choose c whose geodesic length is su�ciently close to the in�mum; (b) if R has

an arbitrarily short simple closed geodesic, then we choose a su�ciently short c.

Note that, in case (b), ¹gn.c/ºn2Z are mutually disjoint for any su�ciently short c.

We observe the images of the simple closed geodesic c under hgi. Since hgi
acts properly discontinuously on R, there is a positive integer t such that the

images ¹gtn.c/ºn2Z are mutually disjoint. Then, by replacing g with gt , we have a

quotient Riemann surface yR D R=hgi on which c projects injectively. In addition,

by choosing a larger t , we may assume that the distance between c and g.c/ is

su�ciently large. We can also avoid the case in which dimT . yR/ D 0 by this

replacement.

Choose an arbitrary neighborhood U of p0 D o 2 T .R/. This de�nes a

neighborhood yU of the origin Oo in T . yR/ such that yU is embedded in U by the

inclusion T . yR/ ,! T .R/. Recall that, for the elliptic modular transformation

 D Œg�� 2 Mod.R/, the Teichmüller space T . yR/ is identi�ed with the �xed point

locus Fix./ in T .R/. The mapping class Œg� has a conformal representative on

the Riemann surface Rp corresponding to any p 2 Fix./.

We give a deformation of yR within yU to �nd a point p 2 U \ Fix./ in T .R/

having a suitable property. Let Oc be the simple closed geodesic on yR, which is

the injective image of c under the projection R ! yR. In case (a), by arguments

similar to those given in the proof of Lemma 10.3, we have p 2 U \ Fix./ such

that log p̀.c/ is minimal and isolated in LS.p/ by decreasing the length of Oc.

In case (b), we use the arguments for Lemma 10.4 to make log p̀.c/ isolated in
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LS.p/ by sweeping out all nearby lengths of simple closed geodesics. In both

these cases, we have the isolated point log p̀.c/ in LS.p/ modulo multiplicity

by hgi.

We apply the following lemma to this situation.

Lemma 12.5. Let Œg� 2 MCGp.R/ be a conformal mapping class at p 2 T .R/,

and assume that the length spectrum LS.p/ has an isolated point of in�nite

multiplicity owing to mutually disjoint simple closed geodesics cn D g�n.c/ for

all n 2 Z. Then, there exists a neighborhood V of p such that every conformal

mapping class Œh� 2 MCGp0.R/ of in�nite order at p0 2 V acts on the family

¹cnºn2Z as a translation, i.e., there is some k 2 Z � ¹0º such that h.cn/ � cnCk

for every n 2 Z.

Proof. By contrast, suppose that there is no such neighborhood of p. Then,

there are p0 2 T .R/ arbitrarily close to p and Œh� 2 MCGp0.R/ of in�nite

order such that Œh� does not act on ¹cnºn2Z as a translation. Since p and p0 are

close, Œh� is realized on Rp as a quasiconformal automorphism with su�ciently

small dilatation. Then, Œh� must give a permutation on the family ¹cnº because

¹log p̀.cn/º are isolated in LS.p/ and Proposition 3.1 makes it impossible for such

a quasiconformal automorphism to send cn to a simple closed curve di�erent from

¹cnºn2Z by jumping the spectral gap. On the other hand, Œh� is not a translation

by assumption, nor is it an involution of the form h.cn/ � c�nCk for some k 2 Z.

Indeed, if so, h2.cn/ � cn and the conformal mapping class Œh2� would keep each

simple closed geodesic cn invariant. This is possible only if Œh� is of �nite order,

which violates the assumption.

If Œh� give a permutation on ¹cnº but it is neither a translation nor an involution,

then there must be consecutive pairs cn and cnC1 such that their images h.cn/ and

h.cnC1/ are not consecutive. Then, we see that the distance between the geodesic

realizations of cn and cnC1 on Rp is strictly smaller than the distance between the

geodesic realizations of h.cn/ and h.cnC1/ on Rp. To see this claim, we consider

the lifts of ¹cnº to the universal cover D of Rp and their intersection or shortest

connection with the axis corresponding to Œg�. If the lifts of ¹cnº intersect the axis,

the claim is clear; otherwise, hyperbolic trigonometry on right-angled hexagons

yields the claim. However, this situation is impossible for the quasiconformal

automorphism realizing Œh� with su�ciently small dilatation, which can be seen

from Proposition 3.2. Thus, we have reached a contradiction and the proof is

complete. �

The proof of Theorem 12.2 also requires the following fact, which has been

used in [13] to �nd a generic limit point of an in�nite elliptic cyclic subgroup

� � Mod.R/ that does not lie on ƒ1.�/ for a particular Riemann surface R.
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Proposition 12.6. Consider the Banach space `1 of all bilateral in�nite se-

quences of real numbers with supremum norm, i.e.,

`1 D ¹� D .�n/n2Z j k�k1 D sup j�nj < 1º:

Let � W `1 ! `1 be a shift operator de�ned by .�n/ 7! .�nC1/. Then, there exists

an element � D .�n/ 2 `1 with 0 � �n � 1 for all n 2 Z and with �0 D 0 that

satis�es the following properties:

(1) there exists a subsequence ¹k.j /ºj2N � Z such that k�k.j /.�/ � �k1 ! 0

as j ! 1;

(2) for every k 2 Z � ¹0º, there exists an integer m 2 Z such that �mk � 1=2.

Proof of Theorem 12.2 continued. For the given neighborhood U of p0 D o 2

T .R/ and the selected point p D Œf � 2 U , we choose a neighborhood V of p as

in Lemma 12.5, satisfying V � U . We will �nd a point q in V that belongs to

ƒ0.�/ but not to ƒ1.�/.

Take the canonical collar A�.f .c// of the simple closed geodesic f .c/ on

Rp D f .R/ whose angle is  D 2 arctan.sinh!/ for sinh! D 1= sinh. p̀.c/=2/.

We do this for each cn D g�n.c/ .n 2 Z/ and have the canonical collars

A�.f .cn//, which are mutually disjoint by the collar lemma. For the element

� D .�n/n2Z 2 `1 as in Proposition 12.6 and for a positive constant � > 0,

let � be a quasiconformal homeomorphism of Rp de�ned by the .�n�/-grafting

with respect to cn for all n 2 Z. We remark that � is conformal o� the union

of the canonical collars
S
n2Z A

�.f .cn//. Set q D Œ� ı f �. By choosing � to be

su�ciently small, we may assume that the maximal dilatation of � is su�ciently

small for q to stay within V . We will show that q satis�es the required properties.

