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Introduction

In 1965 Richard Thompson introduced three groups that today are usually denoted
F , T , and V . These have received a lot of recent attention for their interesting and
often surprising properties. Most prominently, T and V are �nitely presented, in-
�nite, simple groups, and F is torsion-free with in�nite cohomological dimension
and of type F1.

Numerous generalizations of Thompson’s groups have been introduced in
the literature; see for example [32, 42, 30, 40, 12, 33, 37, 5]. Most of these
constructions either generalize the way in which branching can occur, or mimic
the self-similarity in some way. Here we describe a more algebraic construction
of Thompson-like groups, which combines the usual branching of the group F
with a chosen family of groups. The construction is based on Brin’s description
of the braided Thompson group Vbr [14], which utilizes the family of braid groups.
Another example is the pure braided Thompson group Fbr introduced by Brady,
Burillo, Cleary and Stein in [9], using the pure braid groups. Classical examples
include F , using the trivial group, and V , using the symmetric groups.

The input to our construction is a directed system of groups .Gn/n2N together
with a cloning system, which essentially determines how a group element is moved
past a split. A cloning system consists of morphisms Gn ! Sn (where Sn is the
symmetric group on n symbols), and cloning maps �n

k
WGn ! GnC1, 1 � k � n,

subject to certain conditions (see De�nition 2.18). The output is a group T .G�/:

Proposition 2.24. Let .Gn/n2N be an injective directed system of groups equipped

with a cloning system. Then there is a generalized Thompson group T .G�/ that

contains all of the Gn.

The groups F , V , Fbr and Vbr are all examples of groups of the form T .G�/.
One of our main motivations for constructing these new Thompson-like groups

is the analysis of their �niteness properties. Recall that a group G is of type Fn if
there is aK.G; 1/with �nite n-skeleton. For example, F1 means �nitely generated
and F2 means �nitely presented. We are in particular interested in understanding
how the �niteness properties of T .G�/ depend on the �niteness properties of the
groups Gn. Our main results are:

Theorem 8.28. Let k be a global function �eld, let S be a set of places of k,

and let OS be the ring of S -integers in k. Let Bn denote the algebraic group of

invertible upper triangular n-by-n matrices. There is a generalized Thompson

group T .B�.OS // and it is of type FjS j�1 but not of type FjS j.

To put this into context it is important to know that the groups Bn.OS / are
themselves of type FjS j�1 but not of type FjS j by [19]. In particular, for every
n 2 N, we get an example of a generalized Thompson group of type Fn�1 but not
of type Fn.
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Theorem 8.10. Let Abn.ZŒ1=p�/ be the nth Abels group (see Section 7). There is

a generalized Thompson group T .Ab�.ZŒ1=p�// and it is of type F1.

The groups Abn.ZŒ1=p�/ are known to be of type Fn�1 but not of type Fn

by [1, 16]. To be of type F1 for a generalization of Thompson’s groups is a
relatively common phenomenon, but what is interesting about this example is that
it organizes the groups Abn.ZŒ1=p�/, none of which is individually of type F1,
into a group of type F1.

To formulate the above statements in a uni�ed way, it is helpful to introduce
the �niteness length �.G/ of a group G, which is just the supremum over all n for
which G is of type Fn. Now Theorems 8.28 and 8.10 can be formulated to say that

�.T .G�// D lim inf
n

�.Gn/ (0.1)

for the respective groups.
This relation is not coincidental but is suggested by the structure of the groups.

In fact, we give a general construction which reduces proving the inequality �
for (0.1) to showing that certain complexes Ln.G�/ are asymptotically highly
connected. This construction is an abstraction of the well developed methods from
[17, 42, 18, 25, 27, 20] (which were all used to prove that the respective groups are
of type F1). For this reason, the proof of the inequality � in Theorem 8.28 works
without change for the groups Bn.R/ where R is an arbitrary ring. This evidence
leads us to ask:

Question 5.1. For which generalized Thompson groups T .G�/ does (0.1) hold?

The group T .G�/ may be thought of as a limit of the groups Gn, for example
since it contains all of them. From this point of view, it is rather remarkable
that (0.1) holds in such generality. For example compare this to an ascending direct
limit of groups with good �niteness properties, which will not even be �nitely
generated.

Another reason why (0.1) is interesting is that it describes how �niteness
properties of groups change when they are subject to a certain operation (here
Thompsonifying). A di�erent such operation is braiding: when V is “braided,”
we get Vbr, and similarly F yields Fbr. The question of the �niteness properties
of Fbr and Vbr was answered in [20]; they are still of type F1, just like F and V .
When reinterpreting F , V ,Fbr and Vbr as Thompsoni�cations (of the trivial group,
the symmetric groups, the pure braid groups, and the braid groups, respectively),
they provide more examples where (0.1) holds: in all of these cases all the groups
Gn are of type F1 and so are the corresponding Thompson groups. This is in
some cases related to a similar program carried out in [3] for wreath products, see
Remark 3.4.
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In addition to the groups discussed so far, we also construct generalized
Thompson groups for more families of groups. All of them are relatives of the
family of symmetric groups in some way and it is very natural to put them into a
generalized Thompson group. The �rst is a family of mock re�ection groups that
were studied by Davis, Januszkiewicz, and Scott [24]. The groups naturally arise
as blowups of symmetric groups and we call them mock symmetric groups. Con-
structing a generalized Thompson group for the mock symmetric groups was sug-
gested to us by Januszkiewicz. The second family consists of loop braid groups,
which are a melding of symmetric groups and braid groups.

Theorems 9.2 and 10.2. There exist generalized Thompson groups Vmock, Vloop

and Floop built from (and thus containing) all mock symmetric groups, all loop

braid groups, and all pure loop braid groups. The groups Vmock and Vloop surject

onto V and Floop surjects onto F .

We expect that all of these groups belong to the list of groups that answer
Question 5.1 positively, and thus:

Conjectures 9.3 and 10.3. Vmock, Vloop and Floop are of type F1.

To investigate the �niteness properties of a generalized Thompson group
T .G�/we let it act on a contractible cube complex X.G�/which we call the Stein–

Farley complex. This space exists for arbitrary cloning systems and in many cases
has been used previously. When the cloning system is properly graded (De�-
nition 2.16), the action has certain desirable properties: the cell stabilizers are
subgroups of the groups Gn and there is a natural cocompact �ltration. To show
that the generalized Thompson group is of type Fn, assuming that all the Gn are,
(which gives one half of (0.1)) thus amounts to showing that the descending links
Ln.G�/ in this �ltration are eventually .n� 1/-connected. This is the only part of
the proof that needs to be done for every properly graded cloning system individ-
ually and depends on the nature of the concrete example. This treats the positive
case, which so far has been su�cient for most existing Thompson groups since
they have been of type F1.

For the negative �niteness properties we have to develop new methods. For
example we give a condition on a group homomorphism G ! H that ensures
that if the morphism factors through a groupK thenK cannot be of type FPn, see
Theorem 5.14 (type FPn is a homological, and slightly weaker, version of type Fn).
This is a similar idea to that of [36] and may be of independent use. Unlike the
proof that T .B�.OS // is of type FjS j�1, the proof that it is not of type FPjS j borrows
large parts from the proof in [19] of the same fact for Bn.OS /. For example, the
space for T .B�.OS // is built out of the space for B2.OS / (which is a Bruhat–Tits
tree).
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The paper is organized as follows. In Section 1 we recall some background
on monoids and the Zappa–Szép product. In Section 2 we introduce cloning
systems (De�nition 2.18) and explain how they give rise to generalized Thompson
groups. Section 3 collects some group theoretic consequences that follow directly
from the construction. To study �niteness properties, the Stein–Farley complex
is introduced in Section 4. The �ltration and its descending links are described
in Section 5, and we discuss some background on Morse theory and other related
techniques for proving high connectivity, including a new method in Section 5.5.

Up to this point everything is mostly generic. The following sections discuss
examples. Section 6 gives an elementary example whereGn D H

n for some group
H . Section 7 discusses cloning systems for groups of upper triangular matrices.
In Section 8 we study their �niteness properties. The last two sections 9 and 10
introduce the groups Vmock and Vloop and Floop.

Acknowledgments. We are grateful to Matt Brin and Kai-Uwe Bux for helpful
discussions, to Tadeusz Januszkiewicz for proposing to us the group Vmock, and
to Werner Thumann and an anonymous referee for many helpful comments. Both
authors were supported by the SFB 878 in Münster. S. Witzel was also supported
directly by the DFG through project WI 4079/2 and by the SFB 701 in Bielefeld.
All of this support is gratefully acknowledged.

0. Motivation

Starting with the �rst section we will spend some ten pages introducing notions
and technical results from the theory of monoids. Before we dive into these prepa-
rations, we want to explain why they are precisely the ones needed to describe
generalized Thompson groups. We illustrate this on the example of Vbr.

We want to think of an element of a Thompson group as consisting of a tree
of splittings, followed by a group element from a chosen group (a braid in the
example), and �nally an inverse tree of merges. An element of Vbr is illustrated
in Figure 1. Two elements are multiplied by stacking them on top of each other
and reducing, as in Figure 2. Among the relations available to reduce an element
are the fact that splitting and then merging again is a trivial operation, as well
as merging and then splitting (Figure 1(a),(b)). Another relation that is implicit
in the pictures is that a group element followed by another group element is the
same as the product. However, these relations are not typically su�cient to bring
a diagram into the form that we want: splits, group element, merges. To move all
the splits to the top (and all the merges to the bottom), we eventually will have
to move a split � past a group element g. In Figure 2 this point is reached in the
third step. Expressed algebraically, we need to rewrite g� D �0g0 for some group
element g0 and some split �0 (Figure 1(d)). The algebraic operation that de�nes
how a split is moved past a group element is the Zappa–Szép product.
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splits

group element

merges

b
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D

c

D

d

D

Figure 1. On the left, an element of Vbr in its standard form consisting of splitting, braiding
and merging. On the right, some relations: (a) splitting and then merging is trivial;
(b) merging and then splitting is trivial; (c) splits and merges on di�erent strands commute.
The main relation, (d), which is encoded by the Zappa–Szép product, is how splits and
group elements interact.

1 2 3 4 5

Figure 2. Computing the product of two elements of Vbr. First, both elements are stacked
onto each other. Second, pairs of merges and splits are resolved. Third, merges and splits
are moved past each other. In the fourth and �fth step a merge and a split are moved past a
group element (here a braid).
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The trees of splittings will be elements of the forest monoid F . We will then
form the Zappa-Szép product F ‰ G with the chosen group G. To also obtain
merges, we will pass to the group of fractions – a merge is just the inverse of a
split. For technical reasons, we will have started with in�nitely many strands and
in a �nal step have to reduce to elements that start and end with one strand. With
this outline in mind, we hope the reader will �nd the following technical pages
more illuminating.

1. Preliminaries

Much of the material in this section is taken from [14].

1.1. Monoids. A monoid is an associative binary structure with a two-sided
identity. A monoid M is called left cancellative if for all x; y; z 2 M , we have
that xy D xz implies y D z. Elements x; y 2 M have a common left multiple

m if there exist z; w 2 M such that zx D wy D m. This is the least common

left multiple if for all p; q 2 M such that px D qy, we have that px is a left
multiple of m. There are the obvious de�nitions of right cancellative, common

right multiples and least common right multiples. We say that M has common

right/left multiples if any two elements have a common right/left multiple. It is
said to have least common right/left multiples if any two elements that have some
common right/left multiple have a least common right/left multiple. Finally, we
say M is cancellative if it is both left and right cancellative. The importance
of these notions lies in the following classical theorem (see [21, Theorems 1.23,
1.25]):

Theorem 1.1 (Ore). A cancellative monoid with common right multiples has a

unique group of right fractions.

Recall that for every monoid M there exists a group GM and a monoid mor-
phism !WM ! GM such that every monoid morphism fromM to a group factors
through ! (namely the group generated by all the elements of M subject to all
the relations that hold in M ). This is the group of fractions of M . The morphism
! will be injective if and only if M embeds into a group. A group G is called
a group of right fractions of M if it contains M and every element of G can be
written asm �n�1 withm; n 2M . A group of right fractions exists precisely in the
situation of Ore’s theorem and is unique up to isomorphism; see [21, Section 1.10]
for details. We call a monoid satisfying the hypotheses of Theorem 1.1 an Ore

monoid. The group of right fractions of an Ore monoid is its group of fractions
(see for example [34, Theorem 7.1.16]):
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Lemma 1.2. LetM be an Ore monoid, letG be its group of right fractions and let

H be any group. Let 'WM ! H be a monoid morphism. Then the map Q'WG ! H

de�ned by Q'.mn�1/ D '.m/ � '.n/�1 is a group homomorphism and ' D Q'jM .

Proof. That inverses map to inverses is clear. Let m1; m2; n1; n2 2 M and let
n1 � x D m2 � y be a common right multiple so that m1n

�1
1 m2n

�1
2 D m1xy

�1n�1
2 .

We have to check that

'.m1/'.n1/
�1'.m2/'.n2/

�1 D '.m1x/'.n2y/
�1. (1.1)

The fact that ' is a monoid morphism means that '.n1/'.x/ D '.m2/'.y/ which
entails '.n1/

�1'.m2/ D '.x/'.y/�1. Extending by '.m1/ from the left and by
'.n2/

�1 from the right gives (1.1). �

1.2. Posets from monoids. Throughout this section letM be an Ore monoid and
let G be its group of right fractions. The notions of left/right multiple/factor are
uninteresting for G as a monoid because it is a group. Instead we introduce these
notions relative to the monoid M . Concretely, assume that elements a; b; c 2 G
satisfy

ab D c.

If a 2 M then we call b a right factor of c and c a left multiple of b. If b 2 M
then we call a a left factor of c and c a right multiple of a. If g is a left factor
(respectively right multiple) of both h and h0 then we say that it is a common left

factor (respectively common right multiple). If g is a common left factor of h and
h0 and any other left factor of h and h0 is also a left factor of g then g is called
a greatest common left factor. If g is a common right multiple of h and h0 and
every other right multiple is also a right multiple of g then g is called a least

common right multiple of h and h0. Thus we obtain notions of when G has (least)
common right/left multiples and (greatest) common right/left factors. We say that
two elements have no common right factor if they have greatest common right
factor 1.

Under a moderate additional assumption, having least common right multiples
is inherited by G from M :

Lemma 1.3. Let M have least common right multiples. Let n; n0; m;m0 2 M be

such that n and m have no common right factor and neither do n0 and m0. Let

nv D n0u be a least common right multiple of n and n0. Then nv D n0u is a least

common right multiple of nm�1 and n0m0�1
.

We call a monoid homomorphism lenWM ! N0 a length function if every
element of the kernel is a unit. It induces a length function lenWG ! Z. Note that
if M admits a length function then every element of G can be written as mn�1

where m and n are elements of M with no common right factor.
The following is an extension of [14, Lemma 2.3] to G.
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Lemma 1.4. Assume thatM admits a length function. Then G has least common

right multiples if and only if it has greatest common left factors.

One reason for our interest in least common right multiples and greatest com-
mon left factors is order theoretic. De�ne a relation on G by declaring g � h if g
is a left factor of h. This relation is re�exive and transitive but fails to satisfy an-
tisymmetry if M has non-trivial units. We denote the relation induced on G=M�

also by�. It is an order relation soG=M� becomes a partially ordered set (poset).
Spelled out, the relation is given by gM� � hM� if g�1h 2M .

The algebraic properties discussed before immediately translate into order
theoretic properties: recall that a poset P is a join-semilattice if any two elements
of P have a supremum (their join). We say that P has conditional meets if any
two elements that have a lower bound have an in�mum.

Observation 1.5. If M has common right multiples, least common right mul-
tiples, and greatest common left factors then M=M� is a join-semilattice with
conditional meets. Similarly, if G has common right multiples, least common
right multiples and greatest common left factors then G=M� is a join-semilattice
with conditional meets.

Putting everything together, we �nd:

Corollary 1.6. LetM be a cancellative monoid with common right multiples, least

common right multiples and length function. LetG be its group of right fractions.

Then G=M� is a join-semilattice with conditional meets.

1.3. The monoid of forests. Since we are interested in Thompson’s groups, an
important monoid in all that follows will be the monoid of forests, which we de�ne
in this section.

For us, a tree is always a �nite rooted full binary tree. In other words, every
vertex has either no outgoing edges or a left and right outgoing edge, and every
vertex other than the root has an incoming edge. The vertices without outgoing
edges are called leaves. The distinction between left and right induces a natural
order on the leaves. If a tree has only one leaf, then the leaf is also its root and the
tree is the trivial tree.

By a forest we mean a sequence of trees E D .Ti /i2N such that all but �nitely
many Ti are trivial. The roots are numbered in the obvious way, i.e., the i th root of
E is the root of Ti . If all the Ti are trivial we call E trivial. If the Ti are trivial for
i > 1 then the forest is called semisimple (here we deviate from Brin’s notation;
what we call “semisimple” is called “simple” in [14], and what we will later call
“simple”, Brin calls “simple and balanced”). The rank of E is the least index i
such that Tj is trivial for j > i . So E is semisimple if it has rank at most 1. The
leaves of all the Ti are called the leaves of E. The order on the leaves of the trees
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induces an order on the leaves of the forest by declaring that any leaf of Ti comes
before any leaf of Tj , whenever i < j . We may equivalently think of the leaves as
numbered by natural numbers. The number of feet of a semisimple forest .Ti/i2N

is the number of leaves of T1 .
Let F be the set of forests. De�ne a multiplication on F as follows. Let

E D .Tk/ and E 0 D .T 0
k
/ be forests, and set EE 0 to be the forest obtained by

identifying the i th leaf of E with the i th root of E 0, for each i . This product is
associative, and the trivial forest is a left and right identity, so F is a monoid.
Some more details on F can be found in Section 3 of [14]. Figure 3 illustrates the
multiplication of two elements.

: : :

: : :

D

: : :

Figure 3. Multiplication of forests.

There is an obvious set of generators of F , namely the set of single-caret
forests. Such a forest can be characterized by the property that there exists k 2 N

such that for i < k, the i th root is also the i th leaf, and for i > k, the i th root is
also the .i C 1/st leaf. Denote this forest by �k. Every tree in �k is trivial except
for the kth tree, which is a single caret.

Proposition 1.7 (presentation of the forest monoid). [14, Proposition 3.3] F is

generated by the �k, and de�ning relations are given by

�j�i D �i�j C1 for i < j . (1.2)

Every element of F can be uniquely expressed as a word of the form �k1
�k2
� � ��kr

for some k1 � � � � � kr .

A consequence is that the number of carets is an invariant of a forest, and is
exactly the length of the word in the �k representing the forest. The following is
part of [14, Lemma 3.4].

Lemma 1.8. The monoid F has the following properties.

(1) It is cancellative.

(2) It has common right multiples.

(3) It has no non-trivial units.
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(4) There is a monoid homomorphism lenWF ! N0 sending each generator to 1.

(5) It has greatest common right factors and least common left multiples.

(6) It has greatest common left factors and least common right multiples.

In view of Theorem 1.1, properties (1) and (2) imply that F has a unique group
of right fractions, which we denote bF .

1.4. Zappa–Szép products. In this section we recall the background on Zappa–
Szép products of monoids. Our main reference is [14, Section 2.4], and also
see [13]. When the monoids are groups, Zappa–Szép products generalize semidi-
rect products by dropping the assumption that one of the groups be normal.

