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Abstract. We define a new class of irreducible groups, called groups not infinite-index
presentable by products or not IIPP. We prove that certain aspherical manifolds with

fundamental groups not IIPP do not admit maps of non-zero degree from direct products.

This extends previous results of Kotschick and Löh, providing new classes of aspherical

manifolds – beyond those non-positively curved ones which were predicted by Gromov –

that do not admit maps of non-zero degree from direct products.

A sample application is that an aspherical geometric 4-manifold admits a map of non-
zero degree from a direct product if and only if it is a virtual product itself. This completes
a characterization of the product geometries due to Hillman. Along the way we prove that
for certain groups the property IIPP is a criterion for reducibility. This especially implies
the vanishing of the simplicial volume of the corresponding aspherical manifolds. It is
shown that aspherical manifolds with reducible fundamental groups do always admit maps
of non-zero degree from direct products.
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1. Introduction

A fundamental topic in topology is the study of maps of non-zero degree between
manifolds of the same dimension. The existence of a map of non-zero degree
defines a transitive relation, called domination relation, on the homotopy types
of closed oriented manifolds. Whenever such a map M ! N exists we say that
M dominates N and denote this by M � N . Gromov suggested investigating
the domination relation as defining a partial order of manifolds and formulated
several conjectures for candidate classes that might (not) be comparable under
� [14, 13, 15, 4, 38, 20]. A particular case of the domination question is when the
domain is a non-trivial direct product. That case was raised in Gromov’s theory of
functorial semi-norms (such as the simplicial volume, see also [25]) and of topo-
logical rigidity, where Gromov predicted that the fundamental classes of certain
aspherical manifolds with large universal covers are not dominated by products.
Furthermore, the domination-by-products question has its own independent in-
terest, being a special case of Steenrod’s classical problem on the realization of
homology classes by manifolds [7].

The homotopy types of aspherical manifolds are determined by their funda-
mental groups. Long-standing rigidity conjectures state that their homeomor-
phism types are determined by their fundamental groups as well. Several related
questions concern the decomposition of the fundamental group of an aspherical
manifold as a direct product and the realization of finitely presented Poincaré du-
ality groups as fundamental groups of aspherical manifolds. An open question
in this context is whether every closed aspherical manifold M with fundamental
group �1 � �2 can be decomposed as a product of closed manifolds with funda-
mental groups �1 and �2 respectively. In particular, it is an open question whether
aspherical manifolds with reducible fundamental groups (that is, virtual prod-
ucts of two infinite groups) are finitely covered – and therefore dominated – by
products. Lück showed how to obtain an affirmative answer in dimensions higher
than four, relying on very strong assumptions concerning the Farrell–Jones con-
jecture and the cohomological dimensions of the involved groups [24]. For non-
positively curved manifolds an affirmative answer is given by Gromoll-Wolf’s iso-
metric splitting theorem [12].

1.1. Summary of results. Before stating the main results in detail, we give a
general overview of the content of this paper. First, applying Thom’s emphatic
answer (in rational homology) [33] of Steenrod’s realization problem, we will
show that every closed aspherical manifold with reducible fundamental group
is indeed dominated by products (Theorem A). Therefore, in this paper we are
interested to investigate whether aspherical closed manifolds with irreducible (i.e.
not reducible) fundamental group admit arbitrary maps of non-zero degree by
non-trivial direct products (clearly such maps cannot be homotopic to coverings).
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Our goal is to introduce a new algebraic obstruction to domination by prod-
ucts for aspherical manifolds whose fundamental groups have non-trivial center.
This property will be termed “groups not infinite-index presentable by products”
or “not IIPP” for short (cf. Definition 1.1). We will obtain new classes of aspherical
manifolds that are not dominated by direct products, extending a previous obstruc-
tion of Kotschick and Löh [20] (called “groups not presentable by products”), and
expanding Gromov’s predictions (about irreducible, non-positively curved man-
ifolds [14]) to aspherical manifolds with non-trivial center. In particular, we will
show that large classes of circle bundles with fundamental groups not IIPP are
not dominated by products (Theorem B). In many cases, we will prove that the
existence of a map of non-zero degree from a direct product is equivalent to the
existence of a finite covering of the same product type (Theorem C).

By definition, a group not presentable by products is not IIPP and a group
not IIPP is irreducible, but none of those implications can be reversed (cf. Re-
mark 1.2). Nevertheless, the characterization of Theorem C contains a special
case of equivalence between “irreducible” and “not IIPP” for arbitrary (i.e. not
necessarily finitely generated or torsion-free) groups: if the quotient of a group
� by its center C.�/ is not presentable by products, then � is reducible if and
only � is IPPP (Theorem D). This result fails when �=C.�/ is presentable by
products. For example, the 5-dimensional Heisenberg groupH5 – whose quotient
by its center is Z4 and thus presentable by products – is IIPP but irreducible (cf.
Example 1.7). Dimension five is the sharp dimension in which this phenomenon
occurs, since “IIPP” and “reducible” are equivalent for fundamental groups of as-
pherical geometric manifolds (in the sense of Thurston) in dimensions � 4; cf.
Section 6.2, in particular Theorem 6.7.

As a sample application of this study we deduce (combining Theorems A
and D) the vanishing of the simplicial volume of certain aspherical manifolds
(Corollary 1.5). Moreover, our results combined with Hillman’s work [17] show
that a 4-dimensional geometric manifold is dominated by a product if and only
if it is covered by a product (Theorem F). Further applications about ordering
manifolds using maps of non-zero degree [4, 38] and the monotonicity of Kodaira
dimensions with respect to the existence of maps of non-zero degree [39] will be
presented in a subsequent paper [28].

1.2. Main theorems. In the development of the theory of bounded cohomology,
Gromov [13] conjectured that the fundamental classes of irreducible, locally sym-
metric spaces of non-compact type cannot be represented by non-trivial products
(of surfaces). Kotschick and Löh [20] verified Gromov’s conjecture, by finding an
algebraic obstruction to domination by products for rationally essential manifolds.
A closed oriented connected n-dimensional manifoldM is called rationally essen-
tial if the classifying map of the universal covering cM WM ! B�1.M/ sends the
fundamental class of M to a non-trivial element in Hn.B�1.M/IQ/; see [14, 13].
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The non-domination criterion of [20], given in Theorem 2.4 below, reads as fol-
lows: an infinite group � is called not presentable by products if, for every homo-
morphism 'W�1 ��2 ! � onto a finite index subgroup of � one of the factors �i

has finite image '.�i / � �.
As we shall see in Section 2.2, the proof of Theorem 2.4 was obtained by

showing that the existence of a map of non-zero degree f WX1 � X2 ! M , with
M rationally essential, implies a presentation by products �1 � �2 ! �1.M/,
where �i WD im.�1.f

ˇ

ˇ

Xi
//. However, the proof of that statement does not

give any insight on the index of the presenting factors �1, �2 in �1.M/. In
fact, all the possibilities for the indices Œ�1.M/ W �i � may occur, as we will
see in Example 4.1. The targets of that example are however direct products of
(aspherical) manifolds. Hence, a main question is to understand how close to
“reducible” must the fundamental group of an aspherical manifold be, in order this
manifold to be dominated by products. Indeed, the case of reducible fundamental
groups has a complete affirmative answer.

Theorem A. A closed aspherical manifold with reducible fundamental group is
dominated by a non-trivial direct product of closed oriented manifolds.

Thus our purpose in this article is to examine aspherical manifolds with ir-
reducible fundamental groups. We extend the notion “group not presentable by
products,” including groups with (virtually) infinite center.

Definition 1.1. An infinite group � is called not infinite-index presentable by
products or not IIPP if, for every homomorphism 'W�1 � �2 ! � onto a finite
index subgroup of � at least one of the images '.�i / has finite index in �.

Otherwise, if such homomorphism ' exists with Œ� W '.�i /� D 1 for both i ,
then � is called infinite-index presentable by products or IIPP.

Remark 1.2. The following inclusions hold immediately by definition:

¹groups not presentable by productsº � ¹groups not IIPPº

� ¹irreducible groupsº:

However, none of the inverse inclusions hold: for the first inclusion, the infinite
cyclic group is a trivial example of a group presentable by products, but not IIPP.
For the second inclusion, the 5-dimensional Heisenberg group is an example of
an IIPP irreducible group; cf. Example 1.7.

The strong feature of the property “not IIPP” is that it detects at once all the
possible dimensions of the factors of a product that dominates (with a �1-surjec-
tive map) a rationally essential manifold with torsion-free fundamental group. For
aspherical manifolds one of the factors can be taken as simple as possible.
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Up to finite covers, if an aspherical manifold M with fundamental group
not IIPP is dominated by a product X1 � X2, then X1 � T dim X2 � M , where
dimX2 � rankC.�1.M//.

Our first main non-domination result deals with circle bundles.

Theorem B. LetM be a circle bundle over a closed oriented aspherical manifold
B , so that �1.M/ is not IIPP and its center remains infinite cyclic in finite covers.
Then M is not dominated by any non-trivial direct product of closed oriented
manifolds.

Example 1.3. Closed Nil4-manifolds fulfill the conditions of Theorem B and
therefore are never dominated by products; cf. Propositions 6.10 and 6.22. Ex-
amples of such manifolds can easily be constructed as mapping tori of suitable
self-homeomorphisms of T 3; see Remark 6.12.

The fundamental group ofM in Theorem B is presentable by products having
infinite (cyclic) center. By Eberlein’s works [5, 6] or, more generally, by the
stirring work of Farb and Weinberger [9], irreducible manifolds of dimension
higher than one with fundamental groups with center do not admit metrics of
non-positive sectional curvature. The non-domination results of Kotschick and
Löh [20] deal mostly with non-positively curved manifolds. More precisely, they
show that non-positively curved manifolds are dominated by products if and only if
they are virtually diffeomorphic to products. Equivalently, the fundamental groups
of those manifolds are reducible if and only if they are presentable by products. In
the case of fiber bundles (which includes manifolds that do not admit metrics of
non-positive sectional curvature [18]), the results of [20] deal with targets whose
fiber and base have fundamental groups not presentable by products and with
targets with positive simplicial volume.

A circle bundle M over an aspherical manifold has vanishing simplicial vol-
ume [13, 23]. Moreover, the infinite cyclic fundamental group of the S1-fiber is
presentable by products and, as mentioned above, central in �1.M/, which means
that �1.M/ is presentable by products. However, as noted in Remark 1.2, the prop-
erty “presentable by products” is not generally equivalent to “reducible,” and this
applies as well to fundamental groups of many circle bundles; e.g. the fundamen-
tal group of any circle bundle over a closed surface with non-zero rational Euler
class is irreducible and presentable by products (but it is not IIPP; see Proposi-
tion 6.3). In fact, when the base of the circle bundle has fundamental group not
presentable by products, then �1.M/ is reducible if and only if it is IIPP. The fol-
lowing result characterizes circle bundles with the latter property, and is a partial
converse to Theorem B.
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Theorem C. Let M
�
! B be a circle bundle over a closed aspherical manifold

B whose fundamental group �1.B/ is not presentable by products. Then the
following are equivalent:

(1) M is dominated by a non-trivial product of closed oriented manifolds;

(2) M is finitely covered by a product S1 � B 0, for some finite cover B 0 ! B;

(3) �1.M/ is reducible;

(4) �1.M/ is IIPP.

