
Groups Geom. Dyn. 12 (2018), 399–448
DOI 10.4171/GGD/456

Groups, Geometry, and Dynamics

© European Mathematical Society

von Neumann’s problem and extensions

of non-amenable equivalence relations

Lewis Bowen,1 Daniel Hoff,2 and Adrian Ioana3

Abstract. The goals of this paper are twofold. First, we generalize the result of Gaboriau
and Lyons [17] to the setting of von Neumann’s problem for equivalence relations, proving

that for any non-amenable ergodic probability measure preserving (pmp) equivalence

relation R, the Bernoulli extension over a non-atomic base space .K; �/ contains the orbit

equivalence relation of a free ergodic pmp action of F2. Moreover, we provide conditions

which imply that this holds for any non-trivial probability space K. Second, we use this

result to prove that any non-amenable unimodular locally compact second countable group

admits uncountably many free ergodic pmp actions which are pairwise not von Neumann

equivalent (hence, pairwise not orbit equivalent).
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1. Introduction and statement of main results

Background. The notion of amenability for groups was introduced by J. von
Neumann in order to explain the Banach–Tarski paradox [55]. He showed that

any countable group that contains the free group F2 on two generators is non-

amenable. The question of whether any non-amenable group contains F2, became

known as von Neumann’s problem, and was eventually settled in the negative by

A. Ol0shanskii [40].

Remarkably, D. Gaboriau and R. Lyons proved that von Neumann’s problem

has a positive solution in the context of measurable group theory [17] (see also the

survey [23]). More precisely, they showed that any countable non-amenable group

� admits F2 as a “measurable subgroup”: there exists a free ergodic probability

measure preserving (pmp) action � Õ .X; �/whose associated orbit equivalence

relation R.� Õ X/ contains the orbit equivalence relation of a free ergodic pmp

action F2 Õ .X; �/. Moreover, the Bernoulli action of � on .Œ0; 1�� ; ��/ has this

property, where � denotes the Lebesgue measure on Œ0; 1�.

Our first goal is to establish the following strengthening of this result:

Theorem A. Let R be an ergodic non-amenable countable pmp equivalence
relation, and let RK on .XK ; ��/ denote its Bernoulli extension with base space
.K; �/. If .K; �/ is non-atomic, then there exists a free ergodic pmp action
F2 Õ .XK ; ��/ such that R.F2 Õ XK/ � RK ; almost everywhere. Moreover,
this conclusion holds for any non-trivial choice of .K; �/, provided that R has
an ergodic subequivalence relation of infinite index which is non-amenable or
normal, or that R has an infinite fundamental group.

Remark 1.1. Assume that .K; �/ D .Œ0; 1�; �/. If R is the orbit equivalence rela-

tion of a free pmp action � Õ X , then RK is isomorphic to the orbit equivalence

relation of the product action � Õ X �K� (Proposition 3.2). In this case, Theo-

rem A is a consequence of [17, Theorem 1]. Indeed, sinceR.� Õ K�/ contains the

orbit equivalence relation of a free ergodic pmp action of F2 by [17, Theorem 1],

it follows that the same is true for RK . However, Theorem A is new whenever R

does not arise as the orbit equivalence relation of a free pmp action of a countable

group (see [13] for examples of such R). Also, note that if R D R.� Õ Œ0; 1��/,

then RK is isomorphic to R. Theorem A implies that R contains the orbits of a

free ergodic pmp action of F2, for any non-amenable �, and therefore recovers

[17, Theorem 1].

Remark 1.2. At the end of [17], the authors posed the following analogue of

von Neumann’s problem for equivalence relations: does every ergodic non-

amenable countable pmp equivalence relationR containR.F2 Õ X/ for some free

ergodic pmp action ofF2? The main result of [17] shows that this is indeed the case
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if R arises from the Bernoulli action with base .Œ0; 1�; �/ of a non-amenable

countable group. Theorem A shows that, more generally, this holds for the

Bernoulli extension with base .Œ0; 1�; �/ of any ergodic non-amenable countable

pmp equivalence relation.

We turn now to the second main result of this paper and to the history mo-

tivating it. In the early 1980s, D. Ornstein and B. Weiss [44], extending work

of H. Dye [9], showed that any two ergodic pmp actions of countable infinite

amenable groups are orbit equivalent. Moreover, as a consequence of [7], all free

properly ergodic pmp actions of a unimodular amenable lcsc groupG are pairwise

orbit equivalent. On the other hand, over the next two decades, several families

of non-amenable countable groups, including property (T) groups [21] and non-

abelian free groups [19], were shown to admit uncountably many actions which

are pairwise not orbit equivalent.

Unifying many of these results, it was shown in [26] that any countable group

� containing a copy of F2 has uncountably many free ergodic actions which are

pairwise not orbit equivalent. Thus nearly three decades after the solution to von

Neumann’s problem [40], the relationship between general non-amenable groups

and the prototypical example of F2 came again into focus. Gaboriau and Lyons’

result in [17] was followed shortly by [10], in which I. Epstein combined [17] with

the methods of [26] via a new co-induction construction for group actions, proving

that any countable non-amenable group � admits uncountably many non orbit

equivalent actions, and settling the question in the case of countable groups.

Much less has been established in the case of unimodular lcsc groupsG. It was

shown in [56, Example 5.2.13] (see also [16, Corollary A.10]) that any connected

semisimple Lie groupG withR-rank.G/ � 2, finite center, and no compact factors

has uncountably many mutually non orbit equivalent free ergodic pmp actions.

By combining [10] with an induction argument it follows that, more generally, any

unimodular non-amenable lcsc groupG possessing a lattice has uncountably many

non orbit equivalent free ergodic pmp actions. However, in spite of these advances,

the situation for general non-amenable unimodular lcsc groups G remained open.

Making use of Theorem A, we are able to settle this question:

Theorem B. Any unimodular non-amenable lcsc group G admits uncountably
many free ergodic pmp actions which are pairwise not von Neumann equivalent
(hence, pairwise not orbit equivalent).

This will follow from Theorem D below on extensions of equivalence relations,

a notion which will be key in the rest of the paper.

Definition 1.3. For countable pmp equivalence relations R on .X; �/ and zR on

. zX; Q�/, we say that zR is a class-bijective extension (in short, an extension) of R if

there is a Borel map pW zX ! X satisfying
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(1) �.E/ D Q�.p�1.E//, for all Borel sets E � X ,

(2) pjŒx� zR
is injective, for almost every x 2 zX , and

(3) p.Œx�zR/ D Œp.x/�R, for almost every x 2 zX .

Remark 1.4. A mappW zX ! X which satisfies conditions (1)–(3) in the above def-

inition is called a local OE (or local isomorphism) of zR, R in [49, Definition 1.4.2].

Theorem A leads to the following characterization of non-amenability for

ergodic equivalence relations in terms of actions of F2, which can be viewed as a

weak version of von Neumann’s problem for equivalence relations:

Corollary C. An ergodic countable pmp equivalence relation R is non-amenable
if and only if it admits an extension which contains almost every orbit of a free
ergodic pmp action of F2.

Combining this result with the co-induction construction of [10] and the meth-

ods of [26], we prove:

Theorem D. Let R be a non-amenable ergodic countable pmp equivalence rela-
tion on a standard probability space.

Then R admits uncountably many ergodic extensions which are pairwise not
stably von Neumann equivalent (hence, pairwise not stably isomorphic).

Remark 1.5. Theorem D implies the following dichotomy: any ergodic count-

able pmp equivalence relation has either only one or uncountably many ergodic

extensions, up to isomorphism. Indeed, if R is an amenable countable pmp equiv-

alence relation, then R is hyperfinite by [7]. As a consequence, any two ergodic

extensions of R are hyperfinite, and thus isomorphic by [9].

Remark 1.6. Let � be a countable non-amenable group. If R is the orbit equiva-

lence relation of some free pmp action of �, then any extension of R is the orbit

equivalence relation of some other free pmp action of �. Theorem D implies that

� admits uncountably many actions which are pairwise not stably von Neumann

equivalent, thereby strengthening the results of [26, 10].

Inspired by [34], our approach to deducing Theorem B from Theorem D is

based on the notion of cross section equivalence relations. Specifically, we rely on

the following elementary observation: if R is a cross section equivalence relation

of some free ergodic pmp action of a unimodular lcsc group G, then any ergodic

extension of R can be realized as a cross section equivalence relation of some

other free ergodic pmp action of G (see Proposition 8.3).
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This observation turns out to also be useful in a different context. Very

recently, M. Gheysens and N. Monod introduced a measure-theoretic analogue of

closed subgroup embeddings for locally compact groups, called tychomorphism
[18, Definition 14]. Using this notion, they formulated and proved a generalization

of the Gaboriau–Lyons theorem for lcsc groups G: if G is non-amenable, then

there is a tychomorphism from F2 to G (see [18, Theorem B]). When combined

with Theorem A, the observation in Proposition 8.3 leads to a proof of this result

which bypasses the usage of the structure theory of locally compact groups as

in [18] (see Subsection 8.1).

We note that [18] is representative of a lot of recent interest in measure-theoretic

versions of von Neumann’s problem spawned by the pioneering work [17]. Thus,

the main result of [17] was strengthened in [33], and its proof was simplified

in [54]. Very recently, von Neumann’s problem was shown to have a positive so-

lution for non-amenable equivalence relations that act on hyperbolic bundles [5].

Outline of the proof of Theorem A. We end the introduction by outlining

the proof of the main assertion of Theorem A. This relies on an extension of

techniques from [17]. To fix notation, let R be an ergodic non-amenable countable

pmp equivalence relation on a probability space .X; �/. Let .K; �/ D .Œ0; 1�; �/,

and put zX WD XK and zR WD RK . Our goal is to show that zR contains the orbits of

a free ergodic pmp action of F2.

To this end, denote by uW ŒR� ! U.L2.R; m// the canonical representation of

the full group ŒR�. Since R is ergodic and non-amenable, after replacing R with

a subequivalence relation, we may assume that R is generated by finitely many

automorphisms �1; : : : ; �n 2 ŒR� such that the operatorT D
Pn

iD1.u.�i /Cu.�
�1
i //

satisfies kT k < 2n. Moreover, after replacing the set S D ¹�1; : : : ; �nº with a

power Sk D ¹�i1 : : : �ik j 1 6 i1; : : : ; ik 6 nº, for large enough k, we may assume

that kT k 6 n.

For x 2 X , we denote by Gx D .Œx�R; Ex/ the graph on Œx�R associated to the

graphing ¹�1; : : : ; �nº. Then we can identify the zX with the set of pairs .x; !/, with

x 2 X and ! 2 Œ0; 1�Ex , such that zR is identified with the equivalence relation

given by .x; !/zR.y; �/ if and only if xRy and ! D �.

For p 2 Œ0; 1� and x 2 X , we denote by �pW Œ0; 1�Ex ! ¹0; 1ºEx the map

�p.!/ D .1Œ0;p�.!e//e, and view �p.!/ 2 ¹0; 1ºEx as a subgraph of Gx, for every

! D .!e/e 2 ¹0; 1ºEx .

In the first part of the proof, we use results from percolation theory, no-

tably [39] and [6], to show that if p is in the interval
�

1
2n�kT kC1

; 1
kT k

�

, then the

graph �p.!/ has infinitely many infinite clusters (i.e. connected components), for

almost every .x; !/ 2 zX .

In the second part of the proof, we consider the cluster equivalence relation
zRcl on zX given by .x; !/zRcl.y; �/ if and only if .x; !/zR.y; �/ and x; y belong to

the same cluster of �p.!/ D �p.�/, see [15]. By combining the first part of the
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proof with results from [37, 1] and [14] we conclude that the restriction zRcl to its

infinite locus is ergodic and has normalized cost > 1.

Finally, since zRcl � zR, a combination of results from [22] and [30, 46] implies

that zR contains the orbits of a free ergodic pmp action of F2.

Organization. Besides the introduction, this paper has seven other sections. In

Section 2, we collect several facts about equivalence relation. In particular, we

prove that we may assume kT k 6 n and show that the isoperimetric constant of

the graph Gx satisfies �.Gx/ > 2n�kT k. Section 3 contains various general results

on Bernoulli extensions of equivalence relations. Sections 4 and 5 are devoted to

the first and second part of the proof of the main assertion of Theorem A described

above. In Section 6, we complete the proof of Theorem A and deduce Corollary C.

Finally, in Sections 7 and 8, we present the proofs of Theorem D and Theorem B,

respectively.

Acknowledgement. We are grateful to Nicolas Monod for helpful comments.

2. Preliminaries

In this section we recall several general notions and results regarding equivalence

relations.

2.1. Equivalence relations. Let .X; �/ be a probability space, always assumed

to be standard. Following [11], an equivalence relation R on X is called countable
probability measure preserving (countable pmp) if it has countable classes, R is a

measurable subset ofX�X , and any measurable automorphism � WX ! X which

satisfies �.x/ 2 Œx�R, for almost every x 2 X , preserves �. Here, for x 2 X , we

denote by Œx�R its equivalence class.

The group of measurable automorphisms � WX ! X satisfying �.x/ 2 Œx�R,

for almost every x 2 X , is called the full group of R and denoted ŒR�. We

also denote by ŒŒR�� the set of measurable isomorphisms � WA ! B between

measurable subsets of X which satisfy �.x/ 2 Œx�R, for almost every x 2 A.

Here and after, we say that a pmp action � Õ .X; �/ is essentially free (in

short, free) if the stabilizer �x D ¹g 2 � j g � x D xº is trivial, for almost every

x 2 X . If � Õ .X; �/ is a pmp action of a countable group �, then its orbit
equivalence relation

R.� Õ X/ WD ¹.x; y/ 2 X �X j �x D �yº

is a countable pmp equivalence relation. Conversely, Feldman and Moore proved

that any countable pmp equivalence relation arises this way [11]. However, this

action cannot always be taken to be free, a question that was settled by Furman [13].
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Let R be a countable pmp equivalence relation on .X; �/. We endow R with

an infinite Borel measure m given by

m.A/ D

Z

X

j¹y 2 Œx�R j .x; y/ 2 Aºj d�.x/; for every Borel subset A � R:

Then uW ŒR� ! U.L2.R; m// given by the formula .u.�/f /.x; y/ D f .��1.x/; y/

defines a unitary representation. Note that L1.R/ acts on L2.R; m/ by pointwise

multiplication and the unitary u.�/ normalizesL1.R/, for every � 2 ŒR�. We also

have an embedding L1.X/ � L1.R/ which associates to every a 2 L1.X/ the

function .x; y/ ! a.x/.

