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1. Introduction

A quasi-geodesic 
 in a geodesic metric space X is called stable if for every L � 1

there exists some M.L/ > 0 such that any L-quasi-geodesic � with endpoints on


 is contained in the M.L/-neighborhood of 
 .

In a hyperbolic geodesic metric space, any quasi-geodesic is stable in this

sense, but many geodesic metric spaces which are not hyperbolic contain stable

quasi-geodesics as well. We refer to [6] for examples.

Often the existence of stable quasi-geodesics in a space X is related to hyper-

bolicity of some graph associated to X , in particular in the presence of a large

isometry group. In the case of the Teichmüller space T.S/ of a surface S of �nite

type equipped with the Teichmüller metric, stability is characterized as follows.

A quasi-geodesic is stable if and only if it projects to a quasi-geodesic in the curve

graph C.S/ of S [16]. The curve graph is a hyperbolic geodesic metric graph

equipped with an action of the mapping class group.

In the attempt to �nd similarities between the geometry of the mapping class

group of a surface of �nite type and the geometry of the Outer automorphism

group Out.Fn/ of a free group Fn with n � 3 generators, two natural hyperbolic

Out.Fn/-graphs were found.

The so-called free factor graph FF is the metric graph whose vertices are con-

jugacy classes of non-trivial free factors of Fn. Two vertices A; B are connected

by an edge of length one if up to conjugation, either A < B or B < A. It is a hy-

perbolic Out.Fn/-graph [4]. There is also the free splitting graph which however

is not relevant for this work.

Our �rst goal is to show that the free factor graph characterizes stability in

Outer space cv0.Fn/ equipped with the symmetrized Lipschitz metric d in the

same way the curve graph characterizes stability of Teichmüller space with the

Teichmüller metric. Here Outer space is the space of all minimal free actions of

Fn on simplicial trees T with quotient T=Fn of volume one. It is equipped with the

symmetrized Lipschitz metric d which is invariant under the action of Out.Fn/.

There also is a natural coarsely well de�ned projection ‡ W cv0.Fn/ ! FF.

The symmetrized Lipschitz metric on Outer space is not geodesic and therefore

we will work instead with coarse geodesics. By de�nition, a c-coarse geodesic is

a path 
 WR ! cv0.Fn/ such that for all s; t 2 R we have

js � t j � c � d.
.s/; 
.t// � js � t j C c:

Note that a coarse geodesic need not be continuous.

Let dL be the one-sided Lipschitz metric on cv0.Fn/. By de�nition, dL.T; T 0/

is the in�mum of the logarithms of the Lipschitz constants among all marked

homotopy equivalences f W T=Fn ! T 0=Fn. For a number K > 0, a K-quasi-

geodesic for dL is a path 
 W Œa; b� ! cv0.Fn/ so that for all s < t we have

jt � sj=K � K � dL.
.s/; 
.t// � Kjt � sj C K:
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De�nition 1. A coarse geodesic 
 � .cv0.Fn/; d/ is called strongly Morse

if for any K � 1 there is a number M D M.K/ > 0 with the following

property. Any K-quasi-geodesic for dL or d with endpoints on 
 is contained

in the M -neighborhood of 
 for the symmetrized Lipschitz metric.

In the sequel we talk about uniformly strongly Morse coarse geodesics to

denote a collection of paths which ful�ll the conditions in De�nition 1 with the

same constants. Similarly, we talk about collections of uniform quasi-geodesics.

For a number � > 0 let Thick�.Fn/ � cv0.Fn/ be the subspace of all Fn-trees

whose volume one quotient does not contain a nontrivial loop of length less than

�. We show

Theorem 1. Let 
 W .a; b/ ! Thick�.Fn/ be a c-coarse geodesic for the sym-

metrized Lipschitz metric. Then the following are equivalent.

(1) The path t ! ‡.
.t// is a uniform quasi-geodesic in FF.

(2) 
 is uniformly strongly Morse.

The precise meaning of the implication .1/ H) .2/ in Theorem 1 is as follows.

For all c > 0; L > 1; K > 0 there exists a constant M D M.c; L; K/ > 0 with

the following property. Let 
 W .a; b/ ! cv0.Fn/ be a c-coarse geodesic for the

symmetrized Lipschitz metric whose composition with ‡ is an L-quasi-geodesic.

Then any K-quasi-geodesic for the one sided Lipschitz metric or the symmetrized

Lipschitz metric with endpoints on 
 is contained in the M -neighborhood of 


with respect to the symmetrized Lipschitz metric.

Motivated by the theory of Kleinian groups, Farb and Mosher de�ne in [12]

the notion of a convex cocompact subgroup � of the mapping class group Mod.S/

of a surface S of genus g � 2 via geometric properties of the action of � on

Teichmüller space T.S/ for S . Later, an equivalent characterization using the

action of � on the curve graph of S was established in [15] and [23]. Our second

goal is to develop a similar theory for subgroups of the outer automorphism group

of a free group. We brie�y recall the results in the mapping class group case.

To this end denote by @T.S/ the Thurston boundary of Teichmüller space.

Theorem 2 ([12, 15, 23]). The following properties of a �nitely generated sub-

group � of Mod.S/ are equivalent.

(1) The orbit map on the curve graph C.S/ of S is a quasi-isometric embedding.

(2) A �-orbit on T.S/ is quasi-convex: For any x 2 T.S/ and all g; h 2 �, the

Teichmüller geodesic connecting gx; hx is contained in a uniformly bounded

neighborhood of �x.

Moreover, the group � is hyperbolic, and there is an equivariant homeomorphism

F W @� ! ƒ.�/ where @� is the Gromov boundary of � and where ƒ.�/ � @T.S/

is the set of accumulation points of a �-orbit on T.S/.
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Part (2) of Theorem 2 shows that such so-called convex cocompact subgroups

of the mapping class group are precisely those groups which act on Teichmüller

space equipped with the Teichmüller metric as convex cocompact groups: this is

a characterization not by intrinsic properties of the group, but via its isometric

action on Teichmüller space, a bounded domain in C
3g�3. It then turns out that

there is an equivalent characterization via the action of the group on the curve

graph. An intrinsic characterization of convex cocompact subgroups of Mod.S/

is due to Durham and Taylor [11].

De�nition 2. A �nitely generated subgroup � of Out.Fn/ is convex cocompact if

one (and hence every) orbit map of its action on the free factor graph is a quasi-

isometric embedding.

The following result is the analog of Theorem 2 for Out.Fn/. For its formu-

lation, we denote by CV.Fn/ the projectivization of cv0.Fn/ with its boundary

@ CV.Fn/. There is a natural topology on CV.Fn/ D CV.Fn/ [ @ CV.Fn/ such

that CV.Fn/ is compact and that the restriction of this topology to the open dense

subset CV.Fn/ is the topology inherited from cv0.Fn/.

Theorem 3. Let � be a �nitely generated subgroup of Out.Fn/. Then the following

are equivalent.

(1) � is convex cocompact.

(2) Let T 2 cv0.Fn/. Then for all g; h 2 �, the points gT; hT are connected

by a uniformly strongly Morse c-coarse geodesic which is contained in a

uniformly bounded neighborhood of �T .

Moreover, the group � is hyperbolic, and there is an equivariant homeomorphism

F W @� ! ƒ.�/ where @� is the Gromov boundary of � and where ƒ.�/ �
@ CV.Fn/ is the set of accumulation points of a �-orbit on CV.Fn/.

Corollary 5.3 contains another characterization of convex cocompact sub-

groups of Out.Fn/ in the spirit of the work of Farb and Mosher [12]. This de-

scription uses lines of minima as de�ned in [18] and is a bit more di�cult to ex-

plain. However, it is the characterization of such groups which contains the most

information.

Examples of convex cocompact groups are Schottky groups. In the case

n D 2g for some g � 2, convex cocompact subgroups of the mapping class group

of a surface of genus g with one puncture, viewed as subgroups of Out.Fn/, are

convex cocompact. We discuss these examples in Section 7.

For mapping class groups of a closed surface S , there is yet another character-

ization of convex cocompact subgroups [12, 15]. Namely, � is convex cocompact

if and only if the extension G of � given by the exact sequence

0 �! �1.S/ �! G �! � �! 0

is word hyperbolic.
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In contrast, the Fn-extension of a convex cocompact subgroup of Out.Fn/ need

not be word hyperbolic. As an example, the extension of a convex cocompact

subgroup of the mapping class group of a surface with a puncture is not hyperbolic.

However, Dowdall and Taylor [10] showed that the Fn-extension of a convex

cocompact subgroup � all of whose elements are non-geometric is hyperbolic.

Moreover, they characterize hyperbolic Fn-extensions via the action of Out.Fn/

on the so-called cosurface graph [9].

There is overlap of our work with the work of Dowdall and Taylor [10, 8].

However, their arguments are very di�erent from the arguments we use, and their

main goal is di�erent in �avor as well. There is also some overlap with the

work [25] whose main result is a key ingredient in the proof of Theorem 2.

Organization. Section 2 collects the basic tools and background. In Section 3

we relate lines of minima as introduced in [18] to coarse geodesics in the thick

part of Outer space whose shadows in the free factor graph are quasi-geodesics.

Section 4 investigates strongly Morse coarse geodesics in Outer space which leads

to the proof of the implication .2/ H) .1/ in Theorem 1. Section 5 uses lines

of minima to show that a subgroup of Out.Fn/ which has the properties stated

in the second part of Theorem 3 is convex cocompact. In Section 6, the proof

of Theorem 3 and the implication .1/ H) .2/ in Theorem 1 is completed. In

Section 7 we discuss examples of convex cocompact subgroups of Out.Fn/. The

appendix collects some results from the work [25] which are used in Section 4.

Acknowledgments. We thank the anonymous referee for useful suggestions that

improved the article. We are also grateful to Spencer Dowdall and Samuel Taylor

for drawing our attention to the work [10].

2. Geometric tools

2.1. The boundary of the free factor graph. The free factor graph FF is

hyperbolic [4]. Its Gromov boundary @FF can be described as follows [5, 17].

Unprojectivized Outer space cv.Fn/ of simplicial minimal free Fn-trees

equipped with the equivariant Gromov Hausdor� topology can be completed

by attaching a boundary @ cv.Fn/. This boundary consists of all minimal very

small actions of Fn on R-trees which either are not simplicial or which are not

free [7, 3]. Here an Fn-tree is very small if arc stabilizers are at most maxi-

mal cyclic and tripod stabilizers are trivial. We denote by CV.Fn/ the projec-

tivization of cv.Fn/, with its boundary @ CV.Fn/. Also, from now on we always

denote by ŒT � 2 CV.Fn/ D CV.Fn/ [ @ CV.Fn/ the projectivization of a tree

T 2 cv.Fn/ D cv.Fn/ [ @ cv.Fn/.
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Let @Fn be the Gromov boundary of Fn and denote by � the diagonal in

@Fn � @Fn. An element u 2 Fn is called primitive if it can be completed to

a free basis of Fn. The set of Dirac measures on pairs of �xed points of all

elements in some primitive conjugacy class ˛ of Fn is a locally �nite Fn-invariant

Borel measure on @Fn � @Fn � � which we call dual to ˛. The closure of all

such measures in the space of all locally �nite Fn-invariant Borel measures on

@Fn � @Fn � �, equipped with the weak�-topology, is the space ML of measured

laminations for Fn. It is invariant under the natural action of Out.Fn/. The

projectivization PML of ML is compact, and Out.Fn/ acts on PML minimally

by homeomorphisms [24]. In the sequel we always denote by Œ�� 2 PML the

projectivization of a measured lamination � 2 ML.

By [20], there is a continuous length pairing

h; iW cv.Fn/ � ML �! Œ0; 1/:

If � 2 ML is dual to a primitive conjugacy class ˛ in Fn and if T 2 cv.Fn/ then

hT; �i equals the shortest length of a representative of ˛ on T=Fn. If � 2 ML is

arbitrary then hT; �i > 0 for every tree T 2 cv.Fn/.

De�nition 2.1. A measured lamination � 2 ML is dual to a tree T 2 @ cv.Fn/ if

hT; �i D 0.

Note that if � is dual to T then any multiple of � is dual to every tree obtained

from T by scaling, so we can talk about a projective measured lamination which

is dual to a projective tree. We note for later reference (see [17])

Lemma 2.2. Every projective tree ŒT � 2 @ CV.Fn/ admits a dual measured

lamination.