Example 1.4. A closed 4-manifold M carrying the geometry Sol41 is virtually
a circle bundle over a closed oriented Sol3-manifold, and �1.M/ is not IIPP
(see Propositions 6.15 and 6.24 respectively). Since Sol3-manifold groups are
not presentable by products (cf. Proposition 6.2), Theorem C implies that M
is not dominated by products. Actually, a circle bundle over a closed oriented
Sol3-manifold is dominated by a product if and only if it possesses the geometry
Sol3 � R (see also Theorem 6.1).

The idea of Theorem C is that the center of �1.B/ remains trivial in finite
covers, being not presentable by products and torsion-free. In fact, the equivalence
between .3/ and .4/ holds in its greatest generality with no assumptions on finite
generation, torsion freeness or the virtual rank of the center.

Theorem D. Let � be a group with center C.�/ such that the quotient �=C.�/ is
not presentable by products. Then, � is reducible if and only if it is IIPP.

In the light of Theorem A we obtain the following consequence of Theorem D.

Corollary 1.5. LetM be a closed oriented aspherical manifold such that �1.M/

is IIPP and �1.M/=C.�1.M// is not presentable by products. Then there exists a
closed oriented manifoldN such that T k�N � M , where T k is the k-dimensional
torus with k < rankC.�1.M//. In particular,M has zero simplicial volume.

Remark 1.6. It is a long-standing conjecture that the simplicial volume of a closed
aspherical manifold whose fundamental group contains a non-trivial amenable
normal subgroup vanishes [23]. The vanishing result in Corollary 1.5 is a straight-
forward consequence of the domination T k � N � M (applying Theorems D
and A). Alternatively, after showing that �1.M/ is a virtual product with an
Abelian factor (by Theorem D), the vanishing of the simplicial volume of M
follows as well by Gromov’s isometry theorem with respect to the simplicial
`1-norm [13].

The property IIPP truly recognizes reducibility of a group � whenever the
quotient �=C.�/ is not presentable by products. Indeed, IIPP is not anymore a
criterion for a group � to be reducible when the quotient �=C.�/ is presentable
by products.
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Example 1.7. The 5-dimensional Heisenberg group H5 is irreducible and IIPP,
withH5=C.H5/ isomorphic toZ4; cf. Lemma 8.1. Also,H5 is realizable by a non-
trivial circle bundle over T 4. In Theorem 8.2, we will prove that this manifold is
not dominated by products. This seems to be the first example of an aspherical
manifold whose fundamental group admits a presentation by a product of two
non-trivial subgroups of infinite index, but this manifold is still not dominated
by products. Previously, examples of rationally essential, but not aspherical,
manifolds with reducible fundamental groups that are not dominated by products
were given in [20].

Also, this example shows that the converse of Theorem B does not hold in
general. In particular, the assumptions of Theorem C (which is a partial converse
of Theorem B) cannot be removed.

The Heisenberg group H5 has cohomological dimension five which allows
enough space for the existence of two infinite commuting subgroups �i � H5

such thatH5 is presented by �1 ��2 and ŒH5 W �i � D 1. This is not true in lower
dimensions as we shall see in Theorem E below.

1.3. Examples and applications. We now characterize the fundamental groups
of certain aspherical manifolds, giving non-trivial examples of groups presentable
by products, but not IIPP. Then, we apply our main results to show that an
aspherical 4-manifold possessing a Thurston geometry is dominated by a direct
product if and only if it is virtually a direct product.

1.3.1. Non-trivial examples of groups not IIPP. The condition “not IIPP” is the
crucial property for the non-existence results of this paper. The following result
gathers together some non-elementary examples of groups not IIPP.

Theorem E. Irreducible fundamental groups of aspherical manifolds that possess
a Thurston solvable geometry in dimensions � 4 are not IIPP.

The above statement contains solvable groups that are not presentable by
products as well, namely Sol3-, Sol40- and Sol4m¤n-manifold groups. Theorem E
says, roughly, that in low dimensions the properties “reducible” and “IIPP” are
actually equivalent. The requirement on the cohomological dimension being at
most four is crucial in the above theorem, because as we have seen in Example 1.7
the 5-dimensional Heisenberg group H5 is irreducible and IIPP.

1.3.2. Domination by products for geometric 4-manifolds. After [20], it is
natural to ask to what extent the condition “presentable by products” on the
fundamental group of a rationally essential manifold M would be sufficient for
X1 �X2 � M . Theorem A says that reducibility suffices for aspherical manifolds.
A complete answer is known in dimension three [22], where Kotschick and the
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author proved that a closed 3-manifold is dominated by products if and only if
it is either a virtual product or a virtual connected sum of copies of S2 � S1.
Thus, in particular, non-trivial circle bundles over closed oriented aspherical
surfaces are never dominated by products, although their fundamental groups are
presentable by products, having infinite center. It is well known [34, 30] that a
closed 3-manifold possesses one of the geometries Nil3 or eSL2 if and only if it
is virtually a non-trivial circle bundle over a closed aspherical surface (torus or
a hyperbolic surface respectively). A main application of Theorems B and C,
together with the examples of groups not IIPP given in Theorem E, is the following
characterization in dimension four.

Theorem F. A closed oriented aspherical geometric 4-manifold M is dominated
by a non-trivial product if and only if it is finitely covered by a product. Equiva-
lently, M carries one of the product geometries X3 �R or the reducible H2 �H2

geometry.

The existence of finite coverings of (diffeomorphism) type N � S1 for man-
ifolds modeled on product geometries X3 � R is due to Hillman [17] (note that
domination by products alone follows by Theorem A as well). The above theorem
says that only geometric aspherical 4-manifolds that are virtual products admit
maps of non-zero degree from direct products.

Remark 1.8. We note that we could have included non-aspherical geometries as
well in the above statement, however those geometries are not interesting for the
domination-by-products question, either because they are products themselves or
because their representatives are simply connected. The latter geometries were
contained as trivial examples in [26], where we constructed maps from products
to every simply connected 4-manifold.
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advisor, Dieter Kotschick, for his wise guidance and support. Among several other
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2. Background and Preliminaries

In this section, we give a short description of the background of the topic of
this paper, explain the notation, and give some elementary properties of groups
presentable by products.
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2.1. The domination relation. In the early 1940s, Steenrod raised the question
of whether every n-dimensional integral homology class can be realized as the
image of the fundamental class of a closed oriented n-dimensional manifold
under a continuous map [7, Problem 25]. About a decade later, Thom answered
affirmatively Steenrod’s question in degrees up to six, and found a 7-dimensional
integral homology class which is not realizable by a closed manifold. (Since then,
other non-realizability results have been obtained.) Nevertheless, Thom proved
that, in all degrees, some multiple of each integral homology class can be realized
by a closed smooth manifold [33].

In this paper, we are interested in the realization of fundamental classes
of closed oriented manifolds (especially by direct products of manifolds), and
therefore we deal with the notion of the degree of a continuous map. Namely,
suppose that f WM ! N is a continuous map between two closed oriented
n-dimensional manifolds. The degree of f is defined to be the integer d so that
Hn.f IZ/.ŒM�/ D d � ŒN �, where ŒM� 2 Hn.M IZ/ and ŒN � 2 Hn.N IZ/ de-
note the fundamental classes of M and N respectively. Whenever d is not zero,
we say that M dominates N (or that M d -dominates N ), and write M � N

(or M �d N ). The degree of f is denoted by deg.f /. Unless otherwise stated,
in this paper we consider continuous maps between the homotopy types of closed
oriented connected manifolds.

Gromov suggested to investigate the domination relation as defining an order-
ing of manifolds and as a tool to understand the values of functorial semi-norms
on homology, most notably the simplicial volume [14, 13, 4]. The simplicial vol-
ume of a closed manifold M is completely determined by the classifying space
of the fundamental group, B�1.M/, because the classifying map of the univer-
sal covering, cM WM ! B�1.M/, induces an isometry H�.cM IQ/WH�.M IQ/ !

H�.B�1.M/IQ/with respect to the simplicial `1-norm [13]. This gives rise to the
following definition.

Definition 2.1 ([13]). A closed oriented connected n-dimensional manifold M
is called rationally essential if Hn.cM IQ/.ŒM�/ ¤ 0 2 Hn.B�1.M/IQ/, where
cM WM ! B�1.M/ classifies the universal covering ofM . Otherwise,M is called
rationally inessential.

Clearly, every closed aspherical manifold is rationally essential. In fact, the
notion of essentialness expands widely the class of aspherical manifolds, because
for example every connected sum containing a rationally essential summand is
rationally essential itself, and every manifold with non-zero simplicial volume is
rationally essential [13].

2.2. Kotschick–Löh’s non-domination criterion. Gromov conjectured that
there might exist certain classes of (rationally essential) manifolds which are
not dominated by products, pointing out irreducible locally symmetric spaces of
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non-compact type as potential candidates; cf. [14, Chapter 5GC]. Kotschick and
Löh [20] verified Gromov’s suggestion, by finding a condition on the fundamental
groups of rationally essential manifolds that are dominated by products.

Definition 2.2 ([20]). An infinite group � is called presentable by products if
there is a homomorphism 'W�1 � �2 ! � onto a finite index subgroup of � so
that the restriction of ' to each factor �i has infinite image '.�i /.

The property of being (not) presentable by products is clearly preserved under
passing to finite index subgroups.

Example 2.3. (1) A reducible group is obviously presentable by products, being
a virtual product of two infinite groups.

(2) Let� be a group which contains a finite index subgroup x� with infinite cen-
ter. Then � is presentable by products through the multiplication homomorphism
C.x�/ � x� ! x�.

These two examples include every torsion-free group presentable by products
[20, Proposition 3.2].

Suppose now that M is a rationally essential n-dimensional manifold and let
f WX1 �X2 ! M be a map of non-zero degree, where the Xi are closed oriented
manifolds of positive dimensions. Consider the induced map

�1.f /W�1.X1/ � �1.X2/ �! �1.M/

and set

� WD im.�1.f // � �1.M/ and �i WD im.�1.f jXi
// � �

for the image of �1.f / and the images under �1.f / of the restrictions of f to
the two factors Xi respectively. The multiplication map 'W�1 � �2 ! � is then
a well-defined surjective homomorphism, because the �i commute element-wise
and �1 [ �2 generates �. Moreover, the outer commutative diagram in Figure 1
implies that X1 � X2 is rationally essential [20].

Let cXi
WXi ! B�1.Xi / be the classifying maps of the universal coverings of

the Xi and B�1.f jXi
/WB�1.Xi / ! B�i be the maps induced by �1.f jXi

/ on the
level of classifying spaces. Also, let B'WB�1 � B�2 ! B� be the map induced
by '; here we apply the homotopy equivalenceB�1�B�2 ' B.�1��2/. We then
have for i D 1; 2 the maps B�1.f jXi

/ ı cXi
WXi ! B�i , and the corresponding

rational homology classes

˛i WD Hdim Xi
.B�1.f jXi

/ ı cXi
/.ŒXi �/ 2 Hdim Xi

.B�i IQ/; (1)
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X1 �X2

cX1�X2

��

.B�1.f jX1
/ıcX1

/�.B�1.f jX2
/ıcX2

/

��

f
// M

cM

��
B�1 � B�2

B'
// B�1.M/

B�1.X1 �X2/

33
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

B�1.f /

77

Figure 1. Domination by products on the level of classifying spaces.

where ŒXi � denote the fundamental classes of the factorsXi . According to this no-
tation, the key observation of Kotschick and Löh [20], shown in the commutative
rectangle of Figure 1, is

0 ¤ deg.f / �Hn.cM /.ŒM�/ D Hn.B'/.˛1 � ˛2/:

This means that the ˛i are not trivial and therefore the �i are both infinite. In
particular, � is presented by the product 'W�1��2 ! �. This proves the following
result.