The von Neumann algebra of R is defined as the strong operator closure of the

linear span of ¹a u.�/ j a 2 L1.X/; � 2 ŒR�º inside B.L2.R; m//, and is denoted

by L.R/ [11]. Recall that L.R/ is a finite von Neumann algebra, with its canonical

trace given by

�.T / D hT .1�/; 1�i; for every T 2 L.R/;

where 1� 2 L2.R; m/ denotes the characteristic function of� D ¹.x; x/ j x 2 Xº.

Definition 2.1. Let R and S be two (not necessarily countable) equivalence rela-

tion on probability spaces .X; �/ and .Y; �/. Then R and S are called isomorphic
(resp. stably isomorphic) if there exist Borel subsets X0 � X; Y0 � Y which are

co-null (resp. complete sections for R, S), and a measure preserving Borel iso-

morphism � WX0 ! Y0 such that xRx0 if and only if �.x/S�.x0/, for all x; x0 2 X0.

Here, we endowX0 � X with the probability measure�.X0/
�1.� j X0/. Also, we

say that a Borel setX0 � X is a complete section for R if ¹x 2 X j Œx�R\X0 6D ;º

is a co-null subset of X . Moreover, if R and S are countable pmp, then they are

called von Neumann equivalent (resp. stably von Neumann equivalent) if their von

Neumann algebras L.R/ and L.S/ are isomorphic (resp. pL.R/p Š qL.S/q, for

some non-zero projections p 2 L.R/, q 2 L.S/).

Two pmp actions � Õ .X; �/ and ƒ Õ .Y; �/ of two locally compact second

countable (lcsc) groups � and ƒ are called orbit equivalent (resp. stably orbit
equivalent) if their orbit equivalence relations are isomorphic (resp. stably iso-

morphic). Finally, the actions are called von Neumann equivalent if the associated

crossed product von Neumann algebras (see, e.g., [52, Chapter X] for the defini-

tion) are isomorphic.

2.2. Amenable equivalence relations. Following [7, Definition 6], a countable

pmp equivalence relation R on .X; �/ is called amenable if there exists a state

ˆWL1.R/ ! C such that ˆ.u.�/f u.�/�/ D ˆ.f /, for all f 2 L1.R/, � 2 ŒR�,

and ˆ.a/ D
R

X a d�, for all a 2 L1.X/. By [7, Theorem 10] a countable pmp

equivalence relation R is amenable if and only if it is hyperfinite. The latter means

that we can writeR D
S

n�1 Rn, whereRn is a countable pmp equivalence relation
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on X such that Œx�Rn
is finite and Œx�Rn

� Œx�RnC1
, for almost every x 2 X and

all n � 1.

Next, we record the well-known fact that an ergodic equivalence relation R is

non-amenable if and only if the unitary representation uW ŒR� ! U.L2.R; m// has

spectral gap:

Lemma 2.2. Let R be a non-amenable ergodic countable pmp equivalence rela-
tion.

Then we can find n � 1 and �1; : : : ; �n 2 ŒR� such that




1
n

Pn
iD1 u.�i /



 < 1:

Moreover, if c > 0, then we can find n � 1 and �1; : : : ; �n 2 ŒR� such that




1
n

Pn
iD1 u.�i /



 < c:

Proof. Assume by contradiction that




1
n

Pn
iD1 u.�i /



 D 1, for all �1; : : : ; �n 2

ŒR�. Then by arguing as in the proof of [20, Lemma 2.2] it follows that there exists

a state ˆWL1.R/ ! C such that ˆ.u.�/f u.�/�/ D ˆ.f /, for all f 2 L1.R/

and every � 2 ŒR�. Since R is ergodic, any such state ˆ also satisfies that

ˆ.g/ D
R

X g d�, for all g 2 L1.X/ (see e.g. the proof of [24, Lemma 4.2]).

This implies that R is amenable, which is a contradiction.

For the moreover assertion, let �1; : : : ;�n2 ŒR� such that ı WD




1
n

Pn
iD1u.�i /



<1.

Let c > 0 and choosem � 1 such that ım < c. Then we have that









1

nm

X

1�i1;:::;im�n

u.�i1 : : : �im/









D









�1

n

n
X

iD1

u.�i /
�m









� ım < c:

Thus, the elements �i1 : : : �im 2 ŒR�, for 1 � i1; : : : ; im � n, satisfy the second

assertion. �

2.3. Extensions and Expansions of Equivalence Relations. Let R and zR be

countable pmp equivalence relations on probability space .X; �/ and on . zX; Q�/,

respectively.

Definition 2.3. We say that zR is a class-bijective extension (in short, an extension)

of R if there is a Borel map pW zX ! X satisfying

(1) �.E/ D Q�.p�1.E//, for all Borel E � X ,

(2) pjŒx� zR
is injective, for almost every x 2 zX , and

(3) p.Œx�zR/ D Œp.x/�R, for almost every x 2 zX .

We say that zR is an expansion of R if condition (3) is weakened to

(30) p.Œx�zR/ � Œp.x/�R for almost every x 2 zX .

Notation 2.4. Below we use the notation zR ! R to mean that zR is an extension

of R.
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Remark 2.5. Assume that zR is an extension of R and let S � R be a subequiv-

alence relation. Then zS WD ¹.x; y/ 2 zR j .p.x/; p.y// 2 Sº is an extension of S,

which we call the lift of S to zR.

Remark 2.6. Assume that zR is an expansion of R. Then zR contains an extension
zR0 � zR of R defined by zR0 D ¹.x; y/ 2 zR j .p.x/; p.y// 2 Rº: Note, however,

that containing an extension of R is not equivalent to being an expansion of R.

Suppose that zR is an expansion of R and let pW zX ! X as in the above

definition. If � 2 ŒR�, then for almost every x 2 zX , the set p�1.�.p.x/// \ Œx�zR
contains exactly one point x0 2 zX . We may therefore define Q� 2 ŒzR� by Q�.x/ D x0.

Note that � ı p D p ı Q� , for all � 2 ŒR�. One can check that � 7! Q� is a

homomorphism from ŒR� into ŒzR�. For a 2 L1.X/, we let Qa D a ı p 2 L1. zX/.

The next result is due to S. Popa [49, Proposition 1.4.3]. For completeness, we

include a proof.

Lemma 2.7. [49] There is a trace preserving �-homomorphism � WL.R/ ! L.zR/

satisfying

(1) �.a/ D Qa, for every a 2 L1.X/,

(2) �.u.�// D u. Q�/, for every � 2 ŒR�, and

(3) �.L1.X//0 \ L.zR/ D L1. zX/:

Moreover, if zR is an extension of R, then the linear span of ¹bu. Q�/ j b 2 L1. zX/;

� 2 ŒR�º is dense in L.zR/, in the strong operator topology.

Proof. We denote by � and h:; :i the canonical trace and inner product on L.R/

(resp. L.zR/) and by EL1.X/ (resp. EL1. zX/) the conditional expectations onto

L1.X/ (resp. L1. zX/). Note first that the map � WL1.X/ ! L1. zX/ given by

�.a/ D Qa defines a trace preserving �-homomorphism. Moreover, if � 2 ŒR�, then

�.EL1.X/.u.�/// D 1¹x2X j�.x/Dxº ı p

D 1¹x2 zX j�.p.x//Dp.x/º

D 1
¹x2 zXW Q�.x/Dxº

D EL1. zX/.u.
Q�//:
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Let D � L.R/ be the �-subalgebra consisting of finite sums of the form
P

� a�u.�/. Then D � L.R/ is dense in the strong operator topology, and for

every a; b 2 L1.X/, �; � 2 ŒR�, we have

h�.a/u. Q�/; �.b/u. Q�/i D �.�.b�a/u. Q� Q��1//

D �.�.b�a/EL1. zX/.u.
e���1///

D �.�.b�a/�.EL1.X/.u.��
�1////

D �.b�aEL1.X/.u.��
�1///

D hau.�/; bu.�/i:

Therefore, the map

� WD �! L.zR/

defined by
X

�

a�u.�/ 7�!
X

�

Qa�u. Q�/

is well-defined and trace-preserving. Moreover, since

�.u.�/au.�/�/ D �.a ı ��1/ D �.a/ ı Q��1 D u. Q�/au. Q�/�

and the maps a 7! Qa and u.�/ 7! u. Q�/ are �-homomorphisms, � is a �-homo-

morphism. Since � is trace-preserving, it extends to a trace-preserving �-homo-

morphism � WL.R/ ! L.zR/ satisfying (1) and (2).

To prove (3), let y 2 �.L1.X//0 \ L.zR/. Fix � 2 ŒzR� and set

b� D EL1. zX/.yu.�/
�/:

Then for any a 2 �.L1.X// we have

b�a D ab� D EL1. zX/.ayu.�/
�/ D EL1. zX/.yau.�/

�/ D b� .u.�/au.�/
�/:

Thus, for almost every x 2 supp.b� / � zX , we have p.x/ D p.��1.x//.

Since pjŒx� zR
is injective, we derive that x D ��1.x/, for almost every x 2

supp.b� /. Hence, for any b 2 L1. zX/ and almost every x 2 zX , we have

b� .x/Œu.�/bu.�/
��.x/ D b� .x/b.�

�1x/ D b� .x/b.x/. Therefore, we get that

b�u.�/ 2 L1. zX/0 \ L.zR/ D L1. zX/. Since this holds for any � 2 ŒzR�, we

conclude that y 2 L1. zX/.

Finally, assume that zR is an extension of R, and let � 2 ŒzR�. Then for almost

every x 2 zX we have .p.x/; p.�.x/// 2 R. Hence

zX D
[

�2ŒR�

¹x 2 zX j p.�.x// D �.p.x//º D
[

�2ŒR�

¹x 2 zX j �.x/ D Q�.x/º:

Thus, we can write u� D
P1

nD1 znu. Q�n/, for some ¹�nº � ŒR� and projections

¹znº � L1. zX/ with
P1

nD1 zn D 1. In particular, this gives the moreover

conclusion. �
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2.4. Graphed equivalence relations and isoperimetric constants. Let R be a

countable pmp equivalence relation on a probability space .X; �/. A graphing of

R is an at most countable family ¹�iºi�1 � ŒŒR��. A graphing ¹�iºi�1 is generating
if R is the smallest equivalence relation which contains the graph of �i for all

i � 1.

Any graphing ¹�i WAi ! Biºi�1 gives rise to a graph structure on R (see [14]).

More precisely, for x 2 X , we define an unoriented (multi-)graph Gx D .Œx�R; Ex/

whose vertex set is the equivalence class Œx�R and whose edge set Ex consists of

the pairs .y; �i.y//, for every i � 1 and y 2 Œx�R\Ai . Note that we allow multiple

edges between two given vertices. Therefore, if the graphing is finite and given

by ¹�iº
n
iD1, with �1; : : : ; �n 2 ŒR�, then Gx is a 2n-regular graph.

Let G D .V; E/ be an unoriented infinite (multi-)graph with vertex set V and

edge set E. Given a non-empty finite set F � V , let @EF be the set of edges

which have exactly one endpoint in F . The edge-isoperimetric constant of G is

defined as

�.G/ D inf

²

j@EF j

jF j

ˇ

ˇ

ˇ

ˇ

; ¤ F � V finite subset

³

:

If R is an amenable countable pmp equivalence relation, then �.Gx/ D 0, for

almost every x 2 X , for any finite graphing ¹�iº
n
iD1 (see [28, Theorem 2]). On the

other hand, the converse is false. More precisely, [28, Section 3] provides an ex-

ample of a non-amenable equivalence relation R which admits a finite generating

graphing ¹�iº
n
iD1 such that �.Gx/ D 0, for almost every x 2 X .

Nevertheless, the combination of Lemma 2.2 and Lemma 2.8 below shows

that if R is non-amenable and ergodic, then we can find a graphing ¹�iº
n
iD1 with

�1; : : : ; �n 2 ŒR� such that the associated graphs satisfy �.Gx/ > 0, for almost every

x 2 X .

Lemma 2.8. Let R be a countable pmp equivalence relation on a probability
space .X; �/ and �1; : : : ; �n 2 ŒR�. For every x 2 X , consider the unoriented
graph Gx D .Œx�R; Ex/ defined as above.

Then �.Gx/ � 2n �




Pn
iD1.u.�i /C u.��1

i //


, for almost every x 2 X .

Proof. Denote ı D 2n �




Pn
iD1.u.�i / C u.��1

i //


. Let S be the set of y 2 X

such that �.Gy/ < ı. Assume by contradiction that �.S/ > 0. For all y 2 S we

can find a finite setAy � Œy�R satisfying j@Ey
.Ay/j < ıjAyj in such a way that the

set A WD ¹.x; y/ 2 R j y 2 S; x 2 Ayº is Borel. Moreover, after replacing S with

a non-null Borel subset, we may assume that supy2S jAyj < 1.

If we view 1A 2 L2.R; m/, then

hu.�/.1A/; 1Ai D

Z

S

j¹x 2 Ayj��1.x/ 2 Ayºj d�.y/; for all � 2 ŒR�.
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By using this identity we derive that

D�

n
X

iD1

.u.�i /C u.��1
i //

�

.1A/; 1A

E

D

Z

S

X

x2Ay

.j¹1 � i � nj��1
i .x/ 2 Ayºj C j¹1 � i � nj�i .x/ 2 Ayºj/ d�.y/

D

Z

S

.2njAyj � j@Ey
.Ay/j/ d�.y/ > .2n� ı/

Z

S

jAyj d�.y/

D .2n � ı/ m.A/

D .2n � ı/h1A; 1Ai:

This contradicts the fact that




Pn
iD1.u.�i /C u.��1

i //


 D 2n� ı. �

2.5. Cost of equivalence relations. Let R be a countable pmp equivalence

relation on a probability space .X; �/. The cost of a graphing ¹�i WAi ! Biºi�1 is

the sum of the measures of the domains:
P

i�1�.Ai/. The cost of R is defined as

the infimum of the cost of all generating graphings of R [14, Defintion I.5].

