
Groups Geom. Dyn. 12 (2018), 571–613

DOI 10.4171/GGD/449

Groups, Geometry, and Dynamics

© European Mathematical Society
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in the Out.Fr/-quotient of reduced Outer Space
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Abstract. In [16] Masur proved the existence of a dense geodesic in the moduli space

for a surface. We prove an analogue theorem for reduced Outer Space endowed with the

Lipschitz metric. We also prove two results possibly of independent interest: we show

Brun’s unordered algorithm weakly converges and from this prove that the set of Perron–

Frobenius eigenvectors of positive integer m� m matrices is dense in the positive cone R
m
C

(these matrices will in fact be the transition matrices of positive automorphisms). We give

a proof in the appendix that not every point in the boundary of Outer Space is the limit of

a flow line.
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1. Introduction

1.1. Geodesics in Outer Space. One of the richest and most expansive methods

for studying surfaces has been through the ergodic geodesic flow on Teichmüller

space. As an example, it was used by Eskin and Mirzakhani [10] to count pseudo-

Anosov conjugacy classes of a bounded length. For this reason, the papers of

Masur [17] and Veech [21] independently proving the ergodicity of the Teichmüller

flow were seminal in the field. The existence of an Out.Fr /-invariant ergodic

geodesic flow on Outer Space may similarly expand the tools for studying Out.Fr /.

Before giving the proof of the ergodicity theorem in Teichmüller space, Masur

performed the following “litmus test” for its plausibility.

Theorem 1.1 ([16]). Given a closed surface Sg of genus g, there exists a Teich-
müller geodesic in the Teichmüller space Tg whose projection

pW Tg �! Tg= MCG.Sg/

to moduli space is dense in both directions.

Our main theorem is an Out.Fr / analogue of the above theorem. Some of the

terms in the theorem are defined directly below its statement.

Theorem A. For each r � 2, there exists a geodesic fold ray in the reduced Outer
Space RXr whose projection to RXr= Out.Fr / is dense.

Remark 1.2. (1) The reduced Outer Space RXr is a subcomplex of the Outer

Space Xr , which consists of those graphs without separating edges (see Defini-

tion 2.12). It is an equivariant deformation retract of Xr .

(2) The metric onRXr with respect to which the ray in Theorem A is a geodesic

is the Lipschitz metric (see Definition 2.25). It is an asymmetric metric (analogous

to the Thurston metric on Teichmüller space [20]) that has proven to be very useful

in the Out.Fr/ context, e.g. [3].

(3) Because of the asymmetry of the metric, our geodesics will always be

“directed geodesics,” i.e. maps �W Œ0; 1/ ! Xr such that d.�.t/; �.t 0// D t 0 � t

for t 0 > t � 0, but not necessarily for t > t 0.

(4) A fold line is a special kind of geodesic in Xr (explicitly described in

Definition 3.14) that is analogous to a Teichmüller geodesic.

(5) Comparing between Theorem 1.1 and Theorem A, one may notice that our

theorem declares the existence of a ray in contrast with Masur’s theorem which

declares the existence of a geodesic. We could easily extend our ray to a bi-infinite

geodesic. However, the density of the image of the ray will follow from techniques

that we cannot extend to the backwards direction.
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Returning to Remark 1.2(1), we note that for proving algebraic properties

of Out.Fr/, one may usually replace Outer Space with RXr . However, on the

geometric side, it is not known whether or not RXr is convex in any coarse sense.

That is, if x and y are points in is there a geodesic between them that stays in? If

not, is there a geodesic that stays a distance R from?

We hence pose two questions:

Question 1.3. For each r � 2, does there exist a geodesic fold line in Xr that is
dense in both directions in Xr= Out.Fr /?

Question 1.4. For each r � 2, is the reduced Outer Space RXr coarsely convex?
For example, given points x; y 2 RXr does there always exist a geodesic from x

to y which is contained in reduced Outer Space?

1.2. The unit tangent bundle. While Masur proved the existence of a dense

geodesic first, this result also follows from his proof of the ergodicity of the

Teichmüller flow. The unit tangent bundle of Teichmüller space is isomorphic

to its unit cotangent bundle Q0, which may be described explicitly as the space of

unit area quadratic differentials on a closed surface Sg of genus g. The geodesic

flow on Teichmüller space is a MCG.Sg/ invariant action of R on Q0. For t 2 R

we denote the flow by Tt W Q0 ! Q0. Given a quadratic differential q 2 Q0, the

set of points ¹qtºt2R D ¹Ttqºt2R defines a geodesic in the Teichmüller space Tg .

Theorem 1.5 ([16]). For a closed surface Sg of genus g > 1, there exists a
quadratic differential q 2 Q0 so that the projection of ¹qtº for either t > 0 or
t < 0 is dense in Q0= MCG.Sg/.

The analogue of Theorem 1.5 is not obvious, as it is unclear what the unit

tangent bundle should be. For example, two geodesics in Outer Space can meet

for a period of time and then diverge from each other (or even alternately meet

and diverge). This is an impediment to a “local” description of the tangent bundle.

A more global approach would be to relate the tangent space at a point to the visual

boundary of Outer Space. However, as of yet there is no description of the visual

boundary of Outer Space. For example, we show in §9 that there are points on

Xr � Xr (where Xr denotes the set of very small Fr -trees) that are not ends of

geodesic fold rays.

For the purposes of this paper, we propose the following analogue of the unit

tangent bundle. Given a point x 2 RXr there are finitely many germs Œ˛� of fold

lines ˛ in RXr initiating at x. Define

URXr D ¹.x; Œ˛�/ j x 2 RXr ; ˛ is a fold line with ˛.0/ D x and Im.˛/ � RXrº:

Given a geodesic ray 
 W Œ0; 1/ ! RXr , for t 2 R we denote by 
t the path


t .s/ D 
.t C s/. We may associate to 
 a path in the unit tangent bundle

Q
.t/ D .
.t/; Œ
t �/. We prove:
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Theorem B. For each r � 2, there exists a Lipschitz geodesic fold ray Q
 W Œ0; 1/ !
RXr so that the projection of Q
 to URXr= Out.Fr / is dense.

1.3. Geodesics in other subcomplexes. For each r � 2, we define the theta
subcomplex Tr to be the subspace of RXr consisting of all points in Xr whose

underlying graph is either a rose or a theta graph, see Figure 1. This subcomplex

carries the significance of being the minimal connected subcomplex containing

the image of the Cayley graph under the natural map. Both as a warm-up, and for

its intrinsic significance, we initially prove Theorem A in Tr .

Figure 1. The underlying graphs of the simplices of Tr . The graph on the left is called a

rose and that on the right is called a theta graph.

Theorem C. For each r � 2, there exists a dense fold ray in Tr that projects to a
dense Lipschitz geodesic fold ray in Tr= Out.Fr /.

1.4. Outline. We begin by outlining the proof of Theorem C. After proving

Theorem C, we develop the topological machinery necessary to extend the more

combinatorial arguments of the proof of Theorem C to the proof of Theorem B

(and Theorem A as a corollary).

Recall that points in Outer Space are marked metric graphs equivalent up to

homotopy, see Definition 2.2. As described in Definition 2.11, Out.Fr / acts on the

right by changing the marking. To a point x 2 Tr= Out.Fr /, one may associate a

positive vector, the “length vector” recording the graph’s edge lengths. The folding

operation may be translated to a matrix recording the change in edge lengths from

its initial point to its terminal point. In this dictionary, a fold ray in Tr= Out.Fr/

should correspond to an initial vector and a sequence of fold matrices. However,

not every such sequence comes from a fold ray: a particular fold may or may

not be allowed for a specific vector depending on whether its image is again a

positive vector. Our challenge is to construct a sequence of fold matrices ¹Tkº1
kD1

satisfying that, for some positive vector w0, if we write wi D Ti � � � T1.w0/ for

each i 2 N then

I. the fold TiC1 is allowed in wi D Ti � � � T1.w0/ for each integer 1 � i < 1,

II. the set of vectors wi is projectively dense in a simplex and,

III. the corresponding fold ray is a geodesic ray in the Lipschitz metric.
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In order to prove Item II of the list, we prove the following fact:

Theorem D. For each r � 2, let S r
l1

be the set of unit vectors according to the
l1 metric in R

r
C. The set of Perron–Frobenius eigenvectors of matrices arising as

the transition matrices of positive automorphisms in Aut.Fr / is dense in S r
l1

.

The proof of Theorem D, in §4, uses Brun’s algorithm [7]. We also prove in §4

that Brun’s (unordered) algorithm converges in angle, a result to our knowledge

previously absent from the literature in dimensions higher than four. (Brun proved

it in [7] for dimensions three and four.)

To construct the sequence ¹Tkº of fold matrices we enumerate the powers of

“Brun matrices” (see §4): P1; P2; P3; : : : . To each Pi , we can attach the following

data:

� a positive Perron–Frobenius eigenvector vi ,

� a positive automorphism gi 2 Aut.Fr /, also denoted gvi
, so that the transi-

tion matrix of gi is Pi ,

� and a decomposition of Pi into fold matrices, arising from the decomposition

of gi into Nielsen generators which correspond to moves in Brun’s algorithm.

We remark that this method is reminiscent of Masur’s paper, where he proved

the existence of a dense geodesic in Rg D Q0= MCG.Sg/ using the fact that closed

loops in Rg are dense. The resemblance stems from the decomposition in the third

item defining a loop in RXr= Out.Fr / based at vi and the density, established by

Theorem D, of the set of Perron–Frobenius eigenvectors ¹viº.
We concatenate the fold sequences associated to the matrices Pi together to

form the sequence ¹Tkº1
kD1

. We address Item I on the list, i.e. the allowability of

the sequence, in Lemma 5.1. We now have a fold ray through the points ¹wj º1jD1.

For density of the geodesic ray we use the automorphisms gi related to the Pi .

By ensuring that arbitrarily high powers of these automorphisms (hence matrices)

occur in the sequence, we ensure that the ray passes through points with length

vectors arbitrarily close to the dense set of eigenvectors.

