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Abstract. We inspect the normal subgroup structure of the braided Thompson groups Vbr

and Fbr. We prove that every proper normal subgroup of Vbr lies in the kernel of the natural

quotient Vbr � V , and we exhibit some families of interesting such normal subgroups. For

Fbr, we prove that for any normal subgroup N of Fbr, either N is contained in the kernel

of Fbr � F , or else N contains ŒFbr; Fbr�. We also compute the Bieri–Neumann–Strebel

invariant †1.Fbr/, which is a useful tool for understanding normal subgroups containing

the commutator subgroup.

Mathematics Subject Classi�cation (2010). Primary 20F65; Secondary 20F36, 20E07.

Keywords. Thompson group, braid group, BNS-invariant, �niteness properties.

Introduction

Thompson’s groups F , T , and V have spent the past �fty years appearing in a

variety of contexts and serving as examples of groups with unique and unexpected

properties. Some examples of such properties are that T and V are �nitely

presented, in�nite and simple, and F is torsion-free and contains free abelian

subgroups of arbitrarily high rank, but is �nitely presented. While F is not simple

it is true that ŒF; F � is simple, and any proper quotient of F is abelian. Stronger

than being �nitely presented, all three groups are also of type F1, meaning they

admit classifying spaces with compact n-skeleta, for all n 2 N.

The braided Thompson groups Vbr and Fbr appeared more recently, but have

proved to have many interesting properties. First, Vbr was introduced indepen-

dently by Brin [8] and Dehornoy [11], and serves as an “Artini�cation” of V . In

particular it is a torsion-free group with V as a quotient, which contains copies of

every braid group Bn, and is �nitely presented. A subgroup Fbr of Vbr was intro-

duced by Brady, Burillo, Cleary, and Stein [1]. This group is �nitely presented,

contains copies of every pure braid group PBn and has F as a quotient. Both Vbr

and Fbr are also of type F1 [2]. The fact that these groups are so vast as to contain

every braid group, while still having such nice �niteness properties, makes them

of considerable interest.
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In this paper we analyze the normal subgroups of Vbr andFbr. There is a natural

normal subgroup Pbr of Vbr, which is the kernel of the map Vbr � V , and is also

the kernel of Fbr � F . We prove the following Alternative for Fbr:

Theorem 2.1. Let N be a normal subgroup of Fbr. Then either N � Pbr or else

ŒFbr; Fbr� � N .

This has a corollary for Vbr:

Corollary 2.8. Any proper normal subgroup of Vbr is contained in Pbr.

Note that, since V is simple, anyN GVbr not contained in Pbr satis�esNPbr D
Vbr, so the corollary could also be phrased: “Any normal subgroup of Vbr either

contains or is contained in Pbr.” This was conjectured by Kai-Uwe Bux after the

preprint [10].

A consequence of these results is that Vbr and ŒFbr; Fbr� are perfect, but not Fbr,

which is somewhat analogous to the classical fact that V and ŒF; F � are simple,

but not F . Also, we obtain some pleasant statements for the braided versions that

are also true (for sometimes trivial reasons) for the classical versions, like: any

quotient of Fbr is either abelian or else contains F , and any non-trivial quotient of

Vbr surjects onto V .

We further analyze normal subgroups of Fbr containing the commutator sub-

group by computing the Bieri–Neumann–Strebel invariant †1.Fbr/. This is a

geometric invariant of a �nitely generated group G that determines which nor-

mal subgroups containing ŒG; G� are themselves �nitely generated. In general the

BNS-invariant is considered to be quite di�cult to compute. We state the result

here, and see Section 3.1 for the notation and background.

Theorem 3.4. The Bieri–Neumann–Strebel invariant †1.Fbr/ for Fbr consists of

all points on the sphere †.Fbr/ D S3 except for the points Œ�0� and Œ�1�.

For example our calculation of †1.Fbr/ shows that for ŒFbr; Fbr� � N � Fbr,

N fails to be �nitely generated if and only if it is contained in either ker.�0/ or

ker.�1/, with notation explained in Section 1.4.

Lastly we inspect normal subgroups of Vbr and Fbr contained in Pbr. We

classify how they arise, namely any such normal subgroup is the limit of a uniquely

determined complete coherent sequence of normal subgroups of the PBn. Details

are given in Section 4, along with some examples, and some questions. Perhaps

the most tantalizing question, which we have so far been unable to answer, is

whether Vbr and/or Fbr is Hop�an; V and F are Hop�an, but we show that Pbr is

not, so it is not entirely clear what to expect.
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The paper is organized as follows. In Section 1 we recall the relevant back-

ground on the braided Thompson groups. In Section 2 we prove the Alternative

for Fbr, Theorem 2.1. Normal subgroups of Fbr containing the commutator sub-

group are further investigated in Section 3, where the BNS-invariant †1.Fbr/ is

computed. Normal subgroups contained in Pbr are discussed in Section 4.

Acknowledgments. I am grateful to Robert Bieri and Matt Brin for many helpful

conversations, and Marco Marschler and Stefan Witzel for their comments and

suggestions. Thanks are also due to the anonymous referee for many helpful

suggestions, which in particular improved Section 4.

1. The braided Thompson groups

In this section we recall a model for elements of Vbr and Fbr, state some presen-

tations, discuss the abelianizations of the groups (in fact Vbr is perfect), and �x

some notation for characters of Fbr that will be used in Section 3.

1.1. De�nitions and models. Elements of Vbr are represented by braided paired

tree diagrams, as in [1]. By a tree we will always mean a �nite rooted binary tree.

The trivial tree is just a single node. Vertices of a non-trivial tree have valency

3, except for the leaves, which have valency 1, and the root, which has valency 2.

A non-leaf vertex u, together with the two edges and their vertices v; w connected

to u and directed away from the root, form a caret. The vertices v and w are

children of u. Our trees will always come equipped with a decision for each such

u, as to which of v or w is the left or right child. This induces a numbering of the

leaves of a tree, left to right, from 1 to n for some n.

A braided paired tree diagram is a triple .T�; b; TC/ where T˙ are trees, each

with n leaves for some n 2 N, and b is an element of the braid group Bn. The

model we will use for elements is split-braid-merge diagrams. We draw T� (the

splits) with the root on the top and the n leaves at the bottom, then the braid on n

strands, and then TC (the merges) with the n leaves at the top and the root at the

bottom. See Figure 1 for an example.

Two such triples are considered equivalent if they are connected via a �nite

sequence of reductions and expansions. An expansion of .T�; b; TC/ amounts to

adding a caret to some leaf of T�, bifurcating the strand coming out of that leaf

into two parallel strands, and then adding a caret to the leaf of TC at which that

original strand ended. A reduction is the reverse of an expansion.

We will use expansions a lot in all that follows, so we make some relevant

de�nitions here, following [16].
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Figure 1. An element of Vbr.

De�nition 1.1 (cloning). Let �n
k
WBn ! BnC1 be the injective function that takes

a braid and bifurcates the kth strand into two parallel strands, where we number

the strands at the bottom. We call �n
k

the kth cloning map, and we say that the

resulting strands are clones. Note that �n
k

is not a group homomorphism, since

the numbering of the strands may be di�erent on the bottom and the top. When

appropriate, we may also write �k for �n
k
.

For a tree T with n leaves, let �k be a single-caret tree whose root is identi�ed

with the kth leaf of T . Denote by T [ �k the tree obtained by attaching this caret

to that leaf. Let �b be the image of b under the natural quotient Bn ! Sn. Now,

for trees T� and TC with n leaves and b 2 Bn we have the expansion

.T�; b; TC/ D .T� [ ��b.k/; �
n
k .b/; TC [ �k/.

We can iterate this. Let T be a tree with n leaves and let ˆ be a forest with n

roots. This is just a �nite sequence of trees, and the roots of the forest are the roots

of its trees. We can write ˆ as an ordered union of carets, ˆ D �k1
[ � � � [ �kr

,

and consider the tree T [ ˆ with n C r leaves. For this to makes sense we need

1 � k1 � n, then 1 � k2 � n C 1, and so forth up to 1 � kr � n C .r � 1/.

