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1. Introduction

1.1. Background and motivation. The present paper is part of a larger effort to

understand discrete groups � of affine transformations (subgroups of the affine

group GLn.R/ËR
n) acting properly discontinuously on the affine space Rn. The

case where � consists of isometries (in other words, � � On.R/ Ë R
n) is well

understood: a classical theorem by Bieberbach says that such a group always has

an abelian subgroup of finite index.

We say that a group G acts properly discontinuously on a topological spaceX

if for every compact K � X , the set ¹g 2 G j gK \ K ¤ ;º is finite. We

define a crystallographic group to be a discrete group � � GLn.R/ Ë R
n acting

properly discontinuously and such that the quotient spaceRn=� is compact. In [4],

Auslander conjectured that any crystallographic group is virtually solvable, that is,

contains a solvable subgroup of finite index. Later, Milnor [20] asked whether this

statement is actually true for any affine group acting properly discontinuously. The

answer turned out to be negative: Margulis [18, 19] gave a nonabelian free group of

affine transformations with linear part Zariski-dense in SO.2; 1/, acting properly

discontinuously on R
3. On the other hand, Fried and Goldman [13] proved the

Auslander conjecture in dimension 3 (the cases n D 1 and 2 are easy). Recently,

Abels, Margulis and Soifer [2] proved it in dimension n � 6. See [1] for a survey

of already known results.

Margulis’s breakthrough was soon followed by the construction of other coun-

terexamples to Milnor’s conjecture. The first advance was made by Abels, Mar-

gulis and Soifer [3]: they generalized Margulis’s construction to subgroups of the

affine group

SO.2nC 2; 2nC 1/ Ë R
4nC3;

for all values of n. The author further generalized this in his previous paper [22],

by finding such subgroups in the affine group G Ë g, where G is any noncompact

semisimple real Lie group, acting on its Lie algebra g by the adjoint representation.

Recently Danciger, Guéritaud and Kassel [11] found examples of affine groups

acting properly discontinuously that were neither virtually solvable nor virtually

free.

Proliferation of these counterexamples leads to the following question. Con-

sider a semisimple real Lie group G; for every representation � of G on a finite-

dimensional real vector space V , we may consider the affine group G ËV . Which

of those affine groups contain a nonabelian free subgroup with linear part Zariski-

dense in G and acting properly discontinuously on V ?

In this paper, we give a fairly general sufficient condition on the representa-

tion � for existence of such subgroups. Before stating this condition, we need to

introduce a few classical notations.
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1.2. Basic notations. For the remainder of the paper, we fix a semisimple real

Lie groupG; let g be its Lie algebra. Let us introduce a few classical objects related

to g andG (defined for instance in Knapp’s book [16], though our terminology and

notation differ slightly from his).

We choose in g the following items.

� A Cartan involution � . Then we have the corresponding Cartan decomposi-

tion g D k˚ q, where we call k the space of fixed points of � and q the space

of fixed points of �� . We call K the maximal compact subgroup with Lie

algebra k.

� A Cartan subspace a compatible with � (that is, a maximal abelian subalge-

bra of g among those contained in q). We set A WD exp a.

� A system †C of positive restricted roots in a�. Recall that a restricted root
is a nonzero element ˛ 2 a� such that the restricted root space

g˛ WD ¹Y 2 g j for all X 2 a; ŒX; Y � D ˛.X/Y º

is nontrivial. They form a root system †; a system of positive roots †C is a

subset of † contained in a half-space and such that † D †C t �†C.

We call … be the set of simple restricted roots in †C. We call

aCC WD ¹X 2 a j for all ˛ 2 †C; ˛.X/ > 0º

the (open) dominant Weyl chamber of a corresponding to †C, and

aC WD ¹X 2 a j for all ˛ 2 †C; ˛.X/ � 0º D aCC

the closed dominant Weyl chamber.

Then we denote

� M the centralizer of a in K, m its Lie algebra;

� L the centralizer of a in G, l its Lie algebra (It is clear that l D m ˚ a, and

well known (see e.g. [16], Proposition 7.82a) that L DMA.);

� nC (resp. n�) the sum of the restricted root spaces g˛ for ˛ in †C (resp.

in �†C), and NC WD exp.nC/ and N� WD exp.n�/ the corresponding Lie

groups;

� pC WD l ˚ nC and p� WD l ˚ n� the corresponding minimal parabolic

subalgebras, PC WD LNC and P� WD LN� the corresponding minimal

parabolic subgroups;

� W WD NG.A/=ZG.A/ the restricted Weyl group;

� w0 the longest element of the Weyl group, that is, the unique element such

that w0.†
C/ D †�.
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See Examples 2.3 and 2.4 in the author’s previous paper [22] for working

through these definitions in the cases G D PSLn.R/ and G D PSOC.n; 1/.

Finally, if � is a representation ofG on a finite-dimensional real vector spaceV ,

we call:

� the restricted weight space in V corresponding to a form � 2 a� the space

V � WD ¹v 2 V j for all X 2 a; �.X/ � v D �.X/vºI

� a restricted weight of the representation � any form � 2 a� such that the

corresponding weight space is nonzero.

Remark 1.1. The reader who is unfamiliar with the theory of noncompact

semisimple real Lie groups may focus on the case where G is split, i.e. its Cartan

subspace a is actually a Cartan subalgebra (just a maximal abelian subalgebra,

without any additional hypotheses). In that case the restricted roots are just roots,

the restricted weights are just weights, and the restricted Weyl group is just the

usual Weyl group. Also the algebra m vanishes and M is a discrete group.

However, the case whereG is split does not actually require the full strength of

this paper, in particular because quasi-translations (see Section 4.5) then reduce

to ordinary translations.

1.3. Statement of main result. Let � be an irreducible representation of G on a

finite-dimensional real vector space V . Without loss of generality, we may assume

that G is connected and acts faithfully. We may then identify the abstract groupG

with the linear group �.G/ � GL.V /. Let VAff be the affine space corresponding

to V . The group of affine transformations of VAff whose linear part lies in G

may then be written G Ë� V or simply G Ë V (where V stands for the group of

translations). Here is the main result of this paper.

Main Theorem. LetG be a semisimple real Lie group, and let � be an irreducible
representation of G on a finite-dimensional real vector space V that satisfies the
following conditions:

(i) there exists a vector v 2 V such that

(a) for all l 2 L; l.v/ D v, and

(b) Qw0.v/¤v, where Qw0 is any representative inG ofw0 2 NG.A/=ZG.A/;

(ii) there exists an element X0 2 a such that �w0.X0/ D X0 and for every
nonzero restricted weight � of �, we have �.X0/ ¤ 0.

Then there exists a subgroup � in the affine group G Ë� V whose linear part is
Zariski-dense in G and that is free, nonabelian and acts properly discontinuously
on VAff .



Proper affine actions in non-swinging representations 453

Remark 1.2. Note that the choice of the representative Qw0 in (i)(b) does not matter,

precisely because by (i)(a) the vector v is fixed by L D ZG.A/.

We call representations satisfying condition (ii) “non-swinging” representa-

tions (see Section 3.3 to understand why). This is only a technical assumption:

if we remove it, the theorem remains true. This more general result is proved in

the author’s forthcoming paper [23].

Note that the previously-known examples do fall under the scope of this theo-

rem.

Example 1.3. (1) For G D SOC.2n C 2; 2n C 1/, the standard representation

(acting on V D R
4nC3) satisfies these conditions (see Remark 3.11 and Exam-

ples 4.22.1.b and 10.2.1 for details). So Theorem A from [3] is a particular case of

this theorem.

(2) If the real semisimple Lie group G is noncompact, the adjoint representa-

tion satisfies these conditions (see Remark 3.11 and Examples 4.22.3 and 10.2.2

for details). So the main theorem of [22] is a particular case of this theorem.

Remark 1.4. When G is compact, no representation can satisfy these conditions:

indeed in that caseL is the whole groupG and condition (i)(a) fails. So for us, only

noncompact groups are interesting. This is not surprising: indeed, any compact

group acting on a vector space preserves a positive-definite quadratic form, and

so falls under the scope of Bieberbach’s theorem.

1.4. Strategy of the proof. The proof has a lot in common with the author’s

previous paper [22]. The main idea (which comes back to Margulis’s seminal

paper [18]) is to introduce, for some affine maps g, an invariant that measures

the translation part of g along a particular affine subspace of V . The key part

of the argument (just as in [18] and in [22]) is then to show that, under some

conditions, the invariant of the product of two maps is roughly equal to the sum

of their invariants (Proposition 8.1). Here are the two main difficulties that were

not present in [22].

� The first one is that [22] crucially relies on the following fact: if two maps

are R-regular (i.e. the dimension of their centralizer is the lowest possible),

in general position with respect to each other and strongly contracting (when

acting on g), their product is still R-regular. The natural generalization of

the notion of an R-regular map that is adapted to an arbitrary representa-

tion is that of a “generic” map, i.e. a map that has as few eigenvalues of

modulus 1 (counted with multiplicity) as possible. Unfortunately, the cor-

responding statement is then no longer true in an arbitrary representation.



454 I. Smilga

If the representation is “too large”, i.e. if it contains restricted weights that

are not multiples of restricted roots (see Example 3.7.2), there are several

different “types” of generic maps, depending on the region where their Jordan

projection (see Definition 2.3) falls.

In order to ensure that the product of two generic maps g and h (that are in

general position and strongly contracting) is still generic, we need to control

the Jordan projection Jd.gh/ of the product based on the Jordan projections

Jd.g/; Jd.h/ of the factors. To do this, we use ideas developed by Benoist

in [5, 6]: when g and h are in general position and sufficiently contracting,

he showed that Jd.gh/ is approximately equal to Jd.g/ C Jd.h/. So if we

restrict all maps to have the same “type”, our argument works.

� Here is where the second difficulty comes: the argument of [5] only works

for maps that are actually R-regular in addition to being generic. In most

representations this is automatically true: if every restricted root occurs as

a restricted weight, then every generic map is in particular R-regular. But

when the representation is “too small”, this is not the case. (A surprising fact

is that a handful of representations are actually “too large” and “too small”

at the same time: see Example 3.7.4!)

As an example, consider the subgroup G of GL5.R/ consisting of trans-

formations preserving the quadratic form

x1x3 C x2x4 C x
2
5 :

This is a form of signature .3; 2/, soG ' SO.3; 2/. Now take any real number

� > 1 and any x 2 R; then the element

g D

0

B
B
B
B
@

� �x 0 0 0

0 � 0 0 0

0 0 ��1 0 0

0 0 ���1x ��1 0

0 0 0 0 1

1

C
C
C
C
A

2 G

is generic in the standard representation (“pseudohyperbolic” in the terminol-

ogy of [3] and [21]), but not R-regular (when x ¤ 0 it is not even semisim-

ple!).

Just as there are two different notions of being “generic” (the notion of R-

regularity, which is adapted to the adjoint representation, and the notion of

being generic in �), there are also two different notions of being “in general

position”, two different notions of being “strongly contracting” and so on.

The results of [5] rely on the stronger version of every property.
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If we had used them as such, our Proposition 6.17 about products of

maps “of given type” (and the subsequent propositions that rely on it) would

no longer include, as a particular case, the corresponding result for G D

SOC.nC 1; n/ (namely Lemma 5.6, point (1) in [3]). Instead, we would need

to duplicate all definitions, and to always require that the maps we deal with

satisfy both versions of the constraints. (In particular, we would probably lose

the benefit of the unified treatment of the linear part and translation part, as

outlined in Remark 5.3).

This weaker version is in theory sufficient for us, because it is known that

“almost all” elements are R-regular. So it is actually possible to construct

the group � in such a way that its elements all have this additional property,

and thus provide a working proof of the Main Theorem. But we felt that the

simpler, stronger version of Proposition 6.17 was interesting in its own right.

To prove it, we needed a generalization of the results of [5]. Benoist’s

subsequent paper [6] does seem to provide such a generalization, by proving

similar theorems with the hypothesis of R-regularity replaced by what he

calls “�-proximality”, for � some subset of…. This is quite close to what we

are looking for; but unfortunately, the results of [6] rely on the assumption

that the Jordan projections of the maps lie in a vector subspace of a (see

Remark 6.16 for details), which is unacceptably restrictive for us. So in

Section 6 of this paper, we redeveloped this theory in a suitably general way.

We did reuse some basic results from [6]; for example one of the key steps

of our proof, Proposition 5.12 (about products of proximal maps), is very

similar to Lemma 2.2.2 from [6].

1.5. Plan of the paper. In Section 2, we give some background from represen-

tation theory.

In Section 3, we study the dynamics of elements ofA. We choose one particular

elementX0 2 awith some nice properties, with the goal of eventually “modeling,”

in some sense, generators of the group � on exp.X0/.

In Section 4, we study the dynamics of elements g of the affine group G Ë V

that are of type X0 (see Definition 4.14). This section culminates in the definition

of the Margulis invariant of g, which measures the translation part of g along its

“axis”.

In Section 5, we study some quantitative properties of such elements g. In

particular we define a quantitative measure of being “in general position”, and a

quantitative measure of being “strongly contracting”; both of these notions are

tailored to the choice of � and of X0. We also define analogous notions for

proximal maps, and prove a theorem (Proposition 5.12) about products of proximal

maps.
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Section 6 is where most of the new ideas of this paper are exploited. Here

we apply the theory of products of proximal maps to a selection of “fundamental

representations” �i (defined in Proposition 2.12). The goal is to show that the

product of two strongly contracting maps of type X0 in general position is still of

type X0.

In Section 7, we now apply the theory of products of proximal maps to suitable

exterior powers of the maps g, in order to study the quantitative properties of

products of elements of type X0. This section follows Section 3.2 of [22] very

closely.

Section 8 contains the key part of the proof. We prove that if we take two

strongly contracting maps of type X0 in general position, the Margulis invariant

of their product is close to the sum of their Margulis invariants. This section

follows Section 4 of [22] very closely.

The very short Section 9 uses induction to extend the results of the two previous

sections to products of an arbitrary number of elements. We omit the proof, as it

is a straightforward generalization of Section 5 in [22].

Section 10 contains the proof of the Main Theorem. It follows Section 6 of [22]

quite closely, but there are a couple of additions.

Acknowledgements. I am very grateful to my Ph.D. advisor, Yves Benoist,

whose help while I was working on this paper has been invaluable to me.

I would also like to thank Bruno Le Floch for some interesting discussions,

which in particular helped me gain more insight about weights of representations.

2. Algebraic preliminaries

In this section, we give some background about real finite-dimensional represen-

tations of semisimple real Lie groups.

In Subsection 2.1, for any element g 2 G, we relate the eigenvalues and

singular values of �.g/ (where � is some representation) to some “absolute”

properties of g.

In Subsection 2.2, we enumerate some properties of restricted weights of a real

finite-dimensional representation of a real semisimple Lie group.

2.1. Eigenvalues in different representations. The goal of this subsection is to

prove Proposition 2.6, which expresses the eigenvalues and singular values of a

given element g 2 G acting in a given representation �, exclusively in terms of

the structure of g in the abstract group G (respectively its Jordan decomposition

and its Cartan decomposition).
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Proposition 2.1 (Jordan decomposition). Let g 2 G. There exists a unique
decomposition of g as a product g D ghgegu, where

� gh is conjugate in G to an element of A (hyperbolic);

� ge is conjugate in G to an element of K (elliptic);

� gu is conjugate in G to an element of NC (unipotent);

� these three maps commute with each other.

Proof. This was proved by Kostant: see [17], Proposition 2.1. Alternatively,

see [12], Theorem 2.19.24. Note however that technically, Kostant, Eberlein and

our paper use three different sets of definitions of a hyperbolic, elliptic or unipotent

element. That our definitions are equivalent to Kostant’s (which are the ones used

most commonly) is shown in [12], Theorem 2.19.16. That Eberlein’s definitions

are equivalent to Kostant’s is shown in [12], Proposition 2.19.18. �

Proposition 2.2 (Cartan decomposition). Let g 2 G. Then there exists a de-
composition of g as a product g D k1ak2, with k1; k2 2 K and a D exp.X/

with X 2 aC. Moreover, the element X is uniquely determined by g.

Proof. This is a classical result; see e.g. Theorem 7.39 in [16]. �

Definition 2.3. For every element g 2 G, we define:

� the Jordan projection of g, written Jd.g/, to be the unique element of the

closed dominant Weyl chamber aC such that the hyperbolic part gh (from the

Jordan decomposition g D ghgegu given above) is conjugate to exp.Jd.g//;

� the Cartan projection of g, written Ct.g/, to be the element X from the

Cartan decomposition given above.

To talk about singular values, we need to introduce a Euclidean structure. We

are going to use a special one.

Lemma 2.4. Let �� be some real representation of G on some space V�. There
exists a K-invariant positive-definite quadratic form B� on V� such that all the
restricted weight spaces are pairwise B�-orthogonal.

We want to reserve the plain notation � for the “default” representation, to be

fixed once and for all at the beginning of Section 3. We use the notation �� so

as to encompass both this representation � and the representations �i defined in

Proposition 2.12.

Such quadratic forms have already been considered previously: see for exam-

ple Lemma 5.33.a) in [8].
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Example 2.5. If �� D Ad is the adjoint representation, then B� is the form B�
given by

B� .X; Y / D �B.X; �Y / for all X; Y 2 g

(see (6.13) in [16]), where B is the Killing form and � is the Cartan involution.

Proof. This follows from the well-known fact that for any morphism G ! H

of reductive Lie groups (here we take H D GL.V�/), one can always find a

Cartan involution of H that is compatible with a given Cartan involution of G.

Alternatively, the form B� can be constructed as a restriction of a positive-definite

Hermitian form on V C
� that is invariant by a suitable maximal compact subgroup

of GC (and such a Hermitian form can be found by the usual trick of averaging

over the action of that compact group). �

Recall that the singular values of a map g in a Euclidean space are defined

as the square roots of the eigenvalues of g�g, where g� is the adjoint map. The

largest and smallest singular values of g then give respectively the operator norm

of g and the reciprocal of the operator norm of g�1.

Proposition 2.6. Let �� W G ! GL.V�/ be any representation ofG on some vector
space V�; let �1�; : : : ; �

d�
� be the list of all the restricted weights of ��, repeated

according to their multiplicities. Let g 2 G; then

(i) the list of the moduli of the eigenvalues of ��.g/ is given by

.e�
i
�.Jd.g///1�i�d�

I

(ii) the list of the singular values of ��.g/, with respect to a K-invariant Eu-
clidean normB� on V� that makes the restricted weight spaces of V� pairwise
orthogonal (such a norm exists by Lemma 2.4), is given by

.e�
i
�.Ct.g///1�i�d�

:

Proof. (i) Let g D ghgegu be the Jordan decomposition of g.

It is then well known that ��.ge/ and ��.gu/ are still respectively elliptic and

unipotent in GL.V�/, and in particular have eigenvalues of modulus 1. Since gh,

ge and gu all commute with each other, we deduce that the eigenvalues of ��.g/

are equal, in modulus, to those of ��.gh/.

On the other hand, gh is by definition conjugate to exp.Jd.g//, so ��.gh/ has

the same eigenvalues as ��.exp.Jd.g//.

Finally, since exp.Jd.g// is in A (the group corresponding to the Cartan sub-

space), the list of the eigenvalues of ��.exp.Jd.g/// is by definition given by

.e�
i
�.Jd.g///1�i�d�

:
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(ii) Let g D k1 exp.Ct.g//k2 be the Cartan decomposition of g. Since ��.k1/

and ��.k2/ areB�-orthogonal maps, theB�-singular values of ��.g/ coincide with

those of the map exp.Ct.g//; since exp.Ct.g//, being an element of A, is self-

adjoint, its singular values coincide with its eigenvalues. We conclude as in the

previous point. �

2.2. Properties of restricted weights. In this subsection, we introduce a few

properties of restricted weights of real finite-dimensional representations. (Pro-

position 2.7 is actually a general result about Coxeter groups.) The corresponding

theory for ordinary weights is well known: see for example Chapter V in [16].

