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Subspace arrangements, BNS invariants,

and pure symmetric outer automorphisms

of right-angled Artin groups
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Abstract. We introduce a homology theory for subspace arrangements, and use it to extract

a new system of numerical invariants from the Bieri–Neumann–Strebel invariant of a group.

We use these to characterize when the set of basis conjugating outer automorphisms (a.k.a.

the pure symmetric outer automorphism group) of a right-angled Artin group is itself a

right-angled Artin group.
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1. Introduction

1.1. Motivation. Recall that a right-angled Artin group (RAAG) is a group A�

given by a �nite presentation whose only relations are that some pairs of generators

commute (see Section 2.1 below). Outer automorphism groups of RAAGs form

a diverse and interesting family of groups. We are motivated by the following

question:
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Question 1.1. When does the outer automorphism group Out.A�/ contain another

RAAG as subgroup of �nite index? What combinatorial conditions on the de�ning

graph � characterize this?

We feel that this is an important test question in terms of the �eld’s understand-

ing of these groups. Two important sequences of outer automorphism groups of

RAAGs, Out.Fn/ and GLn.Z/, exhibit very di�erent behavior when n D 2 com-

pared to when n � 3. In the case n D 2, both are virtually free, but if n � 3 neither

is virtually a RAAG (see references below). The idea is to identify a ‘low rank’

or ‘low complexity’ type for the family of outer automorphism groups of RAAGs.

There are variants of this question where Out.A�/ is replaced by the automor-

phism group Aut.A�/, or where instead of asking about �nite-index subgroups,

we ask more generally when Out.A�/ is commensurable to a RAAG.

As well as the above virtually free examples, there are examples of RAAGs

whose outer automorphism groups are �nite [7, 9] or virtually free abelian [3].

There are also some more interesting examples; for instance Out.F2 � F2/ is

commensurable with F2 � F2 itself. On the other side of the spectrum:

� Out.A�/ may contain distorted cyclic subgroups (e.g. GL3.Z/).

� Out.A�/ may contain a poison subgroup, forcing nonlinearity [10, 1].

� Out.A�/ may have an exponential Dehn function (e.g. Out.F3/ [4]).

All of these phenomena rule out the possibility of �nite index subgroups being

RAAGs. Despite these tools, a complete answer to Question 1.1 seems di�cult. It

is often tricky to tell whether a group is a RAAG on the nose or not, let alone up

to �nite index. For example, the group

G D ha; b; c; d; ejŒa; b�; Œc; d �; Œab; c�; Œcd; a�i

is a nonstandard presentation of the RAAG .F2 � F2/ � Z, but after adding the

innocent-looking relations Œe; b� and Œe; d �, the group

G0 D ha; b; c; d; ejŒa; b�; Œc; d �; Œab; c�; Œcd; a�; Œe; b�; Œe; d �i

is not isomorphic to a RAAG (this can be shown using the methods in this paper).

This leads us to:

Question 1.2. Suppose G is a group given by a �nite presentation whose only

relations are commutators (between words in the generators). Is there a procedure

to recognize if G is a RAAG?

This question is stated so generally that the answer is almost certainly ‘no’,

but for speci�c classes of groups the question is still interesting. To show such a

group is a RAAG, we need some kind of rewriting procedure for the presentation,

and to show it is not a RAAG, we usually need some kind of subtle invariant.
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One such invariant is the BNS invariant; Koban and Piggott used the BNS in-

variant to distinguish the non-RAAGs from a certain class of groups in a recent

paper [14]. We discuss this below.

1.2. BNS invariants. The BNS invariant † of a �nitely generated group G

was introduced in [2]. It is an open subset of the character sphere of G (i.e.

the unit sphere of Hom.GIR/) and it records the existence of certain kinds of

actions on R-trees. We review the BNS invariant in Section 4.1 below. There is a

growing collection of groups for which there is an explicit description of†. These

examples include

� fundamental groups of compact 3-manifolds [2, 17],

� right-angled Artin groups [15],

� pure braid groups [13],

� pure symmetric automorphisms of right-angled Artin groups [14],

� many hierarchies of groups over groups with trivial BNS invariants (see [6]

for a precise formulation).

In the above examples, the complement †c is a union of linear subspheres

of the character sphere, so that the pre-image of †c in Hom.GIR/ determines a

set of subspaces VG of Hom.GIR/. For an arbitrary pair .V;V/ consisting of a

vector space V and a set of subspaces V of V , one can de�ne a chain complex

C�.V;V/ where C0 D V and each Cn is a formal direct sum of intersections of

n subspaces in V. We describe this chain complex in Section 3.1, although we

would be interested to know if it has appeared in the literature previously. This

chain complex has associated homology spacesH�.V;V/. One can then study the

homology

H�.VG/ D H�.Hom.GIR/;VG/

given by the arrangement of maximal complementary subspaces VG in the space

Hom.GIR/. In the above list of examples, VG is a �nite set of subspaces of

Hom.GIR/, which allows for H�.VG/ to be computed explicitly.

In general, one can still de�neVG to be the subspace arrangement consisting of

maximal subspaces V � Hom.GIR/ such that the equivalence class Œ�� of each

nontrivial � 2 V is contained in †c. This subspace arrangement only contains

every character in the complement of the BNS invariant when † is symmetric

in the character sphere (i.e. † D �†). Nevertheless, the Betti numbers for

this homology theory still provide a concrete set of numerical invariants for an

arbitrary group G.

The homology theory above is heavily in�uenced by a recent paper of Koban–

Piggott [14], who determine exactly when the pure symmetric automorphism

group of A� is itself a RAAG. This is directly related to our Question 1.1 because

there are many examples of RAAGs where the pure symmetric automorphisms
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form a �nite-index subgroup of Aut.A�/. This pure symmetric automorphism

group PSA.A�/, sometimes called the basis conjugating automorphism group is

the subgroup consisting of automorphisms that take each element of a graphical

basis ofA� to a conjugate of itself. The group PSA.A�/ has a standard generating

set where each generator �a
K is given by a vertex a 2 � and a component of K of

� � st.a/ (here st.a/ is the subgraph of � spanned by a and its adjacent vertices).

The generator �a
K acts on each vertex of � by

�a
K.x/ D

´

axa�1 if x 2 K,

x otherwise.

Toinet [18] gave a presentation of PSA.A�/ which was simpli�ed by Koban and

Piggott to one that uses the above generators (see Theorem 2.5). This presentation

for PSA.A�/ is the standard presentation of a RAAG unless the graph � contains

a separating intersection of links, or SIL (often pronounced ‘sill’). A SIL occurs

when there is a common component K of both � � st.a/ and � � st.b/ for two

non-adjacent vertices a and b. This ‘no SIL’ RAAG presentation of PSA.A�/ �rst

appeared in work of Charney et al. [8].

In the converse direction, Koban and Piggott give an explicit description of the

BNS invariant †.PSA.A�// and show that its complement is a set of rationally

de�ned linear subspheres of the character sphere. Furthermore, they �nd an

invariant which allows them to prove that when the graph � contains a SIL, the

group PSA.A�/ is not a RAAG. The invariant they use coincides with the Euler

characteristic of H�.VG/. In our terminology, their results state:

Theorem A (Koban and Piggott [14]). If G is a right-angled Artin group then

the Euler characteristic of H�.VG/ is equal to the rank of the center of G (in

particular, it is non-negative). If G D PSA.A�/ then either

� the graph � does not contain a SIL and the Euler characteristic of H�.VG/

is zero; therefore G is a RAAG with trivial center; or

� the graph � contains a SIL and the Euler characteristic ofH�.VG/ is strictly

negative; G is not a RAAG.

1.3. Results. In this paper, we study the image of PSA.A�/ in Out.A�/, which

we call the pure symmetric outer automorphism group of A� and denote by

PSO.A�/. We give a description of †c.PSO.A�// (see Proposition 4.15) as a

�nite set of rationally de�ned subspheres of the character sphere and classify when

PSO.A�/ is itself a RAAG. Rather than being based on the existence of a SIL, this

classi�cation depends on how SILs are arranged in �. Let us describe this in a

precise way: when a and b have a separating intersection of links, relations of the

form Œ�a
K�

a
L; �

b
L� appear in the presentation of PSA.A�/, where b 2 K and L is

what we call a shared component of both � � st.a/ and � � st.b/. The following

graph gives a combinatorial description of when two components K and L of

� � st.a/ occur in such a relation.
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De�nition 1.3. For each vertex a 2 � the support graph�a has a vertex for each

component of � � st.a/. There is an edge between two components K and L

if there exists a vertex b such that b 2 K and L is a shared component of both

� � st.a/ and � � st.b/.

In particular, the graph � has no SIL if and only if each support graph �a is

discrete. The following theorem is the main result of our paper. The �rst part

describes H�.VG/ precisely when G is a RAAG, and the second part describes

how the support graphs determine when PSO.A�/ is isomorphic to a RAAG.

Theorem B. If G is a right-angled Artin group then

(1) dim.H0.VG// is equal to the rank of the center of G,

(2) Hn.VG/ D 0 if n > 0.

If G D PSO.A�/ then either

� each support graph�a is a forest andG is isomorphic to a right-angled Artin

group; or

� for some vertex a 2 � the support graph �a contains a loop. Then H1.VG/

is nontrivial and therefore G is not a right-angled Artin group.

Our methods give e�ective algorithms to determine whether PSO.A�/ is a

RAAG for a given �, and to identify which RAAG it is, if it is one. We encourage

our readers to try out several examples, but we only give two here.