Finally, property (III) on the list, that the fold line is a Lipschitz geodesic,

follows from the fact that every gi is a positive automorphism (see Corollary 3.19).

To extend our proof of Theorem C to Theorems A and B, we prove that for

a generic point y in reduced Outer Space, there exist roses x; z and a “positive”

fold line Œx; z� remaining in reduced Outer Space and so that y 2 Œx; z�. Here

by “positive” we mean that the change of marking from x to z is a positive

automorphism. Moreover, if G is the underlying graph of y and E; E 0 are two

adjacent edges in G, then one may choose Œx; z� so that it contains the fold of the

turn ¹E; E 0º immediately after the point y. This construction is carried out in §6

and elevates the geodesic’s density inRXr= Out.Fr / to density inURXr= Out.Fr /.

Additionally, the geodesic Œx; z� varies continuously as a function of y, as we prove

in §7. Thus, one may adjust the previous argument to prove Theorems A and B,

which we do in §8.
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2. Definitions and background

2.1. Outer Space and the action of Out.Fr/. Culler and Vogtmann introduced

Outer Space in [8]. Points of Outer Space are “marked metric graphs.”

Definition 2.1 (graph, positive edges). A graph will mean a connected 1-dimen-

sional cell complex. V.G/ will denote the vertex set and E.G/ the set of unori-

ented edges. The degree of a vertex v 2 V.G/ will be denoted degG.v/, or deg.v/

when G is clear.

For each edge e 2 E.G/, one may choose an orientation. Once the orientation

is fixed, that oriented edge E will be called positive and the edge with the reverse

orientation xE will be called negative. Given an oriented edge E, i.E/ will denote

its initial vertex and ter.E/ its terminal vertex. A directed graph is a graph G with

a choice of orientation on each edge e 2 E.G/, we call this choice an orientation
on G.

Given a free group Fr of rank r � 2, we choose once and for all a free basis

A D ¹X1; : : : ; Xrº. Let Rr D
Wr

iD1 S
1 denote the graph with one vertex and

r edges, we call this graph an r-petaled rose. We choose once and for all an

orientation on Rr and identify each positive edge of Rr with an element of the

chosen free basis. Thus, a cyclically reduced word in the basis corresponds to an

immersed loop in Rr .

Definition 2.2 (marked metric Fr -graph). For each integer r � 2 we define a

marked Fr -graph to be a pair x D .G; m/ where

� G is a graph such that deg.v/ � 3 for each vertex v 2 V.G/;

� mW Rr ! G is a homotopy equivalence, called a marking.
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A marked metric graph is a triple .G; m; `/ so that .G; m/ is a marked graph

and

� the map `W E.G/ ! RC is an assignment of lengths to the edges. We require

that
P

e2E.G/ `.e/ D 1. The quantity vol.G/ D
P

e2E.G/ `.e/ is called the

volume of G.

Remark 2.3 (a metric graph as a metric space). The assignment of lengths to

the edges does not quite determine a metric on G, but a homeomorphism class of

metrics. This choice is inconsequential in this paper.

Define an equivalence relation on marked metric Fr -graphs by .G; m; `/ �
.G0; m0; `0/ when there exists an isometry 'W .G; `/ ! .G0; `0/ so that m0 is

homotopic to ' ı m.

Definition 2.4 (underlying set of Outer Space). For each r � 2, as a set, the

(rank-r) Outer Space Xr is the set of equivalence classes of marked metric

Fr -graphs.

Remark 2.5. On occasion we may think of graphs with valence-2 vertices as

living in Outer Space by considering them equivalent to the graphs obtained by

unsubdividing at their valence-2 vertices.

Definition 2.6. The simplex � in Xr corresponding to the marked graph .G; m/

is

�.G;m/ D ¹.G; m; `/ 2 Xr j vol.G/ D 1º:

By enumerating the edges of G, we can identify �.G;m/ with the open simplex

SjE j D
°

Ev 2 R
jE j
C

ˇ

ˇ

ˇ

jE j
X

iD1

vi D 1
±

:

Here E D E.G/. We denote this identification by nW �.G;m/ ! SjE j. We call the

open simplex corresponding to .Rr ; id / the base simplex and denote it by �0.

Outer Space has the structure of an ideal simplicial complex built from open

simplices (see [22]), faces of �.G;m/ arise by letting the edges of a tree in G have

length 0.

Definition 2.7 (simplicial metric). Given an open simplex �.G;m/ in Xr , the

simplicial metric on �.G;m/ is defined by ds.`; `0/ D
q

P

e2E.G/.`.e/ � `0.e//2,

for `; `0 2 �.G;m/. We also denote by ds the extension of this metric to a path

metric on Xr .
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Remark 2.8. In §2.4 we define the Lipschitz metric on Xr . The simplicial metric

and Lipschitz metric on Outer Space differ in important ways. However, open

balls with respect to the Lipschitz metric (in either direction, see Remark 2.26)

contain open balls of the simplicial metric. Therefore, a set dense with respect to

the simplicial topology will also be dense with respect to the Lipschitz topology.

Definition 2.9 (unprojectivized Outer Space). [8] The (rank-r) unprojectivized
Outer Space yXr is the space of metric marked Fr -graphs where vol.G/ is not

necessarily 1.

There is a map from yXr to Xr normalizing the graph volume, i.e.

qW R
m
C �! Sm;

.x1; : : : ; xm/ 7�!
� x1

Pm
iD1 xi

; : : : ;
xm

Pm
iD1 xi

�

;
(1)

and taking the point .G; �; `/ to the point .G; �; q.`//.

We call the full preimage under q of a simplex inXr an unprojectivized simplex.

Definition 2.10 (topological Outer Space). [8] The topological space consisting

of the set of equivalence classes of marked metric Fr -graphs, endowed with the

simplicial topology, is called the (rank-r) Outer Space and is also denoted by Xr .

Definition 2.11 (Out.Fr / action). If ˆ 2 Aut.Fr / is an automorphism, let

fˆW Rr ! Rr be a homotopy equivalence corresponding to ˆ via the identification

of E.Rr / with the chosen free basis A of Fr . We define a right action of Out.Fr/ on

Xr . An outer automorphism Œˆ� 2 Out.Fr / acts by ŒG; m; `� � Œˆ� D ŒG; mıfˆ; `�.

Definition 2.12 (reduced Outer Space RXr and Mr ). For each integer r � 2, the

(rank-r) reduced Outer SpaceRXr is the subcomplex ofXr consisting of precisely

those simplices �.G;m/ such that G contains no separating edges. This space is

connected and an Out.Fr /-equivariant deformation retract of Xr .

Let Mr denote the quotient space of RXr by the Out.Fr / action. Hence, Mr

contains a quotient of a simplex for each graph (no longer marked). Note that, as a

result of graph symmetries, simplices in Xr do not necessarily project to simplices

in Mr . Thus, Mr is no longer a simplicial complex but a union of cells which are

quotients of simplices in Xr .

2.2. Train track structures. Much of the following definitions and theory can

be found in [5] or [4], for example. However, it should be noted that some of our

definitions, including that of an illegal turn, are somewhat nonstandard.

Definition 2.13 (regular maps). We call a continuous map f W G ! H of graphs

regular if for each edge e 2 E.G/, we have that f jint.e/ is locally injective and

that f maps vertices to vertices.
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Definition 2.14 (paths and loops). Depending on the context an edge-path in a

graph G will either mean a continuous map Œ0; n� ! G that, for each 1 � i � n,

maps .i � 1; i/ homeomorphically to the interior of an edge, or if the graph G is

directed, a sequence of oriented edges e1; : : : ; en such that ter.ei / D i.eiC1/ for

each 1 � i � n � 1. We may on occasion also allow for e1 and en to be partial

edges. Given any path 
 D e1 � � � en, we will denote its initial vertex, i.e. i.e1/, by

i.
/ and its terminal vertex, i.e. ter.en/, by ter.
/.

A loop ˛ in G is the image of an immersion ˛W S
1 ! G. We will associate to

each loop an edge-path unique up to cyclic ordering.

In a directed graph G, we will call a path directed that either crosses all edges

in a positive direction (a positive path) or crosses all edges in a negative direction

(a negative path). The operation of path concatenation will be denoted by �.

Definition 2.15 (illegal turns and gates). Let f W G ! H be a regular map. Let

e; e0 2 E.G/ be oriented edges with the same initial vertex. We call ¹e; e0º a turn.

We say a turn ¹e; e0º is an illegal turn for f if the first edge of the edge-path f .e/

equals the first edge of the edge-path f .e0/. The property of forming an illegal

turn is an equivalence relation and the equivalence classes are called gates.

Definition 2.16 (train track structures). Let f W G ! H be a regular map. If every

vertex of G has � 2 gates, then we call the partition of the turns of G into gates

a train track structure and say that f induces a train track structure on G. An

immersed path ˛W I ! G will be considered legal with respect to a given train

track structure if it does not contain a subpath eiej where ¹ei ; ej º is an illegal turn.

Remark 2.17. The image of a legal path is locally embedded.

Definition 2.18 (transition matrix). The transition matrix of a regular self-map

f W G ! G is the square jE.G/j� jE.G/j matrix .aij / such that aij , for each i and

j , is the number of times g.ei / passes over ej in either direction.1

We define the transition matrix for an element ˆ 2 Aut.Fr / to be the transition

matrix of fˆ (see Definition 2.11).

2.3. Perron–Frobenius theory. We are particularly interested in positive matri-

ces (defined below) because of their known properties (due to Perron–Frobenius

theory) of contracting the positive cone R
d
C D ¹v 2 R

d j vi > 0; i D 1; : : : dº.

Definition 2.19 (positive matrices, Perron–Frobenius eigenvalues and eigenvec-

tors). We call a matrix A D Œaij � positive if each entry of A is strictly positive. By

Perron–Frobenius theory, we know that each such matrix has a unique eigenvalue

1 This matrix is the transpose of the transition matrix as Bestvina and Handel define it in [5],
but this definition will have a stronger relationship with the change-of-metric matrix we define
later.
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of maximal modulus and that this eigenvalue is real. This eigenvalue is called the

Perron–Frobenius (PF) eigenvalue of A. It has an associated eigenvector whose

entries are each strictly positive. We call the eigenvector with strictly positive en-

tries and such that all entries sum to one the Perron–Frobenius (PF) eigenvector.