Let ˛1; : : : ; ˛r be an enumeration of the set … of simple restricted roots

generating †C. For every i , we set

˛0
i WD

´

2˛i if 2˛i is a restricted root,

˛i otherwise.
(2.1)

For every index i such that 1 � i � r , we define the i-th fundamental restricted
weight $i by the relationship

2
h$i ; ˛

0
j i

k˛0
jk
2
D ıij (2.2)

for every j such that 1 � j � r .

By abuse of notation, we will often allow ourselves to write things such as “for

all i in some subset …0 � …, $i satisfies...” (tacitly identifying the set …0 with

the set of indices of the simple restricted roots that are inside).

In the following proposition, for any subset…0 � …, we denote:

� by W…0 the Weyl subgroup of type …0:

W…0 WD hs˛i˛2…0 I (2.3)

� by aC
…0 the fundamental domain for the action of W…0 on a:

aC
…0 WD ¹X 2 a j for all ˛ 2 …0; ˛.X/ � 0º; (2.4)

which is a kind of prism whose base is the dominant Weyl chamber of W…0 .

Proposition 2.7. Take any …0 � …, and let us fix X 2 aC
…0 . Let Y 2 a. Then the

following two conditions are equivalent:

(i) the vector Y is in aC
…0 and satisfies the system of linear inequalities

´

$i .Y / � $i .X/ for all i 2 …0;

$i .Y / D $i .X/ for all i 2 … n…0I

(ii) the vector Y is in aC
…0 and also in the convex hull of the orbit of X by W…0 .
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Proof. For …0 D …, this is well known: see e.g. [14], Proposition 8.44.

Now let …0 be an arbitrary subset of …. We may translate everything by the

vector X

i2…n…0

$i .X/Hi

(where .Hi/i2… is the basis of a dual to the basis .$i/i2… of a�), which is

obviously fixed by W…0 . Thus we reduce the problem to the case where

$i.X/ D 0 for all i 2 … n…0: (2.5)

Now let †0 be the intersection of † with the vector space a…0 determined by this

system of equations, which is also the linear span of .˛i /i2…0 . Then †0 is a root

system that has

� …0 as a simple root system;

� W…0 as the Weyl group;

� aC
…0 \ a…0 as the dominant Weyl chamber.

This reduces the problem to the case…0 D …. �

Proposition 2.8. Every restricted weight of every representation of g is a linear
combination of fundamental restricted weights with integer coefficients.

Proof. This is a particular case of Proposition 5.8 in [9]. For a correction con-

cerning the proof, see also Remark 5.2 in [10]. �

Proposition 2.9. If �� is an irreducible representation of g, there is a unique
restricted weight �� of ��, called its highest restricted weight, such that no
element of the form �� C ˛i with 1 � i � r is a restricted weight of ��.

Remark 2.10. In contrast to the situation with non-restricted weights, the highest

restricted weight is not always of multiplicity 1; nor is a representation uniquely

determined by its highest restricted weight.

Proof. This easily follows from the existence and uniqueness of the ordinary (non-

restricted) highest weight, given for example in [16], Theorem 5.5 (d). �

Proposition 2.11. Let �� be an irreducible representation of g; let �� be its highest
restricted weight. Let ƒ��

be the restricted root lattice shifted by ��:

ƒ��
WD ¹�� C c1˛1 C � � � C cr˛r j c1; : : : ; cr 2 Zº:

Then the set of restricted weights of �� is exactly the intersection of the latticeƒ��

with the convex hull of the orbit ¹w.��/ j w 2 W º of �� by the restricted Weyl
group.
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Proof. Once again, this follows from the corresponding result for non restricted

weights (see e.g. [14], Theorem 10.1) by passing to the restriction. In the case of

restricted weights, one of the inclusions is stated in [15], Proposition 4.22. �

Theorem 7.2 in [24] yields as a special case the following result:

Proposition 2.12. For every index i such that 1 � i � r , there exists an
irreducible representation �i of G on a space Vi whose highest restricted weight
is equal to ni$i ( for some positive integer ni ) and has multiplicity 1.

Here is a result describing the restricted weights of these representations.

Lemma 2.13. Fix an index i such that 1 � i � r . Then

(i) �i has ni$i � ˛i as a restricted weight;

(ii) all restricted weights of �i other than ni$i have the form

ni$i � ˛i �

r
X

jD1

cj j̨ ;

with cj � 0 for every j .

Proof. (i) We have

s˛i .ni$i/ D s˛0
i
.ni$i /

D ni$i � 2ni
h$i ; ˛

0
i i

h˛0
i ; ˛

0
ii
˛0
i

D ni$i � ni˛
0
i

(2.6)

(recall that ˛0
i is equal to 2˛i if 2˛i is a restricted root and to ˛i otherwise). By

Proposition 2.11, s˛i .ni$i / is a restricted weight of �i (because it is the image of

a restricted weight of �i by an element of the Weyl group) and then ni$i � ˛i is

also a restricted weight of �i (as a convex combination of two restricted weights

of �i , that belongs to the restricted root lattice shifted by ni$i ).

(ii) Let � be some restricted weight of �i . By Proposition 2.11 taken together

with Proposition 2.7, we already know that it can be written as

� D ni$i �

r
X

jD1

c0
j j̨ ;

where all coefficients c0
j are nonnegative integers. It remains to show that if

� ¤ ni$i , then necessarily c0
i > 0.

Assume that c0
i D 0. By Proposition 8.42 in [14], we lose no generality in

assuming that � is dominant. Let…i WD …n¹iº; by Proposition 2.7, it follows that

� is then in the convex hull of the orbit of ni$i byW…i . But clearlyW…i fixes$i ,

hence also ni$i . The conclusion follows. �
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3. Choice of a reference Jordan projection

For the remainder of the paper, we fix � an irreducible representation of G

on a finite-dimensional real vector space V . For the moment, � may be any

representation; but in the course of the paper, we shall gradually introduce several

assumptions on � (namely Assumptions 3.2, 3.10, 4.23 and 10.1) that will ensure

that � satisfies the hypotheses of the Main Theorem.

We denote by � the set of restricted weights of �. For any X 2 a, we define

�>X (resp. �<X , �D

X , ��

X , ��

X ) to be the set of all restricted weights of � that take a

positive (resp. negative, zero, nonnegative, nonpositive) value on X :

��

X WD ¹� 2 � j �.X/ � 0º; �>X WD ¹� 2 � j �.X/ > 0º;

��

X WD ¹� 2 � j �.X/ � 0º; �<X WD ¹� 2 � j �.X/ < 0º;

�D

X WD ¹� 2 � j �.X/ D 0º:

The goal of this section is to study these sets, and to choose a vector X0 2 aC for

which the corresponding sets have some nice properties. The motivation for their

study is that they parametrize the dynamical spaces (defined in Subsection 4.3)

of exp.X0/ (obviously), and actually of any element g 2 G whose Jordan projec-

tion “has the same type” as X0 (see Proposition 4.16).

In Subsection 3.1, we introduce the notion of a generic vector X 2 a, and

impose a first constraint on �: that 0 be a restricted weight.

In Subsection 3.2, we introduce an equivalence relation on the set of generic

vectors that identifies elements with the same dynamics, and give several exam-

ples.

In Subsection 3.3, we introduce the notion of a symmetric vector X 2 a, and

ensure that � does not exclude generic vectors from being symmetric.

In Subsection 3.4, we define parabolic subgroups and subalgebras of type X ;

we also associate to every X 2 aC a set …X of simple restricted roots and a

subgroup WX of the restricted Weyl group.

In Subsection 3.5, we prove Proposition 3.19, which shows that every equiva-

lence class of generic vectors has a representative that has “as much symmetry”

as the whole equivalence class, called an “extreme” representative.

At the end of this section, we shall fix once and for all an extreme, symmetric,

generic vectorX0 2 aC, which will serve as a reference Jordan projection (see the

definition at the beginning of Subsection 4.4).

3.1. Generic elements. We say that an element X 2 a is generic if

�D

X � ¹0º:

Remark 3.1. This is indeed the generic case: it happens as soon as X avoids

a finite collection of hyperplanes, namely the kernels of all nonzero restricted

weights of �.
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Assumption 3.2. From now on, we assume that 0 is a restricted weight of �:

0 2 � or equivalently dimV 0 > 0:

Remark 3.3. By Proposition 2.11, this is the case if and only if the highest

restricted weight of � is a Z-linear combination of restricted roots.

Remark 3.4. We lose no generality in assuming this property, because it comes

as a consequence of condition (i)(a) of the Main Theorem (which is also Assump-

tion 4.23, see below). Indeed, any nonzero vector fixed by L is in particular fixed

by A � L, which means that it belongs to the zero restricted weight space.

Remark 3.5. Conversely, this assumption provides the bare minimum without

which the conclusion of the Main Theorem is certain to fail. In fact without this

assumption, the groupGËV cannot even have any infinite Zariski-dense subgroup

acting properly. Indeed, let � be such a subgroup; using a lemma due to Selberg,

we lose no generality in assuming � to be torsion-free. On the other hand, the

linear part of a generic element g of such a group does not have 1 as an eigenvalue.

This means that g has a fixed point, which is a contradiction.

In that case, for generic X we actually have

�D

X D ¹0º:

3.2. Types of elements of a. For two vectors X; Y 2 a, we say that Y has the
same type as X if

´

�>Y D �
>

X I

�<Y D �
<

X ;
(3.1)

i.e. if every restricted weight takes the same sign on both of them. This implies

that all five sets��,��,�D,�> and�< coincide forX and Y , hence that exp.X/

and exp.Y / have the same dynamical spaces (see Subsection 4.3).

This is an equivalence relation on a, which partitions a into finitely many

equivalence classes. We are only interested in generic equivalence classes. Some

generic X 2 a being fixed, we call

a�;X WD
®

Y 2 a
ˇ
ˇ for all � 2 �>X ; �.Y / > 0I

for all � 2 �<X ; �.Y / < 0
¯ (3.2)

its equivalence class in a. If X is dominant, we additionally call

aC
�;X WD a�;X \ aC (3.3)

its equivalence class in the closed dominant Weyl chamber aC.
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Remark 3.6. Every equivalence class is a convex cone. Also, these equivalence

classes actually coincide with connected components of the set of generic vectors.

Example 3.7. (1) Let G be any noncompact semisimple real Lie group and let

� D Ad be its adjoint representation (so that V D g).

� A vector X 2 a is generic if and only if it lies in one of the open Weyl

chambers. In particular a vector X in aC is generic if and only if it lies

in aCC.

� All elements of aCC have the same type; so there is only one generic

equivalence class in aC. Specifically, for any vector X 2 aCC, we have

aAd;X D aC
Ad;X D aCC.

(2) Take G D SOC.3; 2/. The root system is then B2:

e2 e1 C e2

e1

e1 � e2�e2�e1 � e2

�e1

�e1 C e2

As this group is split, the roots are also the restricted roots. Let � be the

representation with highest weight 2e1Ce2 (in the notations of [16], Appendix C).

This is a representation of dimension 35, whose weights (also restricted weights)

are as follows:

(the number of dots at each node represents multiplicity.) Then every equivalence

class in a is contained in some Weyl chamber: see Figure 1a. The dominant Weyl

chamber aC is split into two equivalence classes by the line of slope 1
2
, kernel of

the weight �e1 C 2e2.
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(a) � of highest weight 2e1 C e2 (b) � of highest weight e1

Figure 1. Equivalence classes and Weyl chambers for two different representations of G D

SOC.3; 2/. Dashed lines represent walls of Weyl chambers. Thick gray lines represent

kernels of nonzero weights, which separate the different equivalence classes. The dominant

Weyl chamber aC is hatched. All equivalence classes in a that intersect aC are shaded, with

different shades if there are more than one.

(3) Take G D SOC.3; 2/ and � the standard representation on V D R
5.

Using once again the notations of [16], Appendix C, its highest weight is e1 and

its weights are ˙e1, ˙e2 and 0 (of course all with multiplicity 1). Then (see

Figure 1b):

� A vector X 2 aC is generic if and only if it avoids the “horizontal” wall of

the dominant Weyl chamber (the one normal to e2).

� All such vectors have the same type. So for a genericX 2 aC, the equivalence

class aC
�;X is the half-open dominant Weyl chamber, with the diagonal wall

included and the horizontal wall excluded.

� The whole equivalence class a�;X is then an open quadrant of the plane a,

consisting of two half-open Weyl chambers glued back-to-back along their

shared diagonal wall.

(4) Suppose that G and � are such that the set of the restricted weights of �

neither contains all restricted roots of G, nor is contained in the set of restricted

roots of G and their multiples. Then both phenomena occur at the same time:

equivalence classes in a neither contain nor are contained in the Weyl chambers.

Examples are not immediate to come up with: the author even mistakenly

believed for some time that no such representations existed. However, here is

one such example.
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� TakeG D PSp4.R/ (which is a split form), following the notation convention

of [16]: this is a group of rank 4with a standard representation of dimension 8

(most people would call it PSp8.R/ instead). In the notations of [16], Appen-

dix C, its roots are all the possible expressions of the form˙ej ˙ ei or˙2ei .

� Take � to be the representation with highest weight e1C e2C e3C e4. It has

– the 16 weights of the form ˙e1 ˙ e2 ˙ e3 ˙ e4, with multiplicity 1;

– the 24 weights of the form ˙ei ˙ ej , with multiplicity 1;

– the zero weight with multiplicity 2,

for a total dimension of 42.

The reader may check that there are then three different “types” of generic vectors

in the dominant Weyl chamber aC, with e.g. the following representatives:

(a) X D .4; 2; 1; 0/;

(b) X D .5; 3; 2; 1/;

(c) X D .4; 3; 2; 0/.

In cases (a) and (c), we notice thatX lies on the wall normal to 2e4; its equivalence

class then contains a whole slice of that wall.

3.3. Swinging. We start this subsection with the following observation: if the

Jordan projection of g is X , then the Jordan projection of g�1 is �w0.X/, where

w0 is the “longest element” of the Weyl group that interchanges positive and

negative restricted roots (see Section 1.2).

We would like to ensure that for every element g of the group � we are trying

to construct, the element g itself and its inverse g�1 have similar dynamics. To do

that, we would like X and �w0.X/ to be of the same type. Replacing if necessary

X and �w0.X/ by their midpoint, we lose no generality in assuming they are

actually equal.

Definition 3.8. We say that an element X 2 a is symmetric if it is invariant

by �w0:

�w0.X/ D X:

Unfortunately, it is not always possible to find a vectorX that is both symmetric

and generic, as shown by the following example.
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Example 3.9. Take G D SL3.R/. It is a split form, so its restricted root system

is the same as its root system, namely A2:

e1 � e3

e2 � e3

e2 � e1

e3 � e1

e3 � e2

e1 � e2

For this group,�w0 is the map that exchanges the two simple positive roots e1�e2
and e2 � e3 (we use the notations of [16], Appendix C); in the picture above,

it corresponds to the reflection about the vertical axis. So a vector X 2 aC is

symmetric if and only if it lies on that vertical axis (which bisects the dominant

Weyl chamber aC).

Now consider the representation � of G with highest weight 2e1 � e2 � e3.

Note that this is three times the first fundamental weight, so � is actually the third

symmetric product S3R3 of the standard representation. Here are its weights:

�e1 C 2e2 � e3

e2 � e3

e1 � e3

2e1 � e2 � e3

�e1 C e2

0

e1 � e2

�e1 C e3

�e2 C e3

�e1 � e2 C 2e3

We see that any symmetric vector necessarily annihilates the weight�e1C2e2�e3,

hence it cannot be generic.

We call this phenomenon “swinging”. Here is the picture to have in mind:

when we apply the involution �w0 to some generic X , the annihilator of X (i.e.

the hyperplane of a� consisting of linear forms that vanish on X) “swings” past

the weight �e1 C 2e2 � e3, thus switching it from the set�> to the set�<.

From now on, we assume that this issue does not arise:
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Assumption 3.10 (“no swinging”). From now on, we assume that � is such that

there exists a symmetric generic element of a.

This is precisely condition (ii) from the Main Theorem.

Remark 3.11. (1) It is well known that when the restricted root system of G has

any type other than An (with n � 2), D2nC1 or E6, we actually have w0 D � Id.

For those groups, every vector X 2 a is symmetric, and so every representation

satisfies this condition.

(2) For the remaining groups, a straightforward linear algebra manipulation

shows that this condition is equivalent to the following: no nonzero restricted

weight of � must fall into the linear subspace

¹� 2 a� j w0� D �º (3.4)

(the “axis of symmetry” of w0 in a�). For example, this is always true for the

adjoint representation (any restricted root fixed by w0 would need to be positive

and negative at the same time). Heuristically, this seems to hold when the highest

restricted weight is “small”, but to quickly fail when it gets “large enough.”

3.4. Parabolic subgroups and subalgebras. A parabolic subgroup (or subal-

gebra) is usually defined in terms of a subset …0 of the set … of simple restricted

roots. We find it more convenient however to use a slightly different language. To

every such subset corresponds a facet of the Weyl chamber, given by intersecting

the walls corresponding to elements of …0. We may exemplify this facet by pick-

ing some element X in it that does not belong to any subfacet. Conversely, for

every X 2 aC, we define the corresponding subset

…X WD ¹˛ 2 … j ˛.X/ D 0º: (3.5)

The parabolic subalgebras and subgroups of type …X can then be very conve-

niently rewritten in terms of X , as follows.

Remark 3.12. The set …X actually encodes the “type” of X with respect to the

adjoint representation.

Definition 3.13. For every X 2 aC, we define

� pC
X and p�

X the parabolic subalgebras of type X , and lX their intersection:

pC
X WD l˚

M

˛.X/�0

g˛I

p�
X WD l˚

M

˛.X/�0

g˛I

lX WD l˚
M

˛.X/D0

g˛I
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� PC
X and P�

X the corresponding parabolic subgroups, and LX their intersec-

tion:

PC
X WD NG.p

C
X /I

P�
X WD NG.p

�
X/I

LX WD P
C
X \ P

�
X :

An object closely related to these parabolic subgroups (see formula (4.4), the

Bruhat decomposition for parabolic subgroups) is the stabilizer of X in the Weyl

group:

Definition 3.14. For any X 2 aC, we set

WX WD ¹w 2 W j wX D Xº:

Remark 3.15. The group WX is also closely related to the set …X . Indeed, it

follows immediately that a simple restricted root ˛ belongs to …X if and only

if the corresponding reflection s˛ belongs to WX . Conversely, it is well known

(Chevalley’s lemma, see e.g. [16], Proposition 2.72) that these reflections actually

generate the group WX .

Thus WX is actually the same thing as W…X (i.e. the group W…0 as defined

in (2.3), with …0 D …X ).

Example 3.16. To help understand the conventions we are taking, here are the

extreme cases.

(1) If X lies in the open Weyl chamber aCC, then

� PC
X D P

C is the minimal parabolic subgroup; P�
X D P

�; LX D L;

� …X D ;;

� WX D ¹Idº.

(2) If X D 0, then

� PC
X D P

�
X D LX D G;

� …X D …;

� WX D W .

