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Highly faithful actions and dense free subgroups in full groups
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Abstract. In this paper, we show that every measure-preserving ergodic equivalence

relation of cost less than m comes from a “rich” faithful invariant random subgroup of

the free group on m generators, strengthening a result of Bowen which had been obtained

by a Baire category argument.

Our proof is completely explicit: we use our previous construction of topological

generators for full groups and observe that these generators induce a totally non free action.

We then twist this construction so that the action is moreover amenable onto almost every

orbit and highly faithful.

In particular, we obtain that the full group of a measure-preserving ergodic equivalence

of cost less than m contains a dense free subgroup on m generators.
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1. Introduction

A natural conjugacy-invariant for a measure-preserving action of a countable

group � on a standard probability space .X; �/ is the associated measure-pre-

serving equivalence relation R� de�ned by .x; y/ 2 R� if and only if �x D �y.

Such equivalence relations are studied up to orbit equivalence, that is up to iso-

morphism and restrictions to full measure sets.

Measure-preserving actions of countable groups are often asked to be free:

every non-trivial group element �xes almost no point. The study of free measure-

preserving actions up to orbit equivalence is well developed and has fruitful

connections to measured group theory and von Neumann algebras, see [7] for

a recent overview.

1 Research supported by Projet ANR-14- CE25-0004 GAMME.
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The theory of cost, introduced by Levitt [16] and developed by Gaboriau [6],

has proven to be invaluable in this area. The cost of a measure-preserving equiv-

alence relation R is the in�mum of the measures of its generating sets,1 thus pro-

viding an analogue of the rank of a countable group for measure-preserving equiv-

alence relations. A fundamental theorem due to Gaboriau is that every free action

of the free group on m generators induces a measure-preserving equivalence re-

lation of cost m (see [6, Corollary 1]).

In this paper, we are interested in non-free actions of Fm. Our starting point

is the contrapositive of Gaboriau’s aforementioned theorem: a measure preserv-

ing equivalence relation of cost less than m cannot come from a free action of

Fm. Moreover, an easy consequence of Gaboriau’s results is that every ergodic

measure-preserving equivalence relation of cost less than m comes from a non-

free action of Fm.

It is then natural to search for some strengthening of non-freeness for Fm-

actions so as to further classify measure-preserving equivalence relations of cost

less than m. We thus ask:

Question 1. Consider a measure-preserving ergodic equivalence relation of cost

less than m. How non-free can the Fm-actions that induce it be?

We now list three ways a measure-preserving action of the free group onm > 2

generators can be thought of as “very” non-free.

1.1. Non freeness I: Amenability onto almost every orbit

De�nition 1.1. An action of a countable group � on a set Y is called amenable

if it admits a sequence of almost invariant sets, i.e. if there exists a sequence of

�nite subsets .Fn/ of Y such that for all 
 2 �,

j
Fn 4 Fnj
jFnj

�! 0 Œn ! C1�:

A countable group � is amenable if its left action onto itself by translation is

amenable.

The group of integers Z is a key example of an amenable group (the sequence

of intervals Œ�n; n� is almost invariant). On the other hand, for any n > 2 the free

group Fn is not amenable: for instance, one can build a Ponzi scheme on it (see

[9, Corollary 6.18]).

De�nition 1.2. A measure-preserving action of a countable group � on a standard

probability space .X; �/ is called amenable onto almost every orbit if for almost

every x 2 X , the �-action on � � x is amenable.

1 See section 2 for a precise de�nition.
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Example 1.3. Suppose that� Õ .X; �/ is a free measure-preserving action. Then

for almost every x 2 X , the �-equivariant map � ! � � x which takes 
 2 � to


 � x is a bijection. Hence almost all the actions on the orbits are conjugate to the

left �-action onto itselft by translation. So a free �-action on .X; �/ is amenable

onto almost every orbit if and only if � is amenable.

We deduce from the previous example that for all n > 2, a free measure-

preserving action of the free group Fn is never amenable onto almost every orbit.

In particular, measure-preserving actions of Fn which are amenable onto almost

every orbit can be thought of as very non-free actions. Examples of non-amenable

measure-preserving equivalence relations coming from Fm-actions which are

amenable onto almost every orbit were �rst constructed by Kaimanovich [12].

1.2. Non freeness II: High transitivity onto almost every orbit

De�nition 1.4. Let � be a countable group acting on a set Y . The action is highly

transitive if for every n 2 N, the diagonal �-action on the set of n-tuples made of

pairwise distinct elements of Y is transitive.

To be more precise , the action is highly transitive if for every n 2 N, every

pairwise distinct y1; : : : ; yn 2 Y and every pairwise distinct y0
1; : : : ; y

0
n 2 Y , there

exists 
 2 � such that for all i 2 ¹1; : : : ; nº, we have 
 � yi D y0
i .

As an example, the natural action of the group of �nitely supported permuta-

tions of the integers is highly transitive. It has been an ongoing research theme to

understand which countable groups admit faithful highly transitive actions; see [11]

for a striking recent result in that area.

It is a well-known fact that a permutation group � 6 S.Y / is highly transitive

if and only if it is dense for the topology of pointwise convergence. Note that a

nontrivial highly transitive action can never be free. The following de�nition was

introduced by Eisenmann and Glasner [4] and can also be seen as a strengthening

of non-freeness for measure-preserving actions.

De�nition 1.5. Let R be a measure-preserving equivalence relation on a standard

probability space .X; �/. A measure-preserving action of a countable group � on

.X; �/ is almost surely highly transitive on R-classes if for almost every x 2 X , �

preserves the equivalence class Œx�R and acts on it in a highly transitive manner.

There is a very nice su�cient condition for a group to act almost surely highly

transitively on R-classes and to state it we need to introduce full groups.

De�nition 1.6. LetR be a measure-preserving equivalence relation. Its full group,

denoted by ŒR�, is the group of all measure-preserving Borel bijections T of .X; �/

such that for all x 2 X , we have T .x/ 2 Œx�R. Moreover, two such bijections are

identi�ed if they coincide up to a null set.
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WheneverT andU are measure-preserving bijections of .X; �/, one can de�ne

the uniform distance between them by

du.T; U / WD �.¹x 2 X WT .x/ ¤ U.x/º/:

Whenever R is a measure-preserving equivalence relation, the uniform metric

induces a complete separable metric on its full group which is thus a Polish group

(see e.g. [13, Proposition 3.2]).

We may now state Eisenmann and Glasner’s result.

Theorem 1.7 ([4, Proposition 1.19]). Let R be a measure-preserving equivalence

relation. Let � 6 ŒR� be a countable dense subgroup of ŒR�. Then � acts almost

surely highly transitively on R-classes.