Definition 2.20 (weak convergence). A sequence ¹Akº1
kD1

of d � d matrices,

restricted to vectors in R
d
C, converges weakly if the sequence ¹Ak.Rd

C/º1
kD1

con-

verges projectively to a point.

Remark 2.21. Perron–Frobenius theory also tells us that, for a positive matrix M ,

the sequence ¹M kº1iD1 weakly converges to the line spanned by the PF eigenvector.

2.4. The Lipschitz metric

Definition 2.22 (difference in markings). Let x D .G; m; `/ and y D .G0; m0; `0/

be two points in Xr . Denote by hW G ! Rr a homotopy inverse of m. A difference
in markings is a linear map f W G ! G0 homotopic to m0 ı h.

Definition 2.23 (stretch). Let ˛ be a conjugacy class in Fr , equipped with a free

basis A. By abuse of notation we may think of ˛ as an immersed loop ˛W S
1 ! Rr

in Rr via the identification of the edges of Rr with A. For x D .G; m; `/ 2 Xr , let

˛x denote the unique immersed simplicial loop in G homotopic to m.˛/.

Given a conjugacy class ˛ in Fr and x 2 Xr , we define l.˛; x/ as the length

of ˛x. (Notice that since ˛x is a simplicial loop in x, its length does not depend

on the particular metric structure chosen for x, see Remark 2.3). For x; y 2 Xr

define the stretch of ˛ from x to y as st˛.x; y/ WD l.˛;y/
l.˛;x/

:

The following theorem is attributed to either White or Thurston. It can be

found in [1] or [12].

Theorem 2.24. Given a continuous map f of metric spaces, let Lip.f / denote
the Lipschitz constant for f . Then for each pair of points x; y 2 Xr , we have

inf¹Lip.f / j f W x ! y is a difference in marking º D sup¹st˛.x; y/ j ˛ 2 Frº.
(2)

Moreover, both the infimum and supremum are realized.

Definition 2.25 (Lipschitz metric). The Lipschitz metric d.x; y/ is defined as the

log of either of the quantities in Equation 2. This function is not symmetric but

satisfies the other axioms of a metric [4].

A difference in marking that achieves the minimum Lipschitz constant of (2)

is called an optimal map. A loop that achieves the maximum stretch is called a

witness. For each x; y 2 Xr there exist optimal maps and witnesses.
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Remark 2.26. An open ball based at x with radius R is either

B!.x; R/ D ¹y 2 Xr j d.x; y/ < Rº or B .x; R/ D ¹y 2 Xr j d.y; x/ < Rº:

In either case, the simplicial topology is equal to the Lipschitz topology.

For a given difference of marking f , the subgraph of G where the Lipschitz

constant is achieved is called the tension graph, usually denoted �f . Notice that f

induces a train track structure on �f . Proposition 2.27 gives one way to identify

witnesses.

Proposition 2.27 ([3]). Let x and y be two points in Xr , let f W x ! y be a map,
and let �f be the tension graph of f . If �f contains a legal loop, then f is an
optimal map and any legal loop in �f is a witness. Conversely, if ˛ � x is a
witness, then it is a legal loop in �f .

Proposition 2.28. Let f W x ! y and gW y ! z be difference in markings maps.
Let ˛ be a conjugacy class in Fr satisfying that ˛x is f -legal and contained in �f

and that ˛y is g-legal and contained in �g . Then d.x; z/ D d.x; y/ C d.y; z/.

Proof. Since ˛x is contained in �f , the map f stretches each edge of ˛x by �f D
Lip.f /. Moreover, since ˛x is f -legal, l.˛; y/ D �f � l.˛; x/. Similarly, if �g D
Lip.g/, then l.˛; z/ D �g � l.˛; y/ D �f �g � l.˛; x/. Thus, st˛.x; z/ D �f �g and

therefore d.x; z/ � log.�f �g/. By Proposition 2.27, ˛x and ˛y are both witnesses,

hence d.x; y/ D log.st˛.x; y// D log.�f / and d.y; z/ D log.st˛.y; z// D
log.�g). Thus, we have d.x; z/ � log.�f / C log.�g/ D d.x; y/ C d.y; z/. The

triangle inequality gives us an equality. �

3. Fold paths and geodesics

In this section we introduce fold lines and prove results that will allow us to con-

struct Lipschitz geodesics from certain infinite sequences of nonnegative matrices

(unfolding matrices).

Definition 3.1 (unparametrized geodesic). Let I � R be a generalized interval

in R. An unparametrized geodesic in Xr is a map �W I ! Xr satisfying that

(1) for each s < r < t , we have d.�.r/; �.t// D d.�.r/; �.s// C d.�.s/; �.t//

and

(2) there exists no nontrivial subinterval I 0 � I and point x0 2 Xr such that

�.t/ D x0 for each t 2 I 0.
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Remark 3.2. If � is an unparametrized geodesic then there exists a generalized

interval I 0 and a homeomorphism hW I 0 ! I so that � ı h is an honest directed

geodesic, i.e. for all s < t , we have that d.� ı h.s/; � ı h.t// D t � s.

Again A D ¹X1; : : : ; Xrº will denote a fixed free basis of Fr .

Definition 3.3 (fold automorphism). By a fold automorphism we will mean a “left

Nielsen generator,” i.e. an automorphism of the following form (i ¤ j ):

ˆij .Xk/ D

´

Xj Xk for k D i;

Xk for k ¤ i:
(3)

To a fold automorphism one can associate a matrix.

Definition 3.4 ((un)folding matrix). Let i ¤ j 2 ¹1; : : : ; rº. Then the .i; j /

folding matrix Tij has entries tkl , where

tkl D

8

ˆ

<

ˆ

:

1 if k D l;

�1 if .k; l/ D .i; j /;

0 otherwise.

(4)

Notice that Tij is not the transition matrix of ˆij , though it will relate to

the change-of-metric matrix coming from a folding operation. The matrix Tij

is invertible and we call Mij WD T �1
ij the .i; j / unfolding matrix. The entries of

Mij are mkl , where

mkl D

´

1 if k D l or .k; l/ D .i; j /;

0 otherwise.
(5)

Notice that the nonnegative matrix Mij is the transition matrix of ˆij . We hence

sometimes write M.ˆij / for this matrix.

Definition 3.5 (combinatorial fold). Let G be a graph whose oriented edges are

numbered. Let .ek; ej / be a pair of distinct oriented edges with i.ek/ D i.ej /.

A combinatorial fold is a tuple .G; .ek; ej /; G0; f / where G0 is a graph and f W G !
G0 is a quotient map that identifies an initial segment of ek with an initial segment

of ej .

(1) When f identifies part of ek with all of ej we will call it a proper full fold.

We will call this tuple “folding ek over ej .”

(2) When f identifies all of ek with all of ej we will call it a full fold and say

that “ek and ej are fully folded.”

(3) When f identifies a proper segments of ek and ej we will call it a partial
fold and say that “ek and ej are partially folded.”
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Notation We sometimes suppress some of the data depending on the context. We

will denote the combinatorial fold by f or G * G0 or .G; .ei ; ej // depending on

which data we want to emphasize.

Definition 3.6 (combinatorial folds of fold automorphisms and the induced enu-

meration). Let G be the r-rose with an enumeration on its oriented edges, then

the fold automorphism ˆij induces a combinatorial fold, which by abuse of no-

tation we also denote ˆij . The target graph G0 is also a rose and ˆij induces an

enumeration of the edges of G0 by declaring the edge ˆij .ek/ to be the kth edge

for each k ¤ i and calling the remaining edge of G0 the i th edge.

Definition 3.7 (direction matching folds). Let G be an oriented graph. A combi-

natorial fold .G; .ei ; ej // is direction matching if e1 and e2 are either both negative

edges (we then call f negative) or both positive edges (we then call f positive).

Observation 3.8. Let G be an oriented graph and f W G * H a direction matching

combinatorial fold, then f induces an orientation on the edges of H . Moreover,

f maps each positive edge of G to a positive edge-path in H (of simplicial length

� 2).

Definition 3.9 (allowable folds). Let x0 D .G; m; `/ be a point in Outer Space.

The fold .G; .e; e0// is allowable in x0 if the following two conditions hold:

(1) `.e/ � `.e0/;

(2) if ter.e/ D ter.e0/, then `.e/ > `.e0/. In this case this is a proper full fold.

Let G be a rose with its edges enumerated. This enumeration induces a

homeomorphism n� W �.G;m/ ! SjE j. We write �
.i;j /

.G;m/
for the set where ˆij is

allowable.

Lemma 3.10. Let O�0 be the unprojectivized base simplex and let ˆ be a fold
automorphism. Assume the edges of Rr have been enumerated, let n0W O�0 ! R

r
C

be the induced identification, and let n1 be the identification induced from n0 by ˆ

(See Definition 3.6). Then for each x 2 O�1 we have n1.x/ D n0.x �ˆ�1/ (as defined
in Definition 2.11).

If a fold .G; .e; e0// is allowable at a point x0 in Outer Space, one can construct

a path ¹ Oxtºt2Œ0;1� in unprojectivized outer space, called a “fold path.” This is done

by identifying initial segments of e and e0 of length t`0.e0/, for 0 � t � 1. The

quotient map ft;0W Ox0 ! Oxt is a homotopy equivalence, as are the quotient maps

ft;s for 0 � s � t � 1. By projectivizing we get a path ¹xtº in Outer Space.
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Definition 3.11 (basic fold paths). Given an allowable fold as above, the path

FW Œ0; 1� ! Xr defined by t 7! xt is the fold path in Xr starting at x0 and defined
by folding e over e0. The path t ! Oxt will be called the (unprojectivized) basic
fold path. We will not always use the hat notation when discussing unprojectivized

paths but will mention whether the image lies inXr or yXr , if it is otherwise unclear.