Example 1.4. Let � be the edgeless graph on three vertices ¹a; b; cº, so A� is

the free group F3. Koban–Piggott’s theorem shows that PSA.F3/ is not a RAAG,

because a and b form a SIL. However, all three of the support graphs consist of

a single edge, so are trees. One can check that PSO.F3/ is a free group generated

by the set ¹�a
b
; �b

c ; �
c
aº.

Example 1.5. Let � be the edgeless graph on four vertices ¹a; b; c; dº, so A� is

the free group F4. Again, PSA.F4/ is not a RAAG because there are SILs. All

four of the support graphs are triangles; for example the path labeled by ¹bº–¹cº–

¹dº–¹bº is a loop in �a. We can use this loop to produce a nontrivial element of

H1.VG/, which implies that G D PSO.F4/ is also not a RAAG.

The paper is arranged as follows. Section 2 contains background material

on right-angled Artin groups and their symmetric automorphisms. Section 3

de�nes the homologyH�.V;V/ associated to a subspace arrangementV in a vector

space V . It may be read independently from the rest of the paper. We describe

some simple examples and show that H� is functorial with respect to morphisms

between subspace arrangements. In Section 4 we apply this to BNS invariants

of groups. We �rst give the general de�nition of H�.VG/ before looking at the
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case when G is equal to A� , PSA.A�/, or PSO.A�/ respectively. In particular

we use Koban and Piggott’s description of †.PSA.A�// to give a description

of †.PSO.A�//. Finally, in Section 5 we give an explicit RAAG presentation

for PSO.A�/ when each support graph �a is a forest. The main contribution in

this �nal section is a description of a generating set for PSO.A�/ that serves as

the standard basis for a graphical RAAG presentation (if there are SILs then the

original generating set will not work). This uses the structure of the support graphs

in an essential way.

Acknowledgments. The authors would like to thank Dawid Kielak, Lance

Miller, Adam Piggott, Henry Schenck, Alex Suciu, and Uli Walther for helpful

conversations. They would also like to thank an anonymous referee for comments

that improved the paper. Matthew Day was supported in part by NSF grant DMS-

1206981.

2. Pure symmetric automorphisms of RAAGs

2.1. Right-angled Artin groups. A �nite graph � with vertex set V.�/ and edge

set E.�/ determines the right-angled Artin group A� with presentation

A� D hV.�/ j ¹Œv; w�W ¹v; wº 2 E.�/ºi:

That is, the generators ofA� are the vertices of�, and they commute if they are

connected by an edge in�. We call such a presentation a graphical presentation for

the RAAG. For v 2 �, its link lk.v/ is the set of vertices adjacent to v, and its star

st.v/ is lk.v/[ ¹vº. For a word w, the support of supp.w/ consists of each vertex

v such that v or v�1 appears in w. A word w is reduced if we cannot cancel any

inverse pairs of elements appearing in it: for any subword of the form v�w0v��, the

support of w0 is not contained in the star of v. The support of an element g 2 A�

is the support of any reduced word representing g. This is independent of the

reduced representative. For any full subgraph � 0, the group A�0 naturally embeds

in A� as the subgroup generated by the vertices in � 0, so A�0 D h� 0i � A� .

For any vertex v 2 �, its centralizerC.v/ is the subgroupAst.v/. This is an easy

special case of Servatius’s centralizer theorem [16]. The center Z.A�/ of A� is

the free abelian subgroup A�0 , where � 0 is the span of the set of vertices adjacent

to every other vertex in the graph.

2.2. Symmetric automorphisms. A partially symmetric automorphism of A�

is an automorphism � 2 Aut.A�/ such that each vertex v 2 A� is sent to a

conjugate gvg�1 under �. The conjugating element g is allowed to vary with

v. The set PSA.A�/ forms a subgroup of Aut.A�/. We de�ne PSO.A�/ to

be the image of PSA.A�/ in the outer automorphism group Out.A�/. If � is



Subspace arrangements, BNS invariants, and PSO.A�/ 179

an automorphism, we use Œ�� to denote the equivalence class represented by �

in Out.A�/. Each vertex a 2 � and component K of � � st.a/ de�nes an

automorphism �a
K of PSA.A�/, where

�a
K.x/ D

´

axa�1 if x 2 K,

x otherwise.

We refer to elements of the form �a
K when K is a component of � � st.a/

as standard generators of PSA.A�/, and the set X of all such elements as the

standard generating set of PSA.A�/. If C D K1 [ K2 [ � � � [Kn is a nontrivial

union of connected components of � � st.a/, we may de�ne �a
C in the same way

as above. However, as

�a
C D �a

K1
�a

K2
� � ��a

Kn

we leave these elements out of our generating set X . We will refer to all elements

of the form �a
C as partial conjugations and reserve the term standard generator for

an element of the form �a
K when K is a single connected component of � � st.a/.

The element a is called the multiplier of the partial conjugation.

2.3. Commutation in Out.A� /. The following lemma is a rephrasing of the

classi�cation of connected components given in [11]. This classi�cation is used

throughout the paper, so for completeness we give a brief proof.

Lemma 2.1. Let a and b be nonadjacent vertices of �. We can write the compo-

nents of � � st.a/ as A0; : : : ; Ak; C1; : : : ; Cl and the components of � � st.b/ as

B0; : : : ; Bm; C1; : : : ; Cl where

� we have b 2 A0 and a 2 B0, and

� A1; : : : Ak � B0 and B1; : : : ; Bm � A0.

We say that A0 and B0 are the dominating components, that A1; : : : Ak and

B1; : : :Bk are the subordinate components, and C1; : : :Cl are the shared compo-

nents for the pair .a; b/. We will sometimes use Œb�a to denote the component of

� � st.a/ containing b, i.e. Œb�a is the dominating component of � � st.a/ with re-

spect to b. Note that if we �x a the roles of the connected components of ��st.a/

may change as we vary b.

Proof of Lemma 2.1. LetK be a component of ��st.a/ that is not the dominating

component (so b … K). It is enough to show that K is either a subordinate

component or a shared component, since by the symmetry between a and b this

will show that all components fall into the classi�cation.

First we note that K \ st.b/ D ¿. If this were not the case, there would be a

path of length one from b to an element ofK, and since b is not adjacent to a (and

st.a/ \ K D ¿) this would imply that b 2 K, counter to our hypothesis. Since
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K \ st.b/ D ¿, K is a subset of a single component of � � st.b/ (every path in K

avoids st.b/, so every path in K is a path in � � st.b/).

We break into two cases: (1) there is an edge from K to an element of lk.a/ �

lk.b/ and (2) every edge fromK to lk.a/ connects to an element of lk.a/\lk.b/. In

case (1), there is a path from K to a avoiding st.b/, by passing through an element

of lk.a/ � lk.b/. This means that there is a path from every element of K to a

avoiding st.b/, so that K is a subset of the dominating component of � � st.b/

with respect to a, and therefore K is a subordinate component. In case (2), every

path starting in K and avoiding st.b/must also avoid st.a/, since every edge from

K to lk.a/ must connect to an element of st.b/. This means that paths starting in

K that avoid st.b/ cannot escape K; in other words the component of � � st.b/

containing K does not contain any elements outside of K and must equal K. So

in case (2), K is a shared component. �

Guiterrez, Piggott and Ruane [11] give the following de�nition to describe

when there exist shared components for the pair .a; b/.

De�nition 2.2. We say that a pair .a; b/ forms a separating intersection of links

or is a SIL-pair if a and b are nonadjacent and there is a connected component R

of � � .lk.a/ \ lk.b// with a; b 62 R.

Lemma 2.3 ([11], Lemma 4.5). A pair .a; b/ is a SIL-pair if and only if the set of

shared components associated to .a; b/ is nonempty.

Proof. From the above proof of Lemma 2.1, a componentK is shared if and only

ifK contains neither a nor b and every edge fromK to lk.a/ or lk.b/ is an edge to

lk.a/ \ lk.b/. This means that K is a component of � � .lk.b/ \ lk.a// that does

not contain a or b. �

The above classi�cation of components of ��st.a/ and ��st.b/ gives a quick

way of describing when generators of PSA.A�/ or PSO.A�/ commute. We will

use the commutator convention Œg; h� D ghg�1h�1 throughout.

Lemma 2.4. Let a and b be nonadjacent vertices in �. Then the commutator

Œ�a
K ; �

b
L� is nontrivial in Aut.A�/ if and only if one of the following conditions

hold:

� K and L are the dominating components for the pair .a; b/;

� either K or L is dominating and the remaining component is shared;

� we have K D L (they are identical shared components for the pair .a; b/).

The image of the commutator in Out.A�/ is nontrivial if and only if one of the

above cases holds and .a; b/ is a SIL-pair.
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Proof. The statement about Aut.A�/ is shown in Lemma 4.7 of [11]. We note

that the classi�cation turns this statement into a straightforward exercise: in the

cases listed above, �nd a vertex that the commutator does not �x, and in the

other cases (some component is subordinate or the components are distinct shared

components), show that every vertex is �xed.

Now we show the statement about Out.A�/. First we suppose that we are

not in one of the listed cases, or .a; b/ is not a SIL-pair. If we are not in one

of the three cases, then the commutator is trivial in Out.A�/ because it is trivial in

Aut.A�/. If .a; b/ is not a SIL-pair, then there are no shared components and the

only interesting case is where K and L are both dominating. In this case, let K�

be the union of the remaining (subordinate) components A1; : : : Ak of � � st.a/.

The product �a
K��

a
K is an inner automorphism. As Œ�a

Ai
; �b

L� D 1 for all i , the

elements �b
L and �a

K� commute. As Œ�a
K� D Œ�a

K��
�1 in Out.A�/, it follows that

Œ�a
K� and Œ�b

L� commute.