The internal Zappa–Szép product is straightforward to de�ne. Let M be a
monoid with submonoids U and A such that every m 2 M can be written in a
unique way as m D u˛ for u 2 U and ˛ 2 A. In particular, for ˛ 2 A and u 2 U
there exist u0 2 U and ˛0 2 A such that ˛u D u0˛0, and the u0 and ˛0 are uniquely
determined by ˛ and u, so we denote them u0 D ˛ �u and ˛0 D ˛u, following [14].
The maps .˛; u/ 7! ˛ � u and .˛; u/ 7! ˛u should be thought of as mutual actions
of U and A on each other. Then we can de�ne a multiplication on U � A via

.u; ˛/.v; ˇ/ WD .u.˛ � v/; ˛vˇ/, (1.3)

for u; v 2 U and ˛; ˇ 2 A, and the map .u; ˛/ 7! u˛ is a monoid isomorphism
from U �A (with this multiplication) to M ; see [14, Lemma 2.7]. We say that M
is the (internal) Zappa–Szép product of U and A, and write M D U ‰ A.

Example 1.9 (semidirect product). Suppose G is a group that is a semidirect
product G D U Ë A for U;A � G. Then for u 2 U and ˛ 2 A we have
˛u D u.u�1˛u/, and u�1˛u 2 A, so the actions de�ned above are just ˛ � u D u
and ˛u D u�1˛u.

We actually need to use the external Zappa–Szép product. This is discussed
in detail in [14, Section 2.4] (and in even more detail in [13]).

De�nition 1.10 (external Zappa–Szép product). Let U and A be monoids with
maps .˛; u/ 7! ˛ � u 2 U and .˛; u/ 7! ˛u 2 A satisfying the following eight
properties for all u; v 2 U and ˛; ˇ 2 A:

1A � u D u (identity acting on U ),1)

.˛ˇ/ � u D ˛ � .ˇ � u/ (product acting on U ),2)

˛1U D ˛ (identity acting on A),3)

˛.uv/ D .˛u/v (product acting on A),4)

.1A/
u D 1A (U acting on identity),5)
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.˛ˇ/u D ˛.ˇ �u/ˇu (U acting on product),6)

˛ � 1U D 1U (A acting on identity),7)

˛ � .uv/ D .˛ � u/.˛u � v/ (A acting on product).8)

Then the maps are called a Zappa–Szép action. The set U � A together with the
multiplication de�ned by (1.3) is called the (external) Zappa–Szép product of U
and A, denoted U ‰ A.

It is shown in Lemma 2.9 in [14] that the external Zappa–Szép product turns
U ‰ A into a monoid and coincides with the internal Zappa–Szép product of U
and A with respect to the embeddings u 7! .u; 1A/ and ˛ 7! .1U ; ˛/.

Some pedantry about the use of the word “action” might now be advisable.
The action of U on A is a right action described by a homomorphism of monoids
U ! Symm.A/, where Symm.A/ is the symmetric group on A (and is not the
group of monoid automorphisms). The action of A on U is a left action described
by a homomorphism of monoids A ! Symm.U /, again not to Aut.U /. In a
phrase, both actions are actions of monoids as monoids, but on monoids as sets.

Brin [14] regards the action .˛; u/ 7! ˛u of U on A as a family of maps from
A to itself parametrized by U and de�nes properties of this family. For brevity we
apply the same adjectives to the action itself but one should think of the family
of maps. The action is called injective if for all u 2 U , ˛u D ˇu implies ˛ D ˇ.
It is surjective if for every ˛ 2 A and u 2 U there exists a ˇ 2 A with ˇu D ˛.
The action is strongly con�uent if the following holds: if u; v 2 U have a least
common left multiple ru D sv and ˛ D ˇu D v for some ˇ;  2 A then there is
a � 2 A such that � r D ˇ and � s D  . Note that if the action is injective then for
this to happen it is su�cient that � ru D ˛. The notions for the action of A on U
are de�ned by analogy.

The following lemma can be found as Lemma 2.12 in [14], or as Lemma 3.15
in [13].

Lemma 1.11. LetU be a cancellative monoid with least common left multiples and

let A be a group. Let U and A act on each other via Zappa–Szép actions. Assume

that the action .˛; u/ 7! ˛u of U on A is strongly con�uent. Then M D U ‰ A

has least common left multiples.

A least common left multiple .r; ˛/.u; �/ D .s; ˇ/.v; �/ of .u; �/ and .v; �/ in

M can be constructed so that r.˛ � u/ D s.ˇ � v/ is the least common left multiple

of .˛ � u/ and .ˇ � v/ in U . If M is cancellative, every least common left multiple

will have that property.

Being actions of monoids, Zappa–Szép actions are already determined by the
actions of generating sets. It is not obvious, but also true, that they are often
also determined by the actions of generating sets on generating sets. This means
that, in order to de�ne the actions, we need only de�ne ˛ � u and u˛ where both
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˛ and u come from generating sets. Brin [14, pp. 768–769] gives a su�cient
condition for such partial actions to extend to well de�ned Zappa–Szép actions,
which we restate here. Given setsX and Y , letX� and Y � denote the free monoids
generated respectively by them. Suppose maps Y � X ! Y �; .˛; u/ 7! ˛u and
Y � X ! X; .˛; u/ 7! ˛ � u are given (so ˛ � u should be a single generator, but
˛u may be a string of generators). Let W be the set of relations .˛u; .˛ � u/.˛u//

with ˛ 2 Y; u 2 X . Then
hX [ Y j W i

is a Zappa–Szép product of X� and Y �. In particular, the above maps extend to
Zappa–Szép actions Y � �X� ! Y � and Y � �X� ! X�.

Lemma 1.12 ([14, Lemma 2.14]). Let U D hX j Ri and A D hY j T i be

presentations of monoids (with X \Y D ;). Assume that functions Y �X ! Y �,

.˛; u/ 7! ˛u and Y � X ! X; .˛; u/ 7! ˛ � u are given. Let �R and �T denote

the equivalence relations on X� and Y � imposed by the relation sets R and T .

Extend the above maps to Y � � X� as above. Assume that the following are

satis�ed. If .u; v/ 2 R then for every ˛ 2 Y we have .˛ � u; ˛ � v/ 2 R or

.˛ � v; ˛ � u/ 2 R, and also ˛u �T ˛v . If .˛; ˇ/ 2 T then for all u 2 X we

have ˛ � u D ˇ � u and ˛u �T ˇ
u.

Then the lifted maps induce well de�ned Zappa–Szép actions and the restric-

tion of the map A � U ! U to A � X has its image in X . A presentation for

U ‰ A is

hX [ Y j R [ T [W i

where W consists of all pairs .˛u; .˛ � u/.˛u// for .˛; u/ 2 Y �X .

2. Cloning systems and generalized Thompson groups

2.1. Brin–Zappa–Szép products and cloning systems. To construct Thomp-
son-like groups we now consider Zappa–Szép products F ‰ G of the forest
monoid F with a group G.

De�nition 2.1 (BZS products). Suppose we have Zappa–Szép actions .g; E/ 7!
g � E and .g; E/ 7! gE on G � F , for G a group. For each standard generator
�k of F the map �k D ��k

WG ! G given by g 7! g�k is called the kth cloning

map. If every such cloning map is injective, we call the actions Brin–Zappa–Szép

(BZS) actions and call the monoid F ‰ G the Brin–Zappa–Szép (BZS) product.

Since the action of F onG is a right action we will also write the cloning maps
�k on the right.

The monoid F is cancellative and has common right multiples, and the same
is true of G, being a group. Since G is a group these properties are inherited by
F ‰ G:



302 S. Witzel and M. C. B. Zaremsky

Observation 2.2. A BZS product F ‰ G is cancellative and has (least) common
right multiples. In particular it has a group of right fractions.

Proof. This follows easily from the statements about F using the unique factor-
ization in Zappa–Szép products and that E is a right multiple and left factor of
.E; g/. �

In De�nition 2.1 we have already simpli�ed the data needed to describe BZS
products by using the fact that F is generated by the �k . In a similar fashion
the following lemma reduces the data needed to describe the action of G on F .
We denote by S! the group Symm.N/ of permutations of N and by S1 � S! the
subgroup of permutations that �x almost all elements of N.

Lemma 2.3 (carets to carets). Let F ‰ G be a BZS product. The action of G on

F preserves the set ƒ D ¹�kºk2N and so induces a homomorphism �WG ! S! .

Conversely, the action of G on F is completely determined by � and .�k/k2N.

Proof. For g 2 G and E;F 2 F , we know that g � .EF / D .g � E/.gE � F /
by De�nition 1.10. We show that the action of G preserves ƒ. If g � �k D EF

then g�1 � .EF / D �k , so one of g�1 � E or .g�1/E � F equals 1F . Again
by De�nition 1.10, we see that either E D 1F or F D 1F . We conclude that
g � �k equals �` for some ` depending on k and g. The map � then is de�ned via
�.g/k D `.

To see that the action of G on F is determined by � and .�k/, we use repeated
applications of the equation g � .�kE/ D ��.g/k..g/�k � E/. �

As a consequence we see that the action of G on F preserves the length of an
element:

Corollary 2.4. There is a monoid homomorphism lenWF ‰ G ! N0 taking

.E; g/ to the length of E in the standard generators. The kernel of len is G D

.F ‰ G/�.

In particular, len is a length function in the sense of Section 1.2. The induced
morphism from the group of right fractions to Z (Lemma 1.2) is also denoted len.

The next result is a technical lemma that tells us that � and the cloning maps
always behave well together, in any BZS product.

Lemma 2.5 (compatibility). Let F ‰ G be a BZS product. The homomorphism

�WG ! S! and the maps .�k/k2N satisfy the following compatibility condition for

k < `:

� if �.g/k < �.g/` then �..g/�`/k D �.g/k and �..g/�k/.`C 1/ D �.g/`C 1;

� if �.g/k > �.g/` then �..g/�`/k D �.g/kC 1 and �..g/�k/.`C 1/ D �.g/`.
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Proof. For k < ` we know that

g � .�`�k/ D g � .�k�`C1/.

Writing this out using the axioms for Zappa–Szép products we obtain that

.g � �`/.g
�` � �k/ D .g � �k/.g

�k � �`C1/

which can be rewritten using the action morphism � as

��.g/`��.g�` /k D ��.g/k��.g�k /.`C1/.

Using the normal form for F (see Proposition 1.7) we can distinguish cases for
how this could occur. The �rst case is that both pairs of indices

.�.g/`; �.g�`/k/ and .�.g/k; �.g�k/.`C 1//

are ordered increasingly and coincide. But this is impossible because �.g/` ¤
�.g/k. The second case is that both pairs are ordered strictly decreasingly and
coincide, which is impossible for the same reason. The remaining two cases have
that one pair is ordered increasingly and the other strictly decreasingly. In either
case the monoid relation now yields a relationship among the indices, namely
either

�.g�k /.`C 1/ � 1 D �.g/` > �.g�`/k D �.g/k

or

�.g/` D �.g�k /.`C 1/ < �.g/k D �.g�`/k � 1.

Finally, replacing the action of �k by the map �k yields the result. �

The compatibility condition can also be rewritten as

�..g/�`/.k/ D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

�.g/.k/ k < `; �.g/k < �.g/`;

�.g/.k/C 1 k < `; �.g/k > �.g/`;

�.g/.k � 1/ k � 1 > `; �.g/.k � 1/ < �.g/`;

�.g/.k � 1/C 1 k � 1 > `; �.g/.k � 1/ > �.g/`.

(2.1)

Lemma 2.3 said that the action ofG on F is uniquely determined by � and the
cloning maps. The action of F on G is also uniquely determined by the cloning
maps, simply because F is generated by the �k. Our �ndings can be summarized
as:
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Proposition 2.6 (uniqueness). A BZS product F ‰ G induces a homomorphism

�WG ! S! and injective maps �k WG ! G; k 2 N satisfying the following

conditions for k; ` 2 N with k < ` and g; h 2 G:

(CS1) .gh/�k D .g/��.h/k.h/�k (cloning a product);

(CS2) �` ı �k D �k ı �`C1 ( product of clonings);

(CS3) if �.g/k < �.g/`, then

�..g/�`/k D �.g/k and �..g/�k/.`C 1/ D �.g/`C 1I

if �.g/k > �.g/`, then

�..g/�`/k D �.g/k C 1 and �..g/�k/.`C 1/ D �.g/`

(compatibility).

The BZS product is uniquely determined by these data.

The converse is also true:

Proposition 2.7 (existence). Let G be a group, �WG ! S! a homomorphism and

.�k/k2N a family of injective maps from G to itself. Assume that for k < ` and

g; h 2 G the conditions (CS1)–(CS3) in Proposition 2.6 are satis�ed.

Then there is a well de�ned BZS product F ‰ G corresponding to these data.

Proof. We will verify the assumptions of Lemma 1.12. This will produce a Zappa–
Szép action, which will be a Brin–Zappa–Szép action by construction. We take
U to be F with the presentation

h�k for k 2 N j .�`�k; �k�`C1/ for k < li.

Let R denote the set of relations used here and let Rsym be the symmetrization.
We take A to be G with the trivial presentation

hg for g 2 G j .gh; g0/ for gh D g0i.

The maps on generators are de�ned as g�k WD .g/�k and g � �k WD ��.g/k .
First, for k < ` and g 2 G we need to verify that

.g � .�`�k/; g � .�k�`C1// 2 R
sym and g�`�k D g�k�`C1 .

The latter of these is just condition (CS2). The former condition means that

.��.g/`��..g/�`/k; ��.g/k��..g/�k/.`C1//

should lie in Rsym. If �.g/k > �.g/` we can use condition (CS3) to rewrite this
as

.��.g/`��.g/kC1; ��.g/k��.g/`/
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which is in Rsym. If �.g/k < �.g/` then the tuple is

.��.g/`��.g/k ; ��.g/k��.g/`C1/

which already lies in R.
Second, for every relation .gh; g0/ ofG and every k 2 N we have to verify that

.gh/ � �k D g
0 � �k and .gh/�k D .g0/

�k

for k 2 N. The former is not really a condition because the partial action was
already de�ned using G (rather than the free monoid spanned by G). The latter
means that we need

.g0/
�k D g��.h/kh�k

which is just condition (CS1). �

De�nition 2.8. LetG be a group, �WG ! S! a homomorphism and .�k/k2NWG !

G a family of maps, also denoted �� for brevity. The triple .G; �; ��/ is called a
cloning system if the data satisfy conditions (CS1), (CS2) and (CS3) above. We
may also refer to � and �� as a forming a cloning system on G.

We now discuss an extended example, of the in�nite symmetric group, and
show that we have a cloning system. It is exactly the cloning system that gives rise
to Thompson’s group V .

Example 2.9 (symmetric groups). Let G D S1. Let �WS1 ! S! just be
inclusion. The action of G on F is thus given by g � �k D ��.g/k D �gk .

Since we will use the speci�c cloning maps in this example even in the future
general setting, we will give them their own name, &`. They are de�ned by the
formula

..g/&k/.m/ D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

gm m � k; gm � gk,

gmC 1 m < k; gm > gk,

g.m � 1/ m > k; g.m� 1/ < gk,

g.m � 1/C 1 m > k; g.m� 1/ � gk.

(2.2)

If we draw permutations as strands crossing each other, the word “cloning”
becomes more or less literal: applying the kth cloning map creates a parallel copy
of the kth strand, where we count the strands at the bottom. See Figure 4 for an
example.

We will prove that this de�nes a cloning system by verifying (CS1), (CS2),
and (CS3). For this example we will just verify them directly, and not use any
speci�c presentation for S1. It is immediate from (2.2) that the compatibility
condition (CS3) in the formulation (2.1) is satis�ed.



306 S. Witzel and M. C. B. Zaremsky

&2
�!

Figure 4. An example of cloning in symmetric groups. Here we see that .1 2/&2 D .1 3 2/.

To aid in checking condition (CS1), we de�ne two families of maps, �kWN!N

and �kWN! N, for k 2 N:

�k.m/ D

´
m; m � k,

m � 1; m > k;
and �k.m/ D

´
m; m � k,

mC 1; m > k.
(2.3)

Note that �k ı �k D id and �k ı �k.m/ D m, unless m D k C 1 in which case it
equals m � 1. In the m D k C 1 case, we see that

.gh/&k.k C 1/ D gh.k/C 1 D .g/&hk.hk C 1/ D .g/&hk.h/&k.k C 1/,

by repeated use of the last case in the de�nition. It remains to check condi-
tion (CS1) in the m ¤ k C 1 case. According to the de�nitions, we have

..g/&k/.m/ D �gk.g�k.m//

whenever m ¤ k C 1. Using this we see that

..g/&hk/ ı ..h/&k/.m/ D �ghkg�hk ı �hkh�k.m/

D �ghkgh�k.m/

D ..gh/&k/.m/

for m ¤ k C 1.
To check condition (CS2), we consider k < `. We �rst verify, from the

de�nition, the special cases

..g/&` ı &k/.k C 1/ D gk C 1 D ..g/&k ı &`C1/.k C 1/

and

..g/&` ı &k/.`C 2/ D g`C 2 D ..g/&k ı &`C1/.`C 2/.

For the remaining case, when m ¤ k C 1; `C 2, we have

..g/&` ı &k/.m/ D �k�`g�`�k.m/

and

..g/&k ı &`C1/.m/ D �`C1�kg�k�`C1.m/
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and it is straightforward to check that

�`�k D �k�`C1 and �k�` D �`C1�k. (2.4)

We conclude that .S1; �; .&k/k/ is a cloning system.

Remark 2.10. Besides the example of symmetric groups there are two more
examples of cloning systems previously existing in the literature (though of course
not using this language): they are for the families of braid groups and pure braid
groups and were used in [14, 9] to construct Vbr and Fbr.

Observation 2.11 (simpli�ed compatibility). Condition (CS3) in Proposition 2.6
can equivalently be rewritten as

�..g/�k/.i/ D .�.g//&k.i/ for all i ¤ k; k C 1.

All the examples in the later sections satisfy the condition in Observation 2.11
even when i D k; k C 1.

Remark 2.12. Proposition 2.7 is an application of Lemma 1.12 to the trivial
presentation. As this example demonstrates, it can be rather involved to verify
the conditions for a cloning system. If the group in question comes equipped with
a presentation involving only short relations, it may be easier to re-run the proof
of Proposition 2.7 with that presentation by applying Lemma 1.12. In this case one
has to check (CS2) and (CS3) only on generators, but also has to check a variant
of (CS1) for every relation.

We �nish by discussing the case when we have least common left multiples.
Let �� be the cloning maps of a cloning system. For E D �k1

� � ��kr
de�ne

�E WD �k1
ı � � � ı �kr

. Note that this is well de�ned by condition (CS2) and is
just the map g 7! gE .

Observation 2.13. Let G be a group and let .�; ��/ be a cloning system on G.
The action of F on G de�nes a strongly con�uent family if and only if we have
im.�E1

/ \ im.�E2
/ D im.�F / whenever E1 and E2 have least common left

multiple F .
In particular the BZS product F ‰ G has least common left multiples in that

case.

