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The domino problem on groups of polynomial growth
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Abstract. We conjecture that a �nitely generated group has a decidable domino problem if

and only if it is virtually free. We show this is true for all virtually nilpotent �nitely gener-

ated groups (or, equivalently, groups of polynomial growth), and for all �nitely generated

groups whose center has a non-trivial, �nitely generated and torsion-free subgroup.

Our proof uses a reduction of the undecidability of the domino problem on any such

group G to the undecidability of the domino problem on Z
2, under the assumption that G

is not virtually free. This is achieved by �rst �nding a thick end in G, and then relating the

thick end to the existence of a certain structure, resembling a half-grid, by an extension of

a result of Halin.
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1. Introduction

In its original form, the domino problem consists of deciding whether the plane
can be tiled with square unrotatable plates of equal sizes and coloured edges,
coming from some previously �xed �nite set of plates, so that any two shared
edges have the same colour. The problem was introduced by Wang [22] in 1961.
Wang’s student Berger showed undecidability for the domino problem on the
(Euclidian) plane in 1964 [2, 3], using a reduction to the halting problem. In 1971,
Robinson [18] simpli�ed Berger’s proof.

The domino problem on the plane can be nicely expressed representing the
plane by Z

2, and the tiles by symbols from some �nite set. The colour restriction
is translated by forbidding certain patterns: for instance symbol a may not lie
directly below symbol b. Note that forbidding larger patterns of �xed size does
not change the complexity of the problem.

1 Alexis Ballier was supported by FONDECYT Postdoctorado Proyecto 3110088.

2 Maya Stein was supported by FONDECYT Regular grant 1140766 and Núcleo Milenio:
Información y Coordinación en Redes.
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Generalizations of the problems substitute Z
2 with the Cayley graph of some

�nitely generated group or semi-group. (For a formal de�nition of the domino
problem on groups see Section 4.) We remark that decidability of the domino
problem does not depend on the Cayley graph chosen, but on the (semi-)group
itself (since the Cayley graph only depends on the set of generators we chose, and
we can rewrite the generators for one graph in terms of the generators for the other
graph).

Let us summarize the known results. Robinson [19] conjectured that the
domino problem on the hyperbolic plane (which corresponds to the Cayley graph
of a �nitely generated semi-group) is undecidable. This was con�rmed by
Kari [11], and independently, by Margenstern [14]. Aubrun and Kari [1] showed
that also on Baumslag-Solitar groups the domino problem is undecidable.

On the other hand, on �nitely generated virtually free groups, the domino
problem is decidable. Indeed, the work of Muller and Schupp [16, 17] from the
1980’s, complemented with results of Kuske and Lohrey [12] from 2005, gives
that a �nitely generated group is virtually free if and only if its Cayley graphs
have a decidable monadic second order theory (MSO theory for short). Since the
domino problem can be expressed in MSO theory (see for instance [10]), we can
conclude that all �nitely generated virtually free groups have a decidable domino
problem.

We show that for �nitely generated virtually nilpotent groups the converse is
also true. That is, among all �nitely generated virtually nilpotent groups, only the
virtually free groups have a decidable domino problem.

Theorem 1.1. For every virtually nilpotent and �nitely generated group G, it holds

that G has a decidable domino problem if and only if G is virtually free.

We show in Section 4 how Theorem 1.1 follows from the following result,
Theorem 1.2, which we believe to be of interest on its own.

Theorem 1.2. For any �nitely generated group G whose center has a non-trivial,

�nitely generated and torsion-free subgroup, G has a decidable domino problem

if and only if G is virtually free.

For instance, the direct product of Z and any other group G fall under the
hypothesis of Theorem 1.2: Z�¹1Gº is a non-trivial, �nitely generated and torsion-
free subgroup of its center. This includes, for example, the direct product of an
in�nite free Burnside group or of the Grigorchuck group or of a Tarski monster
group with Z, which fall outside of the hypothesis of Theorem 1.1 since they do
not have polynomial growth.



The domino problem on groups of polynomial growth 95

We now give an overview of the proof of Theorem 1.2. We start with a �nitely
generated group G that is not virtually free, and whose center has a non-trivial,
�nitely generated and torsion-free subgroup. Our aim is to show that G does not
have a decidable domino problem.