We are left to show that if .a; b/ is a SIL-pair and the components K and L

satisfy one of the above cases, then the commutator in question is also nontrivial

in Out.A�/. Suppose that K and L are the dominating components. Then

Œ�a
K ; �

b
L�.a/ D Œa; b�aŒa; b��1, and for any vertex x in a shared component we

have Œ�a
K ; �

b
L�.x/ D x. Suppose Œ�a

K ; �
b
L� is an inner automorphism, conjugating

all elements by some g 2 A� . Then gxg�1 D x, so g is in the centralizer of x

and the support of g is a subset of st.x/. It follows that the support of gag�1 is a

subset of st.x/ [ ¹aº. This is a contradiction as b is not in st.x/ and

supp.gag�1/ D supp.Œ�a
K ; �

b
L�.a// D ¹a; bº:

Hence Œ�a
K ; �

b
L� is nontrivial in Out.A�/. A similar argument applies in the

remaining two cases. �

In particular, one sees that �a
L and �b

K commute in PSO.A�/ unless .a; b/ is

a SIL-pair. Lemma 2.4 makes it easy to identify the standard generators in the

center of PSO.A�/; we leave this as an exercise to the reader.

2.4. Presentations for PSA.A� / and PSO.A� /. Toinet [18] gave a presentation

of PSA.A�/, and Koban–Piggott adapted Toinet’s presentation as follows.

Theorem 2.5 (Toinet ([18], Theorem 3.1), Koban–Piggott ([14], Theorem 3.3)).

The group PSA.A�/ has a �nite presentation consisting of the standard generating

set and relations of the form

(R1) Œ�a
K ; �

b
L� D 1 when Œa; b� D 1,

(R2) Œ�a
K ; �

b
L� D 1 when K \ L D ;, b 62 K and a 62 L,

(R3) Œ�a
K ; �

b
L� D 1 when ¹aº [K � L or ¹bº [ L � K,

(R4) Œ�a
K�

a
L; �

b
L� D 1 when b 2 K and a 62 L.



182 M. B. Day and R. D. Wade

Note that the case Œa; b� D 1 includes when a D b. In the language of

Lemma 2.1, the relation (R2) corresponds to distinct non-dominating components,

and the relation (R3) corresponds to when one component is dominating and the

remaining component is subordinate for the pair .a; b/. The repetition ofL in (R4)

is not a misprint: the only time such a relation is not implied by (R1)–(R3) is

when K is a dominating component and L is a shared component for a and b

(in particular, .a; b/ forms a SIL). It follows that if � contains no SILs then

PSA.A�/ is isomorphic to a right-angled Artin group (this was originally shown

by Charney, Ruane, Stambaugh, and Vijayan in [8]). We therefore call relations

of the form (R4) SIL relations.

As PSO.A�/ is obtained from PSA.A�/ by taking the quotient by the normal

subgroup consisting of inner automorphisms, this implies:

Corollary 2.6. The group PSO.A�/ is �nitely presented, with a presentation given

by the image of the standard generating set in Out.A�/ and relations of the form:

(R1) Œ�a
K ; �

b
L� D 1 when Œa; b� D 1,

(R2) Œ�a
K ; �

b
L� D 1 when K \ L D ;, b 62 K and a 62 L,

(R3) Œ�a
K ; �

b
L� D 1 when ¹aº [K � L or ¹bº [ L � K,

(R4) Œ�a
K�

a
L; �

b
L� D 1 when b 2 K and a 62 L,

(R5)
Q

K2Ia
�a

K D 1 where the product is taken over the set Ia of connected

components of � � st.a/.

2.5. The support graph. The support graph �a gives a combinatorial descrip-

tion of how the roles of the components of � � st.a/ for the pair .a; b/ change as

we vary b in �. We repeat the de�nition from the introduction:

De�nition 2.7. For each vertex a 2 � the support graph�a has a vertex for each

component of � � st.a/. There is an edge between two components K and L if

there exists a vertex b such that K is the dominating component with respect to b

(equivalently b 2 K) andL is a shared component of both �� st.a/ and �� st.b/.

In other words, each edge in �a is a dominating-shared pair: a pair of com-

ponents of the form ¹Œb�a; Lº, where L is a shared component for the pair .a; b/.

Furthermore:

Lemma 2.8 (Star Lemma). Let .a; b/ be a SIL-pair. There is a unique connected

component C of �a containing the dominating component Œb�a and all shared

components of � � st.a/ for the pair .a; b/. These vertices consist of a subset of

the star of Œb�a. If �a is a forest, then every shared component L is adjacent to

Œb�a and a ( possibly empty) set of subordinate components for the pair .a; b/.
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Proof. From the de�nition of �a each shared component L for the pair .a; b/ is

connected by an edge to Œb�a and makes up a subset of the star of Œb�a in�a. Hence

Œb�a and the shared components for .a; b/ lie in the same connected component

of �a. If two shared components L and L0 are adjacent then there exists a loop

in �a through L, L0 and Œb�a. This cannot happen if �a is a forest. �

The support graphs let us de�ne a large set of central elements in PSO.A�/.

For C a component of �a, let �a
C denote the partial conjugation

�a
C D

Y

K2C

�a
K :

Proposition 2.9. Let C be a component of �a. The element �a
C is central in

PSO.A�/.

Proof. This follows from the fact that pairs of standard generators �a
K ; �

b
L com-

mute in Out.A�/ unless .a; b/ is a SIL-pair andK and L fall into one of the three

cases from Lemma 2.4. Fix a standard generator �b
L of PSO.A�/. If .a; b/ does

not form a SIL-pair, then Œ�a
K; �

b
L� D 1 for all components K of � � st.a/, so �b

L

commutes with �a
C . The same assertion also holds if L is subordinate for the pair

.a; b/. We may therefore assume that .a; b/ is a SIL-pair and L is either a domi-

nating or shared component of ��st.b/. The Star Lemma tells us that either every

vertex of C is a subordinate component for .a; b/, or C contains all of the domi-

nating and shared components. In the �rst case, �a
C is a product of elements which

commute with �b
L, so �a

C commutes with �b
L. Otherwise, as we are in Out.A�/:

�a
C D

Y

K 62C

.�a
K/

�1:

Each K in this product is subordinate, so �b
L commutes with every term and also

commutes with �a
C . Hence �a

C commutes with every generator and is central in

PSO.A�/. �

Note that �a
C is inner and trivial in PSO.A�/ if and only if �a is connected.

Remark 2.10. When PSO.A�/ is a RAAG, our graphical presentation of PSO.A�/

will prove that elements of the form �a
C form a free (abelian) generating set of the

center of PSO.A�/. It would be interesting to know whether the center is still

free abelian, and whether these elements form a generating set, in the case that

PSO.A�/ is not RAAG.
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3. Subspace arrangements in vector spaces

3.1. A chain complex for subspace arrangements. We �x a �eld K and work

with vector spaces over K. A subspace arrangement is a pair .V;V/ where V is

a vector space and V D .Vj /j 2J is a collection of subspaces. We may de�ne a

chain complex C�.V;V/ as follows. We de�ne Ck to be trivial for k < 0 and we

de�ne C0 to be the vector space V . For k � 1 we de�ne Ck by a vector space

presentation. Ck is the vector space over K spanned by tuples .V1; : : : ; Vk; v/ such

that

� V1; : : : ; Vk 2 V,

� v 2 V1 \ � � � \ Vk,

subject to the relations that

� � � .V1; : : : ; Vk; v/ D .V1; : : : ; Vk; �v/ for all � 2 K;

� .V1; : : : ; Vk; v/C .V1; : : : ; Vk; w/ D .V1; : : : ; Vk; v C w/;

� for any permutation � , .V1; : : : ; Vk; v/ D sign.�/.V�.1/; : : : ; V�.k/; v/;

� if Vi D Vj for some i; j , then .V1; : : : ; Vk; v/ D 0 (this is implied by the

above bullet point unless the �eld K is of characteristic 2).

The boundary map

@k WCk �! Ck�1

is de�ned by

@k..V1; : : : ; Vk; v// D

k
X

iD1

.�1/i�1.V1; : : : ; yVi ; : : : ; Vk; v/;

where .V1; : : : ; yVi ; : : : ; Vk; v/ is the element ofCk�1 given by deleting the i th entry

from the tuple. For k D 1, the boundary map is de�ned by

@1..vj /j 2J / D
X

j 2J

vj :

This makes sense becauseC1 D j̊ 2JVj is simply the direct sum of the subspaces

from V.

Remark 3.1. One can allow repetitions of subspaces in V. In this case one must

be careful to view the symmetrization given by bullet points (3) and (4) by treating

vector spaces as equivalent if Vi D Vj as indexed elements of V rather than just as

subspaces of V . Adding a redundant subspace does not change the homology (see

Proposition 3.7). We allow redundancy because it will simplify a later argument.

Proposition 3.2. With the boundary maps @k, the vector spaces Ck.V;V/ form a

well de�ned chain complex.
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Proof. This is a straightforward exercise and we omit the details. The most

interesting part of the proof is the fact that @k�1 ı @k D 0. As often happens with

chain complex boundary maps, this is a result of the sign convention: for Nv D

.V1; : : : ; Vk; v/ 2 Ck, the sum that we get by expanding @k�1 ı@k. Nv/ contains each

.V1; : : : ; yVi ; : : : ; yVj ; : : : ; Vk; v/ twice, with opposite signs. This is because Vj is in

the j th position of Nv, but in the .j � 1/st position of .V1; : : : ; yVi ; : : : ; Vk; v/. �

De�nition 3.3. For any subspace arrangement .V;V/ we de�ne H�.V;V/ to be

the homology of the chain complex C�.V;V/.