Here by “ordered” union we just mean that the subscripts we need to use for the

�ki
depend on the order in which the carets are attached, e.g., �2 [ �1 D �1 [ �3

are two strings of carets both representing the forest ˆ consisting of two disjoint

carets. Denote by �n
ˆ the iterated cloning map

�ˆ WD �kr
ı � � � ı �k1

.

This is well de�ned, that is, if ˆ can be written as a di�erent ordered union of

carets, we still get the same cloning map.

In some ways it makes more sense to treat cloning maps as right maps,

and write .b/�n
k

(as in [16]), since otherwise as seen above we have things like
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��k1
[�k2

D ��k2
ı ��k1

, but this technical precision is outweighed by future no-

tational awkwardness, so we will stick to writing �n
k
.b/.

As an example of cloning, in Figure 2 we have an expansion of the form

.T�; b; TC/ D .T� [ �1; �
4
2.b/; TC [ �2/.

�!

Figure 2. Expansion in Vbr.

Recall that a braid b is pure if �b is the trivial element of Sn. We will denote

the subgroup of all pure braids by PBn.

Observation 1.2. If b 2 Bn then b is pure if and only if �n
k
.b/ is pure for all k.

That is, the property of a braid being pure is invariant under both expansion and

reduction. Restricted to PBn, the cloning maps �n
k
WPBn ! PBnC1 are group

homomorphisms, since the numbering of the strands is the same on the bottom

and the top.

The set of all equivalence classes of braided paired tree diagrams forms a

group, Vbr, with multiplication given by “stacking” the diagrams. By restricting

to only considering pure braids, we obtain the subgroup Fbr. Crucial to our

model being useful is that one can always turn a product of split-braid-merge

diagrams into a single split-braid merge diagram via �nitely many reductions and

expansions. There are some natural subgroups of Vbr and Fbr worth mentioning.

First, Vbr contains a copy of F (diagrams with no braiding), and “many” copies

of every braid group Bn for n 2 N. In particular for any tree with n leaves, the set

of triples .T; b; T / for b 2 Bn is isomorphic to Bn. Similarly, Fbr contains F and

many copies of every pure braid group PBn for n 2 N, namely a copy of PBn for

every tree with n leaves.
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1.2. The kernel Pbr. The group Vbr surjects onto V under the map that turns

every braid b into the permutation �b. The kernel of this map consists of elements

represented by triples .T; p; T / where p is pure. Note that the two trees must both

be T , if .T; p; T / is to become trivial under Vbr � V . We will denote this kernel

by Pbr, so we have a short exact sequence

1 �! Pbr �! Vbr �! V �! 1.

Of course Pbr � Fbr, and is the kernel of the natural quotient Fbr � F . The

short exact sequence above restricts to

1 �! Pbr �! Fbr �! F �! 1,

which splits, so Fbr D Pbr Ì F . The sequence for Vbr does not split; for instance

V has torsion but Vbr is torsion-free.

The kernel Pbr is a direct limit of copies of PBn, arranged in a certain directed

system. This is spelled out in detail in Section 1 of [4]. In short, for a tree T

with n leaves, we have an isomorphic copy of PBn, denoted PBT , consisting of

triples .T; p; T / for p 2 PBn. We write T � T 0 if T 0 is obtained from T by an

iterated process of adding carets to the leaves of T . This makes the set of PBT

into a directed system, with morphisms given by the inclusions induced by cloning

maps. The limit of this system is exactly Pbr. As a remark, the notation in [4] for

Pbr is PBV , and the inclusions induced by the cloning maps are denoted ˛n;T;i .

1.3. Presentations. Brady, Burillo, Cleary and Stein [1] give in�nite and �nite

presentations for both Vbr and Fbr. For our purposes the in�nite presentations are

the more useful ones.

First we look at Vbr. The generators are xi (0 � i), �i and �i (1 � i). The

relations are as follows:

(A) xj xi D xi xj C1 for 0 � i < j

(b1) �i �j D �j �i for 1 � i � j � 2

(b2) �i �iC1�i D �iC1�i �iC1 for 1 � i

(b3) �i �j D �j �i for 1 � i � j � 2

(b4) �i �iC1�i D �iC1�i �iC1 for 1 � i

(c1) �i xj D xj �i for 1 � i < j

(c2) �i xi D xi�1�iC1�i for 1 � i

(c3) �i xj D xj �iC1 for 1 � j � i � 2

(c4) �iC1xi D xiC1�iC1�iC2 for 1 � i

(d1) �i xj D xj �iC1 for 1 � j � i � 2

(d2) �i xi�1 D �i �iC1 for 1 � i

(d3) �i D xi�1�iC1�i for 1 � i
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�3: �4:

Figure 3. Examples of generators of Vbr.

The elements xi are the standard generators of F . The �i are given by

.RiC2; ai ; RiC2/, whereRiC2 is the all-right tree with iC2 leaves, and ai 2 BiC2

is the braid that crosses strand i across strand i C 1. An all-right tree is one in

which, for every caret but the �rst, that caret’s root is the previous caret’s right

leaf. The �i are given by .RiC1; bi ; RiC1/, where bi 2 BiC1 crosses strand i

across strand i C 1. The important di�erence is that in �i the last strand is not

used, and in �i it is. See Figure 3 for some examples.

Now we look at Fbr. The generators are xi (0 � i), ˛i;j and ˇi;j (1 � i < j ).

The relations are as follows:

(A) xj xi D xi xj C1 for 0 � i < j

(B1) ˛�1
r;s ˛i;j ˛r;s D ˛i;j for 1 � r < s < i < j

or 1 � i < r < s < j

(B2) ˛�1
r;s ˛i;j ˛r;s D ˛r;j ˛i;j ˛�1

r;j
for 1 � r < s D i < j

(B3) ˛�1
r;s ˛i;j ˛r;s D .˛i;j ˛s;j /˛i;j .˛i;j ˛s;j /�1 for 1 � r D i < s < j

(B4) ˛�1
r;s ˛i;j ˛r;s D .˛r;j ˛s;j ˛�1

r;j
˛�1

s;j
/˛i;j .˛r;j ˛s;j ˛�1

r;j
˛�1

s;j
/�1 for 1 � r < i < s < j

(B5) ˛�1
r;s ˇi;j ˛r;s D ˇi;j for 1 � r < s < i < j

or 1 � i < r < s < j

(B6) ˛�1
r;s ˇi;j ˛r;s D ˇr;j ˇi;j ˇ�1

r;j
for 1 � r < s D i < j

(B7) ˛�1
r;s ˇi;j ˛r;s D .ˇi;j ˇs;j /ˇi;j .ˇi;j ˇs;j /�1 for 1 � r D i < s < j

(B8) ˛�1
r;s ˇi;j ˛r;s D .ˇr;j ˇs;j ˇ�1

r;j
ˇ�1

s;j
/ˇi;j .ˇr;j ˇs;j ˇ�1

r;j
ˇ�1

s;j
/�1 for 1 � r < i < s < j

(C) ˇi;j D ˇi;j C1˛i;j for 1 � i < j
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(D1) ˛i;j xk�1 D xk�1˛iC1;j C1 for 1 � k < i < j

(D2) ˛i;j xk�1 D xk�1˛iC1;j C1˛i;j C1 for 1 � k D i < j

(D3) ˛i;j xk�1 D xk�1˛i;j C1 for 1 � i < k < j

(D4) ˛i;j xk�1 D xk�1˛i;j C1˛i;j for 1 � i < k D j

(D5) ˛i;j xk�1 D xk�1˛i;j for 1 � i < j < k
(D6) ˇi;j xk�1 D xk�1ˇiC1;j C1 for 1 � k < i < j

(D7) ˇi;j xk�1 D xk�1ˇiC1;j C1ˇi;j C1 for 1 � k D i < j

(D8) ˇi;j xk�1 D xk�1ˇi;j C1 for 1 � i < k < j

(D9) ˇi;j xk�1 D xk�1ˇi;j for 1 � i < j < k.

These generators can be written in terms of the generators for Vbr as follows:

˛i;j D �i�iC1 � � ��j �2�
2
j �1�

�1
j �2 � � ���1

i ˇi;j D �i�iC1 � � ��j �2�
2
j �1�

�1
j �2 � � ���1

i .