Let A � X be a Borel set of positive measure and denote by

R � A WD R \ .A � A/

the restriction of R to A. Then the normalized cost of R � A is defined as the

cost of R � A with respect to the probability measure on A given by �A.B/ D

�.B/=�.A/, for any Borel set B � A.

In the proof of our main result we will use the following theorem.

Theorem 2.9. Assume that R is ergodic and has cost in .1;1/. Then there exists
a free ergodic pmp action F2 Õ .X; �/ such that R.F2 Õ X/ � R, almost
everywhere.

This theorem is the combination of Propositions 13 and 14 from [17]. Its proof

relies on a theorem due to G. Hjorth [22] and on a result from [30, 46] (see [17]

for details).

3. Bernoulli extensions of equivalence relations

In this section, we first recall the construction of Bernoulli extensions and prove

that Bernoulli extensions preserve ergodicity. We then study isomorphisms of

Bernoulli extensions and their behavior with respect to restrictions to subequiva-

lence relations and compressions.
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3.1. Bernoulli extensions and ergodicity. Let R be a countable pmp equiva-

lence relation on a probability space .X; �/. Let .K; �/ be a probability space.

We denote by XK the set of pairs .x; !/ with x 2 X and ! 2 K Œx�R . We

endow XK with the smallest �-algebra of sets which makes the maps .x; !/ 7! x

and .x; !/ 7! !.�.x// measurable, for every � 2 ŒR�. We also endow XK with

the probability measure �� given by

d��.x; !/ D d�Œx�R.!/ d�.x/:

Lastly, we denote by RK the equivalence relation on XK given by .x; !/RK.y; �/

if and only if xRy and ! D �, and call it the Bernoulli extension of R with base
space .K; �/ (see [4, Section 11]).

Lemma 3.1. If R is ergodic, then RK is ergodic.

Proof. Assume that R is ergodic. Then we can find � 2 ŒR�which acts ergodically

on .X; �/ (see [29, Theorem 3.5]). We define Q� 2 ŒRK� by letting Q�.x; !/ D

.�.x/; !/, for .x; !/ 2 XK . Then, in order to conclude that RK is ergodic, it

suffices to prove that Q� acts ergodically on XK .

Let S � R be the subequivalence relation generated by � . Since � and hence

S is ergodic, we can find ¹�iº
N
iD1 2 ŒR� such that for almost every x 2 X we

have �i .Œx�S/ \ �j .Œx�S/ D ;, for all i 6D j , and Œx�R D
SN

iD1 �i .Œx�S/ (see [27,

Lemma 1.1]). Here, N 2 N [ ¹1º is the index of S in R.

Now, we define

� WX �K¹1;:::;N º�Z �! XK

by letting

�.x; .ki;j /i2¹1;:::;N º;j 2Z/ D .x; !/;

where ! 2 K Œx�R is given by !.�i�
j .x// D ki;j , for all i 2 ¹1; : : : ; N º and j 2 Z.

Further, we endow X �K¹1;:::;N º�Z with the probability measure �� �¹1;:::;N º�Z.

Then it is clear that � is an isomorphism of probability spaces and that

.��1 ı Q� ı �/.x; k/ D .�.x/; .ki;j C1//;

for all x 2 X , k D .ki;j /i2¹1;:::;N º;j 2Z 2 K¹1;:::;N º�Z.

Thus, Q� is conjugate to the product � � � between � and the Bernoulli shift �

of Z on .K¹1;:::;N º/Z. Since � is ergodic and � is weakly mixing, we conclude that
Q� is ergodic. �

Let us also note that if R is the orbit equivalence relation of some free action,

then the Bernoulli extensions of R can be described explicitly.



412 L. Bowen, D. Hoff, and A. Ioana

Proposition 3.2. Assume that R D R.� Õ X/, for some essentially free pmp
action � Õ .X; �/.

Then RK is isomorphic to R.� Õ X �K�/.

Proof. Let

� WXK �! X �K�

be given by

�.x; !/ D .x; �/;

where �.g/ D !.g�1x/, for every g 2 �. It is immediate to see that � is an

isomorphism of probability spaces which implements an isomorphism between

RK and R.� Õ X �K�/. �

3.2. Isomorphisms of Bernoulli extensions. Let R be a countable pmp equiv-

alence relation on a probability space .X; �/. Next, we study the isomorphism

problem for Bernoulli extensions. For this we need the following definition:

Definition 3.3 (Isomorphism of extensions). Let zR, zS be countable pmp equiva-

lence relations on probability spaces . zX; Q�/ and . zY ; Q�/. Suppose that � W zX ! X ,

�W zY ! X are Borel maps which give extensions of zR and zS over R, respectively.

We say that the extensions zR ! R and zS ! R are isomorphic if there is an

isomorphism  W zX ! zY of zR with zS such that � D � ı  .

Let .K; �/ be a standard probability space. If .K; �/ is purely atomic then we

define its Shannon entropy by

H.K; �/ WD
X

k2K

��.¹kº/ log.�.¹kº//:

By convention 0 � log.0/ D 0. Otherwise, we setH.K; �/ WD C1.

Theorem 3.1. Let .K; �/; .L; �/ be probability spaces with the same Shannon
entropy.

Then the corresponding Bernoulli extensions of R are isomorphic.

Proof. By Ornstein’s isomorphism theorem, see [41, 42], the Bernoulli shifts

ZÕ.K; �/Z and ZÕ.L; �/Z are isomorphic. Let ˆWKZ ! LZ be such an

isomorphism.

Fix an aperiodic element � 2 ŒR� (see [29, Theorem 3.5] for the proof of

existence). Let x 2 X and ! 2 K Œx�R . For y 2 Œx�R, let !y 2 KZ be the

map given by

!y.n/ D !.�ny/:
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Also, define

!0W Œx�R �! L

by

!0.y/ D ˆ.!y/0:

That is, !0 is the time 0 coordinate of ˆ.!y/. Finally, define

‰WXK �! XL

by

‰.x; !/ D .x; !0/:

The proof that ‰ gives the desired isomorphism is similar to the proof of [3,

Lemma 3.1]. For the reader’s convenience, the proof is sketched below.

To prove invertibility, given ! 2 LŒx�R , define

!00W Œx�R �! K

by

!00.y/ D ˆ�1.!y/0:

We claim that .!0/00 D !. Indeed,

.!0/00.y/ D ˆ�1..!0/y/0 D ˆ�1.n 7�! !0.�ny//0 D ˆ�1.n 7�! ˆ.!�ny/0/0:

Because

.!�ny/m D !.�mCny/ D !
y
nCm

and ˆ is shift-equivariant,

ˆ.!�ny/0 D ˆ.!y/n:

Plug this back into the formula for .!0/00.y/ to obtain

.!0/00.y/ D ˆ�1.n 7�! ˆ.!y/n/0 D ˆ�1.ˆ.!y//0 D !
y
0 D !.y/:

Now define
z‰WXL �! XK

by
z‰.x; !/ D .x; !00/:

By the previous computation,

z‰.‰.x; !// D .x; .!0/00/ D .x; !/:

Similarly, ‰ z‰ is also the identity so z‰ is the inverse of ‰.
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Fix x 2 X . It suffices to show that ‰ maps the fiber measure �Œx�R to the fiber

measure �Œx�R . So let !W Œx�R ! K be random with law �Œx�R . The restrictions

of ! to the orbits of � are jointly independent. Because !0.y/ depends only on

the �-orbit of y 2 Œx�R, the restrictions of !0 to the orbits of � are also jointly

independent. The law of any �-orbit is �Z. Since ˆ��
Z D �Z, it follows that ‰

maps the fiber measure �Œx�R to �Œx�R as required. �

Definition 3.4. Theorem 3.1 allows us to define the Bernoulli extension of R with
base entropy t 2 .0;1� to be any Bernoulli extension of R with base space .K; �/

satisfying H.K; �/ D t .

3.3. Bernoulli extensions restricted to subequivalence relations

Theorem 3.2. Let R be a countable ergodic pmp equivalence relation on a
probability space .X; �/. Let .K; �/ be a probability space and RK ! R the
corresponding Bernoulli extension of R. Let S � R be an ergodic subequivalence
relation and zS � RK the lift of S to RK .

Then the extension zS ! S is isomorphic to the Bernoulli extension of S with
base space entropy equal to H.K; �/ŒR W S�.

Proof. Let N D ŒR W S�. Since S is ergodic, we can find ¹�iº
N
iD1 2 ŒR� such

that for almost every x 2 X we have �i .Œx�S/ \ �j .Œx�S/ D ;, for all i ¤ j , and

Œx�R D
SN

iD1 �i .Œx�S/ (see [27, Lemma 1.1]).

Let .L; �/ D .K; �/N . We denote by .YL; ��/ the underlying space of the

Bernoulli extension SL the Bernoulli extension of S with base space .L; �/.

Specifically, YL D ¹.x; !0/ j x 2 X;!0 2 LŒx�Sº.

Define the isomorphism

ˆWXK �! YL

by letting

ˆ.x; !/ D .x; !0/;

where

!0W Œx�S �! L

is defined by

!0.y/n D !.�n.y//:

We will prove that ˆ is an isomorphism between the extensions zS ! S and

SL ! S. SinceH.L; �/ D N H.K; �/ D ŒR W S� H.K; �/, the conclusion follows.

For .x; !0/ 2 YL, define

!00W Œx�R �! K

by

!00.�n.y// D !0.y/n for y 2 Œx�S.
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This is well-defined because ¹�n.y/W y 2 Œx�Sº partitions Œx�R. Define

‰WYL �! XK

by

‰.x; !0/ D !00:

Then ‰ is the inverse of ˆ, so ˆ is invertible.

Fix x 2 X and let ! be a random variable with law �Œx�R . Since ¹!.y/ºy2Œx�R

are i.i.d. random variables and ¹�n.y/W y 2 Œx�Sº partitions Œx�R, it follows that

¹!0.y/ºy2Œx�S are also i.i.d. random variables. So ˆ maps the fiber measure �Œx�R

to the fiber measure �Œx�S and therefore, it maps �� to ��. �

3.4. Compressions of Bernoulli extensions

Theorem 3.3. Let R be a countable ergodic pmp equivalence relation on a
probability space .X; �/. Let .K; �/ be a probability space and RK ! R the
corresponding Bernoulli extension of R. Let Y � X be a non-null Borel set and
let zY � XK be the corresponding lift.

Then the extension RK � zY ! R � Y is isomorphic to the Bernoulli extension
of R � Y with base space entropy equal to H.K; �/=�.Y /.

To prove this we first need to study the classification of inhomogeneous

Bernoulli shifts.

Let T 2 Aut.X; �/ be an ergodic automorphism of a probability space. Let

� be a complete metric space and Prob.�/ the set of probability measures on �

endowed with the weak* topology. Suppose that �WX ! Prob.�/ is a Borel map.

For x 2 X , let �x be the probability measure on�Z obtained as the direct product

of the measures �.T nx/ (n 2 Z).

Define the measure Q� on X ��Z by

d Q�.x; !/ D d�x.!/ d�.x/:

We let � denote the shift map from�Z to itself given by �.!/n D !nC1. Then Q� is

T � �-invariant. The automorphism T � � is called the inhomogeneous Bernoulli
shift over T with data �.

Lemma 3.4. The inhomogeneous Bernoulli shift defined above is measurably
conjugate to a direct product T � U , where U is a Bernoulli shift with h.U / D
R

H.�.x// d�.x/: Moreover, the conjugacy can be chosen to be the identity on
the X coordinate.

Proof. This is a straightforward consequence of Thouvenot’s Relative Isomor-

phism Theorem [53]. We provide some details here, guided by the formulation of

Thouvenot’s Theorem presented in [32].
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Let .B; �/ be a complete separable metric space. If �1; �2 are probability

measures on Bm (for some integerm > 0), then we define the Nd -distance between

them by

Nd.�1; �2/ D inf
J

Z

m�1

m
X

iD1

�.xi ; yi / dJ.x; y/

where the infimum is over all probability measures J on Bm �Bm with marginals

�1 and �2.

Let .Y;C; �/ be a standard probability space and S WY ! Y a measure-

preserving automorphism. Also let F � C be an S -invariant sub-�-algebra and

 WY ! B a measurable map. Let

 m
1 WY �! Bm

be the map

 m
1 .y/ D . .Sy/; : : : ;  .Smy//:

Also let

 0
�1WY �! BN

be the map

 0
�1.y/ D . .y/;  .S�1y/;  .S�2y/; : : :/:

Then .S;  ; �/ is F-conditionally very weak Bernoulli (VWB) if whenever

y 2 Y is random with Law.y/ D � then

lim
m!1

EŒ Nd.Law. m
1 .y/ j F/;Law. m

1 .y/ j F;  0
�1/� D 0:

A word about this expression is in order. Law. m
1 .y// is just the pushforward mea-

sure . m
1 /�� (since y has law �). Law. m

1 .y/ j F/ is the distribution of  m
1 .y/

conditioned on F. In other words, it is the conditional expectation of . m
1 /��

relative to F. Similarly, Law. m
1 .y/ j F;  0

�1/ is the conditional expectation of

. m
1 /�� relative to F and the �-algebra generated by  0

�1. The expected value in

the expression above is over y.

In the special case in which B is a finite set, Thouvenot proved that if .S;  ; �/

is F-conditionally VWB then .S;  ; �/ is F-relatively Bernoulli. The latter means

there is an S -invariant sub-�-algebra G such that

� F is independent of G (so for any A 2 F; A0 2 G, �.A \ A0/ D �.A/�.A0/),

� the factor corresponding to G is isomorphic to a Bernoulli shift. The entropy

rate of this factor is necessarily equal to h.S;G/ D h.S;G _ F j F/,

� the �-algebras F and G generate the Borel �-algebra of Y up to sets of

measure zero.
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It is straightforward to generalize the proof to the case in which B is an arbitrary

complete metric space. Alternatively, one can use the fact that inverse limits of

Bernoulli shifts are Bernoulli [43].

Now let T 2 Aut.X; �/, �WX ! Prob.�/ and Q� be as before this lemma.