As the image of @1 is equal to the span of V, we have a description of H0 as

H0.V;V/ Š V=span.V/:

For �nite collections of subspaces, there is a more explicit description of the

chain complex, which we give in the next section.

3.2. Finite subspace arrangements. Suppose that V D ¹V1; : : : ; Vnº is a �nite

collection of subspaces of a vector space V indexed by the set I D ¹1; : : : ; nº with

the natural ordering. We let J D ¹j1; : : : ; jkº vary over all subsets of I of size k

with j1 < j2 < � � � < jk and de�ne

VJ D Vj1
\ � � � \ Vjk

:

The ordering of I removes the need to symmetrize with respect to permuting terms

in tuples, and gives a simpler description of each Ck as the direct sum

Ck D
M

J �I;jJ jDk

VJ :

For any k and any J � I with jJ j D k, let Ji be the set obtained from J by

removing the i th term, so that

VJi
D Vj1

\ � � � \ yVji
\ � � � \ Vjk

:

Let @i
J WVJ ! VJi

be the inclusion map, let pJ WCk ! VJ be the natural projection

onto VJ and let �Ji
WVJi

! Ck�1 be the inclusion map of VJi
as a factor of Ck�1.

The boundary map de�ned in Section 3.1 may be rewritten as

@i .v/ D
X

J

k
X

iD1

.�1/i�1�Ji
ı @i

J ı pJ .v/;

where the left hand sum ranges over all J � I with jJ j D k. We de�ne @1

the same way as before. These maps are reasonably easy to write explicitly in

examples. For instance, @2WC2 ! C1 maps a vector v 2 Vi \ Vj to the tuple

.0; 0; : : : ; v; 0; : : : ;�v; 0 : : : ; 0/ in C1 D V1 ˚V2 � � �˚Vn, where the nonzero terms

occur in the i th and j th positions.
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Example 3.4. Let V be K
2 with basis x D .1; 0/ and y D .0; 1/. Let V1 be

the x-axis, let V2 be the y-axis, let V3 be the subspace given by the diagonal

line spanned by x C y, and let V D ¹V1; V2; V3º. Then C0 D K
2, the space

C1 D hxi ˚ hyi ˚ hx C yi is 3-dimensional, and each Ck for k � 2 is trivial

as no pair of distinct subspaces intersects nontrivially. As these subspaces span

K
2, the map @1WC1 ! C0 is surjective, and H0.V;V/ D 0. The space of 1-cycles

is 1-dimensional, and is spanned by the cycle .x; y;�x � y/. Since there are no

nontrivial 1-boundaries, this means that H1.V;V/ is 1-dimensional, and all other

homology vector spaces are trivial.

Example 3.5. Let V be K3 with basis x; y; z. Let V be the collection of subspaces

de�ned by

V1 D hy; zi; V2 D hx C y; zi;

V3 D hx; y C zi; V4 D hx; yi:

There are 6 intersections Vi \ Vj with i < j given by

V1 \ V2 D hzi; V1 \ V3 D hy C zi; V1 \ V4 D hyi;

V2 \ V3 D hx C y C zi; V2 \ V4 D hx C yi; V3 \ V4 D hxi:

The above calculation implies that each intersection of distinct triples in V is

trivial, so that the chain complex is of the form

0 �! C2

@2
�! C1

@1
�! V �! 0

with dimV D 3, dimC1 D 8 and dimC2 D 6. The map @1 is surjective,

so that dim.ker @1/ D 5. One can check that @2 surjects onto ker @1, so that

dim.ker @2/ D 1. It follows that H2.V;V/ is 1-dimensional and the homology

is trivial everywhere else.

3.3. Functoriality. Suppose that .V;V/ and .W;W/ are subspace arrangements

in two vector spaces V and W over the same �eld K. A morphism of subspace

arrangements f W .V;V/ ! .W;W/ is a linear map f WV ! W such that for each

V 0 2 V, its image f .V 0/ is contained in some element of W. In other words,

for any morphism there exists a map ˛WV ! W such that f .V 0/ � ˛.V 0/ for all

V 0 2 V. Note that if v 2 V1 \ � � � \ Vk then f .v/ 2 ˛.V1/ \ � � � \ ˛.Vk/. Hence

every choice of ˛ as above gives a map

˛C WC�.V;V/ �! C�.W;W/

of chain complexes induced by the linear extension of the map

˛C ..V1; : : : ; Vk; v// D .˛.V1/; : : : ; ˛.Vk/; f .v//:
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On C0 we de�ne ˛C from C0.V;V/ D V to C0.W;W/ D W to be the linear

map f . It is easy to check that ˛C is a chain map, so we have an induced map on

homology

˛�WH�.V;V/ �! H�.W;W/:

Given V 0 2 V, the subspace f .V 0/ may be contained in more than one element

of W, which means that the map ˛ need not be unique. However, the next

proposition shows that the induced map on homology depends only on f .

Proposition 3.6. Let f W .V;V/ ! .W;W/ be a morphism of subspace arrange-

ments. Let ˛; ˇWV ! W be maps such that f .V 0/ � ˛.V 0/; ˇ.V 0/ for all V 0 2 V.

Then ˛� D ˇ�.

Proof. We will construct an explicit chain homotopy between the maps ˛C and

ˇC . We use an easy modi�cation of the prism operators used to show that homo-

topic maps between two topological spaces induce the same map on homology.

We de�ne a degree-one map

P WC�.V;V/ �! C�C1.W;W/

that is trivial on C0, and for k � 1 is de�ned on generators of Ck by

P..V1; : : : ; Vk; v// D

k
X

iD1

.�1/iC1.˛.V1/; : : : ; ˛.Vi/; ˇ.Vi/; : : : ; ˇ.Vk/; f .v//

and extend this map linearly. Following the proof in Hatcher’s book [12, Theo-

rem 2.10], one can check that

@P C P@ D ˇC � ˛C :

Hence P is a chain homotopy between ˛C and ˇC and ˛� D ˇ�. �

We have shown that any morphism of subspace arrangements induces a well-

de�ned map on homology. A further application of the above proposition allows

us to show that the homology H�.V;V/ only depends on the maximal subspaces

in V.

Proposition 3.7. Suppose that V is a subspace arrangement in V such that

each element of V is contained in a maximal element of V (this is true if V

is �nite dimensional). Let V0 be the family of maximal elements of V. Then

H�.V;V/ Š H�.V;V
0/.
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Proof. Let ˛WV0 ! V be the natural injection of V0 into V. We may also choose

a map ˇWV ! V0 by picking a maximal subspace ˇ.W / containing each element

W 2 V. Let ˛C and ˇC be the induced maps on chain complexes with respect to

the identity map from f WV ! V to itself. Note that ˇı˛ is the identity map onV0,

and it follows that ˇC ı˛C is the identity map on C�.V;V
0/. Hence ˇ� ı˛� induces

the identity map on H�.V;V
0/. In the other direction, ˛C ı ˇC is the map from

C�.V;V/ to itself induced by the map ˛ˇWV ! V. We may apply Proposition 3.6

to the identity morphism f D idV W .V;V/ ! .V;V/. Here we take ˛0WV ! V to be

the identity map on the family V and take map ˇ0 D ˛ˇWV ! V; the Proposition

implies ˛0
� D ˇ0

�. As ˛0
� is the identity map, so is ˇ0

� D ˛� ı ˇ�. It follows that ˛�

and ˇ� are isomorphisms. �

Corollary 3.8. If V 2 V then H�.V;V/ is trivial.

Proof. This follows from the above as H�.V; ¹V º/ is trivial and isomorphic to

H�.V;V/. �

Remark 3.9. It is possible to characterize H�.V;V/ as a derived functor. We do

not use this in this paper, but we outline it in this remark.

Consider a category C of subspace arrangements with a �xed index set J ,

whose morphisms are linear maps that send the j th subspace into the j th subspace

for each j 2 J (this is much more restrictive than the de�nition we use above).

This category C is an additive category, but not an abelian category because

epimorphisms and monomorphisms are not necessarily normal. We consider the

category D of cubical diagrams of vector spaces; this is the functor category from

the opposite category of the category of subsets of J (with inclusions) to the

category of vector spaces over K. It turns out that C embeds in D by sending

an arrangement to the diagram of inclusions of intersections of subspaces in the

arrangement.

It follows from standard arguments that D is an abelian category, and it is

possible to show that every object is a quotient of a projective object. The H0

functor we de�ne above corresponds to a functor H0 from D to vector spaces.

Speci�cally, if an object .V; f / of D is given by ¹VSºS�J and ¹fS;T WVS !
VT ºT �S�J , then

H0..V; f // D V¿=span.¹f¹j º;¿.V¹j º/ºj 2J /:

This functor turns out to be right-exact. Our homology theory functors are then

the left-derived functors of the functor H0.

3.4. Inclusion-exclusion. Our next statement has a connection to the inclusion-

exclusion principle, which we explain in the following remark.
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Remark 3.10. Recall that the inclusion-exclusion principle allows us to count

a �nite union of sets ¹Sj ºj 2J by taking an alternating sum of the counts of the

intersections of these sets:

ˇ

ˇ

ˇ

[

j 2J

Sj

ˇ

ˇ

ˇ D

jJ j
X

kD1

.�1/kC1
�

X

I�J;jI jDk

ˇ

ˇ

ˇ

\

j 2I

Sj

ˇ

ˇ

ˇ

�

:

One might hypothesize an analogous statement for vector spaces, asserting that

the dimension of a span of vector subspaces ¹Vj ºj 2J is an alternating sum of the

dimensions of the intersections

dim span.¹Vj ºj 2J /
‹
D

jJ j
X

kD1

.�1/kC1
�

X

I�J;jI jDk

dim
�

\

j 2I

Vj

��

:

This is famously false, although it holds in many simple examples. It fails

in di�erent ways in Examples 3.4 and 3.5, by overcounting in the �rst one and

undercounting in the second one.