3.5. Extreme vectors. BesidesWX , we are also interested in the group

W�;X WD ¹w 2 W j wX has the same type as Xº; (3.6)

which is the stabilizer ofX “up to type”. It obviously containsWX . The goal of this

subsection is to show that in every equivalence class, we can actually chooseX in

such a way that both groups coincide.
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Example 3.17. In Example 3.7.3 (G D SOC.3; 2/ acting on V D R
5), the group

W�;X corresponding to any generic X is a two-element group. If we take X to be

generic not only with respect to � but also with respect to the adjoint representation

(in other terms if X is in an open Weyl chamber), then the group WX is trivial. If

however we take as X any element of the diagonal wall of the Weyl chamber, we

have indeed WX D W�;X .

Definition 3.18. We call an element X 2 aC extreme if WX D W�;X , i.e. if it

satisfies the following property:

wX has the same type as X () wX D X for all w 2 W:

Proposition 3.19. For every generic X 2 aC, there exists a generic X 0 2 aC that
has the same type as X and that is extreme.

If moreover X is symmetric, then X 0 is still symmetric.

Remark 3.20. The following statement will never be used in the paper (so we

leave it without proof), but might help to understand what is going on: for every

generic X , we have

a�;X D W�;Xa
C
�;X D WX 0aC

�;X :

Also, it can be shown that a representative X 0 of a given equivalence class aC
�;X is

extreme if and only if it lies in every wall of the Weyl chamber that “touches” aC
�;X

(or, equivalently, passes through a�;X ), hence the term “extreme”.

Proof. To construct an element that has the same type as X but has the whole

group W�;X as stabilizer, we simply average over the action of this group: we set

X 0 D
X

w2W�;X

wX: (3.7)

(As multiplication by positive scalars does not change anything, we have written

it as a sum rather than an average for ease of manipulation.) Then obviously:

� by definition every wX for w 2 W�;X has the same type as X ; since the

equivalence class a�;X is a convex cone, their sum X 0 also has the same type

as X ;

� in particular X 0 is generic;

� by construction whenever wX has the same type as X , we have wX 0 D X 0;

conversely if w fixes X 0, then wX has the same type as wX 0 D X 0 which has

the same type as X . So X 0 is extreme.
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Let us now show that X 0 2 aC, i.e. that for every ˛ 2 …, we have ˛.X 0/ � 0.

� If s˛X
0 D X 0, then obviously ˛.X 0/ D 0.

� Otherwise, since X 0 is extreme, it follows that s˛X
0 does not even have the

same type as X 0. Since X 0 is generic, this means that there exists a restricted

weight � of � such that
´

�.X 0/ > 0;

s˛.�/.X
0/ < 0:

(3.8)

By definition, the same inequalities then hold for any Y with the same type

as X 0 (or as X):
´

�.Y / > 0;

s˛.�/.Y / < 0:

In particular the form � � s˛.�/, which is a multiple of ˛, takes a positive

value on every such Y ; hence ˛ never vanishes on the equivalence class a�;X .

By hypothesis X 2 aC, so ˛.X/ � 0. Since a�;X is connected, we conclude

that ˛.X 0/ > 0.

Finally, assume that X is symmetric, i.e. �w0.X/ D X . Then since w0 belongs

to the Weyl group, it induces a permutation on �, hence we have:

w0�
>

X D �
>

w0X
D �>�X D �

<

X ; (3.9)

so that w0 swaps the sets �>X and �<X . Now by definition we have

W�;X D StabW .�
>

X / \ StabW .�
<

X /; (3.10)

hence w0 normalizes W�;X . Obviously the map X 7! �X commutes with

everything, so �w0 also normalizes W�;X . We conclude that

�w0.X
0/ D

X

w2W�;X

�w0.w.X//

D
X

w 02W�;X

w0.�w0.X//

D X 0;

(3.11)

so that X 0 is still symmetric. �

Remark 3.21. In practice, it can be shown that if G is simple, the set …X for

extreme, symmetric, generic X can actually only be one of the following:

(a) empty;

(b) the set of long simple restricted roots;

(c) the whole set….
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Case (a) accounts for the vast majority of representations. Case (b) obviously

only occurs when the restricted root system has a non-simply-laced Dynkin dia-

gram (G2, F4, Bn, Cn or BCn), and then only occurs in finitely many represen-

tations of each group. Case (c) only occurs in trivial situations, namely when

either dim a D 0 (i.e. the group G is compact) or the representation is trivial.

The proof of this fact mostly relies on the following two observations.

� As soon as � is large enough to include some simple restricted root ˛,

no set …X 0 may contain ˛. Indeed in that case, ˛.X 0/ never vanishes for

generic X 0.

� The Weyl group acts transitively on the set of restricted roots of the same

length; so as soon as � contains one restricted root of a given length, it

contains all of them.

For the remainder of the paper, we fix some symmetric generic vector X0 in

the closed dominant Weyl chamber aC that is extreme.

4. Dynamics of maps of type X0

Now we take an element g in the affine group �.G/ Ë V such that the Jordan

projection of its linear part has the same type as X0. The goal of this section is

to understand the dynamics of g acting on the affine space corresponding to V ,

in particular its “dynamical spaces” defined in Subsection 4.3. There is a lot of

parallelism between this section and Section 2 in [22].

In Subsection 4.1, we introduce the dynamical subspaces of X0. We also show

that the stabilizers inG of those subspaces (except for the neutral one) are precisely

the parabolic subgroups introduced in Subsection 3.4.

In Subsection 4.2, we introduce some formalism that reduces the study of the

affine space VAff corresponding to V to the study of a vector space called A. We

also introduce affine equivalents of linear notions defined previously.

In Subsection 4.3, we define the linear and affine dynamical subspaces associ-

ated to an element of the affine group �.G/ËV . This is very similar to Section 2.1

in [22].

In Subsection 4.4, we give a description of the dynamical subspaces of an

element g 2 �.G/ Ë V whose Jordan projection has the same type as X0.

In Subsection 4.5, we show that the action of any such element on its affine

neutral space is a “quasi-translation”, and explain what that means. This is a

generalization of Section 2.4 in [22].

In Subsection 4.6, we introduce a family of canonical identifications between

different affine neutral spaces, and use them to define the “Margulis invariant”

for any such element g, which is a vector measuring its translation part along a

subspace of its affine neutral space. This is a generalization of Section 2.5 in [22].
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4.1. Reference dynamical spaces. Recall that X0 is some generic, symmetric,

extreme vector in the closed dominant Weyl chamber aC, chosen once and for all.

Definition 4.1. We define the following subspaces of V :

� V >0 WD
L

�.X0/>0
V �, the reference expanding space;

� V <0 WD
L

�.X0/<0
V �, the reference contracting space;

� V D

0 WD
L

�.X0/D0
V �, the reference neutral space;

� V �

0 WD
L

�.X0/�0
V �, the reference noncontracting space;

� V �

0 WD
L

�.X0/�0
V �, the reference nonexpanding space.

In other terms, V �

0 is the direct sum of all restricted weight spaces corresponding

to weights in ��

X0
, and similarly for the other spaces.

Clearly these are precisely the dynamical spaces (see Subsection 4.3) associ-

ated to the map exp.X0/ (acting on V by �).

Remark 4.2. Note that since X0 is generic, V D

0 is actually just the zero restricted

weight space:

V D

0 D V
0I

moreover by Assumption 3.2, zero is a restricted weight, so this space is nontrivial.

Example 4.3. (1) For G D SOC.p; q/ acting on V D R
pCq (where p � q),

there is only one generic type. The spaces V >0 and V <0 are some maximal totally

isotropic subspaces (transverse to each other), V �

0 and V �

0 are their respective

orthogonal complements, and V D

0 is the .p� q/-dimensional space orthogonal to

both V >0 and V <0 .

(2) If G is any semisimple real Lie group acting on V D g (its Lie algebra) by

the adjoint representation, then the reference noncontracting space g�

0 is obviously

equal to pC
X0

. There is once again only one generic type, given by any X0 2 aCC;

we then have …X0 D ;, so that pC
X0
D pC is actually the (reference) minimal

parabolic subalgebra. We have similar identities for the other dynamical spaces,

namely:

g�

0 D pCI g>0 D nCI

g�

0 D p�I g<0 D n�I

gD

0 D l:

Let us now understand what happens when we apply an element of G to one

of those subspaces. The motivation for this, as well as the explanation of the term

“reference subspace”, comes from Corollary 4.17.
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Proposition 4.4. We have

(i) StabW .V
�

0 / D StabW .V
>

0 / D StabW .V
�

0 / D StabW .V
<

0 / D WX0 ,

(ii) StabG.V
�

0 / D StabG.V
>

0 / D P
C
X0

,

(iii) StabG.V
�

0 / D StabG.V
<

0 / D P
�
X0

.

Remark 4.5. Note that every restricted weight space is invariant by ZG.A/ D L:

indeed, take some � 2 a�, v 2 V �, l 2 L, X 2 a; then we have:

X � l.v/ D l.Ad.l�1/.X/ � v/ D l.X � v/ D �.X/l.v/: (4.1)

Moreover, the group NG.A/ permutes these spaces. So if we have a direct sum

of several restricted weight spaces, it makes sense to talk about its image by an

element of W ; and we have the obvious identity

wV � D V w� for all w 2 W; � 2 a�: (4.2)

Proof of Proposition 4.4. (i) First note that sinceX0 is generic, the only restricted

weight that vanishes on X0 is the zero weight, so we have indeed

StabW .�
�

0 / D StabW .�
>

0 / D StabW .�
�

0 / D StabW .�
<

0 /;

hence

StabW .V
�

0 / D StabW .V
>

0 / D StabW .V
�

0 / D StabW .V
<

0 /:

Moreover, this group is obviously included in W�;X0 D StabW .a�;X0/, which is

also equal to WX0 since X0 is extreme. Conversely, let w 2 WX0 ; then X0 is

fixed by w, and so is (say) the set ��

X0
of restricted weights nonnegative on X0.

It follows that StabW .V
�

0 / contains WX0 .

(ii) We first show that both StabG V
>

0 and StabG V
�

0 contain the group PC.

� The group L stabilizes every restricted weight space V �, as noted in Re-

mark 4.5 above.

� Let ˛ be a positive restricted root and � a restricted weight such that the

value �.X0/ is positive (resp. nonnegative). Then clearly we have

g˛ � V � � V �C˛;

and .�C˛/.X0/ is still positive (resp. nonnegative). Hence nC stabilizes V >0
and V �

0 .

� The statement follows as PC D L exp.nC/.
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Now take any element g 2 G. Let us apply the Bruhat decomposition: we may

write

g D p1wp2;

with p1; p2 some elements of the minimal parabolic subgroup PC and w some

element of the restricted Weyl groupW (see e.g. [16], Theorem 7.40). (Technically

we need to replacew 2 W D NG.A/=ZG.A/ by some representative Qw 2 NG.A/;

but by the remark preceding this proof, we may ignore this distinction.) From the

statement that we just proved it immediately follows that

StabG.V
�

0 / D StabG.V
>

0 / D P
C StabW .V

�

0 /P
C D PCWX0P

C: (4.3)

On the other hand, we have the Bruhat decomposition for parabolic subgroups:

PC
X0
WD StabG.p

C
X0
/ D PCWX0P

C: (4.4)

This can be shown by applying a similar reasoning to the adjoint representation:

indeed in that case the space V �

0 corresponding to the same X0 is just pC
X0

. (There

is just a small difficulty due to the fact that X0 is not, in general, generic with

respect to the adjoint representation.)

The conclusion follows.

(iii) Replacing PC and PC
X0

respectively by P� and P�
X0

, the same reasoning

applies. �

4.2. Extended affine space. Let VAff be an affine space whose underlying vector

space is V .

Definition 4.6 (extended affine space). We choose once and for all a point p0
in VAff which we take as an origin; we call Rp0 the one-dimensional vector

space formally generated by this point, and we set A WD V ˚ Rp0 the extended
affine space corresponding to V . (We hope that A, the extended affine space, and

A, the group corresponding to the Cartan space, occur in sufficiently different

contexts that the reader will not confuse them.) Then VAff is the affine hyperplane

“at height 1” of this space, and V is the corresponding vector hyperplane:

V D V � ¹0º � V � Rp0I VAff D V � ¹1º � V �Rp0:

Definition 4.7 (linear and affine group). Any affine map g with linear part `.g/

and translation vector v, defined on VAff by

gW x 7�! `.g/.x/C v;

can be extended in a unique way to a linear map defined on A, given by the matrix

�

`.g/ v

0 1

�

:



476 I. Smilga

From now on, we identify the abstract groupG with the group �.G/ � GL.V /,

and the corresponding affine group G Ë V with a subgroup of GL.A/.

Definition 4.8 (affine subspaces). We define an extended affine subspace of A to

be a vector subspace of A not contained in V . For every k, there is a one-to-one

correspondence between k C 1-dimensional extended affine subspaces of A and

k-dimensional affine subspaces of VAff . For any extended affine subspace of A

denoted by A1 (or A2, A
0 and so on), we denote by V1 (or V2, V

0 and so on) the

space A\ V (which is the linear part of the corresponding affine space A\ VAff).

Definition 4.9 (translations). By abuse of terminology, elements of the normal

subgroup V C G Ë V will still be called translations, even though we shall see

them mostly as endomorphisms ofA (so that they are formally transvections). For

any vector v 2 V , we denote by �v the corresponding translation.

Definition 4.10 (reference affine dynamical spaces). We now give a name for (the

vector extensions of) the affine subspaces of VAff parallel respectively to V �

0 , V �

0

and V D

0 and passing through the origin: we set

A�

0 WD V
�

0 ˚Rp0; the reference affine noncontracting space;

A�

0 WD V
�

0 ˚Rp0; the reference affine nonexpanding space;

AD

0 WD V
D

0 ˚Rp0; the reference affine neutral space.

These are obviously the affine dynamical spaces (see next subsection) correspond-

ing to the map exp.X0/, seen as an element of G Ë V by identifying G with the

stabilizer of p0 in G Ë V .

Definition 4.11 (affine Jordan projection). Finally, we extend the notion of Jordan

projection to the whole group G Ë V , by setting

Jd.g/ WD Jd.`.g// for all g 2 G Ë V:

Remark 4.12. (1) It is tempting to try to define an “affine Jordan decomposition”,

by observing that any affine map g 2 G Ë V may be written as g D �vghgegu,

with gh (resp. ge , gu) conjugate in G Ë V to an element of A (resp. of K, of NC)

and v some element of V . Unfortunately, we can neither require that �v commute

with the other three factors, nor (as erroneously claimed in the author’s previous

paper [22]) determine v in a unique fashion. The trouble comes from unipotent

elements; to understand the problem, examine the affine transformation

gW

�

x

y

�

7�!

�

1 1

0 1

��

x

y

�

C

�

0

1

�

:

So we must be a little more careful; see the proof of Proposition 4.16 for a more

detailed study of conjugacy classes in G Ë V .
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(2) We do not extend similarly the Cartan projection toGËV , for the following

reason. While eigenvalues of an element ofGËV depend only on the eigenvalues

of its linear part, the same statement does not hold for its singular values.

4.3. Definition of dynamical spaces. For every g 2 G ËV , we define its linear
dynamical spaces as follows:

� V >g , the expanding space associated to g:

the largest vector subspace of V stable by g such that all eigenvalues � of the

restriction of g to that subspace satisfy j�j > 1;

� V <g , the contracting space associated to g:

the same thing with j�j < 1;

� V D

g , the neutral space associated to g:

the same thing with j�j D 1;

� V �

g , the noncontracting space associated to g:

the same thing with j�j � 1;

� V �

g , the nonexpanding space associated to g:

the same thing with j�j � 1.

Equivalently, V >g is the direct sum of all the generalized eigenspaces E� of g

associated to eigenvalues � of modulus larger than 1 (defined as E� D ker.g �

� Id/n where n D dimV ), and similarly for the four other spaces. We then

obviously have

V D

V �

g
‚ …„ ƒ

V >g ˚ V
D

g ˚ V
<

g
„ ƒ‚ …

V �

g

: (4.5)

Also note that the restriction of g from A to V is just its linear part, so that the

linear dynamic subspaces of g only depend on `.g/.

For every g 2 G Ë V , we define its affine dynamical subspaces:

� A�

g , the affine noncontracting space associated to g,

� A�

g , the affine nonexpanding space associated to g,

� and AD

g , the affine neutral space associated to g,

in the same way as the linear dynamical subspaces, but with V replaced every-

where by A.
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Remark 4.13. (1) Note that if we defined in the same wayA>g (resp.A<g ), it would

actually be contained in V and so just be equal to V >g (resp.V <g ). Indeed an element

of G Ë V can never act on a vector in A n V (i.e. an element of A with a nonzero

component along Rp0) with an eigenvalue other than 1.

(2) Thus the affine analog of the decomposition (4.5) is now:

A D

A�

g
‚ …„ ƒ

V >g ˚ A
D

g ˚ V
<

g
„ ƒ‚ …

A�

g

(4.6)

(pay attention to the distribution of A’s and V ’s).

(3) From this identity, it immediately follows that neither AD

g , A�

g nor A�

g are

contained in V .

(4) Finally, it is obvious that the intersections of these three spaces with V are

respectively V D

g , V �

g and V �

g . Thus this notation is consistent with the convention

outlined above.

In purely affine terms, these spaces may be understood as follows:

� AD

g \ VAff is the unique g-invariant affine space parallel to V D

g (the “axis”

of g);

� A�

g \VAff is the unique affine space parallel to V �

g and containing AD

g \VAff,

and similarly for A�

g \ VAff .

4.4. Description of dynamical spaces. We shall now characterize the dynami-

cal subspaces of those elements of G Ë V that satisfy the following property.

Definition 4.14. We say that an element g 2 G Ë V is of type X0 if Jd.g/ has the

same type as X0, i.e. if

Jd.g/ 2 a�;X0 :

Example 4.15. (1) For G D SOC.p; q/ acting on V D R
pCq (where p � q),

there is only one generic type. For every g 2 G, we have

dimV >g D dimV <g � q: (4.7)

An element g 2 G is of generic type if and only if equality is attained. Such

elements have been called pseudohyperbolic in the previous literature ([3, 21]).

(2) If G is any semisimple real Lie group acting on V D g (its Lie algebra) by

the adjoint representation, there is only one generic type and an element g 2 G

is of that type if and only if Jd.g/ 2 aCC. Such elements are called R-regular or

(particularly in [8]) loxodromic.
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Here is a partial description of the dynamical spaces of an element of type X0.

Proposition 4.16. Let g 2 G Ë V be a map of type X0. In that case:

(i) there exists a map � 2 G Ë V , called a canonizing map for g, such that
´

�.A�

g / D A
�

0 ;

�.A�

g / D A
�

0 I

(ii) the space V >g is uniquely determined by A�

g . The space V <g is uniquely
determined by A�

g .

(Compare this with Claim 2.5 in [22].)

Proof. (i) We start with the obvious decomposition

g D �v`.g/; (4.8)

where `.g/ 2 G is the linear part ofg (seen as an element ofGËV by identifyingG

with the stabilizer of the origin p0) and v 2 V is its translation part. We then

observe that we may rewrite this as

g D �v0��1
w `.g/�w (4.9)

for some w 2 V , where v0 is now actually an element of V D

g . Indeed, for any

translation vector v 2 V and linear map f 2 G, we have

f �v D �f .v/f: (4.10)

The statement then follows from the fact that the map induced by `.g/ � Id on

V >g ˚ V <g does not have 0 as an eigenvalue, hence is surjective. (In fact, this

argument shows that we could even require v0 to lie in the actual characteristic

space corresponding to the eigenvalue 1.)