It is not true in general that any almost surely highly transitive action comes

from a dense embedding into a full group.2 However in the ergodic case the

question of the converse was asked by Eisenmann and Glasner.

1.3. Non freeness III: Total non freeness. To state properly one last possible

de�nition for an action to be very non free, we need to introduce invariant ran-

dom subgroups, which are important invariants of non-free measure-preserving

actions.

Let � be a countable group. We denote by Sub.�/ � ¹0; 1º� the space of

closed subgroups of�, which is a closed subspace of the compact metrizable space

¹0; 1º� equipped with the product topology. With the induced topology, Sub.�/

is thus a compact metrizable space naturally acted upon by � via conjugacy: for

any ƒ 2 Sub.�/ and any 
 2 �, one lets 
 �ƒ WD 
ƒ
�1.

De�nition 1.8. An invariant random subgroup (or IRS) of a countable group �

is a �-invariant Borel probability measure on Sub.�/.

Let � Õ .X; �/ be a measure-preserving action. The map StabWX ! Sub.�/

which maps x 2 X to Stab�.x/ is �-equivariant, so by pushing forward the

measure � we obtain an IRS Stab�� of �. Abert, Glasner and Virag have shown

that the converse is true: every IRS of � can be written as Stab�� for some

measure-preserving �-action on .X; �/ [1, Proposition 13].

De�nition 1.9 (Vershik). Let � Õ .X; �/ be a measure-preserving action. It is

called totally non free if the map StabW .X; �/ ! .Sub.�/; Stab��/ is a conjugacy.

2 To see this, start with � Õ .X;�/ which is almost surely highly transitive on R-classes.
Then consider the �-action on two disjoint copies of .X;�/ and let R0 be the associated
equivalence relation. The new action is almost surely highly transitive on R

0-classes, but �
is not dense in ŒR0� since any element of the closed subgroup generated by � has to act the same
on the two copies of .X;�/.
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Note that since the map Stab is �-equivariant, the only thing one has to check

in order to know that an action is totally non free is that Stab becomes injective

when restricted to a suitable full measure subset ofX . In the setting of full groups,

our observation is the following.

Proposition 1.10 (see Proposition 2.4). LetR be a measure-preserving aperiodic3

equivalence relation. If � 6 ŒR� is a dense countable subgroup, then the �-action

is totally non free.

Bowen obtained a satisfactory answer to Question 1 in the context of totally

non-free actions: he showed by a Baire category argument that whenever R is

an ergodic equivalence relation of cost less than n, there exists a totally non free

action of the free group on n generators which induces the equivalence relation R,

see [2]. We remark that this result can also be obtained by combining the previous

proposition with [17, Theorem 1].

1.4. Statement of the main result. Our main result is that the above conditions

for non-freeness can be achieved all at once along with high faithfulness. The

latter is a strengthening of the notion of faithfulness and is somehow dual to

high transitivity (see Section 3 for more on this notion; our de�nition di�ers

signi�cantly from the one given by Fima, Moon and Stalder in [5]).

De�nition 1.11. A transitive action of a countable group � on a set Y is highly

faithful if for all n 2 N and all pairwise distinct 
1; : : : ; 
n 2 �, there exists y 2 Y
such that for all distinct i; j 2 ¹1; : : : ; nº, we have 
i � y ¤ 
j � y.

Note that the natural action of the group of �nitely supported permutations

of the integers is highly transitive faithful, but not highly faithful. It would be

interesting to understand which countable groups admit highly faithful highly

transitive actions.

A measure-preserving action of a countable group is called highly faithful

if it is highly faithful onto almost every orbit. Here this notion was useful to

us in order to obtain sequences of sets with nice disjointness properties (see

item (5) in Theorem 3.5) and also to produce (highly) faithful actions for some

free products via Theorem 4.5. We can now state our main result, which upgrades

[17, Theorem 1].

Theorem 1.12. Let R be an ergodic equivalence relation with �nite cost. Then

for all m 2 N such that m > Cost.R/ there is a dense free group on m generators

in the full group of R whose action is moreover amenable onto almost every orbit

and highly faithful.

3 A measure-preserving equivalence relation is aperiodic if almost all its classes are in�nite.
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As a corollary, we can strengthen Bowen’s Theorem and generalize a result

that Eisenmann and Glasner had obtained for cost 1 ergodic measure-preserving

equivalence relations by a Baire category argument [4, Corollary 21].

Corollary 1.13. LetR be an ergodic equivalence relation with �nite cost. Then for

all m 2 N such that m > Cost.R/ there is a totally non-free highly faithful action

of Fm which induces the equivalence relation R and which is highly transitive and

amenable onto almost every orbit.

Proof. By Proposition 1.10 and Theorem 1.7, the Fm-action obtained via Theo-

rem 1.12 is totally non free and highly transitive onto almost every orbit. Since it

is also highly faithful and amenable onto almost every orbit, we are done. �

Since total non-freeness implies that the stabiliser map is an isomorphism, the

above result implies the following statement about invariant random subgroups

(see [4] for the de�nitions of the terms used thereafter).

Corollary 1.14. Let R be an ergodic equivalence relation with �nite cost. Then

for all m 2 N such that m > Cost.R/ there is an IRS of Fm which induces

the equivalence relation R and which is core-free, co-highly transitive and co-

amenable.

All the above results admit non-ergodic counterparts where we require R to

be aperiodic and its conditional cost to be almost surely less than m. However

supposing that the equivalence relation is ergodic makes proofs much lighter and

we hope this will help convey the ideas of this work. The interested reader will

be able to “convert” the proofs presented here to their non-ergodic analogues by

a careful reading of [18].

We now give an outline of this paper. The next section is devoted to notation

and the proof of Proposition 1.10. In Section 3 we introduce and study high faithful-

ness. In Section 4 we build highly faithful actions of free products � �ƒ, where

� already acts highly faithfully and ƒ is any residually �nite group. Section 5

is devoted to a �exible construction of topological generators for the full group

of the hyper�nite ergodic equivalence relation. Theorem 1.12 is �nally proven in

Section 6.

Acknowledgments. I would like to thank the anonymous referee for her or his

helpful comments.