Theorem 2.4 (Kotschick–Löh [20]). If M is a rationally essential manifold and
�1.M/ is not presentable by products, then M is not dominated by products.

Remark 2.5. A consequence of Theorem 2.4 is that Gromov’s prediction was
indeed correct. Namely, a locally symmetric space of non-compact type is dom-
inated by a product if and only if it is virtually (isometric to) a product; cf. [20,
Corollary 4.2].

2.3. Groups presentable by products. We end this preliminary section with
some elementary properties of groups presentable by products, mainly as intro-
duced in [20, Section 3].

If a group � is presentable by a product through a map 'W�1 � �2 ! �, then
the images '.�i / commute with each other and '.�1/ [ '.�2/ generates im.'/.
This means that, whenever a group � is presented by a product 'W�1��2 !�,
we can replace each �i by its image '.�i /, � by its finite index subgroup im.'/
and ' by the multiplication map. Therefore we may always assume that � can be
presented by two element-wise commuting subgroups �i through the multiplica-
tion map. The following properties can be easily verified.
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Lemma 2.6 ([20, Lemma 3.3]). Suppose �1; �2 are element-wise commuting
subgroups of � so that �1 [ �2 generates �. Then the multiplication map
'W�1 � �2 ! � is a well-defined surjective homomorphism and the following
statements hold:

(1) the intersection �1 \ �2 is a subgroup of the center C.�/;

(2) the kernel of ' is isomorphic to the Abelian group �1 \ �2.

In particular, there exists a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! � �! 1; (2)

where the isomorphism between �1 \ �2 and the kernel of ' is given by the
antidiagonal. For groups with finitely generated center we moreover observe the
following fact.

Lemma 2.7. Let � be a finitely generated group with finitely generated center.
Assume that � is presented by a product �1 � �2 as in Lemma 2.6. Then each of
the factors �i is finitely generated.

Proof. For i; j 2 ¹1; 2º, i ¤ j , there exist (two) short exact sequences

1 �! �i �! � �! �j =.�1 \ �2/ �! 1; (3)

where � ! �j =.�1 \ �2/ is obtained by composing the isomorphism � Š

.�1 � �2/=.�1 \ �2/ (cf. sequence (2)) with the homomorphism induced by the
projection from �1��2 to �j (see also [21]). Since� is finitely generated, the short
exact sequence (3) implies that the group �j =.�1 \ �2/ is also finitely generated.
Moreover, the center C.�/ is finitely generated Abelian and thus the intersection
�1 \ �2 is also finitely generated Abelian by Lemma 2.6. This shows that �j is
also finitely generated. �

3. The case of reducible groups (proof of Theorem A)

If M is a closed aspherical n-dimensional manifold whose fundamental group
�1.M/ is reducible, then there exists a finite cover of M with fundamental group
isomorphic to a direct product �1 ��2. Thus, up to finite covers, we may identify
�1.M/with �1��2. ThenB�1�B�2 is homotopy equivalent toM . In particular,
there exists a non-trivial class ˛ 2 Hn.B�1 � B�2/ mapping to the fundamental
class ŒM� 2 Hn.M/.

Since each of the �i has infinite index in �1.M/ andM is aspherical manifold
of dimension n, a theorem of Strebel [32] implies that the cohomological dimen-
sions of each of the �i is less than n. Thus, the Künneth formula (with rational
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coefficients) in degree n for the product B�1 � B�2 implies that there exist non-
trivial homology classes a1 2 Hk.B�1/ and a2 2 Hn�k.B�2/, where 0 < k < n,
such that ˛ D a1 ˝ a2.

By Thom’s theorem [33], there exist two closed smooth manifolds X1 and X2

of dimensions k and n � k respectively, together with continuous maps gi WXi !

B�i , i D 1; 2, such that H�.gi /.ŒXi �/ D di � ai , for some non-zero integers di .
Finally, the product map

X1 �X2

g1�g2
����! B�1 � B�2 ' M

is continuous and in homology of degree nmaps the fundamental class ŒX1 �X2�

to a non-zero multiple of ŒM�. This finishes the proof of Theorem A.

4. Circle bundles with fundamental groups not IIPP

(proofs of Theorems B and C)

The purpose of this section is to introduce (in more detail) the property IIPP and
prove Theorems B and C.

4.1. Motivation and definition of the property IIPP. Two basic examples of
groups presentable by products are given by the reducible ones and by groups
containing a finite index subgroup with infinite center; cf. Example 2.3. If follows
by Lemma 2.6 that these two - not generally distinct - classes contain all torsion-
free groups presentable by products [20, Proposition 3.2].

A reducible group � can always be presented (being a virtual product) by a
product �1 � �2 so that both subgroups �i have infinite index in �, whereas a
group with infinite center does not generally have this property; a trivial example
is given by the infinite cyclic group. On the topological level, Theorem 2.4 states
that whenever a rationally essential manifold M is dominated by a product, its
fundamental group is presentable by products. However, (the proof of) that result
does not give any additional information on the index of the factors of a product
presenting �1.M/. The following example shows that all the possibilities can
actually occur.

Example 4.1. (1) LetM be a closed oriented manifold of positive dimension and
infinite fundamental group. The identity map idM �M of the product M � M is
obviously �1-surjective of degree one and both subgroups im.�1.idM // D �1.M/

have infinite index in �1.M �M/.

(2) For g � 1, let†gC1 D †g#.S1
a �S1

b
/ be a closed oriented surface of genus

g C 1. Let the composition

†g#.S1
a � S1

b /
q

�! †g _ .S1
a � S1

b /
id_p
���! †g _ S1

b ; (4)
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Figure 2. The map .id _ p/ ı qW†gC1 ! †g _ S1
b

.

where q is the quotient map pinching to a point the essential circle defining the
connected sum†g#.S1

a �S1
b
/, id is the identity map of†g and the mapp pinches to

a point the meridian of the torus S1
a �S1

b
; cf. Figure 2. Denote by h the composition

.id _ p/ ı q. Now, let the composite map

†gC1 � S1
c

h�idc
����! .†g _ S1

b / � S1
c

g
�! †g � S1

c ;

where idc is the identity map of S1
c and g is the identity on †g and S1

c , and sends
the generator b of S1

b
to the generator c of S1

c . Let f WD gı.h�idc/W†gC1�S1
c !

†g � S1
c . Then H3.f /.Œ†gC1 � S1�/ D Œ†g � S1�; i.e. deg.f / D 1. By

the definition of f , we obtain an index-one subgroup of �1.†g � S1/, namely
im.�1.f j†gC1

// D �1.†g �S1/, and the infinite-index subgroup im.�1.f jS1// D

�1.S
1/ � �1.†g � S1/.

(3) Let two copies of a closed oriented surface of genus three,

†3 D .S1
g1

� S1
g2
/#.S1

a1
� S1

a2
/#.S1

b1
� S1

b2
/

†0
3 D .S1

g0
1

� S1
g0

2
/#.S1

a0
1

� S1
a0

2
/#.S1

b0
1

� S1
b0

2
/:

As in the previous example (cf. Figure 2), define

hW†3 �! .S1
g1

� S1
g2
/ _ S1

a2
_ S1

b2

as the composition

†3

q
�! .S1

g1
� S1

g2
/ _ .S1

a1
� S1

a2
/ _ .S1

b1
� S1

b2
/

id_p_p
�����! .S1

g1
� S1

g2
/ _ S1

a2
_ S1

b2

(see above for the notation). Now, let the composition

†3 �†0
3

h�h0

���! ..S1
g1

� S1
g2
/ _ S1

a2
_ S1

b2
/ � ..S1

g0
1

� S1
g0

2
/ _ S1

a0
2

_ S1
b0

2
/

g
�! S1

g1
� S1

g2
� S1

g0
1

� S1
g0

2
;
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where h; h0 are defined above, and g restricts to the identity map on each S1
gj

and

S1
g0

j

, and is given as follows on the rest of the circles:

a2 7�! g0
1; b2 7�! g0

2; a0
2 7�! g1; b0

2 7�! g2:

We define f W†3 � †0
3 ! T 4 to be the composition g ı .h � h0/. Again, f

is a degree one map. However, both im.�1.f j†3
// and im.�1.f j†0

3
// are now of

index one in �1.T
4/.

We note that this construction cannot be generalized when the target is not a
product of two tori, T 2 � T 2, because the generators of higher genus surfaces
do not commute with each other. Actually, it will be transparent by the discus-
sion in the upcoming subsection (cf. Lemma 4.3), that, if an n-dimensional as-
pherical manifold M admits a map f WX1 � X2 ! M so that both subgroups
im.�1.f jXi

// � �1.M/ are of finite index, then M is a virtual n-dimensional
torus T n.

In this paper, we analyze groups presentable by products by adding a constraint
on the index of the presenting factors. More precisely, we introduce the following
class of groups.

Definition 4.2. An infinite group� is called infinite-index presentable by products
(IIPP) if there is a homomorphism 'W�1 � �2 ! � onto a finite index subgroup
of � so that for both factors �i the images '.�i / � � are of infinite index in �.
Otherwise, � is called not infinite-index presentable by products (not IIPP).

In the upcoming subsection, we will show that an aspherical manifold with
fundamental group not IIPP can be dominated by a product only if it is dominated
by a product containing a torus factor. This will imply that large classes of aspheri-
cal manifolds with fundamental groups not IIPP cannot be dominated by products.
In the case of circle bundles, we will prove that, under a certain assumption on
the fundamental group of the base, the condition “IIPP” characterizes aspherical
circle bundles that are dominated by products. Without that additional assump-
tion on the base, this characterization does not generally hold (as we have already
mentioned in Example 1.7).

4.2. Not IIPP as a non-domination criterion (proof of Theorem B). We first
extend the non-existence results of [20] to certain rationally essential manifolds
with fundamental groups presentable by products, but not IIPP. The strong fea-
ture of such torsion-free groups is that one of the presenting subgroups must be
Abelian.
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Lemma 4.3. Let � be a finitely generated torsion-free group with finitely gener-
ated center. Suppose that there exist element-wise commuting subgroups�1; �2 �

� so that �1 [ �2 generates �. If � is not IIPP, then one of the �i is isomorphic
to Zk for some k � rankC.�/.

Proof. By Lemma 2.6, there is a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! � �! 1;

where ' is the multiplication map and the intersection �1 \�2 is contained in the
finitely generated center C.�/. Since � is torsion-free, we have that �1 \ �2 is
isomorphic to Zk for some k � rankC.�/. Moreover, each �i is finitely generated
by Lemma 2.7.