Pictorially, ˛i;j is an all-right tree of splits, out to j C 1 strands, then strand i

braids around strand j and goes back to position i , and then there is an all-right

tree of merges. For ˇi;j the only di�erence is that we go out to j strands, and so

we use the last strand. See Figure 4 for some examples.

˛2;4: ˇ3;5:

Figure 4. Examples of generators of Fbr.

Observation 1.3. The group Pbr is generated by the conjugates of ˛i;j and ˇi;j

(1 � i < j ) by elements of F .

Proof. We need to generate every PBT . If T has n leaves and Rn is the all-

right tree with n leaves, then PBT is conjugate to PBRn
by the element .Rn; T /

of F . But PBRn
is generated by the ˛i;j for 1 � i < j < n and ˇi;j for

1 � i < j � n. �
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It will be convenient in Section 3 to use a fact about Fbr that does not seem

to have been recorded before, namely that it is an ascending HNN-extension of a

certain subgroup. For n � 0 let F.n/ be the subgroup of F generated by all the xi

with i � n. In particular F.0/ D F . It is well known that F is an ascending HNN-

extension of F.1/ with stable element x0. Now de�ne Fbr.n/ to be the subgroup

of Fbr generated by all the ˛i;j and ˇi;j for 1 � i < j and all the xi for i � n.

Lemma 1.4. We have thatFbr is an ascending HNN-extension ofFbr.1/with stable

element x0.

Proof. An initial proof involved establishing a presentation for Fbr.1/, and was

more involved; the following faster proof is inspired by helpful discussions with

Robert Bieri and Matt Brin.

Let � WFbr.1/ ,! Fbr.1/ be the monomorphism given by right conjugation by

x0. There is an epimorphism ‰ from the abstract HNN-extension Fbr.1/�� , with

stable element t , to Fbr given by specializing t to x0, so ‰ is the identity map

on Fbr.1/. We need to check that ‰ is injective. Let g 2 ker.‰/. Since g is

an element of Fbr.1/�� , and since the HNN-extension is ascending, we can write

g in the form g D tnhtm for h 2 Fbr.1/, n � 0 and m � 0. Also, there is

an epimorphism Fbr.1/�� � Z that reads 0 on Fbr.1/ and 1 on t , and factors

through ‰; this tells us that m D �n. Hence h is itself in ker.‰/. But ‰ jFbr.1/ is

the identity, so h D 1 and we are done. �

1.4. Abelianization and characters. The �rst observation of this subsection

is about Vbr, and ensures that any future discussion about abelian quotients and

characters will be uninteresting for Vbr.

Observation 1.5. The group Vbr is perfect.

This is an easy exercise in abelianizing the presentation for Vbr from the

previous subsection and checking that every generator becomes trivial.

One can also abelianize the presentation for Fbr without too much di�culty.

For reference we will describe the steps in the following lemma. Here, bars

indicate the images of elements in the abelianization.

Lemma 1.6. The abelianization of Fbr is generated by Nx0, Nx1, Ň
1;3 and N̨1;2.

Proof. We start with generators Nxi (0 � i), N̨ i;j (1 � i < j ) and Ň
i;j (1 � i < j ).

Relation (A) tells us that Nxi D Nx1 for all i � 2. Relations (D1), (D3), (D6),

and (D8) tell us that each N̨k;` equals N̨ i;j for some

.i; j / 2 ¹.1; 2/; .1; 3/; .2; 3/; .2; 4/º,
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with a similar statement for the Ň
k;`. So far we have reduced down to ten genera-

tors. We will show that six of them are redundant, leaving the four in the statement

of the lemma.

From (D4) we see that N̨1;3 D 0 and N̨2;4 D 0. Then (D2) says that N̨2;3 D N̨1;2.

From (C) and (D7) we see that Ň
iC1;j C1 D N̨ i;j for all 1 � i < j , which implies

that Ň
2;4 D 0 and Ň

2;3 D N̨1;2. Finally, (C) says that Ň
1;2 D Ň

1;2 C N̨1;2. �

In order to prove that these four generators are in fact linearly independent,

and so Fbr abelianizes to Z
4, we �rst describe four discrete characters of Fbr,

denoted �0, �1, !0 and !1, which will be dual to certain combinations of these

generators. Recall that a character of a group is a homomorphism from the group

to the additive real numbers, and a character is discrete if its image is isomorphic

to Z.

First, note that Fbr acts on Œ0; 1� via the map � WFbr � F . A standard basis for

Hom.F;R/ Š R
2 is ¹�0; �1º, where �i .f / WD log2.f

0.i//, see [3]. Hence we get

two linearly independent characters for Fbr by composing, namely:

�0 WD �0 ı � and �1 WD �1 ı �:

The values of �0 and �1 can be read o� a representative triple .T�; p; TC/ for

an element of Fbr. For a tree T , thought of as a metric graph with edge lengths all

1, let r be the root, `` the leftmost leaf and `r the rightmost leaf. Let L.T / be the

length of the reduced edge path from r to ``, and R.T / the length of the reduced

edge path from r to `r . Then

�0.T�; p; TC/ D L.TC/ � L.T�/;

�1.T�; p; TC/ D R.TC/ �R.T�/.

The characters �0 and �1 both have Pbr in their kernels. To �nd the missing

two dimensions in what we will eventually see is Hom.Fbr;R/ Š R
4, we now

look at characters that can detect braiding. First, let !0 be the character that takes

an element .T�; p; TC/ and reads o� the total winding number of the �rst and last

strands of p around each other. This is invariant under reduction and expansion,

and so is well de�ned. Finally, let !1 be the character that reads o� the sum of the

total winding numbers of adjacent strands of p, i.e., 1 and around 2, plus 2 around

3, etc. This is again invariant under reduction and expansion, so is well de�ned.

As an example of these measurements, one can compute that �0.g/ D 1,

�1.g/ D 0, !0.g/ D 1 and !1.g/ D �1 for the element g pictured in Figure 5.

Lemma 1.7. The characters .�0; �1; !0; !1/ form a basis for Hom.Fbr;R/ Š R
4,

the elements . Nx1 � Nx0;� Nx1; Ň
1;3; N̨1;2/ form a basis for the abelianization Z

4 of

Fbr, and these bases are dual.
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Figure 5. For the pictured element g, we have �0.g/ D 1, �1.g/ D 0, !0.g/ D 1 and

!1.g/ D �1.

Proof. Set f1WD�0, f2WD�1, f3WD!0 and f4WD!1. Also set e1WD Nx1� Nx0, e2WD� Nx1,

e3 WD Ň
1;3 and e4 WD N̨1;2. Then for 1 � i; j � 4 one can check that fi .ej / D ıij ,

the Kronecker delta. Here we have extended the de�nitions of the characters to

accepting inputs from the abelianization, which is �ne since they vanish on the

commutator subgroup. This proves that the ei are linearly independent, so form a

basis. From this it follows that Hom.Fbr;R/ Š R
4, and since the fi are linearly

independent they form a basis. �

As a remark, most winding number measurements are not invariant under

reduction and expansion, for instance the total winding number of the �rst and

second strands; on ˇ1;2 this measurement reads 1, but when we bifurcate the �rst

strand, we get a braid in which the �rst and second strands do not wind (indeed

are parallel), so the measurement reads 0. Of course now the second and third

strands wind, and !1 still reads 1, as it is a sum over all pairs of adjacent strands.

The important point is that the designations “second,” “third,” etc. are not well

behaved under cloning, but “next,” “�rst” and “last” are.

We should point out that we now have an easy algorithm to check whether an

element of Fbr is in ŒFbr; Fbr�, namely if and only if it lies in the kernels of �0, �1,

!0 and !1.

2. An alternative result

This section is almost entirely about Fbr, with implications for Vbr relegated to

the end. The upshot for Vbr is Corollary 2.8, which says that every proper normal

subgroup is contained in Pbr.
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The main result of this section is the following:

Theorem 2.1 (Fbr alternative). Let N be a normal subgroup of Fbr. Then either

N � Pbr or else ŒFbr; Fbr� � N .