We say that a measured lamination � is supported in a free factor H of Fn if

the support of � is contained in the Fn-orbit of @H � @H � �. If ŒT � has point

stabilizers containing a free factor, then any measured lamination supported in the

free factor is dual to T . If ŒT � 2 @ CV.Fn/ is simplicial then the set of measured

laminations dual to ŒT � consists of convex combinations of measured laminations

supported in a point stabilizer of ŒT �.

A (projective) tree ŒT � 2 @ CV.Fn/ is called indecomposable if for any non-

degenerate segments I; J � T there are elements u1; : : : ; un 2 Fn with I �

u1J [ � � � [ unJ and so that uiJ \ uiC1J is a non-degenerate segment for all i .

Let � be the smallest equivalence relation on @ CV.Fn/ with the following

property. For a projective tree ŒT � 2 @ CV.Fn/ and a projective measured lami-

nation Œ�� 2 PML dual to ŒT �, any tree ŒS� 2 @ CV.Fn/ dual to Œ�� is equivalent

to ŒT �.



Stability in Outer space 365

Theorem 2.3 ([5, 17]). The Gromov boundary @FF of FF can be identi�ed with

the set of equivalence classes under � of indecomposable projective trees ŒT � with

the following additional property. Either the Fn-action on T is free, or there is a

compact surface S with non-empty connected boundary, and there is a minimal

�lling measured lamination � on S so that T is dual to �.

In the sequel we call a (projective) tree with the properties stated in the theorem

arational. We refer to the main result of [26] for a characterization of arational

trees which justi�es this terminology.

At this point, we record a criterion for arationality that will be used later. To

state it, we need the following de�nition. An alignment preserving map between

two Fn-trees T; T 0 2 cv.Fn/ is de�ned to be an equivariant map �W T ! T 0 with

the property that x 2 Œy; z� implies �.x/ 2 Œ�.y/; �.z/�. The map � is continuous

on segments.

Lemma 2.4. Let ŒT � 2 @ CV.Fn/ be given. Suppose that T does not have point

stabilizers containing free factors, and that there is no tree T 0 2 @ cv.Fn/ which

can be obtained from T by a one-Lipschitz alignment preserving map �W T ! T 0

collapsing a nontrivial subtree of T to a point. Then ŒT � is arational.

Proof. By the results in Section 10 of [26], a tree T which satis�es the assumption

in the lemma on non-existence of interesting alignment preserving maps is inde-

composable. By Proposition 10.1 of [17], such a tree T is arational if it does not

have point stabilisers containing nontrivial free factors (compare also [5]), proving

the lemma. �

By continuity of the length pairing, the set of all projective trees ŒS� which are

dual to some �xed measured lamination � is a closed subset of @ CV.Fn/. The

topology on @FF is the quotient topology for the closed equivalence relation � on

the set of arational projective trees. It can be described as follows. A sequence

of equivalence classes represented by trees Si converges to the equivalence class

represented by S if there is a sequence .�i / � ML so that hSi ; �ii D 0 for all i

and such that �i ! � in ML with hS; �i D 0 [17].

De�nition 2.5. A pair of measured laminations .�; �/ 2 ML � ML is called a

positive pair if for any tree S 2 cv.Fn/ we have hS; � C �i > 0.

Positivity of a pair is invariant under scaling each individual component by a

positive factor, so it is de�ned for pairs of projective measured laminations.

Lemma 2.6. The set of positive pairs is an open subset of PML � PML.
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Proof. By invariance under scaling, it su�ces to show the following. Let A �

cv.Fn/ be a compact set which projects onto CV.Fn/, and let B � ML be a

compact set which projects onto PML. Let .�; �/ 2 B � B be a positive pair;

then there exists a neighborhood U of .�; �/ in B � B such that hS; � C �i > 0 for

all .�; �/ 2 U and all S 2 A. However, this is immediate from continuity of the

length pairing and compactness of A. �

Corollary 10.6 of [17] identi�es positive pairs which are of particular signi�-

cance for our purpose.

Lemma 2.7. Let ŒT � 6D ŒT 0� be arational trees which de�ne distinct points in @FF.

Let �; �0 2 ML be dual to ŒT �; ŒT 0�; then .�; �0/ is a positive pair.

2.2. Lines of minima. In this subsection we introduce the central tool used in

this paper: lines of minima as de�ned in [18].

For � > 0 de�ne

Thick�.Fn/

to be the set of all trees T 2 cv0.Fn/ with volume one quotient so that the shortest

length of any loop on T=Fn is at least �. For the remainder of this paper we always

choose � > 0 su�ciently small that Thick�.Fn/ is non-empty and path connected.

Clearly Thick�.Fn/ is invariant under the action of Out.Fn/.

For a tree T 2 cv0.Fn/ de�ne

ƒ.T / D ¹� 2 ML j hT; �i D 1º: (1)

Then ƒ.T / is a compact subset of ML, and the projection ƒ.T / ! PML is a

homeomorphism. Let moreover

†.T / D ¹S 2 cv.Fn/ j sup¹hS; �i j � 2 ƒ.T /º D 1º: (2)

Let .�; �/ 2 ML
2 be a positive pair. By Lemma 3.2 of [18], the function

S ! hS; � C �i on Thick�.Fn/ is proper. This means that this function assumes

a minimum, and the set

Min�.�C�/ D ¹T 2Thick�.Fn/ j hT; �C�i D min¹hS; �C�i j S 2Thick�.Fn/ºº

of all such minima is compact. Note that this set does not change if we replace

� C � by a positive multiple.

De�nition 2.8. Let .Œ��; Œ��/ 2 PML � PML � � be a positive pair. A line of

minima for .Œ��; Œ��/ is a map 
 WR ! Thick�.Fn/ which associates to t 2 R a

point 
.t/ 2 Min�.et=2� C e�t=2�/.
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A line of minima is by no means unique. If the measured laminations �; � are

dual to some primitive conjugacy class then it may be of �nite diameter. Moreover,

a line of minima is in general not continuous.

We next introduce a class of positive pairs which de�ne line of minima with

particularly nice properties. To this end de�ne for a positive pair .�; �/ 2 ML �

ML the set

Bal.�; �/ D ¹T j hT; �i D hT; �iº � cv.Fn/

of balancing trees.

Call a primitive conjugacy class ˛ basic for T 2 cv0.Fn/ if ˛ can be repre-

sented by a loop of length at most two on the quotient graph T=Fn. Note that any

T 2 cv0.Fn/ admits a basic primitive conjugacy class.

De�nition 2.9. For B > 1, a positive pair of points

.Œ��; Œ��/ 2 PML � PML � �

is called B-contracting if for any pair �; � 2 ML of representatives of Œ��; Œ��

there is some “distinguished” T 2 Min�.� C �/ with the following properties.

(1) hT; �i=hT; �i 2 ŒB�1; B�.

(2) If Q�; Q� 2 ƒ.T / are representatives of Œ��; Œ�� then hS; Q� C Q�i � 1=B for all

S 2 †.T /:

(3) Let B.T / � ƒ.T / be the set of all normalized measured laminations which

are up to scaling dual to a basic primitive conjugacy class for a tree U 2
Bal.�; �/. Then hS; �i � 1=B for every � 2 B.T / and every tree

S 2 †.T / \

�

[

s2.�1;�B/[.B;1/

Bal.es�; e�s�/

�

:

Remark 2.10. The requirement in part 3) of the de�nition is slightly stronger than

stated in [18] as in [18] it was assumed that the tree U is contained in Thick�.Fn/.

We will establish below that this stronger property serves our needs.

Each B-contracting pair .�; �/ 2 ML � ML (i.e. such that the projectivized

pair .Œ��; Œ��/ is B-contracting in the sense of De�nition 2.9) de�nes a contracting

line of minima 
 by associating to each t 2 R a point 
.t/ 2 Min�.et=2�Ce�t=2�/

which ful�lls the above de�nition. Such a contracting line of minima 
 is a line

of minima in the sense of De�nition 2.8. It is not unique, but its Hausdor�

distance (for the symmetrized Lipschitz metric introduced below) to any other

choice de�ned by any pair . O�; O�/ 2 ML � ML with Œ O�� D Œ�� and Œ O�� D Œ�� is

uniformly bounded (see [18] for details). Note that a line of minima as introduced

in [18] is a contracting line of minima in the above sense. We hope that this

discrepancy of terminology will not cause confusion.
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De�nition 2.11. Let .�; �/ be a positive pair. The balancing function

f�;�W CV.Fn/ �! Œ�1; 1�

associates to a projective tree ŒT � the unique number t 2 R so that hT; et=2�i D
hT; e�t=2�i if such a t exists, and it associates to ŒT � the value 1 (or �1/ if

hT; �i D 0 (or hT; �i D 0).

Lemma 2.12. The balancing function f�;� of a positive pair .�; �/ is continuous.

Proof. Choose a compact subset of cv.Fn/ which projects onto CV.Fn/ and use

continuity of the length function. �

De�nition 2.13. Let .�; �/ be a positive pair and 
 an associated line of minima.

We de�ne the balancing projection …
 W cv0.Fn/ ! 
 by

…
 .T / D 
.f�;�.ŒT �//:

The one-sided Lipschitz metric between two trees S; T 2 cv0.Fn/ is de�ned

as

dL.S; T / D log sup

²

hT; �i

hS; �i

ˇ

ˇ

ˇ

ˇ

� 2 ML

³

: (3)

The one-sided Lipschitz metric satis�es dL.S; T / D 0 only if S D T , moreover

it satis�es the triangle inequality, but it is not symmetric. The de�nition of the

one-sided Lipschitz metric we give here is not standard, and we refer to [14]

for a discussion why our de�nition is equivalent to the de�nition found in the

introduction and in other articles.

De�ne the symmetrized Lipschitz metric

d.S; T / D dL.S; T / C dL.T; S/:

Proposition 5.2 of [18] shows the following.

Proposition 2.14. For every B > 0 there is a number � D �.B/ > 0 with the

following property. Let .Œ��; Œ��/ be a B-contracting pair, let 
 be a contracting

line of minima de�ned by .Œ��; Œ��/ and let U 2 cv0.Fn/.

(1) If S 2 cv0.Fn/ is such that d.…
 .U /; …
 .S// � � then

dL.U; S/ � dL.U; …
.U // C dL.…
 .U /; …
 .S// C dL.…
 .S/; S/ � �

and

d.U; S/ � d.U; …
 .U // C d.…
 .U /; …
 .S// C d.…
 .S/; S/ � �:

(2) If S 2 
.R/ is such that d.U; S/ � inf t d.U; 
.t//C1 then d.S; …
 .U // � �.

(3) For all s < t ,

js � t j � � � d.
.s/; 
.t// � js � t j C �:
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Proof. Proposition 5.2 as stated in [18] requires that the tree U is contained in

Thick�.Fn/. The proof uses the axioms in the de�nition of a B-contracting pair

and applies axiom (3) to U (compare the remark after De�nition 2.9). No other

assumption on U is used. Since we are using a stronger notion of a B-contracting

pair, the statement holds true for all trees U 2 cv0.Fn/. �

3. Lines of minima and their shadows

The goal of this section is to show that contracting lines of minima are strongly

Morse coarse geodesics for the symmetrized Lipschitz distance whose shadows in

the free factor graph are parametrized quasi-geodesics.

Fix once and for all a number � > 0, so that the �–thick part Thick�.Fn/ of

Outer space is nonempty and path connected. Let

‡ W cv0.Fn/ �! FF (4)

be a map which associates to a tree T the free factor generated by some basic

primitive element for T (i.e. a primitive element ˛ 2 Fn which can be represented

by a loop on T=Fn of length at most two). To simplify the notations we always

assume from now on that a line of minima de�ned by a B-contracting pair is

contracting.

Lemma 3.1. For every B > 0 there is a number R D R.B/ > 0 with the following

property. Let 
 � Thick�.Fn/ be a line of minima de�ned by a B-contracting pair

and let ˛ be a primitive conjugacy class in Fn.