Suppose .V;V/ is an arrangement where V is �nite-dimensional and the sub-

spaces in V span V (in other words, H0.V;V/ D 0). For such an arrangement, the

validity of the “inclusion-exclusion principle for vector spaces” is equivalent to

the vanishing of the Euler characteristic of H�.V;V/. We do not use this fact, but

we leave it as an exercise for the interested reader.

We do require one result that is related to inclusion-exclusion. We are inter-

ested in the case where all subspaces in our collection V are generated by subsets

of a �xed basis for V . (We will see below that this is true for BNS invariants of

RAAGs.) In this case, if dim.V / is �nite, then inclusion-exclusion clearly holds.

This means that the alternating sum in the remark above is dim.span.V//, and that

the Euler characteristic of H�.V;V/ is

dimV � dim span.V/ D dimH0.V;V/:

In fact, more is true: in this special case, the homology is trivial, except possibly

for H0.V;V/. Our proposition re�nes a lemma of Koban and Piggott [14], which

uses an inclusion-exclusion sum involving the BNS invariant of a RAAG to count

the number of non-central vertices in the de�ning graph. We state and prove

our proposition assuming that V is �nite-dimensional, although this can be easily

extended to the general case.

Proposition 3.11. Let V be a vector space with basis S D ¹s1; : : : ; snº and let V

be a collection of subspaces of V such that each V 0 2 V is spanned by a subset of

S . Then Hn.V;V/ D 0 for all n � 1.
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Proof. We use induction on the dimension of V . When dim.V / D 1, either all

spaces in the collection V are trivial, or V 2 V. The result then follows from

Corollary 3.8. Now suppose the result holds for all such arrangements in vector

spaces of dimension n � 1. Let V and V D ¹Viºi2I be as in the statement of

the theorem with basis S D ¹s1; : : : ; snº. Let P be the subspace spanned by

S 0 D ¹s1; : : : ; sn�1º and let pWV ! P be the projection given by

p
�

n
X

iD1

�isi

�

D

n�1
X

iD1

�isi :

Let

P D ¹Pi D p.Vi /W i 2 I º

be the projected subspace arrangement in P . Let Q D hsni and let

Q D ¹Qi D Q \ Vi W i 2 I º

be the induced subspace arrangement in Q. Note that for both .P;P/ and .Q;Q/

we allow for repetitions of subspaces as described in Remark 3.1.

Let ˛C WC�.V;V/ ! C�.P;P/ be the induced map on chain complexes coming

the from projection pWV ! P and the map ˛WV ! P given by ˛.Vi/ D Pi .

The element .V1; : : : ; Vk; v/ is mapped to .P1; : : : ; Pk; p.v// under ˛C . If w 2
P1 \ � � � \ Pk , there exists v 2 V1 \ � � � \ Vk with p.v/ D w. It follows that ˛C

is surjective. The kernel chain complex of ˛C is spanned in Ck.V;V/ by elements

of the form .V1; : : : ; Vk; �sn/, and in C0.V;V/ D V the kernel is the subspace

Q D hsni. This kernel chain complex is naturally isomorphic to C�.Q;Q/. We

then have a short exact sequence of chain complexes

0 �! C�.Q;Q/ �! C�.V;V/
˛C
�! C�.P;P/ �! 0

which induces the long exact sequence in homology

� � � �! Hk.Q;Q/ �! Hk.V;V/ �! Hk.P;P/ �! � � � :

As each vector space in in V is spanned by a subset of S , each element of

P is spanned by a subset of S 0. Hence both .P;P/ and .Q;Q/ are subspace

arrangements where each subspace is spanned by a �xed subset of some basis.

For k � 1, the spaceHk.P;P/ is trivial by the inductive hypothesis andHk.Q;Q/

is trivial by the dimension 1 case. This implies that Hk.V;V/ is trivial for k � 1

also. �
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4. BNS invariants and subspace arrangements

4.1. BNS invariants. The Bieri–Neumann–Strebel invariant is a subset† of the

character sphere of a �nitely generated group G. The character sphere S of G is

the set

.Hom.GIR/ n ¹0º/= �

where characters are identi�ed if they lie in the same ray in Hom.GIR/: �1 � �2

if and only if there is � > 0 with �1 D ��2. The original de�nition of the

BNS invariant from [2] states that Œ�� 2 S is in † if and only if ŒG; G� is �nitely

generated over a �nitely generated submonoid of ��1.Œ0;1//. Bieri, Neumann,

and Strebel also give a convenient characterization in terms of a generating set in

Proposition 2.3 of [2]: Œ�� 2 S is in † if and only if the preimage under � of the

closed half-line Œ0;1/ in the Cayley graph of G is connected. We do not use the

original de�nition or the equivalent one from the original paper; instead we prefer

another equivalent de�nition due to Brown that we state below.

Remark 4.1. Sometimes † is viewed as the �rst invariant in a collection † D
†1 � †2 � †3 � � � � (see [2]). We will not be considering these higher invariants

in this paper.

Recall that an R-tree is a geodesic metric space in which a unique arc connects

any two points. An action ofG on an R-tree T is abelian if there exists a character

� such that j�.g/j D kgkT for all g 2 G, where kgkT is the translation length of

g as an isometry of T . We say that T realizes �. Note that for each � there is a

natural abelian action of G on a line realizing �. Any abelian action realizing a

nontrivial character �xes one or two points in the boundary @T of T . When there

is a unique �xed point in @T we say that the action is exceptional.

Let T be an exceptional action realizing a character � with �xed end e 2 @T .

Let .gn/ be a sequence of elements of G such that for some (equivalently, any)

point x 2 T the orbit gn � x converges to e. The sequence .�.gn// converges to

either C1 or �1. We say that the invariant end is at C1 in the former case, and

�1 in the latter. This is independent of any choices made above. Swapping �

with �� will then swap the location of the invariant end. The following de�nition

of† is due to Brown [5], who showed that it is equivalent to the original de�nition

from [2].

De�nition 4.2. An element Œ�� 2 S is in † if there exists no exceptional action

of G on an R-tree T realizing � with the invariant end at �1.

Note that Brown’s de�nition allows one to consider † even in the case that G

is not �nitely generated.
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Rather than considering the BNS invariant as a subset of the character sphere,

for most of the paper we will consider the preimage of † in Hom.GIR/. Let

pW .Hom.GIR/� ¹0º/ �! S

be the quotient map to the character sphere. We say that � 2 Hom.GIR/ lies in

the complement of the BNS invariant if � 62 p�1.†/. The complement of the BNS

invariant may then be viewed as a subspace arrangement in Hom.GIR/.

De�nition 4.3. LetG be group. We de�neVG to be the set of maximal subspaces

in Hom.GIR/ contained in the complement of the BNS invariant. We de�ne

H�.VG/ to be the subspace arrangement homologyH�.V;VG/, where our ambient

space V is always Hom.GIR/.

More generally, we can consider the collection of all subspaces of Hom.GIR/

in p�1.†c/[¹0º; Proposition 3.7 shows that this gives the same homology spaces

as the collection of maximal subspaces VG .

Remark 4.4. Recall that the BNS invariant † of a group G is symmetric if

† D �†, meaning that it is invariant under the antipodal map. In this case, each

character � with Œ�� 2 †c determines an entire line in p�1.†c/ [ ¹0º. As � is

contained in some subspace of p�1.†c/ [ ¹0º, it is also contained in a maximal

one. Hence p�1.†c/[¹0º is exactly the union of the elements of VG . Conversely,

if † is not symmetric then [VG is a proper subset of p�1.†c/ [ ¹0º. Even if †

is symmetric and Hom.GIR/ is �nite dimensional, as far as we know it is still

possible for VG to be an in�nite family.

Remark 4.5. One can instead take the larger family V
C
G spanned by characters

� which are realized by some exceptional action on an R-tree (in other words,

either � or �� lies in p�1.†c/). One can view VG as the arrangement obtained

by removing characters corresponding to † [ �† from V , whereas for VC
G one

only removes characters corresponding to elements of † \ �†. When † is non-

symmetric there are examples where H�.VG ; V / and H�.V
C
G ; V / are di�erent

(such examples can be found in [2, 5]).

4.1.1. Maps between groups. When f WG ! H is a surjective homomorphism,

an exceptional abelian action ofH on a tree induces an exceptional abelian action

of G. This does not change the location of the invariant end with respect to the

characters �WH ! R and f �.�/WG ! R. Hence we have the following well-

known fact:
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Proposition 4.6. Let f WG ! H be a surjective map and

f �W Hom.H IR/ �! Hom.GIR/

the induced map on character spaces. If � 2 Hom.H IR/ is in the complement

of the BNS invariant of H , then f �.�/ D � ı f is in the complement of the BNS

invariant of G.

It follows that if f WG ! H is surjective, then f induces a morphism of

subspace arrangements

f �W .Hom.H IR/;VH / �! .Hom.GIR/;VG/:

This in turn gives a map .f �/�WH�.VH / ! H�.VG/ on homology as described

in Section 3.3, although we will not need this in the work that follows.