2. Preliminaries

Let .X; �/ be a standard probability space. We will always work modulo sets of

measure zero. Let us �rst brie�y review some notation and de�nitions.
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We denote by Aut.X; �/ the group of all measure-preserving Borel bijections

of .X; �/. Given T 2 Aut.X; �/, its support is the set

suppT WD ¹x 2 X WT .x/ ¤ xº:

LetA andB be Borel subsets ofX , a partial isomorphism of .X; �/ of domain

A and range B is a Borel bijection f WA ! B which is measure-preserving for

the measures induced by � on A and B respectively. A graphing is a countable

set ˆ D ¹'1; : : : ; 'k; : : : º where the 'k’s are partial isomorphisms. It generates

a measure-preserving equivalence relation Rˆ, de�ned to be the smallest equiv-

alence relation containing the graphs of the partial isomorphisms belonging to

ˆ. The cost of a graphing ˆ is the sum of the measures of the domains of the

partial isomorphisms it contains. The cost of a measure-preserving equivalence

relation R is the in�mum of the costs of the graphings that generate it, we denote

it by Cost.R/. The cost of R is attained if there exists a graphing ˆ which gener-

ates R such that Cost.ˆ/ D Cost.R/. We refer the reader to the lectures notes by

Gaboriau4 for an e�cient overview of cost theory.

The full group ofR is the group ŒR� of automorphisms of .X; �/which preserve

the R-classes, that is

ŒR� D ¹' 2 Aut.X; �/W for all x 2 X; '.x/R xº:

It is a Polish group when equipped with the complete biinvariant metric du de�ned

by

du.T; U / D �.¹x 2 X WT .x/ ¤ U.x/º:

One also de�nes the pseudo full group of R, denoted by ŒŒR��, which consists of

all partial isomorphisms ' such that '.x/R x for all x 2 dom '.

Let p 2 N. A pre-p-cycle is a graphing ˆ D ¹'1; : : : ; 'p�1º such that the

following two conditions are satis�ed:

(i) for all i 2 ¹1; : : : ; p � 2º; rng'i D dom 'iC1;

(ii) the following sets are all disjoint:

dom '1; dom '2; : : : ; dom 'p�1; rng'p�1:

A p-cycle is an element C 2 Aut.X; �/ whose orbits have cardinality 1 or p.

4 These are available online at

http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-Lectures.html

http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-Lectures.html
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Given a pre-p-cycle ˆ D ¹'1; : : : ; 'p�1º, we can extend it to a p-cycle

Cˆ 2 Aut.X; �/ as follows:

Cˆ.x/ D

8

ˆ
<

ˆ
:

'i .x/ if x 2 dom 'i for some i < p;

'�1
1 '�1

2 � � �'�1
p�1.x/ if x 2 rng'p�1;

x otherwise.

Say that a measure-preserving equivalence relation R is ergodic when every

Borel R-saturated set has measure 0 or 1. The following standard fact about

ergodic measure-preserving equivalence relations is the main source of pre-p-

cycles, and hence of p-cycles.

Proposition 2.1 (see e.g. [14], Lemma 7.10). Let R be an ergodic measure-

preserving equivalence relation on .X; �/, let A and B be two Borel subsets of

X such that �.A/ D �.B/. Then there exists ' 2 ŒŒR�� of domain A and range B .

The following theorem is fundamental for building dense subgroups of full

groups.

Theorem 2.2 ([15], Theorem 4.7). Let R1, R2 : : : , be measure-preserving equiv-

alence relations on .X; �/, and let R be their join (i.e. the smallest equivalence

relation containing all of them). Then
˝S

n2NŒRn�
˛

is dense in ŒR�.

An easy application is the following proposition.

Proposition 2.3 ([17], Proposition 10). If ˆ D ¹'1; : : : ; 'p�1º is a pre-p-cycle,

then for all i 2 ¹1; : : : ; p � 1º, the full group of Rˆ is topologically generated by

ŒR¹'i º� [ ¹Cˆº.

Let us �nally turn to the relationship between dense subgroups of full groups

and total non freeness that we mentioned in the introduction.

Proposition 2.4. Let R be a measure-preserving aperiodic equivalence relation.

If � 6 ŒR� is a dense countable subgroup, then the �-action is totally non free.

Proof. We will work in the setting of measure algebras:5 to see that StabW .X; �/ !
.Sub.�/; Stab��/ is a bijection between full measure sets, it su�ces to show that

the injective map Stab�1W MAlg.Sub.�/; Stab��/ ! MAlg.X; �/ is also surjec-

tive. Moreover since its image is closed, it su�ces to show that its image is dense.

For all 
 2 �, let A
 WD ¹ƒ 2 Sub.�/W 
 62 ƒº. Then for all 
 2 �, we

have Stab�1.A
 / D supp.
/. So it su�ces to show that the family .supp.
//
2�

is dense in MAlg.X; �/. But this follows from the density of � in ŒR� and the

well-known fact that for all A 2 MAlg.X; �/, there exists T 2 ŒR� such that

supp.T / D A. �

5 See [8, Chapter 2] for some background on measure algebras.
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3. Highly faithful actions

Let us now study in details the notion of a highly faithful action.

De�nition 3.1. An action of a countable group � on a countable set Y is called

n-faithful if for any 
1; : : : ; 
n 2 � n ¹1º, there exists y 2 Y such that 
iy ¤ y for

all i D 1; : : : ; n. The action is highly faithful if it is n-faithful for every n 2 N;

in other words if for any �nite subset F � � n ¹1º, there exists y 2 Y such that

fy ¤ y for all f 2 F .

Note that every free action is highly faithful, and that an action is faithful i� it

is 1-faithful. A simple example of a faithful action of an in�nite group which is

not highly faithful is given by the group S.1/ of �nitely supported permutations

of N acting on N. Note that this action is however highly transitive. I don’t know

if S.1/ can have a highly transitive highly faithful action.

Lemma 3.2. Let � be a countable group acting on a set Y . Then the action is

highly faithful i� for all n 2 N and all pairwise distinct 
1; : : : ; 
n 2 �, there

exists y 2 Y such that for all distinct i; j 2 ¹1; : : : ; nº,


iy ¤ 
jy:

Proof. Apply the de�nition of high faithfulness to the �nite set F WD ¹
i
�1
j W i ¤

j 2 ¹1; : : : ; nºº. �

The previous lemma has the following nice geometric interpretation when �

is a �nitely generated group: a transitive action is highly faithful if and only if the

associated Schreier graph contains arbitrarily large balls of the Cayley graph of

.�; S/ for some (or any) �nite generating set S .

In this article our focus will be on the measured version of high faithfulness.

De�nition 3.3. A measure-preserving action of a countable group � on a proba-

bility space .X; �/ is called highly faithful if for almost every x 2 X , the �-action

on � � x is highly faithful.

We will now give a useful characterization of highly faithful actions. The proof

uses the following well-known lemma.