Suppose that T; T 0 2 Thick�.Fn/ are two trees for which ˛ is basic. Then

d.…
 .T /; …
.T 0// � R:

Proof. Recall that both T and T 0 are normalized so that the volume of the quotient

graph T=Fn; T 0=Fn is 1. Let �; � be the measured laminations de�ning the line

of minima 
 , normalized so that T 2 Bal.�; �/ and hence …
 .T / D 
.0/.

Suppose that there is a primitive conjugacy class ˛ which is basic for both T

and T 0 and let �˛ be the measured lamination dual to ˛. Suppose furthermore that

d.…
 .T /; …
 .T 0// � R > 2B C � where � > 0 is as in Proposition 2.14. By (3)

of Proposition 2.14 and the de�nition of a balancing projection, this implies that

T 0 2 Bal.es�; e�s�/ for some jsj > B .

Let c > 0 be so that cT 0 2 †.
.0//. By property (3) in De�nition 2.9 and the

requirement that ˛ is basic for T , we have

hT 0; �˛i=h
.0/; �˛i � 1=Bc:

As 
.0/ 2 Thick�.Fn/ we have h
.0/; �˛i � � and therefore since �˛ is basic for

T 0 we conclude that

2 � hT 0; �˛i � �=Bc:

In particular, 1=c � 2B=�.
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On the other hand, from the de�nitions (see the detailed discussion in Section 4

of [18]), we get

dL.
.0/; T 0/ D 1=c:

Now by Proposition 2.14, a large distance between the projections …
 .T / D 
.0/

and …
 .T 0/ implies a large distance between 
.0/ and T 0, and hence a small c.

This contradicts that 1=c � 2B=� and �nishes the proof. �

Proposition 3.2. For every B > 0 there is a number L D L.B/ > 0 with

the following property. If 
 � Thick�.Fn/ is a line of minima de�ned by a

B-contracting pair, then the image of 
 under the map ‡ is an L-quasi-geodesic

in FF.

Proof. Let .Œ��; Œ��/ 2 PML
2 be a B-contracting pair with associated contracting

line of minima 
 . Let

P � Fn

be the collection of all primitive conjugacy classes of Fn. De�ne a map

‰WP �! 


by associating to ˛ 2 P a point ‰.˛/ D 
.t/ as follows. Choose a tree

T 2 Thick�.Fn/ such that ˛ is basic for T . De�ne ‰.˛/ D …
 .T / where

…
 W cv0.Fn/ ! 
 is the balancing projection. By Proposition 2.9 and Lemma 3.1,

this is a coarsely well-de�ned map. This means that there is a universal con-

stant C D C.B/ > 0 such that for any other choice …0

 of such a map, we have

d.…
 .˛/; …0

.˛// � C for all ˛ 2 P.

Each element ˛ 2 P generates the conjugacy class of a rank one free factor h˛i
of Fn and hence P can be viewed as a subset of the vertex set of the free factor

graph. Thus the map ‰ is a map between metric spaces where P is equipped with

the restriction of the metric on FF and where 
 is equipped with the restriction

of the metric d . We claim that ‰ is 4R-Lipschitz where R D R.B/ > 0 is as in

Lemma 3.1.

To this end let ˛; ˇ 2 P be primitive conjugacy classes which generate rank

one free factors h˛i and hˇi of distance two in the free factor graph. Then up to

conjugation, there is a proper free factor A of Fn so that h˛i < A; hˇi < A. As

a consequence, there are representatives a of ˛, b of ˇ, and there is a primitive

conjugacy class � 2 P and a representative u of � such that a; u and u; b can be

completed to a free basis of Fn.

Choose a tree T 2 Thick�.Fn/ so that both ˛; � are primitive basic for T , and

choose a tree S 2 Thick�.Fn/ so that both �; ˇ are primitive basic for S . By

Lemma 3.1, both ‰.˛/ and ‰.�/ are R-close to …
 .T /, and both ‰.�/ and ‰.ˇ/

are R-close to …
 .S/. Hence, ‰.˛/ and ‰.ˇ/ are 4R-close.

Now any two points ˛; ˇ 2 P can be connected in P by a sequence .˛i /0�i�n

with ˛0 D ˛; ˛n D ˇ whose length n is not bigger than the distance between h˛i

and hˇi in FF and such that moreover dFF.h˛i i; h˛iC1i/ � 2 for all i .
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Namely, connect h˛i to hˇi by a geodesic .Ai/ in FF. For each i choose a rank

one free factor h˛i i < Ai . It now su�ces to observe that dFF.h˛i i; h˛iC1i/ � 2

for all i . But this follows from the fact that whenever A; B are free factors with

dFF.A; B/ D 1 then up to exchanging A and B and conjugation, we have A < B .

Thus if � 2 P generates a free factor h�i of A, � 2 P generates a free factor h�i

of B , then dFF.h�i; h�i/ � 2.

As the map ‰ maps two primitive conjugacy classes of distance two in FF to

points on 
 which are 4R-close, the map ‰ expands distances at most by a factor

of 4R which is what we wanted to show. Furthermore, the two-neighborhood of P

is all of FF and hence ‰ can be extended to a coarsely well de�ned 4R-Lipschitz

map from FF into 
 which we denote again by ‰.

Another application of Lemma 3.1 shows that for every t 2 R and any primitive

basic element � for 
.t/ we have

d.‰.�/; 
.t// � R:

We conclude that

d.‰ ı ‡.
.t//; 
.t// � R:

The map ‡ W cv0.Fn/ ! FF is coarsely M -Lipschitz for some number M > 0,

i.e. we have dFF.‡T; ‡T 0/ � Md.T; T 0/ C M for all T; T 0 2 cv0.Fn/ [4].

Together with the above properties of the map ‰, this shows that ‡ ı‰ is a coarse

4MR-Lipschitz retraction of FF onto ‡.
/. In particular, it maps a point on ‡.
/

to a point of distance at most 4MR.

As a consequence, ‡.
/ is a parametrized 4MR-quasi-geodesic in FF.

Namely, for s < t let gW Œ0; N � ! FF be a simplicial geodesic joining ‡.
.s//

to ‡.
.t//. The retractions ‡.‰.g.i/// are points on ‡.
/ which are of distance

at most 4MR apart, and the endpoints ‡.‰.g.0///; ‡.‰.g.N /// are of distance

at most 2MR from ‡.
.s// D g.0/ and ‡.
.t// D g.N /.

We showed so far that there is an edge path in FF connecting ‡.
.s// to

‡.
.t// whose image is contained in the 4MR-neighborhood of ‡.
/ and whose

length does not exceed 4MRdFF.‡.
.s//; ‡.
.t///. Since s < t was arbitrary

this yields that indeed ‡.
/ is an 4MR-quasi-geodesic in FF. �

Recall from Section 2.1 that the Gromov boundary @FF of FF can be identi�ed

with the space of equivalence classes of arational projective trees in @ CV.Fn/.

The equivalence relation � on this set is such that two trees ŒT �; ŒS� are equivalent

if there is a measured lamination � dual to both ŒT �; ŒS�.

Corollary 3.3. Let .�; �/ be a contracting pair de�ning a line of minima 
 .

(1) �; � are dual to arational projective trees de�ning the endpoints of ‡.
/ in

@FF.

(2) The limit of any convergent subsequence of Œ
.t /� � CV.Fn/ as t ! ˙1 is

an arational tree de�ning an endpoint of ‡.
/ in @FF.
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Proof. Let 
 be a line of minima, de�ned by the B-contracting pair .�; �/. It

follows from the de�ning properties of a contracting line of minima (compare [18]

for details) that

h
.t/; �i �! 0 .t ! 1/: (5)

As the restriction to cv0.Fn/ of the map cv.Fn/ ! CV.Fn/ which associates

to an Fn-tree its projectivization is a homeomorphism, the map ‡ de�ned in

equation (4) induces a map CV.Fn/ ! FF which we denote again by ‡ . Using

this convention, in Section 10 of [17] the following is shown. Let us assume that

ŒTi � � CV.Fn/ is any sequence with the property that ‡.ŒTi �/ � FF converges to

a point � 2 @FF. Assume furthermore that the sequence ŒTi � converges in CV.Fn/

to a tree ŒS� 2 @ CV.Fn/; then ŒS� is arational and represents �.

Thus by Proposition 3.2, any limit ŒT � in CV.Fn/ of a sequence of projectivized

trees Œ
.ti /� .ti ! 1/ is an arational tree whose equivalence class represents the

forward endpoint of ‡.
/ in @FF. By continuity of the length pairing and (5), we

have hT; �i D 0. �

Recall from the introduction the de�nition of a strongly Morse coarse geodesic.

The next observation shows that lines of minima are strongly Morse. For its

formulation, for a subset A of cv0.Fn/ we denote by NM .A/ the M -neighborhood

of A for the symmetrized Lipschitz metric.

Proposition 3.4. For all B > 0; K > 1 there is a constant M D M.B; K/ > 0

with the following property. Let 
 � Thick�.Fn/ be a B-contracting line of

minima. Then every K-quasi-geodesic � � cv0.Fn/ for the one-sided Lipschitz

metric or for the symmetrized Lipschitz metric with endpoints on 
 is contained

in NM .
/.

Proof. The argument is standard; we follow the clear proof in Lemma 3.3 of [27].

We show the claim for quasi-geodesics for the one-sided Lipschitz metric dL, the

case of the symmetrized Lipschitz metric follows from the same argument.

Let 
 be a B-contracting line of minima and let � W Œa; b� ! cv0.Fn/ be a

K-quasi-geodesic for the one-sided Lipschitz metric with endpoints on 
 . Assume

without loss of generality that � is continuous.

Let …
 W Thick�.Fn/ ! 
 be the balancing projection. By Proposition 2.14

there exists � D �.B/ > 1 with the following property: if d.…
 .x/; …
.y// � �

then

dL.x; y/ � dL.x; …
 .x// C dL.…
 .x/; …
 .y// C dL.…
 .y/; y/ � �: (6)

Since 
 � Thick�.Fn/, there exists some ı > 0 with the following property. If

S 2 cv0.Fn/ � Thickı.Fn/ then dL.S; 
/ � 4�K2. For this number ı > 0, there

exists some c > 0 such that dL.S; 
/ � cdL.
; S/ for all S 2 Thickı.Fn/ [2].
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Set A D 8c�K2. Let Œs1; s2� � Œa; b� be a maximal connected subinterval

such that d.�.s/; 
/ � A for all s 2 Œs1; s2�. By the previous paragraph, the

choice of A and the de�nition of the symmetrized Lipschitz metric, we have

dL.�.s/; 
/ � 4�k2 for all s 2 Œs1; s2�.

Let s1 D r1 < � � � < rm < rmC1 D s2 be such that dL.�.ri/; �.riC1// D A for

i < m and dL.�.rm/; �.rmC1// � A. By the assumption on � jŒs1; s2� and by the

estimate (6), we have

dL.…
 .�.ri//; …
.�.riC1/// � � for all i: (7)

Now � is a K-quasi-geodesic and hence

A � K.riC1 � ri/ C K

and s2 � s1 � A.m � 1/=K � .m � 1/. Then

dL.�.s1/; �.s2// � .m � 1/.A=K � 1/=K � K � 3.m � 1/� � K:

On the other hand, summing inequality (7) over all i and using (2) of Propo-

sition 2.14 and the assumption that the symmetrized Lipschitz distance between

�.s1/; �.s2/ and 
 equals A, we obtain

dL.�.s1/; �.s2// � 2A C 2� C .m � 1/� D 8�K2 C 2� C .m � 1/�:

This shows 2.m � 1/� � 8�K2 C 2� C K and therefore m is bounded by a number

only depending on B and K. This is what we wanted to show. �

Remark 3.5. As the number M in Proposition 3.4 only depends on B and K,

by local compactness of cv0.Fn/ the statement of the lemma is also valid for

continuous two-sided in�nite quasi-geodesics which connect the endpoints of 
 .

By such a quasi-geodesic we mean a map � which is a limit in the topology

of uniform convergence on compact sets of a sequence of quasi-geodesics with

endpoints 
.ai /; 
.bi/ and such that ai ! �1, bi ! 1.

4. Strongly Morse coarse geodesics

In Section 3 we showed that a contracting line of minima projects to a parame-

trized quasi-geodesic in the free factor graph. Furthermore, a B-contracting line

of minima is uniformly strongly Morse.

The goal of this section is to study strongly Morse coarse geodesics in the thick

part of Outer space and prove Theorem 1 from the introduction.