We choose a subsequence ¹k.j /º1
jD1 as in property (1) of Proposition 12.6 and

consider the sequence ¹k.j /.q/º for  D Œg�� 2 Mod.R/. For each j 2 N,

there exists a quasiconformal homeomorphism between the Riemann surfaces

corresponding to q and k.j /.q/, which is obtained by linearly stretching the annuli

�.A�.f .cn/// for all n. It maps each annulus conformally equivalent to A C�n�

onto an annulus A C�nCk.j/� with the maximal dilatation

max
° C �nCk.j /�

 C �n�
;

 C �n�

 C �nCk.j /�

±
:

Then, the global maximal dilatation is bounded above by

 C �k�k.j /.�/ � �k1

 
:

Hence, we have dT .
k.j /.q/; q/ ! 0 as j ! 1. This implies that q 2 ƒ.�/.

Here, we will estimate the lengths `q.cn/ from above for all n 2 Z � ¹0º and

from below for n D 0. Recall that �WRp ! Rq is given by the .�n�/-grafting on
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each A�.f .cn//. Then, we see from Lemma 3.5 and the subsequent remark that

`q.cn/ �
�

� C �n�
p̀.c0/

for n 2 Z � ¹0º. On the other hand, since �WRp ! Rq is conformal outsideS
n¤0A

�.f .cn// and its maximal dilatation is bounded above by . C �/= ,

Corollary 3.4 yields `q.c0/ � p̀.c0/=˛, where

˛ D
 C �

 
C

�
1 �

 C �

 

� 2
�

arctan.sinh!/

and ! is the distance from the geodesic realization of f .c0/ to
S
n¤0A

�.f .cn//,

which was assumed to be su�ciently large (where we chose the integer t ), say,

arctan.sinh!/ �
�

2
�
 

8
:

Then, the previous inequality becomes

`q.c0/ �
�

� C �=4
p̀.c0/:

First, we will prove that q is not in the closure of ƒ11.�/. Suppose that there

exists p0 2 ƒ11.�/ in the neighborhood V , i.e., there exists some conformal map-

ping class Œh� 2 MCGp0.R/ of in�nite order for p0 2 V . Then, by Lemma 12.5,

Œh� acts on ¹cnº by h.cn/ D cnCk for some k 2 Z� ¹0º. By property (2) of Propo-

sition 12.6, we know that there is some m such that �mk � 1=2. We compare the

lengths `q.cmk/ with `q.c0/. By the estimates obtained in the previous paragraph,

we have
`q.c0/

`q.cmk/
�
� C �=2

� C �=4
DW C > 1:

By Proposition 3.1, this means that the maximal dilatation of any quasiconformal

realization of the mapping class Œhmk � on Rq is not less than C . In other words,

dT .q; Œh
mk ��.q// � logC . On the other hand, Œhmk ��.p

0/ D p0 since Œh� has a

conformal realization on Rp0 . Hence,

2dT .q; p
0/ D dT .q; p

0/C dT .Œh
mk ��.q/; Œh

mk��.p
0//

D dT .q; p
0/C dT .p

0; Œhmk��.q//

� dT .q; Œh
mk ��.q//

� logC;

from which we have dT .q; p
0/ � logC=2. This implies that no limit point

p0 2 ƒ11.�/ can enter within the distance logC=2 of q; hence, q … ƒ11.�/.
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Finally, we will show that q is not in the closure of ƒ21.�/ either. Then,

we have q … ƒ1.�/, which completes the proof. Suppose that there exists

p0 2 ƒ21.�/ in the neighborhood V . Then, Rp0 has in�nitely many conformal

automorphisms of �nite order. By arguments similar to but easier than those of

Lemma 12.5, we see that each mapping class of this conformal automorphism

should keep every cn invariant since a conformal mapping class of �nite order

cannot give a translation on the in�nite family ¹cnºn2Z. However, it is impossible

for the in�nite group of conformal automorphisms to keep the same simple closed

geodesic invariant because it acts on Rp0 properly discontinuously. �

Proof of Theorem 12.1. We prove that, in every neighborhood of p0 2 ƒ1.�/ �
ŒE�.�/, there exists a limit point q 2 ƒ0.�/ that does not belong to ƒ1.�/.

If p0 2 ƒ11.�/, then Theorem 12.2 veri�es this claim. Actually, this theorem

obviously asserts a slightly stronger claim: if p0 2 ƒ11.�/, then we have a

limit point q … ƒ1.�/. Hence, we have only to consider the case where p0 2

ƒ21.�/�ŒE�.�/�ƒ
1
1.�/. This condition implies that there exists a neighborhood

W of p0 that intersects neither ŒE�.�/ nor ƒ11.�/.

By contrast, suppose that there exists a neighborhood U of p0 2 ƒ21.�/ such

that every limit point of � in U belongs to ƒ1.�/. We may assume that U is

contained in W , which intersects neither ŒE�.�/ nor ƒ11.�/. By the de�nition of

ŒE�.�/, we see that every limit point of � inU belongs to bothƒ21.�/ andƒ0.�/.

However, the following lemma shows that this is impossible. �

Lemma 12.7. Let p0 belong toƒ21.�/ for a subgroup� � Mod.R/. Assume that

there exists a neighborhoodU of p0 in T .R/ such thatƒ.�/\U � ƒ0.�/. Then,

there exists a limit point q 2 U that does not belong to ƒ1.�/.

For the proof of this lemma, we prepare two claims, both of which are technical

(see the remark after the proof of Proposition 12.9).

Proposition 12.8. Let R be a planar Riemann surface and let G be an in�nite

subgroup of Conf.R/, all of whose elements are of �nite order. Assume that the

orbifold yR D R=G is topologically in�nite. Then, there exists a simple closed

geodesic c on R such that R� c consists of two topologically in�nite subsurfaces

of R.

Proof. We choose a topologically �nite geodesic subsurface yS of the hyperbolic

orbifold yR with a geodesic boundary component Oc such that the connected com-

ponent yR0 of yR � yS having Oc as a boundary component is topologically in�nite.