We set Y D X � �Z, S D T � � , � D Q� and let  WX � �Z ! � be the

map  .x; y/ D y0 (where y D .yi /i2Z). Also let F be the �-algebra generated

by projection to the X-coordinate. It is straightforward to check that .S;  ; �/ is

F-conditionally VWB. Indeed, in this case,

Law. m
1 .y/ j F/ D Law. m

1 .y/ j F;  0
�1/:

To finish the lemma, it suffices to observe

h.S j F/ D

Z

H.�.x// d�.x/:

Indeed, if P0 is any finite partition on� we may let P be the partition on X ��Z

given by .x; y/ and .x0; y0/ are in the same parts of P if and only if y0 and y0
0 are

in the same parts of P0. Then the translates ¹SnPºn2Z are independent relative to

F. Therefore

h.S;P j F/ D

Z

H�.x/.P0/ d�.x/:

The entropy rate h.S j F/ is the supremum of h.S;P j F/ over all such P. This is

because the translates ¹ ı Snºn2Z together with F generate the Borel �-algebra

on Y . By the Monotone convergence theorem,

Z

H.�.x// d�.x/ D sup
P0

Z

H�.x/.P0/ d�.x/: �

Next, we extend the previous result to equivalence relations. Let R be a

countable ergodic pmp equivalence relation on .X; �/. Let �WX ! Prob.�/ be a

Borel map. For x 2 X , let �x denote the probability measure on �Œx�R given by

�x is the direct product of �.y/ over all y 2 Œx�R.

Let X� be the set of all pairs .x; !/ with x 2 X and ! 2 �Œx�R . We endow

X� with the smallest �-algebra of sets which makes the maps .x; !/ 7! x and

.x; !/ 7! !.�.x// measurable, for every � 2 ŒR�. Also we endow X� with the

probability measure �� defined by

��.x; !/ D d�x.!/ d�.x/:

Let R� be the equivalence relation on R given by .x; !/R�.x
0; !0/ if and only if

xRx0 and ! D !0. We call R� the inhomogeneous Bernoulli extension over R

with data �.
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Lemma 3.5. The inhomogeneous Bernoulli extension R� ! R is isomorphic to
the Bernoulli extension of R with base space entropy equal to

R

H.�.x// d�.x/.

Proof. Let .K; �/ be a probability space with entropy equal to
R

H.�.x// d�.x/.

Let � 2 ŒR� be an ergodic element (see [29, Theorem 3.5]). By Lemma 3.4, the

inhomogeneous Bernoulli shift over � with data � is isomorphic to � � S , where

S is the Bernoulli shift with base space .K; �/. LetˆWX ��Z ! X �KZ be such

an isomorphism.

Given x 2 X and !W Œx�R ! �, let !x 2 �Z be the map

!x.n/ D !.�nx/:

Also, define

!0W Œx�R �! K

by

!0.y/ D ˆ.y; !y/0:

That is, !0 is the time 0 coordinate of ˆ.y; !y/. Finally, define ‰WX� ! XK by

‰.x; !/ D .x; !0/:

The proof that‰ is the desired isomorphism is similar to the proof of Theorem 3.1.

�

Proof of Theorem 3.3. Without loss of generality, we may assumeK is a compact

metrizable space. Let � be an element not contained in K. Let K� D K [ ¹�º be

the disjoint union and � D KN

� . For S � N, we identify the product space KS

with the set of sequences ˛ D .˛1; ˛2; : : : / 2 � such that ˛i 2 K, if i 2 S , and

˛i D �, if i … S . We also view the product measure �S as a measure on � be

letting �S .� nKS/ D 0.

Since R is ergodic, we can find �1; �2; � � � 2 ŒŒR�� such that dom.�i / � Y , for

all i , �i .Y / \ �j .Y / D ;, for all i 6D j , and
S

i �i .Y / is co-null in X . Then
P

i �.dom.�i // D 1.

For x 2 Y , let S.x/ be the set of all i 2 N with x 2 dom.�i /. Define

�WY �! Prob.�/

by

�.x/ D �S.x/:

Let .XK ; ��/ be the underlying space of the Bernoulli extension RK . We denote

by zY the lift of Y to XK . Let .X� ; ��/ be the underlying space of the Bernoulli

extension of R � Y by �.
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Define the isomorphism

ˆW zY �! X�

by

ˆ.x; !/ D .x; !0/;

where

!0W Œx�R�Y �! � D KN

�

is defined by

!0.y/n D

´

� if n … S.y/,

!.�n.y//; otherwise.

Below, we prove thatˆ is an isomorphism between the extensionRK � zY !R � Y

and the extension .R � Y /� ! R � Y . Lemma 3.5 implies that the extension

.R � Y /� ! R � Y is isomorphic to the Bernoulli extension of R � Y with base

space entropy equal to

�.Y /�1

Z

Y

H.�.x// d�.x/ D �.Y /�1H.K; �/

1
X

iD1

�.dom.�i //

D H.K; �/=�.Y /;

where the�.Y /�1 terms appear because we have to renormalize the measure on Y .

So this finishes the theorem.

To prove that ˆ is invertible, for .x; !0/ 2 X� , define

!00W Œx�R �! K

by

!00.�n.y// D !0.y/n for y 2 dom.�n/ \ Œx�R:

Because ¹�n.y/W y 2 dom.�n/\ Œx�R; n 2 Nº partitions Œx�R, this is well-defined.

Define

‰WX� �! zY

by

‰.x; !0/ D .x; !00/:

Then ‰ is the inverse of ˆ.

Fix x 2 Y . Because ¹�n.y/W y 2 dom.�n/ \ Œx�R; n 2 Nº partitions Œx�R,

ˆmaps the fiber measure �Œx�R to the fiber measure
Q

z �
S.z/ where the production

is over z 2 Œx�R \
S

i dom.�i /. Therefore, ˆ�.�� � Y / D �� . �



420 L. Bowen, D. Hoff, and A. Ioana

4. Bernoulli percolation on graphed equivalence relations

This section is devoted to the first part of the proof of main assertion of Theorem A.

We start by recalling several concepts and results regarding Bernoulli percolation

on graphs.

4.1. Bernoulli percolation on graphs. Let G D .V; E/ be an infinite (mul-

ti-)graph with vertex set V and symmetric set of edges E. That is, we allow mul-

tiple edges between two given vertices. A connected component of G is called a

cluster. We identify points in the standard Borel space ¹0; 1ºE with subsets of the

edge set E. This allows us to view ¹0; 1ºE as the Borel space of all subgraphs of

G with the same set of vertices V .

A simple cycle in G is a cycle that does not use any vertex or edge more than

once. A simple bi-infinite path in G is a bi-infinite path that does not use any vertex

or edge more than once.

An infinite set of vertices V0 � V is end convergent if for every finite K � V ,

there is a connected component of GnK that contains all but finitely many vertices

of V0. Two end-convergent sets V0; V1 are equivalent if V0 [V1 is end-convergent.

An end of G is an equivalence class of end-convergent sets.

The Bernoulli(p) bond percolation on G is the process of independently keep-

ing edges with probability p and deleting them with probability 1�p. Concretely,

we endow ¹0; 1ºE with the probability measure �E
p , where �p is the probability

measure on ¹0; 1º with weights 1� p and p.

Since the event that ! 2 ¹0; 1ºE has an infinite cluster is a tail event, Kol-

mogorov’s 0-1 law implies that the probability

˛.p/ WD �E
p .¹! 2 ¹0; 1ºE j ! has an infinite clusterº/

is equal to 0 or 1.

The critical value pc.G/ 2 Œ0; 1� is defined as

pc.G/ D sup¹p 2 Œ0; 1� j ˛.p/ D 0º:

It is easy to see that if p � pc.G/, then

pc.!/ D pc.G/=p; for �E
p -almost every ! 2 ¹0; 1ºE : (4.1)

One also defines pu.G/ as the infimum of the set of p 2 Œ0; 1� such that ! has

a unique infinite cluster, for �E
p -almost every ! 2 ¹0; 1ºE .

The following result due to I. Benjamini and O. Schramm (see [6, Theorem 4])

provides an upper bound for pc.
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Theorem 4.1. If G D .V; E/ is a graph then pc.G/ � 1
�.G/C1

.

For any subset A � ¹0; 1ºE and edge e 2 E, we denote by …eA � ¹0; 1ºE the

set ¹! [ ¹eº j ! 2 Aº. We also denote by …:eA the set ¹! n ¹eº j ! 2 Aº.

The Bernoulli.p/ percolation with p 2 .0; 1� is insertion tolerant: if A �

¹0; 1ºE is a Borel subset with �E
p .A/ > 0, then �E

p .…eA/ > 0, for any edge

e 2 E. If p 2 Œ0; 1/ then it is deletion tolerant: if A � ¹0; 1ºE is a Borel subset

with �E
p .A/ > 0, then �E

p .…:eA/ > 0, for any edge e 2 E. Moreover, we have

that �E
p .…eA/ � p�E

p .A/ and �E
p .…:eA/ � .1� p/�E

p .A/.

We end this subsection with two well-known consequences of insertion and

deletion tolerance:

Lemma 4.2. Let G D .V; E/ be a multi-graph and p 2 .0; 1/. Assume that
! has Np infinite clusters, for �E

p -almost every ! 2 ¹0; 1ºE , for some constant
Np 2 N [ ¹1º. Then,

(1) if G is connected, then Np 2 ¹0; 1;1º;

(2) if Np D 1, then the infinite cluster of ! has one end, for �E
p -almost every

! 2 ¹0; 1ºE .

Proof. Part (1) is a direct consequence of insertion tolerance and is due to New-

mann and Schulman (see [39] and the second part of the proof of[35, Theo-

rem 7.6]). For part (2), we reproduce the argument given in the proof of [35,

Theorem 7.33]. If ! has a unique infinite cluster for almost every ! 2 ¹0; 1ºE ,

then that cluster has one end. Otherwise, by removing a finite number of edges

and using deletion tolerance, we would get that ! has at least two infinite clusters

with positive probability. �

4.2. Infinitely many infinite clusters. Before stating the main result of this

section, we need to introduce some notation that we will use throughout this and

the next section.

Notation 4.3. Let R be an ergodic countable pmp equivalence relation on a prob-

ability space .X; �/. Suppose that R is generated by finitely many automorphisms

�1; : : : ; �n 2 ŒR�.

� For x 2 X , we define an unoriented connected (multi-)graphGx D .Œx�R; Ex/

whose edge set Ex consists of the pairs ¹y; �i.y/º with y 2 Œx�R and

i 2 ¹1; : : : ; nº (see Section 2.4).

� Fix p 2 .0; 1/ and endow ¹0; 1º with the probability measure �p with weights

1� p and p.

� Let zX be the set of pairs .x; !/ with x 2 X and ! 2 ¹0; 1ºEx , and endow zX

with the probability measure Q� given by d Q�.x; !/ D d�
Ex
p .!/d�.x/.
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� Let zR be the equivalence relation on zX given by .x; !/zR.y; �/ if and only if

xRy and ! D �.

Let uW ŒR� ! U.L2.R; m// be the unitary representation defined in Section 2.1.

Consider the self-adjoint operator T D
Pn

iD1.u.�i / C u.��1
i // and note that

kT k � 2n. The main goal of this section is to show that if kT k � n, then there is

a non-trivial interval of p 2 .0; 1/ such that ! has infinitely many infinite clusters,

for almost every .x; !/ 2 zX .

Here, we view every ! 2 ¹0; 1ºEx as a subgraph of Gx . Recall that we allow

Gx (and therefore !) to have multiple edges joining the same two points.

Theorem 4.4. In the setting from above, assume that 1
.2n�kT k/C1

< p < 1
kT k

.

Then ! has infinitely many infinite clusters, for Q�-almost every .x; !/ 2 zX .

Remark 4.5. Let G be the Cayley graph of a countable group � with respect to

a finite symmetric set of generators S . Let �W� ! U.`2�/ be the left regular

representation of �. Put T D
P

g2S �.g/. I. Pak and T. Smirnova-Nagnibeda

showed that if kT k � jS j
2

, then pc.G/ < pu.G/ (see [45]). Theorem 4.4 is an

analogue of their result for equivalence relations.

Towards Theorem 4.4, we first prove three lemmas:

Lemma 4.6. zR is isomorphic to the Bernoulli extension of R with base space
.¹0; 1ºn; �n

p/.

Proof. For x 2 X , the map ˇx W Œx�R � ¹1; : : : ; nº ! Ex given by ˇx.y; i/ D

.y; �i.y// is a bijection. Moreover, if Œx�R D Œy�R and we identify Ex and Ey

in the natural way, then ˇx � ˇy . It follows that zR is indeed isomorphic to the

Bernoulli shift over R with base space .¹0; 1ºn; �n
p/. �

Lemma 4.7. For .x; !/ 2 zX , let N.x; !/ be the number of infinite clusters of
! 2 ¹0; 1ºEx .

Then there exists Np 2 ¹0; 1;1º such that N.x; !/ D Np , for Q�-almost every
.x; !/ 2 zX .

Proof. Combining lemmas 3.1 and 4.6 yields that zR is ergodic. Since the measur-

able function N W zX ! N [ ¹1º is zR-invariant, we can find Np 2 N [ ¹1º such

that N.x; !/ D Np, for almost every .x; !/ 2 zX . Hence, we can find x 2 X such

that ! has Np infinite clusters, for �
Ex
p -almost every ! 2 ¹0; 1ºEx . Since Gx is

connected, Lemma 4.2 (1) implies that Np 2 ¹0; 1;1º. �
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Lemma 4.8. If 1
.2n�kT k/C1

< p � 1, then Np 2 ¹1;1º.

Proof. By combining Lemma 2.8 and Theorem 4.1 we get that

pc.Gx/ �
1

�.Gx/C 1
�

1

.2n� kT k/C 1
< p; for �-almost every x 2 X:

(4.2)
Therefore, for almost every x 2 X , we have that ! has at least one infinite

cluster, for �Ex
p -almost every ! 2 ¹0; 1ºEx . Thus, N.x; !/ � 1, for almost every

.x; !/ 2 zX . Together with Lemma 4.7 this gives that Np 2 ¹1;1º. �

We are now ready to prove Theorem 4.4. The proof is an adaptation of an

argument due to O. Schramm showing that pu.G/ � 1=.G/, for any transitive

graph G (see [35, Theorem 7.33]). Here, .G/ WD lim supn!1 an.G/
1=n, where

an.G/ is the number of simple cycles of length n in G.

Proof of Theorem 4.4. By Lemma 4.8 we have that Np 2 ¹1;1º. To show that

Np D 1, assume by contradiction that Np D 1. Thus, ! has a unique infinite

cluster, for almost every .x; !/ 2 zX . Denote byC.x; !/ this unique infinite cluster.