As we shall see in detail in Section 2, a result of Woess [24] implies that G

has a thick end (see Section 2 for a de�nition). In Section 3, we will show that
any Cayley graph of a �nitely-generated group G whose center has a non-trivial,
�nitely generated and torsion-free subgroup with a thick end contains a certain
half-grid structure, resembling a subdivided N � Z. This is an extension of a
classical result by Halin from in�nite graph theory.

Then, in Section 4, we use the grid-like structure for a reduction of the unde-
cidability of the domino problem. Namely, �rst we reduce the undecidability of
the domino problem on a �nitely-generated group G that is not virtually free but
has a non-trivial, �nitely generated and torsion-free center to the undecidability
on Z

2, thus proving Theorem 1.2. Then we use Theorem 1.2 for proving the analog
for �nitely generated virtually nilpotent groups (Theorem 1.1). Some remarks on
the (non-)applicability of our methods to other groups can be found in Section 5.

We close the introduction with a conjecture due to the �rst author, suggesting
that the equivalence of being virtually free and having a decidable domino problem
holds for every �nitely generated group.

Conjecture 1.3. A �nitely generated group G has a decidable domino problem if

and only if G is virtually free.

2. Thick ends in �nitely generated, not virtually free groups

In this section we see that a �nitely generated group G which is not virtually free
has a thick end. We also see that such a thick end already appears in any �nitely
generated subgroup of �nite index of G.

Whenever we consider a Cayley graph of a �nitely generated group G, we
tacitly assume that this Cayley graph is constructed using a �nite set of generators
of G. In particular, here we only consider locally �nite Cayley graphs of �nitely
generated groups.

We need to go through some notation. A ray in a graph is a one-way in�nite
path. An end is an equivalence class of rays, under the following equivalence
relation: Two rays are equivalent if they are connected by in�nitely many disjoint
�nite paths. Ends were �rst introduced by Freudenthal [6, 7]. For example, the
usual Cayley graph of Z has two ends, the usual Cayley graph of Z2 has one end,
and any Cayley graph of a free group has in�nitely many ends. It is not di�cult
to see that the number of ends is invariant under quasi-isometry.
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A thick end in a graph is an end that contains an in�nite set of disjoint rays.
Thick ends were introduced by Halin [9]. A group is said to have a thick end if
one of its Cayley graphs has one. Of the three examples above, only Z

2 has a thick
end.

Now, we relate the notion of thickness to the notion of the diameter of an end
(see [24] for a de�nition). Woess [24] showed that every �nitely generated group
that is not virtually free has an end of in�nite diameter. Together with Theorem 4.4
of [20], which states that in every connected, locally �nite, vertex-transitive graph,
every end of in�nite diameter is thick, this gives the following.

Lemma 2.1. Every �nitely generated group that is not virtually free has a thick

end.

The next lemma is needed for the proof of Theorem 1.1.

Lemma 2.2. Let H and G be �nitely generated groups such that H is a subgroup

of �nite index of G. Then G has a thick end if and only if H has a thick end.

For the proof of Lemma 2.2, we need another lemma, and for this we need
to quickly recall the notion of quasi-isometry, an equivalence relation which is
used for describing the large-scale similarity of two given metric spaces X; X 0. A
function � W X ! X 0 is called a quasi-isometry from X to X 0 if there are positive
constants c; C; " such that cd.x; y/ � " � d.�.x/; �.y// � Cd.x; y/ C " for all
x; y 2 X , and if for each x0 2 X 0 there is some x 2 X such that d.x0; �.x// � C .
Spaces X , X 0 are quasi-isometric if there is an quasi-isometry from X to X 0

(then there is also one from X 0 to X). It is well known that Cayley graphs of
a given �nitely generated group are unique up to quasi-isometry. So, in view of
the following lemma, we see that in fact any of the Cayley graphs of a group with
a thick end has a thick end.

Lemma 2.3 (Woess [23], Lemma 21.4). Let G and G0 be two quasi-isometric1

locally �nite graphs. Then the quasi-isometry extends to the ends of G and G0,

mapping thick ends to thick ends.

Now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. Corollary IV.B.24 of [8] (or Proposition 11.41 of [15]) states
that if G is a �nitely generated group and H is a subgroup of �nite index of G,
then these groups are quasi-isometric. By Lemma 2.3, we are done. �

1 Woess calls quasi-isometries ‘rough isometries’, but it is the same notion.
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3. A structural property of groups with thick ends

The main result of this section is Lemma 3.1. In this lemma, we show that every
�nitely-generated group with a thick end, whose center has a non-trivial, �nitely
generated and torsion-free subgroup contains a structure roughly resembling the
N � Z grid. This is an extension of a classical purely graph-theoretical result of
Halin [9]. Halin’s result states that any in�nite graph with a thick end contains a
subdivision of the N� Z grid (a subdivision of a graph H is obtained from H by
replacing each edge with a path that has at least one edge; all these new paths have
to be disjoint).