Note that any connected component of the inverse image ��1. Oc/ under the cov-

ering projection �WR ! yR is also a simple closed geodesic since every element

of G is of �nite order. Furthermore, we may assume that a connected component
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S of ��1. yS/ � R has multiple boundary components of ��1. Oc/. Indeed, by tak-

ing a su�ciently large yS , we can make the stabilizer of S in G non-cyclic, which

implies that ��1. Oc/ \ S consists of multiple connected components.

Let c be a connected component of ��1. Oc/\S . SinceR is planar,R�c consists

of two connected components. Let R0 be the component of R � c disjoint from

S . Since yR0 is topologically in�nite, so is R0. The other component of R � c is

also topologically in�nite since it contains another component of ��1. Oc/\ S and

hence another component of ��1. yR0/. �

Let S#.R/ be a subset of S.R/ consisting of free homotopy classes of simple

closed geodesics c on R that does not divide R or that divides R into two topo-

logically in�nite subsurfaces. Then, we de�ne the restricted length spectrum

LS#.p/ D Cl ¹ log `.c/ j c 2 S
#.R/º

for p 2 T .R/ as well as �#
0.p/ D min LS#.p/. For p D o, we may use LS#.R/ and

�#
0.R/ instead. If R is not planar, then LS#.R/ ¤ ;. However, even if R is planar,

we can also assume that LS#.R/ ¤ ; under the circumstances of Proposition 12.8.

Proposition 12.9. LetR be a Riemann surface with LS#.R/ ¤ ;. For a subgroup

G of Conf.R/, let �WR ! yR be the projection onto the orbifold yR D R=G.

Then, there exists some constant ı > 0 such that if c 2 S
#.R/ satis�es `.c/ <

exp.�#
0.R//C ı, then the image �.c/ is a simple closed geodesic on yR ( possibly,

�jc is not injective), including the case that �.c/ is a geodesic segment connecting

two cone points of order 2.

Proof. We consider any sequence ¹cnº
1
nD1 � S#.R/ such that `.cn/ converges

to exp.�#
0.R// as n ! 1. Suppose that Ocn D �.cn/ is a closed geodesic but

not simple on yR. This implies that there exists some gn 2 G such that gn.cn/

and cn intersect transversely. Moreover, the angle of the intersection is uniformly

bounded away from 0. Then, we can �nd a simple closed curve c0
n 2 S

#.R/

composed of some portions of gn.cn/ and cn whose geodesic length `.c0
n/ is less

than `.cn/ by a positive constant uniformly bounded away from 0. It follows that

`.c0
n/ < exp.�#

0.R// for a su�ciently large n, but this is a contradiction. Thus, we

can �nd a desired constant ı > 0 as in the statement. �

Remark. In general, for a non-simple closed geodesic Ocn on yR, we cannot always

�nd a simple closed curve c0
n as above that has a geodesic representative in its

free homotopy class. This happens when any simple closed curve contained in Ocn
that is liftable to a simple closed curve on R surrounds a puncture. Simple closed

geodesics are restricted to S
#.R/ in order to avoid this situation.
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Proof of Lemma 12.7. Without loss of generality, we may assume that p0 is the

origin o 2 T .R/. Set �0 D Stab�.o/ and consider yR D R=G0 for G0 � Conf.R/

corresponding to �0. If yR is topologically �nite, then the set of the lengths of

all closed geodesics that are not necessarily simple is discrete. Hence, LS.R/ is

discrete modulo multiplicity byG0. In this case, we apply the following arguments

for p D o.

If yR is topologically in�nite, Propositions 12.8 and 12.9 assert that for a simple

closed geodesic c 2 S
#.R/ such that log `.c/ is su�ciently close to �#

0.R/, the

image �.c/ is a simple closed geodesic on yR. For a given neighborhood U of

o 2 T .R/, we consider the corresponding neighborhood yU of the origin Oo 2 T . yR/
under the inclusion T . yR/ ,! T .R/. Then, by lifting a quasiconformal deformation

of yR to a quasiconformal homeomorphism f of R, we have p D Œf � 2 U such

that log p̀.c/ for some simple closed geodesic c is isolated in LS#.p/ modulo

multiplicity by G0 � MCG.R/. This is similar to the argument in the former part

of the proof of Theorem 12.2.

Since p 2 ƒ.�/ \ U , it belongs to ƒ0.�/ by assumption. Then, there exists

a sequence n D Œgn�� 2 � such that n.p/ D pn ¤ p converges to p as

n ! 1. Let c be the simple closed geodesic on R such that the geodesic lengths

p̀.h.c// for all h 2 G0 are the same but isolated from each other. Furthermore,

there exist a neighborhood U 0 � U of p and a constant " > 0 such that the set

¹log p̀0.h.c//ºh2G0 for every p0 2 U 0 is in the interval I.log p̀.c/; "/ that includes

no other spectrum of LS#.p0/. Hence, for any su�ciently large nwith pn 2 U 0, the

mapping class Œgn� keeps the set ¹h.c/ºh2G0 invariant. In particular, there exists

some hn 2 G0 such that gn ı hn.c/ � c. Moreover, for  0
n D Œgn ı hn��, we have

 0
n.p/ D pn, which converges to p as n ! 1. Thus, we see that a sequence of

some representatives of the mapping classes Œgn ı hn� converge locally uniformly

to a conformal mapping class in MCGp.R/ that �xes c.

Next, we consider the �-grafting �f .c/;� with respect to f .c/ on Rp and set

q D Œ�f .c/;� ı f �. We choose the amount � to be su�ciently small such that

q 2 U 0. Then, we see that q 2 ƒ.�/. Actually,  0
n.q/ ! q as n ! 1. Indeed, by

the above argument, there are quasiconformal automorphisms Qgn ofRp homotopic

to f ı gn ı hn ı f �1 that converge to a conformal automorphism Qg 2 Conf.Rp/

locally uniformly with the maximal dilatation K. Qgn/ tending to 1 as n ! 1,

where Qg �xes the simple closed geodesic in the homotopy class of f .c/. We may

assume that each Qgn is identical to Qg on the canonical collar A�.f .c//. Then, the

quasiconformal automorphisms �f .c/;� ı Qgn ı ��1
f .c/;�

of Rq are conformal on the

extended collarA�.f .c/; �/ and conformally conjugate to Qgn outsideA�.f .c/; �/.