Definition 3.12 (change-of-metric matrix). Let G; G0 be graphs and assume we

have numbered their oriented edges. Let ‰ be a linear map from a subset of the

unprojectivized simplex O�.G;�/ to the unprojectivized simplex O�.G0;�0/. Then ‰

may be represented by an jE.G0/j � jE.G/j matrix. This matrix will be called the

change-of-metric matrix.

Lemma 3.13. Let ˆ be an allowable fold automorphism on the point x0 D
.Rr ; m; `/ and suppose the edges of Rr have been numbered so that ˆ D ˆij .
Let x1 be the folded graph and suppose O�0 and O�1 are unprojectivized open
simplices containing respectively x0 and x1. The change-of-metric matrix for the
fold operation from n0. O� .i;j /

.R;m/
/ to n1. O�.R;ˆım// is the matrix Tij of Definition 3.4.

Definition 3.14 (fold paths). A fold path FW Œ0; k� ! Xr is a path in Xr that may

be divided into a sequence of basic fold paths ¹Fiº
k
iD1 as in Definition 3.11, so that

Fi .1/ D FiC1.0/ for each i . As above, we will denote by xt D .Gt ; mt ; `t / the

points of the path in Xr . The maps ft;s for s; t 2 Œ0; k� will be defined similarly as

above.

If F is a fold path from F.0/ D x to F.k/ D y we sometimes denote it by

FW x * y.

The following Lemma follows from Lemma 3.13 and its proof is left to the

reader.

Lemma 3.15. Let f1; : : : ; fk be a sequence of combinatorial proper full folds,
with associated change-of-metric matrices T1; : : : ; Tk having respective inverse
matrices M1; : : : ; Mk. Suppose that v 2 M1 � � � Mk.Rr

C/. Then the combinatorial
fold fl is allowable in the metric graph n�1

l�l
.Tl�l � � � T1.v//, for each 2 � l � k

(and any marking). Furthermore, applying f1; : : : ; fk to x0 2 �0 will result in the
point n�1

k
.Tk � � � T1.n0.x0/// of the simplex �.Rr ;fkı���ıf1ım/.

Lemma 3.16. Let ¹Diº
1
iD1 denote a sequence of nonnegative invertible ma-

trices such that, for each i 2 N, there exist some integer n > i such that
DiDiC1 � � � Dn�1Dn is strictly positive. Then there exists a vector w0 2 R

r
C so

that, if we define wlC1 WD D�1
lC1

wl , for each l , then each wl is a positive vector.
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Proof. Let R
r
C denote the set of vectors with nonnegative entries, and recall the

map q from Equation 1. Let i1 be such that D1 � � � Di1 is strictly positive and let

M1 D D1 � � � Di1 . Recursively define ik so that Dik�1C1 � � � Dik is strictly positive

and let Mk D Dik�1C1 � � � Dik . Let I D
T1

kD1 M1 � � � Mk.Rr
C/. Note that

I �
1
\

kD1

M1 : : : Mk.Rr
C/ �

1
\

kD1

q.M1 : : : Mk.Rr
C//:

The right-most intersection is nonempty since it is an intersection of nested com-

pact sets. Moreover, I � M1.Rr
C/ � R

r
C. Choose w0 2 I. Given l 2 N, let

k 2 N be such that ik�1 < l � ik . Since w0 2 I � M1 � � � Mk.Rr
C/, we have that

M�1
k

� � � M�1
1 w0 is a strictly positive vector. Hence, since each Di is a nonnega-

tive invertible matrix, wl D DlC1 � � � Dik M�1
k

� � � M�1
1 w0 2 DlC1 � � � Dik .Rr

C/ �
R

r
C. �

Corollary 3.17. Let ¹fiº
1
iD0 be a sequence of combinatorial proper full folds of

the r-rose, with associated change-of-metric matrices ¹Tiº
1
iD0 having respective

inverse matrices ¹Diº
1
iD0. Suppose that for each i 2 N, there exist some integer

n > i such that DiDiC1 � � � Dn�1Dn is strictly positive. Then there exists a
vector w0 2 R

r
C so that the infinite fold sequence ¹fiº

1
iD0 is allowable in the rose

x0 D n�1
0 .w0/.

Proposition 3.18. Let ¹Fi W xi * xiC1ºk
iD0 be a sequence of fold paths with fold

maps ¹fs;tºs�t�0. Suppose there is a conjugacy class ˛ in Fr satisfying that,
for each i , the realization ˛xi

of ˛ in xi is legal with respect to the train track
structure induced by fiC1;i . Then the corresponding fold path Im.F/ D ¹xtºt2Œ0;k�

is an unparametrized geodesic, i.e. for each r � s � t in Œ0; k�, we have
d.xr ; xt / D d.xr ; xs/ C d.xs ; xt /.

Proof. The proof uses Propositions 2.27 and 2.28 and is left to the reader. �

Suppose y0 is a graph and f0W y0 * y1 is direction matching, then by Obser-

vation 3.8, we have that y1 inherits an orientation such that the image of each edge

is a positive edge-path (see Definition 2.14).

Corollary 3.19. Let y0 be a directed metric r-rose graph with length vector
v and let ¹fi W yi * yiC1ºiDk

iD0 be an allowable sequence of proper full folds.
Suppose that for each i D 0; : : : ; k � 1 the fold fiC1 is direction matching with
respect to the orientation of yiC1 inherited by fi . For each 0 � i � k, let
¹Fi W yi * yiC1º denote the fold path determined by ¹fiº. Then the corresponding
fold path Im.F/ D ¹ytºt2Œ0;k� is an unparametrized geodesic.
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Proof. Without generality loss we can assume that the marking on Rr is the

identity. Then, by Proposition 3.18, it suffices to show that there exists a conjugacy

class ˛ in Fr satisfying that, for each i , the realization ˛yi
of ˛ in yi is legal with

respect to the train track structure induced by the map fi . We claim that this holds

for the conjugacy class ˛ of a positive generator X1. By induction suppose that

˛yi
is a positive loop. Since fi maps positive edges to positive edge-paths, ˛yiC1

is also a positive loop. Since fiC1 is direction matching, ˛yiC1
is fiC1-legal and

positive. �

4. Brun’s algorithm and density of Perron–Frobenius eigenvectors

We introduce fibered systems so that we can use an algorithm of Brun to prove,

in Theorem 4.14, that the sequence of Brun matrices converge weakly for a full

measure set of points. These matrices are unfolding matrices, which will be

significant for proving Theorems A, B, and C in the next sections.

4.1. Fibered systems. The following definitions are taken from [19].

Definition 4.1 (fibered systems). A pair .B; T / is called a fibered system if B is a

set, T W B ! B is a map, and there exists a partition ¹B.i/ j i 2 I º of B such that

I is countable and T jB.i/ is injective. The sets B.i/ are called time-1 cylinders.

Definition 4.2 (time-s cylinder). For each x 2 B , one can define a sequence

ˆ.x/ D .i1.x/; i2.x/; : : : / 2 I N by letting is.x/ D i () T s�1x 2 B.i/: In

other words, is.x/ tells us which cylinder T s�1x lands in. Then a time-s cylinder
is a set of the form

B.i1; : : : ; is/ D ¹x 2 B j i1.x/ D i1; : : : ; is.x/ D isº:

From the definitions we have B.i1; : : : ; isC1/ D B.i1; : : : ; is/ \ T �sB.isC1/.

4.2. The unordered Brun algorithm in the positive cone. The following algo-

rithm (commonly referred to as Brun’s algorithm) was introduced by Brun [7] as

an analogue in dimensions 3 and 4 of the continued fractions expansion of a real

number. It was later extended to all dimensions by Schweiger in [18].

Definition 4.3 (Brun’s (unordered) algorithm). Brun’s unordered algorithm is the

fibered system .C n; T / defined on

C n D R
n
C D ¹.x1; : : : ; xn/ 2 R

n
C j xi � 0 for all 1 � i � nº

by
T W C n �! C n;

.x1; : : : ; xn/ 7�! .x1; : : : ; xm�1; xm � xs; xmC1; : : : ; xn/;
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where
m.x/ WD min¹i j xi D max

1�j�n
xj º;

s.x/ WD min¹i ¤ m.x/ j xi D max
1�j¤m.x/�n

xj º:

In other words, for each x D .x1; : : : ; xn/ 2 C n, we have that m.x/ is the first

index that achieves the maximum of the coordinates and s.x/ is the first index that

achieves the maximum of all of the coordinates except for m.x/.

Notice that, letting .i; j / D .m.x/; s.x//, the transformation T is just left

multiplication by the matrix Ti;j from Definition 3.4. Then, given a vector v0 D
.x1; : : : ; xn/ 2 C n with rationally independent coordinates, one obtains an infinite

sequence

¹vk D .xk
1 ; : : : ; xk

n /º1kD1 � C n;

where vkC1 is recursively defined by vkC1 D Tm.vk/;s.vk/vk.

Definition 4.4 (Brun sequence). In light of the above, the sequence for Brun’s

unordered algorithm (which we call the Brun sequence) will consist of the ordered

pairs Eks D .is ; js/, where .is; js/ D .m.vs/; s.vs//. Further, the sequence

‚.x/ D ¹ Eksº
1
sD1 will determine a sequence of folding matrices, which we denote

by ¹T x
s º1sD1, where T x

s D T Eks.x/
. We let ¹M x

s º1sD1 denote the corresponding

inverses, i.e. the unfolding matrices. We denote their finite products by

Ax
s D M x

1 M x
2 � � � M x

s for each s 2 N: (6)

Then, as above, for each v0 2 C n, we have a sequence of vectors ¹vsº
1
sD1 � C n,

where vsC1 D T vs D T
v0

sC1vs. Thus, vs D M
v0

sC1vsC1, and hence v0 D A
v0
s vs. So

v0 2
1
\

sD1

Av0
s .C n/: (7)

This fact will become particularly important in the proof of Theorem 4.14, hence

Theorem D.