Because � is not IIPP, one of the �i , say �1, must have finite index in �.
This means that �2 is virtually �1 \ �2, and so it is virtually Abelian. Moreover,
the intersection �1 \ �2 is central in �2, which implies that �2=C.�2/ is finite
(because �2 is virtually �1 \ �2). By Schur’s theorem [29], we conclude that the
commutator Œ�2; �2� is also finite and so trivial, because �2 is torsion-free. This
shows that �2 is Abelian itself and thus isomorphic to Zk. �

As a warm-up, we observe that, in the torsion-free case, Lemma 4.3 yields
the following dimension restrictions on the factors of a product that dominates a
rationally essential manifold.

Proposition 4.4. Let M be a rationally essential manifold so that �1.M/ is
torsion-free and rankC.�1.M// D r . If �1.M/ is not IIPP, then there is no�1-sur-
jective non-zero degree map X1 � X2 ! M , whenever min¹dimX1; dimX2º>r .

Proof. Suppose that there exist X1, X2 closed oriented manifolds of positive
dimensions and a �1-surjective non-zero degree map f WX1 � X2 ! M . Then
there is a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! �1.M/ �! 1; (5)

where ' is the multiplication map, �i WD �1.f jXi
/.�1.Xi // and �1 \ �2 �

C.�1.M//; see Section 2.2. In particular, �1 \ �2 is isomorphic to Zk , for some
k � r D rankC.�1.M//, because it is torsion-free. We moreover observe that
k � 1, otherwise �1.M/ would be isomorphic to the product �1 � �2 by (5) and
so IIPP.

We now apply Lemma 4.3 to �1.M/ to conclude that one of the �i , say �2,
is isomorphic to Zk. This means that B�2 ' T k and by the non-vanishing
(cf. Section 2.2) of

˛2 WD Hdim X2
.B�1.f jX2

/ ı cX2
/.ŒX2�/ 2 Hdim X2

.T kIQ/;

we deduce that dimX2 � k. This is possible only if min¹dimX1; dimX2º�r . �
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In the case where M is aspherical, then the above proposition says that, if
f WX1 � X2 ! M is a �1-surjective map of non-zero degree, then there is a
finite cover xM of M such that f factors through the map B'W xM � T k ! M

which is induced by the multiplication homomorphism 'W�1 � �2 ! �1.M/,
for some k � rankC.�1.M//; cf. Figure 1. In particular, there exist two non-
trivial homology classes ˛1 2 Hdim X1

. xM IQ/ and ˛2 2 Hdim X2
.T k IQ/ such that

Hn.B'/.˛1 �˛2/ D deg.f / � ŒM�. Thus X1 �Tm � M , wherem D dimX2 � k.

Example 4.5 (1-domination). Let M be a closed aspherical manifold. If �1.M/

has infinite cyclic center and it is not IIPP, thenM can admit a degree one map by
a product X1 � X2 only if one of the Xi is a circle. (Recall that a map of degree
one is �1-surjective.)

Aspherical manifolds whose fundamental groups have infinite cyclic center
are of special interest, in particular with respect to the study of circle bundles and
circle actions; see [3] and the references there. We begin with two general facts
about finite coverings of circle bundles.

Lemma 4.6. Let M
�
! B be a circle bundle over a closed oriented manifold B .

(1) Every finite cover xM
p
! M is a circle bundle over a finite cover B 0

p0

! B .
If moreover B is aspherical and �1.B/ is not presentable by products, then
�1. xM/ and �1.M/ have infinite cyclic center.

(2) If the Euler class of M is torsion, then M is a virtually trivial circle bundle
over a finite cover of B . (See [2].)

Proof. (1) Since �1.p/.�1. xM// has finite index in �1.M/ and �1.�/.�1.M// D

�1.B/, the image
H WD �1.� ı p/.�1. xM//

has finite index in �1.B/. Let B 0
p0

! B be the finite covering corresponding toH .

Then � ı p lifts to xM
�0

! B 0, which is the desired circle bundle.
If B is aspherical, then the S1 fiber is central in the fundamental group of

M . If, in addition, �1.B/ is not presentable by products, then it has trivial center
(because it is torsion-free), and so the center of �1.M/ is infinite cyclic. Now
�1.B

0/ has finite index in �1.B/, and so it is not presentable by products as well
and therefore the center of �1. xM/ is also infinite cyclic.

(2) Consider the Abelianization H1.B/ D �1.B/=Œ�1.B/; �1.B/�. Since the
Euler class of M is torsion, the Universal Coefficient Theorem implies that the
torsion part of H1.B/ is not trivial. Let now the composition

�1.B/ �! H1.B/ �! TorH1.B/;
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where the first map is the quotient map and the second is the projection to the

torsion of H1.B/. If B 0
p0

! B is the finite covering corresponding to the kernel of
the above composition, then the pullback bundle .p0/�.M/ is the product S1 �B 0;
see [2, Proposition 3] for more details. �

Remark 4.7. Conversely to part (2) of the above lemma, let xM D S1 �B 0
p
! M

be a finite cover, where B 0
p0

! B is a finite covering between the bases (the map p0

is covered by p). The Euler class of xM is trivial, that is e xM D H 2.p0IZ/.eM / D

0 2 H 2.B 0;Z/, where eM 2 H 2.BIZ/ is the Euler class of M . By the fact that
H 2.p0IQ/ is injective (since deg.p0/ ¤ 0), we conclude that eM is torsion.

A basic ingredient of our proof is the following lemma which generalizes [22,
Lemma 1].

Lemma 4.8 (Factorization Lemma). LetM
�
! B be a non-trivial n-dimensional

circle bundle over a closed oriented aspherical manifoldB . Suppose that the Euler
class of M is not torsion and that the center of �1.M/ remains infinite cyclic in
finite covers. Then X � S1 ā M for any closed oriented manifold X .

Proof. Since M is a non-trivial circle bundle whose integer Euler class eM 2

H 2.BIZ/ is not torsion, the rational Euler class of M is not trivial as well.
The same property holds for every (fiber preserving) finite cover of M , by
Lemma 4.6 and Remark 4.7. By Poincaré duality, there exists a non-trivial class
˛ 2 Hn�3.BIQ/ so that eM ^ ˛ is a non-zero multiple of the cohomology fun-
damental class !B of B . Since Hn�1.BIQ/ D Q, the Gysin sequence

� � � �! Hn�3.BIQ/
^eM
���! Hn�1.BIQ/

H n�1.�/
������! Hn�1.M IQ/ �! � � �

implies that ker.Hn�1.�//D im.^ eM /DHn�1.BIQ/. Therefore Hn�1.�/D0.
Suppose now that there exists a non-zero degree map f WX � S1 ! M . After

passing to a finite cover, if necessary, we may assume that f is �1-surjective and
that the center of �1.M/ is infinite cyclic. The latter means that the circle fiber of
M represents (up to multiples) the only central factor in�1.M/. By the surjectivity
of �1.f /, we deduce that the composite map � ı f kills the homotopy class of
the S1 factor of the product X � S1, because this factor is central in �1.X � S1/.
Since B is aspherical, we conclude that � ıf factors up to homotopy through the
projection p1WX � S1 ! X . In particular, there is a continuous map gWX ! B ,
so that � ı f D g ı p1 up to homotopy. (We note that X is not necessarily
aspherical. It is, however, rationally essential, because f has non-zero degree and
M is aspherical.)
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Let!X be the cohomology fundamental class ofX . SinceHn�1.p1IQ/.!X/ D

!X 2 Hn�1.X �S1IQ/ andHn�1.� IQ/.!B/ D 0 2 Hn�1.M IQ/, the homotopy
equation � ı f D g ı p1 implies that g must be of zero degree. Let now the
pullback of M under g:

g�M D ¹.x; y/ 2 X �M j g.x/ D �.y/º:

The map f WX � S1 ! M factors through g�M as follows:

X � S1 �! g�M
�2

�! M;

.x; t/ 7�! .x; f .x; t // 7�! f .x; t/:

However, the degree of the pullback map �2W g�M ! M is zero, being equal to
the degree of g, which contradicts our assumption on deg.f /. This completes the
proof. �

We now finish the proof of Theorem B.

Proof of Theorem B. Since �1.M/ is not IIPP, M is a non-trivial circle bundle
and, moreover, its Euler class is not torsion by Lemma 4.6 (2). After passing to
a finite cover, if necessary, suppose that there is a �1-surjective non-zero degree
map f WX1 � X2 ! M , where dimXi > 0 and C.�1.M// D Z; cf. Lemma 4.6
(1). As before, there is a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! �1.M/ �! 1;

where �i WD im.�1.f jXi
// � �1.M/, ' is the multiplication map and �1 \ �2 �

C.�1.M// D Z, see Section 2.2.
Lemma 4.3 implies that one of the �i , say �2, must be infinite cyclic, because

�1.M/ is not IIPP and torsion-free. Therefore,B�2 ' S1 and because the rational
class

˛2 WD Hdim X2
.B�1.f jX2

/ ı cX2
/.ŒX2�/ 2 Hdim X2

.S1IQ/

is not trivial we conclude that dimX2 D 1, i.e. X2 D S1. Now, we have a
�1-surjective dominant map X1 � S1 ! M , where C.�1.M// D Z. The proof
follows by Lemma 4.8. �

4.3. A characterization for circle bundles (proof of Theorem C). A main
motivation for Theorem 2.4 was to show that non-positively curved manifolds
which are not virtual products are not dominated by products. Actually, the
property “fundamental group presentable by products” suffices for domination by
products for non-positively curved manifolds (of dimension higher than one) and
it is equivalent to “reducible;” cf. [20, Theorem 4.1]. Another consequence of the
results of [20], which moreover deals with manifolds that do not admit any metric
of non-positive sectional curvature (cf. [18]), concerns fibrations whose fiber and
base have fundamental groups not presentable by products.
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Theorem 4.9 ([20, Theorem 5.1]). Let F ! M
�
! B be a fiber bundle whose

fiber F and base B are closed oriented aspherical manifolds with fundamental
groups not presentable by products. ThenM is dominated by products if and only
if it is a virtual product F 0 � B 0, where F 0 and B 0 are finite covers of F and B
respectively.

Corollary 4.10 ([20, Corollary 5.3]). Let M be a closed oriented 4-manifold
which is the total space of a surface bundle whose fiber F and base B are both
hyperbolic surfaces. Then the following are equivalent:

(1) M is dominated by a non-trivial product of closed oriented manifolds;

(2) M is virtually diffeomorphic to a trivial surface bundle;

(3) �1.M/ is reducible;

(4) �1.M/ is presentable by products.

Remark 4.11. The fact that hyperbolic groups are not presentable by products is
proved in [20]. Moreover, we note that 4-manifolds satisfying one (and therefore
every) property in the above corollary constitute the class of closed reducible
H2 � H2-manifolds; cf. Section 6.1.

Now, if we replace the fiberF by S1 in Theorem 4.9, then�1.M/ is presentable
by products having infinite cyclic center. Theorem C, which is a partial converse
of Theorem B, says that the conclusion of Theorem 4.9 still holds when the fiber is
S1. However, domination by products is now equivalent to the conditions “�1.M/

IIPP” and “�1.M/ reducible”; compare with the equivalence between .3/ and .4/
of Corollary 4.10.