This implies that K.�f .c/;� ı Qg�1
n ı ��1

f .c/;�
/ ! 1, i.e.,  0

n.q/ ! q.

Finally, we will show that q … ƒ1.�/. By Corollary 3.4 and Lemma 3.5, there

exist some constant ı > 0 and a �nite subset J of G0 such that log `q.h.c// �
log `q.c/ > ı for every h 2 G0 � J . Then, there is a neighborhood U 00 � U 0 of

q such that `q0.h.c// ¤ `q0.c/ for every h 2 G0 � J and for every q0 2 U 00.



Dynamics of Teichmüller modular groups and moduli spaces 51

By contrast, suppose that q 2 ƒ1.�/. Then, there exists some q0 2 U 00

that belongs to ƒ1.�/. Speci�cally, Stab�.q
0/ and the corresponding subgroup

G0 � MCGq0.R/ are in�nite. By the de�nition of U 0, we see that G0 keeps the

set ¹h.c/ºh2G0 invariant. Hence, there exists some h 2 G0 � J and g0 2 G0 such

that g0.c/ � h.c/. In particular, `q0.h.c// D `q0.g0.c// D `q0.c/. However, this

contradicts the condition that `q0.h.c// ¤ `q0.c/. �

Before concluding this section, we will consider a certain problem related to

the above arguments. Epstein [8] proved that the set O.�/ of all points p 2 T .R/
where Stab�.p/ is trivial for � � Mod.R/ is residual in T .R/, which means that

it is the complement of a countable union of nowhere dense subsets. In particular,

O.�/ is dense in T .R/. Let F.�/ denote the complement of O.�/, which is the

union of all �xed point loci for elliptic elements of �. However, since the number

of elliptic elements in� can be uncountable, these loci are not suitable for showing

that O.�/ is residual. Instead, another locus is de�ned in [8] by

V.c;c0/ D ¹p 2 T .R/ j p̀.c/ D p̀.c
0/º

for any pair of distinct elements c and c0 in S.R/, which is nowhere dense in T .R/.

Here, the set I D ¹.c; c0/º of all these pairs is countable. Then, F.�/ is contained

in
S
.c;c0/2I V.c;c0/; hence, it is a countable union of nowhere dense subsets.

We will further prove thatO.�/ contains an open dense subset in T .R/, which

is equivalent to saying thatF.�/ is nowhere dense. Actually, Theorem 12.2 asserts

that ƒ11.�/, which is the set of all points p 2 T .R/ where Stab�.p/ contains an

element of in�nite order, is nowhere dense in ƒ.�/ and hence in T .R/. Similar

arguments are applicable to the �xed points of elliptic elements of �nite order,

and we can conclude the following. We include a more direct and easy proof for

completeness.

Theorem 12.10. For a subgroup � � Mod.R/, the set F.�/ of all �xed points of

elliptic elements of � is nowhere dense in T .R/.

Proof. It su�ces to prove the statement for � D Mod.R/. We will show that,

in every open subset U of T .R/, there exists q 2 U that does not belong to the

closure F.�/. By the proofs of Lemmas 10.3 and 10.4, we can �nd c 2 S.R/ and

q 2 U such that log `q.c/ is isolated in the length spectrum LS.q/. Moreover, by

the above-mentioned result that O.�/ is dense in T .R/, we may assume that q is

in O.�/.

By contrast, suppose that q 2 F.�/. Then, there is a sequence of points

pn 2 F.�/ that converges to q. Let n D Œgn�� be an elliptic element of � that

�xes pn. Since the mapping class Œgn� is realized by a conformal automorphism

of the Riemann surface Rpn , it is realized by a quasiconformal automorphism

of Rq, which we denote by Qgn. The maximal dilatation of Qgn converges to 1;

hence, by Proposition 3.1, Œgn� must keep c invariant for all su�ciently large n.
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In particular, this forces the order of Œgn� to be �nite and uniformly bounded. Then,

a subsequence of quasiconformal automorphisms Qgn converges to a conformal

automorphism Qg uniformly on each compact subset of Rq. Since the order of Œgn�

is uniformly bounded, we see that Qg is not the identity. This implies that q … O.�/,
which is a contradiction. �

We remark that, if F.�/ is known to be a closed set, then the statement of

Theorem 12.10 follows immediately from the fact that the complement O.�/ is

dense in T .R/. However, we cannot expect that this will always be true without

any restriction. Recall that, in Lemma 7.6, we have imposed an assumption that

the union of the �xed point loci is closed in order to prove the statement; however,

if this condition were always true, we would have a solution for the existence of

an isolated limit point.

13. The moduli space is not separable

In this section, we will prove that the topological moduli space M.R/ of a topo-

logically in�nite Riemann surface R is not separable, and hence, neither is the

geometric moduli spaceM�.R/. This is an immediate consequence of the follow-

ing stronger assertion.

Theorem 13.1. Let M.R/ be the topological moduli space of a topologically

in�nite Riemann surfaceR. Then, a countable subset† is nowhere dense inM.R/,

i.e., the closure x† has no interior point.

Corollary 13.2. The geometric moduli space M�.R/ of a topologically in�nite

Riemann surface R does not satisfy the second countability axiom.

Proof. By Theorem 5.2 and Corollary 10.2, we see that the moduli space of the

stable pointsMˆ.R/ is open and dense in M.R/. Since M.R/ is not separable by

Theorem 13.1, neither isMˆ.R/. On the other hand,M�.R/ also contains an open

dense subset that is homeomorphic to Mˆ.R/. Hence, M�.R/ is not separable

either. For the metric space M�.R/, this is equivalent to saying that M�.R/ does

not satisfy the second countability axiom. �

Take an arbitrary simple closed geodesic c0 2 S.R/ and consider the relative

Teichmüller space T c0.R/ D T .R/=Modc0.R/with respect to c0, which has been

de�ned in Section 5. We prove Theorem 13.1 by lifting the countable set † to

T c0.R/.