Lemma 4.2 (2) then implies thatC.x; !/ has one end, for almost every .x; !/ 2 zX .

Let A be the set of .x; !/ 2 zX such that ! (viewed again as a subgraph of

Gx D .Œx�R; Ex/) contains an infinite number of simple cycles through the vertex

x. We continue with the following:

Claim. Q�.A/ > 0.

Proof of the claim. By inequality 4.2 we have that pc.Gx/ < p, for almost every

x 2 X . In combination with formula 4.1 we get that pc.!/ D pc.Gx/=p < 1,

for almost every .x; !/ 2 zX . On the other hand, if a graph G of bounded degree

does not contain a simple bi-infinite path, then pc.G/ D 1 (see [36, Lemma 3.19]).

Altogether, we deduce that ! contains a simple bi-infinite path, for almost every

.x; !/ 2 zX .

Recall that we view ! as a graph with vertex set Œx�R. It follows that there

is a measurable map � WX ! X such that for almost every x 2 X , we have that

�.x/ 2 Œx�R and that the set of ! 2 ¹0; 1ºEx for which there is a simple bi-infinite

path in ! containing �.x/ has positive measure. Since �.�.X// > 0 and G�.x/

is naturally identified with Gx , the set B of .x; !/ 2 zX for which there exists a

simple bi-infinite path in ! containing x must also have positive measure.

Since ! has a unique infinite cluster, we derive that there is a simple bi-infinite

path in C.x; !/ containing x, for almost every .x; !/ 2 B. Now, we view such an

infinite path as the union of two disjoint infinite simple paths starting at x. Since

C.x; !/ has only one end, these two paths can be connected by paths in C.x; !/

that do not intersect any given finite subset of C.x; !/. This implies that there are
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an infinite number of simple cycles in C.x; !/ (and hence in !) through x, for

almost every .x; !/ 2 B. We conclude that Q�.A/ � Q�.B/ > 0, which proves the

claim. 4

Next, let m D 2n and enumerate

¹ 1; : : : ;  mº D ¹�1; : : : ; �n; �
�1
1 ; : : : ; ��1

n º:

Note that for every y 2 Œx�R there are exactly m edges having y as an endpoint,

namely .y;  i.y//, for i 2 ¹1; : : : ; mº.

For k � 1 and i1; : : : ; ik 2 ¹1; : : : ; mº, we defineAi1;:::;ik to be the set of x 2 X

such that  ik : : :  i2 i1.x/ D x and x 6D  ia : : :  i1.x/ 6D  ib : : :  i1.x/ 6D x, for

all 1 � a < b < k. In this case, x;  i1.x/; : : : ;  ik : : :  i1.x/ is a simple cycle in

Gx . Conversely, any simple cycle in Gx containing x is of this form. Further, we

define zAi1;:::;ik to be the measurable set of .x; !/ 2 zX such that x 2 Ai1;:::;ik and

the cycle x;  i1.x/; : : : ;  ik : : :  i1.x/ belongs to !.

Then A consists of the points .x; !/ 2 zX which belong to infinitely many

sets of the form zAi1;:::;ik . Since Q�.A/ > 0 by the claim, we derive that
P1

kD1

P

i1;:::;ik2¹1;:::;mº Q�. zAi1;:::;ik / D 1: Since Q�. zAi1;:::;ik / D pk�.Ai1;:::;ik / we

conclude that
1

X

kD1

pk
�

X

i1;:::;ik2¹1;:::;mº

�.Ai1;:::;ik /
�

D 1: (4.3)

Let � D ¹.x; x/ j x 2 Xº and view 1� 2 L2.R; m/. Then

hu. /.1�/; 1�i D �.¹x 2 X j  .x/ D xº/;

for every  2 ŒR�. Hence, since T D
Pm

iD1 u. i /, for every k � 1 we have that

hT k.1�/; 1�i D
X

i1;:::;ik2¹1;:::;mº

�.¹.x 2 X j  ik : : :  i1.x/ D xº/

�
X

i1;:::;ik2¹1;:::;mº

�.Ai1;:::;ik /:

(4.4)

By combining equations 4.3 and 4.4 we deduce that

1
X

kD1

pkhT k.1�/; 1�i D 1:

This implies that pkT k � 1 which leads to the desired contradiction. �
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5. Ergodicity of the cluster equivalence relation

This section is devoted to the second part of the proof of the main assertion of

Theorem A.

Consider the setting from 4.3. In particular, p 2 .0; 1/ is fixed, and zX is the

set of pairs .x; !/, with x 2 X and ! 2 ¹0; 1ºEx , endowed with the probability

measure given by d Q�.x; !/ D d�
Ex
p .!/d�.x/. Two points .x; !/; .y; �/ 2 zX are

zR-equivalent if xRy and ! D �. Recall that we view every ! 2 ¹0; 1ºEx as a

subgraph of Gx D .Œx�R; Ex/.

Following D. Gaboriau [15, Section 1.2] we define a subequivalence relation
zRcl of zR, called the cluster equivalence relation. Thus, we say that two points

.x; !/; .y; �/ 2 zX are zRcl-equivalent if they are zR-equivalent and x; y belong to

the same cluster of ! D �.

For .x; !/ 2 zX , we let C.x; !/ be the cluster of x in !. We denote by U1 the

set of points .x; !/ 2 zX such that C.x; !/ is infinite. ThenU1 is an zRcl-invariant

set and the restriction zRcl� U
1 has infinite classes.

In this section we show that if ! has infinitely many infinite clusters, for almost

every .x; !/ 2 zX , then zRcl� U
1 is ergodic and has cost > 1.

Theorem 5.1. Assume that ! has infinitely many infinite clusters, for Q�-almost
every .x; !/ 2 zX .

Then the restriction zRcl� U
1 is ergodic.

R. Lyons and O. Schramm proved that the infinite clusters that may appear

in Bernoulli.p/ bond percolation on a transitive graph are indistinguishable (see

[37, Theorem 1.1] for the precise statement). D. Gaboriau and R. Lyons then

showed that indistinguishability of infinite clusters is equivalent to ergodicity of

the restriction of the cluster equivalence relation to its infinite locus (see [17,

Proposition 5]). Theorem 5.1 is a generalization of these results. Its proof is an

immediate consequence of work of D. Aldous and R. Lyons [1] who noted that

the results from [37] extend to the more general context of unimodular random

networks. More precisely, we will show that the following result, stated implicitly

in [1], implies Theorem 5.1.

Theorem 5.2. Let A be a Borel subset of ¹.A; x/ j A 2 ¹0; 1ºŒx�R � ¹0; 1ºEx ,
x 2 Xº. Assume that if .A; x/ 2 A and y 2 Œx�R, then .A; y/ 2 A.

Then the set of .x; !/ 2 zX , for which there exist two infinite clusters C1; C2 of
! such that ..C1; !/; x/ 2 A and ..C2; !/; x/ … A, has Q�-measure zero.

Before deducing Theorem 5.1 from Theorem 5.2, let us explain how the latter

follows from [1]. Recall from [1, Section 2] that a network is a (multi-)graph

G D .V; E/ together with a complete separable metric space „ and maps from

V and E to„. A rooted network .G; o/ is a network with a distinguished vertex o.
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Then G� denotes the set of isomorphism classes of rooted connected locally finite

networks.

By [1, Example 9.9] the graphs .Gx/x2X give rise to a unimodular ran-

dom rooted network. More precisely, consider the map ˆWX ! G� given by

ˆ.x/ D .Gx ; x/. Then the push-forward ˆ�� is a unimodular probability mea-

sure on G� (see [1, Definition 2.1]). Moreover, the measure Q� corresponds to

Bernoulli(p) percolation on ˆ��. Since p 2 .0; 1�, we have that Q� is insertion

tolerant in the sense of [1, Definition 6.4]. Therefore, by [1, Theorem 6.15], Q�

has indistinguishable infinite clusters. Finally, translating this fact leads to Theo-

rem 5.2.

Proof of Theorem 5.1. Let Y � U1 be a zRcl-invariant Borel subset. We define A

as the set of ..C; !/; x/ with x 2 X , ! 2 ¹0; 1ºEx and C infinite cluster of ! such

that .y; !/ 2 Y , for all y 2 C .

Let x 2 X , ! 2 ¹0; 1ºEx and C infinite cluster of ! such that ..C; !/; x/ 62 A.

Then .y; !/ … Y , for some y 2 C . But then for all z 2 C we have that

.z; !/ �zRcl
.y; !/ and since Y is zRcl-invariant, we deduce that .z; !/ … Y .

Since A is clearly invariant under changing the “root” x, Theorem 5.2 implies

that for almost every .x; !/ 2 zX we have that either .y; !/ 2 Y , for all y contained

in some infinite cluster of !, or .y; !/ … Y , for all y contained in some infinite

cluster of !.

This implies that Y is invariant under zR� U1. Since by lemmas 3.1 and 4.6

we have that zR is ergodic, it follows that Q�.Y / 2 ¹0; Q�.U1/º, which proves that
zRcl� U

1 is ergodic. �

Proposition 5.3. Assume ! has infinitely many infinite clusters, for Q�-almost
every .x; !/ 2 zX . Then the normalized cost of zRcl� U

1 is > 1.

The proposition follows by combining Theorem 5.1, [39], and [14, Corollaire

IV.24]. For the reader’s convenience we include a proof below.

Proof. We begin with the following claim:

Claim. Each infinite cluster of ! has infinitely many ends, for Q�-almost every
.x; !/ 2 zX .

Proof of the claim. The proof is a straightforward adaptation of the proofs of

Propositions 3.9 and 3.10 in [37]. By the discussion following [6, Conjecture 4.1]

it is enough to show that no infinite cluster of ! has an isolated end. Assume that

some cluster of ! has an isolated end, with positive probability. Then insertion

tolerance guarantees that, with positive probability, a cluster of ! will have at least

three ends with one of them being isolated.
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Let An be the set of .x; !/ 2 zX with the property that C.x; !/n¹y 2 C.x; !/ j

d.x; y/ � nº has at least 3 infinite components, where d is the cluster metric. Our

assumption implies that the set of .x; !/ 2 An for which C.x; !/ has an isolated

end, has positive probability, for some n � 1.

If C.x; !/ \ An 6D ;, then we let K.x; !/ be the set of y 2 C.x; !/\ An that

are closest to x. Next, we let Qm be the usual infinite measure of zR and define

F W zR �! Œ0; 1�

by letting

F..x; !/; .y; !// D

´

jK.x; !/j�1 if C.x; !/\ An ¤ ; and y 2 K.x; !/;

0 otherwise.

Since
X

.y;!/2Œ.x;!/� zR

F..x; !/; .y; !// 2 ¹0; 1º; for all .x; !/ 2 zX ,

we get that
Z

zR

F d Qm � 1:

On the other hand, let .x; !/ 2 An and � be an isolated end of C.x; !/. Then

we can find B � C.x; !/ finite and a neighborhood D of � such that the points

in C.x; !/ \ An that are closest to any given point y 2 D lie in B . Thus, we

have that K.y; !/ � B , for all .y; !/ 2 Œ.x; !/�zR with y 2 D. In particular,

jK.y; !/j � jBj, for all such y.

Since D is infinite, it follows that

X

.y;!/;.z;!/2Œ.x;!/� zR
;z2B

F..y; !/; .z; !//D 1:

Since B is finite, we derive that

X

.y;!/2Œ.x;!/� zR

F..y; !/; .z; !// D 1; for some z 2 B .

This clearly implies that
Z

zR

F d Qm D 1;

which gives a contradiction. 4
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For i 2 ¹1; : : : ; nº, let Ai be the set of .x; !/ 2 U1 such that x and �i .x/ lie in

the same cluster of !. We define Q�i 2 ŒŒzRcl�� by letting Q�i .x; !/ D .�i .x/; !/, for

all .x; !/ 2 Ai . Then ¹ Q�iº
n
iD1 is a generating graphing of zRcl � U1. Moreover,

for all .x; !/ 2 U1, the graph of the equivalence class of .x; !/ in zRcl � U1

associated to ¹ Q�iº
n
iD1 is isomorphic to the cluster C.x; !/.

By the claim, the latter has infinitely many ends, for almost every .x; !/ 2

U1. Since zRcl� U
1 is ergodic by Theorem 5.1, [14, Corollaire IV.24] gives that

zRcl� U
1 has normalized cost > 1. �

6. Proofs of Theorem A and Corollary C

6.1. A generalization of Theorem A. The main goal of this section is to prove

Theorem A. Let R be a non-amenable countable ergodic pmp equivalence relation

on a probability space .X; �/. We would like to understand for which probability

spaces .K; �/ there exist a free ergodic pmp action F2 Õ .XK ; ��/ such that

R.F2 Õ XK/ � RK , almost everywhere. While we expect that this should be

the case for any non-trivial .K; �/, at this point we only have partial answers. The

next theorem, which clearly generalizes Theorem A, summarizes our main results.

Recall the definition of the Shannon entropy H.K; �/ from §3.2.

Theorem 6.1. Let R be a non-amenable countable ergodic pmp equivalence
relation on .X; �/.

(1) There is a number ˇ.R/ 2 Œ0;1� such that if H.K; �/ > ˇ.R/, then there
exists a free ergodic pmp action F2 Õ .XK ; ��/ such that

R.F2 Õ XK/ � RK ; almost everywhere.

If H.K; �/ < ˇ.R/, then no such action exists.

(2) ˇ.R/ is finite. In particular, if .K; �/ is non-atomic, then there exists a free
ergodic pmp action F2 Õ .XK ; ��/ such that

R.F2 Õ XK/ � RK ; almost everywhere.

(3) For any ergodic non-amenable subequivalence relation S � R, we have
ˇ.R/ � ŒR W S��1ˇ.S/. In particular, if S has infinite index, then ˇ.R/ D 0.

(4) For any non-null Borel set Y � X , ˇ.R/ � �.Y /ˇ.R � Y /. In particular, if
R has infinite fundamental group, then ˇ.R/ D 0.

(5) If R contains a normal ergodic subequivalence relation S C R with infinite
index, then ˇ.R/ D 0.
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Recall that the fundamental group of R denotes the set of all quotients

�.Y1/=�.Y2/ 2 .0;1/, where Y1; Y2 � X are non-null Borel subsets such that

R � Y1 Š R � Y2. For the definition of normality for subequivalence relations

S � R, see [12].