Proof. The proof is obtained just by unraveling the de�nition and using the remark
before Lemma 1.11. Assume that the above condition holds. Write F D F1E1 D

F2E2. Assume that g D g
E1

1 D g
E2

2 , that is, g 2 im.�E1
/ \ im.�E2

/. By
assumption there is an h 2 G such that g D .h/�F . That is g D hF D hF1E1 D

g
E1

1 . Injectivity of the action of F on G now implies hF1 D g1. A similar
argument shows hF2 D g2.
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Conversely assume that the action of F on G is strongly con�uent and write
F as before. Let g 2 im.�E1

/ \ im.�E2
/. Write g D .g1/�E1

and g D .g2/�E2
,

that is g D g
E1

1 and g D g
E2

2 . By strong con�uence there is an h 2 G such that
hF1 D g1 and hF2 D g2. Then g D hF D .h/�F as desired. �

To check this global con�uence condition one either needs a good understand-
ing of the action of F on G (as was the case for Vbr [14, Section 5.3]) or one has
to reduce it to local con�uence statements.

2.2. Interlude: hedges. In the above example of the symmetric group, the action
of F on S1 factors through an action of a proper quotient. This amounts to a fur-
ther relation being satis�ed in addition to the product of clonings relation (CS2).
The quotient turns out to be what Brin [14] called the monoid of hedges. Without
going into much detail we want to explain the action of the hedge monoid on S1.

: : :
: : :

Figure 5. A forest and the corresponding hedge.

The hedge monoid H is the monoid of monotone surjective maps N ! N.
Multiplication is given by composition: f � h D f ı h. There is an action of
S1 on H given by the property that, for g 2 S1 and f 2 H , the cardinality
of .g � f /�1.i/ is that of f �1.g�1i/. There is an obvious equivariant morphism
cWF ! H (see Figure 5) given by c.�k/ D �k where

�k.m/ D

´
m; m � k;

m � 1; m > k:

This morphism is surjective but not injective, in fact (see [14, Proposition 4.4]):

Lemma 2.14. The monoid H has the presentation

h�k ; k 2 N j �`�k D �k�`C1; ` � ki.

Observe that the only di�erence between this and the presentation of F is that
the relation also holds for ` D k, rather than only for ` > k. It turns out that the
action of F on S1 de�ned in Example 2.9 factors through c:

Observation 2.15. The maps &k de�ned in (2.2) satisfy &k&k D &k&kC1. Thus
they de�ne an action of H on S1.

Proof. The veri�cation of (CS2) above extends to the case k D `. �
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2.3. Filtered cloning systems. Typically one will want to think of Thompson’s
group V not as built from S1 but rather from the family .Sn/n2N. We will now
describe this approach. We regard S1 as the direct limit lim

�!
Sn where the maps

�m;nWSm ! Sn are induced by the inclusions ¹1; : : : ; mº ,! ¹1; : : : ; nº.
Let .Gn/n2N be a family of groups with monomorphisms �m;nWGm ! Gn for

each m � n. For convenience we will sometimes write G� for .Gn/n2N; note
that in this case the index set is always N. The maps �m;n will be written on the
right, e.g., .g/�m;n for g 2 Gm. Suppose that �m;m D id and �m;n ı �n;` D �m;` for
all m � n � `. Then ..Gn/n2N; .�m;n/m�n/ is a directed system of groups with
a direct limit G WD lim

�!
Gn. Since all the �m;n are injective, we may equivalently

think of a group G �ltered by subgroups Gn.
Consider injective maps �n

k
WGn ! GnC1 for k; n 2 N; k � n. We call such

maps a family of cloning maps for the directed system .Gn/n2N if for m; k � n

they satisfy

�m;n ı �
n
k D

´
�m

k
ı �mC1;nC1 if k � m;

�m;nC1 if m < k.
(2.5)

This amounts to setting �n
k
WD �n;nC1 for k > n and requiring that

�m;n ı �
n
k D �

m
k ı �mC1;nC1,

i.e., that the family .�n
k
/n2N de�nes a morphism of directed systems of sets. From

that it is clear that a family of cloning maps induces a family of injective maps
�k WG ! G by setting

.g/�n ı �k D .g/�
n
k ı �nC1

for g 2 Gn. Here �nWGn ! G denotes the map given by the universal property
of G.

De�nition 2.16 (properly graded). We say that the cloning maps are properly

graded if the following strong con�uence condition holds: if g 2 GnC1 can be
written as .h/�n

k
D g D . Ng/�n;nC1 then there is an Nh 2 Gn�1 with . Nh/�n�1

k
D Ng

and . Nh/�n�1;n D h.

In view of the injectivity of all maps involved this is equivalent to saying that

im �n
k \ im �n;nC1 � im.�n�1;n ı �

n
k / (2.6)

(where the converse inclusion is automatic) or to saying that the diagram

Gn�1 Gn

Gn GnC1

 

!
�n�1;n

 !�n�1
k

 !�n
k

 

!
�n;nC1
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is a pullback diagram of sets. A formulation in terms of the direct limit G is that if
.h/�k 2 Gn for k � n then h 2 Gn�1. Note that a �ltered cloning system satisfying
the con�uence condition of Observation 2.13 is automatically properly graded.

Example 2.17. Take Gn D Sn as in Example 2.9. A family of cloning maps &n
k

is obtained by restriction of the maps from Example 2.9:

&n
k WD &kj

SnC1

Sn
. (2.7)

This family of cloning maps is properly graded: if g 2 im �n;nC1 then g
�xes n C 1; if moreover g D .h/&k then it follows from (2.2) that h �xes n so
h 2 im �n�1;n.

Now suppose further that we have a family of homomorphisms �nWGn ! Sn

for each n 2 N that are compatible with the directed systems, i.e., �n..g/�m;n/ D

.�m.g//�m;n for m < n and g 2 Gm. Let �WG ! S1 be the induced homomor-
phism. We are of course interested in the case when � and the family .�k/k2N

de�ne a cloning system on G. The corresponding de�ning formulas are obtained
by adding decorations to the formulas from Section 2.1:

De�nition 2.18 (cloning system). Let ..Gn/n2N; .�m;n/m�n/ be an injective di-
rected system of groups. Let .�n/n2NWGn ! Sn be a homomorphism of directed
systems of groups and let .�n

k
/k�nWGn ! GnC1 be a family of cloning maps. The

quadruple
..Gn/n2N; .�m;n/m�n; .�n/n2N; .�

n
k /k�n/

is called a cloning system if the following hold for all k � n, k < `, and g; h 2 Gn:

(FCS1) .gh/�n
k
D .g/�n

�.h/k
.h/�n

k
(cloning a product);

(FCS2) �n
`
ı �nC1

k
D �n

k
ı �nC1

`C1
(product of clonings);

(FCS3) �nC1..g/�
n
k
/.i/ D .�n.g//&

n
k
.i/ for all i ¤ k; k C 1 (compatibility).

We may also refer to �� and .�n
k
/k�n as forming a cloning system on the directed

systemG�. The cloning system is properly graded if the cloning maps are properly
graded.

Note that condition (FCS3) is phrased more concisely than (CS3), but this is
just in light of Observation 2.11. Again, condition (FCS3) will in practice often be
satis�ed even when i D k; k C 1.

Observation 2.19. Let .Gn/n2N be an injective directed system of groups.
A cloning system on .Gn/n2N gives rise to a cloning system onG WD lim

�!
Gn. Con-

versely a cloning system onG gives rise to a cloning system on .Gn/n2N provided
.Gn/�

n
k
� GnC1 and �n.Gn/ � Sn.
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We will usually not distinguish explicitly between a cloning system on G�

and a cloning system on lim
�!

G� that preserves the �ltration. In particular, given a
cloning system on a directed system of groups we will implicitly de�ne � WDlim

�!
�n

and �k WD lim
�!

�n
k
.

2.4. Thompson groups from cloning systems. Let .G; �; .�k/k2N/ be a cloning
system and let F ‰ G be the associated BZS product. We now de�ne a group
bT .G/ for the cloning system. This is a supergroup of the actual group T .G�/

that we construct later in the case when G arises as a limit of a family .Gn/n
(De�nition 2.25).

De�nition 2.20 (Thompson group of a cloning system). The group of right
fractions of F ‰ G is denoted by bT .G/ and is called the large generalized

Thompson group ofG. If more context is required we denote it bT .G; �; .�k/k/ and
call it the large generalized Thompson group of the cloning system .G; �; .�k/k/.

By Observation 2.2 and Theorem 1.1 every element t of bT .G/ can be written
as t D .E�; g/.EC; h/

�1 for some E�; EC 2 F and g; h 2 G. If it can also be
written t D .E�; g

0/.EC; h
0/�1 then gh�1 D g0h0�1. It therefore makes sense

to represent it by just the triple .E�; gh
�1; EC/. Of course, this representation is

still not unique, for example .E; 1G ; E/ represents the identity element for every
E 2 F . We will denote the element represented by .E�; g; EC/ by ŒE�; g; EC�.
Note that ŒE�; g; EC�

�1 D ŒEC; g
�1; E��. We will call .E�.g � F /; g

F ; ECF /

an expansion of .E�; g; EC/, and the latter a reduction of the former, so any
reduction or expansion of a triple .E�; g; EC/ represents the same element of
bT .G/ as .E�; g; EC/.

Now assume thatG D lim
�!

Gn is an injective direct limit of groups .Gn/n2N and
that the cloning system is a cloning system on .Gn/n2N. Recall from Section 1.3
that a forestE is called semisimple if all but its �rst tree are trivial and in that case
its number of feet is the number of leaves of the �rst tree.

We collect some facts about semisimple elements of F .

Observation 2.21. Let E;E1; E2; F 2 F .

(1) The number of feet of a non-trivial semisimple element of F is its length
plus one.

(2) Any two semisimple elements of F have a semisimple common right multi-
ple.

More generally, any two elements of rank at mostm have a common right
multiple of rank at most m.
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(3) If E is semisimple with n feet then EF is semisimple if and only if F has
rank at most n.

More generally, if E is non-trivial of rank m and length n � m then EF
has rank m if and only if F has rank at most n.

(4) If E1; E2 are semisimple with n feet then E1E is semisimple if and only if
E2E is.

Now we upgrade these facts to F ‰ G. We say that an element .E; g/ 2 F ‰
G is semisimple if E is semisimple with n feet (for some n) and g 2 Gn. In this
case we also say .E; g/ has n feet.

Lemma 2.22. Let E;E1; E2; F 2 F and g; h 2 G.

(1) The number of feet of a semisimple element of F ‰ G is its length plus one.

(2) Any two semisimple elements of F ‰ G have a semisimple common right

multiple.

(3) If .E; g/ is semisimple then .E; g/F D .E.g � F /; gF / is semisimple if and

only if E.g � F / is semisimple.

(4) If .E; g/ is semisimple with n feet then .E; g/F is semisimple if and only if

F has rank at most n.

(5) If .E1; g/ and .E2; h/ are semisimple with same number of feet then .E1; g/E

is semisimple if and only if .E2; g/E is semisimple.

Proof. The �rst statement is clear by de�nition. The second statement can be
reduced to the corresponding statement in F because E is a right multiple of
.E; g/.

In the third statement only the implication from right to left needs justi�cation,
namely that gF 2 Gn where n is the number of feet of E.g � F /. This is because
if g 2 Gm and lenE D k then gE 2 GmCk as can be seen by induction on lenE
using �k.Gn/ � GnC1.

For (4) note that g 2 Gn. But �.Gn/ � Sn so having rank at most n is preserved
under the action ofGn, i.e., rk.g �F / � n, rkF � n. Thus the statement follows
from the one for F . The last statement is immediate from (4). �

De�nition 2.23 (simple). A triple .E�; g; EC/ (and the element ŒE�; g; EC�

represented by it) is said to be simple if E� and EC are semisimple, both of them
with n feet and g 2 Gn. This is the case if it can be written as .E�; g/.EC; h/

�1

with both factors semisimple with the same number of feet.
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Proposition 2.24. The set of simple elements in bT .G/ is a subgroup.

Proof. The proof closely follows [14, Section 7].
Consider two simple elements s D ŒE�; g; EC�; t D ŒF�; h; FC�. Let

ECE D F�F (2.8)

be a semisimple common right multiple of EC and F� (Observation 2.21 (2)).
Then

st D E�gEF
�1hF �1

C

D .E�.g �E/; g
E /.FC.h

�1 � F /; .h�1/F /�1 (2.9)

D ŒE�.g �E/; g
Ehh�1�F ; FC.h

�1 � F /�.

In the last line we used that .hF /�1 D .h�1/h�F so that ..h�1/F /�1 D hh�1�F .
We claim that the last expression of (2.9) is simple. Indeed, .E�; g/ and

EC are semisimple with the same number of feet and ECE is semisimple so
.E�; g/E D .E�.g �E/; g

E / is semisimple by Lemma 2.22 (5). Similar reasoning

applies to .FC.h
�1 � F /; h�1F

/. Moreover, we can use Corollary 2.4 to compute

len.E�; g/C lenE
s simple
D lenEC C lenE

(2.8)
D lenF� C lenF

t simple
D len.FC; .h

�1/F /C lenF .

By Lemma 2.22 (1) this shows that the last expression of (2.9) is simple. �

De�nition 2.25 (Thompson group of a �ltered cloning system). The group of
simple elements in bT .G/ is denoted T .G�/ and called the generalized Thompson

group of G�. If we need to be more precise, as with bT .G/, we can include other
data from the cloning system in the notation as in T .G�; ��; .�

�
k
/k/.

Notationally, when we talk about a generalized Thompson group, the asterisk
will always take the position of the index of the family. For instance, the general-
ized Thompson group for the family .Gn/n2N of direct powers in Section 6 will
be denoted T .G�/; and the generalized Thompson group for the family of matrix
groups .Bn.R//n2N in Section 7 will be denoted T .B�.R//.

Recall from the discussion after Corollary 2.4 that there is a length morphism
lenWbT .G/! Z which takes an element ŒE; g; F � to len.E/ � len.F /. The group
T .G�/ lies in the kernel of that morphism, that is, simple elements have length 0.

Given a simple element ŒE; g; F � with E D .Ti /i2N and F D .Ui /i2N, since
all the Ti andUi are trivial for i > 1, we will often write our element as ŒT1; g; U1�

instead. In other words, we view an element of T .G�/ as being a tree with n
leaves, followed by an element of Gn, followed by another tree with n leaves.
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Remark 2.26. Constructing T .G�/ as the subgroup of simple elements of bT .G/
is somewhat arti�cial as can be seen in some of the proofs above. The more natural
approach would be to have each element of F “know” on which level it can be
applied. This amounts to considering the category of forests P that has objects the
natural numbers and morphisms �n

k
W n ! nC 1; 1 � k � n subject to the forest

relations (1.2), cf. [4, Section 7]. Let G be another category that also has objects
the natural numbers and morphisms from n to n that form a group Gn. So while P
has only “vertical” arrows, G has only “horizontal” arrows. One would then want
to form the Zappa–Sźep productP‰ G which would be speci�ed by commutative
squares of the form �n

k
D �n

�./k
�k with  2 Gn and �k 2 GnC1. Localizing

everywhere one would obtain a groupoid of fractions Q and T .G�/ should be just
HomQ.1; 1/.

The reason that we have not chosen that description is simply that Zappa–
Sźep products for categories are not well-developed to our knowledge, while for
monoids all the needed statements were already available thanks to Brin’s work
[13, 14].

Artifacts of this approach, which should be overcome by the general approach
above, include the maps �n;nC1 and the property of being properly graded. Not
having to collect all the groups Gn in a common group G would also make it
possible to construct, for example, the Thompson groups T and Tbr.

2.5. Morphisms. Let .G; �G; .�G
k
/k2N/ and .H; �H ; .�H

k
/k2N/ be cloning sys-

tems. A homomorphism 'WG ! H is a morphism of cloning systems if

(1) .'.g//�H
k
D '..g/�G

k
/ for all k 2 N and g 2 G, and

(2) �H ı ' D �G .

Observation 2.27. Let 'WG ! H be a morphism of cloning systems. There is
an induced homomorphism bT .'/WbT .G/ ! bT .H/. If ' is injective or surjective
then so is bT .'/. In particular, if Observation 2.11 holds even for i D k, k C 1,
there is always a homomorphism bT .G/! bT .S!/.

Proof. We show that a morphism of cloning systems induces a homomorphism
F ‰ G ! F ‰ H . The statement then follows from Lemma 1.2. Nat-
urally, bT .'/ is de�ned by bT .'/.Eg/ D E'.g/. Well de�nedness amounts to
bT .'/..g � E/gE / D .'.g/ � E/.'.g/E / which follows from (1) and (2) above by
writing E as a product of �ks and inducting on the length.

The injectivity and surjectivity statements are clear. �

Similarly let .Gn/n2N and .Hn/n2N be injective direct systems equipped with
cloning systems. A morphism of directed systems of groups '�WG� ! H� is a
morphism of cloning systems if

(1) .'n.g//�
H;n

k
D 'nC1..g/�

G;n

k
/ for all 1 � k � n and g 2 Gn, and

(2) �H
n ı 'n D �

G
n for all n 2 N.
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Observation 2.28. Let '�WG� ! H� be a morphism of cloning systems. There is
an induced homomorphism T .'/W T .G�/! T .H�/. If ' is injective or surjective
then so is T .'/. In particular, if (FCS3) holds even for i D k, kC1, there is always
a homomorphism T .G�/! T .S�/, the latter being Thompson’s group V .

Proof. We have to show that if Eg 2 F ‰ G is semisimple with n feet then so
is bT .'/.Eg/ D E'.g/. But this follows since E is semisimple with n feet and
g 2 Gn, so '.g/ 2 Hn. �

Functoriality is straightforward:

Observation 2.29. If 'WG� ! H� and  WH� ! K� are morphisms of cloning
systems then bT . '/ D bT . /bT .'/WbT .G/ ! bT .K/. If ' and  are morphisms
of �ltered cloning systems then T . '/ D T . /T .'/W T .G�/! T .K�/.

3. Basic properties

Throughout this section let T .G�/ be the generalized Thompson group of a
cloning system on an injective directed system of groups .Gn/n2N and let G D
lim
�!

Gn. We collect some properties of T .G�/ that follow directly from the con-
struction.

3.1. A short exact sequence

Observation 3.1. Let T 2 F be semisimple with n feet. The map g 7! ŒT; g; T �

is an injective homomorphism Gn ! T .G�/.

Proof. The maps Gn ! G ! F ‰ G ! bT .G/ are all injective. The
element ŒT; g; T � is simple, so the image lies in T .G�/. The map is visibly a
homomorphism. �

In fact, this can be explained more globally. For a semisimple forest T with
n feet let GT denote the subgroup (isomorphic to Gn) of T .G�/ that consists of
elements ŒT; g; T �. The cloning map �k induces an embedding GT ,! GU where
U is obtained from T by adding a split to the kth foot (soU D T �k). Finite binary
trees form a directed set and the condition (FCS2) (product of clonings) ensures
that that the groups .GT /T form a directed system of groups.

Lemma 3.2. Consider a cloning system that satis�es condition (FCS3) even for

i D k; kC1 (this is the case in particular if � D 0). There is a directed subsystem

.KT /T of .GT /T and a short exact sequence

1 �! lim
�!