To summarize, we have de�ned

G 7�! H�.VG/;

a contravariant functor from the category of groups with surjective homomor-

phisms to the category of graded vector spaces over R. Such a thing super�cially

resembles a cohomology theory of groups. It would be interesting to characterize

this invariant in terms of cohomology.

4.2. Right-angled Artin groups. Suppose that G is a right-angled Artin group

A� . For a vertex a of �, let �aWA� ! R be the character de�ned on generators by

�a.v/ D

´

1 if v D a,

0 if v ¤ a.

The abelianization of A� is a free abelian group generated by the images of the

vertices in H1.A� IZ/ and the characters �a de�ne a basis of Hom.GIR/.
For any character � 2 Hom.A� IR/, we de�ne the support supp.�/ to be the

full subgraph of � spanned by the vertices v such that �.v/ ¤ 0. The support is

dominating if every vertex in � is either contained in, or adjacent to, a vertex in

supp.�/.

Theorem 4.7 (Meier and VanWyk [15]). Let � 2 Hom.A� IR/ � ¹0º. Then

Œ�� 2 †.A�/ if and only if supp.�/ is connected and dominating.

Proposition 4.8. The set VG of maximal subspaces in the complement of the BNS

invariant is the set of vector spaces of the form

VS D h�aW a 2 Si

for each maximal subset S of vertices in � spanning a disconnected subgraph

of �.
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Proof. If � 0 is a subgraph of � which is not dominating, then there is a vertex

v0 which is not adjacent to � 0, so that � 0 [ v0 spans a disconnected subgraph

of �. Hence every subgraph which is either disconnected or non-dominating

is contained in a maximal disconnected subgraph of �. Combining this with

Theorem 4.7, the support of every character that lies in the complement of the

BNS invariant ofA� is contained in a maximal disconnected subgraph of�, hence

lies in VS for some S as above. �

Corollary 4.9. Let G D A� be a right-angled Artin group. Then

dim.Hn.VG// D

´

rank.Z.A�// if n D 0,

0 if n > 0.

Proof. Each element of VG is spanned by a subset of our basis for Hom.A� IR/.

For n � 1, eachHn.VG/ is trivial by Proposition 3.11. We are then left to �nd

H0.VG/ D Hom.GIR/=span.VG/:

A vertex a 2 � lies in a disconnected full subgraph of � if and only if st.a/ if not

equal to the whole of �. In other words, �a is contained in some element of VG

unless a is central in A� . It follows that dim.H0.VG// is equal to the rank of the

center of A� . �

In particular, the Euler characteristic of H�.VG/ is equal to the rank of the

center of A� and is non-negative (cf. Theorem 4.13).

4.3. Pure symmetric automorphisms. Now suppose that G D PSA.A�/ and

let X be the standard generating set of G. For a 2 � and K 2 �b, we let �a
K be

the character de�ned on generators by

�a
K.�

b
L/ D

´

1 if �a
K D �b

L,

0 otherwise.

It follows from Toinet’s presentation that the abelianization of PSA.A�/ is a free

abelian group, and the standard generators map bijectively to a free generating

set. This means that each �a
K is a well-de�ned element of Hom.PSA.A�/IR/ and

the elements �x form a basis of Hom.PSA.A�/IR/. As before, we may de�ne

the support supp.�/ of a character � to be the subset of the standard generating

set X consisting of all generators such that �.�a
K/ ¤ 0. Koban and Piggott

characterize elements of †.PSA.A�// according to their support in a similar

fashion to Meier and VanWyk. They �rst de�ne the following nice subsets of

the standard generating set.
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De�nition 4.10. A subset S � X is a p-set if

� for each vertex a of �, there is at most one partial conjugation in S with

multiplier a, and

� S has a nontrivial partition S D S1 [ S2 such that for every �a
K 2 S1 and

�b
L 2 S2, we have a 2 L and b 2 K (L andK are the dominating components

for the pair .a; b/).

A subset S � X is a ı-p-set if

� for each vertex a of �, there are exactly two or zero partial conjugations in S

with multiplier a, and

� S has a nontrivial partition S D S1 [S2 such that for every �a
K 2 S1 and �b

L

in S2, we have a 2 L or b 2 K orK D L (so L is the dominating component

Œa�b or K is the dominating component Œb�a or K and L are the same shared

component).

The p-sets here give exceptional characters similar to those occurring in

RAAGs, whereas the ı-p-sets only appear when � has a SIL-pair. The comple-

ment of the BNS invariant of PSA.A�/ can be characterized as follows.

Theorem 4.11 (Koban and Piggott [14]). Let �W PSA.A�/ ! R be nonzero

character. Then � is in the complement of the BNS invariant if and only if

� � is nontrivial on some inner automorphism and the support of � is a subset

of a p-set, or

� � is trivial on every inner automorphism and the support of � is a subset of

a ı-p-set.

In the second case of the above theorem, as � is trivial on every inner auto-

morphism, it follows that �.�a
K/ D ��.�a

L/ for each pair of elements �a
K ; �

a
L with

the same multiplier in its associated ı-p-set. This gives enough information to

describe VG .

Proposition 4.12. Let G D PSA.A�/ and let VG be the set of maximal subspaces

in the complement of the BNS invariant. For each maximal p-set S � X there is

a subspace VS 2 VG given by

VS D h¹�a
K W�a

K 2 Sºi

and for each maximal ı-p-set S � X there is a subspace VS 2 VG of the form

VS D h¹�a
K � �a

LW�a
K; �

a
L 2 Sºi

Furthermore, each element of VG is one of these two types.
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Koban and Piggott used this description to take an alternating sum of dimen-

sions of intersections of spheres in †c.G/. Intersections of spheres in †c.G/ cor-

respond to intersection of subspaces in VG . Using our terminology, we rephrase

their result as follows:

Theorem 4.13 (Koban and Pigott [14]). Let G D PSA.A�/. If � contains no

separating intersection of links then the Euler characteristic of H�.VG/ is zero.

Otherwise, the Euler characteristic of H�.VG/ is strictly negative.

4.4. Pure symmetric outer automorphisms. We now turn our attention to

PSO.A�/. Let

f W PSA.A�/ �! PSO.A�/

be the quotient map, and let

f �W Hom.PSO.A�/IR/ �! Hom.PSA.A�/IR/

be the dual map on characters given by f �.�/ D � ı f . As f is surjective, the

map f � is injective, with image given by the characters � 2 Hom.PSA.A�/IR/

that are trivial on the inner automorphisms. In other words, if �a is the support

graph for some vertex a 2 �, we have

X

K2�a

�.�a
K/ D 0:

We identify Hom.PSO.A�/IR/ with this subspace of Hom.PSA.A�/IR/. This

allows us to talk about the support of a character on PSO.A�/; it is the support of

of the character on PSA.A�/ we get by composing with the projection f .

To proceed, we need the following well-known fact, which is stated in [14].

We do not give a proof here.

Lemma 4.14 ([14]). If �WG ! R is a nontrivial character on a group G that

factors through a surjective map G ! A � B , where A � B is a nontrivial free

product, then Œ�� is in the complement of the BNS invariant of G.

Proposition 4.15. Let A� be a RAAG and let �W PSO.A�/ ! R be nonzero. The

class Œ�� is not in the BNS invariant if and only if the support of � is a subset of a

ı-p-set.

Proof. By Proposition 4.6, if � is in the complement of the BNS invariant of

PSO.A�/, then f �.�/ is in the complement of the BNS invariant of PSA.A�/.

Since f �.�/ is in the image of f �, it is trivial on every inner automorphism.

Then by Theorem 4.11 it has a support which is a subset of a ı-p-set.
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Conversely, given any character � whose support is a ı-p-set, we need to show

that Œ�� is not in†. Following [14], we �nd a surjection �W PSO.A�/ ! A1 �A2 to

a nontrivial free product which � factors through. By Lemma 4.14, it will follow

that Œ�� 2 †c . Let S be the ı-p-set which is the support of �, and let S1 [ S2

be a partition of S given in De�nition 4.10. Each multiplier a that appears in

S has two elements �a
K1

and �a
K2

, both of which lie on one side of the partition

S1[S2. Furthermore, �.�a
K1
/ D ��.�a

K2
/. LetA1 be the free abelian group on the

multipliers that appear in S1 andA2 the free abelian group on the set of multipliers

that appear in S2. We map PSO.A�/ to A1 � A2 by sending Œ�a
K1
� to a, sending

Œ�a
K2
� to �a, and every other generator with multiplier a to the trivial element. If

b is a multiplier that occurs on the other side of the partition with corresponding

elements �b
L1

and�b
L2

, then each commutator Œ�a
Ki
; �b

Lj
� is nontrivial in PSO.A�/.

Furthermore, one can check that the map to A1 � A2 respects all relations in the

presentation of PSO.A�/ and is therefore well-de�ned. Hence Œ�� 2 †c . �

Corollary 4.16. Let G D PSO.A�/ and let VG be the set of maximal subspaces

in the complement of the BNS invariant. The family VG consists exactly of the

subspaces of the form

VS D h¹�a
K � �a

LW�a
K; �

a
L 2 Sºi

for each maximal ı-p-set S .

Our next goal is to show that H1.VG/ is nontrivial for G D PSO.A�/ under

certain conditions. To do this, we build a cycle and show that it represents a

nontrivial homology class. As is often the case with homology theories, it is

convenient to do this by pairing our cycle with a cocycle.

We do not give a full treatment of a cohomology theory of subspace arrange-

ments here. However, we make the following de�nition: for a subspace arrange-

ment .V;V/ over K, we de�ne

C �.V;V/ D Hom.C�.V;V/;K/;

and for f 2 C n.V;V/, de�ne df D f ı @. This is a cochain complex and we

de�ne cocycles, coboundaries and cohomology as usual.