Lemma 3.4 (see e.g. [4, Lemma 5.1]). Let T 2 Aut.X; �/, let A � X such that

�.¹x 2 AWT .x/ ¤ xº/ > 0. Then there exists a positive measure set A0 � A such

that A0 and T .A0/ are disjoint.
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Theorem 3.5. Let � be a countable group and �x a measure-preserving ergodic

�-action on .X; �/. Then the following are equivalent:

(1) the �-action is highly-faithful;

(2) for all �nite F � � n¹1º, the set ¹x 2 X W for all f 2 F; f x ¤ xº has positive

measure;

(3) for all �nite F � �, there exists a positive measure set A � X such that

.fA/f 2F is disjoint;

(4) there exists an increasing exhaustive family .Fn/ of �nite subsets of � and a

sequence of positive measure subsets .An/ of X such that .fAn/f 2Fn;n2N is

disjoint;

(5) whenever .Fn/ is an increasing exhaustive family of �nite subsets of �,

there exists a sequence of positive measure subsets .An/ of X such that

.fAn/f 2Fn;n2N is disjoint.

Proof. The chain of implications .5/ ) .4/ ) .3/ ) .2/ is straightforward.

Note that by ergodicity given a countable family of Borel sets, all its members

are of positive measure if and only if almost every �-orbit intersects each of its

members. In particular condition (2) is satis�ed if and only if the �-action onto

almost every orbit is highly faithful, so the equivalence .1/ , .2/ holds. Also (5)

follows from (4) since given any two exhaustive increasing sequences .Fn/, .F
0
n/

of subsets of �, there exists an increasing map 'WN ! N such that for all n 2 N

we have F 0
n � F'.n/.

Let us show that (2) implies (3). Let F be a �nite subset of �, consider the set

F 0 WD ¹f �1
2 f1W f1 2 F; f2 2 F; f1 ¤ f2º. By (2) and an inductive application

of Lemma 3.4, we �nd A � X of positive measure such that for all f 2 F 0,

fA \ A D ;. But then for all f1 ¤ f2 2 F , we have f �1
2 f1A \ A D ;, so

f1A \ f2A D ;, which establishes (3).

We now only have to prove that (3) implies (4), so let us assume (3). We �x

an increasing exhausting sequence .Fn/ of �nite subsets of � such that 1 2 F0.

Using (3) repeatedly, we obtain a sequence .Bn/ of positive measure subsets of X

such that for all n 2 N, the family .fBn/f 2Fn
is disjoint. By inductively taking

smaller subsets, we may assume that for all n 2 N,

jFnj jFnC1j�.BnC1/ <
1

4
�.Bn/:

This implies that for all n > 0 and m > 1, we have the inequality

jFnj jFnCmj�.BnCm/ <
1

4m
�.Bn/:

For all n 2 N, let An WD Bn n
S

m>1 F
�1
n FnCmBnCm. Since

P

m>1
1
4m < 1, the

previous inequality implies that each An has positive measure.
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Let n > 0, m > 1, f1 2 Fn and f2 2 FnCm. By construction, the set An
is disjoint from f �1

1 f2BnCm. Since BnCm contains AnCm, we deduce that An
is disjoint from f �1

1 f2AnCm so that f1An is disjoint from f2AnCm. Since An
is a subset of Bn whose Fn-translates are disjoint, this means that the sequence

.fAn/f 2Fn;n2N is made of pairwise disjoint sets as required. �

Remark. The non-ergodic version of the previous theorem is obtained by asking

in (2)–(5) that the sets which are considered intersect almost every orbit.

4. Residually �nite groups and high faithfulness

Let us �rst recast one de�nition of residual �niteness in terms of sequences of

actions on �nite sets.

De�nition 4.1. Let � be a countable group, and let .Xn; ˛n; on/ be a sequence

of pointed �-actions on �nite sets. The sequence is asymptotically free if for all


 2 � n ¹1º, there exists N 2 N such that for all n > N , one has 
 � on ¤ on.

The following lemma is proven exactly as Lemma 3.2.

Lemma 4.2. Let� be a countable group, and let .Xn; ˛n; on/ be an asymptotically

free sequence of pointed �-actions on �nite sets. Then for all �nite F � �,

there exists N 2 N such that for all n > N and all distinct 
; 
 0 2 F , one has


on ¤ 
 0on.

De�nition 4.3. A countable group � is residually �nite if it admits an asymptot-

ically free sequence of pointed actions on �nite sets.

The following lemma is well-known and can be used to show that every resid-

ually �nite group embeds into the full group of any ergodic measure-preserving

equivalence relation (see. [13, 4.(E)] for more on this). We include a proof for

completeness.

Lemma 4.4. Let R be a countable measure-preserving ergodic equivalence rela-

tion on .X; �/. Suppose that K is a �nite set acted upon by a countable group ƒ,

and let .Ck/k2K be a family of disjoint subsets of X , all of the same measure.

Then there is a homomorphism �Wƒ ! ŒR�
S

k2K Ck
� such that for all x 2

S

k2K Ck, the ƒ-action on the ƒ-orbit of x is conjugate to the ƒ-action on K,

and moreover for all � 2 ƒ and all k 2 K, one has �.�/.Ck/ D C�.k/.
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Proof. Let n be the cardinality of the setK, then we can suppose thatK D Z=nZ.

SinceR is ergodic and all theCk’s have the same measure, by Proposition 2.1 there

is a pre-n-cycle ˆ D ¹'1; : : : ; 'n�1º such that for all i 2 ¹1; : : : ; n � 1º, we have

'i .Ci�1/ D Ci . Let Tˆ 2 ŒR� be the associated n-cycle. Given � 2 ƒ, we then

de�ne �.�/ by

�.�/.x/ D T ��k�k
ˆ .x/ where k 2 K is such that x 2 Ck :

Note that �.�/ is well de�ned because T n D idX . It is then straightforward to

check that � is a homomorphism satisfying the required assumptions. �

Theorem 4.5. Let� be a countable group. Consider a measure-preservinghighly

faithful ergodic �-action on .X; �/ and let ƒ be a residually �nite countable

group. Let .Fn/ be an increasing exhaustive family of �nite subsets .Fn/ of � such

that 1 2 F0, let .An/ be a sequence of positive measure subsets .An/ ofX such that

.fAn/f 2Fn;n2N is disjoint.6 Fix an asymptotically free sequence .Xm; ˛m; om/m2N

of ƒ-actions on �nite pointed sets.