T

KT �! T .G�/ �! W �! 1

where the quotient morphism is the morphism T .��/ from Observation 2.28 and

W is its image.
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Note that W contains Thompson’s group F .

Proof. For each T , say with n feet, let KT be the kernel of �nWGT ! Sn. The
assumption on the cloning system implies that if �.g/ D 1 then �..g/�k/ D 1,
showing that .KT /T is indeed a subsystem of .GT /T . It remains to see that the
direct limit is isomorphic to the kernel of T .��/. This is clear once one realizes
that it consists of all elements that can be written in the form ŒT; g; T �, for some
T and g 2 KT . �

In what follows we will concentrate on the case where � D 0 is the trivial
morphism �.g/ D 1, so KT D GT for all T . Examples are F and Fbr but not V
and Vbr.

Observation 3.3. Suppose � D 0. Then T .G�/ DK.G�/ Ì F .

Proof. Since each �n D 0, we have W D F , which is T .¹1º/. Then the splitting
map F ! T .G�/ is T .��/ where ��W ¹1º ! G� is the trivial homomorphism. �

Remark 3.4. Bartholdi, Cornulier, and Kochloukova [3] studied �niteness prop-
erties of wreath products. Observation 3.3 shows how this relates to our groups. A
wreath product is built by taking a direct product of copies of a groupH , indexed
by a set X , and combining this with another group G acting on X . The general-
ized Thompson groups in Observation 3.3 can be viewed as the result of taking a
direct limit (instead of product) of groups from a family .GT /T , indexed by a set
of trees T on which there is a partial (instead of full) action of F , and combining
these data into a group T .G�/.

The question of whether F is amenable or not is probably the most famous
question about Thompson’s groups. The following observation does not purport
to be deep, but it seems worth recording nonetheless.

Observation 3.5 (amenability). Suppose � D 0. Then T .G�/ is amenable if and
only if F and every Gn is amenable.

Proof. We have seen that K.G�/ is a direct limit of copies ofGn. Since amenabil-
ity is preserved under taking subgroups and direct limits, this tells us that K.G�/

is amenable if and only if every Gn is. Then since T .G�/ D K.G�/ Ì F , the
conclusion follows since amenability is also closed under group extensions. �

Observation 3.6 (free group-free). Suppose � D 0. If none of the Gn contains a
non-abelian free group then neither does T .G�/.
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Proof. Suppose H � T .G�/ is free. If H \K.G�/ D ¹1º then H embeds into
F , and so H must be cyclic, since F does not contain a non-abelian free group.
Now suppose there is some 1 ¤ x 2 H \K.G�/. For any y 2 H , the conjugate
xy is in H \K.G�/. Since K.G�/ is a direct limit of copies of the Gn, it does
not contain a non-abelian free group by assumption, and so hx; xyi is abelian. But
y 2 H was arbitrary, so H must already be abelian. �

The next result does not require � D 0. It �ts into the context of this section
but to prove it we need some of the tools of Section 4.3.

Lemma 3.7 (torsion-free). Assume that the cloning system is properly graded. If

all the Gn are torsion-free then so is T .G�/.

3.2. Truncation. For g 2 Gn and k � nwe have the equation g�k D .g ��k/g
�k

in F ‰ G where g�k 2 GnC1. In bT .G/ this implies

g D .g � �k/g
�k��1

k . (3.1)

This elementary observation has an interesting consequence. Let N 2 N be
arbitrary and de�ne a directed system of groups .G0

n/n2N by G0
n WD ¹1º for n � N

and G0
n WD Gn for n > N . De�ne a cloning system on G0

� by letting .�0/n
k
WG0

n !

G0
nC1 be the trivial homomorphism when n � N , and .�0/n

k
D �n

k
and �0

n D �n

when n > N . We call G0
� the truncation of G� at N and ..�0

n/n; ..�
0/n

k
/k�n/ the

truncation of ..�n/n; .�
n
k
/k�n/ at N .

Proposition 3.8 (truncation isomorphism). Let G0
� be the truncation of G� at

N . The morphism T .G0
�/ ! T .G�/ induced by the obvious homomorphism

G0
� ! G� is an isomorphism.

Proof. The morphism G0
� ! G� is injective hence so is T .G0

�/ ! T .G�/. To
show that it is surjective let ŒT; g; U � 2 T .G�/ be such that T andU have n leaves.
If n > N there is nothing to show. Otherwise use (3.1) to write

ŒT; g; U � D ŒT .g � �k/; g
�k ; U�k�

for some k � n. The trees in the right hand side expression have n C 1 leaves.
Proceeding inductively, we obtain an element whose trees have N C 1 leaves and
therefore the element is in T .G0

�/. �

This proposition is in line with treating T .G�/ as a sort of limit of G� since it
does not depend on an initial segment of data.
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4. Spaces for generalized Thompson groups

The goal of this section is to produce for each generalized Thompson group T .G�/

a space on which it acts. The space will be contractible and have stabilizers
isomorphic to the groups Gn, assuming the cloning system on G� is properly
graded. The ideas used in the construction were used before in [42, 17, 25, 18,
27, 20]. Throughout let G� be an injective directed system of groups equipped
with a cloning system and let G D lim

�!
G�.

As a starting point we note that Corollary 1.6, Observation 2.2 and Corol-
lary 2.4 imply that bT .G/=G is a join-semilattice with conditional meets, under
the relation xG � yG if x�1y 2 F ‰ G. Later on it will be convenient to have a
symbol for the quotient relation so we let x �G y if x�1y 2 G.

4.1. Semisimple group elements. We generalize some of the notions that were
introduced in Sections 1.3 and 2.4. We say that an arbitrary (not necessarily
semisimple) elementE of F has n feet if it has rankm and length n�m. Visually
this means that the last leaf that is not a root is numbered n. An element .E; g/ of
F ‰ G has n feet if E has at most n feet and g 2 Gn. Finally, we call an element
ŒE; g; F � of bT .G/ semisimple if .E; g/ is semisimple with n feet and F has at
most n feet (note F need not be semisimple). This is consistent with the previous
de�nition of “semisimple”: If an element of the group bT .G/ is semisimple in this
sense, and is an element of the monoid F ‰ G, then it must be semisimple in the
monoid. We let zP1 denote the set of all semisimple elements of bT .G/.

Lemma 4.1. If ŒE1; g1; F1� is simple and ŒE2; g2; F2� is semisimple then their

product ŒE1; g; F1�ŒE2; g; F2� is semisimple. As a consequence, T .G�/ acts on
zP1.

Proof. This is shown analogously to Proposition 2.24. �

If ŒE; g; F � is semisimple we say that it has len.ŒE; g; F �/ C 1 D len.E/ �
len.F /C 1 feet, which is well de�ned by Corollary 2.4. This can be visualized as
the number of roots of F that can be “reached” from the �rst root of E. We let
zP1;n denote the set of all semisimple elements with at most n feet. We de�ne P1;n

to be the quotient zP1;n=�G and call the passage from zP1;n to P1;n dangling. Note
that P1;n is a subposet of bT .G/=G. We also denote zP1=�G by P1.

For context, the term “dangling” comes from the case when G� is the system
of braid groups B�, and the elements of P1;n can be pictured as “dangling braided
strand diagrams” [20], originating on one strand and ending on n strands.

The next lemma is the reason for having introduced the notion of a cloning
system being properly graded.
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Lemma 4.2. Assume that the cloning system is properly graded. If x; y 2 zP1;n

are semisimple then x �G y if and only if x�1y 2 Gn.

Proof. What needs to be shown is that if x�1y 2 G then x�1y 2 Gn. Write
x D ŒE1; g

�1; F1� and y D ŒE2; h
�1; F2�. Let E D E1E

0
1 D E2E

0
2 be a common

right multiple so that x�1y D ŒF1.g � E
0
1/; g

E 0
1.hE 0

2/�1; F2.h � E
0
2/� DW ŒA; b; C �.

For this to equal some d 2 G it is necessary that Ab D dC in F ‰ G, that is,
A D d � C and b D dC .

Say thatE has lengthm. Then we compute that len.A/ D len.C / � m�nC1.
Since the cloning system is properly graded, the fact that b D dC implies that d
has to lie in GmC1�len.C/ � Gn. �

4.2. Poset structure. Consider the geometric realization jP1j. This is the sim-
plicial complex with a k-simplex for each chain x0 � � � � � xk of elements of P1,
and face relation given by subchains.

Lemma 4.3. The poset P1 is a join-semilattice with conditional meets, in partic-

ular jP1j is contractible.

Proof. We already know that bT .G/=G is a join-semilattice with conditional meets
so it su�ces to show that P1 is closed under taking suprema and in�ma. In other
words, it su�ces to show that least common right multiples of semisimple ele-
ments are semisimple and that left factors of semisimple elements are semisimple.
The �rst is similar to the proof of Proposition 2.24 and the second is easy. �

In jP1j every vertex is contained in a simplex of arbitrarily large dimension,
which makes it too big for practical purposes. It has proven helpful to consider a
subspace called the Stein–Farley complex, which we introduce next.

4.3. The Stein–Farley complex. The preorder on zP1 was de�ned by declaring
that x � y if y D x.E; g/ for some .E; g/ 2 F ‰ G. The basic idea in
constructing the Stein–Farley complex is to regard this relation as a transitive hull
of a �ner relation � and to use this �ner relation in constructing the space. It is
de�ned by declaring x � y if y D x.E; g/ for some .E; g/ 2 F ‰ G with the
additional assumption that E is elementary. An elementary forest is one in which
every tree has at most two leaves. That is, a forest is elementary if it can be written
as �k1

� � ��kr
with kiC1 > ki C 1 for i < r . Note that if x 2 zP1;n, in order for

x.E; g/ to be in zP1 as well, it is necessary that E has rank at most n and that
g 2 GnClen.E/. Note also that if E is elementary then so is g � E for any g 2 G
because the action of G (via �WG ! S!) just permutes the trees of E.
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As a consequence � is invariant under dangling and we also write � for the
relation induced on P1. Note that � is not transitive, but it is true that if x � z

and x � y � z then x � y � z. Given a simplex x0 � � � � � xk in jP1j, call the
simplex elementary if x0 � xk . The property of being elementary is preserved
under passing to subchains, so the elementary simplices form a subcomplex.

De�nition 4.4 (Stein–Farley complex). The subcomplex of elementary simplices
of jP1j is denoted by X.G�/ and called the Stein–Farley complex of T .G�/.

The Stein–Farley complex has the structure of a cubical complex, which we
now describe. The key point is:

Observation 4.5. If E is elementary then the set of right factors of E forms a
boolean lattice under �.

For x � y in P1 we consider the closed interval Œx; y� WD¹z 2 P1 j x � z � yº
as well as the open and half open intervals .x; y/, Œx; y/ and .x; y� that are de�ned
analogously. As a consequence of Observation 4.5 we obtain that the interval
Œx; y� WD ¹z 2 P1 j x � z � yº is a boolean lattice and so jŒx; y�j has the structure
of a cube. The intersection of two such cubes jŒx; y�j and jŒz; w�j is empty if y and
w do not have a common lower bound and is jŒsup.x; z/; inf.y; w/�j (which may
be empty if the supremum is larger than the in�mum) otherwise. In particular the
intersection of cubes is either empty or is again a cube. Hence X.G�/ is a cubical
complex in the sense of De�nition 7.32 of [11].

Observation 4.6. For any vertex x in X.G�/, there are only �nitely many vertices
y in X.G�/ with x � y.

Proof. If Qx 2 zP1 is a vertex representative (modulo dangling) for x, it is clear
using dangling that every vertex y with x � y has a representative Qy with
Qy D Qx.E; 1/ for some some elementary forest E. In order for Qy to be semisimple,
E can have rank at most len. Qx/ � 1, and there are only �nitely many elementary
forests of a given rank, so the result follows. �

The next step is to show that X.G�/ is itself contractible. The argument is
similar to that given in Section 4 of [17]. We follow the exposition in [20].

Lemma 4.7. For x < y with x 6� y, j.x; y/j is contractible.

Proof. For any z 2 .x; y� let z0 be the unique largest element of Œx; z� such that
x � z0. By hypothesis z0 2 Œx; y/, and by the de�nition of � it is clear that
z0 2 .x; y�, so in fact z0 2 .x; y/. Also, z0 � y0 for any z 2 .x; y/. The
inequalities z � z0 � y0 then imply that j.x; y/j is contractible, by Section 1.5
of [39]. �
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Proposition 4.8. X.G�/ is contractible.

Proof. We know that jP1j is contractible by Lemma 4.3. We can build up from
X.G�/ to jP1j by attaching new subcomplexes, and we claim that this never
changes the homotopy type, so X.G�/ is contractible. Given a closed interval
Œx; y�, de�ne r.Œx; y�/ WD len.y/ � len.x/. As a remark, if x � y then r.Œx; y�/ is
the dimension of the cube given by Œx; y�. We attach the contractible subcomplexes
jŒx; y�j for x 6� y to X.G�/ in increasing order of r-value. When we attach jŒx; y�j
then, we attach it along jŒx; y/j[j.x; y�j. But this is the suspension of j.x; y/j, and
so is contractible by the previous lemma. We conclude that attaching jŒx; y�j does
not change the homotopy type, and since jP1j is contractible, so is X.G�/. �

Lemma 4.9 (stabilizers). Assume that the cloning system is properly graded. The

stabilizer in T .G�/ of a vertex in X.G�/ with n feet is isomorphic to Gn. The

stabilizer in T .G�/ of an arbitrary cell is isomorphic to a �nite index subgroup of

some Gn.

Proof. First consider the stabilizer of a vertex x with n feet. We claim that
StabT .G�/.x/ Š Gn. Choose Qx 2 zP1 representing x and let g 2 StabT .G�/.x/.
By the de�nition of dangling, and by Lemma 4.2, there is a (unique) h 2 Gn such
that g Qx D Qxh. Then the map g 7! h D Qx�1g Qx is a group isomorphism.

Now let � D jŒx; y�j, x � y be a an arbitrary cube. Since the action of T .G�/

preserves the number of feet, the stabilizer G� of � �xes x and y. Hence G� is
contained inGx and contains the kernel of the mapGx!Symm.¹w j x�w�yº/,
the image of which is �nite by Observation 4.6. �

We close this section by providing the proof of Lemma 3.7, left out in the last
section, which says that T .G�/ is torsion-free as soon as all the Gn are.

Proof of Lemma 3.7. The vertices in X.G�/ coincide with the vertices of jP1j,
and, as we just proved, any vertex has some Gn as a stabilizer. Hence it su�ces
to prove that if g 2 T .G�/ has �nite order then it �xes an element of the directed
poset P1. By Lemma 4.3, P1 is a join-semilattice, so any �nite collection of
elements has a unique least upper bound. But then if g has �nite order, for any
x 2 P1 the unique least upper bound of the �nite set hgi:x is necessarily �xed
by g. �

5. Finiteness properties

One of our main motivations for de�ning the functor T .�/ is to study how it
behaves with respect to �niteness properties. Recall that a group G if said to be
of type Fn if there is a K.G; 1/ whose n-skeleton is compact. Most of the known
Thompson’s groups are of type F1, that is, of type Fn for all n. To e�ciently
speak about groups that are not of type F1 recall that the �niteness length of G,
denoted �.G/, is the supremum over all n 2 N such that G is of type Fn.
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We will see below that proofs of the �niteness properties of T .G�/ depend on
the �niteness properties of the individual groups Gn as well as on the asymptotic
connectivity of certain descending links, which is in�nite in many cases. Since
�nite initial intervals of G� can always be ignored by Proposition 3.8 we ask:

Question 5.1. For which directed systems of groups G� equipped with properly

graded cloning systems do we have

�.T .G�// D lim inf �.G�/?

Note that for any directed system of groups G� one can take all �k to be trivial
and all �n

k
to be �n;nC1. In this case T .G�/ D .limnGn/ � F , which would seem

to give a negative answer to Question 5.1. However, in order to be properly graded
in this example we would need im �n;nC1 � im �n�1;nC1, and this implies that the
�n;nC1 are all isomorphisms. Thus, in fact this does provide a positive answer to
the question.

5.1. Morse theory. One of the main tools to study connectivity properties of
spaces, and thus to study �niteness properties of groups, is combinatorial Morse
theory. We collect here the main ingredients that will be needed later on.

Let X be a Euclidean cell complex. A map hWX .0/ ! N0 is called a Morse

function if the maximum of h over the vertices of a cell of X is attained in a
unique vertex. We typically think of h as assigning a height to each vertex. If h
is a Morse function and r 2 R, the sublevel set Xr D X

�r consists of all cells of
X whose vertices have height at most r . For a vertex x 2 X .0/ of height r , the
descending link lk#.x/ of x is the subcomplex of lk.x/ spanned by all vertices of
strictly lower height. The main observation that makes Morse theory work is that
keeping track of the connectivity of descending links allows one to deduce global
(relative) connectivity statements:

Lemma 5.2 (Morse lemma). Let X be a Euclidean cell complex and let

hWX .0/ ! N0 be a Morse function on X . Let s; t 2 R [ ¹1º with s < t .

If lk#.x/ is .k � 1/-connected for every vertex in Xt nXs then the pair .Xt ; Xs/ is

k-connected.

The connection between connectivity of spaces and �niteness properties of
groups is most directly made using Brown’s criterion. A Morse function on X
gives rise to a �ltration .Xr /r2N0

by subcomplexes. We say that the �ltration
is essentially k-connected if for every i 2 N0 there exists a j � i such that
�`.Xi ! Xj / is trivial for all ` � k.

Now assume that a group G acts on X . If h is G-invariant then so is the �ltra-
tion .Xr/r . We say that the �ltration is cocompact if the quotientGnXr is compact
for all r . This is the setup for Brown’s criterion, see [16, Theorems 2.2, 3.2].
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Theorem 5.3 (Brown’s criterion). Let n 2 N and assume a group G acts on an

.n � 1/-connected CW complex X . Assume that the stabilizer of every p-cell of

X is of type Fn�p. Let .Xr /r2N0
be a G-cocompact �ltration of X . Then G is of

type Fn if and only if .Xr /r is essentially .n � 1/-connected.

Putting both statements together we obtain the version that we will mostly use.

Corollary 5.4. Let G act on a contractible Euclidean cell complex X and let

hWX .0/ ! N0 be a G-invariant Morse function. Assume that the stabilizer of

every p-cell of X is of type Fn�p and that the sublevel sets Xr are cocompact. If

there is an s 2 R such that lk#.x/ is .n�1/-connected for all vertices x 2 X .0/nXs

then G is of type Fn.

If G� is a system of groups equipped with a properly graded cloning sys-
tem then T .G�/ acts on the Stein–Farley complex X.G�/, which is contractible
(Proposition 4.8) with stabilizers fromG� (Lemma 4.9). Our next goal is to de�ne
an invariant, cocompact Morse function and to describe the descending links.

5.2. The Morse function. Recall that the vertices of X.G�/ are classes ŒE; g; F �
of semisimple elements modulo dangling. The height function we will be using
assigns to such a vertex its number of feet (see Section 4.1). That is, X.G�/n D

jP1;nj \X.G�/. This height function is T .G�/-invariant because it is induced by
the morphism lenWbT .G/! Z and every element of T .G�/ has length 0.

Lemma 5.5 (cocompactness). The action of T .G�/ is transitive on vertices of

X.G�/ with a �xed number of feet. Consequently the action of T .G�/ on X.G�/n
is cocompact for every n.