Definition 4.5 (Brun matrix). For each vector v0 2 C r , we call each matrix

Av0
n D M

v0

1 � � � M v0
n (8)

a Brun matrix. We let Br denote the set of r � r Brun matrices.

Remark 4.6. When it is clear from the context, we may leave out reference to the

starting vector v0 and simply write As, Ts , Ms , etc.
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Proposition 4.7. Let Yr be the set of rationally independent vectors in C r , then
for each x 2 Yr there exists an N 2 N so that Ax

n is a positive matrix for each
n > N .

Proof. We fix v0 and omit the index v0 from the notation below. We first prove

that, for each i , and for each h 2 N, there exists some m > h and some j such that
Ekm D .i; j /. Starting with vh and until .vm/i becomes the largest coordinate, at

each step one subtracts a number � .vm/i D .vh/i from some coordinate � .vm/i .

This can only happen a finite number of times before each coordinate apart from

.vm/i becomes less than .vm/i D .vh/i .

Consider An as in (6). To prove the proposition, it suffices to show that, for

each .i; j /, there exists a large enough N so that for all n > N the .i; j /-th entry

of An is positive. In fact, it is enough to show that this entry is positive for some

An. Indeed AnC1 is obtained from An by adding one of its columns to another one

of its columns, so that an entry positive in An, will be positive in AnC1.

Fix i; j . Let

a D min¹t j Ekt D .i; c/ for some cº;

b D min¹t > a j Ekt D .j; d/ for some dº:

Let c1 be such that Eka D .i; c1/. Observe that, since c1 is the second largest

coordinate in va, in the next vector vaC1, either i is still the largest coordinate or

c1 becomes the largest coordinate. There is some N1 � 1 and some index c2 so

that

AaCN1
D Aa�1M

N1

.i;c1/
M.c1;c2/:

We continue in this way, An D Aa�1M
N1

.i;c1/
M

N2

.c1;c2/
M

N3

.c2;c3/
� � � M Nt

.ct ;ctC1/
. When

n D b, we have that ct D j . Thus, for n D b � 1, we have

Ab�1 D Aa�1M
N1

.i;c1/
M

N2

.c1;c2/
M

N3

.c2;c3/
� � � M Nt

.ct ;j /
:

It is elementary to see that the .i; j /-th entry of M
N1

.i;c1/
M

N2

.c1;c2/
M

N3

.c2;c3/
� � � M Nt

.ct ;j /

is positive. This implies that the .i; j /-th entry of Ab�1 is positive. �

4.3. Other versions of Brun’s algorithm. To use the results of Schweiger’s

books, we must give two other different, but related, versions of Brun’s algorithm.

Definition 4.8 (Brun’s ordered algorithm). Brun’s ordered algorithm is the fibered

system .�n; T 0/ defined on �n WD ¹x 2 C n j x1 � � � � � xnº by

T 0W �n �! �n;

.x1; : : : ; xn/ 7�! .x2; : : : ; xi�1; x1 � x2; xi ; : : : ; xn/;
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where i D i.x/ � 2 is the first index so that x1 � x2 � xi and, if there is no such

index, we let i.x/ D n. The time-1 cylinders are

�n.i � 1/ D ¹x j xi�1 > x1 � x2 � xiº:

Notice that the transformation T 0 is just left multiplication by the matrix T1;2,

followed by a permutation matrix that we denote Pi , determined by the cylinder

�n.i/. (We denote PiT1;2 by T 0i and its inverse by M 0
i .) Hence, given a sequence

of indices !.x/ D .i1; i2; : : : / with 2 � ij � n for each ij , one obtains a sequence

of matrices ¹T 0ij º1jD1. Given v0 2 �n.i1; : : : ; im/, this gives a sequence of points

v0; : : : ; vm 2 �n such that vkC1 D T 0ij vk for each 1 � k � m � 1. The fibered

system sequence here will be !.x/ D .i1; i2; : : : / when

x 2
1
\

mD1

�n.i1; i2; : : : ; im/:

If !.x/ D .i1; i2; : : : /, we define

Ax
k D M 0

i1
� � � M 0

ik
(9)

for each k 2 N.

Definition 4.9 (Brun’s homogeneous algorithm). Brun’s homogeneous algorithm
is the fibered system .Bn; T 0/ defined on

Bn D ¹x 2 R
n j 1 � x1 � x2 � � � � � xn � 0º

and where T 0W Bn ! Bn is such that the following diagram commutes:

�nC1

p

��

T 0
// �nC1

p

��

Bn
T 0

// Bn

where pW �nC1 � ¹0º ! Bn is defined by

p.x1; : : : ; xnC1/ D
�x2

x1

; : : : ;
xnC1

x1

�

: (10)

We denote the time-1 cylinders by Bn.i/.

4.4. Relating the algorithms

Definition 4.10. Let OW C n ! �n be defined by

.x1; : : : ; xn/ 7! .xi1 ; : : : ; xin/

where xi1 � xi2 � � � � � xin . Note that for a particular x, O.x/ is a permutation.
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Lemma 4.11. For each x 2 C n and for each m 2 N, there exist permutation
matrices Pi1; Pi2 so that

Ax
m D Pi1.AO.x/

m /0Pi2 :

Proof. This follows from the following commutative diagram:

C r

O

��

T
// C r

O

��

�r T 0
// �r

:

�

Corollary 4.12. For each x 2 C n and for each m 2 N, we have that Ax
m is a

positive matrix if and only if .A
O.x/
m /0 is a positive matrix.

Corollary 4.13. For each irrational x 2 �n there exists an N so that .Ax
n/0 is

positive for all n > N .

Proof. This follows from Proposition 4.7 and Corollary 4.12. �

4.5. Weak convergence and consequences. Recall the definitions of the .r �1/-

dimensional simplex Sr in Definition 2.6 and the projection map qW C r ! Sr

of Equation 1. We will show that for each r � 2, the set of Perron–Frobenius

eigenvectors for the transition matrices of positive automorphisms in Aut.Fr / is

dense in the simplex Sr .

It is proved in [19, Theorem 21, p. 5] that Brun’s ordered algorithm is er-

godic, conservative, and admits an absolutely continuous invariant measure. The

proof uses Rényi’s condition, which further says that the measure is equivalent

to Lebesgue measure. We are very much indebted to Jon Chaika for pointing out

to us that we could use the ergodicity of Brun’s algorithm to prove the following

theorem.

Theorem 4.14. There exists a set K � Sr of full Lebesgue measure such that for
each x 2 K

1
\

jD1

Ax
j .Rr

C/ D spanRC
¹xº: (11)

Remark 4.15. Before proceeding with the proof, we explain what we saw as

an impediment to proving that the PF eigenvectors are dense in a simplex. It is

possible to have a sequence of invertible positive integer d x d matrices ¹Miº
1
iD1

so that
1
\

kD1

M1 � � � Mk.Rd
C/
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is more than just a single ray. The existence of such sequences of matrices was

proved in the context of non-uniquely ergodic interval exchange transformations.

There are several papers on the subject (including [15], [14], [21], [17]). Because

it may not be straightforward to the reader outside of the field, we briefly explain

how [14] implies the existence of such a sequence.

We consider a sequence of pairs of positive integers ¹.mk; nk/º1
kD1

satisfying

the conditions of [14, Theorem 5]. We look at

1
\

kD1

Am1;n1
Am2;n2

� � � Amk ;nk
.Rd
C/;

as defined on p. 191. Keane explains on p. 191 that the product of any two successive

Ami ;ni
is strictly positive and that always det.Amk;nk

/ D 1. We let Bk D

Am1;n1
Am2;n2

� � � Amk ;nk
. Keane [14] projectivizes Bk to QBk, so that QBk is a map

of the 3-dimensional simplex S4. By Lemma 4, ¹ QBk.0; 1; 0; 0/º1
kD1

is a sequence

of vectors converging to a vector whose 2nd entry is at least 1
3
. By Lemma 3 (when

Theorem 5(ii) holds), ¹ QBk.0; 0; 1; 0/º1
kD1

is a sequence of vectors converging to a

vector whose 3rd entry is at least 7
10

. But 1
3

C 7
10

> 1 and we have assumed that

we are in S4. So these limits must be distinct vectors.

Proof of Theorem 4.14. Choose any N -cylinder � WD �r .i1; : : : iN / such that the

corresponding matrix Z WD A0N is positive (see Corollary 4.13). Let x� WD p.�/.

Then �. x�/ > 0, where � is the Lebesgue measure on Br . Since xT 0 W Br ! Br

is ergodic with respect to the Lebesgue measure, by Birkhoff’s Theorem, there

exists a set xK � Br such that �. xK/ D 1 and so that for each Nx 2 xK the set

J. Nx/ WD ¹n 2 N j xT 0n. Nx/ 2 x�º is infinite.

We let K 0 WD p�1. xK/. Then for each x0 2 K 0 the set I.x0/ WD ¹n 2 N j
.T 0/n.x0/ 2 �º is infinite, as n 2 I.x0/ if and only if n 2 J.p.x0//.

Let K 00 WD O�1.K 0/ � R
r
C. If x 2 K 00, then O.x/ 2 K 0, and hence for each

n 2 I.O.x// we have

.T 0/n.O.x// 2 �:

Let s 2 N be arbitrary. Consider the first s integers ¹j1; : : : ; jsº in I.O.x//

satisfying that any difference between two of these numbers is > N (where N

came from the original N -cylinder we started with). Let N1 � js C N C 1. Then,

for each m > N1,

.AO.x/
m /0 D D1 � � � Dj1�1ZDj1CN � � � Dj2�1 � � � Djs�1ZDjsCN � � � Dm;

where Z is the positive matrix that we started with and the Di are the M 0
i ’s of

Brun’s ordered algorithm. The matrix Z appears in this product s times. By

Lemma 4.11, for each x 2 K 00 and each m 2 N, there exist permutation matrices

Pi1 ; Pi2 so that

Ax
m D Pi1.AO.x/

m /0Pi2 :
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Hence, for this arbitrary s we have found an N1.s/ 2 N so that for all m > N1,

Ax
m D P1D1 � � � Dj1�1ZDj1CN � � � Dj2�1 � � � Djs�1ZDjsCN � � � DmP2;

where Z appears in this product at least s times and the other matrices in this

product are all invertible nonnegative integer matrices. Then, by [6] (see also [11,

Corollary 7.9]), Equation 11 holds true for each x 2 K 00.