Now let `.g/ DW ghgegu be the Jordan decomposition of `.g/, so that

�wg�
�1
w D �v0ghgeguI (4.11)

let �` 2 G be any map that conjugates gh to exp.Jd.g//, i.e. such that �`gh�
�1
`
D

exp.Jd.g//; and let � WD �`�w .

Calling g0 WD �g��1 and �v00 , g0
e , g

0
u the respective conjugates of the maps

�v0 , ge , gu by �` (so that v00 D �`.v
0/), we then have

g0 D �v00 exp.Jd.g//g0
eg

0
u; (4.12)

where g0
e 2 G is elliptic, g0

u 2 G is unipotent, both of them commute

with exp.Jd.g//, and v00 2 V D

g0 .



480 I. Smilga

As already seen in the proof of Proposition 2.6, g0
e and g0

u have all eigenvalues

of modulus 1 and commute with exp.Jd.g//. Hence the linear dynamical spaces

of g0 coincide with those of exp.Jd.g//.

Now since exp.Jd.g// 2 G fixesp0, the spaceAD

exp.Jd.g//
is equal toV D

exp.Jd.g//
˚

Rp0; and since v00 2 V D

g0 , that space is still invariant by g0. It follows that we have

AD

g0 D A
D

exp.Jd.g// D V
D

exp.Jd.g// ˚Rp0: (4.13)

By taking the direct sum with V > and with V <, we deduce that all the affine

dynamical spaces of g0 coincide with those of exp.Jd.g//.

Now since g is of typeX0, by definition, Jd.g/ is a vector in a that has the same

type as X0. It follows that the affine dynamical subspaces of exp.Jd.g// coincide

with those of exp.X0/, which are the reference subspaces. We conclude that
´

A�

g0 D A
�

0 I

A�

g0 D A
�

0 :

Since obviously A�

g0 D �.A
�

g / and similarly for A�, the conclusion follows.

(ii) Suppose that g1 and g2 are two maps of type X0 such that A�

g1
D A�

g2
.

Define g0
1 D �1g1�

�1
1 and g0

2 D �2g2�
�1
2 as in the previous point; then we have

A�

g1;2
D ��1

1 .A�

0 / D �
�1
2 .A�

0 /:

In other terms, the transition map �2 ı �
�1
1 stabilizes A�

0 .

Clearly the linear part of �2 ı �
�1
1 then stabilizes V �

0 . It follows from Propo-

sition 4.4 that it also stabilizes V >0 . Since the latter space is contained in V , the

translation part of �2 ı �
�1
1 acts trivially on it; so the affine map �2 ı �

�1
1 itself

also stabilizes V >0 .

Now obviously we also have V >g1 D �
�1
1 .V >

g0
1

/, and similarly for g2 and �2. But

it also follows from the previous point that

V >
g0
1
D V >

g0
2
D V >0 :

We conclude that V >g1 D V
>

g2
as required.

The same proof works for A� and V <. �

This immediately allows us to describe the remaining dynamical spaces of g:

Corollary 4.17. Let g 2 G Ë V be a map of type X0. Then if � 2 G Ë V is any

canonizing map of g, we have

�.A�

g /D A
�

0 ; �.V �

g /D V
�

0 ; �.V >g /D V
>

0 ;

�.A�

g /D A
�

0 ; �.V �

g /D V
�

0 ; �.V <g /D V
<

0 ;

�.AD

g /D A
D

0 ; �.V D

g /D V
D

0 :
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In other terms, if � is a canonizing map of g then all eight dynamical spaces of

the conjugate �g��1 coincide with the reference dynamical spaces. This explains

why we called them “reference” spaces.

Proof. The equalities for A� and A� hold by definition of a canonizing map. The

equality for AD follows by taking the intersection. The equalities for V �, V �

and V D follow by taking the linear part. The equalities for V > and V < follow

from Proposition 4.16 (ii). �

4.5. Quasi-translations. Let us now investigate the action of a map g 2 G Ë V

of type X0 on its affine neutral space AD

g . The goal of this subsection is to prove

that it is “almost” a translation (Proposition 4.20).

We fix on V a Euclidean form B satisfying the conditions of Lemma 2.4 for

the representation �.

Definition 4.18. We call quasi-translation any affine automorphism of AD

0 in-

duced by an element of L Ë V D

0 .

Let us explain and justify this terminology. First note that the action ofL onV D

0

preserves B: indeed, the action of M does so because M � K, and the action of

A on this space is just trivial. The following statement is then immediate:

Proposition 4.19. Let V t0 be the set of fixed points of L in V D

0 :

V t0 WD ¹v 2 V
D

0 j for all l 2 L; lv D vº:

(Note that this is also the set of fixed points of M ). Let V r0 be the B-orthogonal
complement of V t0 in V D

0 , and let O.V r0 / denote the set of B-preserving automor-
phisms of V r0 . Then any quasi-translation is an element of

.O.V r0 / Ë V r0 / � V
t
0 :

In other words, quasi-translations are affine isometries of V D

0 that preserve

the directions of V r0 and V t0 and act by a pure translation on the V t0 component.

You may think of a quasi-translation as a kind of “screw displacement”; the

superscripts t and r respectively stand for “translation” and “rotation”.

We now claim that any map of typeX0 acts on its affine neutral space by quasi-

translations:

Proposition 4.20. Let g 2 G Ë V be a map of type X0, and let � 2 G Ë V be
any canonizing map for g. Then the restriction of the conjugate �g��1 to AD

0 is a
quasi-translation.

Let us actually formulate an even more general result, which will have another

application in the next subsection.
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Lemma 4.21. Any map f 2 G Ë V stabilizing both A�

0 and A�

0 acts on AD

0 by
quasi-translation.

Proof. We begin by showing that any element of lX0 D pC
X0
\ p�

X0
acts on V D

0 in

the same way as some element of l. Recall that by definition

lX0 D l˚
M

˛.X0/D0

g˛I

hence it is sufficient to show that for every restricted root ˛ such that ˛.X0/ D 0,

we have g˛ � V D

0 D 0. Indeed, since V D

0 D V
0 (because X0 is generic), we have

g˛ � V D

0 � V
˛:

On the other hand, we know by Proposition 4.4 that for such ˛, the action of g˛

stabilizes both V �

0 and V �

0 ; it follows that the image g˛ � V D

0 lies in both of these

spaces, hence in their intersection V D

0 , which is also V 0. Since ˛ is nonzero, we

have V 0 \ V ˛ D 0, which yields the desired equality.

Let PC
X0;e

and P�
X0;e

denote the identity components of PC
X0

and P�
X0

re-

spectively; by integrating the previous statement, it follows that any element

of PC
X0;e
\ P�

X0;e
acts on V D

0 in the same way as some element of L.

Now it follows from [16] Proposition 7.82 (d) (using 7.83 (e)) that

LX0 D P
C
X0
\ P�

X0
�M.PC

X0;e
\ P�

X0;e
/: (4.14)

(Here we are using the assumption that G is connected.) We deduce that any

element of LX0 acts on V D

0 in the same way as some element of L.

Finally, any f 2 G Ë V stabilizing both A�

0 and A�

0 has linear part stabilizing

both V �

0 and V �

0 (hence lying in LX0 , by Proposition 4.4), and translation part

contained both in V �

0 and in V �

0 (in other words, in V D

0 ). The conclusion follows.

�

Proof of Proposition 4.20. The proposition follows immediately from this lemma

by taking f D �g��1. Indeed, by definition the “canonized” map �g��1 has A�

0

and A�

0 as dynamical spaces; in particular it stabilizes them. �

Example 4.22. (1) For G D SOC.p; q/ acting on V D R
pCq (with p � q), we

have

� M ' SOp�q.R/ � .Z=2Z/
q�1,

� V D

0 D V
0 ' R

p�q ,
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and the action of M on V D

0 is as follows: the connected factor SOp�q.R/ acts

in the obvious way; the discrete factor .Z=2Z/q�1 acts trivially. We may then

distinguish two cases.

a. If p � q � 2, then the action of M is transitive. The space V t0 is trivial

and V r0 D V
D

0 . Any affine isometry of V D

0 may be a quasi-translation.

b. If p� q D 1, then the groupM is trivial. We have on the contrary V t0 D V
D

0

and V r0 is trivial. A quasi-translation is just a translation.

(We exclude the case p D q because in that case V 0 D 0, which violates

Assumption 3.2.)

(2) More generally if G is split, then we have m D 0. The group M is in

general a nontrivial finite group; however, it can be shown (by considering the

complexification ofG) that we still always have V t0 D V
D

0 , and a quasi-translation

is still just a translation.

(3) If G is any semisimple real Lie group acting on V D g (its Lie algebra) by

the adjoint representation, then:

� gD

0 D g0 D l;

� gt0 is the direct sum of a and of the center of m;

� gr0 is the semisimple part of m (in other terms, its derived subalgebra).

The example of G D SOC.4; 1/ (acting on so.4; 1/, not on R
5) shows that V t0

and V r0 can both be nontrivial at the same time.

We would like to treat quasi-translations a bit like translations; for this, we

need to have at least a nontrivial space V t0 . So from now on, we exclude cases

like 1.a. in the list of examples we just considered (Example 4.22):

Assumption 4.23. The representation � is such that

dimV t0 > 0:

This is precisely condition (i)(a) from the Main Theorem.

4.6. Canonical identifications and the Margulis invariant. The main goal of

this subsection is to associate to every map g 2 G Ë V of type X0 a vector in V t0 ,

called its “Margulis invariant” (see Definition 4.31). The two propositions (4.27

and 4.29) and and the lemma (4.30) that lead up to this definition are important

as well, and will be often used subsequently.
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Corollary 4.17 has shown us that the “geometry” of any map g of type X0
(namely the position of its dynamical spaces) is entirely determined by the pair of

spaces

.A�

g ; A
�

g / D �.A
�

0 ; A
�

0 /:

In fact, such pairs of spaces play a crucial role. Let us begin with a definition;

its connection with the observation we just made will become clear after Propo-

sition 4.27.

Definition 4.24. We define a parabolic space to be any subspace of V that is the

image of V �

0 by some element of G.

We define an affine parabolic space to be any subspace of A that is the image

of A�

0 by some element of G Ë V .

We say that two parabolic spaces (or two affine parabolic spaces) are transverse
if their intersection has the lowest possible dimension.

Remark 4.25. Since X0 is symmetric, V �

0 (resp. A�

0 ) is in particular a parabolic

space (resp. an affine parabolic space).

A subspaceA� � A is an affine parabolic space if and only if it is not contained

in V and its linear part V � D A� \ V is a parabolic space.

Clearly V �

0 and V �

0 are transverse, and so are A�

0 and A�

0 . So two parabolic

spaces (resp. affine parabolic spaces) are transverse if and only if their intersection

has the same dimension as V D

0 (resp. AD

0 ).

Example 4.26. (1) For G D SOC.p; q/ acting on V D R
pCq (let us as-

sume p � q), a subspace F � R
pCq is a parabolic space if and only if F? is

a maximal isotropic subspace. Equivalently, F is a parabolic space if and only if

F containsF? and is minimal for that property (namely p-dimensional). Two par-

abolic spaces are transverse if and only if their intersection has dimension p � q.

Pairs of transverse parabolic spaces were called frames in [21].

(2) If G is any semisimple real Lie group acting on V D g (its Lie algebra) by

the adjoint representation, a parabolic space is just an arbitrary minimal parabolic

subalgebra of g (hence the name “parabolic space”).

Proposition 4.27. A pair of parabolic spaces (resp. of affine parabolic spaces)
is transverse if and only if it may be sent to .V �

0 ; V
�

0 / (resp. to .A�

0 ; A
�

0 /) by some
element of G (resp. of G Ë V ).

In particular, it follows from Proposition 4.16 that for any map g 2 G Ë V of

type X0, the pair .A�

g ; A
�

g / is a transverse pair of affine parabolic spaces.

This Proposition, as well as its proof, is very similar to Claim 2.8 in [22].
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Proof. Let us prove the linear version; the affine version follows immediately. Let

.V1; V2/ be any pair of parabolic spaces. By definition, for i D 1; 2, we may write

Vi D �i .V
�

0 / for some �i 2 G. Let us apply the Bruhat decomposition to the

map ��1
1 �2: we may write

��1
1 �2 D p1wp2; (4.15)

where p1; p2 belong to the minimal parabolic subgroup PC, and w is an element

of the restricted Weyl group W (or, technically, some representative thereof). Let

� WD �1p1 D �2p
�1
2 w�1; since PC stabilizes V �

0 , we have

V1 D �.V
�

0 / and V2 D �.wV
�

0 /: (4.16)

Thus V1 and V2 are transverse if and only ifwV �

0 is transverse to V �

0 , which means

that the dimension of their intersection, which is also equal to the sum of the

multiplicities of restricted weights contained in the intersection

��

X0
\w��

X0
;

is the smallest possible.

Clearly, this last intersection always contains ¹0º. Since X0 is generic, it can

actually be equal to ¹0º if only we can choose w so as to have

w��

X0
D ��

X0
: (4.17)

Since X0 is symmetric, this identity (4.17) is realized in particular for w D w0.

This means that V1 and V2 are transverse if and only if w satisfies (4.17), in which

case we have indeed V1 D �.V
�

0 / and V2 D �.V
�

0 / as required. �

Remark 4.28. It follows from Proposition 4.4 that the set of all parabolic spaces

can be identified with the flag variety G=PC
X0

, by identifying every parabolic

space �.V �

0 / with the coset �PC
X0

.

In this interpretation, two parabolic spaces V1 D �1.V
�

0 / and V2 D �2.V
�

0 / D

�2 ı w0.V
�

0 / are then transverse if and only if the corresponding pair of cosets

.�1P
C
X0
; �2w0P

�
X0
/

is in the G-orbit of the point .PC
X0
; P�
X0
/ in G=PC

X0
� G=P�

X0
, also known as the

openG-orbit in G=PC
X0
�G=P�

X0
, since it can be shown that it is indeed the unique

open G-orbit in that space.

Consider a transverse pair of affine parabolic spaces. Their intersection may

be seen as a sort of “abstract affine neutral space”. We now introduce a family of

“canonical identifications” between those spaces. Unfortunately, these identifica-

tions have an inherent ambiguity: they are only defined up to quasi-translation.
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Proposition 4.29. Let .A1; A2/ be a pair of transverse affine parabolic spaces.
Then any map � 2 G Ë V such that �.A1; A2/ D .A�

0 ; A
�

0 / gives, by restriction,
an identification of the intersectionA1\A2 with AD

0 , which is unique up to quasi-
translation.

Here by �.A1; A2/ we mean the pair .�.A1/; �.A2//. Note that if A1 \ A2
is obtained in another way as an intersection of two affine parabolic spaces, the

identification with AD

0 will, in general, no longer be the same, not even up to

quasi-translation: there could also be an element of the Weyl group involved.

Compare this with Corollary 2.14 in [22].

Proof. The existence of such a map � follows from Proposition 4.27. Now let �

and �0 be two such maps, and let f be the map such that

�0 D f ı � (4.18)

(i.e. f WD �0 ı��1). Then by construction f stabilizes both A�

0 andA�

0 . It follows

from Lemma 4.21 that the restriction of f to AD

0 is a quasi-translation. �

Let us now explain why we call these identifications “canonical”. The fol-

lowing lemma, while seemingly technical, is actually crucial: it tells us that the

identifications defined in Proposition 4.29 commute (up to quasi-translation) with

the projections that naturally arise if we change one of the parabolic subspaces in

the pair while fixing the other.

Lemma 4.30. Take any affine parabolic space A1.
Let A2 and A0

2 be any two affine parabolic spaces both transverse to A1.
Let � (respectively �0) be an element of G Ë V that sends the pair of spaces

.A1; A2/ (respectively .A1; A0
2/) to .A�

0 ; A
�

0 /; these two maps exist by Proposi-
tion 4.27.

Let W1 be the inverse image of V >0 by any map � such that A1 D ��1.A�

0 /

(this image is unique by Proposition 4.4).
Let

 WA1 �! A1 \ A
0
2

be the projection parallel to W1.
Then the map  defined by the commutative diagram

AD

0 AD

0

A1 \ A2 A1 \ A
0
2

 

!
 

 

!
 

 

!

�

 

!

�0

is a quasi-translation.
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The space W1 is, in some sense, the “abstract linear expanding space” corre-

sponding to the “abstract affine noncontracting space” A1: more precisely, for

any map g 2 G Ë V of type X0 such that A�

g D A1, we have V >g D W1
(by Proposition 4.16 (ii)).

The projection  is well defined becauseA�

0 D V
>

0 ˚A
D

0 D V
>

0 ˚ .A
�

0 \A
�

0 /,

and so A1 D �
0�1.A�

0 / D W1 ˚ .A1 \ A
0
2/.

This statement generalizes Lemma 2.18 in [22]. The proof is similar, but care

must be taken to replace minimal parabolics by parabolics of type X0.

Proof. Without loss of generality, we may assume that � D Id (otherwise we

simply replace the three affine parabolic spaces by their images under ��1.) Then

we have A1 D A�

0 , A2 D A�

0 and A0
2 D �0�1.A�

0 /, where �0 can be any map

stabilizing the space A�

0 . We want to show that the map  D �0 ı  (considered

as a map from AD

0 to itself) is a quasi-translation.

We know that �0 lies in the stabilizer StabGËV .A
�

0 /; by Proposition 4.4, the

latter is equal to PC
X0

Ë V �

0 . We now introduce the algebra

nC
X0
WD

M

˛.X0/>0

g˛ (4.19)

and the group NC
X0
WD expnC

X0
. We then have the Langlands decomposition

PC
X0
D LX0N

C
X0

(4.20)

(see e.g. [16], Proposition 7.83). Since LX0 stabilizes V >0 , this generalizes to the

“affine Langlands decomposition”

PC
X0

Ë V �

0 D .LX0 Ë V D

0 /.N
C
X0

Ë V >0 /: (4.21)

Thus we may write �0 D l ı n with l 2 LX0 Ë V D

0 and n 2 NC
X0

Ë V >0 .

We shall use the following fact: every element n of the group NC
X0

Ë V >0
stabilizes the spaceV >0 and induces the identity map on the quotient spaceA�

0 =V
>

0 .

Indeed, when the element n lies in NC
X0

, since NC
X0

is connected, this follows from

the fact that nC
X0
� V �

0 � V
>

0 (which, in turn, follows from the obvious fact that if

�.X0/ � 0 and ˛.X0/ > 0, then .�C ˛/.X0/ > 0). When n is a pure translation

by a vector of V >0 , this is obvious.

By definition,  also stabilizes V >0 and induces the identity on A�

0 =V
>

0 ; hence

so does the map n ı . But we also know that n ı is defined on A1 \A2 D A
D

0 ,

and sends it onto

n ı  .A1 \ A2/ D n.A1 \ A
0
2/ D l

�1.AD

0 / D A
D

0 :

Hence the map nı is the identity onAD

0 . It follows that D �0ı D lını D l

(in restriction to AD

0 ); by Lemma 4.21,  is a quasi-translation as required. �
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Now let g be a map of type X0. We already know that it acts on its neutral

affine space by quasi-translation; now the canonical identifications we have just

introduced allow us to compare the actions of different elements on their respective

neutral affine spaces, as if they were both acting on the same space AD

0 . However

there is a catch: since the identifications are only canonical up to quasi-translation,

we lose information about the rotation part; only the translation part along V t0
remains.

Formally, we make the following definition. Let �t denote the projection

from V D

0 onto V t0 parallel to V r0 .

Definition 4.31. Let g 2 G Ë V be a map of type X0. Take any point x in the

affine space AD

g \ VAff and any map � 2 G such that �.V �

g ; V
�

g / D .V �

0 ; V
�

0 /.