By an “Alternative result” we mean a statement that any subgroup (or here any

normal subgroup) must have one of two “quite di�erent” forms. For example, the

classical Tits Alternative for a group says that any subgroup either contains a non-

abelian free group, or else is virtually solvable (note that Thompson’s groups do

not satisfy the Tits Alternative).

A quick corollary to Theorem 2.1 is the following:

Corollary 2.2. The commutator subgroup ŒFbr; Fbr� is perfect.

Proof. We just need to show that ŒŒFbr; Fbr�; ŒFbr; Fbr�� is not contained in Pbr. But

ŒŒFbr; Fbr�; ŒFbr; Fbr�� contains ŒŒF; F �; ŒF; F ��, so this is clear. �

Note that ŒFbr; Fbr� is not simple, as it has ŒPbr; Pbr� as a proper non-trivial

normal subgroup.

There are various Alternatives known for F of the form, “every subgroup of

F either has property P, or else contains a copy of G,” for some property P and

some subgroup G. Examples of this phenomenon include

(1) for P the property of being abelian, G is Z1 [9];

(2) for P the property of being solvable, G is Bleak’s group W [5];

(3) the Brin–Sapir Conjecture is that this phenomenon occurs for P being the

property of being elementary amenable and G being F [7, Conjecture 3].

In general, understanding the subgroups of F is an active and ongoing en-

deavor.

Returning to the task at hand, to prove Theorem 2.1, we begin with a technical

proposition about the normal closure of elements of F in Fbr.

Proposition 2.3. Let 1 ¤ f 2 F � Fbr. The normal closure N WD hhf ii of f in

Fbr contains ŒFbr; Fbr�.

The �rst part of our proof is inspired by the proof of Lemma 20 in [10], which

says that the normal closure of ŒF; F � in Vbr is all of Vbr.

Proof. First note that since F has trivial center, without loss of generality f 2
ŒF; F �, and since ŒF; F � is simple, ŒF; F � � N . Elements of the form xix

�1
j and

x�1
i xj for i; j � 1 are in ŒF; F �, and hence in N . This tells us that for any i � 1,

the element ˛i;iC1xix
�1
iC2˛

�1
i;iC1 is in N . Applying (D4) and (D5), we get

N 3 xi˛i;iC2˛i;iC1x
�1
iC2˛

�1
i;iC1 D xi˛i;iC2x

�1
iC2

and so ˛i;iC2x
�1
iC2xi 2 N , whence ˛i;iC2 2 N . This holds for all i � 1, and thanks

to (D3), we also get that ˛i;j 2 N for all 1 � i < j � 1.



On normal subgroups of the braided Thompson groups 77

The next goal is to force enough ˇi;j to be in N . Running a similar trick as

above, we start with ˇi;iC2xi�1x
�1
iC2ˇ

�1
i;iC2 being in N , use (D7) and (D9), and

get that N contains ˇiC1;iC3ˇi;iC3ˇ
�1
i;iC2 for all i � 2. Using (C) we get that N

contains ˇiC1;iC3ˇi;iC2˛
�1
i;iC2ˇ

�1
i;iC2, and then since ˛i;iC2 is in N , so is ˇiC1;iC3.

Using (D6) and (D8) then, we see that N contains every ˇi;j for 2 � i < j � 1.
It now su�ces to prove that upon modding out ŒF; F � and all the ˛i;j for

1 � i < j�1 andˇi;j for 2 � i < j�1, the presentation becomes abelian. Denote

elements of this quotient by putting hats on the elements (we have reserved bars

for the abelianization). That all the Oxi commute follows since we have modded

out ŒF; F �. Note that Ǫr;rC2 D O1 for all r � 1, so by (B1) and (B2) we see that

all the Ǫ i;iC1 commute. Also, since Ǒ
r;rC2 D O1 for all r � 2, by (C) we have

Ǒ
i;iC1 D Ǫ i;iC1 for i � 2. Next we claim that every Oxk�1 commutes with every

Ǫ i;iC1 (for k; i � 1). If k � i C 1 this follows from (D4) or (D5). If k � i then

(D1) and (D2) say

Ǫ i;iC1 Oxk�1 D Oxk�1 Ǫ iC1;iC2.

Multiplying on the right by Ox�1
iC2, and using (D5) and the fact that Oxk�1 Ox�1

iC2 D O1,
this becomes

Ǫ i;iC1 D Ǫ iC1;iC2;

so the claim is proved.

The last thing to show is that Ǒ
1;j commutes with all the other generators. If

j >2, then (D8), (D9), and conjugation by Ox1 Ox�1
j C1 D O1 tell us that Ǒ

1;j D Ǒ
1;j C1.

So we only need to look at Ǒ
1;2 and Ǒ

1;3. First note that by (C), Ǒ
1;2 D Ǒ

1;3 Ǫ1;2,

so if Ǒ
1;3 commutes with everything (including Ǫ1;2), then so will Ǒ

1;2. Now, Ǒ
1;3

commutes with every Oxk�1, by (D7)–(D9), and using that identi�cation of Ǒ
1;3

with every Ǒ
1;j for j � 3. We also need an ad hoc argument that Ǒ

1;3 commutes

with Ox2, which is easily checked (and holds even without the hats). Using (B5)

we get that Ǒ
1;3 commutes with every Ǫ i;iC1 D Ǒ

i;iC1 for i � 2. Lastly, this fact

plus (B7) tells us that Ǒ
1;3 commutes with Ǫ1;2. �

Thanks to this proposition, we see that “catching” a non-trivial element of F is

a way to blow up a normal subgroup to contain ŒFbr; Fbr�. To prove the Alternative

then, the goal is to start with an element of Fbr n Pbr and “catch” a non-trivial

element of F in its normal closure. First we need some technical lemmas.

Let g D .T; p; T / 2 Pbr. The tree T de�nes a partition of Œ0; 1� into dyadic

subintervals; let X.T / be the set of endpoints of said subintervals. Each subinter-

val corresponds to a leaf of T , and hence to a strand of p. If the endpoint x 2 X.T /
lies in .0; 1/ and is such that the two subintervals on either side of x correspond to

strands of p that are clones, then call x inessential. Otherwise call x essential. Let

Xess.T; p/ be the set of essential endpoints of the subintervals determined by T .

The next observation justi�es denoting this set by Xess.g/.
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Observation 2.4. The set Xess.g/ de�ned above is an invariant of g.

Proof. We need to show that Xess.T; p/ is invariant under reduction and ex-

pansion. Let T 0 D T [ �k. We have g D .T 0; �k.p/; T
0/. On the level

of subintervals, all we have done is cut the kth subinterval in half, and so

jX.T 0; �k.p//j D jX.T; p/j C 1. Let x0 be the element of X.T 0; �k.p// nX.T; p/,
i.e., the midpoint of the kth subinterval. Since the strands in �k.p/ on ei-

ther side of x0 are clones, we know that x0 is inessential. This shows that

Xess.T; p/ D Xess.T
0; �k.p//, which tells us that the set is invariant under re-

duction and expansion. �

Note that Xess.g/ D ¹0; 1º if and only if g D 1 in Pbr.

Proposition 2.5 (commuting condition). Letg 2 Pbr and f 2F . If f �xesXess.g/

then Œg; f � D 1.

Proof. Choose a tree T , say with n leaves, such that g D .T; p; T / for some

p 2 PBn. The tree gives us a subdivision of Œ0; 1�, say with endpoints 0 D
x0 < x1 < � � � < xn�1 < xn D 1. For 1 � i � n let Ii WD Œxi�1; xi �. Let

0 D xi0 < xi1 < � � � < xir�1
< xir D 1 be precisely the essential endpoints, so

jXess.g/j D r � 1. For 1 � s � r de�ne

Js WD
[

is�1�i�is

Ii ,

so the Js are the closures of the connected components of Œ0; 1� nXess.g/. The Js

partition the set of intervals Ii , and hence partition the leaves of T . For a given

Js , the strands of p indexed by the subintervals contained in Js are all clones of

each other.