De�ne

Œx; y� D xyx�1y�1;

Z0.G/ D ¹1Gº;

ZiC1.G/ D ¹x 2 G j for all y 2 G; Œx; y� 2 Zi .G/º:

The subgroup Z1.G/ is the center of G. A group G is nilpotent if there exists
n 2 N such that Zn.G/ D G. An element g 2 G is called a torsion element if
there exists n 2 N such that gn DG 1G . A group G is called torsion-free if it does
not contain any torsion element.

The following lemma is the heart of this section.

Lemma 3.1. Let G D hg1; : : : ; gni be a �nitely generated group with a thick end,

such that Z1.G/ has a �nitely generated, non-trivial and torsion-free subgroup Z.

Then there exists a 2 Z and a ray w 2 ¹g1; : : : ; gnº
N such that no subword of w

belongs to hai. That is, for any i < j 2 N, k 2 Z, we have wi : : : wj ¤G ak .

Proof. Since Z is �nitely generated, the fundamental theorem of �nitely gen-
erated abelian groups (see for instance [5]) tells us that Z is isomorphic to
Z

n ˚ Zk1
˚ � � � ˚ Zkl

, for some n 2 N and ki 2 N; 1 � i � l 2 N. Since
Z is torsion-free, there is no such Zki

in the decomposition. Thus Z is isomor-
phic to some Z

n with n � 0. Moreover, since Z is non-trivial, we know that
n � 1.

If n > 1, then let a and b be the elements of Z that this isomorphism sends to
.1; 0; 0; : : : ; 0/ and .0; 1; 0 : : : ; 0/ in Z

n. Let wi D b for all i ; then the conclusion
of the lemma follows easily.

So from now on suppose n D 1. Let a be the element of Z that is sent to
1 2 Z by the isomorphism between Z and Z; that is, Z D hai. The discrete
topology on ¹g1; : : : ; gnº makes this space compact since it is �nite, moreover, by
the Tychono� theorem, ¹g1; : : : ; gnº

N is also compact when embedded with the
product topology.

For any m 2 N, let Rm be the set of all rays that have no non-empty subword
equal to any of a�m; a�mC1; : : : ; am (where equality is taken in G).
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Claim 3.1.1. For each m 2 N, the set Rm is a non-empty compact subset of
¹g1; : : : ; gnº

N.

It is clear that the Rm’s from Claim 3.1.1 are such that RmC1 � Rm and since
they are all non empty, \m2NRm is also non empty by compactness. Any element
of \m2NRm is a ray w matching the conclusions. This is enough to prove the
lemma. So, it only remains to show Claim 3.1.1, which we will do in the remainder
of the proof.

By de�nition, Rm clearly is a closed subset of the compact space ¹g1; : : : ; gnº
N,

and is therefore compact too. Thus we only need to show that Rm ¤ ;, for m 2 N.
Suppose otherwise. Then each of the rays w 2 ¹g1; : : : ; gnº

N contains a subword
equal to one of a�m; a�mC1; : : : ; am. So, by compactness, there exists K 2 N

such that all the (now �nite) paths w 2 ¹g1; : : : ; gnº
K contain a subword equal to

one of a�m; a�mC1; : : : ; am.
Let ¹wiºi2N be an in�nite set of disjoint rays going to a thick end, with starting

vertices vi . By disjointness, for all i; j; k; k0 2 N with i ¤ j we have that

viw
i
1 : : : wi

k ¤ vj w
j
1 : : : w

j

k0 : (3.1)

We claim that for any i; k, we can write viw
i
1 : : : wi

k
D zi;kaei;k with zi;k being

a word on the generators of G and ei;k 2 Z, such that

� the length of zi;k as a word is less than K, and

� jei;k � ei;kC1j � m.