6.2. Proof of Theorem 6.1. We begin by defining ˇ.R/ and showing that it is

finite.

Definition 6.1. We define ˇ.R/ 2 Œ0;1� to be the infimum of all numbers of

the form H.K; �/ where .K; �/ is a probability space satisfying: there exist a

free ergodic pmp action F2 Õ .XK ; ��/ such that R.F2 Õ XK/ � RK ; almost

everywhere.

Proposition 6.2. If .L; �/ is any probability space with H.L; �/ > ˇ.R/, then
there exists a free ergodic pmp action F2 Õ .XL; ��/ such that

R.F2 Õ XL/ � RL; almost everywhere.

Proof. By hypothesis, there exists a probability space .K; �/ with H.K; �/ <

H.L; �/ and a free ergodic pmp action F2 Õ .XK ; ��/ such that

S WD R.F2 Õ XK/ � RK ; almost everywhere.

Let .N; �/ be a probability space such that H.N; �/ D H.L; �/ � H.K; �/.

The Shannon entropy of .N � K; � � �/ equals the Shannon entropy of .L; �/.

Theorem 3.1 implies that the extension RL ! R is isomorphic to RN �K ! R.

The latter extension has RK as an intermediate factor.

Next, we lift the action F2 Õ XK to a free pmp action F2 Õ XN �K so that
zS WD R.F2 Õ XN �K ) is the lift of S through the extension RN �K ! RK .

Since the extension RN �K ! RK is isomorphic to the Bernoulli extension

.RK/N ! RK , Theorem 3.2 implies that the extension zS ! S is isomorphic

to a Bernoulli extension. Since S is ergodic, Lemma 3.1 implies that zS is ergodic,

hence the action F2 Õ XN �K is ergodic. Since RL Š RN �K by Theorem 3.1, we

are done. �

Next, we obtain a nontrivial upper bound on ˇ. Define ˛.R/ D log.n/, where

n � 3 is the smallest natural number such that there exist �1; : : : ; �n 2 ŒR� with









1

n

n
X

iD1

u.�i /









< 1=4:

Proposition 6.3. There is a universal constant C > 0 such that

ˇ.R/ � ˛.R/C C:

In particular, ˇ.R/ is finite.
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Proof. By Lemma 2.2, non-amenability of R implies ˛.R/ is finite. Let n � 3

with log.n/ D ˛.R/. Let �0 2 ŒR� be ergodic and �1; : : : ; �n 2 ŒR� such that




1
n

Pn
iD1 u.�i /



 < 1=4: Then









1

nC 1

n
X

iD0

u.�i /









< 1=2

and the subequivalence relation R0 generated by �0; : : : ; �n is ergodic.

Let T D
Pn

iD0.u.�i /Cu.��1
i //: Then kT k < nC 1. Let p D 1=.nC 2/. Note

that
1

2.nC 1/ � kT k C 1
< p <

1

kT k
: (6.1)

Consider the notation from 4.3, for the ergodic equivalence relation R0 and its

generating graphing �0; : : : ; �n (instead of R and �1; : : : ; �n) and for the parameter

p defined above.

By inequality 6.1, Theorem 4.4 implies that ! has infinitely many infinite

clusters, for almost every .x; !/ 2 zX . Let zRcl � zR be the cluster equivalence

relation and U1 � zX as defined in the beginning of Section 5. By combining

Theorem 5.1 and Proposition 5.3 we conclude that zRcl � U1 � zR � U1 is

ergodic and has normalized cost> 1. Moreover, the cost of zRcl � U1 � zR � U1

is clearly finite.

By Lemma 4.6, zR is isomorphic to the Bernoulli extension with base space

.K; �/ WD .¹0; 1ºnC1; �nC1
p /. In particular, since R is ergodic, Lemma 3.1 gives

that zR is ergodic. Therefore, we can find an ergodic subequivalence relation S � zR

whose restriction to U1 coincides with zRcl � U1. Then the induction formula

[14, Proposition II.6 (2)] implies that S has cost in .1;1/.

By applying Theorem 2.9 to S, it follows that there exists a free ergodic

pmp action F2 Õ . zX; Q�/ such that S0 WD R.F2 Õ zX/ � S. In particular,

S0 � zR Š RK . Thus, we deduce that

ˇ.R/ � H.K; �/

D �.nC 1/.p log.p/C .1 � p/ log.1� p//

D .nC 1/
log.nC 2/

nC 2
� .nC 1/2

log.1� 1=.nC 2//

nC 2

� log.nC 2/C 1 � log.n/C C

D ˛.R/C C;

where C D 1C log.5=3/. �
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Proposition 6.4. If S � R is an ergodic non-amenable subequivalence relation,
then we have ˇ.R/ � ˇ.S/ŒR W S��1:

Proof. Let .K; �/ be a probability space with H.K; �/ > ˇ.S/ŒR W S��1. By

Theorem 3.2, if zS is the lift of S to RK then zS ! S is isomorphic to the Bernoulli

extension of S with base entropy H.K; �/ŒR W S� > ˇ.S/. By the definition of ˇ,

there is a free ergodic pmp action F2 Õ .XK ; ��/whose orbits are contained in zS.

Since zS � RK , these orbits are also contained in RK . Therefore, ˇ.R/ � H.K; �/,

and the inequality follows by taking the infimum over all such H.K; �/. �

Proposition 6.5. Let Y � X be a non-null Borel set. Then

ˇ.R/ � ˇ.R � Y /�.Y /:

Proof. Let .K; �/ be a probability space and supposeH.K; �/ > ˇ.R � Y /�.Y /.

By Theorem 3.3, if zY is the lift of Y toXK , thenRK � zY !R � Y is isomorphic to

the Bernoulli extension of R � Y with base entropyH.K; �/�.Y /�1 > ˇ.R � Y /.

So by the definition of ˇ, there is a free ergodic pmp action F2 Õ zY such that

S D R.F2 Õ zY / satisfies S � RK � zY , almost everywhere.

Since RK is ergodic by Lemma 3.1, we can find an ergodic subequivalence

equivalence relation T � RK such that T � zY D S. Then [14, Theorem IV.15]

and [14, Proposition II.6 (2)] together imply that the cost of T belongs to .1;C1/.

Theorem 2.9 further implies that T and thus RK contains almost every orbit of

a free ergodic pmp action F2 Õ XK . Therefore, ˇ.R/ � H.K; �/, and the

conclusion follows by taking the infimum over all suchH.K; �/. �

Proposition 6.6. If R contains an ergodic normal subequivalence relationN C R

such that R=N is non-amenable, then ˇ.R/ D 0.

Recall from [12] that there exists a countable group, denoted R=N, and a

cocycle cWR ! R=N, such that N is the kernel of c. Moreover, for any � 2 R=N

there is an element Q� 2 ŒR� such that c. Q�x; x/ D � for a.e. x. The element Q� is

called a lift of � . These are all the facts we will need about normal subequivalence

relations. We will prove Proposition 6.6 by lifting an appropriate set of elements

from R=N and using the bound in Proposition 6.3.

Lemma 6.7. Let �1; : : : ; �n 2 R=N and let Q�1; : : : ; Q�n 2 ŒR� be lifts. Then
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n
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iD1
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1

n

n
X

iD1

�.�i /









;

where �WR=N ! U.`2.R=N// is the left-regular representation.
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Proof. Let � D ¹.x; x/ j x 2 Xº and view 1� 2 L2.R; m/. Let ıe 2 `2.R=N/

denote the Dirac function at the identity e 2 R=N. Then we have

D�1

n

n
X

iD1

u. Q� i /
�

1�; 1�

E

D
1

n

n
X

iD1

�.¹x 2 X j Q� i .x/ D xº/

�
1

n

X

iD1

ı�i ;e

D
D�1

n

n
X

iD1

u.�i /
�

ıe; ıe

E

:

The conclusion follows immediately by combining this inequality with the

following three facts:

� if Q�1; Q�2 2 ŒR� are lifts of �1; �2 2 R=N, then Q�
�1

1 is a lift of ��1
1 , and Q�1

Q�2

is a lift of �1�2;

� kT k D lim
m!1

.h.T �T /m1�; 1�i/
1

2m , for every T 2 L.R/;

� .h.T �T /mıe; ıei/
1

2m � kT k, for every T 2 L.R=N/ and all m � 1. �

Let F � R be a finite subequivalence relation. We denote by X=F the quotient

space and by R=F the quotient equivalence relation on X=F. More precisely,

the elements of X=F are the F-classes of X . Let � WX ! X=F be the natural

projection map and endowX=F with the push forward measure �F WD ���. Note

that .Œx�F; Œy�F/ 2 R=F if and only if xRy.

We leave the proof of the following easy lemmas as exercises.

Lemma 6.8. If N C R is a normal subequivalence relation and F � N is a
finite subequivalence relation, then N=F is normal in R=F. Moreover R=N Š

.R=F/=.N=F/.

Lemma 6.9. There exists a Borel set Y � X such that every F-class contains
exactly one element of Y . Moreover R � Y Š R=F. If each F class contains
exactly m 2 N elements, then �.Y / D 1=m.

Proof of Proposition 6.6. By Kesten’s Theorem [31] non-amenability of the group

R=N implies the existence of elements �1; : : : ; �n 2 R=N with n � 3 such that
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n
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< 1=4:
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Let m > 1 be a natural number. Let F � N be a finite subequivalence

relation such that every F-class contains m elements. By Lemma 6.8, R=N Š

.R=F/=.N=F/. So there exist elements � 0
1; : : : ; �

0
n 2 .R=F/=.N=F/ such that









1

n

n
X

iD1

� 0
i









< 1=4:

By Lemma 6.7 we get that ˛.R=F/ � log.n/. Lemma 6.9 implies that

˛.R � Ym/ � log.n/;

where Ym � X is any Borel subset with �.Ym/ D 1=m. By Propositions 6.3

and 6.5,

ˇ.R/ � ˇ.R � Ym/=m � log.n/=mC C=m

where C > 0 is a universal constant. Taking m ! 1, we obtain ˇ.R/ D 0. �

By collecting the above results, we are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Items (1-4) are proven in Propositions 6.2, 6.3, 6.4, and 6.5

respectively. To prove item (5), supposeN � R is ergodic and normal, and R=N is

infinite. If R=N is amenable, then since R is non-amenable, N must also be non-

amenable. In this case, the conclusion follows from Proposition 6.4. On the other

hand, if R=N is non-amenable, the conclusion follows from Proposition 6.6. �

6.3. Proof of Corollary C. If R is non-amenable, it admits such an extension

by Theorem A. On the other hand, if R is amenable, it is hyperfinite by [7]. Any

extension of R is then also hyperfinite, since the lift as in Remark 2.5 of a finite

subequivalence relation remains finite. Thus if R is amenable, no extension of R

can contain the orbit equivalence relation of a free ergodic pmp action of F2, as

the latter is non-amenable.

7. Uncountably many ergodic extensions of nonamenable R

The goal of this section is to prove Theorem D. To this end, we will make use of

I. Epstein’s co-induction construction [10].

7.1. Co-induced Equivalence Relation. Let �0

ˇ
Õ .X; �/ be a free ergodic

pmp action and R an ergodic pmp equivalence relation on .X; �/ such that R0 D

R.�0

ˇ
Õ X/ � R. Since R is ergodic, there is N0 2 Z>0 [ ¹1º such that Œx�R

contains exactly N0 R0-classes for almost every x 2 X . Let N D Œ0; N0/ \ Z.

Then for any pmp action �0
˛
Õ .Y; �/, there is a pmp countable equivalence

relation R˛ D CIndR
ˇ .˛/ on .X � Y N ; �� �N / called the coinduced equivalence

relation, whose construction we will briefly recall (see also [25, Section 3]).
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Let ¹Cj ºj 2N � ŒR� with C0 D id and such that for almost every x 2 X , the

sequence ¹Cj .x/ºj 2N contains exactly one member of each R0-class contained

in Œx�R. These are called choice functions (see [12, Lemmas 1.1 and 1.3] for proof

of their existence). For almost every x 2 X , this gives us a way to number

the R0-classes contained in Œx�R. If .x; x0/ 2 R, then x0 will give rise to a

new numbering of the R0-classes in Œx0�R D Œx�R and hence a permutation

�.x; x0/ 2 SN defined by

n D �.x; x0/.k/ () ŒCn.x/�R0
D ŒCk.x

0/�R0
(7.1)

which satisfies �.x; x0/�.x0; x00/ D �.x; x00/ for almost every .x; x0/; .x0; x00/ 2 R.

Since ˇ is free, we can then define ı.x;x0/ 2 .�0/
N by

C�.x;x0/.k/.x/ D ı.x;x0/.k/ � Ck.x
0/ for k 2 N: (7.2)

For y 2 Y N , let yn 2 Y denote the nth component of y . Then we can then define

the co-induced equivalence relation R˛ on .X � Y N ; � � �N / by

.x;y/R˛.x
0;y 0/ () ŒxRx0 and y�.x;x0/.k/ D ı.x;x0/.k/ � y0

k for all k 2 N�:

Proposition 7.2 below gives some important properties that this constructions

satisfies. For clarity in its proof, we first isolate the following basic fact as a lemma.

Lemma 7.1. Let H1 and H2 be Hilbert spaces, H D H1 ˝ H2, ¹�nº � H1,
¹�nº � H2 such that supn k�nk < 1 and �n ! 0weakly in H2. Then �n ˝�n ! 0

weakly in H.

Proof. Note that supn k�nk < 1 by the uniform boundedness principle, so

¹�n ˝ �nº is bounded and it is enough to check that

jh�n ˝ �n; � ˝ �ij � k�k � sup
k

k�kk � jh�n; �ij �! 0 as n ! 1

for each � 2 H1, � 2 H2. �

Proposition 7.2. Let �0

ˇ
Õ .X; �/ be a free ergodic pmp action and R an ergodic

pmp equivalence relation on .X; �/ such that R.�0

ˇ
Õ X/ � R: Then for any

pmp action �0
˛
Õ .Y; �/ with � nonatomic, the coinduced equivalence relation

R˛ D CIndR
ˇ .˛/ satisfies:

(1) R˛ is an extension of R;

(2) if ˛ is weakly mixing, then R˛ is ergodic;

(3) if ˛ is free, then R˛ is an expansion of R.�0
˛
Õ Y /.
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Remark 7.3. Assume that R is the orbit equivalence relation of some free pmp

action � Õ� .X; �/ of a countable group �. Let � Õ� .X � Y N ; � � �N / be

the co-induced action of ˛, modulo .ˇ; �/ (see [10] and also [25, Section 3 (A)],

where this terminology is defined). Then R˛ is precisely the orbit equivalence

relation of � . In particular, if ˛ is weakly mixing, then Proposition 7.2 (2) implies

that � is ergodic.