Proof of Theorem C. Since B is aspherical, M is also aspherical and its funda-
mental group fits into a short exact sequence

1 �! �1.S
1/ �! �1.M/

�1.�/
����! �1.B/ �! 1; (6)

where �1.S
1/ is in the center of �1.M/. Moreover, �1.B/ has trivial center,

because it is torsion-free and not presentable by products. Thus C.�1.M// D

�1.S
1/ D Z.

Suppose that there is a non-zero degree map f WX1 �X2 ! M . After passing
to a finite cover, if necessary, we may assume that f is �1-surjective. (The finite
cover of M is a circle bundle with infinite cyclic center, by Lemma 4.6 (1).) As
before, we have a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! �1.M/ �! 1;

where �i WD im.�1.f jXi
// � �1.M/ and �1 \ �2 � C.�1.M// D Z. Moreover,

we obtain two non-trivial rational homology classes

˛i WD Hdim Xi
.B�1.f jXi

/ ı cXi
/.ŒXi �/ ¤ 0 2 Hdim Xi

.B�i IQ/;

see Sections 2.2 and 2.3 for the details.
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The composite homomorphism

�1 � �2

'
�! �1.M/

�1.�/
�! �1.B/ Š �1.M/=�1.S

1/

maps one of the �i , say �1, to the neutral element of �1.B/, because �1.B/ is
not presentable by products and torsion-free. This means that �1 is contained in
C.�1.M// D �1.S

1/ D Z and it is therefore isomorphic to C.�1.M// D Z. In
particular, B�1 ' BZ D S1 and so the non-vanishing of ˛1 2 Hdim X1

.S1IQ/

implies that dimX1 � 1. Since dimX1 > 0, we have that X1 D S1, i.e.
S1 � X2 � M . It follows by Lemma 4.8 that M is a virtual product and, more
precisely, that it is finitely covered by a product S1 � B 0 for some finite cover
B 0 ! B . Thus (1) implies (2). The converse is trivially true and so (1) is equivalent
to (2).

Next, we show that the properties (2) and (3) are equivalent. Obviously (2)
implies (3). Assume now that �1.M/ is reducible. Then there exists a finite cover
M 0 ! M so that �1.M

0/ is isomorphic to a direct product�1 ��2, where�i are
non-trivial (and therefore infinite) subgroups of �1.M

0/. The coverM 0 is a circle
bundle over a finite cover B 0 of B , where �1.B

0/ is not presentable by products
being a finite index subgroup of �1.B/; cf. Lemma 4.6 (1). We therefore obtain a
short exact sequence

1 �! �1.S
1/ �! �1 ��2 �! �1.B

0/ �! 1; (7)

where �1.S
1/ D C.�1.M

0// Š C.�1/ � C.�2/. Since �1.B
0/ is not presentable

by products and torsion-free, one of the �i , say �1, maps trivially to �1.B
0/ Š

�1.M
0/=�1.S

1/ in (7). Thus�1 � �1.S
1/ (and so�1 is isomorphic to Z) and�2

surjects onto �1.B
0/. Moreover, �1.S

1/maps trivially to�2, otherwise�2 would
have finite index in �1.M

0/, which is impossible, because �1.M
0/ Š �1 ��2 and

both �i are infinite. Therefore �2 maps isomorphically onto �1.B
0/. We have

now proved that �1.M
0/ Š �1.S

1 � B 0/ and so M 0 is homotopy equivalent to
S1 � B 0. Thus (3) implies (2).

Finally, the equivalence between .3/ and .4/ follows from the more general
group-theoretic Theorem D, whose proof is given in the upcoming section. �

Remark 4.12. An alternative argument for the last step in the proof of the impli-
cation (3) H) (2) is the following: having that �1 maps trivially to �1.B

0/ Š

�1.M
0/=�1.S

1/, we conclude that �1.S
1/maps trivially to�2 because the center

of �1.M
0/ Š �1 � �2 is infinite cyclic, isomorphic to �1.S

1/. Actually, taking
for granted that the circle fiber of M 0 is the only central factor in �1.M

0/, we can
relax the condition “not presentable by products” for the fundamental group of the
base B 0 to “irreducible”.

Also, note that after showing the implication (1) H) (2) and since the impli-
cation (2) H) (3) is trivial, we can deduce the equivalence of (1), (2), and (3) by
Theorem A (which gives the implication .3/ ) .1/).
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This discussion yields a topological example of groups not IIPP in any dimen-
sion.

Corollary 4.13. IfM is a circle bundle with non-trivial rational Euler class over
a closed aspherical manifold B so that �1.B/ is not presentable by products, then
�1.M/ is not IIPP.

Proof. Since �1.B/ is not presentable by products, �1.M/ is IIPP if and only
if it is reducible, by the equivalence between .3/ and .4/ in Theorem C (or by
Theorem D below). However, �1.M/ is not reducible, otherwise M would be
covered by S1 �B 0, for some finite coverB 0 ! B (by the equivalence between .2/
and .3/ of Theorem C), which is impossible because the Euler class of M is not
torsion; cf. Remark 4.7. �

5. The IIPP property as a criterion for reducibility (proof of Theorem D)

In this section we show that the properties “IIPP” and “reducible” are equivalent
for a group �, whenever �=C.�/ is not presentable by products.

Proof of Theorem D. Since every reducible group is IIPP, we only need to show
that the converse is also true when the quotient of our group by its center is not
presentable by products.

Let � be an IIPP group such that �=C.�/ is not presentable by products.
Since � is IIPP, there exists a finite index subgroup x� � � and two element-
wise commuting subgroups �1; �2 � x� of infinite index such that x� D �1�2.
Thus we obtain the following composite surjective homomorphism

�1 � �2 �! x� �! x�=x� \ C.�/;

whose image x�=x� \C.�/ is of finite index in �=C.�/. In particular, x�=x�\C.�/

is not presentable by products. Thus, for one of the �i , say for �2, the quotient
�2=�2 \ C.�/ is finite. Since �2 \ C.�/ is central in �2, we deduce that �2 is
virtually C.�2/, in particular it is virtually Abelian.

We claim that Œx� W �1C.�2/� < 1. First, we have that
x� D �1�2 D �1C.�2/�2: (8)

Next, we observe that

�1C.�2/ \ �2 D C.�2/: (9)

Indeed, on the one hand it is clear that C.�2/ � �1C.�2/\�2. On the other hand,
every element in �1C.�2/ \ �2 is central in �2, because it belongs to �2 and the
�i commute element-wise. By (8), (9) and since �2=C.�2/ is finite, we obtain

Œx� W �1C.�2/� D Œ�2 W �1C.�2/ \ �2� D Œ�2 W C.�2/� < 1;

as claimed.
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Let now the presentation of �1C.�2/ by

�1 \ C.�2/ �! �1 � C.�2/ �! �1C.�2/: (10)

Since Œx� W �1� D 1 and Œx� W �1C.�2/� < 1, we conclude that

ŒC.�2/ W �1 \ C.�2/� D Œ�1C.�2/ W �1� D 1:

Thus �1C.�2/ is isomorphic to the product �1 � .C.�2/=�1 \C.�2//, where the
quotient group C.�2/=�1 \ C.�2/ is Abelian of positive rank. �

Theorem D proves in particular the equivalence between .3/ and .4/ in Theo-
rem C, for circle bundles over aspherical manifolds with fundamental groups not
presentable by products.

As pointed out in the introduction, the property IIPP on a group � is not
anymore a criterion for reducibility of � if the quotient �=C.�/ is presentable
by products. More precisely, we have seen in Example 1.7 that the 5-dimensional
Heisenberg group H5 – whose quotient H5=C.H5/ is Z4 – is irreducible and not
IIPP. This nilpotent group is realized as the fundamental group of a circle bundle
over T 4. As we shall see in the next section (cf. Theorem E), dimension four is the
sharp dimension in which irreducible fundamental groups of solvable manifolds
are not IIPP.

We note that the center of � in Theorem D can be assumed to be infinite,
otherwise � is trivially not presentable by products. At the other end, for groups
whose every finite index subgroup has finite center, the notions “presentable by
products” and “IIPP” are equivalent.

Proposition 5.1. If every subgroup of finite index in � has finite center, then � is
presentable by products if and only if it is IIPP.

Proof. It suffices to show that presentability by products implies IIPP. Suppose
that �1, �2 are commuting infinite subgroups of � and that there is a short exact
sequence

1 �! �1 \ �2 �! �1 � �2

'
�! � �! 1;

where ' is the multiplication homomorphism and �1 \ �2 lies in the center of
�; cf. Lemma 2.6. Since C.�/ is finite, we deduce that �1 \ �2 is also finite
and so it has infinite index in both �i . The proof now follows by the short exact
sequence (3) in the proof of Lemma 2.7. �
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6. Fundamental groups of geometric manifolds in low dimensions

(proof of Theorem E)

After the characterization of groups (not) IIPP in the preceding section (whose
topology fits in the concept of Theorem C), we now give further non-trivial ex-
amples of groups presentable by products but not IIPP, which fit in the concept
of Theorem B as well. These examples include irreducible fundamental groups
of low-dimensional solvable manifolds with infinite center. To this end, we char-
acterize in terms of the IIPP property the fundamental groups of all aspherical
geometric manifolds in dimensions � 4. After Theorem D, the most prominent
examples in the present section (that are not covered by Theorem D) will be irre-
ducible fundamental groups of nilpotent manifolds, because the quotients of these
groups by their center are still presentable by products (being again nilpotent and
torsion-free). We begin this section with a brief review of Thurston’s geometries.

6.1. Enumeration of the low-dimensional geometries. Let Xn be a complete
simply connected n-dimensional Riemannian manifold. We say that a closed
manifold M is an Xn-manifold, or that M possesses the Xn geometry in the
sense of Thurston, if it is diffeomorphic to a quotient of Xn by a lattice � in
the group of isometries of Xn (acting effectively and transitively). The group
� denotes the fundamental group of M . We say that Xn and Yn are the same
geometries if there exists a diffeomorphism  WXn ! Yn and an isomorphism
Isom.Xn/ ! Isom.Yn/mapping each g 2 Isom.Xn/ to  ıg ı �1 2 Isom.Yn/.

In dimension 1, the circle is the only closed manifold being a quotient of the real
line R. In dimension 2, a closed surface possesses one of the geometries S2, R2

or H2. In dimension 3, Thurston [34] proved that there exist eight (homotopically
unique) geometries, namely the geometries H3, Sol3, eSL2, H2 � R, Nil3, R3,
S2 � R and S3 (see also [30]).

The classification of the 4-dimensional geometries is due to Filipkiewicz [10].
According to that, there exist eighteen geometries in dimension four with compact
representatives. There is an additional geometry which, however, cannot be
realized by any compact 4-manifold. Here, we deal only with the aspherical
geometries, because the non-aspherical ones are not interesting for domination by
products. Namely, the non-aspherical geometries are either products of a sphere
with a non-compact factor (H2 � S2, R2 � S2, S3 � R), or compact themselves
(S2 � S2, CP2, S4), and all of their representatives are dominated by products
[17, 20, 26].

Enumeration of the aspherical geometries in dimension four. We enumerate
the aspherical 4-dimensional geometries, following Wall’s papers [36] and [37].
Our list is adapted to the domination-by-products question, and this list will be
used as an organizing principle; see Table 1.
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Table 1. The 4-dimensional aspherical Thurston geometries with compact representatives.