Then the vector

M.g/ WD �t .�.g.x/ � x// 2 V
t
0 :

is called the Margulis invariant of g.

This vector does not depend on the choice of x or �: indeed, composing �

with a quasi-translation does not change the V t0 -component of the image. See

Proposition 2.16 in [22] for a detailed proof of this claim (for V D g).

5. Quantitative properties

In this section, we define and study two important quantitative properties of maps

of type X0:

� C -non-degeneracy, which means that the geometry of the map is not too close

to a degenerate case;

� and contraction strength, which measures the extent to which the map g is

“much more contracting” on its contracting space than on its affine nonex-

panding space.

In Subsection 5.1, we define these and several other quantitative properties.

Several definitions coincide with those from Section 2.6 in [22] or generalize

them.

In the very short Subsection 5.2 (which is a straightforward generalization of

Section 2.7 from [22]), we compare these properties for an affine map and its

linear part.

In Subsection 5.3, we define analogous quantitative properties for proximal

maps, and relate properties of a product of a (sufficiently contracting and nonde-

generate) pair of proximal maps to the properties of the factors. This is almost the

same thing as Section 3.1 in [22], but with one additional result.
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5.1. Definitions. We endow the extended affine space A with a Euclidean norm

(written simply k � k) whose restriction to V coincides with the norm B defined

in Lemma 2.4 and that makes p0 orthogonal to V . Then the subspaces V >0 , V <0 ,

V r0 , V t0 and Rp0 are pairwise orthogonal, and the restriction of this norm to V r0
is invariant by quasi-translations. For any linear map g acting on A, we write

kgk WD supx¤0
kg.x/k

kxk
its operator norm.

Consider a Euclidean space E (for the moment, the reader may suppose that

E D A; later we will also need the case E D Λ
pA for some integer p). We

introduce on the projective space P.E/ a metric by setting, for every x; y 2 P.E/,

˛.x; y/ WD arccos
jhx; yij

kxkkyk
2 Œ0; �

2
�; (5.1)

where x and y are any vectors representing respectively x and y (obviously, the

value does not depend on the choice of x and y). This measures the angle between

the lines x and y. For shortness’ sake, we will usually simply write ˛.x; y/ with

x and y some actual vectors in E n ¹0º.

For any vector subspace F � E and any radius " > 0, we shall denote the

"-neighborhood of F in P.E/ by:

BP.F; "/ WD ¹x 2 P.E/ j ˛.x;P.F // < "º: (5.2)

(You may think of it as a kind of “conical neighborhood”.)

Consider a metric space .M; ı/; let X and Y be two subsets of M. We shall

denote the ordinary, minimum distance between X and Y by

ı.X; Y / WD inf
x2X

inf
y2Y

ı.x; y/; (5.3)

as opposed to the Hausdorff distance, which we shall denote by

ıHaus.X; Y / WD max
�

sup
x2X

ı.¹xº; Y /; sup
y2Y

ı.¹yº; X/
�

: (5.4)

Finally, we introduce the following notation. Let X and Y be two positive

quantities, and p1; : : : ; pk some parameters. Whenever we write

X .p1;:::;pk Y;

we mean that there is a constant K, depending on nothing but p1; : : : ; pk, such

that X � KY . (If we do not write any subscripts, this means of course that K

is an “absolute” constant — or at least, that it does not depend on any “local”

parameters; we consider the “global” parameters such as the choice of G and of

the Euclidean norms to be fixed once and for all.) Whenever we write

X �p1;:::;pk Y;

we mean that X .p1;:::;pk Y and Y .p1;:::;pk X at the same time.
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Definition 5.1. Take a pair of affine parabolic spaces .A1; A2/. An optimal
canonizing map for this pair is a map � 2 G Ë V satisfying

�.A1; A2/ D .A
�

0 ; A
�

0 /

and minimizing the quantity max
�

k�k; k��1k
�

. By Proposition 4.27 and a com-

pactness argument, such a map exists if and only if A1 and A2 are transverse.

We define an optimal canonizing map for a map g 2 G Ë V of type X0 to be

an optimal canonizing map for the pair .A�

g ; A
�

g /.

Let C � 1. We say that a pair of affine parabolic spaces .A1; A2/ (resp. a map

g of typeX0) is C -non-degenerate if it has an optimal canonizing map � such that

k�k � C and k��1k � C:

Now take g1, g2 two maps of type X0 in G Ë V . We say that the pair .g1; g2/

is C -non-degenerate if every one of the four possible pairs .A�

gi
; A�

gj
/ is C -non-

degenerate.

The point of this definition is that there are a lot of calculations in which, when

we treat a C -non-degenerate pair of spaces as if they were perpendicular, we err

by no more than a (multiplicative) constant depending on C . The following result

will often be useful:

Lemma 5.2. Let C � 1. Then any map � 2 GL.E/ such that k�˙1k � C induces
a C 2-Lipschitz continuous map on P.E/.

This is exactly Lemma 2.20 from [22].

Remark 5.3. The set of transverse pairs of extended affine spaces is characterized

by two open conditions: there is of course transversality of the spaces, but also

the requirement that each space not be contained in V . What we mean here by

“degeneracy” is failure of one of these two conditions. Thus the property of a pair

.A1; A2/ being C -non-degenerate actually encompasses two properties.

First, it implies that the spacesA1 and A2 are transversal in a quantitative way.

More precisely, this means that some continuous function that would vanish if

the spaces were not transversal is bounded below. An example of such a function

is the smallest non identically vanishing of the “principal angles” defined in the

proof of Lemma 7.2 (iv).

Second, it implies that both A1 and A2 are “not too close” to the space V (in

the same sense). In purely affine terms, this means that the affine spacesA1\VAff

and A2 \ VAff contain points that are not too far from the origin.

Both conditions are necessary, and appeared in the previous literature (such

as [19] and [3]). However, they were initially treated separately. The idea of

encompassing both in the same concept of “C -non-degeneracy” seems to have

been first introduced in the author’s previous paper [22].
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Definition 5.4. Let g 2 GL.E/, let n D dimE, and let p be an integer such that

1 � p < n. Let �1; : : : ; �n be the eigenvalues of g ordered by nondecreasing

modulus. Then we define the p-th spectral gap of g to be the quotient

�p.g/ WD
j�pC1j

j�pj
: (5.5)

Note that we chose the convention where the gap is a number smaller than or equal

to 1.

When E D A, we will most often use the p-th spectral gap for p D dimA�

0 .

In this case we will omit the index:

�.g/ WD �dimA
�

0
.g/: (5.6)

Also, we denote the spectral radius of g, i.e. the largest modulus of any

eigenvalue, by:

r.g/ WD j�1j: (5.7)

(The usual notation, �.g/, is already taken to mean “g in the representation �”.)

Definition 5.5. Let s > 0. For a map g 2 G Ë V of type X0, we say that g is

s-contracting if we have

kg.x/k

kxk
� s
kg.y/k

kyk
for all .x; y/ 2 V <g � A

�

g : (5.8)

(Note that by Corollary 4.17 the spaces V <g and A�

g always have the same dimen-

sions as V <0 and A�

0 respectively, hence they are nonzero.)

We define the strength of contraction of g to be the smallest number s.g/ such

that g is s.g/-contracting. In other words, we have

s.g/ D

gjV<g





g�1

ˇ
ˇ
A

�
g


: (5.9)

Remark 5.6. This strength of contraction s.g/ is defined as a kind of “mixed

gap”: it measures the gap between singular values of the restrictions of g to some

sums of its eigenspaces. It turns out that this definition is the most convenient for

our purposes.

However, if the map g from the above definition is C -non-degenerate, then

we may pretend that s.g/ is a “purely singular” gap, as long as we do not care

about multiplicative constants. Indeed, let g0 D �g��1, where � is an optimal

canonizing map for g; then it is easy to see that we have

s.g/ �C s.g
0/: (5.10)

On the other hand, since V <g0 D V
<

0 andA�

g0 D A
�

0 are orthogonal (by convention),

every singular value of g0 is either a singular value of g0jV<
0

or of g0jA�

0
. It follows

that s.g0/ is the quotient between two actual singular values of g0, and two con-
secutive singular values if s.g/ is small enough. See the proof of Lemma 5.1 (iii)

for a more detailed discussion.
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Remark 5.7. The spectral gap and contraction strength are somewhat related.

Take some affine map g 2 G Ë V of type X0; then since the norm of any linear

map is at least equal to its spectral radius, we obviously have

s.g/ � �.g/: (5.11)

On the other hand, for any map g 2 G Ë V , we have

log s.gN / D N log �.g/C O
N!1

.logN/: (5.12)

If g is of type X0, then �.g/ < 1, so that

s.gN / ����!
N!1

0: (5.13)

5.2. Affine and linear case. For any map f 2 G Ë V , we denote by `.f / the

linear part of f , seen as an element of G Ë V by identifying G with the stabilizer

of the “origin” p0. In other words, for every vector .x; t / 2 V ˚Rp0 D A, we set

`.f /.x; t / D f .x; 0/C .0; t /: (5.14)

(Seeing G as a subgroup of G Ë V allows us to avoid introducing new definitions

of C -non-degeneracy and contraction strength for elements of G.)

Lemma 5.8. Let C � 1, and take any C -non-degenerate map g (or C -non-
degenerate pair of maps .g; h/) of type X0 in G Ë V . Then

(i) the map `.g/ (resp. the pair .`.g/; `.h//) is still C -non-degenerate;

(ii) we have s.`.g// � s.g/;

(iii) suppose that s.g�1/ � 1. Then we actually have s.g/ �C s.`.g//

gjAD

g


.

Proof. The proof is exactly the same as the proof of Lemma 2.25 in [22], mutatis
mutandis. �

5.3. Proximal maps. Let E be a Euclidean space. The goal of this section is to

show Proposition 5.12. We begin with a few definitions.

Definition 5.9. Let  2 GL.E/; let �1; : : : ; �n be its eigenvalues repeated accord-

ing to multiplicity and ordered by nonincreasing modulus. We define the proximal
spectral gap of  as its first spectral gap:

Q�./ WD �1./ D
j�2j

j�1j
:

We say that  is proximal if Q�./ < 1. We may then decomposeE into a direct sum

of a line Es , called its attracting space, and a hyperplane Eu , called its repelling
space, both stable by  and such that:

´

 jEs D �1 IdI

for every eigenvalue � of  jEu ; j�j < j�1j:
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Definition 5.10. Consider a line Es and a hyperplaneEu ofE, transverse to each

other. An optimal canonizing map for the pair .Es ; Eu/ is a map � 2 GL.E/

satisfying

�.Es/ ? �.Eu/

and minimizing the quantity max.k�k; k��1k/.

We define an optimal canonizing map for a proximal map  2 GL.E/ to be an

optimal canonizing map for the pair .Es ; E
u
 /.

Let C � 1. We say that the pair formed by a line and a hyperplane .Es ; Eu/

(resp. that a proximal map ) is C -non-degenerate if it has an optimal canonizing

map � such that

�˙1


 � C .

Now take 1; 2 two proximal maps in GL.E/. We say that the pair .1; 2/

is C -non-degenerate if every one of the four possible pairs .Esi ; E
u
j
/ is C -non-

degenerate.

Definition 5.11. Let  2 GL.E/ be a proximal map. We define the proximal
strength of contraction of  by

Qs./ WD


 jEu





 jEs



D


 jEu




r./

(where r./ is the spectral radius of  , equal to j�1j in the notations of the previous

definition). We say that  is Qs-contracting if Qs./ � Qs.

Be careful that the meaning of some of these terms changes depending on

the context: they mean different things for maps of type X0 (see Definitions 5.4

and 5.5 above) and for proximal maps. We tried to at least keep the notations

unambiguous: compare the definitions of Qs and Q� with those of s and �.

In the following proposition, the notation Qs5.12.C /might puzzle the reader. This

constant is in fact indexed by the number of the proposition where it appears, a

convention that we will follow throughout the paper.

Proposition 5.12. For every C � 1, there is a positive constant Qs5.12.C / with
the following property. Take a C -non-degenerate pair of proximal maps 1; 2
in GL.E/, and suppose that both 1 and 2 are Qs5.12.C /-contracting. Then 12 is
proximal, and we have

(i) ˛.Es12 ; E
s
1
/ .C Qs.1/;

(ii) Qs.12/ .C Qs.1/Qs.2/.

(iii) r.12/ �C k1kk2k.

Note that since we have r.12/ � k12k � k1kk2k, what the last point

really says is that all three values have the same order of magnitude.

Similar results have appeared in the literature for a long time, e.g. Lemma 5.7

in [3], Proposition 6.4 in [5] or Lemma 2.2.2 in [6].
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Proof. The first two points have already been proved in the author’s previous

paper: see Proposition 3.4 in [22]. To prove (iii), we start with the following

observation. Let � D �
2C2

; then by Lemma 5.2 we have:

˛.Es1 ; E
u
2
/ � �:

On the other hand, we have already seen in the proof of Proposition 3.4 in [22]

that we have

Es12 2 B
�

Es1 ;
�
3

�

:

The triangular inequality immediately gives us

˛.Es12 ; E
u
2
/ �

2�

3
: (5.15)

Take any nonzero x 2 Es12 . We are going to show the estimates

k2.x/k

kxk
�C k2kI (5.16a)

k1.2.x//k

k2.x/k
�C k1k: (5.16b)

Since by definition, we have 1.2.x// D �x for some � 2 R having absolute

value r.12/, the estimate (iii) follows by multiplying (5.16a) and (5.16b) to-

gether.

Let us first show (5.16a). Let � be an optimal canonizing map for 2; since 2
is C -non-degenerate, we lose no generality by replacing 2 and x respectively

by  0
2 WD �2�

�1 and x0 WD �.x/. Obviously we have:

k 0
2.x

0/k � k 0
2kkx

0k: (5.17)

To show the other inequality, let us decompose

x0 DW x0
s

„ƒ‚…

2Es
 0
2

C x0
u

„ƒ‚…

2Eu
 0
2

: (5.18)

Then we have

k 0
2.x

0/k � k 0
2.x

0
s/k � k

0
2.x

0
u/k: (5.19)

For the first term, we have

k 0
2.x

0
s/k D r.

0
2/ � kx

0
sk

D k 0
2k � sin˛.�.E

s
12

/; Eu
 0
2
/ � kx0k

� k 0
2k � sin

˛.Es12 ; E
u
2
/

C 2
� kx0k by Lemma 5.2

� k 0
2k � sin

1

C 2
2�

3
� kx0k by (5.15).

(5.20)
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For the second term, we have

k 0
2.x

0
u/k �


 0

2

ˇ
ˇ
Eu
 0
2


 kx0

uk

�

 0

2

ˇ
ˇ
Eu
 0
2


 kx0k

D k 0
2k Qs.

0
2/ kx

0k

� k 0
2k C

2 Qs.2/ kx
0k:

(5.21)

Plugging those two estimates into (5.19), we obtain

k 0
2.x

0/k � k 0
2k

�

sin
2�

3C 2
� C 2 Qs.2/

�

kx0k: (5.22)

We may assume that Qs.2/ �
1
2
1
C2

sin 2�

3C2
. Since by construction � depends only

on C , we conclude that

k 0
2.x

0/k &C k
0
2k kx

0k: (5.23)

Putting together (5.17) and (5.23), we get (5.16a) as required.

Now to show (5.16b), simply notice that

2.E
s
12

/ D Es21 (5.24)

(since 21 is the conjugate of 12 by 2), so that 2.x/ 2 E
s
21

. Hence we

may follow the same reasoning as for (5.16a), simply exchanging the roles of 1
and 2. �

6. Additivity of Jordan projections

The goal of this section is to prove Proposition 6.17, which says that the product

of two sufficiently contracting maps of type X0 and in general position is still

of type X0. As it is a purely linear property, we forget about translation parts and

work exclusively in the linear groupG for the duration of this section. We proceed

in four stages.

We start with Proposition 6.1, which shows that if an element of G is of

type X0 and strongly contracting in the default representation �, it is proximal

and strongly contracting in some of the fundamental representations �i defined in

Proposition 2.12.

We continue with Proposition 6.7, which relates C -non-degeneracy in V and

C 0-non-degeneracy in the spaces Vi .

We then prove Proposition 6.11 (and a reformulated version, Corollary 6.13),

which constrains the Jordan projection of gh in terms of the Cartan projections

of g and h.

Finally, we use Corollary 6.13 to prove Proposition 6.17.
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Proposition 6.1. For every C � 1, there is a positive constant s6.1.C / with the
following property. Let g 2 G be a C -non-degenerate map of type X0 such that
s.g/ � s6.1.C /. Then for every i 2 … n…X0 , the map �i .g/ is proximal and we
have

Qs.�i .g// .C s.g/:

Remark 6.2. Note that since all Euclidean norms on a finite-dimensional vector

space are equivalent, this estimate makes sense even though we did not specify

any norm on Vi . In the course of the proof, we shall choose one that is convenient

for us.

Recall that “i 2 …n…X0” is a notation shortcut for “i such that ˛i 2 …n…X0 .”

Remark 6.3. Note that we have excluded the indices i that lie in …X0 . The latter

should be thought of as a kind of “exceptional set”; indeed, recall (Remark 3.21)

that it is often empty.

To pave the way for proving the proposition, let us prove a few lemmas that lead

to a relation between the contraction strength of an element of G and its Cartan

projection.

Lemma 6.4. For every i 2 …n…X0 , we may find two restricted weights ��

i 2 �
�

X0
and �<i 2 �

<

X0
such that

��

i � �
<

i D ˛i :

(Recall that ��

X0
is the set of restricted weights that take nonnegative values

on X0, and �<X0 is its complement in �.)

Proof. Fix some i 2 … n…X0 . Since X0 is extreme, s˛i .X0/ then does not have

the same type as X0. Since X0 is generic, we may then find a restricted weight �

of � such that

�.X0/ > 0 and s˛i .�/.X0/ < 0 (6.1)

(we already made this observation in (3.8)). Since � is a restricted weight, by

Proposition 2.8, the number

n� WD
h�; ˛i i

2h˛i ; ˛ii
(6.2)

is an integer. We have, on the one hand:

n�˛i .X0/ D .� � s˛i .�//.X0/ > 0I

on the other hand, ˛i .X0/ � 0 (because X0 2 aC); hence n� is positive.
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By Proposition 2.11, every element of the sequence

�; � � ˛i ; : : : ; � � n�˛i

is a restricted weight of �. We may then simply take ��

i to be the last term of this

sequence that still belongs to ��

X0
, and take �<i WD �

�

i � ˛i to be the immediately

following term of the sequence. �

Lemma 6.5 (Cartan decomposition in LX0 ). Let g 2 LX0 . Then there exist two
elements k1 and k2 in K \ LX0 and a unique element CtX0.g/ 2 aC

…X0
such that

g D k1 exp.CtX0.g//k2:

(Recall (2.4) that aC
…X0
D ¹X 2 a j for all ˛ 2 …X0 ; ˛.X/ � 0º.)

Proof. By Proposition 7.82 (a) in [16], LX0 is the centralizer of the intersection of

the kernels of simple roots in …X0 :

LX0 D ZG.¹X 2 a j for all ˛ 2 …X0 ; ˛.X/ D 0º/: (6.3)

By Proposition 7.25 in [16], it follows:

� that LX0 is reductive;

� that K \ LX0 is a maximal compact subgroup in LX0 .