Indeed, for a given i , we de�ne zi;k and ei;k by induction on k. For k D 0, note
that since any path of length K contains aj , for some j with �m � j � m, and
since aj commutes with all the elements of G, we have vi D zi;0aei;0 , where zi;0

is of length less than K and ei;0 2 Z. For the induction step, observe that as a

commutes with all the elements of G, and by the induction hypothesis, we have
viw

i
1 : : : wi

kC1
D zi;kwi

kC1
aei;k . If zi;kwi

kC1
has length less than K, we de�ne

zi;kC1 D zi;kwi
kC1

and ei;kC1 D ei;k. Otherwise, zi;kwi
kC1

is of length at least K

and can be written as zi;kC1aj , for �m � j � m, where zi;kC1 is of length less
than K. We then de�ne ei;kC1 D ei;k C j .

Let us now argue that ei;k !k!1 ˙1. Indeed, otherwise for an in�nity of
k’s, the elements zi;kaei;k are at a bounded distance of 1G . Hence, the pigeonhole
principle allows us to �nd k ¤ k0 such that

viw
i
1 : : : wi

k D zi;kaei;k D zi;k0aei;k0 D viw
i
1 : : : wi

k0 :

But this contradicts (3.1).
We assume, without loss of generality, that for an in�nity of i’s, ei;k !k!1

C1. Since for every i and k, jei;kC1 � ei;kj � m, by considering only the ei;k’s
that tend to C1 with k, for I 2 N, there exists NI 2 N such that for every i � I ,
there exists ki such that ei;ki

2 ¹NI � m; NI � m C 1; : : : ; NI C mº.
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If I is chosen su�ciently large, by the pigeonhole principle, we can �nd
i ¤ i 0 such that zi;ki

D zi 0;ki0
and ei;ki

D ei 0;ki0
because both zi;ki

’s and
ei;ki

’s belong to a �nite set whose size does not depend on I . This means that
viw

i
1 : : : wi

ki
D vi 0wi 0

1 : : : wi
ki0

for some i ¤ i 0, again contradicting (3.1).

This completes the proof of Claim 3.1.1 and thus the proof of the lemma. �

4. Decidability of the Domino Problem

In this section we reduce the undecidability of the domino problem in groups with
the ‘half-grid’ structure found in Section 3 to the undecidability of the domino
problem on Z

2. This will enable us to prove our main theorem.

We start by formally de�ning the domino problem. We need to introduce some
notation �rst. Let † be a �nite set, called the alphabet, and let G be a �nitely
generated group, given together with a �nite set of generators. Recall that for
decidability of the domino problem it does not matter which �nite set of generators
was chosen.

The set †G is called the fullshift. An element of the fullshift is called a
con�guration. For a �nite set D � G, an element of †D is called a pattern over
D. For a con�guration x 2 †G and a pattern P 2 †D , we say that P appears in

x if there exists i 2 G such that for every j 2 D, xij D Pj . A subset X of †G is
called a G-SFT if it is precisely the set of con�gurations of †G that do not contain
any pattern from a given �nite set of patterns F.

In addition, we say that an SFT is one-step if F contains only elements of some
†D with D D ¹1G ; giº where gi is a generator of G. One-step SFTs correspond
to the intuition one has of a tiling of G and to the dominoes of Wang [22] on Z

2. It
is well known that any SFT is conjugate to a one-step SFT, and the conjugacy can
be computed from its forbidden patterns and its alphabet. For more information
on SFT’s and symbolic dynamics in general, see [13].

The domino problem on G consists of deciding if there exists a con�guration
not containing any pattern of F when given F; equivalently, deciding whether the
G-SFT de�ned by F is non-empty [21, 22].

As a warm-up, we start with an easy lemma.

Lemma 4.1. Let H and G be �nitely generated groups such that H is a subgroup

of G. If the domino problem on H is undecidable then so it is on G.

Proof. Let XH be an H -SFT. The same XH -forbidden patterns can be forbidden
to obtain XG , a G-SFT. It is clear that if XG is non-empty then so is XH : For
x 2 XG , xjH is an element of XH .



100 A. Ballier and M. Stein

For the converse, i.e. in order to see that if XH ¤ ; then also XG ¤ ;, proceed
as follows. Consider the left cosets ¹gH jg 2 Gº of H in G. As these cosets form
a partition of G, we can write ¹gH jg 2 Gº D ¹giH ji 2 I º such that giH ¤ gj H

if i ¤ j .
There exist functions f W G ! ¹gi ji 2 I º and h W G ! H such that

g D f .g/h.g/. For a con�guration c 2 XH , we de�ne c0 2 †G by setting
c0

g WD ch.g/. Since all the forbidden patterns of XG are de�ned on H , we conclude
that c0 does not contain any XG-forbidden pattern (because c does not contain any
XH -forbidden pattern). Thus c0 2 XG .