Proof. Let Qx D ŒE�; g; EC� and Qy D ŒF�; h; FC� be semisimple with n feet. We
know that Qx Qy�1 takes Qy to Qx, so it su�ces to show that Qx Qy�1 is simple. Note that
EC and FC have rank at most n. By Observation 2.21 (2) they admit a common
right multiple ECE D FCF of rank at most n. Let the length of this multiple be
m, so it has at most mC n feet. Then

Qx Qy�1 D ŒE�.g �E/; g
E .hF /�1; F�.h � F /�

and both E�.g � E/ and F�.h � F / are semisimple by Observation 2.21 (3). They
have mC n feet and both gE and hF lie in GnCm. Thus Qx Qy�1 is simple.

The second statement now follows from Observation 4.6. �

5.3. Descending links. Let x be a vertex in X.G�/, with n feet. We want to
describe the descending link of x. A vertex y is in the link of x if either x � y
or y � x. In the �rst case y is ascending so the descending link is spanned by
vertices y with y � x. These are by de�nition of the form x.E; g/�1 for E an
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elementary forest and g 2 Gn. In particular, for a �xed n, the descending links
of any vertices of height n look the same, and are all isomorphic to the simplicial
complex of products gE�1 where g 2 Gn and E is an elementary forest with at
most n feet, modulo the relation �G .

It is helpful to describe this complex somewhat more explicitly. In doing so
we slightly shift notation by making use of the fact that elementary forests can be
parametrized by subgraphs of linear graphs.

Let Ln be the graph with n vertices, labeled 1 through n, and a single edge
connecting i to i C 1, for each 1 � i � n � 1. This is the linear graph with
n vertices. Denote the edge from i to i C 1 by ei . We will exclusively consider
spanning subgraphs of Ln, that is, subgraphs whose vertex set is ¹1; : : : ; nº. We
call the spanning subgraph without edges trivial. A matching on a graph is a
spanning subgraph in which no two edges share a vertex. For an elementary forest
E with at most n feet, de�ne �.E/ to be the spanning subgraph of Ln that has an
edge from i to i C 1 if and only if the i th and .i C 1/st leaves of E are leaves of a
common caret. Note that this is a matching. Conversely, given a matching� ofLn,
there is an elementary forest E.�/ D �ik � � ��i1 where � has edges ei1 ; : : : ; eik .
Both operations are inverse to each other so we conclude:

Observation 5.6. There is a one-to-one correspondence between matchings of
Ln and elementary forests with at most n feet.

In particular, if � is a matching withm edges and n vertices we obtain a cloning
map �� WGn�m ! Gn which is just the cloning map of E.�/ as de�ned before
Observation 2.13. We also get an action of Gn�m on � which is given by the
action of �.Gn�m/ on connected components. For future reference we also note:

Observation 5.7. There is a one-to-one correspondence between spanning sub-
graphs of Ln and hedges with at most n feet.

Now de�ne a simplicial complex Ln.G�/ as follows. A simplex in Ln.G�/ is
represented by a pair .g; �/, where g 2 Gn and � is a non-trivial matching of Ln.
Two such pairs .g1; �1/, .g2; �2/ are equivalent (under dangling) if the following
conditions hold:

(1) �1 and �2 both have m edges for some 1 � m � n=2,

(2) g�1
2 g1 lies in the image of ��1

, and

(3) �2 D .g
�1
2 g1/�

�1
�1
� �1.

We make Ln.G�/ into a simplicial complex with face relation given by passing
to subgraphs of the second term in the pair. Denote the equivalence class of .g; �/
under dangling by Œg; ��. In summary,

Ln.G�/ has simplex set ¹Œg; �� j � is a matching of Ln and g 2 Gnº.
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Observation 5.8. If x has n feet, the correspondence .g; �/ 7! xgE.�/�1 induces
an isomorphism Ln.G�/! lk#.x/.

In particular, the Ln.G�/ are indeed simplicial complexes as claimed, since
X.G�/ is a cubical complex.

We now have all the pieces together to apply Brown’s criterion to our setting.

Proposition 5.9. LetG� be equipped with a properly graded cloning system. IfGk

is eventually of type Fn and Lk.G�/ is eventually .n � 1/-connected then T .G�/

is of type Fn.

Proof. Suppose �rst that all Gk are of type Fn. Let X D X.G�/, which is con-
tractible by Proposition 4.8. Our Morse function “number of feet” has cocompact
sublevel sets by Lemma 5.5. The stabilizer of any cell is a �nite index subgroup
of some Gk by Lemma 4.9. Since �niteness properties are inherited by �nite in-
dex subgroups, our assumption implies that all stabilizers are of type Fn. By the
second assumption there is an s such that Lk.G�/ is .n� 1/-connected for k > s,
which by Observation 5.8 means that descending links are .n�1/-connected from
s on. Applying Corollary 5.4 we conclude that T .G�/ is of type Fn.

If the Gk are of type Fn only from t on, we use Proposition 3.8 to replace
T .G�/ by the isomorphic group T .G0

�/ where G0
k
D Gk for k � t and Gk D ¹1º

for k < t . In particular, all of the G0
k

are of type Fn.
Of course X.G0

�/ is not isomorphic to X.G�/ and neither are the Lm.G
0
�/

isomorphic to the Lm.G�/. However, the k-skeleton of Lm.G
0
�/ is isomorphic

to the k-skeleton of Lm.G�/ once m > k C t . Since .n � 1/-connectivity only
depends on the n-skeleton, if the Lm.G�/ are eventually .n � 1/-connected then
so are the Lm.G

0
�/. �

For a negative counterpart to this statement, that is, to show that T .G�/ is not of
type Fn, we would need stabilizers with good �niteness properties and a �ltration
that is not essentially .n� 1/-connected – at least as long as we are trying to apply
Brown’s criterion. Hence if we have groups Gn whose �niteness lengths do not
have a limit inferior of1, we would need an action on a di�erent space to show
that T .G�/ answers Question 5.1 a�rmatively.

Returning to the positive statement, we remark that inspecting the homotopy
type of Ln.G�/ does not seem possible uniformly. Instead, in what follows we
will focus on examples and in particular �nd some instances of Ln.G�/ being
highly connected. In the case where the Gn are braid groups, these complexes
were modeled by arc complexes in [20]. In Section 7 below, where the Gn are
matrix groups, we will directly work with the combinatorial description. General
tools that have turned out to be helpful will be collected in Sections 5.4 and 5.5.
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We can make one positive statement about �niteness properties without know-
ing much at all about G�. Before stating this as a lemma, we need to de�ne the
matching complex of Ln. This is a simplicial complex, denoted M.Ln/, whose
simplices are matchings on Ln and with face relation given by passing to sub-
graphs. It is well-known and not hard to see that M.Ln/ is .bn�2

3
c�1/-connected.

A precise description of the homotopy type is given in [35, Proposition 11.16]
where M.Ln/ arises as the independence complex Ind.Ln�1/.

Lemma 5.10 (�nite generation). Let G� be a family of groups equipped with

a properly graded cloning system, with cloning maps �n
k
. Suppose that for n

su�ciently large, all Gn are �nitely generated and also are generated by the

images of the cloning maps with codomain Gn. Then T .G�/ is �nitely generated.

Proof. By the above discussion, we need only show that the Ln.G�/ are con-
nected, for large enough n. Suppose n is large enough that: (a) Gn is generated
by images of cloning maps, and (b) n � 5 so M.Ln/ is connected. We will show
that every vertex can be connected by an edge path to the vertex Œ1; J1�, where
Ji denotes the spanning graph whose only edge connects the i th vertex to the
.i C 1/st. So let Œg; �� be a vertex of Ln.G�/ and write g D s1 � � � sr , where the
si are generators coming from images of cloning maps si 2 im.�ki

/ for some
ki . Since M.Ln/ is connected, there is a path in Ln.G�/ from Œs1 � � � sr ; �� to
Œs1 � � � sr ; Jkr

� D Œs1 � � � sr�1; ..sr/�
�1
kr
/ � Jkr

�. Repeating this r times, we connect
to Œ1; Jk� for some k, and then to Œ1; J1�. �

5.4. Proving high connectivity. As we have seen, Morse theory is a tool that
allows one to show that a pair .X;X0/ is highly connected. We will eventually want
to inductively apply this to the situation whereX D Ln.G�/ andX0 D Ln�k.G�/

for some k 2 N. This is insu�cient to conclude that the connectivity tends to
in�nity though, because we would be trying to getX to be more highly connected
than X0. The following lemma expresses the degree of insu�ciency. The lemma
is straightforward to prove but can be seen as a roadmap for the argument that
follows.

Lemma 5.11. Let .X;X0/ be a k-connected CW-pair. Assume that X0 is .k � 1/-
connected. Then X is k-connected if and only if �k.X0 ! X/ is trivial.

Proof. Consider the part of the homotopy long exact sequence associated to
.X;X0/:

�j C1.X;X0/! �j .X0/
�j
! �j .X/! �j .X;X0/.

For j < k the map �j is an isomorphism and �j .X0/ trivial. For j D k it is an
epimorphism, so indeed �k.X/ is trivial if and only if �k is. �
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In our applications we will know X0 to be .k � 1/-connected by induction
and .X;X0/ will be seen to be k-connected using Morse theory. To show that
�k.X0 ! X/ is trivial we will use a relative variant of the Hatcher �ow for arc
complexes that was shown to us by Andrew Putman (Proposition 5.13 below).
Before we can prove it we need some technical preliminaries.

A combinatorial k-sphere (respectively k-disk) is a simplicial complex that can
be subdivided to be isomorphic to a subdivision of the boundary of a .k C 1/-sim-
plex (respectively to a subdivision of a k-simplex). An m-dimensional combina-

torial manifold is anm-dimensional simplicial complex in which the link of every
simplex � of dimension k is a combinatorial .m� k � 1/-sphere. In an m-dimen-
sional combinatorial manifold with boundary the link of a k-simplex � is allowed
to be homeomorphic to a combinatorial .m � k � 1/-disk; its boundary consists
of all the simplices whose link is indeed a disk.

A simplicial map is called simplexwise injective if its restriction to any simplex
is injective. The following is Lemma 3.8 of [20], cf. also the proof of Proposi-
tion 5.2 in [38].

Lemma 5.12. Let Y be a k-dimensional combinatorial manifold. Let X be a

simplicial complex and assume that the link of everyd -simplex inX is .k�2d�2/-
connected for d � 0. Let  WY ! X be a simplicial map whose restriction to

@Y is simplexwise injective. Upon changing the simplicial structure of Y ,  is

homotopic relative @Y to a simplexwise injective map.

In practice Y will be a sphere, so the lemma allows us to restrict attention to
simplexwise injective combinatorial maps when collapsing spheres.

For the proposition, we need one more technical de�nition. Let X be a
simplicial complex andw a vertex. We say thatX is conical atw if for any simplex
� , as soon as every vertex of � lies in the closed star st.w/ then so does � (that is,
the star of w is the cone over the link of w). In particular, if X is a �ag complex
then it is conical at every vertex.

Proposition 5.13. Let X0 � X1 � X be simplicial complexes. Assume that

.X;X0/ is k-connected, that X0 is .k � 1/-connected and that the link of every

d -simplex is .k � 2d � 2/-connected for d � 0. Further assume the following

“exchange condition”:

(EXC) there is a vertex w 2 X at which X is conical, such that for every

vertex v 2 X0 that is not in stw there is a vertex v0 2 stX1
w such that

lkX1
v � lkX1

v0 and lkX1
v is .k � 1/-connected.

Then X is k-connected.
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Proof. Let �WX0 ! X denote the inclusion. In view of Lemma 5.11, all that needs
to be shown is that if 'WSk ! X0 is a map from a k-sphere then N' WD � ı ' is
homotopically trivial.

By simplicial approximation [41, Theorem 3.4.8] we may assume ' (and
thus N') to be a simplicial map Y ! X0 and by our assumptions and Lemma 5.12
we may assume it to be simplexwise injective. Our goal is to homotope N' to a map
to stw. Once we have achieved that, we are done since stw is contractible.

The simplicial sphere Y contains �nitely many vertices x whose image v D
N'.x/ does not lie in stw. Pick one and de�ne N'0WY ! X to be the map that
coincides with N' outside the open star of x and takes x to the vertex v0 from the
statement. We claim that N' is homotopic to N'0. Inductively replacing vertices then
�nishes the proof, since X is conical at w.

It remains to show that N'jst x and N'0jst x are homotopic relative to lk x. Note
that N'.lk x/ � lk v by simplexwise injectivity. Furthermore the complex spanned
by v, v0 and lk v is the suspension †.lk v/ of lk v (unless v and v0 are adjacent
in which case there is nothing to show). So both N'jst x and N'0jst x are maps
.Dk ; Sk�1/ Š .stx; lk x/ ! .†.lk v/; lkv/. But lk v is .k � 1/-connected by
assumption so .†.lk v/; lk v/ is k-connected and both maps are homotopic. �

5.5. Proving negative �niteness properties. We have already seen that if theG�

are not eventually of type Fn, then Brown’s criterion applied to the Stein–Farley
complex cannot be used to show that T .G�/ is not of type Fn. In Section 8.2, when
the Gn are matrix groups, we will instead use a di�erent action, together with the
following result. It is formulated in terms of the homological �niteness properties
FPn. The relationship is explained for example in [28, Chapter 8], but we mostly
just need to know the fact that a group of type Fn is also of type FPn. Note that
for ƒ D � the following theorem is essentially one half of Brown’s criterion.

Theorem 5.14. Letƒ be a group and let � be a subgroup. Let Y be a CW complex

on which ƒ acts. Assume that Y is .n� 1/-acyclic and that the stabilizer of every

p-cell in Y (in ƒ as well as in �) is of type FPn�p. Let Z be a �-cocompact

subspace of Y . Let .Y˛/˛2I be a ƒ-cocompact �ltration of Y . Assume that there

is no ˛ with Z � Y˛ such that the map zHn�1.Z ,! Y˛/ is trivial. Then no group

� through which the inclusion � ,! ƒ factors is of type FPn.

The application is similar in spirit to that of [36], where a morphism � ! ƒ

is constructed that cannot factor through a �nitely presented group. The proof
should be compared to [16, Theorem 2.2].

Proof. For n D 1 suppose that � is contained in a �nitely generated subgroup hSi
of ƒ. Let K be a compact subspace such that �:K D Z. Since Y is connected,
we can add �nitely many edges to K and take Z to be its �-orbit, so without loss
of generality K is connected. For every s 2 S we may pick an edge path ps that
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connects K to s:K. Let P WD
S
¹ps j s 2 Sº. Now any two points in Z can

be connected in �:.K [ P /. In other words, the map zH0.Z ! �:.K [ P // is
trivial. But K [P and thus �:.K [P / is contained in some Y˛, contradicting the
assumption.

From now on we assume that n > 1. Our goal is to �nd an index set J such
that the map Hn�1.�;

Q
J Z�/ ! Hn�1.ƒ;

Q
J Zƒ/ is non-trivial. The result

then follows from the Bieri–Eckmann criterion [8, Proposition 1.2], because if
this map factors throughHn�1.�;

Q
J Z�/ then the latter module cannot be zero.

Note thatZ is contained in a sub�ltration of .Y˛/˛ so we may assume without loss
of generality that Z is contained in all Y˛; ˛ 2 I .

Let J be a co�nal set in I (for instance all of I ) and for ˛ 2 J let c˛ 2 Hn�1.Z/

be such that the image inHn�1.Y˛/ is non-trivial. By the arguments in the proof of
[16, Theorem 2.2] we have the isomorphisms in the following diagram (essentially
the two vertical arrows at the top are isomorphisms because Y is .n � 1/-acyclic
and the two vertical arrows at the bottom are isomorphisms by cocompactness of
the actions and the assumptions on the �niteness properties of the stabilizers).

Hn�1

�
�;

Y

J

Z�
�

Hn�1

�
ƒ;

Y

J

Zƒ
�

H�
n�1

�
Y;

Y

J

Z�
�

Hƒ
n�1

�
Y;

Y

J

Zƒ
�

H�
n�1

�
Z;

Y

J

Z�
�

lim
�!

Hƒ
n�1

�
Y˛;

Y

J

Zƒ
�

Y

J

Hn�1.Z/ lim
�!

Y

J

Hn�1.Y˛/.

 

!
 

!

 !Š  !Š

 

!

 !
 !Š  !Š

 !Š

 

!

Assuming that the diagram commutes, the chain .c˛/˛2J 2
Q

J Hn�1.Z/ has
non-trivial image in lim

�!

Q
J Hn�1.Y˛/ and we are done.

The rest of the proof will be concerned with the commutativity of the diagram.
The only square whose commutativity is not clear is the bottom one. In what
follows, all products are taken over J which we suppress from notation.

Let C�, C ˛
� , and D� be the cellular chain complexes of Y , Y˛, and Z (re-

spectively). Let P� ! Z be a resolution by projective Zƒ-modules (which
are also projective Z�-modules). The third horizontal map is induced by the
maps Pq ˝�

�
Dp ˝

Q
Z�

�
! Pq ˝ƒ

�
C ˛

p ˝
Q

Zƒ
�
. (Or equivalently

.Pq ˝ Dp/ ˝�

Q
Z� ! .Pq ˝ C ˛

p / ˝ƒ

Q
Zƒ/, which is the same since the
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tensor product is associative and, using the notation from [15, p. 55], also com-
mutative.) The bottom horizontal map is just induced by D� ! C ˛

� . The lower
vertical maps come from spectral sequences

E1
pq D Tor�

q

�
Dp;

Y
Z�

�
H) H�

pCq

�
Z;

Y
Z�

�

and

E1
pq D Torƒ

q

�
C ˛

p ;
Y

Zƒ
�
H) Hƒ

pCq

�
Y˛;

Y
Zƒ

�
.

The �niteness and cocompactness assumptions guarantee thatDp is of type FPn�p

over Z� and C ˛
p is of type FPn�p over Zƒ so that the natural maps

Tor�
q

�
Dp;

Y
Z�

�
�!

Y
Tor�

q .Dp;Z�/

and

Torƒ
q

�
C ˛

p ;
Y

Zƒ
�
�!

Y
Torƒ

q .C
˛

p ;Zƒ/

are isomorphisms and the spectral sequences collapse on the second page. We
have the commutative diagram of chain complexes

Tor�
0

�
D�;

Y
Z�

�
Torƒ

0

�
C ˛

� ;
Y

Zƒ
�

Y
D� D

Y
Tor�

0 .D�;Z�/
Y

Torƒ
0 .C

˛
� ;Zƒ/ D

Y
C ˛

�

 

!

 !Š  !Š

 

!

and taking homology in degree n � 1 gives the commutative diagram

H�
n�1

�
Z;

Y
Z�

�
Hƒ

n�1

�
Y˛;

Y
Zƒ

�

Hn�1.Z/
Y

Hn�1.Y˛/

 

!