Theorem 13.3. For a topologically in�nite Riemann surface R, every countable

set in T c0.R/ is nowhere dense. In particular, T c0.R/ is not separable, which

is equivalent to saying that the metric space T c0.R/ does not satisfy the second

countability axiom.
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Note that Theorem 13.3 is evident when R satis�es the bounded geometry

condition because, by Theorems 5.1 and 5.3, Modc0.R/ acts discontinuously on

the non-separable space T .R/ in this case.

Proof of Theorem 13.1. For every countable set † � M.R/, the inverse image

��1
c0
.†/ under the projection

�c0 WT
c0.R/ D T .R/=Modc0.R/ �! M.R/ D T .R/=Mod.R/

is a countable set. This is because Modc0.R/ is of countable index in Mod.R/

by Theorem 5.1. Then, ��1
c0
.†/ is nowhere dense by Theorem 13.3. Since �c0 is

continuous and open, † is also nowhere dense in M.R/. �

In the remainder of this section, we will prove Theorem 13.3 by constructing

a continuous surjective map from a certain subset in any open set of T c0.R/ onto

a non-separable space. This function is de�ned by the hyperbolic lengths of an

appropriate choice of in�nitely many simple closed geodesics on R.

De�nition. The multiple length spectrum fLS.R; c0/ for a hyperbolic Riemann

surface R with respect to c0 2 S.R/ is a set of pairs .log `.c/; log �.c// 2 R
2 for

all c 2 S.R/ with c \ c0 D ; respecting multiplicity, where �.c/ is the hyperbolic

distance between the simple closed geodesics c and c0 on R. We set

Sc0.R/ D ¹c 2 S.R/ j c \ c0 D ;º:

For each p D Œf � in the Teichmüller space T .R/, let �p.c/ be the hyperbolic

distance between the simple closed geodesics f .c/ and f .c0/ on f .R/. Then,

the multiple length function L�.c/WT .R/ ! R
2 for c 2 Sc0.R/ is de�ned by

Lp.c/ D .log p̀.c/; log�p.c//, which is well de�ned for the Teichmüller class p.

The multiple length spectrum at p 2 T .R/ is de�ned by

fLS.p; c0/ D ¹Lp.c/ 2 R
2 j c 2 Sc0.R/º:

Proposition 13.4. .1/ The multiple length spectrum fLS.R; c0/ is always discrete

in R
2 with at most �nite multiplicity. .2/ If p and q in T .R/ are equivalent

under Modc0.R/, then fLS.p; c0/ D fLS.q; c0/. In other words, the multiple length

spectrum with respect to c0 is an invariant for an element of the relative Teichmül-

ler space T c0.R/.

Proof. The �rst assertion follows from the fact that the number of simple closed

geodesics of bounded lengths intersecting a compact subset of R is �nite. The

second assertion is obvious. �

We provide the supremum norm k � k1 for R
2. Recall that the constant

b D b.K/ in Proposition 3.2 depends on K D edT .p;q/ for a quasiconformal

homeomorphism f WRp ! Rq and satis�es b.edT .p;q// ! 0 as dT .p; q/ ! 0.

Then, we have the following estimate on the multiple length function.
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Lemma 13.5. The multiple length function for c 2 Sc0.R/ satis�es

kLp.c/ � Lq.c/k1 � dT .p; q/C
b.edT .p;q//

!.p; q/
;

where ! is a positive continuous symmetric function on T .R/ � T .R/ invariant

under Modc0.R/ � Modc0.R/ and locally uniformly bounded away from 0.

Proof. By Proposition 3.1, the �rst coordinate of L�.c/ satis�es

j log p̀.c/ � log `q.c/j � dT .p; q/:

For the estimate of the second coordinate, we apply Proposition 3.2 to c0 and

c 2 Sc0.R/ and obtain

�q.c/

�p.c/
� edT .p;q/ C

b.edT .p;q//

�p.c/
� edT .p;q/

°
1C

b.edT .p;q//

�p.c/

±
:

Hence,

log �q.c/ � log �p.c/ � dT .p; q/C
b.edT .p;q//

�p.c/
:

The other inequality obtained by exchanging the roles of p and q is also valid.

Here, �p.c/ and �q.c/ are not less than the widths !.p/ and !.q/ of the canonical

collars for the geodesic realization of c0 on Rp and Rq, respectively. Note that,

since every element of MCGc0.R/ preserves c0, these values are invariant under

Modc0.R/. By setting !.p; q/ D min¹!.p/; !.q/º, we have

j log �p.c/ � log �q.c/j � dT .p; q/C
b.edT .p;q//

!.p; q/
:

Therefore, the required estimate immediately follows from these inequalities. �

For any in�nite discrete subsets P and Q of R2 counting multiplicity, the

Hausdor� distance between P and Q is given by

H.P;Q/ D inf
j

sup¹ kj.z/ � zk1 j z 2 P; j WP ! Qº;

where the in�mum is taken over all bijections j WP ! Q. For any points Op and Oq
in T c0.R/, the pseudo-distance on T c0.R/ is de�ned by

dH . Op; Oq/ D H.fLS.p; c0/;fLS.q; c0//;

where p and q are any points of T .R/ that are mapped to Op and Oq, respectively,

by the projection � WT .R/ ! T c0.R/.

As a consequence of Lemma 13.5, we see that the pseudo-distance dH is

continuous with respect to the quotient Teichmüller distance Od on T c0.R/. More

precisely, we have the following.
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Corollary 13.6. There exists a continuous symmetric function Ǒ � 0 on T c0.R/�

T c0.R/ such that dH . Op; Oq/ � Ǒ. Op; Oq/ for any points Op and Oq in T c0.R/ and
Ǒ. Op; Oq/ D 0 precisely when Op D Oq.

Proof. For Op and Oq in T c0.R/, de�ne

Ǒ. Op; Oq/ D inf
p;q

°
dT .p; q/C

b.edT .p;q//

!.p; q/

±
D Od. Op; Oq/C

b.e
Od. Op; Oq//

O!. Op; Oq/
;

where the in�mum is taken over all p and q satisfying �.p/ D Op and �.q/ D Oq
for the projection � WT .R/ ! T c0.R/. Here, O!. Op; Oq/ > 0 is well de�ned from

the function !.p; q/ in Lemma 13.5 owing to its invariance under Modc0.R/ �

Modc0.R/. Then, Ǒ satis�es the required properties. �

Let U.r/ be an open ball of radius r > 0 in T .R/ centered at the origin o.