Now, the fact that f �xes Xess.g/ means that it can be represented by a tree

pair of the form .T [ˆ; T [ˆ0/, whereˆ is a forest whose roots are identi�ed with

the leaves of T , as is ˆ0, such that a certain important property holds. To state the

property we need some setup. Write ˆ asˆ1 [� � �[ˆr , whereˆs is the subforest

whose roots are precisely those roots of ˆ identi�ed with the leaves of T lying in

Js . One might call ˆs the subforest of ˆ with “support” in Js . Similarly de�ne

ˆ0
s for 1 � s � r . Now, the important property of ˆ andˆ0, which we get since f

�xes Xess.g/, is that for each 1 � s � r , the leaves of ˆs are in bijection with the

leaves ofˆ0
s . This bijection preserves the order on the leaves, and is induced by f .

The “paired forest diagram” .ˆs; ˆ
0
s/ describes how f acts on the interval Js .

A consequence of all the above is that �ˆ.p/ D �ˆ0.p/ (see De�nition 1.1).

Indeed, for any Js the strands of p indexed in Js are clones of each other, and

applying �ˆ further clones this block of strands into a number of strands equal to

the number of leaves of ˆs . This is true of �ˆ0 as well, since ˆs and ˆ0
s have
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the same number of leaves. Then since this holds for all s, we conclude that

�ˆ.p/ D �ˆ0.p/.

The following calculation �nishes the proof:

fgf �1 D .T [ˆ; T [ˆ0/.T; p; T /.T [ˆ0; T [ˆ/

D .T [ˆ; T [ˆ0/.T [ˆ0; �ˆ0.p/; T [ˆ0/.T [ˆ0; T [ˆ/

D .T [ˆ; �ˆ0.p/; T [ˆ/

D .T [ˆ; �ˆ.p/; T [ˆ/

D .T; p; T / D g. �

Figure 6 gives an indication of what is really happening in Proposition 2.5.

Figure 6. The picture on the left is the commutator Œx1; ˇ1;2�. SinceXess.ˇ1;2/ D
®

0; 1
2
; 1

¯

,

and x1 �xes this set, this commutator is trivial, and one can check that the resulting “ribbon

diagram” indeed represents the trivial element. The picture on the right demonstrates that

Œx1; ˇ2;3� is not trivial, as the ribbon diagram does not represent the trivial element, and

indeed Xess.ˇ2;3/ D
®

0; 1
2
; 3

4
; 1

¯

, which is not �xed by x1.
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Lemma 2.6. Let g 2 Pbr and 1 ¤ f 2 F . Then there exists h 2 F such that

Œh; g� D 1 but Œh; f � ¤ 1.

Proof. Order the elements of Xess.g/ by 0 D x0 < x1 < � � �xr�1 < xr D 1. By

Proposition 2.5, it su�ces to �nd h 2 F that �xes Xess.g/ but does not commute

with f .

First suppose f �xes Xess.g/. Let 1 � i � r . Suppose that every h with

support in Œxi�1; xi � commutes with f . Then f jŒxi�1;xi � must be trivial. Since

f ¤ 1, this cannot happen for every i , so we conclude that there exists h with

support in Œxi�1; xi � for some i such that Œh; f � ¤ 1, and since the support of h is

disjoint from Xess.g/, also Œh; g� D 1.

Now suppose f does not �x Xess.g/. There exists an element h 2 F whose

�xed point set is precisely Xess.g/, so in particular Œh; g� D 1. If f were to

commute with h then it would necessarily stabilize its �xed point set, so instead

we conclude that Œh; f � ¤ 1. �

Proof of Theorem 2.1. Let t 2 FbrnPbr. Write t D gf for g 2 Pbr and 1 ¤ f 2 F .

By Lemma 2.6 we can choose h 2 F such that h commutes with g but not f . In

particular, the normal closure of t contains .f �1g�1/.ghf h�1/ D f �1hf h�1.

This is a non-trivial element of F (even of ŒF; F �), so by Proposition 2.3, the

normal closure of t contains ŒFbr; Fbr�. �

Remark 2.7. Since Pbr contains every pure braid group, there is no hope of

classifying all subgroups of Fbr in any real sense. At least we do know that every

�nitely generated subgroup of Pbr must lie in some PBn, since Pbr is a direct limit

of copies of the PBn. Another interesting fact is that, since Pbr contains every

pure braid group, it also contains every right-angled Artin group, by a result of

Kim and Koberda [12]. In particular, Fbr and Vbr are examples of �nitely presented

(even type F1) groups that contain every right-angled Artin group.

Now that we have an Alternative for Fbr, we can derive one for Vbr. The two

options for a normal subgroup turn out to be that it is either contained in Pbr, or

else equals all of Vbr. To prove this we will quote a result from [10] that says that

the normal closure of ŒF; F � in Vbr is all of Vbr. The proof is similar to the �rst

part of the proof of our Proposition 2.3.

Corollary 2.8 (alternative for Vbr). Let N be a proper normal subgroup of Vbr.

Then N is contained in Pbr.

Proof. SupposeN is not contained inPbr, so by Theorem 2.1N contains ŒFbr; Fbr�.

In particular N contains ŒF; F �, and so by [10, Lemma 20], N D Vbr. �
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The fact that V is simple tells us that either N � Pbr or NPbr D Vbr, so the

content of the corollary is that in the latter case in fact N D Vbr.

Corollary 2.9. Pbr is characteristic in Vbr and Fbr.

Proof. The statement for Vbr is immediate from Corollary 2.8. The statement for

Fbr follows from Theorem 2.1 once we observe that ŒFbr; Fbr� is characteristic. �

3. Normal subgroups over ŒFbr; Fbr�

Theorem 2.1 tells us that normal subgroups of Fbr either contain ŒFbr; Fbr�, or

else live in Pbr. The latter situation is rather complicated, and we will discuss

some examples in Section 4, along with some general results. Normal subgroups

over ŒFbr; Fbr� are more tractable though. In this section we compute the Bieri–

Neumann–Strebel invariant †1.Fbr/, which sheds some light on such subgroups,

for instance by characterizing which of them are �nitely generated.

3.1. The BNS invariant. The Bieri–Neumann–Strebel (BNS) invariant of a

�nitely generated group G, introduced in [6], is a geometric invariant†1.G/ that,

among other things, provides a means of understanding normal subgroups of G

containing the commutator subgroup ŒG; G�. For instance †1.G/ tells us when

such a normal subgroup is �nitely generated or not.

Historically, †1.G/ has proved to be di�cult to compute in general. Some

groups for which †1 is interesting and has been successfully computed include

right-angled Artin groups [14], pure braid groups [13], pure loop braid groups [15]

and Thompson’s group F , see [6, 3].

The BNS-invariant†1.G/ of a �nitely generated groupG is de�ned as follows.

Consider characters �WG ! R of G. Two characters � and �0 are equivalent if

there exists c 2 R
>0 such that �.g/ D c�0.g/ for all g 2 G. The equivalence

classes of non-trivial characters form the character sphere †.G/ of G. It is a d -

sphere if the torsion-free rank of G=ŒG;G� is d C 1. Now pick a �nite generating

set S for G and let �.G; S/ be the Cayley graph. For a character �WG ! R let

�.G; S/��0 be the full subgraph of �.G; S/ spanned by those vertices g 2 G with

�.g/ � 0. The BNS-invariant †1.G/ is a subset of †.G/, which does not depend

on S , de�ned by:

†1.G/ WD ¹Œ�� 2 †.G/ j �.G; S/��0 is connectedº.

The following is one of the main applications of †1.G/.

Citation 3.1 ([6, Theorem B1]). LetG be a �nitely generated group and letN GG
withG=N abelian. ThenN is �nitely generated if and only if for every Œ�� 2 †.G/
such that �.N/ D 0, we have Œ�� 2 †1.G/.
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Another important fact is that †1.G/ is invariant under automorphisms of G.

As is standard, we denote the complement †.G/ n†1.G/ by †1.G/c .

3.2. Tools. In this subsection we establish some terminology and notation, and

cite some useful results that we will use to calculate †1.Fbr/ in the following

section. First we collect some de�nitions. LetG be a group, and let I; J � G. We

say that J dominates I if every element of I commutes with some element of J .

The commuting graphC.J / of J is the graph with vertex set J and an (unoriented)

edge between a and b if a and b commute. We say that g 2 G survives under a

character � if �.g/ ¤ 0. Otherwise we say it dies, or that � kills it. If g survives

under � we will also sometimes call it �-hyperbolic.