 !Š  !Š

 

!

that we were looking for. �

6. A Thompson group for direct products of a group

The examples in this section were constructed independently by Slobodan Tanu-
sevski in his PhD thesis [43], using entirely di�erent techniques, and in discussions
with him we have determined that his groups are identical to those discussed here.
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Fix a group G. Let Gn be the direct powerGn. We declare that �n is trivial for
all n, and de�ne cloning maps via

.g1; : : : ; gk ; : : : ; gn/�
n
k WD .g1; : : : ; gk; gk; : : : ; gn/:

This makes rather literal the word “cloning.” To verify that this de�nes a cloning
system, observe that since the �n are trivial, we need only check that the cloning
maps are homomorphisms (which they are) and that �n

`
ı�nC1

k
D �n

k
ı�nC1

`C1
for 1 �

k < ` � n (which is visibly true). These respectively handle conditions (FCS1)

and (FCS2) of De�nition 2.18, and condition (FCS3) is trivial. Lastly, the cloning
system is visibly properly graded.

It turns out that this cloning system is an example answering Question 5.1
positively, that is, the �niteness length of T .G�/ is exactly that ofG (notationally,
the asterisk is a superscript now because we are considering the family of direct
powers .Gn/n2N). The proof is due to Tanusevski and we sketch a version of
it here, using our setup and language. For the positive �niteness properties, we
just need that the complexes Ln.G

�/ become increasingly highly connected. This
follows by noting that every simplex �ber of the projection Ln.G

�/ ! M.Ln/

is the join of its vertex �bers, and applying [39, Theorem 9.1]. For the negative
�niteness properties, we claim that there is a sequence of homomorphisms G !
T .G�/ ! G that composes to the identity. This is su�cient by the Bieri–
Eckmann criterion [8, Proposition 1.2]; see [19, Proposition 4.1]. The �rst map
in the claim is g 7! Œ1; g; 1�, and the second is ŒT�; .g1; : : : ; gn/; TC� 7! g1. One
must check that this second map is well de�ned on equivalence classes under
reduction and expansion, and is a homomorphism, but this is not hard to see.

A variation of these groups was recently studied using cloning systems, by
Berns-Zieve, Fry, Gillings, and Mathews [6]. With the above setup, they consider
cloning maps of the form .g1; : : : ; gk; : : : ; gn/�

n
k
WD .g1; : : : ; gk; �.gk/; : : : ; gn/

where � 2 Aut.G/. They prove that for G �nite, the resulting Thompson group is
coCF. If these groups turn out to not embed into V , which seems believable when
� ¤ id, then they would be counterexamples to the conjecture that V is universal
coCF.

7. Thompson groups for matrix groups

LetR be a unital ring and consider the algebra of n-by-nmatricesMn.R/. We will
de�ne a family of injective functions Mn.R/ ! MnC1.R/, which will become
cloning maps after we restrict to the subgroups of upper triangular matrices
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Bn.R/. Consider the map �k de�ned by

0
@

0
@
A<;< A<;k A<;>

Ak;< Ak;k Ak;>

A>;< A>;k A>;>

1
A

1
A �k D

0
BB@

A<;< A<;k A<;k A<;>

Ak;< Ak;k 0 0

0 0 Ak;k Ak;>

A>;< A>;k A>;k A>;>

1
CCA

where the matrix has a block structure under which the middle column and row are
the kth column and row of the full matrix respectively. Given the block structure
it is not hard to see that �k is a morphism of monoids, but it generally fails to
map invertible elements to invertible elements. We therefore restrict to the groups
Bn.R/ of invertible upper triangular matrices. Let B1.R/ D lim

�!
Bn.R/.

Lemma 7.1. The trivial morphisms �n and the maps �n
k

de�ned above describe a

properly graded cloning system on B�.R/.

It may be noted that the action of F on B1.R/ factors through H , that is
�`�k D �k�`C1 even for ` D k.

Proof. Since �� is trivial, condition (FCS1) asks that the cloning maps be group
homomorphisms. That �k is multiplicative and takes 1 to 1 is straightforward to
check. Also, A is invertible if and only if all the Ai;i are units, in which case .A/�k

is also invertible.
To check condition (FCS2) it is helpful to note that for any A 2 Mn.R/,

..A/�k/i;j D A�k.i/;�k.j / unless i D k or i > j (here �k is as in Example 2.9).
One can now distinguish cases similar to Example 2.9. The compatibility condi-
tion (FCS3) is vacuous for trivial ��.

To see that the cloning system is properly graded note that g 2 im �n;nC1 if and
only if the last column of g is the vector enC1. If at the same time g D .h/�k then
by the de�nition of �k the last column of h has to be en. Hence h 2 im �n�1;n. �

Having equippedB�.R/with a cloning system, we get a generalized Thompson
group T .B�.R//. Elements are represented by triples .T�; A; TC/ for trees T˙

with n leaves and matrices A 2 Bn.R/, up to reduction and expansion. Figure 6
gives an example of an element of T .B�.R//, represented as a triple and an
expansion of that triple.

"

,

�
1 2 3
0 4 5
0 0 6

�
,

#
D

"

,

�
1 2 2 3
0 4 0 0
0 0 4 5
0 0 0 6

�

,

#

Figure 6. An example of expansion in T .B�.Q//.

We are interested in �niteness properties of T .B�.R// because of the following
examples where the groups B�.R/ themselves have interesting �niteness proper-
ties, see [19, Theorem A, Remarks 3.6, 3.7].
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Theorem 7.2. Let k be a global function �eld, let S be a �nite nonempty set of

places and OS the ring of S -integers. Then Bn.OS / is of type FjS j�1 but not of

type FjS j for any n � 2.

For instance, when R D FpŒt; t
�1� then Bn.Fp Œt; t

�1�/ is �nitely generated
but not �nitely presented, for n � 2. What is particularly interesting about
Theorem 7.2 is that the �niteness properties of Bn.OS / depend on jS j but not
on n.

A class of examples where the �niteness properties do depend on n arises as
subgroups of groups of the formBn.R/. Let Abn � BnC1 be the group of invertible
upper triangular nC 1-by-nC 1matrices whose upper left and lower right entries
are 1. The groups Abn.ZŒ1=p�/were studied by Abels and others and we call them
the Abels groups. Their �niteness length tends to in�nity with n [1, 16]:

Theorem 7.3. For any prime p the group Abn.ZŒ1=p�/ is of type Fn�1 but not of

type Fn for n � 1.

For any ring R, the cloning system described above for Bn.R/ preserves the
Abels groups Abn�1.R/. By restriction we obtain a generalized Thompson group
T .Ab��1.R// which we will just denote by T .Ab�.R//.

8. Finiteness properties of Thompson groups for matrix groups

We will prove below that the �niteness length of T .B�.OS // is the same as that
of all the Bn.OS /. For consistency, we can state this as

�.T .B�.OS /// D lim inf
n

�.Bn.OS //.

The inequality �, i.e., that T .B�.OS // is of type FjS j�1, is proved in Section 8.1,
and follows the general strategy outlined in Sections 4 and 5. In fact, it applies
to arbitrary rings. To show the inequality �, i.e., that T .B�.OS // is not of
type FPjS j, we develop some new tools in Section 8.2, and make use of the criterion
established in Theorem 5.14.

The proof showing the inequality � above also applies to T .Ab�.R//. Since
the right hand side is in�nite this time, this directly gives the full equation

�.T .Ab�.ZŒ1=p�/// D lim inf
n

�.Abn.ZŒ1=p�//.

8.1. Positive �niteness properties. The �rst main result of this section is that
the group T .B�.R// has all the �niteness properties that the individual groups
B�.R/ eventually have:

Theorem 8.1. �.T .B�.R/// � lim inf
n

.�.Bn.R///.
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In particular, together with Theorem 7.2 this implies:

Corollary 8.2. T .B�.OS // is of type FjS j�1.

In view of Proposition 5.9, to prove Theorem 8.1 it su�ces to show that the
connectivity of Ln.B�.R// goes to in�nity with n. In fact, we will induct, so we
need to consider a slightly larger class of complexes.

For a spanning subgraph� of the linear graph Ln, de�ne Ln.B�.R/I�/ to be
the subcomplex of Ln.B�.R//whose elements only use graphs that are subgraphs
of�. De�ne e.�/ to be the number of edges of�. De�ne �.m/ WDbm�1

4
c. Taking

� D Ln, Theorem 8.1 will follow from:

Proposition 8.3. Ln.B�.R/I�/ is .�.e.�//� 1/-connected.

The base case is that Ln.B�.R/I�/ is non-empty provided e.�/ � 1, which
is clearly true.

We need to do a bit of preparation before we can prove the proposition. To
work with simplices of Ln.B�.R// it will be helpful to have simple representatives
for dangling classes. To de�ne them we have to recall some of the origins of
Ln.B�.R//: by Observation 5.6 matchings � of Ln correspond to elementary
forests. Using this correspondence, it makes sense to denote the corresponding
cloning map by �� . In fact, since our cloning maps factor through the hedge
monoid, we even get a cloning map �� for any spanning subgraph � of Ln using
Observation 5.7. For the sake of readability, we describe this map explicitly. Let
Dk.�/ be the k-by-k matrix with all diagonal entries � and all other entries 0.
Let Fk;`.�/ be the k-by-` matrix whose bottom row has all entries � and all other
entries are 0 and let Ck;`.�/ be de�ned analogously for the top row. Assume that
� hasm connected components which we think of as numbered from left to right.
Then

�� WMm.R/ �! Mn.R/

can be described as follows. The image ��.A/ has a block structure where columns
and rows are grouped together if their indices lie in a common component of �.
More precisely, the .i; j /-block has k rows and ` columns if the i th (respectively
j th) component of � has k (respectively `) vertices. The block is Dk.Ai;i/,
Fk;`.Ai;j / or Ck;`.Ai;j / depending on whether i D j , i < j , or i > j (see
Figure 7).

Recall that we denote by ek the kth edge of Ln. We denote by Jk the matching
of Ln whose only edge is ek (as we did in Lemma 5.10). For a spanning subgraph
� of Ln we say that an index i is fragile if ei 2 � and we say that i is stable

otherwise. In other words, i is stable if it is the rightmost vertex of its component
in �. A matrix A 2Mn.R/ is said to be modeled on � if Ai;j D 0 whenever both
i and j are stable in � (see Figure 8).
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0
@
a1;1 a1;2 a1;3

a2;1 a2;2 a2;3

a3;1 a3;2 a3;3

1
A ��
7!

0
@

D2.a1;1/ F2;4.a1;2/ F2;3.a1;3/

C4;2.a2;1/ D4.a2;2/ F4;3.a2;3/

C3;2.a3;1/ C3;4.a3;2/ D3.a3;3/

1
A

D

0
BBBBBBBBBBBB@

a1;1

a1;1 a1;2 a1;2 a1;2 a1;2 a1;3 a1;3 a1;3

a2;1 a2;1 a2;2

a2;2

a2;2

a2;2 a2;3 a2;3 a2;3

a3;1 a3;1 a3;2 a3;2 a3;2 a3;2 a3;3

a3;3

a3;3

1
CCCCCCCCCCCCA

Figure 7. Visualization of the cloning map of a graph. The graph � is drawn on top and to
the left of the last matrix.

0
BBBBBBBBBBBB@

� � � � � � � � �
� 0 � � � 0 � � 0

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� 0 � � � 0 � � 0

� � � � � � � � �
� � � � � � � � �
� 0 � � � 0 � � 0

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

� � � � � � � � �
1 � � � 0 � � 0

� � � � � � �
� � � � � �
� � � � �

1 � � 0

� � �
� �

1

1
CCCCCCCCCCCCA

Figure 8. A matrix that is modeled on a graph (left) and an upper triangular matrix that is
reduced relative to a graph (right).

Lemma 8.4. Let � be a spanning subgraph of Ln with m components and let

A 2 Bn.R/. There is a representative B in the coset A.Bm.R//�� such that

B � In is modeled on �. Moreover, rows of zeroes in A (o� the diagonal) can

be preserved in B .

Proof. We inductively multiply A on the right by matrices in .Bm.R//�� to
eventually obtainB . LetEi;j .�/ denote the matrix that coincides with the identity
matrix in all entries but .i; j / and is � there.

We begin by clearing the diagonal. Let i be the (stable) rightmost vertex of
the kth component of � and let � D A�1

i;i . Then A.Ek;k.�//�� has .i; i/-entry one
and no other diagonal entry with stable indices was a�ected.
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Now we clear the region above the diagonal. We proceed inductively by rows
and columns. Let .i; j / be the (lexicographically) minimal pair of stable indices of
� such that 0 ¤ Ai;j DW��. Let i and j lie in the kth respectively `th component
of �. Then A.Ek;`.�//�m has .i; j /-entry zero and no other entry with stable
indices was a�ected.

For the last statement assume that the i th row of A was zero o� the diagonal.
Then none of the matrices by which we multiplied had a nonzero o�-diagonal
entry in the i th row. If i is fragile no such matrix even lies in .Bm.R//�� . If i
is stable then the only matrices we might have used of this form were meant to
clear the i th row, but since the entries there were zero, nothing happened in these
steps. �

Corollary 8.5 (reduced form). Every simplex in Ln.B�.R// has a representative

.A; �/ such that the matrix A � In is modeled on �.

We will refer to a matrix A 2 Bn.R/ as being reduced relative � if it satis�es
the conclusion of Corollary 8.5.

The next sequence of lemmas is a gradual checking of the hypotheses of
Proposition 5.13, still in the context of an induction proof, ultimately leading to a
proof of Proposition 8.3.

Lemma 8.6 (�ag complex). Ln.B�.R/I�/ is a �ag complex.

Proof. We need to show that any collection of vertices ¹v1; : : : ; vrº that are pair-
wise connected by edges spans a simplex. We induct on r (with the trivial base
case of r � 2). Each vertex vi in our collection is of the form ŒAi ; Jki

� for Jki

some single-edge subgraphs of�. Assume without loss of generality that k1 < ki

for all 1 < i � r , so v1 is the vertex whose lone merge occurs farthest to the left
among all the vi . By induction, v2; : : : ; vr span a simplex, � . Thanks to the action
of Bn.R/, without loss of generality v1 is the vertex ŒIn; Jk�, where we have set
k WD k1 for brevity.

Represent � D ŒA; �� with A reduced relative to �. Since k is less than the
index of any edge of �, we know that the kth column of A� In is all zeros. Since
v1 shares an edge with every vertex of � , we know that in fact k is even less than
the index of any edge of �, minus one. Hence the .k C 1/st column of A � In is
similarly all zeros. Our goal is to show that A 2 im �k , since then � and v1 will
share a simplex. Thanks to the setup, it su�ces to show that the kth row of A� In

is all zeros. Since A is reduced relative �, non-zero entries of A � In may only
possibly occur in columns indexed by k2; : : : ; kr .

For each vertex ŒA; Jki
�, 2 � i � r , of � , letAi be such that ŒAi ; Jki

� D ŒA; Jki
�

and Ai is reduced relative Jki
. Let ` 2 ¹k2; : : : ; krº. Observe that A` is obtained

from A by right multiplication by an element D of im.�`/. For 1 � i � n

denote byM.i;�/ the i th row of an n-by-nmatrixM , and byM.�;i/ the i th column.
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When we multiply by D to get AD D A`, the .k; `/-entry of A` is A.k;�/D.�;`/

and the .k; ` C 1/-entry is A.k;�/D.�;`C1/. Since A` is reduced relative J`, we
know that its .k; ` C 1/-entry must be 0. Also since D 2 im.�J`

/, we have
D.�;`/ D D.�;`C1/ C d.e` � e`C1/ for some d 2 R�. Let a denote the .k; `/-
entry of A, and note that the .k; ` C 1/-entry of A is 0. We calculate that the
.k; `/-entry of A` is

A.k;�/D.�;`/ D A.k;�/.D.�;`C1/ C d.e` � e`C1//

D A.k;�/.d.e` � e`C1//

D da.

Since d is a unit, this shows that the .k; `/-entry of A` is zero if and only if the
.k; `/-entry of A is zero. By the same argument just given, this statement remains
true with A` replaced by A`D for any D 2 im.�`/. But by assumption v1 shares
an edge with v`, and so some such A`D must have .k; `/-entry zero. We conclude
that A has .k; `/-entry zero. Since ` was arbitrary, the kth row of A � In is all
zeros and so v1 and � share a simplex. �

Let �0 WD � n ¹e1 [ e2º, and consider Ln.B�.R/I�0/ as a subcomplex of
the complex Ln.B�.R/I�/. For a vertex ŒA; Jk� 2 Ln.B�.R/I�0/ we write
lk0.ŒA; Jk�/ for the link in Ln.B�.R/I�0/, to di�erentiate from the link in
Ln.B�.R/I�/ which is just denoted lk.ŒA; Jk�/. To prove Proposition 8.3 we fol-
low the strategy outlined by Proposition 5.13: we want to show that Ln.B�.R/I�0/

is .�.e.�//�2/-connected, that .Ln.B�.R/I�/;Ln.B�.R/I�0// is .�.e.�//�1/-
connected and that there is a vertex satisfying condition (EXC). That vertex is
w WD ŒIn; J1� in our case. The following statements (up to the proof of Propo-
sition 8.3) are part of an induction, so we assume that Proposition 8.3 has been
proven for graphs �0 with e.�0/ < e.�/ and intend to prove it for �.

Lemma 8.7 (links are lower rank complexes). Let � be a simplex of dimension

d � 0 in Ln.B�.R/I�/. Then lk.�/ is isomorphic to a complex of the form

Ln�.dC1/.B�.R/I�
0/ where �0 is a spanning subgraph of Ln�.dC1/ with at least

e.�/ � 3d � 3 edges. In particular, it is .�.e.�/ � 3d � 3/ � 1/-connected by

induction.

Proof. The simplex � is of the form Œg; �� with g 2 Bn.R/ and � � �. If it has
dimension d then � has d C 1 edges, say ei1 ; : : : ; eidC1

. Using the left action of
Bn.R/ we may assume that g D 1. Then lk.�/ is Ln..B�.R//�� I�

]/, where �]

is�with the edges eij �1; eij ; eij C1 removed for each 1 � j � dC1. In particular
�] has at least e.�/ � 3d � 3 edges. Now consider the map b� WLn ! Ln�.dC1/

given by blowing down the edges of �. The image of�] under b� is what we will
call�0. Note that�0 still has at least e.�/�3d�3 edges. Since �� is injective, we
may now apply ��1

� paired with b� to Ln..B�.R//�� I�
]/ and get an isomorphism

to Ln�.dC1/.B�.R/I�
0/. �
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Lemma 8.8. The pair .Ln.B�.R/I�/;Ln.B�.R/I�0// is .�.e.�// � 1/-con-

nected.

Proof. Note that for any vertex of Ln.B�.R/I�/nLn.B�.R/I�0/, the entire link
of the vertex lies in Ln.B�.R/I�0/. Hence the function sending vertices of the
former to 1 and vertices of the latter to 0 yields a Morse function in the sense of
Section 5, and to prove the statement we need only show that links of vertices in
Ln.B�.R/I�/nLn.B�.R/I�0/ are .�.e.�//�2/-connected. By Lemma 8.7, each
descending link is isomorphic to a complex of the form Ln�1.B�.R/I�

0/ for�0 a
graph with at least e.�/�3 edges. By induction, these are .�.e.�//�2/-connected
as desired. �

In addition to the subcomplex Ln.B�.R/I�0/ we will now need to consider
Ln.B�.R/I�1/ where �1 WD� n ¹e1º. We will write links in this complex using
the symbol lk1.