Obviously a � lX0 is a Cartan subspace of lX0 , and aC
…X0

is a Weyl chamber

for LX0 . So this result is just the Cartan decomposition in the reductive group LX0
(see Theorem 7.39 in [16]). �

Lemma 6.6. For every C � 1, there is a constant k6.6.C / with the following
property. Let g 2 G be a C -non-degenerate map of type X0 such that log s.g/ �

�k6.6.C /. Then we have

min
�2�

�

X0

�.Ct.g// � max
�2�<

X0

�.Ct.g// � � log s.g/ � k6.6.C /:

Note that the first term on the left-hand side is certainly nonpositive, since

0 2 ��

X0
.

Proof. Let us first focus on the particular case where g satisfies
´

V �

g D V
�

0 I

V �

g D V
�

0 :

In this case, we shall prove that the statement holds with k6.6.C / D 0. In fact, we

shall even prove that in this case, if log s.g/ � 0, we actually have the equality

min
�2�

�

X0

�.Ct.g// � max
�2�<

X0

�.Ct.g// D � log s.g/: (6.4)
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By construction, obviously g stabilizes V �

0 and V �

0 ; hence (using Proposi-

tion 4.4) it also stabilizes V <0 , and we have

g 2 PC
X0
\ P�

X0
D LX0 : (6.5)

By Lemma 6.5, we then have

g D k1 exp.CtX0.g//k2 (6.6)

with k1; k2 2 K \ LX0 . In particular both k1 and k2 stabilize both V �

0 and V <0 .

Hence so does the LX0-Cartan projection CtX0.g/, and we have

8

<

:

kgjV�

0
k D


exp.CtX0.g//

ˇ
ˇ
V

�

0


I

k .g/�1
ˇ
ˇ
V<
0

k D

exp.CtX0.g//

�1
ˇ
ˇ
V<
0


:

(6.7)

Now we know that exp.CtX0.g// (seen in the default representation �) is self-

adjoint (by choice of the Euclidean structureB), hence its singular values coincide

with its eigenvalues. (Moreover V �

0 and V <0 are orthogonal.) As exp.CtX0.g// 2

A, obviously it acts on every restricted weight space V � with the eigenvalue

exp.�.CtX0.g///:

This almost gives us the identity we want, but with CtX0.g/ instead of Ct.g/:

min
�2�

�

X0

�.CtX0.g// � max
�2�<

X0

�.CtX0.g// D � log s.g/: (6.8)

Note that, in contrast to the identity (6.4) that we are trying to prove, this identity

holds for all values of s.g/. To conclude, it remains to show that if we assume

log s.g/ � 0, then we actually have CtX0.g/ D Ct.g/.

Indeed if log s.g/ � 0, then the left-hand side of (6.8) must be nonnegative.

By Lemma 6.4, it then follows that in particular, we have

��

i .CtX0.g// � �
<

i .CtX0.g// for all i 2 … n…X0 ; (6.9)

hence

˛i .CtX0.g// � 0 for all i 2 … n…X0 : (6.10)

On the other hand we also have

˛i .CtX0.g// � 0 for all i 2 …X0 ; (6.11)

since CtX0.g/ 2 aC
…X0

by construction. Joining both systems of inequalities, we

obtain that

CtX0.g/ 2 aC:
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This shows that (6.6) actually gives a Cartan decomposition of g in the whole

group G. By uniqueness of Cartan projection, we conclude that CtX0.g/ D Ct.g/

as desired.

Now let us deal with arbitrary g. Let � be an optimal canonizing map for g,

and let g0 D �g��1. Then it is easy to see that we have

s.g0/ �C s.g/

(we already mentioned this in Remark 5.6), and the difference Ct.g0/ � Ct.g/ is

bounded by a constant that depends only on C . Taking a suitable value of k6.6.C /,

the general result for g then follows from the particular result applied to g0. �

Proof of Proposition 6.1. Let s6.1.C / be a positive constant small enough to sat-

isfy all the constraints that will appear in the course of the proof. Let us fix

i 2 … n …X0 , and let g 2 G be a map satisfying the hypotheses. Let us prove

the two estimates

Q�.�i .g// D exp.˛i .Jd.g///
�1 � �.g/; (6.12)

which will show that �i .g/ is proximal; and then the two estimates

Qs.�i .g// �C exp.˛i .Ct.g///�1 .C s.g/; (6.13)

whose combination completes the proof.

� Let us start with the right part of (6.12). Lemma 6.4 gives us two restricted

weights ��

i and �<i of � such that:
´

��

i .X0/ � 0I

�<i .X0/ < 0;

and whose difference is ˛i . Now since g is of type X0, by definition, any

restricted weight of � has the same sign when evaluated at Jd.g/ or at X0.

Thus we also have ´

��

i .Jd.g// � 0I

�<i .Jd.g// < 0:

From Proposition 2.6, it then follows that

�.g/ � exp.˛i .Jd.g///
�1

as desired.

� Similarly we may establish the right part of (6.13). By using once again the

restricted weights ��

i and�<i given by Lemma 6.4, it follows from Lemma 6.6

that

˛i .Ct.g// � � log s.g/ � k6.6.C /;

provided we take s6.1.C / � exp.�k6.6.C //. By negating both sides and

exponentiating, the desired estimate follows immediately.
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� Let us now prove the left part of (6.12). By Proposition 2.6 (i), the list of the

moduli of the eigenvalues of �i .g/ is precisely

.e�
j

i
.Jd.g///1�j�di ;

where di is the dimension ofVi and .�
j
i /1�j�di is the list of restricted weights

of �i repeated according to their multiplicity.

Up to reordering that list, we may suppose that

�1i D ni$i

is the highest restricted weight of �i . We may also suppose that

�2i D ni$i � ˛i I

indeed it is also a restricted weight of �i by Lemma 2.13 (i). Now take

any j > 2. Since by hypothesis, the restricted weight ni$i has multiplicity 1,

we have �
j
i ¤ �1i . By Lemma 2.13 (ii), it follows that this restricted weight

has the form

�
j
i D ni$i � ˛i �

r
X

i 0D1

ci 0˛i 0 ;

with ci 0 � 0 for every index i 0.

Finally, since by definition Jd.g/ lies in aC, for every index i 0 we have

˛i 0.Jd.g// � 0. It follows that for every j > 2, we have

�1i .Jd.g// � �
2
i .Jd.g// � �

j
i .Jd.g//: (6.14)

In other words, among the moduli of the eigenvalues of �i .g/, the largest is

exp.�1i .Jd.g/// D exp.ni$i .Jd.g///;

and the second largest is

exp.�2i .Jd.g/// D exp.ni$i.Jd.g// � ˛i .Jd.g///:

It follows that

Q�.�i .g// D exp.˛i .Jd.g///
�1

as desired.
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� Let us finish with the left part of (6.13). We start with the following obser-

vation: for every C � 1, the set

¹� 2 G j k�k � C; k��1k � C º (6.15)

is compact. It follows that the continuous map

� 7�! max
�

k�i.�/k; k�i.�
�1/k

�

(6.16)

is bounded on that set, by some constant C 0
i that depends only on C (and on

the choice of a norm on Vi , to be made soon). Let � be the optimal canonizing

map of g, and let g0 D �g��1; then we get

Qs.�i .g// �C Qs.�i .g
0//: (6.17)

Now let us choose, on the space Vi where the representation �i acts, a

K-invariant Euclidean form Bi such that all the restricted weight spaces

for �i are pairwise Bi -orthogonal (this is possible by Lemma 2.4 applied

to �i ). Then Qs.�i .g
0// is simply the quotient of the two largest singular values

of �i .g
0/. By Proposition 2.6 (ii) (giving the singular values of an element

ofG in a given representation) and by a calculation analogous to the previous

point, we have

Qs.�i .g
0// D exp.˛i .Ct.g///�1: (6.18)

The desired estimate follows by combining (6.17) with (6.18). �

Proposition 6.7. Let .g1; g2/ be a C -non-degenerate pair of elements of G of
type X0. Then for every i 2 … n …X0 , the pair .�i.g1/; �i.g2// is a C 0

i -non-
degenerate pair of proximal maps in GL.Vi /, where C 0

i is some constant that
depends only on C and i .

Before proving this proposition, we need a couple of lemmas.

Lemma 6.8. Let i 2 … n…X0 .

(i) The restricted weight space V ni$ii is stable by �i .P
C
X0
/.

(ii) The direct sum of all restricted weight spaces V �i with � ¤ ni$i is stable
by �i .P�

X0
/.

Proof. (i) Let us first prove that this space is stable by pC
X0

. By definition, we have:

pC
X0
D l˚

M

ˇ.X0/�0

gˇ I

Since l centralizes a, it preserves the restricted weight space decomposition; so

clearly l stabilizes V
ni$i
i .
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Now let ˇ be a root such that ˇ.X0/ � 0; let us write

ˇ D
X

˛2…

c˛˛:

By definition of the set…X0 , we then have

c˛ � 0 for ˛ 2 … n…X0 : (6.19)

Now we know that

gˇ � V
ni$i
i � V

ni$iCˇ
i :

The latter space is actually zero. Indeed, otherwise, ni$i C ˇ would have to be a

restricted root. But from Lemma 2.13, we know that this would imply

c˛i � �1;

which contradicts the inequality above, since i (or, technically, the root ˛i ) is

in … n…X0 . It follows that for every ˇ such that ˇ.X0/ � 0, the space V
ni$i
i is

stable by gˇ ; we conclude that it is stable by pC
X0

.

By integration, we deduce that this space is also stable by PC
X0;e

. Now we

know (it follows from [16], Proposition 7.82 (d)) that PC
X0
D MPC

X0;e
. Since M

centralizes a, it preserves the restricted weight space decomposition, so it stabi-

lizes V
ni$i
i . We conclude that PC

X0
stabilizes V

ni$i
i .

(ii) The proof is completely analogous. �

In the following lemma, we denote by PS the set of all parabolic spaces of V ;

we also identify the projective space P.Vi/ with the set of vector lines in Vi and

the projective space P.V �
i / with the set of vector hyperplanes of Vi .

Remark 6.9. Recall (Remark 4.28) that by Proposition 4.4, the manifold PS is

diffeomorphic to G=PC
X0

(in a G-equivariant way).

Lemma 6.10.

(i) For every i 2 … n…X0 , there exists a unique pair of continuous maps

ˆsi WPS �! P.Vi/ and ˆui WPS �! P.V �
i /

such that for every map g 2 G of type X0, we have
´

Es
�i .g/

D ˆsi .V
�

g /I

Eu
�i .g/

D ˆui .V
�

g /:

(ii) Moreover, these maps have the following property: whenever V1; V2 2 PS

are transverse, we have ˆsi .V1/ 62 ˆ
u
i .V2/:
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Proof. Take any g of type X0; then from the inequality (6.14) ranking the values

of different restricted weights of �i evaluated at Jd.g/, we deduce that we have

´

Es
�i .exp.Jd.g///

D V
ni$i
i I

Eu
�i .exp.Jd.g///

D
L

�¤ni$i
V �i :

(6.20)

Now take any � 2 G; applying the defining identities of ˆ
s;u
i to the conjugate

� exp.Jd.g//��1, we deduce that these two maps, if they exist, must necessarily

satisfy
´

ˆsi .�.V
�

0 // D �i .�/.V
ni$i
i /I

ˆui .�.V
�

0 // D �i .�/
� L

�¤ni$i
V �i

�

:
(6.21)

We may take this as a definition of ˆsi and ˆui ; it remains to check that it is

not ambiguous. Clearly it is enough to check that whenever some � 2 G sta-

bilizes the space V �

0 (resp. V �

0 ), it also stabilizes the line V
ni$i
i (resp. hyper-

plane
L

�¤ni$i
V �i ). Since i 2 … n …X0 , this follows from Lemma 6.8 and

Proposition 4.4. That the maps ˆsi and ˆui thus defined are continuous is then

obvious.

As for property (ii), it now follows from Proposition 4.27, which says that

G acts transitively on the set of transverse pairs of parabolic spaces. �

Proof of Proposition 6.7. Let us fix some i 2 …n…X0 and some C � 1. Then the

set of C -non-degenerate pairs of parabolic spaces is compact. On the other hand,

the function

.V1; V2/ 7�! ˛.ˆsi .V1/; ˆ
u
i .V2//

is continuous, and (by Lemma 6.10 (ii)) takes positive values on that set. Hence

it is bounded below. So there is a constant C 0
i � 1, depending only on C , such

that whenever a pair .V1; V2/ of parabolic spaces is C -non-degenerate, the pair

.ˆsi .V1/; ˆ
u
i .V2// is C 0

i -non-degenerate.

The conclusion then follows by Lemma 6.10 (i). �

Proposition 6.11. For every C � 1, there are positive constants s6.11.C / and
k6.11.C / with the following property. Take any C -non-degenerate pair .g; h/ of
elements of G of type X0 such that s.g/ � s6.11.C / and s.h/ � s6.11.C /. Then we
have

(i) $i.Jd.gh/ � Ct.g/ � Ct.h// � 0 for all i 2 …I

(ii) $i.Jd.gh/ � Ct.g/ � Ct.h// � �k6.11.C / for all i 2 … n…X0 .

See Figure 2 for a picture explaining both this proposition and the corollary

below.
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Remark 6.12. Though we shall not use it, a very important particular case is

g D h. We then obviously have Jd.gh/ D 2 Jd.g/ and Ct.g/CCt.h/ D 2Ct.g/, so

that the inequalities (i) and (ii) give a relationship between the Cartan and Jordan

projections of a C -non-degenerate, sufficiently contracting map of type X0.

Before proving the proposition, let us give a more palatable (though slightly

weaker) reformulation.

Corollary 6.13. For every C � 1, there exists a positive constant k6.13.C /

with the following property. For any pair .g; h/ satisfying the hypotheses of
Proposition 6.11, we have

Jd.gh/ 2 Conv.WX0 � Ct0.g; h//; (6.22)

where Conv denotes the convex hull and Ct0.g; h/ is some vector in a satisfying

kCt0.g; h/ � Ct.g/ � Ct.h/k � k6.13.C /: (6.23)

In fact, we can already give an explicit expression for this vector Ct0.g; h/:

Definition 6.14. We define Ct0.g; h/ to be the unique solution of the linear system

´

$i .Ct0.g; h// D $i .Jd.gh// for all i 2 … n…X0 I

$i .Ct0.g; h// D $i .Ct.g/C Ct.h// for all i 2 …X0 :
(6.24)

(This works since .$i/i2… is a basis of a�.)

Remark 6.15. Note that the vector Ct0.g; h/might not lie in the closed dominant

Weyl chamber aC (even though it is very close to the vector Ct.g/C Ct.h/ which

does).

It remains to check that the vector Ct0.g; h/ thus defined satisfies indeed the

required conditions.

Proof of Corollary 6.13. The estimate (6.23) immediately follows from the in-

equalities of Proposition 6.11. On the other hand, we may now rewrite Propo-

sition 6.11 without the epsilons: combining Proposition 6.11 (i) with the definition

of Ct0.g; h/, we get

´

$i.Jd.gh/ � Ct0.g; h// � 0 for all i 2 …I

$i.Jd.gh/ � Ct0.g; h// D 0 for all i 2 … n…X0 :
(6.25)

Let us now show the inequalities

˛i .Ct0.g; h// � 0 for all i 2 …X0 : (6.26)
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k6.11.C /

Ct.g/C Ct.h/

Ct0.g; h/

Jd.gh/

s˛1 � Ct0.g; h/

X0

WX0 D ¹Id; s˛1º

˛2

$2

$1

˛1

Figure 2. This picture represents the situation of Example 3.7.3, namely G D SOC.3; 2/

acting on R
5. We have chosen a generic, symmetric, extreme vector X0. The set …X0

is then ¹˛1º (or ¹1º with the usual abuse of notations), and the group WX0 is generated

by the single reflection s˛1 . Proposition 6.11 states that Jd.gh/ lies in the shaded “infinite

trapezoid”. Corollary 6.13 states that it lies on the thick line segment. In any case it lies by

definition in the dominant open Weyl chamber (the shaded sector).
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Let .Hi/i2… be the basis of a dual to .$i /i2…, i.e. the unique basis such that

the identity

$i

� X

j2…

cjHj

�

D ci (6.27)

holds for any i 2 … and any tuple .cj / 2 R
…. By definition of the fundamental

restricted weights $i , it then follows that we also have the identity

�.Hi/ D
2h�; ˛0

i i

k˛0
ik
2

for all i 2 …; � 2 a�: (6.28)

By decomposing the vector Ct.g/CCt.h/�Ct0.g; h/ in the basis .Hi /i2… and by

plugging the formula (6.27) into the second line of the defining system (6.24), we

find that we may write

Ct0.g; h/ D Ct.g/C Ct.h/ �
X

j2…n…X0

cjHj I (6.29)

by combining the first line of the defining system (6.24) with Proposition 6.11 (i),

we also obtain that cj � 0 for every j 2 … n…X0 .

Finally, take any index i 2 …X0 . Then we have

˛i

� X

j2…n…X0

cjHj

�

D
X

j2…n…X0

cj˛i .Hj /

D
X

j2…n…X0

cj
2h˛i ; ˛

0
j i

k˛0
j k
2

� 0I

(6.30)

indeed since j varies in… n…X0 and i 2 …X0 , we have i ¤ j hence h˛i ; j̨ i � 0;

and ˛0
j is by construction a positive multiple of j̨ . We conclude that

˛i .Ct0.g; h// � ˛i .Ct.g//C ˛i .Ct.h// � 0

(since Ct.g/;Ct.h/ 2 aC), which gives us (6.26).

Now the system of inequalities (6.26) is equivalent to saying that

Ct0.g; h/ 2 aC
X0
; (6.31)

where aC
X0

is a fundamental domain for the action of the Weyl subgroupWX0 on a,

more specifically the one that contains the dominant Weyl chamber aC. The state-

ment (6.22) then follows from this and from (6.25), by applying Proposition 2.7

which characterizes convex hulls of orbits of WX0 . �
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Proof of Proposition 6.11. Let i 2 …. We know (see (6.14) above) that for any

vector X 2 aC, the number ni$i .X/ is the largest eigenvalue of �i .X/. From

Proposition 2.6, it then follows that:

´

ni$i .Ct.g// D log k�i .g/kI

ni$i .Jd.g// D log r.�i.g//
(6.32)

(recall that r denotes the spectral radius).

(i) is straightforward from here: indeed,

ni$i.Jd.gh// D log r.�i .gh//

� log k�i .gh/k

� log k�i .g/kk�i.h/k

D ni$i .Ct.g/C Ct.h//:

(6.33)

(ii) Assume that i 2 … n …X0 . By Proposition 6.1, we know that the maps

�i.g/ and �i .h/ are proximal. By Proposition 6.7, they form a C 0
i -non-

degenerate pair, for some C 0
i that depends only on C . By Proposition 6.1, if

we take s6.11.C / small enough, we may then assume that both �i .g/ and �i .h/

are Qs5.12.C
0
i /-contracting. We may then apply Proposition 5.12 (iii) to these

two maps: we get

r.�i .g/�i .h// �C k�i .g/kk�i.h/k:

Now from Proposition 2.6, it follows that we have:

8

ˆ
<

:̂

r.�i.gh// D exp.ni$i.Jd.gh///I

k�i .g/k D exp.ni$i .Ct.g///I

k�i .h/k D exp.ni$i.Ct.h///:

Taking the logarithm, we deduce that there exists "i .C / such that for suffi-

ciently contracting g and h, we have

ni$i.Jd.gh/ � Ct.g/ � Ct.h// 2 Œ�"i.C /; "i .C /�: (6.34)

Taking

k6.11.C / WD max
i2…n…X0

1

ni
"i .C /; (6.35)

the conclusion follows. �
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Remark 6.16. Corollary 6.13 generalizes a result given by Benoist in [6]. More

specifically, by taking together Lemma 4.1 and Lemma 4.5.2 from that paper, we

obtain that under suitable conditions, the vector

Jd.gh/ � Ct.g/ � Ct.h/

(which is �.gh/� �.g/� �.h/ in Benoist’s notations) is bounded. This seems to

be stronger than our result; but in fact, it also relies on stronger assumptions. More

precisely, there are two possible ways to interpret Benoist’s result in the context

of our paper.