We conclude that XH is non-empty if and only if XG is. Hence, if there exists
an algorithm deciding the domino problem on G, such an algorithm can be used
to decide it on H , completing the proof. �

The next lemma contains the reduction of the decidability of the domino prob-
lem on a group G which contains the structure from Section 3, to the decidability
of the domino problem on Z

2.

Lemma 4.2. Let G D hg1; : : : ; gni be a �nitely generated group such that g1 has

in�nite order, g1 2 Z1.G/ and there exists a ray w 2 ¹g1; : : : ; gnº
N such that no

subword of w belongs to hg1i, i.e., for any i < j 2 N, wi : : : wj 62 hg1i. Then the

domino problem on G is undecidable.

Proof. We reduce to the Z
2 case where the problem is already known to be

undecidable [2, 18]. For this, we prove that there exists an algorithm which for
any given Z

2-SFT X computes a G-SFT XG such that X is non empty if and only
if XG is non empty.

Let A.X/ denote the alphabet of X. We take the alphabet of XG to be A.X/ �

¹2; : : : ; nº. Without loss of generality, we can assume that X is a one-step SFT.
The rules de�ning XG are as follows, for any c 2 .A.X/ � ¹2; : : : ; nº/G and any
point x 2 G.

(I) If cx D .a; i/ then cxg1
D .b; i/ and cxg�1

1
D .b0; i / for some b; b0.

In words: The second component is constant on the lines de�ned by hg1i.

(II) cx D .a; i/ and cxg1
D .b; i/ is allowed if and only if a is allowed left to b

in X.

In words: The hg1i lines in XG represent the horizontal lines of X.

(III) cx D .a; i/ and cxgi
D .b; j / is allowed if and only if a is allowed below b

in X.

In words: The second component in the alphabet of XG dictates the vertical
direction and following those paths represent the vertical direction of X.
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Every other case is allowed. It is clear that one can compute the forbidden
patterns de�ning XG when given those of X. It remains to prove that XG is non
empty if and only if X is.

If XG ¤ ;, then X ¤ ;. Let c be a con�guration of XG. First, we de�ne c0 only
on A.X/Z�N. This will be done by induction as follows.

For i 2 Z, choose c0
.i;0/

so that .c0
.i;0/

; x0/ D cgi
1
, for some x0. Then, for

j � 1 and i 2 Z, let c0
.i;j /

be such that .c0
.i;j /

; yj / D cgxj �1
gi

1
, where we de�ne

gxj
WD gxj �1

gyj
inductively.

In order to see that c0 does not contain any X-forbidden pattern, observe no
forbidden horizontal pattern may occur by rules (I) and (II), and by the de�nition
of c0. For the vertical patterns, consider two points a D c0

.i;j /
and b D c0

.i;j C1/
.

Then by construction,
cgxj �1

gi
1

D .a; yj /

and
cgxj �1

gi
1

gyj

D cgxj �1
gyj

gi
1

D cgxj
gi

1
D .b; yj /:

Thus by rule (III), also no forbidden vertical pattern occurs.
A standard compactness argument shows that we can extend c to all of

A.X/Z�Z. Thus X is non empty.

If X ¤ ; then XG ¤ ;. Let c be a con�guration of X. Recursively de�ne a
con�guration c0 of XG as follows. At each step s, the set of coordinates Ls � G

for which c0 is already de�ned will satisfy the following conditions:

(a) on Ls, con�guration c0 does not contain any forbidden patterns,

(b) if x 2 Ls , then xg`
1 2 Ls for all ` 2 Z, and there are k; n 2 Z and

j 2 ¹2; : : : ; nº such that c0
x D .c.k;n/; j / and c0

xg`
1

D .c.kC`;n/; j / for all

` 2 Z,

(c) if x 2 Ls with c0
x D .z; j /, then xgj 2 Ls.