Lemma 8.9 (shared links). Let k > 2 and let A be reduced relative Jk . Let A0 be

obtained from A by setting the .1; k/-entry to 0. Then lk1.ŒA; Jk�/ � lk1.ŒA
0; Jk �/

and ŒA0; Jk� 2 lkw.

Proof. As a �rst observation, note that since A is reduced relative Jk and k > 2,
the .1; 1/-entry and .2; 2/-entry of A are both 1, and the entries of the top row
of A past the �rst entry is all 0’s except possibly in the kth column. Let �� be
the .1; k/-entry of A, and note that A0 D AE1k.�/. The �rst row of A0 is now
.1; 0; : : : ; 0/ and the .2; 2/-entry is 1, which tells us thatA0 2 .Bn�1.R//�1. Hence
ŒA0; Jk � 2 lk0w.

To see that lk1.ŒA; Jk�/ � lk1.ŒA
0; Jk�/ we �rst multiply by A�1 from the left

and are reduced to showing that lk1.ŒIn; Jk�/ � lk1.ŒE1k.�/; Jk�/. An arbitrary
simplex of lk1.ŒIn; Jk�/ is of the form ŒB; ��, with B 2 im.�k/ and � not contain-
ing any of e1, ek�1, ek, or ekC1. Note that the kth row ofB is zero o� the diagonal.
By Lemma 8.4 there is a B 0 2 B im.��/ that is reduced relative � and has kth row
zero o� the diagonal. We have ŒB 0; �� D ŒB; ��. Since e1 62 � and B 0 is reduced
relative �, the �rst column of B 0 is e1.

We now claim that B 0 commutes with E1k.�/. Indeed, left multiplication by
E1k.�/ is the row operation r1 7! r1C �rk, and right multiplication by E1k.�/ is
the column operation ck 7! ckC�c1. For our B 0, both of these operations change
the .1; k/-entry by adding � to it, and change no other entries. This proves the
claim.

Now we have

ŒB; �� D ŒB 0; �� D ŒE1k.�/B
0E1k.��/; �� D ŒE1k.�/B

0; �� D ŒE1k.�/B; ��.

The second to last step works since E1k.��/ 2 im.��/ by virtue of ek�1; ek 62 �.
This shows that our arbitrary simplex of lk1.ŒIn; Jk�/ is also in lk1.ŒE1k.�/; Jk�/.

�
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Proof of Proposition 8.3. We want to apply Proposition 5.13. The complexes are
X D Ln.B�.R/I�/, X1 D Ln.B�.R/I�1/ and X0 D Ln.B�.R/I�0/, and k D
�.e.�//�1. We check the assumptions. The pair .Ln.B�.R/I�/;Ln.B�.R/I�0//

is k-connected by Lemma 8.8. Since X is a �ag complex (Lemma 8.6), it is
conical at every vertex, in particular at our vertex w D ŒIn; J1�. The complex
Ln.B�.R/I�0/ is .�.e.�0// � 1/-connected by induction. This is su�cient be-
cause �.e.�0// � 1 � �.e.�/ � 2/ � 1 � �.e.�// � 2 D k � 1. The link of a
d -simplex is .�.e.�/�3d�3/�1/-connected by Lemma 8.7. This is su�cient be-
cause �.e.�/�3d�3/�1 � �.e.�//�d�2 D k�d�1. Finally condition (EXC)

is satis�ed by Lemma 8.9 where lk1.ŒA; Jk�/ is at least .�.e.�/�4/�1/-connected
and �.e.�/� 4/ � 1 D �.e.�//� 2 D k � 1 as desired. �

Shifting focus to the Abels groups, thanks to the �exibility of Lemma 8.4,
the above arguments also show high connectivity of Ln.Ab�.ZŒ1=p�//, and using
Proposition 5.9 and Theorem 7.3 we conclude:

Theorem 8.10. T .Ab�.ZŒ1=p�// is of type F1.

This, despite none of the Abn.ZŒ1=p�/ individually being F1.

The remaining question is whether �.T .B�.R/// D lim infn.�.Bn.R///, that
is whether negative �niteness properties of the Bn.R/ can impose negative �nite-
ness properties on T .B�.R//. For R the ring of S -integers of a global function
�eld, we will answer this question a�rmatively in the next section.

Before we do that, we need to treat one more relative of the family Bn.R/.
Let B2

n be the normal subgroup of Bn consisting of matrices that di�er from the
identity only from the second o�-diagonal on (the second term of the lower central
series), and let xBn WDBn=B

2
n be the quotient group. Set �.n/ D bn�2

3
c. One could

check that the above proof for B� goes through for the family xB� as well, but
instead we will prove directly:

Proposition 8.11. The descending link Ln. xB�.R// is .�.n/� 1/-connected. Thus

�.T . xB�.R/// � lim inf
n

�. xB�.R//.

Proof. Using reductions as in Lemma 8.4 one can see the following: every simplex
in Ln. xB�.R// has a representative ŒA; ��where the matrix A has a diagonal block
of the form �

� �
1

�

above every edge of � and otherwise equals the identity matrix (here the repre-
sentative is modulo dangling as well as modulo B2

n.R/). What makes this case
particularly easy is that this representative is unique. That is, we may think of
Ln. xB�.R// as consisting of pairs .A; �/ where A is as above and the face relation
is given by removing an edge of � and turning the diagonal block above it into an
identity block.
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Let sLn denote the linear graph with vertices ¹1; : : : ; nº and with every pair of
adjacent vertices i and i C 1 connected by s distinct edges. By what we just said,
Ln. xB�.R// is isomorphic to the matching complex M.sLn/ where s D jR� �Rj.
There is an obvious map M.sLn/ ! M.Ln/. The �ber of this map over a
k-simplex is a .k C 1/-fold join of s-element sets, thus k-spherical. Moreover
M.Ln/ is .�.n/ � 1/-connected by [35, Proposition 11.16] (and links in M.Ln/

are highly connected as well, being joins of lower-rank copies of the complex).
Thus we can apply [39, Theorem 9.1] to conclude that M.sLn/ is .�.n/ � 1/-
connected. �

As a remark, this simple approach for xB�.R/would not have worked forB�.R/,
since the analogous �bers are not joins of vertex �bers.

8.2. Negative �niteness properties. In the last section we saw that for any R,
the generalized Thompson group T .B�.R// is of type Fn if all but �nitely many
Bk.R/ are. In this section we prove the converse in the case we are most interested
in (cf. [19]): Let k be a global function �eld and let S be a non-empty set of places.
Denote by OS the ring of S -integers in k.

Theorem 8.12. The group T .B�.OS // is not of type FPjS j.

Remark 8.13. Unlike the positive statement from the previous section, for the
proof of Theorem 8.28 we cannot just use the results from [19] but have to use
parts of the proof. By using the more substantial parts of the proof, it is quite
possible that the setup of this section could be used to prove the positive �niteness
properties as well, but we will not do so.

We will actually prove �rst that T . xB�.OS // is not of type FPjS j. We then use
the result from Section 5.5 to deduce Theorem 8.28. Instead of the Stein–Farley
complex on which T . xB�.OS // acts with stabilizers isomorphic to the xB�.OS / we
will construct a new space Y for which the stabilizers are themselves generalized
Thompson groups of smaller cloning systems. In particular the stabilizers on Y
will have good �niteness properties and the negative �niteness properties of the
xB�.OS / are re�ected in bad connectivity properties.

For any place s 2 S denote by ks the completion of k at s, and by Os the ring of
integers of ks . As before we letBn be the linear algebraic group of invertible upper
triangular n-by-n matrices, let B2

n be the normal subgroup of matrices that di�er
from the identity only from the second o�-diagonal on, and let xBn WDBn=B

2
n be the

quotient group. Let Zn � Bn be the group of homotheties, i.e., scalar multiples
of the identity matrix, and let PB2 D B2=Z2.
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All of this is relevant to us for the following reason: For any of the local �elds
ks the group PGL2.ks/ admits a Bruhat–Tits tree Vs on which it acts properly.
Since OS is discrete as a subset of

Q
s2S ks when embedded diagonally, we get a

properly discontinuous action of PGL2.OS / on

V WD
Y

s2S

Vs .

Our goal is to use this action to understand �niteness properties of T . xB�.OS //.
Note that the group PGL2.Os/ is the stabilizer of a vertex in Vs, call it zs. De�ne
z WD .zs/s2S , so z is a vertex in V .

Denote the quotient morphism from Bn to xBn by NWBn ! xBn, g 7! Ng. For
1 � i � n� 1 let �i denote the homomorphism xBn ! PB2; ŒA� 7! ŒAi � where Ai

is the i th diagonal 2-by-2 block of A. For brevity we denote the composition �i ıN
by N�i . Now for any i , 1 � i � n � 1 consider the composition

˛i W xBn.OS / �!
Y

s2S

NBn.ks/

Q
�i .ks/
������!

Y

s2S

PB2.ks/

where the �rst morphism is induced by the diagonal inclusion OS !
Q

s2S ks.
De�ne

Kn WD
\

1�i�n�1

˛�1
i

� Y

s2S

PB2.Os/
�
:

Lemma 8.14. The group Kn is of type F1.

Remark 8.15. The importance of the Lemma lies in the fact that the groups Kn

will appear in stabilizers of an action of T . xB�.OS //. It is worth noting that the
statement does not remain true if xBn.OS / is replaced byBn.OS / so that the strategy
does not immediately carry over to T .B�.OS //. Instead we will have to apply
Theorem 5.14 in the end to conclude that T .B�.OS // is not of type FPjS j.

Proof of Lemma 8.14. We �rst study the map �i.ks/W xBn.ks/ ! PB2.ks/. The
kernel Ni .ks/ is determined by the conditions that the .i; i C 1/-entry of a matrix
is 0 and that the .i; i/ and the .i C 1; i C 1/-entry coincide. The inverse image
of PB2.Os/ under �i.ks/ is thus generated by Ni .ks/ and a copy of B2.Os/.
Intersecting over all i , we �nd that

T
i �i .ks/

�1.PB2.Os// D Zn.ks/ xBn.Os/.
The intersection of this group with xBn.OS / isZn.OS / xBn.OSn¹sº/. Intersecting

over all s 2 S we �nd that Kn D Zn.OS / xBn.`/ where ` WD O; is the coe�cient
�eld of k, which is �nite. In particular xBn.`/ is �nite and of type F1. By the
Dirichlet Unit Theorem, as extended to S -units by Hasse and Chevalley, Zn.OS /

is �nitely generated abelian and so of type F1. Since Kn is a central product of
these groups, this �nishes the proof. �

Now consider the action of xBn.OS / on V n�1 via the maps ˛i .
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Corollary 8.16. The stabilizers for the action of xBn.OS / on V n�1 are all of

type F1.

Proof. The group Kn is precisely the stabilizer of .z; : : : ; z/ 2 V n�1. Since the
product of trees V n�1 is locally �nite and the action is proper, every stabilizer is
commensurable to Kn and therefore of type F1 as well. �

We are about to de�ne a space Y for T . xB�.OS // to act on. The advantage
over the Stein–Farley complex will be that the stabilizers have better �niteness
properties. Let D D ZŒ1=2� \ .0; 1/ be the set of dyadic points in .0; 1/. Let V D

be the set of all maps D ! V . We will usually regard these elements as tuples;
that is, we write xq for the value of x 2 V D at q 2 D and sometimes we write x
as .xq/q2D . Let

Y WD V .D/

be the subset consisting of those maps that evaluate to z at all but �nitely many
points. An alternative description is as a direct limit lim

�!I�D �nite
V I . Note that

this set is naturally equipped with a (unique) topology: the topology induced from
the product topology and the CW topology coincide.

Note that Thompson’s group F acts onD from the right, via q:f D f �1.q/ for
f 2 F and q 2 D. To describe this action in terms of paired tree diagrams, note
that every point inD corresponds to a caret in the lea�ess rooted binary tree. Thus
every �nite rooted binary tree T determines a �nite subsetD.T / ofD, namely that
consisting of points that correspond to its carets. An element ŒT; U � of F takes
D.T / to D.U / (preserving the order) and is linear between these break points.

As a consequence,F acts from the left on the set V D via .f:x/q D xq:f where
x 2 V D , q 2 D and f 2 F . Clearly this induces an action of F on Y . Explicitly,
the action of F on Y satis�es

.ŒT; U �:x/ti D xui

where D.T / D ¹t1 < : : : < tn�1º and D.U / D ¹u1 < : : : < un�1º. Away
from the break points, the values are interpolated linearly: ŒT; U �:xsti C.1�s/tiC1

D

xsui C.1�s/uiC1
.

There is also an action of K. xB�.OS // on Y which is given as follows: if T is
a �nite rooted binary tree and D.T / D ¹q1 < : : : < qn�1º then

.ŒT; g; T �:x/q D

´
˛i .g/:xqi

if q D qi

xq else.

This is just the action obtained by taking the direct limit over the actions of xBT .OS /

on V D.T /.
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These actions are compatible and so give an action of T . xB�.OS // on Y , which
is given by

.ŒT; g; U �:x/ti D ˛i .g/:xui

and .ŒT; g; U �:x/t D .ŒT; U �:x/t for t 62 D.T /; see Figure 9.

0
@
1 2

4 5

6

1
A

a b c

D
a Nb Nc

�
1 2

4 5
6

�

a b c

D

a Nb Nc

Figure 9. Two points of view on the action of T . xB�.OS // on Y . On the left the action is
described in terms of tree diagrams, on the right in terms of piecewise linear homeomor-
phisms. In both pictures Nb D

�
1 2

4

�
b and Nc D

�
4 5

6

�
c. All unspeci�ed values are z.

Next we want to understand stabilizers of this action. First observe that the ac-
tion has a nontrivial kernel, namely the center of T . xB�.OS //, which is isomorphic
to O�

S .

Observation 8.17. Let .G�; .�k/k/ be a cloning system and let H be a group.
De�ne a new cloning system .H � G�; . O�k/k/ by taking O�k WD id��k . Then
T .H �G�/ D H � T .G�/.

Proof. The isomorphism is given by .h; ŒT; g; U �/ 7! ŒT; hg; U �. �

We now turn to one particular stabilizer.

Observation 8.18. The cloning system on xB�.OS / induces a cloning system on
K�. The stabilizer in T . xB�.OS // of the point .z/q is T .K�/.

Proof. For the �rst statement it su�ces to show that .Zn.OS //�k � ZnC1.OS /

and that . xBn.`//�k � xBnC1.`/ which is easy to see. The second statement is
clear. �

Corollary 8.19. The group T .K�/ is of type F1.

Proof. By Observation 8.17, we have that T .K�/ is isomorphic to a central product
O�

S T . xB�.`//. The second factor is of type F1 by Proposition 8.11. �
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We now turn to general stabilizers. For a point x 2 V write Œx� for its PB2.OS /-
orbit. We call a point .xq/q 2 Y reduced if xq D z whenever Œxq� D Œz�.

Lemma 8.20. Every point of Y has a reduced point in its T . xB�.OS //-orbit.

Proof. If .xq/q 2 Y is arbitrary, let T be a tree such thatD.T / contains all of the
�nitely many indices q 2 D for which xq ¤ z. Write D.T / D ¹q1; : : : ; qn�1º
where the indices are in increasing order. For each i pick gi 2 PB2.OS / such that
gi :xqi

D z whenever possible (i.e., when Œxqi
� D Œz�) and arbitrarily otherwise.

Take g 2 xBn.OS / such that ˛i .g/ D gi for all i . Then ŒT; g; T �:.xq/q is
reduced. �

Lemma 8.21. The stabilizer in T . xB�.OS // of any reduced point is of type F1.

Proof. Let .xq/q2D be a reduced point and let I D ¹q 2 D j xq ¤ zº D
¹q1; : : : ; qn�1º. Let H be the stabilizer of .xq/q in T . xB�.OS // and let K be the
kernel of the action of H . Since Œxq� ¤ Œz� for q 2 I , we see that the stabilizer
has to �x I (when acting on D via the canonical homomorphism to F ). Thus the
action of the stabilizer H on Y D V .D/ decomposes into an action on V I and on
V .DnI/.

Modulo K we �nd that H is a direct product of the pointwise stabilizer
(in H ) of V I and the pointwise stabilizer of V .DnI/. The action of the pointwise
stabilizer of V .DnI/ in T . xB�.OS // is isomorphic to xBn.OS / acting on V I . Thus
its intersection with H is isomorphic to a point stabilizer in xBn.OS /, and hence is
of type F1 by Corollary 8.16.

The pointwise stabilizer of V I decomposes further. Let D1 WD D \ .0; q1/,
D2 WDD\ .q1; q2/, . . . ,Dn WDD\ .qn�1; 1/. The pointwise stabilizer of V .DnDj /

is itself isomorphic to a copy of T . xB�.OS // and therefore the stabilizer of .z/q2DJ

in this stabilizer is isomorphic to a copy of T .K�/, which is of type F1 by
Corollary 8.19.

Putting everything together we �nd that H=K is a product of groups of
type F1, and K is of type F1 as well, so H is of type F1. �

In summary we have:

Proposition 8.22. The group T . xB�.OS // acts on Y with stabilizers of type F1.

Proof. Every point is in the orbit of a reduced point by Lemma 8.20 so every
stabilizer is isomorphic to that of a reduced point. Those are of type F1 by
Lemma 8.21. �

It remains to provide a cocompact �ltration and determine its essential con-
nectivity. For this purpose we will use the key result from [19] used to show that
PB2.OS / is not of type FPjS j:
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Theorem 8.23 ([19]). There is a �ltration .Vr/r2N of V that is PB2.OS /-invariant

and -cocompact and is essentially .jS j�2/-connected but not essentially .jS j�1/-
acyclic.

In fact, by Brown’s criterion any cocompact �ltration of V has that property
just because B2.OS / is of type FjS j�1 but not of type FPjS j. We use this �ltration
to construct a cocompact �ltration of Y as follows. For r 2 N let Y .r/ be the set
of all points .xq/q2D for which ¹q 2 D j Œxq� ¤ Œz�º has at most r elements. Note
that Y .r/ is T . xB�.OS //-invariant. The �ltration we want to consider is

Yr WD Y
.r/ \ V .D/

r .

The last piece that is missing to conclude that T . xB�.OS // is not of type FPjS j is
the following:

Proposition 8.24. The �ltration .Yr/r2N is T . xB�.OS //-invariant and -cocompact.

It is not essentially .jS j � 1/-acyclic.

Before we can prove the second part, we have to state a technical lemma which
says that taking products does not help to kill cycles:

Lemma 8.25. Let .X1; A1/ and .X2; A2/ be pairs of CW complexes and assume

that the map zHn.A1 ! X1/ is non-trivial and thatA2 is non-empty. Then the map
zHn.A1 � A2 ! X1 � X2/ is non-trivial as well.

Proof. The case n D 0 is clear so assume n > 0 from now on.
Let c be an n-cycle in A1 that is mapped non-trivially into X1 and let d be a

non-trivial 0-cycle in A2. Consider the diagram

Hn.A1/˝H0.A2/ Hn.A1 � A2/

Hn.X1/˝H0.X2/ Hn.X1 �X2/:

 - !

 !  !