We �x the radius r > 0 to be su�ciently small such that

r C
b.er/

infp2U.r/ !.p; o/
<

log 2

2
� �0

for the constant b and the function ! in Lemma 13.5 and for some constant �0 > 0.

Next, we will choose a sequence of simple closed geodesics on R whose

lengths can parameterize a slice in the relative Teichmüller space T c0.R/. An

X-piece X.c/ with a core geodesic c 2 Sc0.R/ is a union of two pairs of pants

that have a geodesic boundary c in common but no other intersection. Every X-

piece has four geodesic boundary components. In a topologically in�nite Riemann

surface R, we take a sequence of X-pieces ¹X.ci /º
1
iD1 satisfying the following

properties:

(1) X.ci / are mutually disjoint and disjoint from c0;

(2) X.ci / escape to in�nity in R, i.e., for any compact subsurface S with bound-

ary in R, the number of X.ci / that intersect S is �nite.

Actually, we can always take such a sequence ofX-pieces in any topologically

in�nite Riemann surface R. Indeed, we have only to �nd a topologically in�nite

geodesic subsurface R0 including c0 such that the complement R �R0 has in�n-

itely many (topologically �nite or in�nite) connected components Ri containing

X.ci / for i 2 N. In this situation, it is clear that dh.Ri ; c0/ ! 1 as i ! 1, which

implies that X.ci / escape to in�nity in R.

For each i , let c0
i denote the closest geodesic boundary component of X.ci / to

c0. Further, set

Mi WD max¹dh.x; c0/ j x 2 X.ci /º .> �.c
0
i //:

Since �.c0
i / ! 1 as i ! 1, we may assume that �.c0

j / � 2Mi C `.ci / for any

i < j by passing to a subsequence if necessary.
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We give a speci�c deformation of the hyperbolic structure on R restricted

to ¹X.ci /º
1
iD1. For an in�nite sequence of real numbers .�1; �2; : : :/ 2 R

1, we

consider a locally quasiconformal homeomorphism f ofR onto another Riemann

surface R0 satisfying the following properties:

(1) f is isometric (conformal) outside X.ci / for all i and no twist is given along

each geodesic boundary component of X.ci /;

(2) the image f .ci / itself is a simple closed geodesic onR0 and its length satis�es

log `.f .ci // D �i for each i ;

(3) f has a constant directional derivative on each ci with respect to the geodesic

length parameter and no twist is given along ci .

Let Q̀
i be the maximum of the lengths of the four geodesic boundary compo-

nents of X.ci / and ci . Then, as has been proved by Bishop [4], the maximal di-

latation of the above quasiconformal homeomorphism f restricted to each X.ci /

can be estimated as

K.f jX.ci // � 1C C j log `.f .ci // � log `.ci /j

if j log `.f .ci // � log `.ci /j � 2, where C D C. Q̀
i / > 0 is a constant depending

only on Q̀
i . Hence, for a given dilatation constant K D er , there exists an open

interval Ii � R centered at log `.ci / for each i such that, if �i 2 Ii for all i , then

the above map f satisfying log `.f .ci // D �i is globally K-quasiconformal.

Thus, we have a function

�W

1Y

iD1

Ii .� R
1/ �! U.r/ .� T .R//

sending .�1; �2; : : :/ to the Teichmüller class Œf � of f de�ned as above. This

function � is clearly injective. Moreover, it is real-analytic as a function of a

�nite number of variables with the other coordinates �xed. Furthermore, for every

c 2 S.R/, take the length function `�.c/WT .R/ ! R de�ned by p̀.c/ forp 2 T .R/
and consider the composition with �. Then, `�.c/ ı �W

Q1
iD1Ii ! R is also real-

analytic as a function of a �nite number of variables.

For every c 2 Sc0.R/, let E.c/ be the �0-neighborhood of the range of the

multiple length spectrum ¹Lp.c/ j p 2 U.r/º in .R2; k�k1/. Then, by Lemma 13.5

and the de�nition of r , the radius of E.c/ at Lo.c/ has a upper bound less

than .log 2/=2 independent of c. Since fLS.R; c0/ D fLS.o; c0/ is discrete by

Proposition 13.4, for each i , there exist only �nitely many c 2 Sc0.R/ such that

E.c/ \E.ci / ¤ ;.



Dynamics of Teichmüller modular groups and moduli spaces 57

Proposition 13.7. For distinct integers i ¤ j , if a simple closed geodesic c 2

Sc0.R/ intersects X.cj /, then E.c/ \E.ci / D ;.

Proof. If c \X.cj / ¤ ;, then

�.c0
j / � `.c/=2 � �.c/ � Mj

is satis�ed. By contrast, suppose that E.c/ \ E.ci / ¤ ;. Then, since the radii of

E.c/ and E.ci / are smaller than .log 2/=2, we have kLo.c/ � Lo.ci /k1 < log 2.

This implies that

1

2
`.ci / < `.c/ < 2`.ci /I

1

2
�.ci/ < �.c/ < 2�.ci /:

Hence, we have the following two estimates:

�.c0
j / � �.c/C `.c/=2 < 2�.ci /C `.ci /I

�.c0
i/ � �.ci / < 2�.c/ � 2Mj :

However, when i < j , the �rst inequality violates the condition �.c0
j / � 2Mi C

`.ci / for the distribution of the X-pieces since �.ci/ � Mi . When i > j , the

second inequality also violates the same condition after exchanging the roles of i

and j . �

For each i 2 N, the composition log `�.ci / ı �W
Q1
iD1 Ii ! R is nothing but

the i-th coordinate function .�1; �2; : : :/ ! �i . In other words, this is the identity

restricted to the i-th coordinate. For c 2 Sc0.R/ with E.c/ \ E.ci / ¤ ;, we

also consider the composition log `�.c/ ı �W
Q1
iD1 Ii ! R. By Proposition 13.7,

such a simple closed geodesic c does not intersect X.cj / for j ¤ i . Hence, this

function also depends only on the i-th coordinate �i ; thus, a real-analytic function

hc;i W Ii ! R is induced.

Proposition 13.8. For each c .¤ ci / 2 Sc0.R/with the propertyE.c/\E.ci / ¤ ;,

the set of points � satisfying hc;i .�/ D � is discrete in Ii � R.