This means that a 1-cochain f inC 1.V;V/ is determined by a family ¹fW ºW 2V

of linear functionals on each subspace; each fW is the restriction of f to the W -

summand of
L

V D C1.V;V/. Such a collection of functionals determines a

cocycle if, for any two subspacesW1 and W2, the linear maps fW1
and fW2

agree

on W1 \ W2 (this is easily seen to be equivalent to f ı @ D 0). The cocycle f

represents the trivial cohomology class if and only if there exists a linear functional
Qf WV ! R such that each fW is the restriction of Qf toW (this is the same as saying

that f D Qf ı @).
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Suppose c D .cW /W 2V is a 1-chain in C1.V;V/ D
L

V. If the 1-cocycle

f is expressed as a family of functionals ¹fW ºW 2V, then f .c/ is the sum
P

W 2V fW .cW /. As usual, the evaluation of 1-cocycles on 1-cycles descends to a

well de�ned evaluation of cohomology classes on homology classes. In particu-

lar, if c is a 1-boundary, then f .c/ D 0 for any 1-cocycle f . So if f .c/ ¤ 0 for

some cocycle, then c represents a nontrivial homology class.

Proposition 4.17. Suppose A� is a RAAG such that for some vertex a 2 �, the

support graph�a contains a loop. Let G D PSO.A�/ and let VG be the excluded

subspace con�guration for the BNS invariant of G in V D Hom.GIR/. Then

H1.VG/ ¤ 0.

Proof. Let .K1; : : : ; Kn/ be a loop in �a involving n � 3 distinct vertices. By

the de�nition of �a, for each i (from 1 to n and counting modulo n), there is an

element bi such that either (1) bi 2 Ki , and KiC1 is a shared component of bi

and a; or (2) bi 2 KiC1, and Ki is a shared component of bi and a. This implies

that either ¹�a
Ki
; �a

KiC1
º [ ¹�

bi

Œa�
; �

bi

KiC1
º or ¹�a

Ki
; �a

KiC1
º [ ¹�

bi

Œa�
; �

bi

Ki
º is a ı-p-set.

Each of these sets is contained in a maximal ı-p-set. So for i D 1; : : : ; n, let Si

be a maximal ı-p-set with �a
Ki
; �a

KiC1
2 Si , and for i D n C 1; : : : ; m, let ¹Siºi

label the remaining maximal ı-p-sets in any order. Let Vi be the span of Si for

i D 1; : : : ; m; then Corollary 4.16 says that VG D ¹V1; V2; : : : ; Vmº. We build the

following element of C1.VG/ D
Lm

iD1 Vi :

x D .�a
K1

� �a
K2
; �a

K2
� �a

K3
; : : : ; �a

Kn�1
� �a

Kn
; �a

Kn
� �a

K1
; 0; : : : ; 0/ 2 C1.VG/:

This x a cycle for H1.VG/, since the sum of its components is zero.

To show that x represents a nontrivial homology class, we build a cocycle.

De�ne a set T � ¹1; : : : ; mº by

T D
®

i 2 ¹1; : : : ; mºW ¹�a
K1
; �a

K2
º � Si

¯

:

We de�ne functionals fVi
WVi ! R for i D 1; : : : ; m as follows: if i 2 T , then

fVi
.�/ D �.�a

K1
/ for � 2 Vi ; if i … T , then fVi

D 0.

To show that these functionals patch together to form a cocycle f , we need to

show that they agree on the intersections of their domains. Let 1 � i < j � m.

If both i and j are in T , or both i and j are not in T , then clearly fVi
jVi \Vj

D
fVj

jVi \Vj
. So suppose that i 2 T and j … T . Let � 2 Vi \Vj . By Proposition 4.6

and Theorem 4.11, supp.�/ contains exactly zero or two standard generators with

multiplier a. Since � 2 Vj , we know supp.�/ � Sj , so supp.�/ does not contain

both �a
K1

and �a
K2

. But � 2 Vi and i 2 T , so if supp.�/ � Si contains a standard

generator with multiplier a it contains both �a
K1

and �a
K2

with �.�a
K1
/ D ��.�a

K2
/.

Therefore supp.�/ does not contain any generators with multiplier a. This means

that fVi
.�/ D �.�a

K1
/ D 0 D fVj

.�/. The case where j 2 T and i … T is

identical, so we have that the ¹fVi
ºi agree on all pairwise intersections of spaces

from VG . This means that these functionals patch together to form a cocycle f in

C 1.VG/.



Subspace arrangements, BNS invariants, and PSO.A�/ 199

Now it is enough to show that f .x/ ¤ 0. By our numbering of S1; : : : ; Sm, we

know that T \ ¹1; : : : ; nº D ¹1º, and the .nC 1/st through mth components of x

are 0. So f .x/ D .�a
K1

� �a
K2
/.�a

K1
/ D 1. Hence H1.VG/ ¤ 0. �

5. Finding a graphical RAAG presentation for PSO.A�/

We now give a right-angled Artin presentation for PSO.A�/ when all support

graphs are forests. We will be working with outer automorphism classes of

elements throughout, however for ease of reading we suppress the bracket notation

and write elements as �a
K 2 PSO.A�/ rather than Œ�a

K�.

5.1. An alternative generating set for PSO.A�/. Throughout this section we

suppose that each support graph�a is a forest with ka C1maximal subtrees (con-

nected components) C a
0 ; : : : ; C

a
ka

. Since the vertices of �a represent connected

components of � � st.a/, and �a has its own connected components, we usually

refer to the connected components of �a as maximal subtrees to avoid confus-

ing repetition of the term “component.” We pick a basepoint xa
i in each tree C a

i .

We say that xa
0 is the preferred basepoint of the forest �a.

We need two kinds of generators for our generating set for PSO.A�/. We use

a set of partial conjugations that are not necessarily standard generators We have

already introduced the �rst kind. Suppose C D C a
i is a maximal subtree of �a.

Recall that �a
C denotes be the product

�a
C D

Y

K2C

�a
K

over all elements K of the vertex set of C (each K is a connected component of

� � st.a/). These elements are central in PSO.A�/ by Proposition 2.9.

We also introduce an element �a
e associated to each edge in �a.

De�nition 5.1. Let e be an edge in a maximal subtree C of �a with basepoint

x 2 C . The interior of the edge e separates C into two pieces. Let L be the

component of C � e which does not contain the basepoint x. We de�ne

�a
e D

Y

K2L

�a
K

The choice of basepoint gives a uniform way of choosing a component ofC�e,
however this choice does not matter too much, at least in terms of commuting

elements in PSO.A�/:
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Lemma 5.2. Let L0 be the component of C �e which contains the basepoint of C ,

and let

.�a
e /

0 D
Y

K2L0

�a
K :

Then �a
e .�

a
e /

0 is central in PSO.A�/. In particular an element commutes with �a
e

if and only if it commutes with .�a
e /

0.

Proof. We simply observe that, as V.L/ [ V.L0/ D V.C /:

�a
e .�

a
e /

0 D �a
C ;

which is central, by Proposition 2.9. Since .�a
e /

0 is the product of �a
e with a central

element, we see that anything that commutes with �a
e also commutes with .�a

e /
0.

By symmetry, they have exactly the same centralizers. �

Although elements of the form �a
e are not central in PSO.A�/, there is quite a

strong requirement for a commutator of the form Œ�a
e ; �

b
f
� to be nonzero.

Proposition 5.3. Let e and f be edges of �a and �b respectively. Then �a
e and

�b
f

commute unless:

� .a; b/ is a SIL pair and

� the edges e and f are of the form ¹Œb�a; Lº and ¹Œa�b; Lº, whereL is a shared

component of .a; b/.

Proof. Suppose that Œ�a
e ; �

b
f
� ¤ 1. If .a; b/ do not form a SIL-pair then �a

e and

�b
f

commute as all standard generators of the form �a
K and �b

L commute. We

may therefore assume that .a; b/ is a SIL-pair. Let C be the maximal subtree

of �a containing the dominating component Œb�a, and let D be the maximal

subtree of �b containing Œa�b. The elements �a
e and �b

f
will commute unless

e 2 C and f 2 D, as otherwise one of the products �a
e or �b

f
will consist of

standard generators only corresponding to subordinate components for .a; b/. Let

C 0 � C be the star of Œb�a in �a; so C 0 contains Œb�a together with all the shared

components of .a; b/. Suppose for contradiction that e is not an edge of C 0; then

one component L or L0 of �a � e is disjoint from C 0 and contains only vertices

of subordinate components. Hence �b
f

commutes with either �a
e or .�a

e /
0, so by

Lemma 5.2, it commutes with �a
e . This contradicts our hypothesis, so e must be

an edge of C 0. The same argument applies with the location of f in D. It follows

that both e and f are of the form ¹Œb�a; Lº and ¹Œa�b; L
0º respectively, where L

and L0 are shared components for .a; b/. Lemma 5.2 allows us to assume that the

component of C � e (respectively D � f ) which does not contain the basepoint

is the one containing L (respectively L0), so that

�a
e D �a

L

Y

K

�a
K and �b

f D �b
L0

Y

K0

�b
K0
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where each �a
K (respectively �b

K0) in the product is subordinate for the pair .a; b/.

As partial conjugations along distinct shared components commute, it follows that

L D L0 when Œ�a
e ; �

b
f
� ¤ 1. �

5.2. The right-angled Artin presentation. We are now in a position to give an

explicit right-angled Artin presentation for the group PSO.A�/.