Our main tool to this end are fast folding paths. Following [14], we de�ne such

a fast folding path connecting two points S; T 2 cv0.Fn/ as follows. In the simplex

de�ned by S (which consists of all normalized trees obtained from S by rescaling
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the edges), there is a point S 0 and an optimal train track map S 0 ! T . This train

track map then induces a folding path connecting S 0 to S . Compose this path with

a rescaling path connecting S to S 0 and call the resulting path a fast folding path

from S to T .

There is a notion of parametrization by arc length of fast folding paths. Fast

folding paths parametrized by arc length are geodesics for the one-sided Lipschitz

metric [14] and hence by Proposition 3.4 we have

Lemma 4.1. Let 
 WR ! Thick�.Fn/ be a uniformly strongly Morse c-coarse

geodesic for the symmetrized Lipschitz metric. There exists a number M > 0 with

the following property.

(1) For any two points x; y 2 
 , the Hausdor� distance between a fast folding

path connecting x to y and a subsegment of 
 connecting x to y is at most

M .

(2) There exists a fast folding path �WR ! cv0.Fn/ whose Hausdor� distance to


 is at most M .

Proof. Let 
 WR ! Thick�.Fn/ be a uniformly strongly Morse c-coarse geodesic.

For some s < t connect 
.s/ to 
.t/ by a fast folding path �. Since such a path is a

geodesic for the one-sided Lipschitz metric and 
 is uniformly strongly Morse, the

image of the path is contained in a uniformly bounded neighborhood of 
 for the

symmetrized Lipschitz metric. In particular, this image is contained in Thickı.Fn/

for a number ı > 0 only depending on the constants in the de�nition of a Morse

coarse geodesic.

Since 
 is a c-coarse geodesic for the symmetrized Lipschitz metric and the

symmetrized Lipschitz metric is proportional to the one-sided Lipschitz metric

for points in Thick�.Fn/, see [2], the path 
 is a uniform quasi-geodesic for

the one-sided Lipschitz metric. This implies that the Hausdor� distance for

the symmetrized Lipschitz distance between 
Œs; t � and � is unformly bounded.

Namely, otherwise there is a long subsegment 
0 of 
Œs; t � not contained in a

uniformly bounded neighborhood of �. We may assume that the symmetrized

Lipschitz distance between the endpoints of 
0 and � is uniformly bounded. But �

is a geodesic for the one-sided Lipschitz metric contained in a uniformly bounded

(for the symmetrized Lipschitz distance) neighborhood of 
0 and therefore the

distance between the endpoints of 
0 has to be uniformly bounded. As 
 is a

uniform quasi-geodesic for the one-sided Lipschitz distance, the length of 
0 has

to be uniformly bounded which is what we wanted to show.

Now let ˇn be a fast folding path connecting 
.�n/ to 
.n/. Apply the Arzela

Ascoli theorem for folding paths to the paths ˇn (we refer to Proposition 3.7

of [17] and its proof for an explanation why this is possible) and obtain a biin�nite

fast folding path ˇ whose Hausdor� distance to 
 is bounded by a constant only

depending on B . �
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Call a fast folding path � in cv0.Fn/ stable if it is entirely contained in

Thickı.Fn/ for some ı > 0 and if furthermore � is strongly Morse. Lemma 4.1

shows that for any �nite or in�nite strongly Morse coarse geodesic 
 W Œa; b� !

Thick�.Fn/ there exists a stable fast folding path whose Hausdor� distance to 
 is

uniformly bounded.

If 
.t/ is a fast folding path, then for su�ciently large T0 and all T0 < s < t

there exists a morphism fs;t W 
.s/=Fn ! 
.t/=Fn, ie a homotopy equivalence

which is a homothety on edges, with scaling factor independent on the edge.

We next use morphisms to study fast folding paths which are not stable.

Lemma 4.2. Let 
.t/WR ! Thick�.Fn/ be a fast folding path such that for each t ,

the graph Gt D 
.t/=Fn contains a non-degenerate proper subgraph Et with

fundamental group Fk for some 1 � k < n such that fs;t .E
i
s/ D Ei

t for all s < t ;

then 
.t/ is not stable.

Proof. Since 
.t/ 2 Thick�.Fn/, the volume of Gt � Et is bounded from below

by � independent of t .

Modify the path of graphs Gt by scaling Et with a constant a.t/ 2 Œ0; 1� and

renormalizing the volume. If the function a is chosen in such a way that its value

equals one at the endpoints, that it decreases very slowly to some chosen number

ı=2 > 0 and increases again very slowly to one (here very slowly means that the

derivative of a is required to be very small), then the modi�ed path is a uniform

quasi-geodesic for dL (which can easily be checked using the de�nition (3) for dL)

which passes through cv0.Fn/ � Thickı.Fn/. Thus 
 is not stable. �

The following example was suggested to us by an anonymous referee; it shows

that fast folding paths which are entirely contained in Thick�.Fn/ need not be

stable.

Example 4.3. Let R be a marked metric rose with two petals which is also a train

track for an iwip ' 2 Out.F2/. Let G be two copies of R wedged together and

let ˆ be the induced outer automorphism (perform ' independently on each copy

of R) which has G as a train track representative. Then ˆ is reducible, but the

obvious fast folding path 
 from G to G ı ˆn stays uniformly in the thick part of

Outer space.

On the other hand, Lemma 4.2 shows that 
 is not stable.

We showed so far that strongly Morse coarse geodesics in Thickı.Fn/ are

fellow-traveled by stable fast folding paths which are entirely contained in

Thick�.Fn/ for some � > 0 only depending on the quality of the Morse coarse

geodesic. Now if 
 W Œ0; 1/ ! Thick�.Fn/ is a one-sided in�nite fast folding path

then Œ
.t /� converges as t ! 1 in CV.Fn/ to a tree ŒT � 2 @ CV.Fn/. We call

ŒT � the endpoint tree of the path. The tree is called uniquely ergometric (see [25]

for this notion) if it admits a unique non-atomic length measure up to scale. Here
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a length measure assigns to each non-degenerate segment of T a positive length,

and this length is invariant under the action of Fn and additive with respect to

concatenation.

Our next goal is to show that endpoints of stable fast folding paths are very

special. The following lemma uses some technical results of [25] as an essential

ingredient. These results are summarized in the appendix.

Lemma 4.4. The endpoint tree of a stable fast folding path 
 W Œ0; 1/!Thick�.Fn/

is uniquely ergometric.

Proof. Let 
 W Œ0; 1/ ! Thick�.Fn/ be a stable fast folding path. For s � 0 write

Gs D 
.s/=Fn. Then Gs is a metric graph with fundamental group Fn, volume

one, no univalent vertices and no loop of length smaller than �. Furthermore, by

perhaps removing the initial segment of 
 , we may assume that for s � t there

exists a morphism fs;t W Gs ! Gt such that fs;u D ft;u ı fs;t for s < t < u. These

morphisms are homotopy equivalences which are homotheties on edges, and the

scaling factor for the metric does not depend on the edge.

The number of abstract graphs without univalent vertices and fundamental

group Fn is �nite and therefore we can �nd a sequence ni with niC1 � ni � 1

such that the graphs Gni
are all isomorphic, i.e. they are isomorphic to a �xed

graph G.

An invariant sequence of subgraphs is a sequence of non-degenerate proper

subgraphs Eni
� Gni

with the property that fni ;nj
restricts to a change of marking

morphism Eni
! Enj

up to global scaling. The sequence is stabilized if for large

enough i and j > i the restriction of fni ;nj
to Eni

is a permutation. Lemma 4.2

shows that fast folding paths containing stabilized proper subgraphs are not stable.

Hence we may assume from now on that 
 is reduced, i.e. it does not contain

stabilized subgraphs (compare [25]).

We now argue by contradiction and we assume that the endpoint tree T of 
 is

not uniquely ergometric. Since by the above remark the sequence Gni
is reduced,

we can apply the results from Section 6 of [25].

Following [25], by passing to a subsequence we may assume that the graphs

Gni
converge as i ! 1 in the moduli space of metric graphs of volume one to a

metric graph yG. Since the graphs Gni
are all isomorphic to G as abstract graphs,

the graph yG can be obtained from G by collapsing a (perhaps empty) set E of

edges to points. Thus yG is abstractly isomorphic to the quotient graph G=E. As


 � Thick�.Fn/, the graph G=E has fundamental group Fn. Let …W G ! G=E be

the natural collapsing map.

A transverse decomposition of the graph G is a collection H 0; H 1; : : : ; H k

of subgraphs of G such that each edge e of G is contained in precisely one of the

graphs H i . By Theorem 5.6 of [25] (see Theorem A.1 of the appendix), there exists

a transverse decomposition of G into subgraphs H 0; H 1; : : : ; H k with k � 2

which record the geometry of the di�erent length measures on the limit tree ŒT �

in the following way. First, by Corollary 5.15 of [25], we have E D H 0, and for



Stability in Outer space 377

j � 1 the graph ….H j / does not have univalent vertices, and it contains a loop.

Moreover, by Lemma 6.7 of [25] (see Proposition A.2), for each ` there exists

some i such that the subgraphs ….fni ;niCp
H j / .j D 1; : : : ; k; 1 � p � `/ of

G=E do not share any edge. Since 
 � Thick�.Fn/, the volumes of all graphs

fni ;niCp
.H j / are bounded from below by a universal constant.

The geometric setting is now very similar to the situation in Lemma 4.2.

Namely, since 
 � Thick�.Fn/, by the volume renormalization procedure along

a folding path, the graphs H j are folded along the segment Gs .ni � s � niC`/

with roughly the same speed, and this speed is linear in s.

We now modify the path 
 as follows. First collapse all edges of E in the

graphs Gni
to a point. Denote by yGni

the resulting graph, normalized to have

volume one. As the volume of E tends to zero along the sequence and as the path


 is entirely contained in Thick�.Fn/, by possibly removing an initial segment of


 we may assume that the distance in cv0.Fn/ between the universal covers of

Gni
D 
.ni /=Fn and yGni

is as small as we wish, uniformly for all i .

Fix a large number ` > 1 and choose i so that the subgraphs ….fni ;niCp
H j /

of G=E do not share any edge for 1 � p � `. Then u ! yGnu
.i � u � i C `/

is a sequence of metric graphs which are all isomorphic to G=E, and they are

connected by morphisms Ofnu;nuCp. Furthermore, as the graphs ….fnu;nuCp
H j /

do not share any edge, they de�ne a transverse decomposition of G=E.

We can now change the metric on yGniCp
by scaling fni ;niCp

.H 1/ by a positive

constant which slowly tends to a very small number as we follow the sequence,

and gradually increase the scaling parameter again so that it equals one for yGniC`
.

If ` is su�ciently large then as in Lemma 4.2, this deformation produces a uniform

quasi-geodesic with endpoints on 
 which passes through cv0.Fn/ � Thickı.Fn/

for an arbitrarily prescribed ı > 0. This contradicts the assumption on stability

and shows the lemma. �

Remark 4.5. It follows from the discussion in the proof of Lemma 4.4 (which

can be thought of an interpretation of the results in [25]) that folding paths

limiting on a tree which is not uniquely ergometric share geometric properties with

Teichmüller geodesics whose vertical measured foliation is not uniquely ergodic

(and hence which are not stable). We refer to [25] for a more comprehensive

discussion.

Corollary 4.6. A contracting line of minima has a pair of endpoints in @ CV.Fn/,

and any such endpoint is arational and uniquely ergometric.

Proof. By Proposition 3.4, a B-contracting line of minima 
 is a uniformly

strongly Morse coarse geodesic for the symmetrized Lipschitz metric. Lemma 4.1

shows that there is a stable fast folding path � which is contained in a uniformly

bounded neighborhood of 
 . This fast folding path limits on an arational tree

ŒT � 2 @ CV.Fn/ whose equivalence class de�nes the endpoint of the projection of

� to FF.
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By Lemma 4.4, the tree ŒT � is uniquely ergometric. Now if ŒT 0� 2 @ CV.Fn/ is

another tree obtained as a limit of a stable fast folding path which fellow travels


 , then there exists an equivariant Lipschitz map T ! T 0. Since T is uniquely

ergometric, this implies that ŒT � D ŒT 0�. �

The following proposition �nishes the proof of the implication .2/ H) .1/ in

Theorem 1.