Proof. If a simple closed geodesic c does not intersect X.ci /, then hc;i .�/ is

constant and the claim is obvious. Suppose that c .¤ ci / intersects X.ci /. By

elementary hyperbolic geometry, we see that hc;i .�/ is not the identity. Hence,

the set of points � satisfying hc;i .�/ D � should be discrete by the theorem of

identity. �

Finally, by choosing an open interval Ji in Ii to be su�ciently small, we have

an appropriate parameter space for a subset of T c0.R/.
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Lemma 13.9. There exists an open interval Ji � Ii for each i 2 N that satis�es

the following properties:

(1) the composition of �W
Q1
iD1 Ji ! U.r/ and � WT .R/ ! T c0.R/ is injective;

(2) by setting W D �.
Q1
iD1 Ji /, the inverse function „W�.W / !

Q1
iD1 Ji

of � ı � is continuous with respect to the uniform topology de�ned by the

supremum norm k„k1 D supi �i for „ D .�1; �2; : : :/.

Proof. For each i 2 N, the number of c 2 Sc0.R/ satisfying E.c/ \ E.ci / ¤ ;

is �nite. Hence, by Proposition 13.8, there exist a constant �i > 0 and an open

interval Ji � Ii such that jhc;i .�/� �j � 2�i for every � 2 Ji and for every c ¤ ci
with E.c/ \ E.ci / ¤ ;. Furthermore, by taking the interval Ji to be su�ciently

small for each i 2 N, we can make it satisfy jJi j � min¹2�0; �iº.

For any points„ D .�1; �2; : : :/ and„0 D .� 0
1; �

0
2; : : :/ in

Q1
iD1 Ji , consider the

images p D �.„/ and p0 D �.„0/ in W � U.r/. Then, we see that

kLp.ci / � Lp0 .ci /k1 � j log p̀.ci / � log p̀0.ci /j D j�i � � 0
i j

for each i . We will show that Lp.ci / is away from fLS.p0; c0/ (or Lp0.ci / is away

from fLS.p; c0/).

By the de�nition of the neighborhoodE, every c2Sc0.R/withE.c/\E.ci /D;
satis�es kLq.ci / � Lq0.c/k1 � 2�0 for any q; q0 2 U.r/. Hence,

kLp.ci / � Lp0.c/k1 � 2�0 � jJi j � j�i � � 0
i j:

On the other hand, every c .¤ ci / 2 Sc0.R/ with E.c/ \E.ci / ¤ ; satis�es

j log p̀0.c/ � log p̀0 .ci /j D jhc;i .�
0
i / � � 0

i j � 2�i

for p0 in W . Hence, in this case, we have

kLp.ci / � Lp0.c/k1 � j log p̀.ci / � log p̀0 .c/j

� j log p̀0.c/ � log p̀0 .ci /j � j log p̀.ci / � log p̀0 .ci /j

� 2�i � j�i � � 0
i j � j�i � � 0

i j:

From these estimates, we see that the distance from Lp.ci / to fLS.p0; c0/ is not

less than j�i � � 0
i j for each i 2 N. Thus, the Hausdor� distance H.fLS.p; c0/,

fLS.p0; c0// is bounded from below by j�i � � 0
i j. By taking the supremum over all

i , we have

dH . Op; Op0/ D H.fLS.p; c0/;fLS.p0; c0// � k„�„0k1

for Op D �.p/ and Op0 D �.p0/ in �.W / � T c0.R/. This implies that the function

� ı � is injective on
Q1
iD1 Ji and the projection � is injective on W .
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Consider the inverse function „ D .� ı �/�1 on �.W / � T c0.R/. The above

estimate implies that k„. Op/ � „. Op0/k1 ! 0 as dH . Op; Op0/ ! 0. Since dH is

continuous with respect to Od by Corollary 13.6, this is also true when Od. Op; Op0/ ! 0,

i.e., „ is continuous on �.W /. �

Using this continuous and bijective map „W�.W / !
Q1
iD1 Ji , we now com-

plete the proof of Theorem 13.3. Note that it is easy to see that
Q1
iD1 Ji is not

separable in the uniform topology.

Proof of Theorem 13.3. Suppose that the closure of a countable subset ¹ Opnºn2N

of T c0.R/ contains an open subset V . Without loss of generality, we may assume

that �.o/ 2 V . By replacing the radius r with a smaller one, we may assume that

�.U.r// � V . Hence, the set �.W / of Lemma 13.9 is contained in V .

For each n 2 N, we take a point Op0
n 2 �.W / such that Op0

n D Opn if Opn 2 �.W /
and

Od. Opn; Op0
n/ < inf

Op2�.W /

Od. Opn; Op/C
1

n

otherwise. Then, we see that �.W / is contained in the closure of the countable

set ¹ Op0
nºn2N. Indeed, if not, there is a point Oq 2 �.W / such that an open ball

V. Oq; 3�/ with center Oq and radius 3� for some � > 0 contains no Op0
n. On the other

hand, there is some Opn in V. Oq; �/ with 1=n < � because Oq belongs to ¹ Opnº � ¹ Opnº.
However, this contradicts the way of taking Op0

n for this Opn.

Consider a countable subset ¹„. Op0
n/ºn2N �

Q1
iD1 Ji . Since ¹ Op0

nº is dense in

�.W / and „W�.W / !
Q1
iD1 Ji is continuous and surjective with respect to the

uniform topology by Lemma 13.9, ¹„. Op0
n/º is dense in

Q1
iD1 Ji . However, this

contradicts the fact that
Q1
iD1 Ji is not separable and thus completes the proof of

Theorem 13.3. �

14. The moduli space of the stable points

In this section, we consider the metric completion of the moduli space of the stable

points Mˆ.R/ D ˆ.Mod.R//=Mod.R/. Here, the completion respects the inner

distance d iM on Mˆ.R/ induced from the pseudo-distance dM on the topological

moduli space M.R/ D T .R/=Mod.R/. In other words, the distance d iM .�; �/

between � and � in Mˆ.R/ is given by the in�mum of the lengths of all paths in

Mˆ.R/ measured by dM that connect � and � .