This fact allows to simplify the proof of [10, Lemma 2.6]. Indeed, in the context

from [10, Lemma 2.6], it follows that the action c of � obtained by coinducing the

weakly mixing action a � a� of F2 modulo .a0; b0/ is ergodic, hence the use of

the ergodic decomposition of c is redundant.

Proof. (1) Consider the measurable mappWX�Y N ! X defined byp.x;y/ D x.

Then � D Œ�� �N � ıp�1 and for .x;y/ 2 X �Y N we have p.Œ.x;y/�R˛
/ D Œx�R

injectively since �.x;x/ D id, ı.x;x/ D idN .

(2) Let E � X � Y N be an R˛-invariant Borel subset and let 1E denote

the characteristic function viewed as an element of L2.X/ ˝
N

k2N L2.Y / Š

L2.X�Y N /, where the tensor product is taken with respect to the reference vector

1 2 L2.Y / in each component. Then �� .1E / D 1E for all � 2 ŒR˛�, where we

define �� .�/ D � ı ��1 for � 2 L2.X � Y N /. For � 2 ŒR�, let Q� 2 ŒR˛� be its lift,
i.e. the unique element in ŒR˛� such that p ı Q� D � ı p.

Denote by I � .Z�0/
N the subset consisting of .ij /j 2N such that ij D 0

for all but finitely many j 2 N . Let ¹�iº
1
iD0 be an orthonormal basis of L2.Y /

with �0 D 1, and for i D .ij /j 2N 2 I , let �i D
N

j 2N �ij . Then expanding

1E D
P

i2I �i ˝ �i with �i 2 L2.X/, we will show that 1E 2 L2.X/ ˝ C by

showing that �i D 0 for any i 2 I which has ik ¤ 0 for some k 2 N . This will

finish the proof. Indeed, since 1E 2 L2.X/˝C is R˛-invariant, it follows that 1E

is R-invariant. Since R is ergodic, this will then force 1E 2 C, i.e., �.E/ 2 ¹0; 1º.

Fix such i with ik ¤ 0. Since ˛ is weakly mixing and �ik ? C, there is a

sequence ¹gnº1
nD1 � �0 such that ˛gn

.�ik / ! 0 weakly in L2.Y / as n ! 1. Let

¹Cj ºN
j D0 � ŒR� be the choice functions used to construct R˛ , and for each n � 1,

set �n D C�1
k

ı gn ı Ck 2 ŒR�. Then Ck.x/ D gn � Ck.�
�1
n x/ and so

�.x;��1
n x/.k/ D k and ı.x;��1

n x/.k/ D gn for all n � 1:

Hence we get y0
k

D g�1
n yk for n � 1 and x; x0 2 X , y;y 0 2 Y N with

Q�n
�1

� .x;y/ D .x0;y 0/. Therefore defining �n 2 L2.X/˝
N

j 2N n¹kº L
2.Y / by

�n.x; y0; : : : ; Oyk; : : : / D �i.�
�1
n x/˝

O

j 2N n¹kº

�ij .y
0
j / where .x0;y 0/ D Q�n

�1 � .x;y/
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we have

� Q�n
.�i ˝ �i/ D �n ˝ ˛gn

.�ik /

with k�nk D k�ik. Then for any n,

k�ik
2 D k�i ˝ �ik

2

D h1E ; �i ˝ �ii

D h��1
Q�n
.1E /; �i ˝ �ii

D h1E ; � Q�n
.�i ˝ �i/i

D h1E ; �n ˝ ˛gn
.�ik /i

and h1E ; �n ˝ ˛gn
.�ik /i ! 0 as n ! 1 by Lemma 7.1, so we indeed have �i D 0.

(3) Consider the surjection pWX � Y N ! Y by p.x;y/ D y0. Then � D

� � �N ı p�1 and p.Œ.x;y/�R˛
/ � Œp.x;y/�

R.�0
˛
ÕY /

.

Take any .x;y/ 2 X � Y N and suppose that .x0;y 0/ ¤ .x00;y 00/ are members

of Œ.x;y/�R˛
with y0

0 D y00
0 . Then for k D �.x; x0/.0/ and m D �.x; x00/.0/ we

have

yk D ı.x;x0/.0/y
0
0 D ı.x;x0/.0/y

00
0 D ı.x;x0/.0/ı.x;x00/.0/

�1ym:

If k D m and g D ı.x;x0/.0/ı.x;x00/.0/
�1 D e (the identity of �0), then

x0 D C0.x
0/ D ı.x;x0/.0/

�1Ck.x/ D ı.x;x00/.0/
�1Ck.x/ D C0.x

00/ D x00

which would contradict .x0;y 0/ ¤ .x00;y 00/. On the other hand, if k D m and

g ¤ e, then by the freeness of �0
˛
Õ .Y; �/,

.� � �N /.¹.x;y/ 2 X � Y N W yk D gykº/ D �.¹y 2 Y W y D gyº/ D 0:

Hence

.� � �N /.¹.x;y/ 2 X � Y N Wp is not injective on Œ.x;y/�R˛
º/

�
X

k¤m2N

X

g2�0

.� � �N /.¹.x;y/ 2 X � Y N W yk D gymº/

D
X

k¤m2N

X

g2�0

Z

X�Y N�1

�.¹gymº/d.� � �N �1/.x; .y0; : : : ; Oyk; : : : // D 0

since � is non-atomic. �
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7.2. A separability argument. Let � denote the Haar measure on T. Let

SL2.Z/ Õ .T2; �2/ be the pmp action given by matrix multiplication. Consider a

fixed embedding of F2 as a finite index subgroup of SL2.Z/. Then the restricted

action F2
˛0

Õ .T2; �2/ is free, weakly mixing, and rigid, in the sense of S. Popa

[48, Corollary 5.2]. The latter means that the inclusion of von Neumann algebras

L1.T2/ � L1.T2/ Ì F2 has relative property (T), as defined in [48, Definition

4.2].

If an equivalence relation R on .X; �/ is an expansion of R.F2
˛0

Õ T
2/, then

there is a canonical way to define an extension F2 Õ� X of ˛0 whose orbit

equivalence relation is contained in R. Specifically, if pWX ! T
2 denotes the

quotient map, then � is the unique such action satisfying p ı �.g/ D ˛0.g/ ı p,

for every g 2 F2.

Lemma 7.4. Let ¹Riºi2I on ¹.Xi ; �i/ºi2I be an uncountable collection of stably
von Neumann equivalent ergodic pmp countable equivalence relations, each an

expansion of R.F2
˛0

Õ T2/. For each i 2 I , let F2
�i

Õ Xi denote the canonical

extension of ˛0 with R.F2
�i

Õ Xi / � Ri .
Then there exists an uncountable set J � I such that for any i; j 2 J there is

a � i -invariant (resp. �j -invariant) non-null Borel set Ei � Xi (resp. Ej � Xj )
with the restricted actions � i jEi

and �j jEj
conjugate.

Lemma 7.4 is an analogue of [26, Theorems 1.3 and 4.7] for equivalence

relations. Its proof combines relative property (T) with a separability argument.

Property (T) was first employed in the context of von Neumann algebras by

A. Connes in [8]. The original idea of combining property (T) and its relative

version with a separability argument is due to S. Popa [47]. It has since proven

greatly influential and has been successfully used in various contexts, including

in the work of D. Gaboriau and S. Popa in [48, 19].

Proof. Since ¹Riºi2I are stably von Neumann equivalent, after replacing I with

an uncountable subset, we may find a separable II1 factor M and non-zero pro-

jections pi 2 L.Ri/ such that M Š piL.Ri/pi , for all i 2 I . We denote by � and

k:k2 the trace and 2-norm onM , and by �i the trace on L.Ri/. For each i 2 I , let

Bi D L1.Xi / and Ni D L1.Xi / Ì�i F2, regarded as subalgebras of L.Ri /. Let

A D L1.T2/ and Q D L1.T2/ Ì˛0 F2. We have copies Ai Š A, Qi Š Q with

Ai � Bi , Qi � Ni , and by Lemma 2.7, A0
i \ L.Ri / D Bi for each i 2 I .

Since I is uncountable, we can find t 2 .0; 1� such that I� D ¹i 2 I j 1� �2 �

t=�i .pi / � 1º is uncountable, for all � > 0. As A is diffuse, there is a projec-

tion q 2 A such that �.q/ D t . Since Aq � qQq has relative property (T), there

is a finite setF � .qQq/1 and ı > 0 such that for any qQq–qQq-bimoduleH with
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nonzero �0 2 H satisfying kx�0 � �0xk < ık�0k for all x 2 F , there is nonzero

� 2 H with a� D �a for all a 2 Aq. Let � > 0 small enough that 3�
1�2�

< ı and

set I1 D I� .

For x 2 Q, we let xi 2 Qi denote the image in Qi . Each L.Ri / is a factor, so

by conjugating by a unitary in each, we may assume that qi � pi , for all i 2 I1.

Then identifying piL.Ri /pi with M , we have qi 2 M and �.qi/ � 1 � �2 so that

k1M � qik2 � �, for each i 2 I1.

Then for any i; j 2 I1, endow qiL
2.M/qj with a qQq–qQq-bimodule struc-

ture given by defining x � � � y D xi�yj , for all x; y 2 qQq and � 2 qiL
2.M/qj .

Let �i;j D qiqj 2 qiL
2.M/qj and note that

k�i;j � 1M k2 � k1M � qik2 C k1M � qj k2 � 2�

and hence k�i;j k2 � 1 � 2�.

Since M is k � k2-separable, there is an uncountable set J � I1 such that

kxi � xj k2 < � for all i; j 2 J and x 2 F . Fix any i; j 2 J . Then for any x 2 F ,

kxi�i;j � �i;jxj k2 � kxi � xj k2 C k1M � qik2 C k1M � qj k2

� 3�

< ı.1� 2�/

� ık�i;j k2;

and so by relative property (T) there is nonzero � 2 qiL
2.M/qj with ai� D �aj

for all a 2 Aq. Then the polar decomposition � D vj�j has v 2 M with aiv D vaj

for all a 2 Aq. Set ei D vv� and ej D v�v.

For any b 2 Bjqj and a 2 Aq we have aivbv
� D vajbv

� D vbajv
� D

vbv�ai , so vBj v
� � .Aiqi /

0 \ qiMqi D Biqi and similarly v�Biv � Bjqj , and

in particular, ei 2 Bi , ej 2 Bj . We thus define a trace preserving �-isomorphism

‰WBj ej ! Biei by b 7! vbv�.

Then for positive measure sets Fi � Xi and Fj � Xj with ei D 1Fi
and

ej D 1Fj
, there is a measure space isomorphism‚W .Fi ; �i/ ! .Fj ; �j / such that

‰.b/ D b ı‚ for all b 2 Bj . Let Ei D
S

g2F2
� i

g.Fi / and Ej D
S

g2F2
�

j
g .Fj /.

Then Ei is � i -invariant, Ej is �j -invariant and we will show that ‚ can be

extended to a measure space isomorphism‚W .Ei ; �i/ ! .Ej ; �j / by the formula

‚.x/ D Œ�j
g ı‚ ı � i

g�1 �.x/ for x 2 � i
g .Fi /; g 2 F2 (7.3)

which will then satisfy Œ�
j
g ı ‚�.x/ D Œ‚ ı � i

g �.x/ for x 2 Ei , g 2 F2, showing

that � i jEi
and �j jEj

are conjugate. Toward showing that (7.3) is well defined, for

g 2 F2 let ugi
2 Qi and ugj

2 Qj denote respectively the canonical unitaries

implementing � i and �j . Viewing v�u�
gi
v 2 ejL.Rj /ej � L.Rj /, for a 2 A we
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have

ajugj
v�u�

gi
v

D ugj
�

j

g�1.aj /v
�u�

gi
v

D ugj
v�� i

g�1.ai /u
�
gi
v

D ugj
v�u�

gi
aiv

D ugj
v�u�

gi
vaj

so that ugj
v�u�

gi
v 2 A0

j \ L.Rj / D Bj . Therefore for any b 2 Bj , we have

ugi
vu�

gj
b.ugj

v�u�
gi
v/v� D ugi

vu�
gj
.ugj

v�u�
gi
v/bv�

D .ugi
eiu

�
gi
/vbv�

and hence

� i
g.v�

j

g�1.b/v
�/ei D vbv�� i

g .ei/ for all b 2 Bj ; g 2 F2;

which when applied to h�1g 2 F2 for g; h 2 F2 gives

� i
g .v�

j

g�1.b/v
�/� i

h.ei/ D � i
h.v�

j

h�1.b/v
�/� i

g.ei/ for all b 2 �
j

h
.Bj / D Bj ;

which translates to

Œ�j
g ı‚ ı � i

g�1 �.x/ D Œ�
j

h
ı‚ ı � i

h�1 �.x/ for all x 2 � i
g.Fi / \ � i

h.Fi /

showing that (7.3) is well defined. �

Proof of Theorem D. Let R be a non-amenable ergodic countable pmp equiva-

lence relation on a probability space .X; �/. Our goal is to show that R has un-

countably many ergodic extensions which are pairwise not stably von Neumann

equivalent. Below, for a pmp action F2 Õ˛ .Y; �/, we denote by �0
˛ and �˛ the

Koopman representations of F2 on L2.Y /	 C1 and L2.Y /, respectively.

Let zR on . zX; Q�/ denote the Bernoulli extension of R with base space .Œ0; 1�; �/.

By Theorem A, there is a free ergodic pmp action F2

ˇ
Õ zX such that R0 WD

R.F2

ˇ
Õ zX/ � zR.

By [51] there is an uncountable family ¹�i WF2 ! U.Hi/ºi2I of non-equivalent

irreducible representations who are mixing, i.e. h�i .g/�; �i ! 0 as g ! 1

for any �; � 2 Hi . By considering the Gaussian action corresponding to the

realification of �i (as in [29], for example), we obtain an uncountable family of

actions ¹F2
˛i

Õ .Yi ; �i /ºi2I such that �i � �0
˛i , for each i 2 I .