Proposition 4.7. Uniformly strongly Morse coarse geodesics in Thick�.Fn/

project via the map ‡ to uniform quasi-geodesics in FF.

Proof. Our goal is to show that stable fast folding paths project to uniform quasi-

geodesics in the free factor graph.

Shadows of folding paths in FF are uniform unparametrized quasi-geodesics,

see [4]. By Lemma 2.6 of [16] and its proof (more precisely, the last paragraph

of the proof which is valid in the situation at hand without modi�cation), it

therefore su�ces to show the following. For M > 0; � > 0; p > 0 there is

a number k D k.p; M; �/ > 0 such that the endpoints of any M -stable fast

folding path in Thick�.Fn/ whose dL-length is at least k are mapped by the map

‡ W cv0.Fn/ ! FF to points of distance at least p. Here in the de�nition of a

uniformly Morse path, we use the number M to quantify stability for dL-one-

quasi-geodesics.

Assume to the contrary that this is not true. Then there are M > 0; � > 0,

p > 0, and for each i > 0 there is an M -stable fast folding path ˇi in Thick�.Fn/

of length i whose endpoints are mapped by ‡ to points inFF of distance at most p.

Since the images of folding paths under the map ‡ are uniformly unparametrized

quasi-geodesics in FF, this then implies that diam.‡.ˇi // � q for all i and a

universal constant q > 0.

Using as before invariance under the action of Out.Fn/ and the Arzela-Ascoli

theorem for folding paths, up to passing to a subsequence we may assume that

the paths ˇi converge as i ! 1 to a one-sided in�nite limiting folding path

ˇ. The path ˇ is contained in Thick�.Fn/, and it connects a basepoint to a tree

ŒT � 2 @ CV.Fn/. Moreover, ˇ is M -stable. By possibly removing the initial

segment of the path, we may assume that it is guided by an optimal train track

map f W ˇ.0/ ! T (see [17] for details). This map realizes the optimal Lipschitz

constant for equivariant maps ˇ.0/ ! T , and it is an isometry on edges for a

suitable representative T of ŒT �.

Our goal is to show that the tree T is arational. Once we have established this,

we know that the shadow in FF of the fast folding path ˇ has in�nite diameter.

Since ˇ is a limit of the paths ˇi for the topology of uniform convergence on

compact sets and since the map ‡ W cv0.Fn/ ! FF is coarsely Lipschitz, we

deduce that for every k > 0 and all su�ciently large i , there is a some ti > 0

so that the distance between ‡.ˇi .0// and ‡.ˇi .ti// is at least k. This violates the

assumption that the diameter of ‡.ˇi / is at most q.
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The rest of the proof is concerned with showing that T is arational. Note �rst

that by Lemma 4.4, the endpoint tree ŒT � is uniquely ergometric. This implies that

there is no tree T 0 2 @ cv.Fn/ which can be obtained from T by a one-Lipschitz

alignment preserving map �W T ! T 0 collapsing a nontrivial subtree of T to a

point.

Lemma 2.4 now yields that ŒT � is arational provided that T does not have point

stabilizers containing free factors. The existence of such point stabilizers is ruled

out with an argument which is very similar to the proof of Lemma 4.4.

We argue by contradiction and we assume that there exists a primitive element

˛ 2 Fn which stabilizes a point in T . By Lemma 8.1 of [17], there is a simplicial

tree S0 in @ cv.Fn/ of covolume one such that the translation length of ˛ on S0 is

trivial, and there is an optimal train track map gW S0 ! T which gives rise to a

folding path entirely consisting of trees on which ˛ �xes a point. We may assume

that S0=Fn is a rose with n � 1 petals.

Modify S0 slightly to a tree S1 2 cv.Fn/ so that S1=Fn is a rose with n

petals, one very short petal corresponding to ˛, and such that S0 is contained

in the simplex de�ned by S1. For each t connect S1 to ˇ.t/ by a fast folding path

�t . As ˇ is stable and fast folding paths are geodesics for dL, these fast folding

paths are contained in a uniformly bounded neighborhood of ˇ. In particular,

they are contained in Thick�.Fn/ for some � > 0. Hence we can take a limit � of

a subsequence of these folding paths as t ! 1. The path � connects S1 to a tree

T 0 which is Fn-equivariantly bilipschitz to T . Since ŒT � is uniquely ergometric,

we have ŒT 0� D ŒT �. In particular, ˛ �xes a point on T 0. Furthermore, � is stable.

By an application of Lemma 8.1 of [17], there is a tree S2 in the simplex de�ned

by S1, and there is a rescaling T 00 of T and a train track map f W S2 ! T 00 which

guides the fast folding path �. The map f is an Fn-equivariant isometry on edges.

If ˛ �xes a point in S2 then the folding path � passes through S2 which is

impossible as � is contained in Thick�.Fn/. Thus S2=Fn is a rose with n petals.

Let � � S2 be an axis for ˛ and let x 2 � be a vertex of S2 on � . As the translation

length of ˛ on S2 is positive and f is an edge isometry, the point f .x/ 2 T 00 is

not stabilised by ˛.

Connect f .x/ by a minimal segment s to the �xed point set Fix.˛/ of ˛ in T 00.

Let y 2 Fix.˛/ be the endpoint of s. As in the proof of Lemma 8.1 of [17],

we observe that the geodesic segment in T 00 connecting f .x/ to f̨ .x/ passes

through y. The turn at x de�ning the two directions of the axis of ˛ is illegal.

Now recall that the quotient graph S2=Fn is a rose. By the above discussion,

the folding procedure identi�es the initial and terminal subsegment of the petal

de�ned by ˛ with unit speed. As all illegal turns are folded at once, with unit speed,

we conclude that each of the quotient graphs of the fast folding path � contains an

embedded loop consisting of a single edge which corresponds to ˛. But this means

that the fast folding path � contains stabilized subgraphs. This violates Lemma 4.4

(see the proof of Lemma 4.4 for more details). The proposition is proven. �
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Remark 4.8. Similar to the case of Teichmüller space with the Weil-Petersson

metric (see [6] for a discussion), we believe that there are strongly Morse coarse

geodesics in the metric completion of Outer space. Note that by [1], this metric

completion is the space of simplicial Fn-trees with quotient of volume one and

with all edge stabilisers trivial.

5. Convex cocompact subgroups of Out.Fn/

In Section 3 we showed that a contracting line of minima projects to a parame-

trized quasi-geodesic in the free factor graph. This quasi-geodesic admits a pair

of endpoints in the boundary @FF of the free factor graph, and by Corollary 4.6,

these endpoints are represented by arational uniquely ergometric projective trees.

In fact, more is true. We use the following de�nition which is taken from

Section 2 of [18].

De�nition 5.1. A projective tree ŒT � 2 @ CV.Fn/ is doubly uniquely ergodic if the

following two conditions are satis�ed.

(1) There exists a unique projective measured lamination Œ�� 2 PML which is

dual to ŒT �.

(2) If Œ�� is dual to ŒT � and if ŒS� is dual to Œ�� then ŒS� D ŒT �.

Denote by UT � @ CV.Fn/ the Out.Fn/-invariant set of doubly uniquely

ergodic trees. Lemma 2.9 of [18] shows that a �xed point in @ CV.Fn/ of any

iwip element of Out.Fn/ is contained in UT. Moreover, the action of Out.Fn/ on

the closure of UT in @ CV.Fn/ is minimal.

The following corollary is immediate from Corollary 4.6 and Theorem 1.1

of [25].

Proposition 5.2. Any contracting line of minima admits a pair of endpoints in

@CV.Fn/, and such an endpoint is doubly uniquely ergodic and dual to a de�ning

measured lamination for the line of minima.

Proof. Let 
 be a B-contracting line of minima. By Corollary 4.1, there exists

a fast folding path ˇ whose Hausdor� distance to 
 is at most M.B/. This fast

folding path is contained in Thick�.Fn/ for some � > 0, and it is stable.

Corollary 4.6 shows that there is a uniquely ergometric arational tree ŒT � 2

@ CV.Fn/ such that Œˇ.t/� ! ŒT � in CV.Fn/. In fact, ŒT � is the unique projective

tree in @ CV.Fn/ de�ning the forward endpoint in @FF of the quasi-geodesic ray

‡.
Œ0; 1//.

By Proposition 3.2, 
 projects to a uniform quasi-geodesic in FF and hence the

same holds true for ˇ. Thus the assumptions of Theorem 1.1 of [25] are ful�lled.

Theorem 1.1 of [25] now implies that ŒT � is doubly uniquely ergodic.
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Now recall that 
 is de�ned by the B-contracting pair .Œ��; Œ��/ 2 PML�PML.

It follows from the de�nition of a B-contracting line of minima that h
.t/; �i ! 0

.t ! 1/. By continuity of the length function, this implies that � is dual

to ŒT �. �

The following result is the main characterization of convex cocompact sub-

groups of Out.Fn/. It gives a su�cient criterion for a subgroup to be convex

cocompact. That this characterization is also necessary follows from the results

in Section 6.

For the purpose of its proof and for later use, following De�nition 3.1 of [18]

we call a family F of non-negative functions � on cv0.Fn/ uniformly proper

if for every a > 0 there is a compact subset C.a/ of Thick�.Fn/ such that

��1Œ0; a� \ Thick�.Fn/ � C.a/ for every � 2 F . Let moreover UE � UT be the

Out.Fn/-invariant subset of @ CV.Fn/ of arational uniquely ergometric projective

trees.

Proposition 5.3. Let � < Out.Fn/ be a word hyperbolic subgroup with the

following properties.

(1) There is a �-equivariant homeomorphism of the Gromov boundary @� of �

onto a compact subset ƒ of UE.

(2) There is some B > 0 so that for any two points ŒS� 6D ŒT � 2 ƒ, there is a

pair of dual projective measured laminations .Œ��; Œ��/ for ŒS�; ŒT � which is a

B-contracting pair.

Then � is convex cocompact.

Proof. Let 
 be a contracting line of minima de�ned by the B-contracting pair

.�; �/, with balancing projection …
 . Recall that this projection associates to

a tree S the unique point …
 .S/ D 
.t/, determined by the requirement that

f�;�.ŒS�/ D 0 (notations as in Section 2).

By Corollary 4.6 (see also Proposition 5.2), there are unique projective trees

ŒT��; ŒT�� 2 UE � @ CV.Fn/ which are dual to �; �. Thus the balacing projection

…
 extends to a map

…
 W CV.Fn/ � ¹ŒT��; ŒT��º �! 
.R/:

Let TB be the space of triples of points in PML with the property that any

pair from this triple is B-contracting. Let .Œ��; Œ��; Œ��/ 2 TB and let ŒU � 2 UE

be the tree which is dual to Œ��. Choose representatives �; � of Œ��; Œ�� such

f�;�.ŒU �/ D 0. Let 
 be a contracting line of minima, de�ned by the B-contracting

pair .�; �/; then …
 .ŒU �/ D 
.0/.
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Let � be a contracting line of minima de�ned by the contracting pair .Œ��; Œ��/.

By Corollary 3.3, Œ�.t /� ! ŒU � .t ! �1/ in CV.Fn/. Now f�;�.ŒU �/ D 0 and

hence by continuity of the function f�;� established in Lemma 2.12 and by the

de�nitions, we have …
 .Œ�.s/�/ 2 
Œ�1; 1� for su�ciently small s.

By the de�nition of a B-contracting pair, applied to the pair .Œ��; Œ��/, we

obtain that for su�ciently small s, any fast folding path connecting �.s/ to a tree

T 2 @ cv.Fn/ which is dual to � (recall that such a tree is unique up to scale)

passes through a uniformly bounded neighborhood of 
.0/. An application of

Corollary 4.1 then yields that the line of minima � passes through a uniformly

bounded neighborhood of 
.0/. Furthermore, the Hausdor� distance between


Œ0; 1/ and a half-ray of � is uniformly bounded, and 
Œ0; 1/ is up to a uniformly

bounded error the largest subray of 
 with this property.

An application of this reasoning to a line of minima � which is de�ned by the

B-contracting pair .Œ��; Œ��/ now shows that � passes through a uniformly bounded

neighborhood of 
.0/ is as well. Furthermore, the set of points in cv0.Fn/ which

are uniformly close to all three lines of minimal 
; �; � has uniformly bounded

diameter.