Then there exists a measure-preserving ƒ-action on .X; �/ which preserves

the �-orbits such that the following assertions are true:

(1) the induced � �ƒ-action is highly faithful;

(2) the ƒ-action is supported on
F

f 2Fn;n2N fAn and has only �nite orbits;

(3) for all x 2 X , either x is �xed by ƒ or there exists n 2 N such that the

ƒ-action on the ƒ-orbit of x is conjugate to ˛n;

(4) any ƒ-action which, when restricted to
F

f 2Fn;n2N fAn, coincides with this

action will induce a highly faithful � �ƒ-action.

Proof. Let .Gn/n2N be an increasing exhaustive sequence of �nite subsets of ƒ

such that 1 2 G0. For all n 2 N, let G0
n WD Gn n ¹1º and F 0

n D Fn n ¹1º. For all

n 2 N and k 2 ¹0; : : : ; nº, de�ne the following �nite subsets of � �ƒ:

8

<

:

Ik;n WD .G0
nF

0
n/.G

0
nF

0
n/ � � � .G0

nF
0
n/

„ ƒ‚ …

k times

Gn and

Jk;n WD F 0
nIk;n;

where by convention I0;n D Gn.

Then letHn D
Sn
kD0.Ik;n[Jk;n/. The sequence .Hn/ is clearly an increasing

exhaustive sequence of �nite subsets of � �ƒ.

We will de�ne the ƒ-action piece by piece, so that for every n 2 N, the set
S

f 2Fn
fAn isƒ-invariant andAn witnesses the fact that the ��ƒ-action is highly

faithful for the �nite set Hn in the following sense: there is a smaller A0
n � An

such that the collection .hA0
n/h2Hn

is made of disjoint sets.

6 Such a sequence exists by Theorem 3.5.
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So let us �x n 2 N. Since the sequence of pointedƒ-actions .Xm; ˛m; om/m2N

is asymptotically free, by Lemma 4.2 we �nd m 2 N such that for all distinct

�; �0 2 I0;n we have ˛m.�/.om/ ¤ ˛m.�
0/.om/. Let km be the cardinality of the

set Xm; we may as well assume that Xm D ¹0; : : : ; km � 1º and om D 0. We also

�x a subset A0
n of An of measure �n, where �n is a �xed positive real such that

�n <
�.An/
kmjHnj

.

Since �n <
�.An/
kmC1

we can �nd disjoint subsetsC1; : : : ; Ckm�1 � An of measure

�n which are all disjoint from A0
n, and we let C0 WD A0

n.

We de�ne the ƒ-action on
Skm�1
kD0

Ck via a chosen homomorphism �Wƒ !
ŒR�

S

k2Xm
Ck
� provided by Lemma 4.4 applied to theƒ-action ˛m onXm, where R

is the measure-preserving equivalence relation induced by the �-action on .X; �/.

Recall that A0
n D C0. Since �.C0/ D C˛m.�/.0/, we see that by construction the

family .�.A0
n//�2I0;n

is made of disjoint subsets ofAn. Moreover, since the family

.f .An//f 2Fn
is made of disjoint sets, we see that the equality J0;n D F 0

nI0;n yields

that the family .h.A0
n//h2I0;n[J0;n

is made of disjoint sets.

The above setup initializes the following construction for l D 0: inductively

on l 2 ¹0; : : : ; nº we will now de�ne the ƒ-action on bigger and bigger sets.

So suppose that for some l 2 ¹0; : : : ; n� 1º, we have constructed a ƒ-action on

G

h2
Sl

kD0 Ik;n

h.A0
n/ t

G

h2
Sl�1

kD0 Jk;n

h.A0
n/

satisfying the following assumptions:

(a) the ƒ-action is conjugate to ˛m when restricted to any orbit,

(b) the ƒ-action preserves the �-orbits, and

(cl ) for any k 6 l and any h 2 Ik;n, the set h.A0
n/ is a subset of An.

Since the family .f .An//f 2Fn
is made of disjoint sets, condition (c) and the

fact that .h.A0
n//h2

Sl
kD0 Ik;n

is disjoint implies that the family

.h.A0
n//h2

Sl
kD0 Jk;n

is actually made of disjoint sets which are all disjoint from An. Let us �x a family

.Ch;k/k2¹1;:::;km�1º;h2Jl;n

of disjoint subsets of An of measure �n such that they are also disjoint from

the set
F

h2
Sl

kD0 Ik;n
h.A0

n/ (here we fully use the condition �n <
�.An/
kmjHnj

). For

h 2 Jl;n, let Ch;0 WD h.A0
n/. Using again Lemma 4.4, we de�ne for every

h 2 Jl;n the ƒ-action on
Fkm�1
iD0 Ch;i so that it preserves the R-classes, that it

is conjugate to ˛m when restricted to an orbit and that for all i 2 ¹0; : : : ; kmº, we

have �.Ch;i / D Ch;˛m.�/.i/.
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Now the ƒ-action is also de�ned on
F

h2Il;n

Fkm�1
kD0

Ch;k . And every h 2
IlC1;n is of the form h D � Nh for some � 2 G0

n and Nh 2 Jl;n so that h.A0
n/ D

� Nh.A0
n/ D �.C Nh;0/ D C Nh;˛m.�/.0/

. Since ˛m.�/.0/ ¤ 0, we see that the family

.h.A0
n//h2

SlC1

kD0
Ik;n

is made of disjoint subsets of An. This implies that the family

.h.A0
n//h2

SlC1

kD0
Ik;n[Jk;n

is disjoint, so we have now constructed a ƒ-action on

G

h2
SlC1

kD0
Ik;n

h.A0
n/ t

G

h2
Sl

kD0 Jk;n

h.A0
n/

which satis�es conditions (a), (b) and (clC1).

Now for every n 2 N we have de�ned the ƒ-action on a subset of
S

f 2Fn
fAn

and we declare it to be trivial anywhere else. By construction, for every n 2 N

the family .h.A0
n//h2Hn

is made of disjoint sets so that the induced � �ƒ-action

is highly faithful: condition (1) is thus satis�ed. Conditions (2), (3) and (4) also

follow from the construction. �

5. Topological generators in the hyper�nite case

In this section, we get more �exibility in the construction from [18] of topolog-

ical generators for the full group of the hyper�nite ergodic measure-preserving

equivalence relation R0.

5.1. The equivalence relation R0. Recall that R0 is de�ned on the space of

in�nite binary sequences ¹0; 1ºN equipped with the product Bernoulli probability

measure
N

n2N
1
2
.ı0 C ı1/. By de�nition, two sequences .xi /i2N and .yi/i2N are

R0-equivalent if they are the same up to a �nite number of indices, that is, if there

is N 2 N such that for all i > N , we have xi D yi .