Type Geometry X4

Hyperbolic H4, H2.C/

H3 � R, Sol3 � R,

Product eSL2 � R, Nil3 � R,
H2 � R2, R4,

H2 � H2

Solvable Nil4,
non-product Sol4

m¤n
, Sol4

0

Sol4
1

Hyperbolic geometries. There exist two aspherical irreducible symmetric ge-
ometries, namely the real and the complex hyperbolic, denoted by H4 and H2.C/

respectively.

Product geometries. Seven of the aspherical geometries are products of lower
dimensional geometries: H3 � R, Sol3 � R, eSL2 � R, Nil3 � R, H2 � R2, R4

and H2 �H2. Closed manifolds possessing a geometry of type X3 �R satisfy the
following property

Theorem 6.1 ([17, Sections 8.5 and 9.2]). Let X3 be a 3-dimensional aspherical
geometry. A closed 4-manifold possessing the geometry X3 �R is finitely covered
by a product N � S1, where N is a closed oriented 3-manifold carrying the
geometry X3.

The geometry H2 � H2 can be realized both by manifolds that are virtual
products of two closed hyperbolic surfaces and by manifolds that are not even
(virtual) surface bundles. These two types are known as the reducible and the
irreducible H2 �H2 geometry respectively; see [17, Section 9.5] for further details
and characterizations.

Solvable non-product geometries. Finally, there exist four aspherical non-
product geometries of solvable type. Below, we describe their model Lie groups.

The nilpotent Lie group Nil4 is defined as the semi-direct product R3
Ì R,

where R acts on R3 by t 7!
�

0 t 0
0 0 t
0 0 0

�

. The model spaces for the three non-product

solvable – but not nilpotent – geometries are defined as follows.
Let m and n be positive integers and a > b > c reals such that aC b C c D 0

and ea; eb; ec are roots of the equation Pm;n.�/ D �3 � m�2 C n� � 1 D 0.
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If m ¤ n, the Lie group Sol4m¤n is defined as R3
Ì R, where R acts on R3 by

t 7!

�

eat 0 0
0 ebt 0
0 0 ect

�

. We remark that the case m D n gives b D 0 and corresponds

to the product geometry Sol3 � R.
If we require two equal roots of the polynomialPm;n, then we obtain the model

space of the Sol40 geometry, again defined as R3
Ì R, where now the action of R

on R3 is given by t 7!

�

et 0 0
0 et 0
0 0 e�2t

�

.

The last solvable model space is an extension of R by the 3-dimensional
Heisenberg group Nil3. Namely, the Lie group Sol41 is defined as the semi-direct

product Nil3 Ì R, where R acts on Nil3 by t 7!

�

1 e�t x z
0 1 et y
0 0 1

�

.

Every closed Sol40- or Sol4m¤n-manifold is a mapping torus of a self-homeomor-

phism of T 3 and every closed oriented Nil4- or Sol41-manifold is a mapping torus
of a self-homeomorphism of a Nil3-manifold [17, Sections 8.6 and 8.7]. We note
that non-orientable closed Nil4- or Sol41-manifolds are not mapping tori of Nil3-
manifolds [17, Theorem 8.9]. Further details about manifolds possessing a solv-
able non-product geometry, in particular concerning their fundamental groups,
will be provided while examining each geometry individually.

A crucial property for our study is that the 4-dimensional geometries are homo-
topically unique by a result of Wall; cf. [37, Theorem 10.1] and [19, Proposition 1].
In particular, a closed aspherical geometric 4-manifold M is finitely covered by a
closed X4-manifold if and only if it possesses the geometry X4.

6.2. Proof of Theorem E in dimensions� 3. Dimension 1 gives already the first
(trivial) example of a solvable group presentable by products but not IIPP, namely
the infinite cyclic group, which is the fundamental group of S1. In dimension
2, the only non-trivial solvable fundamental group of an oriented manifold is
the fundamental group of T 2 which is the product Z � Z. The fundamental
groups of higher genus surfaces are (non-elementary) hyperbolic and therefore
not presentable by products as shown in [20].

We now deal with infinite fundamental groups of closed 3-manifolds. First,
using Epstein’s factorization theorem for 3-manifold groups [8] and the fact that
not virtually cyclic free products are not presentable by products [21], we obtain
that the fundamental group of a closed 3-manifold is presentable by products if
and only if it has virtually infinite center [22, Theorem 8]. These two properties
are moreover equivalent to M being Seifert fibered (with infinite fundamental
group), by the Seifert fiber space conjecture, which was independently proven
by Gabai and by Casson-Jungreis. Recall that a closed 3-manifold M (possibly
with finite fundamental group) is Seifert fibered if and only if it is virtually a circle
bundle over a closed oriented surface, by the works of Seifert, Thurston and Scott;
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cf. [34, 30]. Equivalently,M carries one of the geometries eSL2, H2 �R, Nil3, R3,
S2 � R or S3. Thus, we have the following consequence of [22, Theorem 8].

Proposition 6.2 ([22]). Suppose M is a closed 3-manifold with infinite funda-
mental group. Then �1.M/ is presentable by products if and only ifM is a virtual
circle bundle over a closed oriented surface. Equivalently, M possesses one of
the geometries eSL2, H2 � R, Nil3 or R3.

However, if the circle fiber of M is not (virtually) a direct factor, i.e. if M is
not modeled on H2 � R or R3, then �1.M/ cannot be IIPP.

Proposition 6.3. The fundamental group of a non-trivial circle bundleM over a
closed oriented aspherical surface † is not IIPP.

Proof. If † is hyperbolic, then �1.M/ fits into a non-split central extension

1 �! Z �! �1.M/ �! �1.†/ �! 1:

In particular, �1.M/ fulfills the conditions of Theorems C and D, because non-
virtually cyclic hyperbolic groups are not presentable by products [20]. By Ep-
stein’s factorization theorem [8] and Stallings fibering criterion [31], the funda-
mental group of a non-trivial circle bundle over a closed oriented surface is never
reducible, and so Theorem D implies that �1.M/ is not IIPP.

The remaining case is when † has genus one, i.e. when M is a non-trivial
circle bundle over T 2 (and therefore a Nil3-manifold). In that case, �1.M/ fits
into a non-split central extension

1 �! Z �! �1.M/ �! Z2 �! 1;

where C.�1.M// D Z. Suppose that �1.M/ is IIPP. Then we may assume that
there exist non-trivial infinite-index commuting subgroups �1; �2 � �1.M/ and
a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! �1.M/ �! 1;

where ' is the multiplication map and �1 \ �2 � C.�1.M//. (Note that both �i

are torsion-free, because �1.M/ is torsion-free.) We observe that �1 \ �2 cannot
be trivial, otherwise �1.M/ would be Abelian (equivalently, M would be T 3).
This means that �1 \ �2 must be isomorphic to C.�1.M// D Z. Moreover, since
Œ�1.M/W�i � D 1 and �1.M/ has cohomological dimension three, we conclude
that each of the �i is of cohomological dimension at most two [32]. Now, �1 \�2

is central in both �i which means that the quotients �i=.�1 \ �2/ are finitely
generated and virtually free groups Fki

, by a result of Bieri [1, Corollary 8.7].
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Passing to finite coverings, we may assume that these quotient groups are free and
therefore the central extensions

1 �! �1 \ �2 �! �i �! Fki
�! 1

split. We have finally reached the absurd conclusion that �1.M/ is virtually
isomorphic to a direct product Z � Fk1

� Fk2
. �

Remark 6.4. The case of nilpotent groups in the above proposition could be
treated in a different way, using the Hirsch length, however, the dimensions
here were suitable to appeal to Bieri’s [1] result on central extensions. In fact,
the cohomological dimension of a finitely generated torsion-free nilpotent group
coincides to its Hirsch length [16]. We will return and use the Hirsch length of
nilpotent groups in Section 6.3.3.

Because the fundamental group of S2 � S1 is infinite cyclic and therefore not
IIPP, we have now determined all fundamental groups of closed 3-manifolds that
are (not) IIPP.

Corollary 6.5. Suppose that the fundamental group of a closed oriented 3-
manifold M is infinite. Then �1.M/ is IIPP if and only if it is reducible. Equiv-
alently, �1.M/ is a virtual product �1.†/ � Z, where † is a closed oriented as-
pherical surface.

In particular, we have proved Theorem E in dimension three.

6.3. Proof of Theorem E in dimension four. We will prove Theorem E in
dimension four in two steps. First, we will determine which closed aspherical
geometric 4-manifolds have fundamental groups (not) presentable by products.

Theorem 6.6. The fundamental group of a closed aspherical geometric 4-mani-
foldM is presentable by products if and only ifM possesses one of the geometries
X3 � R, Nil4, Sol41 or the reducible H2 � H2 geometry.

Then, Theorem E will follow as a consequence of the next characterization.

Theorem 6.7. The fundamental group of a closed aspherical geometric 4-mani-
fold M is reducible if and only if it is IIPP. Equivalently, M carries one of the
product geometries X3 � R or the reducible H2 � H2 geometry.

Groups presentable by products: Proof of Theorem 6.6. We proceed by
examining case by case all aspherical geometries, following the enumeration given
at the beginning of this section (cf. Table 1).



Fundamental groups of aspherical manifolds and maps of non-zero degree 665

6.3.1. Hyperbolic geometries. As we have already seen (and used in the proof
of Proposition 6.3), non-virtually cyclic hyperbolic groups are not presentable by
products; we refer to [20, Proposition 3.6] for the details. Since the fundamental
groups of closed 4-manifolds with hyperbolic geometries H4 or H2.C/ are ob-
viously not (virtually) infinite cyclic, we deduce that they are not presentable by
products.

6.3.2. Product geometries. An equivalent formulation of Theorem 6.1 is the
following corollary.

Corollary 6.8. The fundamental group of a closed aspherical 4-manifold M

carrying a product geometry X3 �R is a virtual product �1.N /�Z, whereN is a
closed aspherical X3-manifold. In particular, �1.M/ is presentable by products
and C.�1.M// is virtually infinite.

As mentioned previously, the geometry H2 �H2 is an exceptional type among
the product geometries, because not every closed H2 � H2-manifold has a finite
cover which is a product of two closed hyperbolic surfaces. This property dis-
tinguishes closed H2 � H2-manifolds into two classes, the reducible and the irre-
ducible ones. Since H2 � H2-manifolds admit metrics of non-positive sectional
curvature, Theorem 4.1 of [20] implies that irreducible lattices in the group of
isometries of H2 � H2 are not presentable by products.

Proposition 6.9. The fundamental group of a closed H2 �H2-manifoldM is pre-
sentable by products if and only if it is a virtual product of two closed hyperbolic
surface groups. Equivalently,M carries the reducible H2 � H2 geometry.

6.3.3. Solvable non-product geometries. We finally deal with solvable non-
product geometries, i.e. the geometries Nil4, Sol4

m¤n
, Sol40 and Sol41. As we shall

see, only the fundamental groups of closed manifolds modeled on the geometries
Nil4 or Sol41 are presentable by products.

The geometry Nil
4

Proposition 6.10. A closed Nil4-manifold M is a virtual circle bundle over a
closed oriented Nil3-manifold and the center of �1.M/ remains infinite cyclic in
finite covers.