As a consequence, there is a coarsely well de�ned map

‚WTB �! Thick�.Fn/

which maps an ordered triple .Œ��; Œ��; Œ��/ 2 TB to some point ‚.Œ��; Œ��; Œ��/ 2

Thick�.Fn/ which is uniformly close to all three contracting lines of minimal

de�ned by the three di�erent pairs of points in the triple. The map ‚ depends

on choices, but there is a number D > 0 such that for any other choice ‚0, we

have

d.‚.Œ��; Œ��; Œ��/; ‚0.Œ��; Œ��; Œ��// � D for all .Œ��; Œ��; Œ��/ 2 TB :

Moreover, for ' 2 Out.Fn/ we have ‚.'Œ��; 'Œ��; 'Œ��/ D '.‚.Œ��; Œ��; Œ��//

coarsely (i.e. up to replacing points by points of uniformly bounded distance).

The map ‚ also is coarsely invariant under permutations of the three variables.

Let now � < Out.Fn/ be as in the proposition. Let F W @� ! ƒ � UE be the

equivariant homeomorphism whose existence is assumption (1) of the proposition.

Let H� be the closure of the collections of all lines of minima de�ned by any two

distinct points in ƒ. The set H� is a closed �-invariant subset of Thick�.Fn/.

The group � is word hyperbolic and hence it acts properly and cocompactly

on the space of triples of distinct points in @�. Let A be a compact fundamental

domain for this action. The subset F 3.A/ � TB is mapped by ‚ to a subset of

H� � Thick�.Fn/ of uniformly bounded diameter.

Namely, to a triple .Œ��; Œ��; Œ��/ 2 TB associate the pair

G.Œ��; Œ��; Œ��/ D .�; �/

of representatives of Œ��; Œ�� with the following two properties.
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(1) Let ŒU � 2 UE be the tree which is dual to Œ��; then hU; �i D hU; �i.

(2) Min¹hS; � C �i j S 2 Thick�.Fn/º D 1:

It is immediate from the earlier discussion that the map G is continuous and

therefore the family of functions

F D ¹h�; � C �i j .�; �/ 2 GF 3.A/º

is compact. Furthermore, F is uniformly positive (compare [18]) and hence

uniformly proper.

Now the map ‚ can be chosen to associate to a point z 2 TB a point in

Min�.� C �/ � Thick�.Fn/ where G.z/ D .�; �/. From this the diameter bound

of the image of F 3A under ‚ is immediate.

In particular, its closure K is compact. Thus by coarse equivariance of the

map ‚, � acts on H� cocompactly. The action is proper as well since � acts

properly on Thick�.Fn/.

Choose a path connected closed neighborhood U of the compact set K so that

the union of the �-translates of this set is a path connected closed neighborhood

� of H� on which � acts properly and cocompactly.

Equip � with a �-invariant length metric. As � acts on � cocompactly, for

x 2 � the orbit map g 2 � ! gx 2 � is a quasi-isometry.

Let 
 be a geodesic in � with endpoints 
.�1/ 2 @�; 
.1/ 2 @�. There

is a corresponding B-contracting line of minima � in H� connecting F.
.�1//

to F.
.1//, and this line of minima is a c-coarse geodesic in cv0.Fn/ for the

symmetrized Lipschitz metric for a number c > 0 not depending on 
 . In

particular, it is a c-coarse geodesic in � � H� equipped with the intrinsic path

metric.

As an orbit map � ! � is a quasi-isometry, the contracting line of minima

� determines an equivalence class of uniform quasi-geodesics in �, where two

quasi-geodesics are equivalent if and only if their Hausdor� distance is uniformly

bounded. We claim that the geodesic 
 is contained in this class.

To this end note that by Corollary 4.6, as t ! ˙1 the projective trees Œ�.t /�

converge in CV.Fn/ to F.
.˙1//. By hyperbolicity of �, the equivalence class

of 
 consists precisely of quasi-geodesics in � with the same endpoints in @FF as


 and hence the geodesic 
 is contained in this class. As a consequence, for some

�xed x 2 �, the orbit 
x is contained in a uniformly bounded neighborhood of �.

Recall that the map ‡ W cv0.Fn/ ! FF is coarsely Lipschitz and coarsely

Out.Fn/-equivariant, and it maps � to a parametrized uniform quasi-geodesic in

FF. Together with Lemma 3.4 and Remark 3.5, this yields that an orbit map

g 2 � ! gA 2 FF .A 2 FF/ is a quasi-isometric embedding. �
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6. Free factor graph and Outer space

In this section we consider Lipschitz paths in Outer space which project to

parametrized quasi-geodesics in the free factor graph. The endpoints of such a

path in @FF is a pair of equivalence classes of arational trees. We show that a pair

of dual laminations for any two representatives of such trees is a B-contracting

pair.

The main result is the following

Proposition 6.1. For every L > 1 there exists a number B D B.L/ > 0 with the

following property. Suppose that 
 WR ! cv0.Fn/ is a one-Lipschitz path which

projects to an L–quasi-geodesic in FF. Then there are unique projective arational

trees which de�ne the endpoints of 
 in @FF. If .�; �/ is a pair of measured

laminations which is dual to this pair of trees, then .�; �/ is B–contracting.

Furthermore, the Hausdor� distance between 
 and the line of minima � de�ned

by .�; �/ is at most D.L/ where D D D.L/ only depends on L.

We break the proof of this proposition into several lemmas which will also be

useful for the extension of Proposition 6.1 formulated in Corollary 6.10.

Consider the space A of �nite, one-sided in�nite or biin�nite one-Lipschitz

paths 
 W J ! cv0.Fn/ (for the symmetrized Lipschitz metric), parametrized on a

connected closed interval J � R containing 0, whose image under the projection

‡ W cv0.Fn/ ! FF is an L-quasi-geodesic.

Lemma 6.2. There are numbers � > 0; M0 > 0 with the following property. If 
 2
A is parametrized on an interval J of length jJ j � M0 then 
.J / � Thick�.Fn/.

Proof. Let T 2 cv0.Fn/ and let ˛ D ‡.T /; then ˛ is a primitive conjugacy class

whose length on T is at most two.

The diameter in FF of the set of all primitive conjugacy classes whose length

on T is at most two is uniformly bounded, independent of T 2 cv0.Fn/ (see [17]

for details). Let k > 0 be such an upper bound. We may assume that k � L.

Let M D 4kL; if S 2 cv0.Fn/ � Thicke�M .Fn/ then there exists a primitive

conjugacy class ˛ of length at most e�M on S . Furthermore, by the de�nition (3)

of the one-sided Lipschitz metric, the length of ˛ on a tree T with dL.S; T / � M

is at most one. This implies that the diameter in FF of the set of all primitive

conjugacy classes whose length on either S or T is at most two does not exceed

2k.

However, if 
 W J ! cv0.Fn/ is a path in A with jJ j � 2M and if s 2 J is

such that 
.s/ D S then there is a point t 2 J with js � t j D M . The above

discussion shows that d.‡.
.s//; ‡.
.t/// � 2k. On the other hand, as 
 2 A,

we have d.‡.
.s//; ‡.
.t/// � M=L � L � 3k. This contradiction completes

the proof of the lemma for M0 D 2M and � D e�M . �
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From now on we assume by abuse of notation that the set A only contains paths


 W J ! cv0.Fn/ with J � Œ�M0; M0� where M0 > 0 is as in Lemma 6.2. Then


.J / � Thick�.Fn/ for all 
 2 A where � > 0 is as in Lemma 6.2. We equip A

with the topology of uniform convergence on compact sets.

The group Out.Fn/ acts on Thick�.Fn/ properly and cocompactly. Let

K0 � Thick�.Fn/

be a compact fundamental domain for this action. The action of Out.Fn/ on A is

cocompact as well: given any sequence 
i in A, choose elements 'i 2 Out.Fn/

so that 'i 
i .0/ 2 K0. The desired compactness follows from the Arzela-Ascoli

theorem. Thus if we denote by A0 the subset of A consisting of paths 
 with


.0/ 2 K0, then for the purpose of Proposition 6.1, by invariance under the action

of Out.Fn/ it su�ces to investigate the set A0.

Let FT � @ CV.Fn/ be the set of all arational trees and let

…WFT �! @FF

be the natural Out.Fn/-equivariant projection.

Lemma 6.3. Let Q � @FF be the set of all endpoints of biin�nite paths in A0,

viewed as quasi-geodesics in FF. The set „ D …�1Q � @ CV.Fn/ is compact.

Proof. Since @FF is metrisable and A0 is sequentially compact, it follows from

the de�nition of the Gromov topology on @FF that Q is sequentially compact and

hence compact.

Our goal is to show that „ D …�1.Q/ is a compact subset of FT � @ CV.Fn/,

and for this it su�ces to show that „ is sequentially compact. To this end take a

sequence ŒTi � � „ which limits to a tree ŒT � 2 @ CV.Fn/. As Q is compact, up to

a passing to a subsequence, there is an element � 2 Q so that ….ŒTi �/ converges

to �. Now for each i choose a measured lamination �i dual to ŒTi �. Since PML is

compact, up to passing to a subsequence and normalization we may assume that

�i ! � 2 ML. By continuity of the length pairing, ŒT � is dual to �. On the other

hand, as ….ŒTi �/ ! �, we have hS; �i D 0 if and only if ŒS� 2 FT and ….S/ D �.

Thus ŒT � 2 � and indeed, „ is compact. �

For a path 
 W J ! cv0.Fn/ in the set A0 de�ne a pair of projective ending

laminations to be an ordered pair .Œ��; Œ��/ 2 PML
2 so that the following holds

true. Assume �rst that J D Œ�b; a� for some a < 1; we then require that Œ�� is the

projective class of a lamination which is dual to a primitive basic conjugacy class

for 
.a/. If Œ0; 1/ � J then we require that Œ�� is dual to a tree in …�1.‡
.1//

(note that ‡
 has well de�ned endpoints in @FF/. De�ne similarly Œ�� for the

backward ray 
.J \ .�1; 0�/.

Let P0 � PML
2 be the set of pairs .Œ��; Œ��/ of projective measured lamina-

tions which are pairs of projective ending laminations for all paths in A0.
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Lemma 6.4. Up to perhaps increasing the number M0 in the de�nition of A0, the

set P0 � PML
2 is compact and consists of positive pairs.

Proof. For compactness of P0, it su�ces to establish sequential compactness.

To this end let .Œ�i �; Œ�i �/ be a sequence of points in P0 de�ned by maps


i W Ji ! cv0.Fn/ in A0. Assume �rst that Ji D Œbi ; ai/ for some bi � �M0

and that ai ! a for some a < 1. Up to passing to a subsequence, we may as-

sume that 
i ! 
 in A0. Then 
i .ai / ! 
.a/, furthermore for large i the forward

endpoint laminations Œ�i � of 
i are dual to a primitive basic conjugacy class ˛i for


i .ai /.

Now 
 � Thick�.Fn/ and hence the number of primitive conjugacy classes

which are basic for a tree in a small neighborhood of 
.a/ is �nite. Thus for in-

�nitely many i , the conjugacy class ˛i coincides with a primitive basic conjugacy

class for 
.ai / and hence the same is true for the dual lamination. This is what we

wanted to show.

The reasoning for an in�nite endpoint is the same, using again continuity of

the length function. This shows compactness of P0.

We are left with showing that up to perhaps increasing the number M0 in the

de�nition of the set A0, the set P0 consists of positive pairs. To this end note that

the subset Q of P0 of pairs .Œ��; Œ��/ consisting of projective laminations which

are dual to a pair of endpoints of a biin�nite path in A0 is compact and consists of

positive pairs by Lemma 2.7. Furthermore, as N ! 1, the sets QN of pairs of

projective laminations de�ned by paths in A0 for intervals J � Œ�N; N � de�ne a

neighborhood basis of Q in P0. Thus by Lemma 2.6, there exists N > 0 so that

QN consists of positive pairs as claimed. �

De�ne

R D ¹.�; �/ 2 ML
2 j .Œ��; Œ��/ 2 P0; hT; �i D hT; �i D 1 for some T 2 K0º:

Continuity of the length pairing and compactness of P0 and K0 show that R is

compact.