We start by de�ning c0 for all points w1 : : : wj of the ray w from the assumption
of the lemma, and all lines w1 : : : wj hg1i. In other words, we take

L1 WD ¹w1 : : : wj g`
1 W j 2 N; ` 2 Zº:

De�ne
c0

w1:::wj g`
1

WD .c.`;j /; i /

for ` 2 Z and j 2 N, where i D i.j / is such that gi D wj C1. In this way c0

is well de�ned. Indeed, if w1 : : : wj g`
1 D w1 : : : wj 0g`0

1 for some `; `0; j; j 0, then
j ¤ j 0 since g1 has in�nite order. Therefore, we may assume that j 0 > j , and
hence wj : : : wj 0 D g`�`0

1 2 hg1i contradicting our hypothesis on w.
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It is easy to check that conditions (b) and (c) are sati�ed. For (a), �rst note that
rules (I) and (II) clearly hold. For rule (III), suppose there is an x D w1 : : : wj g`

1

with c0
x D .a; i/ and c0

xgi
D .b; j / for some a; b; i; j with i ¤ j . Then by

construction, we have that gi D wj C1. Further a D c.`;j /, and b D c.`;j C1/. Thus
a and b are as necessary for rule (III).

Now assume we are in step s, and wish to de�ne Ls . Let x 2 G n Ls�1 be
such that xgm 2 Ls�1 for some 1 < m � n. (We may assume such an x exists, as
otherwise we have de�ned c0 for all of G.)

By (b), also xg`
1 2 Ls�1, for all ` 2 Z. Because of the second part of (b), there

are k; n; j such that for all ` 2 Z we have

c0

xgmg`
1

D .c.k;n/; j /:

We set
Ls WD Ls�1 [ x hg1i

and de�ne
c0

xg`
1

WD .c.kC`;n�1/; m/

for all ` 2 Z. Note that in this way c0 is well de�ned, as the xg`
1 are all distinct,

and furthermore, none of them is in Ls�1, by (b), and since x … Ls�1.
It is clear that (b) holds in step s. Further, (c) in step s holds by the choice of

x and the de�nition of c0. So we only need to check (a), and again, rules (I) and
(II) are easy.

For rule (III), suppose there is an x with c0
x D .a; i/ and c0

xgi
D .b; j / for some

a; b; i; j with i ¤ j . By (a) for earlier steps, we may assume that one of x, xgi

lies in Ls n Ls�1. We employ (c) for step s � 1 to see that if xgi 2 Ls n Ls�1, then
also x 2 Ls n Ls�1. So in all cases x 2 Ls n Ls�1. By de�nition of c0, this means
that i D m. Thus by construction, a, b are as desired for rule (III).

As in each step s we add at least one element of G n Ls�1 to Ls, after
trans�nitely many steps (namely, after at most jGj steps) the union of all sets Ls

is G, and thus, using (a), we see that c0 de�nes a con�guration of XG. Hence XG

is non empty, as desired. �

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.2. Let G be a �nitely generated group whose center has a non-
trivial, �nitely generated and torsion-free subgroup. Assume G is not virtually
free. By Lemma 2.1 it follows that G has a thick end. Hence, we may apply
Lemma 3.1 to G and can deduce with the help of Lemma 4.2 that the domino
problem is undecidable on G. �

Proof of Theorem 1.1. Assume G is �nitely generated and virtually nilpotent, but
not virtually free. Since any nilpotent group has a torsion free subgroup of �nite
index, we can choose a nilpotent and torsion-free subgroup H of �nite index of G.
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By Schreier’s lemma, H is �nitely generated since it is a subgroup of �nite index
of a �nitely generated group.

By Lemma 2.1, G has a thick end and so, by Lemma 2.2, H has a thick end.
As H is nilpotent and �nitely generated, also the subgroup Z1.H/ is �nitely
generated (see for instance Lemma 1.2.2 of [4]). Moreover, as H is nilpotent,
Z1.H/ is non-trivial. Hence, we may apply Theorem 1.2 to see that the domino
problem is undecidable on H . By Lemma 4.1, the domino problem is undecidable
on G as well. �

5. Conclusions

We conjecture the equivalence from Theorems 1.1 and 1.2 holds for every �nitely
generated group but we note that there are known cases that do not fall under the
scope of our results: Most Baumslag-Solitar groups have a trivial center but none
of them is virtually free and all of them have an undecidable domino problem [1].
Lemma 3.1 is really focused on exhibiting the Z

2-like structure of certain groups,
which allows us to carry out a reduction to the domino problem on Z

2; on the
other hand, Aubrun and Kari [1] give a new proof of the undecidability of the
domino problem adapted to the structure of the groups they are studying. This
latter approach is probably needed for Baumslag-Solitar groups since it seems
di�cult to �nd a Z

2-like structure withing these groups. However, it may be
possible to combine their methods with ours in order to �nd a larger class of groups
with undecidable domino problem.

Acknowledgment. We would like to thank the anonymous referees for their
useful remarks.
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