Proof. LetM be a closed Nil4-manifold. After possibly passing to a double cover,
we may assume that M is oriented and so �1.M/ fits into a short exact sequence

1 �! �1.N / �! �1.M/ �! Z �! 1;
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where N is a closed oriented Nil3-manifold and a generator t 2 Z acts by
conjugation on �1.N /; cf. [17, Sections 8.6 and 8.7]. Passing to another finite
cover, if necessary, we may assume that N is a non-trivial circle bundle over T 2

with fundamental group

�1.N / D hx; y; z j Œx; y� D z; xz D zx; yz D zyi;

where C.�1.N // D hzi; cf. [30].
SinceM is a Nil4-manifold, the automorphism of �1.N /=hzi Š Z2, induced

by the action of t 2 Z on �1.N /, is given (after possibly passing to another finite
cover) by a matrix (conjugate to) A D

�

1 k
0 1

�

2 GL2.Z/, for some k ¤ 0; cf. [17,
Theorem 8.7]. The relation xmyn D zmnynxm in �1.N / gives the following
presentation of �1.M/ (see also [11] and [35, p. 522] for further details):

�1.M/ D hx; y; z; t j txt�1 D x; tyt�1 D xkyzl ; tzt�1 D zdet A D z;

Œx; y� D z; xz D zx; yz D zyi;

where C.�1.M// D hzi. Thus we have a short exact sequence

1 �! hzi �! �1.M/ �! Q �! 1; (11)

where Q D �1.M/=hzi D hx; y; t j Œt; y� D xk ; xt D tx; xy D yxi.
In particular, the classifying space BQ is a non-trivial circle bundle over T 2

and thus a Nil3-manifold. Now, the induced sequence of the classifying spaces
corresponding to (11) implies that M is homotopically a circle bundle over BQ.
Finally, the center of �1.M/ remains infinite cyclic in finite covers, generated by
multiples of z, because k ¤ 0. �

Remark 6.11. Since every non-trivial nilpotent group has non-trivial center and
because the property of being “nilpotent” is closed under subgroups and quotient
groups, the proof of the above proposition could be obtained using the fact that
every nilpotent group of cohomological dimension three is either Abelian or
isomorphic to Q (as in the above proof); see Proposition 6.19, Lemma 6.20 and
Remark 6.21.

Remark 6.12. Note that �1.M/ is (virtually) an extension of Z2 D hy; ti by
Z2 D hz; xi, and soM is (virtually) a T 2-bundle overT 2, whose T 2-fiber contains
the S1-fiber of the circle bundle S1 ! M ! BQ of the above proposition. It
is a result of Ue [35, Theorem B] that every closed Nil4-manifold is a virtual
T 2-bundle over T 2. We refer to a work of Fukuhara and Sakamoto [11] for a
classification of T 2-bundles over T 2.

We furthermore observe that �1.M/ is (virtually) an extension of Z D hyi by

Z3 D hz; x; ti, where the automorphism of Z3 is given by
�

1 �1 �l
0 1 �k
0 0 1

�

and it has

infinite order. In particular, M is a (virtual) mapping torus of T 3; see also [17,
Section 8.6].



Fundamental groups of aspherical manifolds and maps of non-zero degree 667

The geometries Sol
4

m¤n
and Sol

4

0

Proposition 6.13. The fundamental group of a closed 4-manifold possessing one
of the geometries Sol4

m¤n
or Sol40 is not presentable by products.

In order to prove Proposition 6.13, we will use the concept of “acentral”
subgroups which was introduced in [21]: a subgroup A of a group � is called
acentral if for every non-trivial element g 2 A the centralizer C�.g/ is contained
in A. An acentral extension is an extension of groups 1 ! N ! � ! Q ! 1

such that the normal subgroup N is acentral.

Proposition 6.14 ([21, Proposition 3.2]). If a group contains an infinite acentral
subgroup of infinite index, then it is not presentable by products.

Proposition 6.14 implies that if an extension 1 ! N ! � ! Q ! 1

is acentral, with N and Q infinite, then � is not presentable by products [21,
Corollary 3.3]. Also, if � is a semi-direct product N Ì� Q, where N is non-
trivial Abelian and Q is infinite acting freely outside 0 2 N , then the extension
0 ! N ! � ! Q ! 1 is acentral and N is infinite. In particular, � is not
presentable by products [21, Corollary 3.5]. This gives an alternative proof that
Sol3-manifold groups are not presentable by products [21, Section 3].

Proof of Proposition 6.13. We will show that the fundamental groups of closed
Sol4

m¤n
- or Sol40 -manifolds contain acentral subgroups of infinite index.

Every manifold M with geometry modeled on Sol4
m¤n

or Sol40 is a mapping

torus of a self-homeomorphism of T 3 [17, Section 8.6] (see also [36, 37]) and its
fundamental group is a semi-direct product Z3

Ì� Z, where the automorphism �

of Z3 is induced by the action by conjugation of a generator t 2 Z.
Now, ifM is a Sol4

m¤n
-manifold, then � has three real distinct eigenvalues and

none of them is equal to ˙1, becauseM is neither nilpotent nor carries theSol3�R

geometry (which is the case m D n); cf. [36] and [17, p. 164f] (or Section 6.1).
If M is a Sol40 -manifold, then � has two complex eigenvalues that are not

roots of unity and a real eigenvalue not equal to ˙1; cf. [36] and [17, p. 164f]
(or Section 6.1).

In both cases we derive that the centralizer C�1.M /.g/ of each g 2 Z3 n ¹0º

is contained in Z3 (it is actually equal to Z3). This means that the infinite-index
normal subgroup Z3 is acentral and so �1.M/ is not presentable by products by
Proposition 6.14 or [21, Corollary 3.3 or Corollary 3.5]. �

The geometry Sol
4

1

Proposition 6.15. A closed Sol41-manifold M is a virtual circle bundle over
a mapping torus of T 2 with hyperbolic monodromy. In particular, �1.M/ is
presentable by products.
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Proof. LetM be a closed Sol41-manifold. After passing to a double cover, we may
assume that M is oriented, and so its fundamental group fits into a short exact
sequence

1 �! �1.N / �! �1.M/ �! Z �! 1;

where N is a closed oriented Nil3-manifold and a generator t 2 Z acts by
conjugation on �1.N /; cf. [17, Sections 8.6 and 8.7]. If necessary, we pass to
another finite cover of M and so we can assume that the fiber N is a non-trivial
circle bundle over T 2 and that its fundamental group has a presentation

�1.N / D hx; y; z j Œx; y� D z; xz D zx; yz D zyi

with center C.�1.N // D hzi; cf. [30].
Let A D

�

a b
c d

�

2 GL2.Z/ be the automorphism of �1.N /=hzi Š Z2 induced
by the action of t 2 Z on �1.N /. The eigenvalues �1; �2 of A satisfy det.A/ D

�1�2 D ˙1. Actually, detA D 1, because M is oriented. Moreover, �i ¤ ˙1,
because �1.M/ is not nilpotent; see also [17, Theorem 8.7]. We conclude that A
is a hyperbolic automorphism.

Now the relation xmyn D zmnynxm in �1.N / implies that a presentation of
the fundamental group of M is given by

�1.M/ D hx; y; z; t j txt�1 D xayczk; tyt�1 D xbydzl ; tzt�1 D zdet A D z;

Œx; y� D z; xz D zx; yz D zyi; k; l 2 Z;

where the infinite cyclic group generated by z is central in �1.M/. Thus we obtain
a short exact sequence

1 �! hzi �! �1.M/ �! Q �! 1; (12)

where Q D �1.M/=hzi D hx; y; t j txt�1 D xayc ; tyt�1 D xbyd ; xy D yxi.
Clearly, the group Q fits into an extension

1 �! Z2 �! Q �! Z �! 1;

where t 2 Z acts on Z2 by the hyperbolic automorphism A D
�

a b
c d

�

. We
have now shown that Q is the fundamental group of a mapping torus of T 2 with
hyperbolic monodromy, i.e.BQ is a closed oriented Sol3-manifold. Therefore,M
is homotopically a circle bundle over BQ, by the induced sequence in homotopy
corresponding to the short exact sequence (12). �

The proof of Theorem 6.6 is now complete.

Groups not IIPP: Proof of Theorem 6.7. Since reducible groups are IIPP, in
order to complete the proof of Theorem 6.7 we need to show that the fundamental
groups of manifolds modeled on Nil4 or Sol41 are not IIPP.
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Closed Nil
4-manifolds. Since torsion-free nilpotent groups have infinite center,

an immediate consequence of Proposition 6.10 (see also Proposition 6.19) is the
following lemma.

Lemma 6.16. The fundamental group of a closed Nil4-manifold is not a virtual
product.

In the preceding section (Proposition 6.3), we showed that closed Nil3-mani-
folds have fundamental groups not IIPP using Bieri’s results [1], since the coho-
mological dimensions of those groups (and of their subgroups) were suitable for
that purpose. Passing now one dimension higher, we cannot appeal anymore to
those results. However, instead of the cohomological dimension, we may use the
Hirsch length (which is in fact equal to the cohomological dimension for finitely
generated torsion-free nilpotent groups by a theorem of Gruenberg, cf. [16, §8.8]).
The Hirsch length generalizes the notion of the rank of free Abelian groups.

Definition 6.17 ([16]). Let � be a (virtually) polycyclic group with a series

� D �0 � �1 � � � � � �n D 1;

so that the quotients �i=�iC1 are cyclic. The sum of the ranks of these quotients
is independent of the choice of the series of groups and is called the Hirsch length
of �. We denote the Hirsch length of � by h.�/.

Example 6.18. A finitely generated torsion-free nilpotent group � is polycyclic,
admitting a central series � D �0 � �1 � � � � � �n D 1; so that the quotients
�i=�iC1 are infinite cyclic for all i D 0; 1; :::; n�1. Therefore � has a well-defined
Hirsch length (equal to n).

The following proposition gives some basic properties of nilpotent groups and
their Hirsch length. For a proof see [27, pp. 75–77].

Proposition 6.19. Let � be a finitely generated nilpotent group.

(1) If � is torsion-free, then C.�/ has positive rank and �=C.�/ is torsion-free.

(2) If K is a normal subgroup of �, then K and �=K are finitely generated
nilpotent and

(a) h.�/ D h.K/C h.�=K/;

(b) h.K/ D h.�/ if and only if Œ� W K� < 1.

Using Proposition 6.19, we determine all torsion-free nilpotent groups of
Hirsch length three.
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Lemma 6.20. A torsion-free nilpotent group � of Hirsch length three is isomor-
phic to Gn WD hx; y; z j zy D yz; zx D xz; Œx; y� D zni; for some n � 0.
In particular, � is the fundamental group of a circle bundle over T 2.

Proof. First, we observe that� is finitely generated, because it is nilpotent of finite
Hirsch length. Moreover, since � is torsion-free, we have that its center C.�/ is
free Abelian of positive rank, the quotient groupQ WD �=C.�/ is again nilpotent
and torsion-free and the short exact sequence

1 �! C.�/ �! � �! Q �! 1; (13)

yields that 0 � h.Q/ � 2, because h.C.�// � 1; cf. Proposition 6.19.
If h.Q/ D 0 or 1, then it is easy to see that � is free Abelian of rank three.