Let us now introduce a bit of notation. Any �nite binary sequence s 2 ¹0; 1ºn
de�nes a subset Ns of the product space ¹0; 1ºN consisting of all the sequences

starting by s, i.e.

Ns WD ¹x 2 ¹0; 1ºNW xi D si for i 2 ¹0; : : : ; n� 1ºº:

We can see elements a 2 ¹0; 1ºn and b 2 ¹0; 1ºN[
S

n2N¹0; 1ºn as words in ¹0; 1º,
and denote their concatenation by a a b. For � 2 ¹0; 1º and n 2 N, �n is the word

.xi /
n
iD1 2 ¹0; 1ºn de�ned by xi D �.

Let n 2 N. The group S¹0;1ºn is the group of permutations of the set ¹0; 1ºn.
There is a natural inclusion ˛nWS¹0;1ºn ,! S¹0;1ºnC1 given by

˛n.�/.x0; : : : ; xn/ D .�.x0; : : : ; xn�1/; xn/

for � 2 S¹0;1ºn and .x0; : : : ; xn/ 2 ¹0; 1ºnC1. Let S¹0;1º<1 be the inductive limit

of these groups, called the group of dyadic permutations.
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The key feature of S¹0;1º<1 is that it acts in a measure-preserving way on

.¹0; 1ºN; �/ as follows: for � 2 S¹0;1ºn , s 2 ¹0; 1ºn and x 2 ¹0; 1ºN,

�.s a x/ D �.s/ a x:

It is straightforward to check that the orbit equivalence relation induced by this

action is R0. To avoid confusion, when we see S¹0;1ºn as a subgroup of ŒR0� we

denote it by zS¹0;1ºn .

The following proposition belongs to the folklore, for a proof see [13, Propo-

sition 3.8].

Proposition 5.1. The group of dyadic permutations is dense in the full group ofR0.

The odometer is the map T0 2 Aut.¹0; 1ºN; �/ de�ned by

.xi /i2N 2 ¹0; 1ºN 7�! 0n�11 a .xi /i>n;

where n is the �rst integer such that xn D 0 (note that this is well de�ned on a set

of full measure). This can be understood as adding .1; 0; 0; : : : / to .xi /i2N with

right carry. One can check that T0 generates R0.

Let n 2 N, then we de�ne a �nite odometer �n 2 S¹0;1ºn by

�n..si /
n�1
iD0/ D

8

ˆ
<̂

ˆ̂
:

0n if .si / D 1n;

0k�11 a .si /i>k

else, where k is the �rst integer such that sk D 0:

We denote by Tn the corresponding element in zS¹0;1ºn . Note that by de�nition,

Tn and T0 coincide on ¹0; 1ºN n N1n .

5.2. Modi�ed topological generators in the hyper�nite case. Let n > 2,

and de�ne �n 2 S¹0;1ºn to be the transposition which exchanges 0n�11 and

1n�10. Let Un be the corresponding element of zS¹0;1ºn , that is, the element

of ŒR0� implementing the action of �n on 2N. Note that the support of Un is

N0n�11 tN1n�10, so that the supports of the Un’s are all disjoint.

The next lemma boils down to the well-known fact that the symmetric group

over 2n elements is generated by any 2n-cycle � along with a transposition �

exchanging two �-consecutive elements. For a detailed proof see [18, Lemma 4.3].

Lemma 5.2. The group zS¹0;1ºn is contained in the group generated by T0 andUn.



222 F. Le Maître

We see that if we could produce U 2 ŒR0� such that the closed subgroup

generated by U contains in�nitely many Un’s, the fact that zS¹0;1º<1 is dense ŒR0�

coupled with the previous lemma would yield that T0 and U generate a dense

subgroup of ŒR0�. Although this cannot be done, the main idea of [18] is to �nd

U 2 ŒR0� such that the closed subgroup generated by U contains in�nitely many

Un’s up to an error which tends very fast to zero, so that ¹T0; U º generates a dense

subgroup of ŒR0�.

To this end, we now �x for every n 2 N a constant �.n/ such that any element

of zS¹0;1ºn can be written as a word in Un and T0 of length less than �.n/. For all

p; q 2 N, we will use the function

2pp�W zS.¹0; 1ºq/ �! zS.¹0; 1ºpCq/

de�ned in [18], which satis�es that for allU 2 zS.¹0; 1º<1/, one has .
2pp
U /2

p DU

and
2pp
U has the same support as U .

If T 2 Aut.X; �/ and A is a Borel subset of X which is T -invariant, we de�ne

the induced transformation TA with respect to A as follows: for all x 2 X ,

TA.x/ D
²

T .x/ if x 2 A;
x else.

We can now state and prove a version of [18, Theorem 1.4] where we allow for

some error. The argument is very close to the original one, but we give a full

proof for the convenience of the reader.

Theorem 5.3. Given any � > 0, there exists an increasing sequence of integers

.nk/k2N and a sequence of positive reals .ık/k2N such that whenever we have for

all k 2 N a 2k�1
p

Unk
-invariant set Bk � suppUnk

with �.Bk/ > �.suppUnk
/ �

ık , if we let

U WD
C1
Y

kD0

2k
p

UnkBk
;

then the set ¹T0; U º generates a dense subgroup of ŒR0� and we have�.suppU/<�.

Proof. Fix a sequence .�k/ of positive real numbers such that �k ! 0.

Claim. It su�ces �nd sequences .nk/ and .ık/ with
P

k2N 2
�nk < � such that

whenever we have for all k 2 N a 2k�1
p

Unk
-invariant set Bk � suppUnk

with

�.Bk/ > �.suppUnk
/ � ık , if we let

U WD
C1
Y

kD0

2k�1
p

UnkBk
;

then for all k 2 N, there exists U 0 2 hU i such that du.Unk
; U 0/ < �k=�.nk/.
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Proof of the claim. Assuming that the above conditions are satis�ed, �x k 2 N

and U 0 2 hU i such that du.Unk
; U 0/ < �k=�.nk/. Since every element of zS¹0;1ºnk

can be written as a word in T0 and Unk
of length less than �.nk/ (see Lem. 5.2

and the de�nition of �.nk/), we deduce that every element of zS¹0;1ºnk belongs to

hT0; U i up to an error less than �k . Now �k ! 0 so the closed group generated by

¹T0; U º contains zS¹0;1º<1 , hence hT0; U i D ŒR0� by Proposition 5.1. And since

for all k 2 N we have �.supp 2k
p

UnkBk
/ 6 �. 2k

p

Unk
/ D 2�nk , we deduce that

�.suppU/ 6
P

k2N 2
�nk < � as desired. 4

We build by induction an increasing sequence .nk/ such that
P

k2N 2
�nk <�:

and for all k 2 N, we have

2�nkC1�2 <
�k

2�.nk/
: (1)