The point of all this terminology is a useful criterion to determine if a character

is in †1.G/:

Citation 3.2 (survivors dominating generators, [13, Lemma 1.9]). Let G be a

group and � a character of G. Suppose there are sets I; J � G such that I

generates G, every element of J survives under �, J dominates I , and C.J / is

connected. Then Œ�� 2 †1.G/.

We will also make use of the following standard result, cf. [13, Lemma 1.3]:

Citation 3.3 (quotients). Let � WG � H be an epimorphism of groups. Let �

be a character of H and let � WD � ı � be the corresponding character of G.

If Œ�� 2 †1.G/ then Œ�� 2 †1.H/.

3.3. The BNS invariant †1.Fbr/. The answer is:

Theorem 3.4. The Bieri–Neumann–Strebel invariant †1.Fbr/ for Fbr consists of

all points on the sphere†.Fbr/ D S3 except for the points Œ�0� and Œ�1�, where �0

and �1 are as de�ned in Section 1.4.

We will prove the theorem by looking at various cases. First we take care

of the points Œ˙�i �. Here we will appeal to symmetry under an automorphism

�WFbr ! Fbr that switches the roles of �0 and �1. The automorphism � takes

.T�; p; TC/, viewed as a split-braid-merge diagram from top to bottom living in

3-space, and rotates it 180 degrees about an axis passing through the roots of both

trees.

Observation 3.5. We have Œ�i � 2 †1.Fbr/
c and Œ��i � 2 †1.Fbr/, for i D 0; 1.

Proof. First note that we need only check the statements for ˙�0, since the

automorphism � switches the roles of �0 and �1.

We know that Œ�0� 2 †1.Fbr/
c by Citation 3.3, since we have an epimorphism

Fbr � F and the induced character Œ�0� on F is in †1.F /c , see [3].
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For the other statement, recall from Lemma 1.4 that Fbr is an ascending HNN-

extension of Fbr.1/ by x0. We have ��0.Fbr.1// D 0 and ��0.x0/ D 1. Moreover,

Fbr.1/ is �nitely generated, by arguments similar to those in [1] that show Fbr is

�nitely generated. Hence by [3, Theorem 2.1(1)], we have Œ��0� 2 †1.Fbr/. �

Now that we have handled Œ˙�i �, the strategy for the remaining characters is

as follows. First we look at characters of Fbr that do not kill Pbr. We �rst suppose

that � has non-zero !1 component. Next we suppose that � does have zero !1

component and non-zero !0 component (see Section 1.4 for de�nitions). Then we

consider the case when � does kill Pbr, but has non-zero �0 and �1 components.

In each of these three cases, we are able to apply Citation 3.2 to conclude that

Œ�� 2 †1.Fbr/.

Case 1. First we assume that the !1 component of Œ�� is non-zero. We will use

Citation 3.2 to show that Œ�� is guaranteed to be in †1.Fbr/. The main trick is that

every ˛i;iC1 is �-hyperbolic.

Lemma 3.6 (non-zero !1). Let � be any character with non-zero !1 component.

Then Œ�� 2 †1.Fbr/.

Proof. Let

J1 WD ¹˛i;iC1 j i � 1º

and

I1 WD ¹˛i;j j 1 � i < j º [ ¹ˇi;j j 1 � i < j � 2º [ ¹x2; x2x
�1
0 º:

We claim that J1 dominates I1, C.J1/ is connected, I1 generates Fbr, and ev-

ery element of J1 survives under �. First note that any ˛i;j commutes with

j̨ C1;j C2 (B1), that any ˇi;j with i < j � 2 commutes with ˛iC1;iC2 (B5), that x2

commutes with ˛1;2 (D5), and that x2x
�1
0 commutes with ˛4;5 (D1). This tells us

that J1 dominates I1. Now observe that every element of J1 commutes with ˛1;2

except for ˛2;3 (B1), but ˛2;3 commutes with ˛4;5, so C.J1/ is connected. That I1

generates Fbr is routine to check in light of (C), since this ensures that ˇi;j with

i < j � i C 2 can be obtained using I1, and since x2 and x2x
�1
0 generate F .

Finally, every element of J1 survives under !1 and dies under �0, �1 and !0, so

necessarily survives under �. �

Case 2. Next suppose that the !0 component is non-zero. We will again use

Citation 3.2, but with a di�erent dominating set J0 and generating set I0.

First we need to discuss central elements ofPBn. For any n, the centerZ.PBn/

is cyclic, generated by an element �n that can be visualized as spinning the n

strands around in lockstep by 360 degrees. For any tree T with n leaves, the

element

ı.T / WD .T;�n; T /
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commutes with every element of the form .T; p; T / for p 2 PBn. However, it

is important that we use the same tree T ; there is no guarantee that ı.T / will

commute with an element of the form .T 0; p; T 0/ if T 0 is not T .

Another important observation about the elements ı.T / is that they survive

under !0; indeed, !0 of such an element is 1. As a remark, !1 of such an element

equals n � 1, but this will not matter in what follows.

Lemma 3.7. Any element of ŒF; F � � Fbr commutes with some conjugate of an

element of the form ˇ1;j .

Proof. Conjugates of ˇ1;j by elements of F amount to subdividing Œ0; 1� into

j subintervals and then braiding the �rst and last ones around each other. In

particular, the essential endpoints of the subdivision are 0, the �rst endpoint after

0, the last endpoint before 1, and 1; see the de�nition before Observation 2.4.

Given an element f 2 ŒF; F �, so the support of f in Œ0; 1� is bounded away from

0 and 1, we can choose a subdivision in which these four essential points are

disjoint from the support of f . Then f will commute with the conjugate of the

ˇ1;j corresponding to this subdivision by Proposition 2.5. �

Proposition 3.8 (non-zero !0). Let � be any character with non-zero !0 compo-

nent. Then Œ�� 2 †1.Fbr/.

Proof. Thanks to Lemma 3.6 we may assume that � has !1 component zero. In

particular, every ı.T / is �-hyperbolic.

Let J0 be the set of all conjugates of ˇ1;j for j � 2 and all ı.T / for all trees

T and all n � 1. Then every element of J0 survives under !0 and dies under �0

and �1, and since � has !1 component zero this tells us that every element of J0

survives under �. We next claim that C.J0/ is connected, and in fact that it is

connected with diameter 2. Indeed, given any two elements x; y of J0 there exists

a tree T with n leaves such that x D .T; p; T / and y D .T; q; T / for p; q 2 PBn.

Then x and y both commute with ı.T /.

Now we need to �nd a generating set I0 for Fbr that is dominated by J0. Since

every element of Pbr commutes with some ı.T /, we may as well include all of Pbr

in I0. We just need to add elements to I0 that are dominated by J0 until we have

generated F � Fbr. By Lemma 3.7, we can add all of ŒF; F � to I0. Also, note

that ˇ1;2 commutes with any element of F �xing 1=2, by Proposition 2.5, and F

is generated by such elements together with ŒF; F �, so we are done. �

Case 3. Now suppose that � kills Pbr, so its !0 and!1 components are both zero.

Also assume, for this case, that the �0 and �1 components of � are not both zero.

We will �nd yet another pair of sets JF and IF such that Citation 3.2 applies. As

a remark, the proof recovers the fact that the restrictions of such characters to F

are in †1.F /, originally proved in [6].
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Lemma 3.9. Let � be a character that kills Pbr and whose �0 and �1 components

are both non-zero. Then Œ�� 2 †1.Fbr/.

Proof. Let JF be the set of all elements of F � Fbr whose support has precisely

one of the endpoints of Œ0; 1� as a limit point. Since elements with disjoint supports

commute, it is straightforward to verify that C.JF / is connected. Also, any

element of JF survives under � by our hypothesis on �.

Now de�ne I 0
F to be ŒF; F � [ JF . It is straightforward to check that JF

dominates I 0
F and that I 0

F generates F , so we recover the fact that Œ�jF � 2 †1.F /.