Let qW R
r
C ! Sr be the projection to the simplex in the positive cone (see

Equation 1) and let �0 be the Lebesgue measure on Sr . Define K WD q.K 00/. Then,

since �. xK/ D 1, we arrive at �0.K/ D 1, as desired. �

Definition 4.16. Recall Br from Definition 4.5, we let Pr be defined as

Pr WD ¹vPF 2 Sr j vPF is the PF eigenvector

for some positive Brun matrix M 2 Brº:

Definition 4.17. Suppose

A D Mi1;j1
� � � Min;jn

2 Br : (12)

Then each Mik ;jk
is an unfolding matrix as in (5) and we can associate to it the fold-

automorphism fikjk
(see Definition 3.3). Notice that Mik ;jk

is in fact the transition

matrix for fikjk
. To each A 2 Br as in (12) we associate the automorphism

gA D fin;jn
ı � � � ı fi1;j1

; (13)

whose transition matrix is A. We also call this automorphism gv , where v is the

PF eigenvector of A.

Theorem D. For each r � 2, let S r
l1

denote the set of unit vectors according to
the l1 metric in R

r
C. The set of Perron–Frobenius eigenvectors of matrices arising

as the transition matrices of positive automorphisms in Aut.Fr/ is dense in S r
l1

.

Proof. It will suffice to show that Pr is dense. By Theorem 4.14, we know that

Brun’s algorithm weakly converges on a dense set of points K � Sr . Thus,

given any x 2 Sr and " > 0, there exists some x0 2 B.x; "
2
/ \ K on which

Brun’s algorithm weakly converges. Hence, there exists some N such that, for

each n � N , we have that q.Ax0

n C r/ � B.x0; "
2
/. By possibly replacing N with a

larger integer, we can further assume that the Ax0

n are positive (see Proposition 4.7),

so have PF eigenvectors. And the PF eigenvector vn for each Ax0

n is contained

in Ax0

n C r and hence is in B.x0; "
2
/. Hence, there exists a vi 2 Pr such that

d.vi ; x/ < ". �
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5. Dense Geodesics in theta complexes

In this section we construct a geodesic ray dense in the theta Tr subcomplex

whose top-dimensional simplex has underlying graph as in the right-hand graph

of Figure 1. One could consider this a warm-up to the proof of Theorem B

or interesting in its own right, as this is the minimal connected subcomplex

containing the projection of the Cayley graph for Out.Fr /.

5.1. Construction of the fold ray. We enumerate the vectors in Pr from Defini-

tion 4.16 as ¹viº
1
iD1. For each i there exists a positive matrix Avi

in Br so that vi is

the PF eigenvector of Avi
. Further, there exists an automorphism gvi

correspond-

ing to Avi
(Display 13). We also enumerate all possible fold automorphisms, as in

(3), by h1; : : : ; hr.r�1/.

We construct a sequence that contains each gk
vi

ı hj with i; k; j 2 N:

gv1
ı h1; gv2

ı h1; g2
v1

ı h2; g3
v1

ı h3; g2
v2

ı h2; gv3
ı h1; gv4

ı h1 : : : (14)

Decompose each gvi
in (14) according to (13), to obtain an infinite sequence of

fold automorphisms

¹ˆkº1kD1: (15)

For example, if gv1
D fin;jn

ı � � � ı fi1;j1
then ˆ1 D h1, ˆ2 D fi1;j1

, ˆ3 D fi2;j2
,

etc. We denote by G1 the r-rose whose positive edges are identified with the

chosen basis. This identification induces an enumeration of the edges. Using

Definition 3.6, ˆ1 can be represented by the combinatorial fold f1. The target

graph G2 is topologically an r-rose and it inherits an orientation and an enumer-

ation of edges. Thus we may continue inductively to define the combinatorial

fold fkW Gk�1 ! Gk. The enumeration of edges induces the homeomorphism

nk W O�.Gk ;fkı���ıf1/ ! Sr .

Lemma 5.1. Let �0 be the base simplex, then there exists a point x0 2 �0

so that, for each k � 0, the fold fkC1 is allowable in the folded rose after
performing the sequence of folds f1; : : : ; fk. Moreover, this folded rose is xk D
n�1

k
.Tk ı � � � ı T1.n0.x0/// in the cone O�.G;fkı���ıf1ım/.

Proof. This follows from Corollary 3.17. Note that the positivity condition follows

from the positivity of the matrices Avi
. �

Remark 5.2. [11, Corollary 7.9] implies the metric on x0 is unique, as the same

positive matrix occurs in infinitely many of the products Mi1 � � � Mik .

Definition 5.3 (R). We let R denote the infinite fold ray (Definition 3.14) initiating

at x0 and defined by the sequence of folds ¹fiº as constructed above.
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Theorem C. For each r � 2, there exists a dense fold ray in Tr that projects to a
dense Lipschitz geodesic fold ray in Tr= Out.Fr /.

Proof. We recall R from Definition 5.3. It is clear that R is contained in Tr . R is

a geodesic ray by Corollary 3.19.

First recall that the simplicial and Lipschitz metrics on Xr induce the same

topology on Xr . Hence, it suffices to prove density in the simplicial metric.

Let Na 2 Tr= Out.Fr / and let " > 0 be arbitrary. Lift Na to a point a 2 Tr in the

interior of a top dimensional simplex � . Let y 2 � be a point such that ds.a; y/ < ",

and so that its coordinates are rationally independent. The point y lies on a fold

line Fi;j from a point x on one face of � to a point z in another face. Without

generality loss assume z 2 �0, the base simplex. Moreover, without generality

loss assume the combinatorial fold is f1;2. Let e01; : : : ; e0r denote the edges of Rr

as numbered in �0. Enumerate the edges of G� , the underlying graph of � , as

e1; : : : erC1, so that if cW G� ! Rr is the map collapsing e2 in G� , then c.e1/ D e01
and c.ei / D e0i�1 for each i � 3. We parameterize the path Œx; z� as an unfolding

path O
1;2.z; t / in unprojectivized Outer Space as follows. Let � D n0.z/ 2 Sr ,

then

n� . O
1;2.z; t // D .�1 C t; t; �2 � t; �3; : : : ; �r/:

We note that z D O
1;2.z; 0/, x D 1
1��2

O
1;2.z; �2/, and for some 0 < t0 � �2

we have y D 1
1�t0

O
1;2.z; t0/. Since the function 
1;2.z; t / D 1
1�t


1;2.z; t / is

continuous when t is bounded away from 1, there exists an "0 > 0 so that for

each w 2 B.z; "0/, the path 
1;2.w; t/ passes through B.a; "/.

Now, by the density of PF eigenvectors (Theorem D), there exists a vector

vi 2 Pr such that vi 2 n0.B.z; "0//. Let "00 > 0 be such that n0.B.z; "0// contains

B.vi ; "00/. Let K be large enough so that q.Ak
vi

.Rr
C// � B.vi ; "00/ for all k > K.

Let ‰k be the composition of ˆ1; ˆ2; : : : from Display 15 up to the first fold

automorphism in the decomposition of gk
vi

. Choose k > K so that the last fold

automorphism in ‰k is ˆ1;2. Let zk be the rose-point inR directly after performing

the fold sequence of ‰k . Let xk be the rose-point directly before zk.

We claim that R � ‰�1
k

is "-close to a. To see this recall that directly after zk

in R we perform the folds corresponding to gk
vi

. Let wk be the rose-point in R

directly after these folds and let ns; nm be the appropriate identifications of the

simplices containing zk and wk with Sr . Then ns.zk/ D Ak
vi

.nm.wk//. Hence

ns.zk/ is "00-close to vi . Thus ns.zk/ is "0-close to n0.z/.

The point zk is in �0 �‰k . Hence, by Lemma 3.10, n0.zk �‰�1
k

/ D ns.zk/. Thus

the fold path Œxk ; zk� � ‰�1
k

, which is a path induced by the fold ˆ1;2, satisfies that

its endpoint, zk � ‰�1
k

, is "00-close to z. Thus, this fold line intersects B.a; "/, as

desired. �
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6. Finding a rose–to–graph fold path terminating at a given point

This section is the first step in our expansion of our methods of Section 5 to obtain

a dense geodesic ray in the full quotient of reduced Outer Space.

In this section and in the next one, we find, for a dense set of points y in reduced

Outer Space, roses x; z so that y 2 Œx; z� and the difference in marking map x ! z

is positive. The path Œx; z� will be called a positive rose–to–rose fold line. It will

replace our basic fold lines Fi;j in the proof of Theorem C.

A rose–to–rose fold path will have two parts: a rose–to–graph part Œx; y� and

a graph–to–rose part Œy; z�. We begin in (Subsection 6.1) with decomposing the

graph of y into a union of positive loops (Lemma 6.6). This allows us to find the

rose x.

6.1. Decomposing a top graph into a union of directed loops

Definition 6.1 (paths and distance in trees). Let T be a tree. Then for each pair

of points p; q in T there is a unique (up to parametrization) path from p to q. We

denote its image by Œp; q�T and, when there is no chance for confusion, we drop

the subscript T . Given a tree T , let dT .˘; ˘/ denote the combinatorial distance

in T .

Definition 6.2 (rooted trees). By a rooted tree we will mean a finite tree T with

a preferred vertex v0 called a root. A rooted tree can be thought of as a finite

set with a partial order that has a minimal element - which is the root. We will

refer to the partial ordering induced by the pair .T; v0/ as �T , i.e. w �T w0 when

w 2 Œv0; w0�T .

Remark 6.3. In the figures to follow the root will always appear at the bottom.