De�nition 5.4. Let A‚ be the right-angled Artin group with de�ning graph ‚

given by vertices of the form:

� va
e for each vertex a 2 � and each edge e in �a;

� va
C for each vertex a 2 � and each maximal subtree C of�a not equal to the

tree C a
0 containing the preferred basepoint.

The graph ‚ is given the following edges:

� there is an edge between each vertex va
C and every other vertex in ‚;

� there is an edge between va
e and vb

f
unless .a; b/ forms a SIL-pair and

e D ¹Œb�a; Lº and f D ¹Œa�b; Lº for some shared component L of .a; b/.

Note that the de�nition of A‚ depends on the location of the preferred base-

points but is independent of the remaining basepoints. Propositions 2.9 and 5.3

immediately imply the following:

Proposition 5.5. The map on generators given by �.va
C / D �a

C and �.va
e / D �a

e

induces a homomorphism �WA‚ ! PSO.A�/.

5.3. Constructing an inverse map. To show that PSO.A�/ Š A‚ we will

construct an inverse map  W PSO.A�/ ! A‚. The �rst step is to write each

standard generator �a
K as a product of elements of the form �a

C and �a
e .

Lemma 5.6. Let �a
K be a standard generator of PSO.A�/. Let C0; : : : ; Ck be the

set of maximal trees in the support graph �a, and let e0; : : : ; en be the edges of

the support graph adjacent to K.

(1) If K is not the basepoint of its subtree in �a and e0 is the edge adjacent to

K in the direction of the basepoint then

�a
K D �a

e0
.�a

e1
/�1 � � � .�a

en
/�1:

(2) If K is the basepoint of some tree C ¤ C0 then

�a
K D �a

C .�
a
e0
/�1.�a

e1
/�1 � � � .�a

en
/�1:

(3) If K is the preferred basepoint of �a, then

�a
K D .�a

C1
/�1 � � � .�a

Ck
/�1 � .�a

e0
/�1.�a

e1
/�1 � � � .�a

en
/�1:
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Proof. We explain the proof of item (1). Let C be the maximal subtree of �a

containing K and let Li be the component of C � ei disjoint from the basepoint.

The vertex set of L0 is the disjoint union of ¹Kº with the vertex sets of the Li for

i � 1. Equation (1) then follows from the de�nition of �a
ei

. A similar calculation

applies to cases (2) and (3). �

Corollary 5.7. The homomorphism �WA‚ ! PSO.A�/ is surjective.

Proof. In Lemma 5.6, we wrote each element of the standard generating set as a

product of elements in the image of �. �

Lemma 5.6 gives an obvious candidate for an inverse map.

De�nition 5.8. With e0; : : : ; en and C0; : : : ; Ck as in Lemma 5.6, let

 .�a
K/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

va
e0
va

e1

�1 � � �va
en

�1

if K is not a basepoint of �a,

va
Cv

a
e0

�1 � � �va
en

�1

if K is a basepoint but not preferred,

va
C1

�1 � � �va
Ck

�1 � va
e0

�1 � � �va
en

�1

if K is the preferred basepoint of �a.

This de�nes a map  W PSO.A�/ ! A‚.

We owe the reader a proof that this map, as de�ned on generators, extends to a

well de�ned homomorphism. The following lemma reduces the number of cases

which we need to run through:

Lemma 5.9. Let �a
K be a standard generator of PSO.A�/ and let e0; : : : ; en be

the edges in �a adjacent to K. If K is not a basepoint of its tree in �a we assume

that e0 is the edge in the direction of the basepoint. There exists a central element

g 2 A‚ such that

 .�a
K/ D g � .va

e0
/�.va

e1
/�1 � � � .va

en
/�1;

where � 2 ¹1;�1º. If K is a basepoint in �a then � D 1, otherwise � D �1.

Proof. This follows from the de�nition of  and the fact that each element va
C is

central in A‚. �
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Lemma 5.10. Suppose that Œ .�a
K/;  .�

b
L/� ¤ 1. Then .a; b/ forms a SIL-pair

and either

� K and L are both dominating for the pair .a; b/, or

� K is dominating for the pair .a; b/ and L is shared, or

� L is dominating for the pair .a; b/ and K is shared, or

� K D L is a shared component for the pair .a; b/.

Proof. Let

 .�a
K/ D g:.va

e0
/�.va

e1
/�1 � � � .va

en
/�1 and  .�b

L/ D g0:.vb
f0
/�

0

.vb
f1
/�1 � � � .vb

fm
/�1

be the decompositions of  .�a
K/ and  .�b

L/ respectively given by Lemma 5.9.

If these two elements do not commute in A‚, then as g and g0 are central, the

elements

.va
e0
/�.va

e1
/�1 � � � .va

en
/�1 and .vb

f0
/�

0

.vb
f1
/�1 � � � .vb

fm
/�1

also do not commute in A‚. In particular there exist i and j such that va
ei

and

vb
fj

do not commute in A‚. From the de�nition of A‚, this implies that .a; b/ is

a SIL-pair and ei D ¹Œb�a; L
0º, fj D ¹Œa�b; L

0º for some shared component L0 of

.a; b/. As K is an endpoint of ei and L is an endpoint of fj , one of the four cases

listed above must hold. �

Proposition 5.11. The map  W PSO.A�/ ! A‚ as de�ned on generators extends

to a well de�ned homomorphism.

Proof. We need to check the relations (R1)–(R5) in Corollary 2.6 are sent to the

identity under the induced map from the free group on the standard generators

of PSO.A�/ to A‚. The relations in (R1)–(R3) are commutators Œ�a
K ; �

b
L� corre-

sponding to the following situations:

� the commutator Œa; b� D 1, so in particular .a; b/ is not a SIL-pair;

� the componentsK and L are disjoint and non-dominating for the pair .a; b/;

� one component is dominating and the other is subordinate for the pair .a; b/.

By Lemma 5.10, in all three situations we have Œ .�a
K/;  .�

b
L/� D 1.

The relations in (R4) are of the form Œ�a
K�

a
L; �

b
L�, where .a; b/ is a SIL-pair, K

is dominating, and L is shared for the pair .a; b/. Let e be the edge e D ¹K;Lº in

the support graph �a. Let x be the basepoint of the component of �a containing

K and L. If x is closer to K (including x D K) then va
e occurs with exponent �1
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in the decomposition of  .�a
K/ and exponent C1 in the decomposition of  .�b

L/.

Similarly, if x is closer to L (including x D L) then va
e occurs with exponent �1

in the decomposition of  .�a
L/ and with exponent C1 in the decomposition of

 .�a
K/. In either case, this term cancels out in any reduced word representing the

product  .�a
K/ .�

a
L/. More precisely, one can show that there exists a central

element g in A‚ such that:

 .�a
K/ .�

a
L/ D g

Y

ei

.va
ei
/�1;

where this product is taken over all edges ei ¤ e in �a adjacent to either K or L.

In contrast, the image of �b
L in A‚ is of the form

 .�b
L/ D g0:.vb

f0
/�.vb

f1
/�1 � � � .vb

fm
/�1;

where g0 is central and f0; : : : ; fm are the edges adjacent to L in �b. As L is

shared, the Star Lemma tells us that one of these edges fi D ¹L; Œa�bº has the

dominating component Œa�b as its other vertex, and the remaining edges are of

the form ¹L;L0º, where L0 is a subordinate component of .a; b/ (this uses the fact

that�a is a forest). As va
e does not occur in our decomposition of .�a

K/ .�
a
L/, it

follows that Œva
ei
; vb

fj
� D 1 in A‚ for all ei and fi in the above two decompositions.

Hence  .�a
K/ .�

a
L/ and  .�b

L/ commute in A‚.

Finally, each relation in (R5) is of the form
Q

K2�a
�a

K . We want to show that

Y

K2�a

 .�a
K/ D 1:

From the de�nition of  .�a
K/, one can check that each element va

e occurs with

exponents C1 and �1 exactly once each in the above product (corresponding to the

images of the generators given by the endpoints of the edge e under  ). Similarly,

if C0; : : : ; Ck are the components of �a and i � 1 then va
Ci

also occurs with

exponents C1 and �1 exactly once (the exponent C1 appears in the image of the

element given by the basepoint of Ci , and the exponent �1 appears in the image of

the generator corresponding to our preferred basepoint). As all the above elements

commute in A‚, it follows that
Q

K2�a
 .�a

K/ D 1. �

Theorem 5.12. The group PSO.A�/ is isomorphic to A‚.

Proof. It only remains to show that � and  are mutual inverses. The fact that

�. .�a
K// D �a

K follows directly from the de�nitions and Lemma 5.6. If va
C is a

generator of A‚ then

 .�.va
C // D

Y

K2C

 .�a
K/
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The element va
C occurs exactly once with exponent C1 under the image of the

standard generator�a
x corresponding to the basepoint ofC . If e 2 C , the generator

va
e occurs twice in the above product (corresponding to the two endpoints of

e), once with exponent C1 and once with exponent �1. As all these elements

commute,  .�.va
C // D va

C . Similarly

 .�.va
e // D

Y

K2L

 .�a
K/;

where L is the component of C � e which does not contain the basepoint. The

element va
e occurs once in this product with exponent C1 in the image of the

standard generator given by the one endpoint of e which is contained in L. Every

edge e0 2 L then occurs twice, once with exponent C1 and once with exponent �1.
These appear in the images of the generators corresponding to the endpoints of e0,

both of which lie in L. It follows that  .�.va
e // D va

e . Hence the compositions

� ı  and  ı � are the identity maps on PSO.A�/ and A‚ respectively, so that

both maps are isomorphisms. �
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