Now let IF be the union of I 0
F with the set of elements of the form ˛i;j and ˇi;j

(1 � i < j ), so IF generates Fbr. Any ˛i;j or ˇi;j commutes with xj by (D5)

and (D9), which is in JF , so JF dominates IF . �

We can now put the cases together and compute †1.Fbr/.

Proof of Theorem 3.4. Let Œ�� 2 †.Fbr/, say

� D a�0 C b�1 C c!0 C d!1.

If c ¤ 0 or d ¤ 0 then Œ�� 2 †1.Fbr/ by Lemma 3.6 and Proposition 3.8, so

assume c D 0 and d D 0. If a and b are both non-zero then Œ�� 2 †1.Fbr/ by

Lemma 3.9. The four remaining points of †.Fbr/ are Œ˙�i � for i D 0; 1, which

are handled by Observation 3.5. �

An immediate application is that we know exactly when normal subgroups of

Fbr containing ŒFbr; Fbr� are �nitely generated.

Corollary 3.10. LetN be a normal subgroup of Fbr, and suppose thatN contains

ŒFbr; Fbr�. Then N is �nitely generated if and only if N 6� ker.�0/ and N 6�
ker.�1/.

Proof. First note that by assumption Fbr=N is abelian. If N is contained in the

kernel of either �0 or �1, then N is not �nitely generated, by Citation 3.1. Now

suppose thatN is not contained in either kernel. Let � be any non-trivial character

of Fbr such that �.N/ D 0, so Œ�� 62 ¹Œ�0�; Œ�1�º. In particular, Œ�� 2 †1.Fbr/, so

N is �nitely generated by Citation 3.1. �

We can combine this result with a proposition from the previous section:

Corollary 3.11. Let f; g 2 F be elements such that �0.f / ¤ 0, �1.f / D 0,

�0.g/ D 0 and �1.g/ ¤ 0. Then the normal closure hhf; gii in Fbr is �nitely

generated.

Proof. The normal closure contains the commutator subgroup by Proposition 2.3.

Hence it is �nitely generated by Corollary 3.10. �
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4. Normal subgroups under Pbr

Before discussing normal subgroups of Vbr and Fbr contained in Pbr, we should

generally inspect the subgroups of Pbr. Since Pbr is a direct limit of copies of pure

braid groups, we know that every subgroup of Pbr is a direct limit of subgroups

of the PBn, so our �rst goal is to pin down what can happen. For each n 2 N and

each tree T with n leaves, recall from Section 1.2 that PBT denotes the copy of

PBn consisting of triples of the form .T; p; T /, and Pbr is the direct limit of the

PBT .

Given a family of subgroups GT of the PBT , one for each tree T , we can

consider the subgroup of Pbr generated by all the GT . If we want any hope of

recovering the family from the subgroup it generates, and hence of classifying

the subgroups of Pbr, we need some conditions on the family. The criteria to

check this are as follows. Let .GT /T be a family of subgroups with GT � PBT

for each T . We will call the family coherent if whenever T � T 0, the inclusion

PBT ! PBT 0 restricts to an inclusion GT ! GT 0 , i.e., GT � GT 0 as subgroups

of Pbr. If moreover GT 0 \ PBT equals GT we will call the family complete; the

condition here that is not immediate isGT 0 \PBT � GT . The point is that we can

recover a complete coherent family of subgroups of the PBT from the subgroup

they generate in Pbr, as the next proposition makes precise.

Proposition 4.1 (subgroups of Pbr). The subgroups of Pbr are in one-to-one

correspondence with the complete coherent families of subgroups of the PBT .

Proof. Every coherent family yields a subgroup of Pbr, namely the subgroup

generated by the subgroups in the family. Also, given a subgroup G of Pbr, the

family .PBT \G/T is coherent and complete for trivial reasons. The only thing to

check then is that two distinct complete coherent families yield distinct subgroups

of Pbr. Let .GT /T be coherent and complete, and let G be the subgroup of Pbr

generated by the GT . We claim that PBT \G � GT for all T , after which we will

be done, since the reverse inclusion is immediate.

Let g 2 PBT \G. SinceG is generated by theGT , we can write g as a product

g D g1 � � �gr where each gi lies in some GTi
. Let T 0 be a common upper bound

for ¹T º [ ¹Tiº
r
iD1, so g and all the gi lie in PBT 0 . Since the family is coherent all

the gi even lie inGT 0 . This implies g 2 GT 0 , and now since the family is complete

and g 2 PBT , we conclude that g 2 GT . �

A consequence of the proof is that given any subgroup G � Pbr, the unique

complete coherent family that generates G is .PBT \G/T .

For n.T / the number of leaves of T , denote by

 T WPBT �! PBn.T /

the isomorphism .T; p; T / 7! p.
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Lemma 4.2 (families of normal subgroups). Let .GT /T be a complete coherent

family of subgroups GT � PBT , and let G � Pbr be the subgroup generated by

the GT . ThenG is normal in Fbr if and only if each GT is normal in PBT , and for

every T and S with n.T / D n.S/ we have  T .GT / D  S .GS / in PBn.

Proof. First suppose each GT is normal in PBT and  T .GT / D  S .GS / for all

T; S with n.T / D n.S/. An element of G is a triple g D .T; p; T / for some

T and p 2  T .GT /. Let h D .S; q; U / be an arbitrary element of Fbr. Since

the family .GT /T is coherent, we can expand T , S and U until without loss of

generality h D .S; q; T /, so hgh�1 D .S; qpq�1; S/. Now, GT is normal in PBT ,

so qpq�1 2  T .GT /, and so by hypothesis is also in  S .GS /, which means that

.S; qpq�1; S/ 2 GS . We conclude that hgh�1 2 G.

Now suppose G is normal in Fbr. It is immediate that GT is normal in PBT .

Let T and S both have n leaves, and let .T; p; T / 2 GT , so .T; p; T / 2 G. Since

G is normal we also have .S; p; S/ 2 G. But GS D PBS \ G, so p 2  S .GS /.

This shows  T .GT / �  S .GS /, and the reverse inclusion follows by the same

argument. �

In conclusion, the normal subgroups of Fbr contained in Pbr are obtained

precisely by choosing a normal subgroup Gn GPBn for each n such that for every

1 � k � n, we have:

�n
k .PBn/ \GnC1 D �n

k .Gn/. (4.1)

Indeed, this equation ensures that the family .GT /T given by GT WD Gn.T / is

complete and coherent. We will call .Gn/n2N a complete coherent sequence of

normal subgroups.

Given such a sequence .Gn/n2N, we will denote the corresponding subgroup

of Pbr by K.G�/ (following the notation in [16]), so K.G�/ G Fbr. In terms of

triples, we have:

K.G�/ D ¹.T; p; T / j T has n leaves and p 2 Gnº.

It is straightforward to decide when K.G�/ is even normal in Vbr.

Lemma 4.3. Let .Gn/n2N be a sequence satisfying Equation 4.1, so K.G�/ is

normal in Fbr. Then K.G�/ is normal in Vbr if and only if each Gn � PBn is

normal in Bn.

Proof. First suppose K.G�/ is normal in Vbr. Let T be arbitrary, and let p 2 Gn.

For any b 2 Bn, we have

.T; bpb�1; T / D .T; b; T /.T; p; T /.T; b�1; T / 2 K.G�/

and .T; bpb�1; T / 2 PBT , so in fact .T; bpb�1; T / 2 GT , which implies that

bpb�1 2 Gn.
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Now suppose that Gn is normal in Bn for all n. Let g 2 K.G�/ and h 2 Vbr.

Choose T , S , p 2 PBn.T / and b 2 Bn.T / such that g D .T; p; T / and h D
.S; b; T /; in other words expand the triples until they have a common bottom tree.

Now

hgh�1 D .S; b; T /.T; p; T /.T; b�1; S/ D .S; bpb�1; S/

is in GS since bpb�1 2 Gn.S/. We conclude that K.G�/ is normal in Vbr. �

Here is one family of examples of complete coherent sequences of normal

subgroups .Gn/n2N. Let n 2 N and 1 � m � n. Call a pure braid p 2 PBn

m-loose if it becomes trivial upon deleting all but any m strands. For example,

every pure braid is 1-loose, and a pure braid p is 2-loose if and only if every

total winding number between two strands is zero, if and only if p 2 ŒPBn; PBn�.