440 L. Bowen, D. Hoff, and A. Ioana

For each i 2 I , note that ˛i � ˛0 is weakly mixing since ˛i is mixing and

˛0 is weakly mixing. By Proposition 7.2, zRi D CInd
zR
ˇ .˛

i � ˛0/ on . zYi ; Q�i / is an

ergodic extension of zR and hence of R. Thus, we are done, unless uncountably

many of the zRi are stably von Neumann equivalent. Therefore, assume toward a

contradiction that there is an uncountable subset I0 � I such that the ¹zRiºi2I0
are

stably von Neumann equivalent.

By Proposition 7.2, each zRi is an expansion of R.F2 Õ˛i �˛0
Yi � T

2/ and

hence of R.F2 Õ˛0
T

2/. Let F2
�i

Õ zYi denote the canonical extension of ˛0.

Then by Lemma 7.4, there is an uncountable subset J � I0 such that for each

i; j 2 J there is a � i -invariant (resp. �j -invariant) positive measure set Ei � zYi

(resp. Ej � zYj ) with the restricted actions � i jEi
and �j jEj

conjugate.

Since � i is an extension of the ergodic action ˛i � ˛0 of F2, � i jEi
is also an

extension thereof. Hence, for all i; j 2 J ,

�i � �0
˛i � �0

˛i �˛0 � �0
�i jEi

Š �0
�j jEj

� ��j

so that ��j has uncountably many nonequivalent irreducible sub-representations,

contradicting the separability of L2.Ej /. �

8. Actions of locally compact groups

In this section we prove Theorem B and explain how Theorem A implies [18,

Theorem B]. We begin by recalling the notion of cross section of actions of lcsc

groups (see [34, Definition 4.1]).

Definition 8.1. Let G be a lcsc group and G Õ .X; �/ a free nonsingular action

on a standard probability space .X; �/. A Borel set Y � X is called a cross section
of G Õ .X; �/ if there exists a neighborhood U of the identity in G such that the

map U � Y ! X given .g; y/ 7! gy is injective, and �.X n G � Y / D 0. A cross

section Y � X is called co-compact if there is a compact set K � G such that

K � Y is a G-invariant Borel set and �.X nK � Y / D 0.

Remark 8.2. Assume that G is a lcsc unimodular group. Let G Õ .X; �/ be

a free pmp action and Y � X a cross section. Then R D ¹.y; y0/ 2 Y � Y j

Gy D Gy0º defines a countable Borel equivalence relation, called the cross section
equivalence relation. Moreover, if � is a fixed Haar measure ofG, then there exist

a unique R-invariant probability measure � on Y and constant c 2 .0;C1/ such

that for every neighborhoodU of the identity inG such that the map �WU�Y ! X

given by �.g; y/ D gy is injective, we have ��.�jU � �/ D c �jU �Y (see [34,

Proposition 4.3]). Hereafter, we refer to � as the canonical R-invariant probability

measure on Y .
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We continue with an elementary result which gives a construction of actions

of locally compact groups with prescribed cross section equivalence relations.

Proposition 8.3. Let G be a lcsc unimodular group and G Õ .X; �/ a free pmp
action. Let Y � X be a co-compact cross section of G Õ .X; �/, R be the
cross section equivalence relation, and � be the canonicalR-invariant probability
measure on Y . Let NR be a countable pmp extension of R on a standard probability
space . NY; N�/.

Then there exist a free pmp actionG Õ . zX; Q�/, and a co-compact cross section
zY � zX such that the following holds. Denote by zR the cross section equivalence
relation on zY , and endow zY with the canonical zR-invariant probability measure
Q�. Then zR is isomorphic to NR.

Proof. Let X1 � X be the set of points with trivial stabilizer. Then X1 is

a G-invariant Borel set (see e.g. [38, Lemma 10]). Moreover, the freeness

assumption implies that X1 � X is co-null. Let K � G be a compact set such

that X2 D K � Y is a co-null G-invariant Borel subset of X .

Put X0 WD X1 \X2 and Y0 WD Y \X0. Then X0 � X is a co-null G-invariant

Borel subset, Y0 � Y is an R-invariant Borel subset, and K � Y0 D X0. Let U

be a neighborhood of the identity in G such that the map U � Y ! X given

.g; y/ 7! gy is injective. Since U � .Y n Y0/ is contained in X nX0, it is a null set.

Let � be a Haar measure of G. Since �.U /�.Y n Y0/ D c �.U � .Y n Y0// D 0, for

some c > 0, and �.U / > 0, we get that Y0 is co-null in Y .

Altogether, we have thatG Õ .X0; �jX0
/ is a pmp action such that every point

has trivial stabilizer, Y0 � X0 is a co-compact cross section with K � Y0 D X0,

R � Y0 is the associated cross section equivalence relation, and �jY0
is the

canonical R � Y0-invariant probability measure on Y0. Moreover, since Y0 � Y

is co-null, R � Y0 is isomorphic to R. Thus, after replacing X , Y with X0, Y0, we

may assume that the stabilizer of every point in X is trivial, and K � Y D X , for a

compact set K � G.

Let U be a neighborhood of the identity in G such that the map U � Y ! X

given .g; y/ 7! gy is injective. Define � WU � Y ! Y by letting �.gy/ D y.

SinceK is compact, we can find g1; : : : ; gn 2 G such thatK �
Sn

iD1 giU . Hence

X D K � Y �
Sn

iD1 giU � Y . It follows that we can extend � to a Borel map

� WX ! Y in such a way that �.x/ 2 Gx, for every x 2 X .

Let pW NY ! Y be the quotient map. After replacing NY with a co-null NR-invari-

ant Borel subset, we may assume that pjŒ Ny� NR
is injective and p.Œ Ny� NR/ D Œp. Ny/�R,

for all Ny 2 NY .

Let zX D X �Y
NY be the “fibered product” Borel space given by zX D ¹.x; Ny/ 2

X � NY j �.x/ D p. Ny/º. We define a free Borel action G Õ zX as follows. Let

g 2 G and .x; Ny/ 2 zX . Since �.gx/ 2 Gx \ Y , we get that �.gx/ 2 Œ�.x/�R D

Œp. Ny/�R.
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Thus, there is a unique Oy 2 Œ Ny� NR such that p. Oy/ D �.gx/. Finally, we let

g.x; Ny/ D .gx; Oy/. It is easy to check that this indeed defines a Borel action

of G.

Next, let zY D ¹.p. Ny/; Ny/ j Ny 2 NY º. Then zY is a Borel subset of zX .

Let .g1; Ny1/; .g2; Ny2/ 2 U � NY such that g1.p. Ny1/; Ny1/ D g2.p. Ny2/; Ny2/. Then

g1p. Ny1/ D g2p. Ny2/ and since p. Ny1/; p. Ny2/ 2 Y , we deduce that g1 D g2, which

implies that y1 D y2. Thus, the mapU� zY ! zX given by .g; y/ 7! gy is injective.

Let .x; Ny/ 2 zX . Since K � Y D X , we can find g 2 K such that g�1x 2 Y . Let

Oy 2 Œ Ny� NR such that g�1.x; Ny/ D .g�1x; Oy/. Since p. Oy/ D �.g�1x/ D g�1x, we

deduce that g�1.x; Ny/ 2 zY . Thus,K � zY D zX . This proves that zY is a co-compact

cross section for the Borel action G Õ zX . In particular, the first paragraph of the

proof implies that there exists a Borel map Q� W zX ! zY such that Q�.y/ D y, for

every y 2 zY , and Q�.x/ 2 Gx, for every x 2 zX .

Further, consider the cross section equivalence relation

zR D ¹.y; y0/ 2 zY � zY j Gy D Gy0º:

Let � W NY ! zY be the Borel isomorphism given by �. Ny/ D .p. Ny/; Ny/. It is easy

to see that .� � �/. NR/ D zR. We endow zY with the probability measure Q� D �� N�.

Since N� is NR-invariant, Q� is zR-invariant.

By [50, Section 4.2], the zR-invariant probability measure Q� on the co-compact

cross section zY can be “lifted” to aG-invariant finite measure Q� on zX . Specifically,

for a Borel set A � zX , we have

Q�.A/ D .� � Q�/.¹.g; Qy/ 2 G � zY j Q�.g Qy/ D Qy and g Qy 2 Aº/:

Since the map U � zY ! U � zY given by .g; y/ 7! gy is a bijection, it

follows that under this identification we have that Q�jU � zY D �jU � Q�. By using

[34, Proposition 4.3] we conclude that Q� is the canonical zR-invariant probability

measure on the cross section zY for the free pmp action G Õ
�

zX; 1
z�.X/

Q�
�

. This

concludes the proof of the proposition. �

Proof of Theorem B. Let G Õ .X; �/ be a free ergodic pmp action (see [34, Re-

mark 1.1] for a proof of existence). By [34, Theorem 4.2] we can find a co-compact

cross section Y of G Õ .X; �/. Denote by R the associated cross section equiva-

lence relation, and endow Y with the canonicalR-invariant probability measure �.

Since G is non-amenable and G Õ .X; �/ is ergodic, [34, Proposition 4.3] gives

that R is non-amenable and ergodic.

By Theorem D, we can find an uncountable family ¹zRiºi2I of countable er-

godic pmp extensions of R which are pairwise not stably von Neumann equiva-

lent. By Proposition 8.3, for every i 2 I we can find a free ergodic pmp action

G Õ . zXi ; Q�i/ and a co-compact cross section zYi � zXi such that the associated

cross section equivalence relation is isomorphic to zRi .
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We claim that the actionsG Õ . zXi ; Q�i/, i 2 I , are pairwise not von Neumann

equivalent. Indeed, assume that L1. zX i / Ì G Š L1. zXj / Ì G, for some i 6D j .

On the other hand, L1. zXi / Ì G and L1. zXj / Ì G are amplifications of the II1

factors L.zRi / and L.zRj / by [34, Lemma 4.5]. It follows that we can find non-zero

projections pi 2 L.zRi/ and pj 2 L.zRj / such that piL.zRi/pi Š pjL.zRj /pj . This

contradicts the fact that zRi and zRj are not stably von Neumann equivalent. �

8.1. GM15 from Theorem A]Deducing [18, Theorem B] from Theorem A. Let

G be a non-amenable lcsc group. Let � be a Haar measure of G. To show the

existence of a tychomorphism from F2 toG, in the sense of [18, Definition 14], we

first reduce to the case when G is unimodular.

Denote byG0 the kernel of the modular homomorphism ofG. ThenG0 is non-

amenable. Moreover, G0 is unimodular. Indeed, since G0 < G is a closed normal

subgroup, G=G0 is a locally compact group, thus it admits a G-invariant Borel

measure. [2, Corollary B.1.7.] now implies that G0 is unimodular. Thus, by [18,

Proposition 18], we may assume that G is unimodular. Since the conclusion fol-

lows from the Gaboriau–Lyons theorem in the discrete case, we may additionally

assume that G is not discrete.

LetG Õ .X; �/ be a free ergodic pmp action, Y a co-compact cross section, R

the cross section equivalence relation, and � the canonical R-invariant probability

measure on Y . Since G is non-amenable and G Õ .X; �/ is ergodic, R is non-

amenable and ergodic.

By Theorem A there exist a countable ergodic pmp extension zR of R on a

probability space . zY; Q�/ and a free ergodic pmp action F2 Õ . zY; Q�/ such that

F2y � Œy�zR, for all y 2 zY . By Proposition 8.3, we can be realize zY as a co-

compact cross section of some free ergodic pmp action G Õ . zX; Q�/, such that zR

is precisely the associated cross section equivalence relation. Moreover, the proof

of Proposition 8.3 gives that any point in zX has trivial stabilizer and K � zY D zX ,

for K � G compact.

Let U � G be a neighborhood of the identity such that the map �WU � zY ! zX

given by �.h; y/ D hy is injective. Define

zX0 WD U � zY and D WD ¹.x; x0/ 2 zX � zX0/ j Gx D Gx0º:

Consider the obvious action of G on D on the first coordinate. As in the end of

[18, Section 5], we endow D with a G-invariant measure m by pushing forward

� � �j zX0
through the identification G � zX0 ! D given by .g; x/ 7! .gx; x/.

Then .D; m/ is a finite amplification of the G-space .G; �/, in the sense of [18,

Definition 11].

Next, we define an m-preserving action F2 Õ D, as follows. Fix � 2 F2. If

.x; x0/ 2 D, then x0 2 zX0, hence we can write x0 D hy, for some h 2 U and y 2 zY .

We define Q�.x; x0/ D .x; h�.y//. Let ˛W zY0 ! G be given by �.y/ D ˛.y/y, for

every y 2 zY0. Then in the above identification G � zX0 � D, Q� corresponds to the
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Borel automorphism of G � zX0 given by .g; hy/ 7! .gh˛.y/�1h�1; h�.y//; for

all h 2 U; y 2 zY0. Since G is unimodular, ��.�jU � Q�/ D c Q�jX0
, for some c > 0,

and � preserves �, it follows that Q� preserves m.

We claim that F2 Õ D admits a non-null measurable fundamental domain.

Since the actions of F2 and G on D commute, it will follow that D gives rise

to a tychomorphism from F2 to G. To prove the claim, since K is compact, let

g1; : : : ; gn 2 G such that K �
Sn

j D1 gjU . Then zX D K � zY �
Sn

j D1 gj
zX0 and

therefore D D
Sn

j D1 gjD0, where D0 WD ¹.x; x0/ 2 zX0 � zX0 j Gx D Gx0º.

SinceD0 is F2-invariant, in order to prove the claim, it suffices to show that the

action F2 Õ D0 admits a non-null measurable fundamental domain. To see this,

using that the action F2 Õ . zY; Q�/ is ergodic, we choose a sequence ¹Ciºi�1 � ŒzR�

such that Œy�zR is the disjoint union of F2Ci .y/, i � 1, for almost every y 2 zY (see

[25, Remark 2.1]). Since D0 D ¹.hy; h0y0/ j h; h0 2 U; .y; y0/ 2 Rº, one checks

that F WD ¹.hy; h0Ci .y// j h; h0 2 U; y 2 zY; i � 1º is a non-null measurable

fundamental domain for the action F2 Õ D0.
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