Then we choose for every k 2 N a positive ık such that

ık <
�k

2�.nk/
(2)

Let us show that such sequences .nk/ and .ık/ satisfy the hypotheses of the

claim, which will end the proof. So suppose that for every k 2 N we have a
2k�1

p

Unk
-invariant set Bk � suppUnk

with �.Bk/ > �.suppUnk
/ � ık. First

note that all the 2k
p

UnkBk
have disjoint supports, so they commute. We �x k 2 N

and compute

U 2
k D

C1
Y

lD0

. 2l
p

UnlBl
/
2k

D
k�1
Y

lD0

.UnlBl
/2

k�l � UnkBk
�

C1
Y

lDkC1

. 2l
p

UnlBl
/
2k

Because the Unl
’s are involution, the �rst product is equal to the identity, so that

U 2
k D UnkBk

�
C1
Y

lDkC1

. 2l
p

UnlBl
/
2k

: (3)

We now check that the error termWk WD
QC1
lDkC1 .

2l
p

UnlBl
/
2k

is small. Because

for every l 2 N, . 2l
p

UnlBl
/
2k

has same support as UnlBl
, the support of Wk has

measure smaller than

C1
X

lDkC1

�.suppUnl
/ 6

C1
X

lDkC1

1

2nl �1
: (4)
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Since .nl /l2N is increasing, we have for all l > k C 1,

1

2nl �1
6

1

2nkC1C.l�k�2/
:

We can now bound the right-hand term in (4) and get the inequality

�.suppWk/ 6
1

2nkC1
�

C1
X

lDkC1

1

2l�k�2

6
4

2nkC1

6
�k

2�.nk/
;

the latter inequality being a direct consequence of (1). From this and equation (3)

we deduce

du.U
2k

; UnkBk
/ 6 �.supp.Wk//

6
�k

2�.nk/
:

Since Bk is a Unk
-invariant subset of the support of Unk

such that �.Bk/ >

�.suppUnk
/ � ık , we have du.UnkBk

; Unk
/ < ık <

�k

2�.nk/
by (2). We deduce

that

du.U
2k

; Unk
/ <

�k

�.nk/

so that the theorem now follows from the claim. �

6. Proof of the main theorem

6.1. A lemma on commuting elements

Lemma 6.1. Let T; U 2 Aut.X; �/ have disjoint supports, and suppose that there

are two relatively prime numbers p; q > 2 such that

� every T -orbit is �nite and its cardinality divides a power of p and

� every U -orbit is �nite and its cardinality divides a power of q.

Then both T and U belong to the closure of the group generated by T U for the

uniform topology.

Proof. Since U D T �1.T U /, it su�ces to show that T belongs to the closure of

hT U i. Let � > 0, �nd N 2 N large enough so that there is a Borel set A such that

�.A/ > 1 � � and for all x 2 A;

jOrbT .x/j 6 pN and jOrbU .x/j 6 qN

Since pN and qN are relatively prime, there is l 2 N such that lqN � 1mod pN .
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Note that T and U commute since they have disjoint support and �x x 2 A. If

x belongs to the support of T then .T U /lq
N
.x/ D T lq

N
.x/ D T .x/ because the

cardinality of the T -orbit of x divides a power of p no greater than pN and lqN �
1 mod pN . If x belongs to the support of U then .T U /lq

N
.x/ D U lq

N
.x/ D x

because the cardinality of the U -orbit of x divides a power of q no greater than

qN , so .T U /lq
N

.x/ D T .x/. And if x neither belongs to the support of T nor

to the support of U , then .T U /lq
N

.x/ D x D T .x/. So for all x 2 A, we have

.T U /lq
N
.x/ D T .x/. As �.A/ > 1� �, we deduce that du..T U /

lqN
; T / < � and

we conclude that T belongs to the closure of hT U i. �

A proof by induction yields the following useful corollary.

Corollary 6.2. Let T1; ::; Tn 2 Aut.X; �/ have disjoint supports, and suppose that

there are n pairwise relatively prime numbers p1; : : : ; pn > 2 such that for every

k 2 ¹1; : : : ; nº, every Tk-orbit is �nite and its cardinality divides a power of pk .

Then for all k 2 ¹1; : : : ; nº, Tk belongs to the closure of the group generated

by the product T1T2 � � �Tn for the uniform topology.

6.2. Proof of Theorem 1.12. Let us start with an ergodic equivalence relation R

such that Cost.R/ < mC 1 for somem 2 N. Our goal is to �ndmC 1 topological

generators for the full group ofR so that the inducedFmC1-action is highly faithful

and amenable onto almost every orbit.

By [3, Theorem 4]7, we may and do assume that X D ¹0; 1ºN equipped with

the product Bernoulli probability measure � D
N

n2N
1
2
.ı0 C ı1/, and that the

odometer T0 belongs to the full group of R.

Lemma III.5 in [6] provides a graphingˆ such that Cost.ˆ/ < m and ¹T0º[ˆ
generates R. Let

c D Cost.ˆ/

m
< 1;

and �x some odd p 2 N such that
�
pC2
p

�

c < 1. Splitting the domains of the partial

automorphisms in ˆ, we �nd ˆ1,. . . ,ˆm of cost c such that ˆ D ˆ1 [ � � � [ˆm.

The map T0 induces a free (in particular highly faithful) ergodic Z-action,

so we apply item (5) of Theorem 3.5 and �nd a sequence .An/n2N of non-null

Borel subsets of X such that the family .T i0 .An//ji j6n;n2N is disjoint. Up to

taking smaller non-null subsets A0
n � An for all n 2 N, we can assume that

�.
F

n2N

Fn
iD�n T

i
0 .An// < �.

7 See also [19, 9.3.2] for a statement and a proof with a less operator-algebraic �avour.
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Let

� WD
1 �

�
pC2
p

�

c

2
:

Using Theorem 5.3 we �x an increasing sequence of integers .nk/k2N and a

sequence of positive reals .ık/k2N such that whenever we have for all k 2 N a
2k�1

p

Unk
-invariant set Bk � suppUnk

with �.Bk/ > �.suppUnk
/� ık , if we let

U WD
C1
Y

kD0

2k
p

UnkBk
;

then the set ¹T0; U º generates a dense subgroup of ŒR0� and we have�.suppU/<�,

where R0 is the measure-preserving equivalence generated by T0.