By Lemma 6.4 and Lemma 3.2 of [18], the family of functions ¹h�; � C �i j
.�; �/ 2 Rº on cv0.Fn/ is uniformly proper. Thus the closure

W D
[

.�;�/2R

Min�.� C �/

is compact.

The following observation is immediate from continuity.

Lemma 6.5. There is a number B1 > 0 such that

hT; �i

hT; �i
2 ŒB�1

1 ; B1�

for all T 2 W and all .�; �/ 2 R.
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Proof of Proposition 6.1. Using the above notations, let P � R be the subset of R

of all pairs .�; �/ which are dual to a pair of arational trees (i.e. which correspond

to pairs of ending laminations of biin�nite paths in A0). Our goal is to show that

each .�; �/ 2 P is a B-contracting pair for some �xed number B > 0.

To this end we now use an argument from the proof of Proposition 3.8 of [18].

Namely, using the above notation, the �rst requirement in the de�nition of a

B-contracting pair for B D B1 is immediate from Lemma 6.5 and equivariance.

For S 2 Thick�.Fn/ let

ƒ.S/ D ¹� 2 ML j hS; �i D 1º:

If S 2 W and if Q�; Q� 2 ƒ.S/ are rescalings of .�; �/ 2 P then using once more

positivity, continuity and compactness, we have hU; Q� C Q�i � 1=B2 for all

U 2 †.S/ D ¹V j max¹hV; �i j � 2 ƒ.S/º D 1º

where B2 > 0 does not depend on S 2 W and .�; �/ 2 P . Thus the second

requirement in the de�nition of a B-contracting pair holds true for P .

For measured laminations �; � 2 ML let as before

Bal.�; �/ D ¹S 2 cv.Fn/ j hS; �i D hS; �iº:

We claim that if ŒT �; ŒT 0� is a pair of projective arational trees de�ning two distinct

boundary points of FF and if �; � are two measured laminations supported in the

zero lamination of T; T 0 then the sets

U.p/ D ¹ŒS� 2 ŒThick�.Fn/� j S 2 Bal.et�; e�t�/ for some t > pº

.p > 0/ form a neighborhood basis in ŒThick�.Fn/� for the set of all projective

trees which are equivalent to ŒT �. By this we mean that for any open set U �

ŒThick�.Fn/� which contains the set of all projective trees equivalent to ŒT �, we

have U.p/ � U for all su�ciently large p.

Namely, �x a tree V 2 Thick�.Fn/. For t � 0 let

ˇ.t/ D et� C e�t�=hV; et� C e�t�i:

Then ¹ˇ.t/ j t � 0º is a compact subset of the set of all currents for Fn, i.e.

Fn-invariant locally �nite Borel measures on @Fn � @Fn � �. As t ! 1, we have

ˇ.t/ �! O� D �=hV; �i

in the space of currents equipped with the weak�-topology [17]. As O� is dual to an

arational tree, we have hS; O�i D 0 if and only if ŒS� is equivalent to ŒT �. The above

claim now follows once more from continuity of the length pairing (as a pairing

between Fn-trees and currents, see [20]).
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Let T 2 Min�.� C �/ and assume that the �rst and the second property in the

de�nition of a B-contracting pair hold true for T . Let

B.T / � ƒ.T /

be the closure of the set of all normalized measured laminations which are up

to scaling induced by a basic primitive conjugacy class for a tree U 2 Bal.�; �/.

ThenB.T / is a compact subset of ƒ.T / which does not contain the representatives

O�; O� 2 ƒ.T / of the measured laminations �; �.

Let D.�/; D.�/ � †.T / be the set of all normalized arational trees which are

dual to �; �. By continuity of the length pairing, the set of functions

F D ¹U �! hU; �i j � 2 B.T /º

is compact for the compact open topology on the space of continuous functions

on †.T /. Thus by the above discussion, their values on the set D D D.�/ [ D.�/

are bounded from below by a positive number c > 0.

By continuity, there is some p > 0 so that these functions are bounded from

below by c=2 on zU.p/ D ¹S 2 †.T / j ŒS� 2 U.p/º. Note that zU.p/ is

a neighborhood of D.�/ in †.T /. Similarly, we �nd a neighborhood zV.q/ �

†.T / of D.�/ so that these functions are bounded from below by c=2 on zV.q/.

As a consequence, property (3) in De�nition 2.9 holds true for T and for B D
max¹p; q; 2=cº.

Now by compactness and continuity of the length pairing, the same property

holds true for pairs .�0; �0/ in a small neighborhood of .�; �/ in P and for trees

S in a small neighborhood of T , perhaps after replacing the constant B by 2B .

As the set P is compact and hence the same holds true for

Z D ¹..�; �/; S/ 2 P � W j S 2 Min�.� C �/º

it can be covered by �nitely many open sets which are controlled in this way.

Together with Remark 3.5 and Proposition 5.2, this shows that biin�nite paths

in the set A0 determine B-contracting line of minima where B D B.L/ > 0 only

depends on L. By invariance under the action of Out.Fn/ and cocompactness, this

then holds true for every biin�nite path from the collection A.

To summarize, each biin�nite path 
 2 A determines a (family of) B-contract-

ing lines of minima ‰.
/, and the map ‰W 
 ! ‰.
/ is equivariant with respect

to the action of Out.Fn/. Now let …‰.
/ be a balancing projection. The map

.
; X/ ! …‰.
/.X/ is equivariant as well. Thus by cocompactness of the action

of Out.Fn/, the distance between X 2 
 and …‰.
/.X/ 2 ‰.
/ is bounded from

above by a universal constant D.L/ only depending on L. This is what we wanted

to show. �
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Using Proposition 3.4, we obtain

Corollary 6.6. Let 
 WR ! Thick�.Fn/ be a c-coarse geodesic for the sym-

metrized Lipschitz metric. If the path t ! ‡.
.t// is a uniform quasi-geodesic in

FF then 
 is strongly Morse.

Proposition 4.7 and Proposition 6.1 imply

Corollary 6.7. If 
 WR ! Thick�.Fn/ is uniformly strongly Morse then there

exists a uniformly contracting line of minima � whose Hausdor� distance to 


is uniformly bounded.

Let � < Out.Fn/ be convex cocompact. Then � is �nitely generated, and

for one (and hence any) ˛ 2 FF the orbit map g 2 � ! g˛ 2 FF is a quasi-

isometric embedding. As FF is hyperbolic, this implies that � is word hyperbolic.

Moreover, the Gromov boundary @� of � admits a �-equivariant embedding into

@FF. We denote by

Q� � @FF

its image. Since @� is compact, the set Q� is closed, �-invariant and minimal for

the �-action. Proposition 6.1 now immediately implies

Corollary 6.8. Let � < Out.Fn/ be convex cocompact. There is a number

B > 0 with the following property. Let .Œ��; Œ��/ 2 PML
2 be a pair of measured

laminations which are dual to projective trees de�ning distinct points in Q� . Then

.Œ��; Œ��/ is a B-contracting pair. For R > 0 the closed R-neighborhood of the

union of all lines of minima obtained from all such pairs is �-invariant and �-

cocompact.

Corollary 6.8 and Proposition 5.2 together show

Corollary 6.9. A convex cocompact group has the properties stated in Proposi-

tion 5.3.

Corollary 6.9, Proposition 5.3 and Proposition 3.4 complete the proof of The-

orem 3 from the introduction.

To show the implication .1/ H) .2/ in Theorem 1, it now su�ces to establish

a local version of Proposition 6.1 which holds true for all paths in the set A0

(recall that by our convention, these paths 
 are de�ned on a closed inverval

J � Œ�M0; M0�, and any pair of ending laminations for 
 is a positive pair).

For numbers C > 0; N > 0 call a path 
 W Œ�b; a� ! Thick�.Fn/ C -contracting

N -relative to the endpoints if the following holds true. Let .�; �/ be a pair

of ending laminations for 
 . Then .�; �/ is a positive pair, and for all t 2

Œ�b C N; a � N � the following holds true.
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(i) There exists a number �.t/ 2 R such that d.
.t/; Min�.e�.t/� C e��.t/�// �

C .

(ii) Let B.T / � ƒ.
.t// be the set of all normalized measured laminations

which are up to scaling induced by a basic primitive conjugacy class for a

tree U 2 Bal.e�.t/�; e��.t/�/. Then hS; �i � 1=C for every � 2 B.T / and

for every tree

S 2 †.
.t// \
�

[

s2.�1;�.t/�C/[.�.t/CC;1/

Bal.es�; e�s�/
�

:

In other words, the restriction of the path 
 to the subinterval Œ�b C N; a � N �

has all the contraction properties of a C -contracting line of minima. Note that by

the above de�nition and Lemma 6.5, a contracting line of minima is precisely an

endpoint-relative contracting biin�nite path.

For the formulation of the next corollary, let B D B.L/ > 0 be as in

Proposition 6.1.

Corollary 6.10. For every L > 1 there are numbers M D M.L/ > 0; N D

N.L/ > 0 with the following property. Let J � Œ�M; M� and let 
 W J ! cv0.Fn/

be any one-Lipschitz path whose image under ‡ is an L-quasi-geodesic in FF.

Then 
 is 2B-contracting N.L/-relative to its endpoints.

Proof. We argue by contradiction and assume that the corollary does not hold for

2B.L/. This means that no number N.L/ can be found which ful�lls the above

requirements. Assume without loss of generality that 2B.L/ � M0 where M0 > 0

is as in the de�nition of the set A0.

By invariance under the action of the mapping class group, there is then a

sequence of paths 
i 2 A0, de�ned on intervals Œ�M0 � i; M0 C i �, such that

property (ii) above is violated at 
.0/ with C D 2B.L/ and a pair .Œ�i �; Œ�i �/ of

ending laminations for 
i . Choose representatives �i ; �i which are normalized in

such a way that h
i .0/; �ii D h
i .0/; �ii D 1.

As A0 is compact, we may extract a converging subsequence whose limit is a

biin�nite path 
 2 A0. By Lemma 6.4 and its proof, by passing to a subsequence

we may assume that �i ! � and �i ! � where �; � are dual to the endpoints

of 
 . Proposition 6.1 shows that �; � are unique (as they are normalized at 
.0/).

Denote by B.�; �/ � ƒ.
.0// the set of all normalized measured laminations

which are up to scaling induced by a basic primitive conjugacy class for a tree

U 2 Bal.�; �/, and for large i de�ne similarly B.�i ; �i/. By continuity, we

have ƒ.
i .0// ! ƒ.
.0//, Bal.�i ; �i/ ! Bal.�; �/ in the Hausdor� topology

for compact subsets of ML.
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For large i let now Si be the closure in cv.Fn/ of the set

†.
i .0// \
�

[

s2.�1;�2B�[Œ2B;1/

Bal.es�i ; e�s�i /
�

and denote by S the closure of †.
.0// \
�
S

s2.�1;2B�[Œ2B;1/ Bal.es�; e�s�/
�

:

As before, Si is a compact subset of cv.Fn/ and the same holds true for S.

Furthermore, using again continuity of the length function, we have Si ! S in

the Hausdor� topology for compact subsets of cv.Fn/.

Now hS; �i � 1=B for every � 2 B.�; �/ and every S 2 S. Thus by

continuity of the length function and compactness, for su�ciently large i we have

hS; �i � 1=2B for all S 2 Si and all � 2 B.�i ; �i/. However, this is a contradiction

to the assumption on the sequence 
i . The corollary follows. �

The discussion in Section 3, in particular Lemma 3.4, now shows the following.

Let 
 W .a; b/ ! cv0.Fn/ be a one-Lipschitz path which projects to an L-quasi-

geodesic in FF and whose length b � a is at least 2M.L/; then 
.�b C M.L/,

a�M.L// is a strongly M -Morse quasi-geodesic. Thus .1/ H) .2/ in Theorem 1

is established.

7. Examples

7.1. Schottky groups. In analogy to the theory of Kleinian groups, we call a

�nitely generated free convex cocompact subgroup of Out.Fn/ a Schottky group.

Such groups can be generated by a standard ping-pong construction [21, 18].

Namely, an iwip element acts with north-south dynamics on @ CV.Fn/. There is

a unique attracting and a unique repelling �xed point. Each of these �xed points

is a projective arational tree.