Indeed, this is obvious if h.Q/ D 0. If h.Q/ D 1, then Q is infinite cyclic, and
therefore the central extension (13) splits. Suppose, finally, that h.Q/ D 2. Since
Q is torsion-free nilpotent, it has non-trivial center C.Q/. Therefore, it fits into a
short exact sequence

1 �! C.Q/ �! Q �! Q=C.Q/ �! 1;

where the quotient Q=C.Q/ is again a torsion-free nilpotent group. By the
additivity of the Hirsch length for the above exact sequence, we deduce that
h.Q=C.Q/ � 1. This finally implies thatQ is free Abelian of rank two. Therefore,
the central extension (13) takes the form

1 �! Z �! � �! Z2 �! 1:

Choosing presentations Z D hzi and Z2 D hx; y j Œx; y� D 1i, we deduce that �
is isomorphic to Gn for some n � 0. �

Remark 6.21. In the light of Gruenberg’s theorem [16, §8.8], Lemma 6.20 deter-
mines all finitely generated nilpotent groups of cohomological dimension three.
Moreover, it yields another proof of the fact that closed Nil4-manifolds are virtual
circle bundles over closed oriented Nil3-manifolds; compare Proposition 6.10.

We now finish the proof that Nil4-manifold groups are not IIPP.

Proposition 6.22. The fundamental group of a closed Nil4-manifold M is not
IIPP.

Proof. We know that �1.M/ is presentable by products and that M is virtu-
ally a non-trivial circle bundle over a closed oriented Nil3-manifold (cf. Propo-
sition 6.10). We need to prove that �1.M/ cannot be presented by a product of
subgroups �1 and �2 so that both �i have infinite index in �1.M/. We proceed
again by contradiction. After passing to suitable finite index subgroups, suppose
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that there exist two infinite-index commuting subgroups �i � �1.M/ and a short
exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! �1.M/ �! 1; (14)

where ' is the multiplication map and �1 \�2 � C.�1.M//; cf. Section 2.3. Also
we have that C.�1.M// D Z (by Proposition 6.10) and that the �i are finitely
generated, torsion-free and nilpotent.

Since �1.M/ is not reducible (Lemma 6.16), we conclude that the intersection
�1\�2 is not trivial and so it must be infinite cyclic, as a subgroup ofC.�1.M// D

Z. Also, Proposition 6.19 and Lemma 6.20 imply that the Hirsch length of �1.M/

is h.�1.M// D 4. Applying again the additivity of the Hirsch length to the short
exact sequence (14), we have that h.�1 � �2/ D 5. Since both �i have infinite
index in �1.M/, we deduce that h.�i / � 3 by Proposition 6.19. Therefore, one of
the �i must be of Hirsch length three and the other of Hirsch length two (again
by Proposition 6.19). Let us assume that h.�1/ D 3 and h.�2/ D 2. Since �1 is a
torsion-free nilpotent group of Hirsch length three, Lemma 6.20 implies that �1

isomorphic to Gn for some n � 0. Moreover, �2 is isomorphic to Z2, because it
is torsion-free nilpotent of Hirsch length two (see the proof of Lemma 6.20). We
have now reached the conclusion that the rank of the center of �1 � �2 is at least
three. This is however not possible, according to the next lemma, because �1 ��2

is an extension of �1.M/ by Z and C.�1.M// D Z. �

Lemma 6.23. If a group � with finitely generated center C.�/ fits into a central

extension 1 ! Zk ! �
�
! Q ! 1; where Q is torsion-free, then rankC.�/ �

rankC.Q/C k.

Proof. It follows by the fact that if x 2 C.�/, then �.x/ 2 C.Q/. �

Closed Sol
4

1
-manifolds. We finally deal with the Sol41 geometry.

Proposition 6.24. The fundamental group of a closed Sol41-manifold is not IIPP.

Proof. By Proposition 6.15, a closed Sol41-manifold M is a virtual circle bundle
over a closed oriented Sol3-manifold N . In particular, its fundamental group
�1.M/ satisfies all the assumptions of Theorem D (recall that �1.N / is not
presentable by products; see Proposition 6.2). Thus, �1.M/ is IIPP if and only if
it is a virtual product �1.N / � Z. The latter is impossible by Wall’s uniqueness
theorem [37, Theorem 10.1]. �

This finishes the proof of Theorem 6.7 and therefore the proof of Theorem E.
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7. Domination by products in dimension four (proof of Theorem F)

In this section we determine which geometric 4-manifolds are (not) dominated by
products. To this end, we combine the algebraic results of the previous section
with the topological statements of Theorem 2.4 and Theorems B and C to prove
Theorem F, which completes Hillman’s characterization of product geometries
given in Theorem 6.1.

Proof of theorem F. Theorem 6.1 says that closed manifolds possessing one of
the product geometries X3 � R are finitely covered by products of type N � S1.
Moreover, closed manifolds carrying the reducible H2�H2 geometry are virtually
products of closed hyperbolic surfaces. In particular, all those manifolds are
dominated by products. (Note that domination by products alone follows by
Theorem A as well.)

By Wall’s uniqueness theorem of the 4-dimensional geometries, it suffices
to show that closed 4-manifolds possessing either a hyperbolic geometry, the
irreducible H2 � H2 geometry, or a non-product solvable geometry cannot be
dominated by products.

For the hyperbolic geometries H4 and H2.C/, the irreducible H2 � H2 geom-
etry, and the solvable geometries Sol4m¤n and Sol40 our claim can be deduced by
Theorem 2.4, because the fundamental groups of closed 4-manifolds carrying one
of those geometries are not presentable by products; see Section 6.3 for the details.

If now M is a closed Nil4-manifold, then it is a virtual circle bundle over a
closed oriented Nil3-manifold and the center of its fundamental group remains
infinite cyclic in finite covers; cf. Proposition 6.10. Moreover, �1.M/ is not IIPP,
by Proposition 6.22, and so Theorem B implies that M cannot be dominated by
products.

Finally, if M is a closed Sol41-manifold, then it is a virtual circle bundle over
a closed oriented Sol3-manifold and �1.M/ is not IIPP; cf. Propositions 6.15
and 6.24 respectively. Therefore, M is not dominated by products by Theorem C,
because closed Sol3-manifolds have fundamental groups not presentable by prod-
ucts. (Equivalently, M is not dominated by products because of the equivalence
between .1/ and .2/ in Theorem C and by Wall’s uniqueness theorem.)

The proof is now complete. �

Combining Theorem E with the characterizations of groups (infinite-index)
presentable by products in Section 6, we obtain the following purely algebraic
characterization.

Corollary 7.1. A closed oriented aspherical geometric 4-manifold M is domi-
nated by a product if and only if

(1) either �1.M/ is a virtual product �1.N / � Z, for some closed aspherical
geometric 3-manifold N , or

(2) �1.M/ is a virtual product of two closed hyperbolic surface groups.
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8. The 5-dimensional Heisenberg manifold

In this section we give the first example of an aspherical manifold whose funda-
mental group is IIPP and irreducible, and show that this manifold is not dominated
by products.

Lemma 8.1. The 5-dimensional Heisenberg group

H5 D hx; y; u; v; z j Œx; y� D Œu; v� D z; all other commutei

is IIPP and irreducible.

Proof. We observe that the groups�1 D hx; y; z j Œx; y� D z; xz D zx; yz D zyi

and �2 D hu; v; z j Œu; v� D z; uz D zu; vz D zvi are infinite index subgroups of
H5 that commute element-wise, and �1�2 D H5. In particular, H5 is presented
by the product �1 ��2 through the multiplication homomorphism �1 ��2 ! H5.
Thus H5 is IIPP.

Now we show that H5 is irreducible. First of all, H5 is not a product itself,
otherwise its center would have been of rank greater than 1, because subgroups of
nilpotent groups are nilpotent themselves and torsion-free nilpotent groups have
infinite center. Second, every finite index subgroup H5 � H5 fits into a short
exact sequence

1 �! hzki �! H5 �! Q �! 1;

whereQ is a finite index subgroup ofZ4 D H5=hzi. In particular,Q is isomorphic
to Z4, generated by some powers of x; y; u and v. If H5 were a direct product,
then the relations Œxm; yn� D zmn and Œum; vn� D zmn in H5 would imply that z
is a torsion element. However, H5 is torsion-free and the lemma follows. �

The classifying space of H5 is a non-trivial circle bundle over T 4, called the
5-dimensional Heisenberg manifold.

Theorem 8.2. The Heisenberg manifold BH5 is not dominated by products.

Proof. Suppose, for contrast, that there exists a map of non-zero degree f WX1 �

X2 ! BH5 which is �1-surjective, after possibly replacing BH5 by a finite cover;
this cover will remain a non-trivial circle bundle over T 4 with center C.H5/ Š Z,
by Lemma 8.1. We have a short exact sequence

1 �! �1 \ �2 �! �1 � �2

'
�! H5 �! 1; (15)

where �i WD im.�1.f jXi
// � H5, �1 \ �2 � C.H5/ D Z and ' is the multi-

plication homomorphism; see Sections 2.2 and 2.3 for the details. In particular,
�1 \ �2 is isomorphic to Z, because H5 is irreducible. Since the �i are finitely
generated torsion-free nilpotent groups, the above exact sequence implies that it
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suffices (up to order) to examine what happens when the Hirsch length of �1 takes
the values one, two and three.

Case I. Suppose first that h.�1/ D 1. ThenX1 D S1 (see the proof of Theorem C),
and so S1 �X2 � BH5. The latter is not possible by the Factorization Lemma 4.8.

Case II. Next, suppose that h.�1/ D 2. Then�1 is isomorphic to Z2 (see the proof
of Lemma 6.20). Since �2 is nilpotent and torsion-free, its center has positive
rank. Thus rankC.�1 � �2/ � 3, which contradicts Lemma 6.23 because �1 � �2

fits into the short exact sequence (15), where �1 \ �2 and C.H5/ are both infinite
cyclic.

Case III. The only remaining case is when h.�1/ D 3. In that case, h.�2/ D 3. By
Lemma 6.20, each of the groups�i is isomorphic to someGni

D hx; y; z j Œx; y� D

zni ; xz D zx; yz D zyi, for ni � 0. As in Case II, none of the �i can be Abelian
of rank greater than 1, by Lemma 6.23. We conclude that ni � 1. According to
the proof of Theorem 2.4 (cf. Section 2.2) and because BH5 is aspherical, there
exist two non-trivial homology classes ˛i 2 Hdim Xi

.B�i IQ/ such that

H5.B'/.˛1 � ˛2/ D deg.f / � ŒBH5�:

Moreover, we know by Case I that one of the Xi must have dimension two and
the other dimension three. Without loss of generality, suppose that dimX1 D 3

and dimX2 D 2. Recall that, for n � 1, every Gn is realizable by a non-trivial
circle bundle over T 2. Therefore the cycle ˛1 2 H3.B�2IQ/ is realized by such
a nilpotent 3-manifold N and the cycle ˛2 2 H2.B�2IQ/ is realized by T 2. This
means that there exists a continuous composite map

T 2 � N �! B�1 � B�2 �! BH5;

which in degree 5 homology maps the fundamental class ŒT 2 �N� to a non-trivial
multiple of ŒBH5�. In particular, the product S1 � .S1 �N/ dominates BH5 which
is impossible as we have seen in Case I.

After having examined all the possibilities for the groups �1 and �2, we
conclude that BH5 cannot be dominated by products. �
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