Let ƒn.m/ be the subgroup of PBn consisting of all m-loose braids, so ƒn.m/ is

normal in Bn. We have

PBn Dƒn.1/

> ƒn.2/

D ŒPBn; PBn�

> ƒn.3/

:::

> ƒn.n � 1/

> ƒn.n/

D ¹1º:

As a remark, ƒn.n � 1/ is the group of Brunnian braids, i.e., braids that become

trivial upon removing any single strand.

Lemma 4.4. For 1 � k � n and 1 � m � n, we have �n
k
.PBn/ \ ƒnC1.m/ D

�n
k
.ƒn.m//, i.e., Equation 4.1 is satis�ed.

Proof. One direction is trivial: if p 2 ƒn.m/, then �n
k
.p/ 2 ƒnC1.m/. Now

suppose that �n
k
.p/ 2 ƒnC1.m/. Let 1 � i1 < i2 < � � � < im � n be the numbering

of m arbitrary strands of p, and let S WD ¹i1; : : : ; imº. Let �S WPBn ! PBm be the

map that deletes all those strands not numbered by elements of S . De�ne

S.k/ WD ¹i1 C "1; : : : ; im C "mº,

where "j is 0 if ij � k and is 1 if k < ij . Then �S.k/ ı �n
k

D �S . By assumption,

�S.k/.�
n
k
.p// D 1, and so �S.p/ D 1. We conclude that p 2 ƒn.m/. �
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We emphasize that m-looseness is about deleting all but any m strands to

get the trivial braid. If we instead considered deleting any m strands to get

the trivial braid, then this would not give a coherent sequence. For instance, if

1 ¤ p 2 ƒn.n�1/ (sop is Brunnian), then the lemma says �n
k
.p/ is inƒnC1.n�1/,

but it is not inƒnC1.n/ (so not Brunnian), since deleting one of the cloned strands

will bring us back to p, not to 1.

We now have a concrete family of normal subgroups of Vbr contained in Pbr,

namely:

K.ƒ�.m// WD ¹.T; p; T / j T has n leaves and p 2 ƒn.m/º.

We have K.ƒ�.1// D Pbr and K.ƒ�.2// D ŒPbr; Pbr�. As m grows, we �nd a

descending chain of normal subgroups

� � � G K.ƒ�.3// G K.ƒ�.2// D ŒPbr; Pbr� G Pbr D K.ƒ�.1// G Fbr

with
\

m2N

K.ƒ�.m// D ¹1º.

As a non-example of a complete coherent sequence, consider the sequence of

normal subgroups of Bn given by the centers Z.Bn/ � PBn, generated by �n.

Upon cloning, �n
k
.�n/ � PBnC1 is not contained in Z.BnC1/, so this sequence

is not coherent. Indeed, these subgroups, when considered as subgroups of Vbr,

normally generate all of Pbr; in fact the single element ˇ1;2 D .R2; �2; R2/

already normally generates Pbr in Vbr.

When thinking of normal subgroups of (pure) braid groups, an obvious ques-

tion is whether the coherent sequence .PB
.m/
n /n2N of mth derived subgroups is

complete for �xed m > 2. When m D 2 we have PB
.2/
n D ƒn.2/, so the an-

swer is yes, but the m D 3 case is already unclear. Concretely, if g is a product

of commutators of products of commutators, and g happens to feature a cloned

strand, so g D �k.h/ for some h, then is h a product of commutators of products

of commutators? All of these questions hold as well for the sequence ofmth terms

of upper or lower central series, for �xedm, and for all the corresponding versions

for the braid groups Bn.

4.1. Quotients. Given a complete coherent sequence of normal subgroups

.Gn/n2N, with limit K.G�/, we can consider the quotients Fbr=K.G�/ and

Vbr=K.G�/, which are somewhat straightforward to describe. The quotient map

� WVbr � Vbr=K.G�/ takes a triple .T; b; S/ to a triple .T; bGn; S/, where

n D n.T / D n.S/. In particular the quotient can be described as the set of such

triples, up to reduction and expansion, which are well de�ned since .Gn/n2N is

complete and coherent. In the future we believe these quotients could be further

inspected using the “cloning systems” framework from [16].
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Example 4.5 (Fbr=K.ƒ�.2//). Note that since ƒn.2/ D ŒPBn; PBn�, we have

PBn=ƒn.2/ D H1.PBn/ D Z.
n
2/. Heuristically an element Ev 2 H1.PBn/ is a

record of the total winding numbers of each pair of strands (hence the
�

n
2

�

) of a

representative of Ev in PBn. Fix a basis .ei;j j 1 � i < j � n/ for Z.
n
2/. If Ev is the

image of p 2 PBn in the abelianizationH1.PBn/, then the coe�cient of ei;j in Ev
is the total winding number of strands i and j in p.

The quotientFbr=K.ƒ�.2// is described as follows. An element of the quotient

is represented by a triple .T; Ev; S/ where T and S are trees with n leaves and

Ev 2 H 1.PBn/. We consider such triples up to reduction and expansion, as in Fbr;

now expansion is described as follows. If we expand the kth leaf of T by attaching

a caret, call the new tree T 0, then we correspondingly replace Ev with an element

�n
k
.Ev/ in Z.

nC1
2 /; the map �n

k
is de�ned on the basis vectors as follows:

�n
k .ei;j / WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

eiC1;j C1 if 1 � k < i < j;

eiC1;j C1 C ei;j C1 if 1 � k D i < j;

ei;j C1 if 1 � i < k < j;

ei;j C1 C ei;j if 1 � i < k D j;

ei;j if 1 � i < j < k.

This should be compared to the relations (D1)–(D9) in the presentation ofFbr from

Section 1.3, which also specify how to write �n
k
.˛i;j / and �n

k
.ˇi;j / as products of

generators, e.g., �n
k
.˛i;j / D ˛iC1;j C1˛i;j C1 if k D i , and so forth.

One can show that, since no H 1.PBn/ contains a non-abelian free group

(being abelian), neither does Fbr=K.ƒ�.2//. In particular Fbr=K.ƒ�.2// is not

isomorphic toFbr. We take this as evidence that none of theFbr=K.ƒ�.m// should

be isomorphic to Fbr. On the other hand, the m D 2 case is somewhat unique;

for m > 2, PBn=ƒn.m/ does contain non-abelian free groups. Since PBn=ƒn.m/

embeds into Fbr=K.ƒ�.m// for any n, this is a proper quotient of Fbr that contains

F and contains non-abelian free groups.

Question 4.6. Are any of the quotients Fbr=K.ƒ�.m// ( for m > 2) isomorphic

to Fbr itself ? Are any of the quotients Vbr=K.ƒ�.m// ( for m � 2) isomorphic to

Vbr?

Note that for Vbr the above question includes the m D 2 case, since the group

Vbr=K.ƒ�.2// does contain free subgroups (by virtue of V , unlike F , containing

free subgroups). More generally, one can ask:

Question 4.7. Are Fbr and/or Vbr Hop�an?
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This question becomes especially intriguing in light of the following:

Proposition 4.8. The group Pbr is not Hop�an.

Proof. For a non-trivial tree T with n leaves, de�ne TL to be the subtree of T

whose root is the left child of the root of T . Let TR be the tree whose root is the

right child of the root of T . For 0 � m � n, we have an epimorphism

�n;mWPBn �! PBm

given by forgetting all the strands of a pure braid except for the �rst m of them.

Now de�ne a map

�LWPbr �! Pbr

sending .T; p; T / to .TL; �n;n.TL/.p/; TL/. It is straightforward to check that this

is well de�ned under reduction and expansion, and is a surjective homomorphism.

It is also not injective; indeed the kernel contains every generator ˛i;j and ˇi;j for

1 � i < j , since these were de�ned using all-right trees. �

The normal subgroups ker.�n;m/ do not form a coherent sequence, and in fact

once they are considered inside Fbr or Vbr, they normally generate all of Pbr. This

can be seen by noting that we catch every ˛i;j and ˇi;j for 1 � i < j , and the

conjugates of these elements in Fbr generate all of Pbr. Hence this does not give

any direct hints about Question 4.7.
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