We use special spanning trees to guide us in finding the loop decomposition

of G:

Definition 6.4 (good tree). Let T be a rooted tree in G and e D .v; w/ an edge

of G. We call e bad if v —T w and w —T v. Let B.T / be the number of bad edges

in G with respect to T . When B.T / D 0 we call T good (sometimes elsewhere

called normal).

We prove a somewhat stronger version of [9, Proposition 1.5.6].

Proposition 6.5. For each G 2 Xr , and for each E 2 E.G/ that is not a loop,
there exists a rooted spanning tree .T; v0/ so that B.T / D 0 and E 2 E.T / and
v0 D ter.E/. Moreover, when G is trivalent with no separating edges, T can be
chosen so that degT .v0/ D 1.
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Proof. Given an edge E in G, we let v0 D ter.E/. Let G1; : : : ; GN denote the

components of G � ¹v0º with ¹v0º added back to each component separately.

Thus G D [N
iD1Gi=¹v0º. We will construct a good tree Ti (rooted at v0) in each

Gi . Then T D [N
iD1Ti will also be a good tree rooted at v0, since all edges

e 2 E.G � T / have endpoints inside some Gi .

Let G1 be the component containing the edge E. For i ¤ 1 we choose a

spanning tree Ti in Gi arbitrarily. For i D 1 we construct a spanning tree T1 in G1

such that deg.v0/T1
D 1. Denote by v1 the endpoint of E distinct from v0. Since

E is non-separating in G it is non-separating in G1 so each vertex in G1 can be

connected to v0 via E. We choose T1 to be a spanning tree that does not include

any edges of G1 adjacent to v0 other than E. We now define a complexity of a

tree and show how to decrease it so that in the end of the process we get a good

spanning tree.

Let S be a tree. For an edge e D .v; w/ in G, the union Œv0; v�S [ Œv0; w�S
forms a tripod. Denote the middle vertex of this tripod by qe, i.e. qe satisfies

Œv0; qe�S D Œv0; v�S \ Œv0; w�S . Let d.e/ D dS .v0; qe/. We define the complexity

C.S/ D .n.S/; m.S// of S by defining n.S/ and m.S/ as follows:

n.S/ D

´

� min¹d.e/ j e is badº if B.S/ ¤ 0;

�1 otherwise,

and let

m.S/ D #¹e 2 G j e is bad and d.e/ D �n.S/º:

Note that the complexity is always a pair of integers (or �1). Moreover, m.S/ D 0

if and only if there are no bad edges, so that, if there are no bad edges, C.S/ D
.�1; 0/.

The complexity is ordered by the lexicographical ordering of the pairs. Note

that for S bad, the complexity is bounded from below. Indeed, when G 2 Xr , we

have jV.G/j � 2r � 2, so n.S/ � 2 � 2r , hence C.S/ � .2 � 2r; 1/.

We will modify each Ti separately to make it a good tree in Gi . Suppose

e D .v; w/ is a bad edge in Gi realizing the minimal distance �n.Ti/. Let e1 be the

first edge of Œv; qe�Ti
and let e2 be the last edge of Œv; qe�Ti

. Let T 0i D Ti [¹eºn¹e2º.
We claim that e2 ¤ E. If Gi ¤ G1, then this is obvious. Otherwise, degT1

.v0/ D 1

and deg.qe/ � 2, so that v0 ¤ qe and hence e2 ¤ E. Therefore, E 2 E.T 01/ after

the move and still degT 0
1
.v0/ D 1. Next, notice that some bad edges of Ti have

become good in T 0i , for example e is no longer bad, as is any edge from a vertex in

Œv; qe�Ti
to a vertex in Œqe; w�Ti

. Some bad edges remain bad. But the only edges

that were good and became bad are edges with one endpoint in Œv; qe�Ti
and one

endpoint in a component of Ti n ¹vº that does not contain e1 or w. For such an

edge f , we have that qf D v, so d.f / D dT 0
i
.v; v0/ > dT 0

i
.qe; v0/ D d.e/ and the

complexity has decreased.
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If G is trivalent with no separating edges, then no edge is a loop. This implies

that there are three edges E; E 0; E 00 incident at v0. If the tripod E [ E 0 [ E 00, was

separating then each of its edges would be separating - a contradiction. Therefore,

G D G1 in this case, and the proof is complete. �

Lemma 6.6. If G is a trivalent graph with no separating edges and a turn at v0

involves the unoriented edges E and E 0, then there exists an orientation on the
edges of G so that,

(1) G D [r
iD1˛i where each ˛i is a positive embedded loop,

(2) ˛i \
�

[i�1
jD1 j̨

�

is a connected arc containing v0 for each i , and

(3) v0 is the terminal point of both E and E 0.

We will in fact prove:

Lemma 6.7. Let G be a trivalent graph with no separating edges and let .T; v0/

be a good spanning tree in G. Let e1 2 E.G � T / be so that i.e1/ D v0. Then one
can enumerate E.G � T / � ¹e1º as e2; : : : ; er and orient all of the edges of G so
that

(1) there exist positive embedded loops ˛1; : : : ; ˛r � G,

(2) for each i , we have that i is the smallest index such that ˛i contains ei , and

(3) for each i , we have that ˛i \ .[i�1
jD1 j̨ / is a connected arc containing e1.

Proof of Lemma 6.6 ( from Lemma 6.7). To prove Lemma 6.6, we use Proposi-

tion 6.5 to find a good tree .T; v0/ containing E and so that v0 has valence 1 in T .

Denote by e1 the third edge at v0 distinct from E; E 0. Since E 2 E.T /, we have

E 0; e1 … E.T /. By Lemm 6.7(2), ˛1 is a loop containing e1. Since E is the only

edge of T adjacent to v0, ˛1 contains E. E is oriented towards v0, so e1 is oriented

away from v0. E 0 is not in T , so E 0 D em for some m. Now by Lemma 6.7(3),

˛m contains e1, so E 0 must be oriented towards v0. This proves Lemma 6.6(3).

Lemma 6.6(2) follows form Lemma 6.7(3). By 6.7(3), .[k�1
iD1˛i / \ ˛k is an arc

so the rank of [k
iD1˛i is k (by Van-Kampen’s Theorem). Therefore, the subgraph

G0 D [r
iD1˛i is connected and has rank r . Since G has no valence-1 vertices, a

subgraph G0 that has rank r is in fact all of G. This proves item Lemma 6.6(1). �

We will need the following definitions in our proof of Lemma 6.7.

Definition 6.8 (v�.e/ and vC.e/). Let T be a good tree in G. Given an edge

e 2 E.G/, one of its endpoints is closer (in T ) to v0 than the other. We denote by

v�.e/ the vertex closer to v0 and by vC.e/ the vertex further from v0.



598 Y. Algom-Kfir and C. Pfaff

Definition 6.9. Let ˛ be an embedded oriented path in the graph G and let x; y

be two points in the image of ˛, i.e x D ˛.s/ and y D ˛.t/, for some s; t . If

s < t , then we denote by Œx; y�˛ the image of the subpath of ˛ initiating at x and

terminating at y, i.e. ˛.Œs; t �/.

Definition 6.10 (left–right splitting). Let v0 be a vertex of a graph G and let ˛ be

an embedded directed loop based at v0. Let e be an edge of ˛, and m the midpoint

of e. Then the left–right splitting of ˛ at e is

Le
˛ D Œv0; m�˛; Re

˛ D Œm; v0�˛:

Definition 6.11 (aligned edges). Let G be a graph and .T; v0/ a spanning good tree

in G. Suppose f1; f2 2 E.T / satisfy that the vertices ¹vC.f1/; vC.f2/; v0º span a

line in T . Then we call the pair of edges f1; f2 aligned. If vC.f1/ < vC.f2/ we

say f1 lies below f2.

Definition 6.12 (highlighted subpaths). Let G be a graph and .T; v0/ a spanning

good tree in G. Let f1; f2 be aligned edges in T such that f1 lies below f2. For

each i , let f̨i
be an embedded loop containing fi and v0. We define H

f1;f2

f1
and

H
f1;f2

f2
, the highlighted subpaths of ˛f1

and ˛f2
, respectively, as follows:

H
f1;f2

f1
D Lf1

˛f1
and H

f1;f2

f2
D Rf2

˛f2
when i.f1/ <T ter.f1/; (16)

H
f1;f2

f1
D Rf1

˛f1
and H

f1;f2

f2
D Lf2

˛f2
when i.f1/ >T ter.f1/: (17)

Proof of Lemma 6.7. Enumerate E.G � T / � ¹e1º so that k < j implies that

v�.ek/ ā v�.ej /.

We prove this lemma by induction on i for 1 � i � r . We will define a loop

˛i and orient its previously unoriented edges so that Items (1)–(3) of the lemma

hold and moreover the following Items 4 and 5 hold. Denote by ˛e the first loop

that contains e (for example when e D ej … E.T / then ˛e D j̨ ).

(4) If f 2 E.T / and f 0 2 E.G/ are such that vC.f / � vC.f 0/ and f 0 is

oriented, then f is oriented.

(5) Let f1; f2 2 E.T / be aligned and H
f1;f2

f1
; H

f1;f2

f2
the corresponding high-

lighted paths with respect to ˛f1
; ˛f2

, then H
f1;f2

f1
\ H

f1;f2

f2
contains no

half-edges.

We include Item 5 to ensure that the loop in the induction step is embedded.
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The base case. We begin the base of the induction with the edge e1 2 E.G�T /,

which is adjacent with v0. Define the directed circle ˛e1
D e1 � Œt .e1/; v0�T , this

is clearly an embedded loop. We orient the edges of ˛e1
accordingly, i.e. e1 is

directed away from v0, and the edges f 2 Œt .e1/; v0�T are directed toward v0.

Clearly Items 1–5 hold at this stage, i.e. in the subgraph consisting of precisely ˛1.

The induction hypothesis. We now assume that we have oriented some subset

of E.G/ so that for each j � i�1 we have that ej is oriented. We call G0 D [i�1
jD1 j̨

the oriented subgraph. We let e WD ei and note that e … G0.