 - !

where the rows are parts of the Künneth formula (see [31, Theorem 3B.6]) and
the columns are the maps induced from the inclusions. The diagram commutes
by naturality of the Künneth formula. The cycle c ˝ d in the upper left maps
non-trivially into the lower left which injects into the lower right. Hence it has
non-trivial image in the lower right. Since the diagram commutes, it follows that
its image in the upper right also has non-trivial image in the lower right, which is
what we want. �
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Proof of Proposition 8.24. For cocompactness let Cr � V be compact such that
its PB2.OS /-translates cover Vr . Let yCr � Y be the product of r copies of Cr

(say at positions q1; : : : ; qr) and ¹zº otherwise. We claim that the translates of yCr

cover Yr .
Indeed, let .xq/q 2 Yr be arbitrary. Since it lies in Y .r/ there are at most

r positions where Œxq� ¤ Œz�. Using the action of F we can achieve that these
positions are (some of) q1 to qr . Now, since each xqi

lies in Vr , we can move it
into Cr , using an element of the form ŒT; g; T �, without moving any of the other
xq . At all other coordinates q, i.e., where Œxq � D Œz�, we can move xq to z using
the same method. Since all but �nitely many xq were z to begin with, we have
moved .xq/q into yCr in �nitely many steps.

For the second statement letN D jS j�1, so we want to show that . zHN .Yr//r is
not essentially trivial. Let k be such that the mapHjS j�1.Vk ! Vm/ is non-trivial
for every m � k. For arbitrary m � k take

A1 D Vk; A2 D
Y

q2D
q¤1=2

¹zº;

X1 D Vm; X2 D
Y

q2D
q¤1=2

Vm:

Then A1 � A2 � Yk and Ym � X1 �X2 (on the in�nite products we take the CW
topology, not the product topology). By Lemma 8.25 the map HN .A1 � A2 !

X1 � X2/ is non-trivial. But this factors through the map HN .Yk ! Ym/ which
is therefore non-trivial as well. This shows that .HN .Yr//r is not essentially
trivial. �

Theorem 8.26. The group T . xB�.OS // is not of type FPjS j.

Proof. The group acts on Y , which is contractible, with stabilizers of type F1

(Proposition 8.22). There is an invariant, cocompact �ltration .Yr/r which is
not essentially .jS j � 1/-acyclic (Proposition 8.24). We conclude using Brown’s
criterion. �

Remark 8.27. As far as we can tell, none of the established methods in the
literature can be used now to show that T .B�.OS // is not of type FPjS j. The
kernel of the morphism T .B�.OS // ! T . xB�.OS // is very unlikely to be even
�nitely generated (or else one could apply [7, Proposition 2.7] or the following
exercise, see also [28, Theorem 7.2.21]). Also the projection does not split (or else
one could apply the retraction argument [19, Proposition 4.1]). For this reason we
will now use the new methods established in Section 5.5, which can be regarded
as a generalization of the retraction argument. We should mention that one can

deduce that T .B�.OS // is not �nitely generated if jS j D 1, without using this new
machinery.
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Proof of Theorem 8.12. We apply Theorem 5.14 to the inclusion homomorphism
B2.OS / ,! T . xB�.OS // that takes g to Œ�1; g; �1� where �1 is a single caret.
We take Z to be the subspace of Y consisting of points .xq/q with xq D z for
q ¤ 1=2, so Z is B2.OS /-cocompact. Our T . xB�.OS //-cocompact �ltration of Y
is .Yr/r2N. Observe that HjS j�1.Z ! Yr/ is not eventually trivial by the proof of
Proposition 8.24. Thus we can apply Theorem 5.14.

Since the inclusionB2.OS / ,! T . xB�.OS // clearly factors through T .B�.OS //

we conclude that this group is not of type FPjS j�1. �

Combining Theorem 8.1 and Theorem 8.12, we obtain:

Theorem 8.28. The group T .B�.OS // is of type FjS j�1 but not of type FPjS j.

9. Thompson groups for mock-symmetric groups

The groups discussed in this section are instances of what Davis, Januszkiewicz
and Scott call “mock re�ection groups” [24]. These are groups generated by invo-
lutions, and act on associated cell complexes very much like Coxeter groups, with
the only di�erence being that some of the generators may be “mock re�ections”
that do not �x their re�ection mirror pointwise. Here we will only be concerned
with one family of groups consisting of the minimal blow up of Coxeter groups
of type An. These Coxeter groups are symmetric groups and so we call their blow
ups mock symmetric groups. For n 2 N the mock symmetric group Smock

n is given
by the presentation

Smock
n D hsi;j ; 1 � i < j � n j s

2
i;j D 1 for all i; j

si;j sk;` D sk;`si;j for i < j < k < `

sk;`si;j D skC`�j;kC`�i sk;` for k � i < j � `i.

(9.1)

We also set Smock
1 D lim

�!
Smock

n . See Figure 10 for a visualization of elements of

Smock
n , and a visualization of the last relation.

D

Figure 10. The relation si;j sk;` D sk;`skC`�j;kC`�i of Smock
n in the case i D 3, j D 4,

k D 1, ` D 5, n D 5.
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Let Nsi;j 2 Sn be the involution .i j /..i C 1/ .j � 1// � � � .b iCj
2
c d iCj

2
e/ (this is

the longest element in the Coxeter group generated by .i i C 1/; : : : ; .j � 1 j /).
Taking si;j to Nsi;j de�nes a surjective homomorphism �nWS

mock
n ! Sn. We de�ne

cloning maps �n
k
WSmock

n ! Smock
nC1 by �rst de�ning them on the generators:

.si;j /�
n
k D

8
<̂

:̂

si;j for j < k;

si;j C1sk;kC1 for i � k � j;

siC1;j C1 for k < i .

(9.2)

Now we extend �n
k

to a map Smock
n ! Smock

nC1 as in the paragraph leading up to
Lemma 1.12. See Figure 11 for an example of cloning.

D

Figure 11. The relation s1;4�3 D �2s1;5s3;4 of F ‰ Smock
1 .

Proposition 9.1. The above data de�ne a cloning system on Smock
� .

Proof. Note �rst that (9.1) is a presentation for Smock
n as a monoid because all

the generators are involutions by the �rst relation. Following the advice from
Remark 2.12, we will apply Lemma 1.12 with this presentation rather than the
trivial presentation used in Proposition 2.7.

We have to verify conditions coming from relations of F and conditions com-
ing from relations of Smock

n , after which the proof proceeds as that of Proposi-
tion 2.7. For the relations of F we must verify the conditions (FCS2) (product of
clonings) and (FCS3) (compatibility)

.si;j /�`�k D .si;j /�k�`C1 for k < ` and i < j; (9.3)

�..si;j /�k/ D .�.si;j //&k for i < j . (9.4)

(Note that we veri�ed (FCS3) for all i , which is not technically necessary; see the
remark after Observation 2.11). For the relations of Smock

n we have to check that �
is a well de�ned homomorphism, and check that the following equations, standing
in for (CS1) (cloning a product), are satis�ed:

.si;j /��.sk;`/p.sk;`/�p D .sk;`/��.si;j /p.si;j /�p for i < j < k < `;
(9.5)

.skC`�j;kC`�i /��.sk;`/p.sk;`/�p D .sk;`/��.si;j /p.si;j /�p for k � i < j � `.
(9.6)

Note that the conditions coming from the relations s2
i;j D 1 are vacuous.
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Condition (9.3) is easy to check if k < i or ` > j so we consider the situation
where i � k < ` � j . In this case we have

.si;j /�`�k D .si;j C1s`;`C1/�k

D .si;j C1/�k.s`;`C1/�k

D si;j C2sk;kC1s`C1;`C2

D si;j C2s`C1;`C2sk;kC1

D .si;j C1/�`C1.sk;kC1/�`C1

D .si;j C1sk;kC1/�`C1

D .si;j /�k�`C1

since �.sk;kC1/.` C 1/ D .` C 1/, �.s`;`C1/k D k and sk;kC1 and s`C1;`C2

commute.
Condition (9.4) amounts to showing that

.Nsi;j /&k D

8
ˆ̂<
ˆ̂:

NsiC1;j C1 k < i;

Nsi;j C1 Nsk;kC1 i � k � j;

Nsi;j k > j .

The cases k < i and k > j are clear. For the remaining case we �rst note that

Nsi;j C1 Nsk;kC1.m/ D �iCj �k Nsi;j�k.m/ D ..Nsi;j /&k/.m/

for m ¤ k; k C 1 (which is also the same as Nsi;j C1.m/). Here �k and �k are as in
Example 2.9. Finally one checks that

Nsi;j C1 Nsk;kC1.k/ D i C j � k D .Nsi;j /&k.k/

and that

Nsi;j C1 Nsk;kC1.k C 1/ D i C j � k C 1 D .Nsi;j /&k.k C 1/.

That � is a well de�ned homomorphism amounts to saying that the de�ning
relations of Smock

n hold in Sn with si;j replaced by Nsi;j , which they do.
Condition (9.5) is also easy to check unless i � p � j or k � p � `. We treat

the case i � p � j , the other remaining case being similar. We have

.si;j /��.sk;`/p.sk;`/�p D si;j C1sp;pC1skC1;`C1

D skC1;`C1si;j C1sp;pC1

D .sk;`/��.si;j /p.si;j /�p:
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Finally, the interesting case of condition (9.6) is when i � p � j . We have

.sk;`/��.si;j /p.si;j /�p D sk;`C1siCj �p;iCj �pC1si;j C1sp;pC1

D sk;`C1si;j C1

D skC`�j;kC`�iC1skC`�p;kC`�pC1sk;`C1sp;pC1

D .skC`�j;kC`�i /��.sk;`/p.sk;`/�p

using the de�ning relations of Smock
n several times.

�

As a consequence we get

Theorem 9.2. There is a generalized Thompson group T .Smock
� / which contains

all the Smock
n and canonically surjects onto V . We denote it Vmock.

Conjecture 9.3. Vmock is of type F1.

Since each Smock
n is of type F1 [24, Section 4.7, Corollary 3.5.4], to prove

the conjecture it su�ces to show that the the cloning system is properly graded
and that the connectivity of the complexes Ln.S

mock
� / goes to in�nity as n goes to

in�nity.

10. Thompson groups for loop braid groups

Our next example of a cloning system comes from the family of loop braid groups

LBn, also known as groups †Autn of symmetric automorphisms of free groups,
or as braid-permutation groups (see [23] for an overview). This will produce a
generalized Thompson group Vloop that contains both Vbr and V as subgroups.
There is also a pure version of this cloning system, using the pure loop braid

groups, which we will discuss as well, yielding a group Floop.
We �rst describe the family of groups in terms of free group automorphisms.

Fix a set of generators ¹x1; : : : ; xnº for Fn, and call an automorphism � 2 Aut.Fn/

symmetric if for every 1 � i � n there exists 1 � j � n such that �.xi / is
conjugate to xj . If every �.xi / is even conjugate to xi , call � pure symmetric.
The group of symmetric automorphisms of Fn is denoted †Autn, and the group
of pure symmetric automorphisms is denoted P†Autn. The latter is also denoted
by PLBn, for pure loop braid group. The reader is cautioned that in the literature
“symmetric” sometimes allows for generators to map to conjugates of inverses of

generators, but we do not allow this.
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The LBn �t into a directed system. The map �n;nC1WLBn ,! LBnC1 is given by
sending the automorphism � of Fn to the automorphism ofFnC1 that does nothing
to the new generator and otherwise acts like �. This restricts to PLBn as well, and
so we have directed systems LB� and PLB�.

Our presentation for LBn D †Autn will be taken from [26]. The generators
are as follows, for 1 � i � n.

ˇi W

8
<̂

:̂

xi 7�! xiC1;

xiC1 7�! x�1
iC1xixiC1;

xj 7�! xj .j ¤ i; i C 1/;

�i W

8
<̂

:̂

xi 7�! xiC1;

xiC1 7�! xi ;

xj 7�! xj .j ¤ i; i C 1/:

The ˇi together with the �i generate †Autn. The ˇi by themselves generate a
copy of Bn in †Autn, and the �i generate a copy of Sn. As seen in [26], de�ning
relations for †Autn are as follows (with 1 � i � n� 1):

ˇi ǰ D ǰˇi .ji � j j > 1/;

ˇiˇiC1ˇi D ˇiC1ˇiˇiC1;

�2
i D 1;

�i�j D �j�i .ji � j j > 1/;
�i�iC1�i D �iC1�i�iC1;

ˇi�j D �jˇi .ji � j j > 1/;

�i�iC1ˇi D ˇiC1�i�iC1;

ˇiˇiC1�i D �iC1ˇiˇiC1:

This is a group presentation, and it becomes a monoid presentation after adding
generators ˇ�1

i with relations ˇiˇ
�1
i D ˇ

�1
i ˇi D 1.

Since we already have cloning systems on S� (from Example 2.9) as well as
on B� (from [14]), we already know how the cloning system on LB� D †Aut�
should be de�ned. The only thing to check is that it is actually well de�ned.

The homomorphism �nWLBn ! Sn just takes ˇi as well as �i to �i 2 Sn. This
is easily seen to be well de�ned.

The cloning maps are de�ned as they are de�ned for the symmetric groups and
braid groups respectively: for " 2 ¹˙1º this means that

.ˇ"
i /�k WD

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

ˇ"
iC1 if k < i;

ˇ"
i ˇ

"
iC1 if k D i;

ˇ"
iC1ˇ

"
i if k D i C 1;

ˇ"
i if k > i C 1;

(10.1)
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.�i/�k WD

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

�iC1 if k < i;

�i�iC1 if k D i;

�iC1�i if k D i C 1;

�i if k > i C 1:

(10.2)

Lemma 10.1. The above data �� and ��
k

de�ne cloning systems on LB� and on

PLB�.

Proof. We already noted that � is a well de�ned group homomorphism. We have
to check (CS2) (product of clonings) and (CS3) (compatibility) on generators
of LBn. But since every generator is a generator of either Sn or of Bn, each
veri�cation needed has been performed in establishing the cloning systems on
either S� or B�.

It remains to check that cloning a relation is well de�ned, standing in for (CS1)

(cloning a product). Again, the relations involving only elements of Sn or Bn are
already veri�ed. This leaves the last three kinds of relations.

For the �rst relation we have to check that

.ˇi /��.�j /k.�j /�k D .ˇi /��j k.�j /�k D .�j /��i k.ˇi /�k D .�j /��.ˇi /k.ˇi /�k

which is easy to do case by case. For the other two relations we must show that

.�i/�.i iC2 iC1/k.�iC1/�.i iC1/k.ˇi /�k

D .ˇiC1/�.i iC1 iC2/k.�i /�.iC1 iC2/k.�iC1/�k

and

.ˇi /�.i iC2 iC1/k.ˇiC1/�.i iC1/k.�i /�k

D .�iC1/�.i iC1 iC2/k.ˇi /�.iC1 iC2/k.ˇiC1/�k ;

which can be treated formally equivalently as long as we do not use either of the
relations �2

i D 1 or ˇiˇ
�1
i D ˇ

�1
i ˇi D 1. The cases k < i and k > i C 2 are easy.

For k D i we apply only mixed relations to �nd

.�i /�iC2.�iC1/�iC1.ˇi /�i D �i�iC1�iC2ˇiˇiC1

D ˇiC1ˇiC2�i�iC1�iC2

D .ˇiC1/�iC1.�i /�i .�iC1/�i :

Similarly for k D i C 1 we get

.�i /�i .�iC1/�i .ˇi /�iC1 D �i�iC1�iC2ˇiC1ˇi

D ˇiC2ˇiC1�i�iC1�iC2

D .ˇiC1/�iC2.�i /�iC2.�iC1/�iC1:



Thompson groups for systems and �niteness properties 353

Lastly for k D iC2we �rst apply a braid relation and then use the mixed relations
to get

.�i /�iC1.�iC1/�iC2.ˇi /�iC2 D �iC1�i�iC2�iC1ˇi

D �iC1�iC2�i�iC1ˇi

D ˇiC2�iC1�i�iC2�iC1

D .ˇiC1/�i .�i /�iC1.�iC1/�iC2:

Finally, that the cloning system on LB� restricts to one on PLB� is straightfor-
ward. �

Theorem 10.2. There are generalized Thompson groups

Vloop WD T .LB�/ and Floop WD T .PLB�/

containing the loop braid groups and the pure loop braid groups, respectively. The

group Vloop canonically surjects onto V , and the group Floop canonically surjects

onto F .

The group LBn is known to be of type F1, for instance it acts properly co-
compactly on the contractible space of marked cactus graphs [22]. For this reason
understanding the �niteness properties of Vloop and Floop amounts to showing that
the cloning systems are properly graded, and understanding the connectivity of
Ln.LB�/ and Ln.PLB�/. We expect that these should be increasingly highly con-
nected and thus:

Conjecture 10.3. Vloop and Floop are of type F1.

We do not attempt to prove this conjecture here. However, we end by sketching
a more geometric viewpoint of these cloning systems, which could be useful in
the future. To do so, we will view LBn as a group of motions of loops (which
is where the name comes from); see [2], [10] and [44]. Let R3 be Euclidean 3-
space, and de�ne a loop  to be a smooth, unknotted, oriented embedded copy of
the circle S1 in R3. Now �x a set L of n pairwise disjoint, unlinked loops in R3,
and let Cn WD

`
2L  . A motion of Cn is a path of di�eomorphisms ft 2 Di�.R3/

for t 2 Œ0; 1� such that f0 is the identity and f1 stabilizes Cn set-wise, preserving
orientations of the loops. Two motions ft;0 and ft;1 are considered equivalent if
they are smoothly isotopic via an isotopy ft;s with f0;s and f1;s setwise stabilizing
Cn. If f1 also stabilizes each  2 L then the motion ft is a pure motion. These
constructions and the above ones yield isomorphic groups, that is to say LBn is
the group of motions, and PLBn is the group of pure motions. This is explained,
e.g., in [29] and [44, Section 3]. One should picture �i as the motion in which the
i th and .i C 1/st loops move around each other and take each other’s old spots.
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Then ˇi is similar, except that during the motion the .iC 1/st loop passes through
the i th instead of around. See Figure 12 for an idea.

�i

i i C 1

ˇi

i i C 1

Figure 12. Generators of LBn.

There is a bit of inconsistency in the literature: all that we have described here
is as in, e.g., [26], but in, e.g., [10], instead of the generators ˇi their inverses are
used (called �i there), and then the relevant relations look slightly di�erent.

In [2] there are some helpful diagrams, analogous to strand diagrams for braids,
illustrating elements of LBn. The pictures are four-dimensional, and show one
loop passing through another in a sort of movie. Using a bit of artistic license, we
can draw similar diagrams to demonstrate cloning; see Figure 13.

D

Figure 13. An example of cloning, namely .ˇ1/�
2
2
D ˇ2ˇ1. The picture shows ˇ1�2 D

�1ˇ2ˇ1. The vertical direction is time, while the missing spatial direction is indicated by
breaking the surfaces; see [2, p. 717] for a detailed explanation.

Alternatively we can draw cloning using the welded braid diagrams from [26].
See Figure 14.

One might expect the descending links to be modeled on disjoint “tubes” in
3-space with prescribed boundaries, or “welded arcs” of some sort. This is in
analogy to the disjoint arcs in 2-space with prescribed boundaries for descending
links in the braid group case.



Thompson groups for systems and �niteness properties 355

D

Figure 14. Another example of cloning, now using welded braid diagrams. We see that
�1ˇ2�3 D �1�2�1ˇ3ˇ2.
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