� Either we may take his set � to be our … n …X0 . In that case, [6] uses the

additional assumption that g and h are “of type �”, which is very restrictive: it

means that their Jordan projections must lie in the intersection of the kernels

of all roots in …X0 (which is also the space of fixed points of WX0 ). To

control the Cartan projections of g and h, [6] uses the assumption that g

and h actually belong to a whole Zariski-dense subgroup of G, all of whose

elements are of type � . As Benoist remarks in the second paragraph of

Remark 3.2.1 in [6], the latter assumption only makes sense for p-adic groups;

in the case of real groups which is of interest to us, as shown in the appendix

of [7], this is actually impossible unless � D ….

� Or we may take � to be the whole set …. But in that case, [6] needs

the assumption that g and h are proximal (and in general position) in all
representations �i , which is stronger than the hypotheses we have made.

Proposition 6.17. For every C � 1, there is a positive constant s6.17.C / � 1

with the following property. Take any C -non-degenerate pair .g; h/ of maps of
type X0 in G such that s.g˙1/ � s6.17.C / and s.h˙1/ � s6.17.C /. Then gh is still
of type X0.

Proof. Let C � 1, and let .g; h/ be a C -non-degenerate pair of maps in G Ë V of

type X0, such that

s.g˙1/ � s6.17.C / and s.h˙1/ � s6.17.C /

for some positive constant s6.17.C / to be specified later.

Lemma 6.6 then gives us

max
�2�<

X0

�.Ct.g// � log s.g/C k6.6.C /C min
�2�

�

X0

�.Ct.g//

� log s.g/C k6.6.C /:
(6.36)

(Indeed by Assumption 3.2, � D 0 is a restricted weight that is certainly contained

in ��

X0
, so the minimum above is nonpositive.)
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Taking s6.17.C / small enough, we may assume that

�.Ct.g// < �
1

2
.max
�2�
k�k/ k6.13.C / for all � 2 �<X0 : (6.37)

Of course a similar estimate holds for h:

�.Ct.h// < �
1

2
.max
�2�
k�k/ k6.13.C / for all � 2 �<X0 : (6.38)

Now let � be any restricted weight that does not vanish on X0. We distinguish

two cases:

� Suppose that �.X0/ < 0. Recall Corollary 6.13; for the key vector Ct0.g; h/

that it involves, we will use the value given by Definition 6.14. Then on the

one hand, we deduce from (6.23) that:

j�.Ct0.g; h//� �.Ct.g// � �.Ct.h//j � k�kkCt0.g; h/� Ct.g/ � Ct.h/k

� .max
�2�
k�k/ k6.13.C /:

(6.39)

Adding together the three estimates (6.37), (6.38) and (6.39), we get

�.Ct0.g; h// < 0I (6.40)

and this is true for any � 2 �<X0 .

On the other hand, we have (6.22) which says that

Jd.gh/ 2 Conv.WX0 � Ct0.g; h//:

Now since �<X0 is stable by WX0 , it follows from (6.40) that we still have

�.w.Ct0.g; h/// D w�1.�/.Ct0.g; h// < 0

for any w 2 WX0 . Thus � takes negative values on every point of the

orbit WX0 � Ct0.g; h/; hence it also takes negative values on every point of

its convex hull. In particular, we have

�.Jd.gh// < 0: (6.41)

� Suppose that �.X0/ > 0. Since the set of restricted weights � is invariant

by W , the form w0.�/ is still a restricted weight; since by hypothesis X0 is

symmetric (i.e. �w0.X0/ D X0), we then have

w0.�/.X0/ < 0:
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We may thus apply the previous point to the weight w0.�/ and to the

map .gh/�1 D h�1g�1 (since g�1 and h�1 verify the same hypotheses as

g and h); this gives us

w0.�/.Jd..gh/
�1// < 0:

Since Jd..gh/�1/ D �w0.Jd.gh//, we conclude that

�.Jd.gh// > 0: (6.42)

We conclude that gh is indeed of type X0. �

Remark 6.18. If we assume that both g and g�1 are sufficiently contracting, then

clearly Lemma 6.6 implies that Ct0.g; g/ and then Ct.g/ also has the same type

as X0. Conversely, we may show (by a version of Lemma 6.6 with the inequality

going both ways) that if Ct.g/ has the same type as X0 and is “far enough” from

the borders of a�;X0 , then g and g�1 are strongly contracting.

7. Products of maps of type X0

The goal of this section is to prove Proposition 7.4, which not only says that a

product of a C -non-degenerate, sufficiently contracting pair of maps of type X0
is itself of type X0, but allows us to control the geometry and contraction strength

of the product. To do this, we proceed almost exactly as in Section 3.2 in [22]:

we reduce the problem to Proposition 5.12, by considering the action of G Ë V

on a suitable exterior power ΛpA (rather than on the spaces Vi as in the previous

section).

There is however one crucial difference from [22]: while it is still true that

when g is of type X0, its exterior power Λpg is proximal, the converse no longer

holds. Filling that gap is what the whole previous section was about.

Remark 7.1. The reader might wonder why we did not (developing upon the

final remark from the previous section) prove an additivity theorem for Cartan

projections similar to Proposition 6.11, and use it to estimate s.gh/ in terms of

s.g˙1/ and s.h˙1/. Since we need to study the action on the spaces Vi anyway,

this would seemingly allow us to forgo the additional introduction of ΛpA.

The reason is that this approach only works for linear maps g and h: for g 2

G Ë V , the Cartan projection is only defined for `.g/ and only gives information

about the singular values of `.g/, not those of g. So while possible, this approach

would force us, on the other hand, to abandon the unified treatment of quantitative

properties of affine maps (as outlined in Remark 5.3).
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We introduce the integers:

p WD dimA�

0 D dimV �

0 C 1I

q WD dim V <0 I (7.1)

d WD dimA D dimV C 1 D q C p:

For every g 2 G Ë V , we may define its exterior power ΛpgW ΛpA ! Λ
pA. The

Euclidean structure ofA induces in a canonical way a Euclidean structure on ΛpA.

Lemma 7.2. (i) Let g 2 G Ë V be a map of type X0. Then Λpg is proximal,
and the attracting (resp. repelling) space of Λpg depends on nothing but A�

g

(resp. V <g ):
´

Es
Λ
pg
D Λ

pA�

g ;

Eu
Λ
pg
D ¹x 2 ΛpA j x ^ ΛqV <g D 0º:

(ii) For every C � 1, whenever .g1; g2/ is a C -non-degenerate pair of maps
of type X0, .Λpg1; Λpg2/ is a Cp-non-degenerate pair of proximal maps.
For every C � 1, for everyC -non-degenerate map g 2 GËV of typeX0, we have

s.g/ .C Qs.Λ
pg/: (7.2)

If in addition s.g/ � 1, we have

s.g/ �C Qs.Λ
pg/: (7.3)

(Recall the Definitions 5.5 and 5.11 of the two different notions of “contraction
strength” s.g/ and Qs./, respectively.)

(iii) For any two p-dimensional subspaces A1 and A2 of A, we have

˛Haus.A1; A2/ � ˛.Λ
pA1; Λ

pA2/:

This is similar to Lemma 3.8 in [22], except for point (i) which here is weaker

than there.

Proof. For (i), let g 2 G Ë V be a map of type X0. Let �1; : : : ; �d be the eigen-

values of g (acting on A) counted with multiplicity and ordered by nondecreasing

modulus; then j�qC1j D 1 and j�q j < 1. On the other hand, we know that the

eigenvalues of Λpg counted with multiplicity are exactly the products of the form

�i1 � � ��ip , where 1 � i1 < � � � < ip � d . As the two largest of them (by modulus)

are �qC1 � � ��d and �q�qC2 � � ��d , it follows that Λpg is proximal.

As for the expression of Es and Eu, it follows immediately by considering a

basis that trigonalizes g.

For (ii), (iii), and (iv), the proof is exactly the same as for the corresponding

points in Lemma 3.8 in [22], mutatis mutandis. �
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We also need the following technical lemma, which generalizes Lemma 3.9

in [22]:

Lemma 7.3. There is a constant " > 0 with the following property. Let A1; A2 be
any two affine parabolic spaces such that

´

˛Haus.A1; A
�

0 / � ";

˛Haus.A2; A
�

0 / � ":

Then they form a 2-non-degenerate pair.

(Of course the constant 2 is arbitrary; we could replace it by any number larger

than 1.)

Proof. The proof is exactly the same as the proof of Lemma 3.9 in [22], mutatis
mutandis. �

Proposition 7.4. For every C � 1, there is a positive constant s7.4.C / � 1 with
the following property. Take any C -non-degenerate pair .g; h/ of maps of typeX0
in G ËV ; suppose that we have s.g˙1/ � s7.4.C / and s.h˙1/ � s7.4.C /. Then gh
is of type X0, 2C -non-degenerate, and we have

(i)

´

˛Haus.A�

gh
; A�

g / .C s.g/;

˛Haus.A�

gh
; A�

h
/ .C s.h

�1/I

(ii) s.gh/ .C s.g/s.h/.

(This generalizes Proposition 3.6 in [22].)

Before giving the proof, let us first formulate a particular case:

Corollary 7.5. Under the same hypotheses, we have

´

˛Haus.V �

gh
; V �

g / .C s.`.g//;

˛Haus.V �

gh
; V �

h
/ .C s.`.h/

�1/:

Proof. This follows from Lemma 5.8. The proof is the same as for Corollary 3.7

in [22]. �
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Proof of Proposition 7.4. Let us fix some positive constant s7.4.C /, small enough

to satisfy all the constraints that will appear in the course of the proof. Let .g; h/

be a pair of maps satisfying the hypotheses.

First note that by Lemma 5.8, we have

s.`.g/˙1/ � s.g˙1/ � s7.4.C / (7.4)

and similarly for h. If we take s7.4.C / � s6.17.C /, then Proposition 6.17 tells us

that `.gh/, hence gh (indeed the Jordan projection depends only on the linear

part), is of type X0.

The remaining part of the proof works exactly like the proof of Proposition 3.6

in [22], namely by applying Proposition 5.12 to the maps 1 D Λ
pg and 2 D Λ

ph.

Taking into account the central position occupied in the paper by the proposition

we are currently proving, let us reproduce these details nevertheless. Let us check

that 1 and 2 satisfy the required hypotheses:

� By Lemma 7.2 (i), 1 and 2 are proximal.

� By Lemma 7.2 (ii), the pair .1; 2/ is Cp-non-degenerate.

� Since we have supposed s7.4.C / � 1, it follows by Lemma 7.2 (iii) that

Qs.1/ .C s.g/ and Qs.2/ .C s.h/. If we choose s7.4.C / sufficiently small,

then 1 and 2 are Qs5.12.C
p/-contracting, i.e. sufficiently contracting to apply

Proposition 5.12.

Thus we may apply Proposition 5.12. It remains to deduce from its conclusions

the conclusions of Proposition 7.4.

� We already know that gh is of type X0.

� From Proposition 5.12 (i), using Lemma 7.2 (i), (iii), and (iv), we get

˛Haus.A�

gh
; A�

g / .C s.g/;

which shows the first line of Proposition 7.4 (i).

� By applying Proposition 5.12 to �1
2 �1

1 instead of 12, we get in the same

way the second line of Proposition 7.4 (i).

� Let � be an optimal canonizing map for the pair .A�

g ; A
�

h
/. By hypothesis,

we have

�˙1


 � C . But if we take s7.4.C / sufficiently small, the two

inequalities that we have just shown, together with Lemma 7.3, allow us to

find a map �0 with k�0k � 2, k�0�1k � 2 and

�0 ı �.A�

gh
; A�

gh
/ D .A�

0 ; A
�

0 /:

It follows that the composition map gh is 2C -non-degenerate.

� The last inequality, namely Proposition 7.4 (ii), now is deduced from Propo-

sition 5.12 (ii) by using Lemma 7.2 (iii). �
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8. Additivity of Margulis invariants

Proposition 8.1 below is the key ingredient of the proof of the Main Theorem. It

explains how the Margulis invariant behaves under group operations (inverse and

composition).

The first point is easy to prove, but still important. It is a generalization of

Proposition 4.1 (i) in [22]; as the general case is slightly harder, we have now

given more details.

The proof of the second point occupies the remainder of this section. We

prove it by reducing it successively to Lemma 8.6 (which is proved using the

technical lemma 8.7), then to Lemma 8.9. The proof follows very closely that of

Proposition 4.2 (ii) in [22], and we have actually omitted the proofs of Lemmas 8.7

and 8.9. We did repeat the proof of the proposition itself (to help the reader figure

out precisely what is to be changed), as well as the proof of Lemma 8.6 (to clear

up a small confusion in the original proof: see Remark 8.8).

Proposition 8.1. (i) For every map g 2 G Ë V of type X0, we have

M.g�1/ D �w0.M.g//:

(ii) For every C � 1, there are positive constants s8.1.C / � 1 and k8.1.C / with
the following property. Let g; h 2 G Ë V be a C -non-degenerate pair of maps of
type X0, with g˙1 and h˙1 all s8.1.C /-contracting. Then gh is of type X0, and we
have:

kM.gh/ �M.g/ �M.h/k � k8.1.C /:

Remark 8.2. To justify the slight abuse of notationsw0.M.g//, recall Remark 1.2,

that we may now reformulate as follows: w0 induces a linear involution on V t0
(which is the space of fixed points by L), and this involution does not depend on

the choice of a representative of w0 in G.

Let C � 1. We choose some positive constant s8.1.C / � 1, small enough

to satisfy all the constraints that will appear in the course of the proof. For the

remainder of this section, we fix g; h 2 G Ë V a C -non-degenerate pair of maps

of type X0 such that g˙1 and h˙1 are s8.1.C /-contracting.

The following remark will be used throughout this section.

Remark 8.3. We may suppose that the pairs .A�

gh
; A�

gh
/, .A�

hg
; A�

hg
/, .A�

g ; A
�

gh
/;

and .A�

hg
; A�

g / are all 2C -non-degenerate. Indeed, recall that (by Proposition 7.4),

we have
´

˛Haus.A�

gh
; A�

g / .C s.g/;

˛Haus.A�

gh
; A�

h
/ .C s.h

�1/;
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and similar inequalities with g and h interchanged. On the other hand, by hypoth-

esis, .A�

g ; A
�

h
/ is C -non-degenerate. If we choose s8.1.C / sufficiently small, these

four statements then follow from Lemma 7.3.

Proof of Proposition 8.1. (i) Let � be a canonizing map for g. Since V �

g�1 D V �

g

and vice-versa (obviously) and since V �

0 D w0V
�

0 and vice-versa (because X0 is

symmetric), it follows that w0� is a canonizing map for g�1.

It remains to show that w0 commutes with �t . Indeed, it is well known that

the group W , that we defined as the quotient NG.A/=ZG.A/, is also equal to the

quotient NK.A/=ZK.A/ (see [16], formulas (7.84a) and (7.84b)); hence

NG.A/ D WZG.A/ D WZK.A/A D NK.A/A � KA: (8.1)

Let Qw0 be any representative of w0 in NG.A/. We already know that both V D

0 D

V 0 (Remark 4.5) and V t0 (Remark 8.2) are invariant by Qw0. Now by definition

the group A acts trivially on V 0, and by construction K acts on V 0 by orthogonal

transformations (indeed the Euclidean structure was chosen in accordance with

Lemma 2.4); hence V r0 , which is the orthogonal complement of V t0 in V 0, is also

invariant by Qw0.

The desired formula now immediately follows from the definition of the Mar-

gulis invariant.

(ii) The proof of this point is a straightforward generalization of the proof of

Proposition 4.1 (ii) in [22].

If we take s8.1.C / � s7.4.C /, then Proposition 7.4 ensures that gh is of typeX0.

To estimate M.gh/, we decompose ghWAD

gh
! AD

gh
into a product of several

maps.

� We begin by decomposing the product gh into its factors. We have the

commutative diagram

AD

gh
AD

hg
AD

gh
 

!

g
 

!

h

 !

gh

(8.2)

Indeed, since hg is the conjugate of gh by h and vice-versa, we have

h.AD

gh
/ D AD

hg
and g.AD

hg
/ D AD

gh
.
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� Next we factor the map gWAD

hg
! AD

gh
through the map gWAD

g ! AD

g , which

is better known to us. We have the commutative diagram

AD

gh
AD

hg

AD

g AD

g
 

!

�g

 

!

g

 

! �g

 

!

g

(8.3)

where �g is the projection onto AD

g parallel to V >g ˚ V
<

g . (It commutes with

g because AD

g , V >g and V <g are all invariant by g.)

� Finally, we decompose again both arrows labelled �g on the last diagram into

two factors. For any two maps u and v of type X0, we introduce the notation

AD

u;v WD A
�

u \ A
�

v :

We call P1 (resp. P2) the projection onto AD

g;gh
(resp. AD

hg;g
), still parallel

to V >g ˚ V <g . To justify this definition, we must check that AD

g;gh
(and

similarly AD

hg;g
) is supplementary to V >g ˚ V

<

g . Indeed, by Remark 8.3, A�

gh

is transverse to A�

g , hence (by Proposition 4.16 (ii)) supplementary to V >g ;

thus A�

g D V
>

g ˚ A
D

g;gh
and A D V <g ˚ A

�

g D V
<

g ˚ V
>

g ˚ A
D

g;gh
. Then we

have the commutative diagrams

AD

gh
AD

g;gh
AD

g

 !
�g

 

!
P1  

!
�g

(8.4a)

and

AD

hg
AD

hg;g
AD

g

 !
�g

 

!
P2  

!
�g

(8.4b)

The second and third step can be repeated with h instead of g. The way to adapt

the second step is straightforward; for the third step, we factor �h W A
D

hg
! AD

h

through AD

h;hg
and �h W A

D

gh
! AD

h
through AD

gh;h
.

Combining these three decompositions, we get the lower half of Diagram 3.

(We left out the expansion of h; we leave drawing the full diagram for especially

patient readers.) Let us now interpret all these maps as endomorphisms ofAD

0 . To

do this, we choose some optimal canonizing maps

�g ; �gh; �hg ; �g;gh; �hg;g
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respectively of g, of gh, of hg, of the pair .A�

g ; A
�

gh
/ and of the pair .A�

hg
; A�

g /.

This allows us to define ggh, hgh, gg;gh, gD, P1, P2,  1,  2 to be the maps that

make the whole Diagram 3 commutative.

AD

0
AD

0
AD

0

AD

0
AD

0

AD

0
AD

0

AD

gh
AD

hg
AD

gh

AD

g;gh
AD

hg;g

AD

g AD

g

 

!P1

 

! P2

 

!

ggh
 

!

hgh

 

! 1

 

!  2

 

!

gg;gh

 

!

gD

 
!

P1

 

!

�gh

 

!

P2

 

!

g

 

!

�hg

 

!

h

 

!

�gh

 

!

�g

 

!

�g;gh
 

!

�g

 

!

�hg;g
 

!

�g

 

!

g

 

!