Claim. We can also assume that for all k 2 N,

�
�� G

n2N

n
G

iD�n

T i0 .An/
�

\ suppUnk

�

<
ık

2kC1
:

Proof. Let n 2 N. Find l 2 N such that the set
S

k>l

Sn
iD�n T

i
0 .suppUnk

/ has

measure less than �.An/=2, and setA0
n WD An n

S

k>l

Sn
iD�n T

i
0 .suppUnk

/which

is non-null. Then by construction for all k > l , the set
Fn
iD�n T

i
0 .A

0
n/ is disjoint

from suppUnk
.

We now take A00
n � A0

n non-null such that for all k < l ,

�
� n

G

iD�n

T i0 .A
00
n/

�

<
ık

2kCnC2
:

Then for all k; n 2 N, we have

�
� n

G

iD�n

T i0 .A
00
n/ \ suppUnk

�

<
ık

2kCnC2
:

But now a straightforward calculation yields that for all k 2 N

�
�� G

n2N

n
G

iD�n

T i0 .A
00
n/

�

\ suppUnk

�

<
ık

2k
;

so the sequence .A00
n/ is as desired. �
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For all k 2 N, let

xBk WD
2kC1�1

[

jD0

2k
p

Unk

j
�

suppUnk
\

� G

n2N

n
G

iD�n

T i0 .An/
��

Since 2k
p

Unk
has order 2kC1, the set xBk is 2k

p

Unk
-invariant. Moreover by the

previous claim �. xBk/ < ık . We let Bk WD suppUnk
n xBk , and then we de�ne

U WD
C1
Y

kD0

2k
p

UnkBk
;

By construction, the set ¹T0; U º generates a dense subgroup of ŒR0� and we have

�.suppU/ < �.

We now let B WD
�F

n2N

Fn
iD�n T

i
0 .An/

�

[ suppU . Note that by construction

�.B/ < 1 � pC2
p
c. Let D1; : : : ; DpC2 be pairwise disjoint subsets of X n B , of

measure c
p

each. For all i 2 ¹1; : : : ; mº we use Proposition 2.1 to pre- and post-

compose the partial isomorphisms of ˆi by elements in ŒŒR0�� so that each ˆi
becomes a pre-.pC 1/-cycle ˆi D ¹'i1; 'i2; : : : ; 'ipº where 'ij WDj ! DjC1 for all

j 2 ¹1; : : : ; pº. Note that this operation preserves the fact that R is generated by

¹T0º [ˆ1 [ � � � [ˆm.

Now choose 2 ŒŒR0��with domainDpC1 and rangeDpC2, and add it to every

ˆi . We get m pre-.p C 2/-cycles ẑ
i D ˆi [ ¹ º, and ¹T0º [ ẑ

1 [ � � � [ ẑ
n still

generates R. Consider the associated .p C 2/-cycles C ẑ
i
.

Claim. The m C 2 elements T0; U; C ẑ
1
; : : : ; C ẑ

m
generate a dense subgroup of

the full group of R.

Proof. Let G be the closed group generated by ¹T0; U; C ẑ
1
; : : : ; C ẑ

m
º. Recall

that T0 and U have been chosen so that they generate together a dense subgroup

of ŒR0�, so G contains ŒR0�.

Because  is a partial isomorphism of R0, we have ŒR¹ º� � ŒR0� � G. Since

for all i 2 ¹1; : : : ; mº we have  2 ẑ
i and C ẑ

i
2 G, Proposition 2.3 implies that

G contains ŒR ẑ
i
�. But R is the join of R0, R ẑ

1
; : : : ;R ẑ

m
, so by Theorem 2.2 we

are done. �

For each n 2 N, let A0
n and A00

n be two non-null disjoint subsets of An such

that An D A0
n t A00

n. Let q 2 N be an odd prime number which does not divide

p C 2. By [10], the group Fm is a residually q-�nite group, so we can �nd an

asymptotically free sequence of pointed Fm-actions .Xn; ˛n; on/ such that for all

n 2 N and all � 2 Fm, the permutation ˛n.�/ has order qk for some k 2 N.
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Let A D
F

n2N

Fn
iD�n T

i
0 .A

0
n/. We now apply Theorem 4.5 to � D Z through

the action induced by T0, ƒ D Fm, the sequence of actions .Xn; ˛n; on/ and the

sequence of sets .A0
n/ such that the sequence .T i0 .A

0
n//

n
iD�n is made of disjoint

sets. We thus obtain a Fm-action supported on A which preserves the R-classes

and satis�es the following conditions:

(1) the induced Z � Fm-action is highly faithful;

(2) the Fm-action is supported on A and has only �nite orbits;

(3) for all x 2 X , there exists n 2 N such that the Fm-action on the Fm-orbit of

x is conjugate to ˛n;

(4) any Fm-action whose restriction to A coincides with this action will induce

a highly faithful Z � Fm-action.

The Fm-action we just obtained is determined by the elements of the full group

induced by its standard generators which we denote by V1; : : : ; Vm 2 ŒR�.
By our hypothesis on the sequence of actions on �nite sets .˛n/, for all i 2

¹1; : : : ; mº, every Vi -orbit has cardinality qk for some k 2 N. Moreover, we have

that U , V1 and C ẑ
1

have disjoint supports and that for all i 2 ¹2; : : : ; mº, Vi and

C ẑ
i

have disjoint supports.

By corollary 6.2, the elements U and C ẑ
1

belong to the closure of the group

generated by UV1C ẑ
1
, and for all i 2 ¹2; : : : ; mº, C ẑ

i
belongs to the closure of

the group generated by ViC ẑ
i
. So by the previous claim the group generated by

the mC 1 elements

T0; UV1C ẑ
1
; V2C ẑ

2
; : : : ; VmC ẑ

m

is a dense subgroup of the full group of R. Let us show that the associated

FmC1-action has all the desired properties.

First, the fact that the m last generators UV1C ẑ
1
; V2C ẑ

2
; : : : ; VmC ẑ

m
act triv-

ially on
F

n2N

Fn
iD�n T

i
0 .A

00
n/ implies that for almost all x 2 X , the restriction of

the Schreier graph of the FmC1-action on the orbit of x contains arbitrarily long

intervals, so the FmC1-action is amenable onto almost every orbit.

Then recall that V1,. . . ,Vm induce an Fm-action which satis�es (1)–(4) above.

Moreover, V1 and UV1C ẑ
1

have the same restriction to A and for all i 2
¹2; : : : ; mº, Vi and ViC ẑ

i
have the same restriction to A. By (4), this implies

that that the Z � Fm D FmC1-action that we have built is highly faithful, which

ends the proof of Theorem 1.12.
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