Call iwip elements ˛; ˇ of Out.Fn/ independent if the �xed point sets for the

action of ˛; ˇ on @ CV.Fn/ are disjoint. If ˛; ˇ are independent then there are

k > 0; ` > 0 such that ˛k; ˇ` generate a free convex cocompact subgroup of

Out.Fn/ (see [21] and Section 6 of [18]). As in [12], this construction can be

extended to groups generated by an arbitrarily large �nite number of independent

iwips.

7.2. Convex cocompact subgroups of mapping class groups. Let S be a com-

pact surface of genus g � 2 with one puncture. Let Mod.S/ be the mapping class

group of S ; then Mod.S/ is the subgroup of Out.F2g/ of all outer automorphisms

which preserve the conjugacy class of the puncture of S .
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Proposition 7.1. If � < Mod.S/ is convex cocompact in the sense of Farb–

Mosher, then its image in Out.F2g/ is convex cocompact in the sense of this article.

To prove this proposition, we use several combinatorial complexes. For the

surface, we require the arc graph A.S/ and the arc-and-curve graphAC.S/ (which

is quasi-isometric to the curve graph). By (1) of Theorem 2, a subgroup � of

Mod.S/ is convex cocompact if and only if the orbit map on the arc-and-curve

graph is a quasi-isometric embedding.

On the free group side we use the free factor graph FF and the free splitting

graph FS. These four graphs naturally admit maps as follows

A.S/ //

��

FS

��

AC.S/ // FF:

The map A.S/ ! FS associates to an arc a � S the corank one free factor

�1.S � a/ which de�nes a free splitting of F2g (see [19]). Similarly, the map

AC.S/ ! FF associates to an arc or curve on S some primitive element of Fn

which can be realized by a simple closed curve in the complement.

In [19] it is shown that the map A.S/ ! FS is a quasi-isometric embedding.

We expect that the natural map AC.S/ ! FF is a quasi-isometric embedding

as well (compare with the related statement in [13]). If this were known then

Proposition 7.1 would be immediate. In the proof below, we circumvent this

di�culty by working directly with the groups.

Proof. By [19], the natural inclusion Mod.S/ ! Out.Fn/ is a quasi-isometric

embedding. If � � Mod.S/ is convex cocompact, then there is an equivariant

embedding @� ! @ CV.Fn/. Its image consists of trees which are dual to uniquely

ergodic measured geodesic laminations on S , and such trees are arational.

Now a geodesic in � de�nes a uniform quasi-geodesic in Mod.S/ which

projects to a uniform quasi-geodesic in A.S/ and hence FS. But uniform quasi-

geodesics in FS map to uniform unparametrized quasi-geodesics in FF [22] and

hence following the reasoning in the proof of Proposition 4.7, by cocompactness

all we need to establish is that the endpoint of such a parametrized quasi-geodesic

in FS in the boundary of the free splitting graph (which contains the boundary of

the free factor graph) is in fact an arational tree. However, we observed above that

this is indeed the case. �
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Appendix A. Uniquely ergometric trees:

the work of Namazi, Pettet and Reynolds

In this appendix we summarize some technical results of [25] used in the proof of

Lemma 4.4.

We are looking at compact graphs without univalent or bivalent vertices and

fundamental group Fn. A combinatorial morphism between such graphs G; H is

a homotopy equivalence f W G ! H which takes edges of G to non-degenerate

reduced edge paths in H . In particular, f maps the vertices of G to vertices in H .

Following Section 3 of [25], de�ne a combinatorial folding sequence to be a

sequence of graphs .Gm/a�m�b with combinatorial morphism fk;`W Gk ! G` for

k < ` such that fk;m D f`;m ı fk;`. An invariant sequence of subgraphs is a

sequence of non-degenerate proper subgraphs Em � Gm with the property that

fm;mC1 restricts to a change of marking morphism Em ! EmC1 for all m < b.

Such a sequence is stabilized if the restriction of fm;mC1 to Em is a permutation

for su�ciently large m. A sequence is reduced if it does not admit any stabilized

sequence of subgraphs.

Let EG be the set of edges of the graph G. The incidence matrix Mf of a

combinatorial morphism f W G ! H is the matrix whose columns are indexed by

the edges of G and whose rows are indexed by the edges of H . For e 2 EG; e0 2

EH , the .e; e0/-entry Mf .e0; e/ of Mf is the number of occurrences of e0 in the

reduced edge path f .e/. A combinatorial folding sequence

G0

f0;1

�! G1

f1;2

�! � � �

determines a sequence �n of frequency vectors de�ned by �0 D 1 and

�nC1 D Mfn;nC1
�n:

If we write 'n D f0;n D fn�1;n ı � � � ı f0;1 then �n.e/ is the number of times that

'n-images of edges of G0 travers e.

A length vector for a graph H associates to each edge of H a non-negative

length. If f W G ! H is a combinatorial morphism then any such length vector

�H for H induces a length vector �G for G by the formula

�G D M T
f �H ;

i.e. �G is the pullback by f of the metric on H de�ned by �H . A length vector

for G de�nes a length measure on G.

Now let �.t/ � Thick�.Fn/ be a fast folding path which converges to a non-

uniquely ergometric tree ŒT � 2 @ CV.Fn/ with dense action of Fn. Assume that

�.t/ is guided by an Fn-equivariant train track map �0W ˇ.0/ ! T . The map �0

maps an edge of �.0/ to an embedded path in T , and it is a homothety on edges

with scaling factor not depending on the edge. For each t , there exists a train
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track map �t W �.t/ ! T , and for t > s there is a map �s;t W �.s/ ! �.t/ with

�s D �t ı �s;t . As ŒT � is not uniquely ergometric, there is a number k � 2, and

there are pairwise non-homothetic length measures �1; : : : ; �k on ŒT � which are

ergodic under the action of Fn. For each t , these measures pull back to a length

measure �i
t on �.t/ and hence on the Gt D �.t/=Fn, viewed as an abstract �nite

graph. Note that these length measures are not normalized, i.e. the volume of the

quotient graphs may be di�erent from one.

As there are only �nitely many isomorphism classes of graphs without vertices

of valence one or two and fundamental group Fn, by passing to a subsequence we

may assume that the graphs Gm are all isomorphic to a �xed graph G. We may

moreover assume that the maps �`;m descend to a combinatorial folding sequence

G0

f0
�! G1

f1
�! : : :

Write �m D
P

i �i
m. After passing to a subsequence, we may assume that

for each edge e in G, either lim infm �m.e/�m.e/ > 0 or limm �m.e/�m.e/ D 0.

De�ne H i to be the union of all edges of G so that lim infm �m.e/�i
m.e/ > 0 and

let H 0 be the union of all edges with limm �m.e/�m.e/ D 0.

A transverse decomposition of G consists of a �nite collection of subgraphs

H i of G so that every edge of G is contained in precisely one of the graphs H i .

The following is Theorem 5.6 of [25].

Theorem A.1. The sets H i .i D 0; : : : ; k/ de�ne a transverse decomposition of

G. Furthermore, after passing to a another subsequence, for every e 2 EH i and

for j 6D i , we have

(1) lim infm �m.e/�i
m.e/ > 0,

(2)
P

m �m.e/�
j
m.e/ < 1, and

(3) limm
�

j
m.e/

�i
m.e/

D 0:

The proof of this result is based on the following two observations. Lemma 5.7

of [25] investigates edges e of G with lim supm �m.e/�i
m.e/ > 0.

For each m let em 2 Gm be the edge corresponding to e. By de�nition,

�m.e/ is the number of times that 'm-images of edges in G0 traverse em. Let

Bm.e/ D '�1
m .em/ be the preimage of em in G0. Then

�i
0.Bm.e// D �m.e/�i

m.e/:

Hence if lim supm �m.e/�i
m.e/ D 2� > 0 then �i

0.Bm.e// � � for in�nitely

many m. This implies that �i
0

�
T

m

S

`�m B`.e/
�

� �. Moreover, if x is in this set

then 'm.x/ 2 em for in�nitely many m.



Stability in Outer space 395

Lemma 5.8 of [25] exploits the fact that the length measures �i are singular.

Namely, let x 2 G0 be a �i
0-generic point in G0. For m > 0 denote by e.x; m/

the edge of Gm containing 'm.x/. Let us denote by Im the connected component

of '�1
m .e.x; m// containing x. Since the action of Fn on T has dense orbits for

the metric �, the �0-length of Im tends to zero with m. Hence we can evaluate

the Radon Nikodym derivative of �i
0 with respect to �0 at x by taking the limit

limm
�i

0
.Im/

�0.Im/
D 1. Since 'm is a path isometry for the lengths measures on G0; Gm

induced by �i ; �, this shows that

lim
m

�i
m.e.x; m//

�m.e.x; m//
D 1: (8)

This observation is used as follows. Let us assume that the edge e of G satis�es

lim infm �m.e/�i
m.e/ > 0 for some i � k. By Lemma 5.7 of [25] as recorded

above, there is a subset A of G0 with �i
0.A/ > 0 such that for every x 2 A, we

have 'm.x/ 2 em for in�nitely many m. By passing to a subsequence, we may

assume that 'm.x/ 2 em for all m where x 2 G0 is a density point for �i
0.

Assume for contradiction that lim supm �m.e/�
j
m.e/ > 0 for some j 6D i .

Using again Lemma 5.7 of [25], by passing to another subsequence we may

assume that there exists a generic point y 2 G0 for �
j
0 such that 'm.y/ 2 em

for all m. However, this violates the estimate (8) on Radon Nikodym derivatives

together with the fact that �i C �j � �.

To summarize, by passing to suitable subsequences of the sequence Gm we

can arrange that (1)–(3) in Theorem A.1 hold true.

The above argument shows more. By inequality (8) and the construction of the

transverse decomposition of G into the subgraphs H i , for all ı > 0 there exists an

in�nite sequence mı.u/ tending to in�nity as u ! 1 such that for all u, for every

1 � i � k and every edge e 2 H i , we have

�i
mı.u/.e/ � �mı.u/.e/.1 � ı/:

Let now ` > 0. For p > m write fm;p D fp�1 ı � � � ı fmW Gm ! Gp. We claim

that for su�ciently small ı and m D mı.u/, p � m C `, any edge contained in

the intersection of the subgraphs fm;p.H i /; fm;p.H j / is contained in fm;p.H 0/.

To this end note that for �xed `, the entries of the incident matrix describing the

morphism fm;p for p � m C ` are uniformly bounded.

Now let p � m C ` and let e0 be an edge in Gp . If ei 2 Gm is an edge so that

the image of ei under the morphism fm;pW Gm ! Gp contains e0 and if ci � ei is

a connected component of f �1
m;p.e0/ \ ei , then as the map fm;p is a path isometry,

we conclude that �m.ci / � ��m.ei/ where � > 0 only depends on ` and the length

of e0 in Gp , equipped with the rescaling of �p whose volume equals one.

By inequality (8) and the choice of m, if e 2 H i then j�i
m.ci /=�m.ci /�1j < ı.

As this is true for all i and as �m.ci / equals �p.e0/, independent of i , we conclude

the following.
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Let us assume that there is j 6D i , and there is another edge ej 2 H j whose

image under fm;p contains e0. Assuming that ı << � , on the one hand, the

�
j
p-length of e0 is very close to its �-length and hence �

j
m.ei/ � ��m.ei/=2. On the

other hand, by the de�nition of the decomposition of Gm and since � � �i C �j ,

we have �
j
m.ei/ < ı�m.ei/. This is a contradiction leading to Lemma 6.7 of [25]

which is summarized as follows.

Proposition A.2. Let ˇ.t/ � Thick�.Fn/ be a fast folding path converging to

a non-uniquely ergometric tree ŒT � 2 @ CV.Fn/. For s < t let fs;t W Gs D
ˇ.s/=Fn ! Gt D ˇ.t/=Fn be the induced morphism. Then for every ` > 0

there exists a number t > 0 with the following properties. Let H 0; : : : ; H k be the

transverse decomposition of Gt as constructed in Theorem A.1. For t � s � t C `

there is a collection Es of edges in Gs of total length smaller than an arbitrarily

prescribed number with the following properties. The quotient graph Gs=Es has

fundamental group Fn, and if …W Gs ! Gs=Es is the canonical projection, then

for 1 � i < j � k, the subgraphs ….ft;s.H i //; ….ft;s.H
j // of Gs=Es do not

share any edge.
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