The restriction of dM to Mˆ.R/ becomes a distance and it clearly satis�es the

inequality dM � d iM . On the other hand, Theorem 11.1 yields a converse estimate

as in the following theorem. It turns out that the completions by dM and d iM are

homeomorphic. We have seen that the stable points are generic in T .R/ in the

sense that ˆ.Mod.R// is an open, dense, and connected set. The fact that dM
and d iM are comparable onMˆ.R/ also re�ects a stronger genericity of the stable

points.
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Theorem 14.1. For every bounded subset V in M.R/, there exists a constant

C depending on V such that d iM .�1; �2/ � CdM .�1; �2/ for any �1 and �2 in

V \Mˆ.R/.

Proof. Let r0 be the diameter of V . Choose p 2 T .R/ such that �.p/ belongs

to V under the projection � WT .R/ ! M.R/. Then, for an arbitrary � > 0, an

open ball U.p; r0 C �/ with center p and radius r0 C � in T .R/ covers V by the

projection � . Hence, there exists q1 2 U.p; r0C �/\ˆ.�/ for � D Mod.R/ such

that �.q1/ D �1. Then, since dM .�1; �2/ � r0, there exists q2 2 ˆ.�/ such that

�.q2/ D �2 and dT .q1; q2/ < dM .�1; �2/C � .� r0 C �/.

By Theorem 11.1, there exists a constant C depending on p and r D r0 C �

such that q1 and q2 can be connected by a path in ˆ.�/ whose length is less than

CdT .q1; q2/. Then, the projection of this path on Mˆ.R/ connects �1 and �2,

and its length is less than C ¹dM .�1; �2/ C �º. Since � can be arbitrarily small,

this implies that d iM .�1; �2/ � CdM .�1; �2/. The constant C depends only on the

subset V because p and r are determined by V . �

Corollary 14.2. The metric completionsMˆ.R/
d i
M andMˆ.R/

dM
ofMˆ.R/with

respect to d iM and dM , respectively, are homeomorphic.

Remark. From the proof of Theorem 11.1, we see that, if R does not satisfy

the lower boundedness condition, then we can choose a uniform constant C in

Theorem 14.1. Hence, in this case, there is a bi-Lipschitz homeomorphism between

Mˆ.R/
d i
M and Mˆ.R/

dM
. We expect that this is always the case.

Let M�.R/ D T .R/==Mod.R/ be the geometric moduli space with the pro-

jection N� WM.R/ ! M�.R/. As will be seen in the next theorem, the restriction

of N� to Mˆ.R/ extends continuously to the completion Mˆ.R/
dM

, which de�nes

an isometry onto M�.R/.

Theorem 14.3. There exists a bijective isometry

�WMˆ.R/
dM

�! M�.R/

that extends N�jMˆ.R/WMˆ.R/ ! M�.R/.

Proof. Let Q� be an element of Mˆ.R/
dM

that is represented by a Cauchy se-

quence ¹�nº
1
nD1 in Mˆ.R/. It converges to a point � 2 M.R/. Choose another

representative ¹� 0
nº

1
nD1 of Q� . Then, it also converges to another point � 0 2 M.R/.

Since dM .�n; �
0
n/ ! 0 as n ! 1, we see that dM .�; �

0/ D 0. This implies

that N�.�/ D N�.� 0/ under the projection N� WM.R/ ! M�.R/. Denoting this ele-

ment by s, we have a well-de�ned continuous map �WMˆ.R/
dM

! M�.R/ by the

correspondence Q� 7! s.
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The surjectivity of � is seen from the fact thatMˆ.R/ is dense inM.R/, which

immediately follows from Corollary 10.2. The injectivity of � is easily seen.

Indeed, for any distinct elements Q� and Q� 0 of Mˆ.R/
dM

, the Cauchy sequences

¹�nº
1
nD1 and ¹� 0

nº
1
nD1 representing Q� and Q� 0, respectively, satisfy dM .�n; �

0
n/ 6! 0

.n ! 1/. Thus, dM .�; �
0/ ¤ 0 for their limits � and � 0 in M.R/. This implies

that N�.�/ ¤ N�.� 0/ in M�.R/.

It is clear that the restriction of � to Mˆ.R/ is nothing but N�jMˆ.R/. Since

N�jMˆ.R/ is isometric, the extension � is also isometric by the de�nition of the

distance on the metric completion Mˆ.R/
dM

. �

Corollary 14.4. IfR satis�es the bounded geometry condition, then the geometric

moduli space M�.R/ is isometric to the completion M�.R/
dM

of the complex

Banach orbifold M�.R/.

By a general theory, it is known that the complete metric space M�.R/ is

isometric to the locus of zeros of some holomorphic map between complex Ba-

nach spaces, and in particular, it has the structure of a Banach analytic space (see

Pestov [29]).

Finally, we conclude this paper by raising a question on more concrete charac-

terizations of an element of M�.R/.

De�nition. A geometric invariant of the moduli is a Mod.R/-invariant continuous

map �WT .R/ ! Y to a metric space Y .

For example, let Y D C.R/ be the family of all closed subsets in R equipped

with the Hausdor� distance. Then, the map T .R/ ! C.R/ de�ned by p 7! LS.p/

satis�es the above conditions. In other words, the length spectrum is a geometric

invariant of the moduli.

The following proposition asserts that the geometric moduli space M�.R/ is

the universal space for the geometric invariants.

Proposition 14.5. For every geometric invariant �WT .R/ ! Y , there exists a

continuous map Q�WM�.R/ ! Y satisfying � D Q� ı �M�
, where �M�

WT .R/ !
M�.R/ D T .R/==Mod.R/ is the projection by the closure equivalence.

Proof. For every s 2 M�.R/, take any p 2 T .R/ such that �M�
.p/ D s and de�ne

Q�.s/ to be �.p/. This is well de�ned. Indeed, if we take another q 2 T .R/ such

that �M�
.q/ D s, then q is in the closure of the orbit of p under Mod.R/. Since

� is invariant under Mod.R/, this implies that �.q/ is in the closure of the point

set ¹�.p/º. Since Y is a metric space, this implies that �.q/ D �.p/. Once Q� is

de�ned in this manner, the condition � D Q� ı �M�
is clearly satis�ed. �

We propose the problem of �nding a better geometric invariant of the moduli,

which will give an interpretation for an element of our moduli spaceM�.R/.
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