�g

Diagram 3

Now let us define

´

Mgh.g/ WD �t.ggh.x/ � x/;

Mgh.h/ WD �t .hgh.x/ � x/;
(8.5)

for any x 2 V D

Aff;0, where V D

Aff;0 WD A
D

0 \VAff is the affine space parallel to V D

0 and

passing through the origin. Since gh is the conjugate of hg by g and vice-versa,

the elements of G Ë V (defined in an obvious way) whose restrictions to AD

0 are

ggh and hgh stabilize the spaces A�

0 and A�

0 . By Lemma 4.21, ggh and hgh are

thus quasi-translations. It follows that these values Mgh.g/ and Mgh.h/ do not

depend on the choice of x. Compare this to the definition of a Margulis invariant

(Definition 4.31): we have M.gh/ D �t .ggh ı hgh.x/ � x/ for any x 2 V D

Aff;0.
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It immediately follows that

M.gh/ DMgh.g/CMgh.h/: (8.6)

We may now estimate each of the two terms separately: if we show that kMgh.g/�

M.g/k .C 1 and kMgh.h/ �M.h/k .C 1, we are done. These two estimates fol-

low immediately from Lemma 8.6 below. (Note that while the vectorsMgh.g/ and

Mgh.h/ are elements of V t0 , the maps ggh and hgh are extended affine isometries

acting on the whole subspace AD

0 .) �

Remark 8.4. In contrast to actual Margulis invariants, the values Mgh.g/ and

Mgh.h/ do depend on our choice of canonizing maps. Choosing other canonizing

maps would force us to subtract some constant from the former and add it to the

latter.

Definition 8.5. We shall say that a linear bijection f between two subspaces of the

extended affine spaceA isK.C/-bounded if it is bounded by a constant depending

only on C , that is, kf k .C 1 and kf �1k .C 1. We say that two automorphisms

f1; f2 of AD

0 (depending somehow on g and h) are K.C/-almost equivalent, and

we write f1 �C f2, if they satisfy the condition

kf1 � � ı f2 ı �
0k .C 1

for some K.C/-bounded quasi-translations �; � 0. This is indeed an equivalence

relation.

Lemma 8.6. The maps ggh and hgh are K.C/-almost equivalent to gD and hD,
respectively.

To show this, we use the following property.

Lemma 8.7. All the non-horizontal (i.e. vertical or diagonal) arrows in Dia-
gram 3 representK.C/-bounded, bijective maps.

Note that Lemma 8.7 alone does not imply Lemma 8.6: indeed, while the maps

 1 and  2 are quasi-translations by Lemma 4.30, the maps P 1 and P 2 need not

be. This issue will be addressed in Lemma 8.9.

Proof of Lemma 8.7. The proof is exactly the same as the proof of Lemma 4.6

in [22], mutatis mutandis. �

Proof of Lemma 8.6. We shall concentrate on the estimate ggh �C gD; the proof

of the estimate hgh �C hD is analogous.

We now use Lemma 4.30 which shows that canonical identifications commute

up to quasi-translation with suitable projections; it implies that the maps 1 and 2
are quasi-translations. Hence gg;gh is also a quasi-translation.
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We would like to pretend that ggh and gg;gh are actually translations. To do

that, we modify slightly the upper right-hand corner of Diagram 3. We set

´

�0
hg
WD `.ggh/ ı �hg ;

�0
hg;g
WD `.gg;gh/ ı �hg;g ;

(8.7)

where ` stands for the linear part as defined in Section 5.2, and we define P 0
2,

 0
2, g

0
gh

, g0
g;gh

so as to make the new diagram commutative (see Diagram 4).

The factors `.ggh/ and `.gg;gh/ we introduced (the short horizontal arrows in

Diagram 4) have norm 1: indeed, being quasi-translations of AD

0 fixing p0, they

are orthogonal linear transformations (by Lemma 4.21). Thus Lemma 8.7 still

holds for Diagram 4; but now, the modified maps g0
gh

and g0
g;gh

are translations

by construction.

AD

0
AD

0
AD

0

AD

0
AD

0
AD

0

AD

0
AD

0

AD

gh
AD

hg

AD

g;gh
AD

hg;g

AD

g AD

g

 

!P1

 

!

P 0
2

 

!

g0
gh

 

! P2

 

!

`.ggh/

 

! 1

 

!

 0
2

 
!

g0
g;gh

 

!  2

 
!

`.gg;gh/

 

!

gD

 

!

P1

 

!

�gh

 

!

P2

 

!

g

 

!

�0
hg  

!

�hg

 

!

�g

 

!

�g;gh

 

!

�g

 

!

�0
hg;g

 

!

�hg;g

 

!

�g

 

!

g

 

!

�g

Diagram 4

We may write:

g0
gh
D .P1

�1
ı g0

g;gh
ı P1/ ı .P1

�1
ı P 0

2/: (8.8)
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Then, since g0
gh

and g0
g;gh

are translations, P1
�1
ı P 0

2 is also a translation. By

Lemma 8.7 (applied to Diagram 4), it is the composition of two K.C/-bounded

maps, hence K.C/-bounded. Thus we have

g0
gh
�C P1

�1
ı g0

g;gh
ı P1: (8.9)

Since `.ggh/, `.gg;gh/,  1 and  2 are K.C/-bounded quasi-translations, ggh

is K.C/-almost equivalent to g0
gh

and gD is K.C/-almost equivalent to g0
g;gh

.

It remains to check that the map g0
g;gh

is K.C/-almost equivalent to its conjugate

P1
�1
ı g0

g;gh
ı P1.

This follows from Lemma 8.9 below. Indeed, let P 00
1 be the quasi-translation

constructed in Lemma 8.9. Let v 2 V D

0 be the translation vector of g0
g;gh

, so that

g0
g;gh
DW �v: (8.10)

Keep in mind that while we call the map �v a “translation,” it is formally a

transvection: its matrix in a suitable basis is
�

Id v
0 1

�

. Then we have

kP1
�1
ı g0

g;gh
ı P1 � P

00
1

�1
ı g0

g;gh
ı P 00

1 k D k�P1
�1
.v/
� �

P 00
1

�1
.v/
k

D kP1
�1
.v/� P 00

1

�1
.v/k

�

.P1

�1
� P 00

1

�1
/
ˇ
ˇ
VD
0


 kvk

(8.11)

(as v 2 V D

0 ).

Remark 8.8. While the corresponding calculation in [22] does not technically

contain any explicit falsehoods (the inequality just happens to be slightly weaker

than what it should be), it implicitly relies on the false “identity” �u � �v D �u�v .

Here we have corrected this confusion.

Now by Lemma 4.21, we know that the quasi-translation P 00
1 restricted to V D

0 is

a linear map preserving the Euclidean norm. We also know that the map � 7! ��1

(defined on GL.V D

0 /) is Lipschitz-continuous on a neighborhood of the orthogonal

group (which is compact). Finally, by Lemma 5.8, s.`.g// does not exceed s.g/

which is by hypothesis smaller than or equal to s8.1.C /. Taking s8.1.C / small

enough, we may deduce from Lemma 8.9 that


.P1

�1
� P 00

1

�1
/
ˇ
ˇ
VD
0


 .C s.`.g//: (8.12)

On the other hand, we have kvk � k�vk D kg
0
g;gh
k .C


g

ˇ
ˇ
AD
g


, since g0

g;gh
is the

composition of gjAD
g

with several K.C/-bounded maps. It follows that

kP1
�1
ı g0

g;gh
ı P1 � P

00
1

�1
ı g0

g;gh
ı P 00

1 k .C s.`.g//

g

ˇ
ˇ
AD
g


: (8.13)
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By Lemma 5.8 (iii), we have s.`.g//

g

ˇ
ˇ
AD
g


 .C s.g/; and we know that s.g/ � 1.

Finally we get

kP1
�1
ı g0

g;gh
ı P1 � P

00
1

�1
ı g0

g;gh
ı P 00

1 k .C 1: (8.14)

To complete the proof of Lemma 8.6, and hence also the proof of Proposition 8.1,

it remains only to prove Lemma 8.9. �

Lemma 8.9. The linear part of the map P1 is “almost” a quasi-translation. More
precisely, there is a quasi-translation P 00

1 such that

.P1 � P

00
1 /

ˇ
ˇ
VD
0


 .C s.`.g//:

Recall that `.g/ is the map with the same linear part as g, but with no translation

part: see subsection 5.2. We use the double prime because the relationship

between P 00
1 and P1 is not the same as the relationship between P 0

2 and P2.

Proof. The proof is exactly the same as the proof of Lemma 4.7 in [22], mutatis
mutandis. �

9. Margulis invariants of words

We have already studied how contraction strengths (Proposition 7.4) and Margulis

invariants (Proposition 8.1) behave when we take the product of two C -non-

degenerate, sufficiently contracting maps of typeX0. The goal of this section is to

generalize these results to words of arbitrary length on a given set of generators.

It is a straightforward generalization of Section 5 in [22] (we slightly changed the

notations).

Definition 9.1. Take k generators g1; : : : ; gk. Consider a word g D g
�1
i1
� � �g

�l
il

with length l � 1 on these generators and their inverses (for every m we have

1 � im � k and �m D ˙1). We say that g is reduced if for every m such that

1 � m � l � 1, we have .imC1; �mC1/ ¤ .im;��m/. We say that g is cyclically
reduced if it is reduced and also satisfies .i1; �1/ ¤ .il ;��l/.

Proposition 9.2. For every C � 1, there is a positive constant s9.2.C / � 1 with
the following property. Take any family of maps g1; : : : ; gk 2 GËV satisfying the
following hypotheses.

(H1) Every gi is of type X0.

(H2) Any pair taken among the maps ¹g1; : : : ; gk ; g�1
1 ; : : : ; g�1

k
º is C -non-degen-

erate, except of course if it has the form .gi ; g
�1
i / for some i .

(H3) For every i , we have s.gi / � s9.2.C / and s.g�1
i / � s9.2.C /.
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Take any nonempty cyclically reduced word g D g
�1
i1
� � �g

�l
il

(with 1 � im � k,
�m D ˙1 for every m). Then g is of type X0, 2C -non-degenerate, and we have



M.g/ �

l
X

mD1

M.g
�m
im
/


 � lk8.1.2C /

(where k8.1.2C / is the constant introduced in Proposition 8.1).

The proof proceeds by induction, with Proposition 7.4 and Proposition 8.1

providing the induction step. However, there is a subtlety (already dealt with

in [22]). When we suppose that the pair .g; h/ is C -non-degenerate, we can

only conclude that gh is 2C -non-degenerate; this would break the induction if

we used a direct approach. To guarantee 2C -non-degeneracy for all words, we

must use the fact that the contraction strength of g grows (technically the number

s.g/ diminishes) exponentially with its length, so that the (Hausdorff) distance

between A�

g and A�

g
�1
i1

is in fact a sum of exponentially diminishing increments

and remains bounded. To take this into account, we prove by induction a series of

slightly more complicated statements.

Proof. The proof is exactly the same as proof of Proposition 5.2 in [22], mutatis
mutandis.

Given the importance of this point, let us briefly recap the strategy of this proof.

Let us fix C � 1, a positive constant s9.2.C / � 1 to be determined in the course of

the proof, and a family g1; : : : ; gk satisfying the hypotheses (H1), (H2), and (H3).

We show by induction on l that whenever we take a nonempty cyclically reduced

word g D g
�1
i1
� � �g

�l
il

, we have the following properties:

(i) the map g is of type X0;

(ii)

8

<̂

:̂

˛Haus.A�

g ; A
�

g
�1
i1

/ .C 2.1� 2
�.l�1//s9.2.C /;

˛Haus.A�

g ; A
�

g
�l
il

/ .C 2.1� 2
�.l�1//s9.2.C /I

(iii) s.g/ � 2�.l�1/s9.2.C /;

(iv)


M.g/ �

l
X

mD1

M.g
�m
im
/


 � .l � 1/k8.1.2C /;

(v) If h D g
� 0
1

i 0
1

� � �g
� 0
l0

i 0
l0

is another nonempty cyclically reduced word of length

l 0 � l such that gh (or equivalently hg) is still cyclically reduced, the pair

.g; h/ is 2C -non-degenerate.

The proposition then follows from the properties (i), (iv) and (v). For the actual

proof of these five statements, we refer the reader to the proof of Proposition 5.2

in [22]. �
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10. Construction of the group

Here we prove the Main Theorem. We closely follow Section 6 from [22], with

only two substantial differences:

� while in the case of the adjoint representation, existence of a �w0-invariant

vector in V t0 was automatic, here we must postulate it explicitly (Assump-

tion 10.1);

� where we originally relied on Lemma 7.2 in [5], we now need the more

general Lemma 4.3.a in [6].

In the next-to-last paragraph of the proof, we have also made more explicit the

relationship between sMain.C / and s9.2.C /.

Let us recall the outline of the proof. We begin by showing (Lemma 10.3)

that if we take a group generated by a family of C -non-degenerate, sufficiently

contracting maps of type X0 with suitable Margulis invariants, it satisfies all of

the conclusions of the Main Theorem, except Zariski-density. We then exhibit

such a group that is also Zariski-dense (and thus prove the Main Theorem).

The idea is to ensure that the Margulis invariants of all elements of the group

remain close to some half-line. Obviously if �w0 maps every element of V t0 to its

opposite, Proposition 8.1 (i) makes this impossible. So we now exclude this case:

Assumption 10.1. The representation � is such that the action of w0 on V t0 is not

trivial.

This is precisely condition (i) from the Main Theorem. More precisely, V t0 is

the set of all vectors that satisfy (i)(a), and what we say here is that some of them

also satisfy (i)(b).

Example 10.2. (1) Consider G D SOC.p; q/ acting on R
pCq (with p � q);

we have already seen that the only case when V t0 ¤ 0 is when p � q D 1

(see Example 4.22.1). So let p D nC 1, q D n; then we may show that

w0jV t
0
D .�1/n Id (10.1)

(this is essentially the content of Lemma 3.1 in [3] or of Proposition 2.7 in [21]).

So G D SOC.nC 1; n/ satisfies this assumption if and only if n is odd.

(2) If G is any semisimple real Lie group acting on V D g (its Lie algebra)

by the adjoint representation, then gt0 contains the Cartan subspace a (see Exam-

ple 4.22.2), on which w0 obviously acts nontrivially unless a is itself trivial. So

this assumption is satisfied whenever G is noncompact.

Thanks to Assumption 10.1, we choose once and for all some nonzero vector

MC 2 V
t
0 that is a fixed point of�w0 (which is possible sincew0 is an involution).

This requirement still leaves us free to prescribe the norm of this vector; let us

additionally assume that kMC k D 2k8.1.2C /.
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Lemma 10.3. Take any family g1; : : : ; gk 2 GËV satisfying the hypotheses (H1),
(H2), and (H3) from Proposition 9.2, and also the following additional condition.

(H4) For every i , M.gi / DMC .

Then the group generated by g1; : : : ; gk is free (with g1; : : : ; gk being a basis) and
acts properly discontinuously on the affine space VAff .

Proof. The proof is exactly the same as the proof of Lemma 6.1 in [22], mutatis
mutandis.

The (orthogonal) projection

O�zW Og �! z˚R
0 parallel to d˚ nC ˚ n�

now becomes the (orthogonal) projection

O�t WA �! V t0 ˚ R
0 parallel to V r0 ˚ V

>

0 ˚ V
<

0 :

(Let us just explicitly restate the proof that the group is free, as it is very

short. The group is free simply because any nonempty reduced word on the g˙1
i

is conjugate to some cyclically reduced word, which, by Proposition 9.2, is of

type X0 and in particular different from the identity.) �

Proof of Main Theorem. First note that all the assumptions we have made on �

in the course of the paper were legitimate, in the sense that they follow from the

hypotheses of the Main Theorem.

� Assumption 10.1 is just the condition (i).

� Assumption 4.23 is the weaker condition (i)(a).

� Assumption 3.2 is an even weaker condition that follows from (i)(a) (see

Remark 3.4). and

� Assumption 3.10 is just the condition (ii).

Once again, we use the same strategy as in the proof of the Main Theorem

of [22]. We find a positive constant C � 1 and a family of maps g1; : : : ; gk
in G Ë V (with k � 2) that satisfy the conditions (H1) through (H4) and whose

linear parts generate a Zariski-dense subgroup of G, then we apply Lemma 10.3.

We proceed in several stages.

� We begin by using a result of Benoist: we apply Lemma 4.3.a in [6] to

– � D G;

– t D k C 1;

– �1 D � � � D �k D a�;X0 \ aCC.

This gives us, for any k � 2, a family of maps 1; : : : ; k 2 G (which we

shall see as elements of G Ë V , by identifying G with the stabiliser of p0),

such that
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(i) every i is of type X0 (this is (H1));

(ii) for any two indices i , i 0 and signs � , � 0 such that .i 0; � 0/ ¤ .i;��/,

the spaces V �

�
i

and V �

�
0

i0

are transverse;

(iii) any single i generates a Zariski-connected group;

(iv) all of the i generate together a Zariski-dense subgroup of G.

A comment about item (i): we actually get not only that every i is of

type X0, but also that every i is R-regular.

A comment about item (ii): since we have taken Benoist’s � to be the

whole group G, we have � D …, so that Y� is the complete flag vari-

ety G=PC. Benoist’s conclusion can then be restated by saying that the pair

of cosets

.�gP
C; �hP

�/

(where �g and �h are respective canonizing maps of g and h as defined by

us in Proposition 4.16) is in the open G-orbit of G=PC �G=P�. Once again

it is actually stronger than our conclusion, which is equivalent to saying that

the pair of cosets

.�gP
C
X0
; �hP

�
X0
/

is in the open G-orbit of G=PC
X0
�G=P�

X0
.

� Clearly every pair of transverse spaces isC -non-degenerate for some finiteC ;

and here we have a finite number of such pairs. Hence if we choose some suit-

able value of C (which we fix for the rest of this proof), the hypothesis (H2)

becomes a direct consequence of the condition (ii) above.

� From condition (iii) (Zariski-connectedness), it follows that any algebraic

group containing some power Ni of some generator must actually contain

the generator i itself. This allows us to replace every i by some power Ni
without sacrificing condition (iv) (Zariski-density). Clearly, conditions (i),

(ii) and (iii) are then preserved as well. If we chooseN large enough, we may

suppose (thanks to Remark 5.7) that the numbers s.˙1
i / are as small as we

wish: this gives us (H3). In fact, we shall suppose that for every i , we have

s.˙1
i / � sMain.C / for an even smaller constant sMain.C /, to be specified

soon.

� To satisfy (H4), we replace the maps i by the maps

gi WD ���1
i
.MC /

ı i (10.2)

(for 1 � i � k), where �i is a canonizing map for i .

We need to check that this does not break the first three conditions. Indeed,

for every i , we have i D `.gi /; even better, since the translation vector

��1
i .MC / lies in the subspace V D

i
stable by i , obviously the translation
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commutes with i , hence gi has the same geometry as i (meaning that

A�

gi
D A�

i
D V �

i
˚ Rp0 and A�

gi
D A�

i
D V �

i
˚ Rp0). Hence the gi

still satisfy the hypotheses (H1) and (H2), but now we have M.gi / D MC

(this is (H4)). As for contraction strength, we have, by Lemma 5.8:

s.gi / .C s.i /k�MC k � sMain.C /k�MC k; (10.3)

and similarly for g�1
i . Recall that kMC k D 2k8.1.2C /, hence k�MC k depends

only on C : in fact it is equal to the norm of the 2-by-2 matrix
�
1 kMC k
0 1

�

. It

follows that if we choose

sMain.C / � s9.2.C /






1 2k8.1.2C /

0 1






�1

; (10.4)

then the hypothesis (H3) is satisfied.

We conclude that the group generated by the elements g1; : : : ; gk acts

properly discontinuously (by Lemma 10.3), is free (by the same result),

nonabelian (since k � 2), and has linear part Zariski-dense in G. �
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