The induction step. Let I D Œv�.e/; vC.e/�T . Let t1 be the edge of I adjacent

at v�.e/. We claim as follows that t1 is oriented, see Figure 2. Indeed, if

v�.t1/ D v0 this follows from the base case. Otherwise, there is an edge t3 2 E.T /

adjacent to v�.t1/. Since t3 is nonseparating, there is an edge e0 2 E.G � T /

so that v�.e0/ � v�.t3/ and vC.e0/ � vC.t3/. But since the graph is trivalent,

vC.e0/ � vC.t1/. Now, since v�.e0/ < v�.e/, we have that e0 is oriented. Hence,

by Item 4 in the induction hypothesis, t1 is oriented.

Figure 2. The green line indicates the path ˛e takes near e. The edge t1 is the first edge in

I and t2 is the last oriented edge in I .

Let t2 be the last oriented edge of I . Denote J D ŒvC.t2/; vC.e/�T . Note that

we allow t1 D t2 and leave the adjustments of this case, from Cases A and C of

Figure 2, to the reader. The loop ˛e is constructed as in Figure 2 from the following

segments by adding or removing a half-edge of t2 or removing a half-edge of t1
or t2:

H
t1;t2
t2

; J; e; H
t2;t1
t1

: (18)



600 Y. Algom-Kfir and C. Pfaff

The orientation of ˛e is chosen according to the direction of t1. When i.t1/ >T

t .t1/, Cases A and B of Figure 2, we orient ˛e so that H
t1;t2
t2

is the left (first)

segment and when i.t1/ <T t .t1/, Cases C and D, we orient so that H
t2;t1
t1

is the

first segment.

We observe that ˛e is indeed embedded as follows. The paths H
t1;t2
t2

; H
t2;t1
t1

�
G0 while J; e � G �G0, hence they are edge-disjoint. Moreover, by Item 5 for G0,

the paths H
t1;t2
t2

; H
t2;t1
t1

are half-edge disjoint so that even if we add t1 or t2 they

remain edge disjoint. Therefore the path ˛e does not self-intersect in an edge. It

cannot self-intersect at a vertex since the graph is trivalent. Moreover, the loop is

positive. This proves Item 1.

Note that ˛e is contained in G0[T [¹eº, hence it does not contain ej for j > i .

This proves Item 2. Item 3 is also clear. Item 4 is satisfied since for f 0 D e and

for all f 2 E.T / so that vC.f / � vC.e/ we have that f is oriented.

We are left with proving item 5 for each pair of aligned edges f1; f2 2 E.T /

such that at least one of them is oriented in the i th step, i.e. ˛f D ˛i . It is less

difficult to check that the claim holds when both edges are newly oriented. We

leave this case to the reader and check the case where f1 � G0 \ T and f2 � T is

newly oriented, i.e. f2 � J . We illustrate the different cases in Figure 3.

Figure 3. Checking Claim 5 for f1; f2 depending on their location. In Case I, f1 lies below

t1, and in the other cases t1 lies below f1. In Cases IIa, IIb, f1 is pointing down and in

Case III, f1 is pointing up.

Suppose f1 … I (Case I in Figure 3), then for each f 2 ¹f2; t1; t2º, we have

f1 <T f . Thus, H
f1;f

f1
D H

f1;f 0

f1
for f; f 0 2 ¹f2; t1; t2º.

Moreover, by our construction of ˛f2
D ˛e , we have H

f1;f2

f2
� H

f1;tk
tk

[ J [

¹t2º [ ¹eº for either k D 1 or k D 2. Thus, for the same k we have (see Figure 2)

H
f1;f2

f1
D H

f1;tk
f1

and H
f1;f2

f2
� H

f1;tk
tk

[ ¹eº [ J [ ¹t2º:
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Since J is newly oriented, H
f1;tk
f1

and J are edge-disjoint. By the induction

hypothesis, H
f1;tk
f1

\ H
f1;tk
tk

contains no edges or half-edges. Moreover, if

H
f1;f2

f2
6� H

f1;tk
tk

[ J [ ¹eº then k D 2 and a half of t2 must be in H
f1;t2
t2

. Since

H
f1;tk
f1

\ H
f1;tk
tk

contains no half-edges, then t2 is not contained in H
f1;tk
f1

. This

implies that H
f1;f2

f1
\ H

f1;f2

f2
contains no edges or half-edges.

If f1 2 I , then there are two classes of cases: i.f1/ �T ter.f1/ (Cases IIa, IIb

of Figure 3) and i.f1/ �T ter.f1/ (Case III). We will prove Case IIa and leave the

others to the reader. If f1 is pointing down, then H
f1;f2

f1
D R

f1
˛f1

, H
f1;f2

f2
D L

f2
˛f2

.

There are two subcases: f2 is pointing down (Case IIa) or up (Case IIb). If f2 is

pointing down, then t1 is pointing up (see Figure 2), thus L
f2
˛e

� L
t1
˛t1

[ e [ J .

In this configuration,

H
f1;t1
f1

D R
f1
˛f1

H
f1;t1
t1

D L
t1
˛t1

H
f1;f2

f1
D R

f1
˛f1

H
f1;f2

f2
D L

f2
˛e

� L
t1
˛t1

[ ¹eº [ J

Hence, the fact that H
f1;t1
f1

\ H
f1;t1
t1

contains no half-edges implies that H
f1;f2

f1
\

H
f1;f2

f2
contains no half-edges. The other cases are similar. �

6.2. Rose–to–graph fold line. Given a point x whose underlying graph is triva-

lent with no separating edges, we wish to find a rose-point x0 and a line in Xr

from x0 to x. This is done by simultaneous folding as defined below.

Definition 6.13 (rose–to–graph fold line F.x0; ¹sij º/). Let x0 D .R; �; `0/ be a

point in yXr whose underlying graph is a rose with r petals. There are K D r.r �1/

turns and we enumerate them in any way ¹�iº
K
iD1. Let Es 2 R

K be a nonnegative

vector so that si is no greater than the length of each edge in the turn �i . Given the

data .x0; Es/ we construct a continuous family of graphs ¹xtº for 0 � t � T D
P

si ,

and maps ft;0W x0 ! xt as follows. In the i th step let �i D ¹ej ; emº and fold initial

segments of length si in ft;0.ej / and ft;0.em/. We caution that these ft;0 are not

always homotopy equivalences. However, if fT;0 is a homotopy equivalence, then

for each t < T the map ft;0 is a homotopy equivalence. In this case we get a path

F.x0; Es/W Œ0; T � �! yXr ;

t 7�! xt :

We denote its projectivization by SF D q.F/.
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Lemma 6.14. Let G be a trivalent graph such that �1.G/ Š Fr . Then for each
x 2 yXr with underlying graph G, there exists a point x0 whose underlying graph
is a rose and there exists a nonnegative vector Es in R

K , where K D r.r � 1/, so
that

x D F.x0; Es/.T /:

Additionally, x0; Es are linear functions of the lengths of E.G/ as they vary through-
out the unprojectivized simplex. (As above, T D

P

si .)

Proof. Let E1; : : : E3r�3 be the edges in G. Lemma 6.6 provides a decomposition

of G as G D [r
iD1˛i . Let R D tr

iD1˛i=¹v0º, then R is an r-petaled rose. Let

e1; : : : er be the edges of R. Let `R.ei / D `G.˛i /. We write ˛i as a sequence of

edges ˛i D Em.i;1/ � � � Em.i;ki /. Then

`R.ei / D `G.˛i / D

ki
X

jD1

`G.Em.i;j //: (19)

Let x0 denote R with these edge lengths. There is a natural map � W x0 ! x defined

by the inclusion of ˛i in G. This is a quotient map and, moreover, � jei
is an

isometry.

Recall that the intersection of ˛i and j̨ is an arc containing v0. Let a; b be the

endpoints of the arc. For �k D .ei ; ej / and �m D .ei ; ej / we define

sk D lG.Œv0; a�˛i
/ and sm D lG.Œb; v0�˛i

/: (20)

Consider the folding line F.x0; Es/. By the definitions, � is precisely the map

fT;0W x0 ! xT , since the points identified by � are precisely those that are

identified in the folds. Therefore, xT equals the point x that we started with.

Moreover, � is a homotopy equivalence by Lemma 6.6(2). Therefore, F.x0; Es/

is a path in unprojectivized Outer Space. Equations 19 and 20 show that the

dependence of li and sk on edge lengths in x is linear. �

Lemma 6.15. Suppose that x D F.x0; Es/.T / and the underlying graph of x is a
trivalent graph. Then there exists a neighborhood of .x0; Es/ so that for each .y0; Eu/

in this neighborhood, the endpoint y WD F.y0; Eu/.T 0/ of the fold line F.y0; Eu/ lies
in the same unprojectivized open simplex in yXr as x.

Additionally, the edge lengths of y are linear combinations of the edge lengths
of y0 and Eu.

Proof. Consider the positive edges E1; : : : Em in G and let G D [r
iD1˛i be the

decomposition guaranteed by Lemma 6.6. The edge Ei is contained in a loop j̨.i/.

Since G is a trivalent graph, at each endpoint ¹v; wº of Ei there is an edge, Ek ; Ed

resp., not contained in ˛i . The edges Ek ; Ed are contained in j̨.k/; j̨.d/ resp.
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Now v0; v 2 j̨.i/ \ j̨.k/. Thus, by Lemma 6.6(3), either Œv0; v�
j̨.i/

� j̨.i/ \ j̨.k/

or Œv; v0�
j̨.i/

� j̨.i/ \ j̨.k/. This situation is similar for v0; w. Therefore,

`G.Ei /D

8

ˆ

ˆ

<

ˆ

ˆ

:

sm � sn when �m D .ej.d/; ej.i// and �n D .ej.k/; ej.i//;

sn � sm when �m D .ej.d/; ej.i// and �n D .ej.k/; ej.i//;

j`. j̨.i// � .sn C sm/j otherwise.

(21)

Note, this dependence of the `G.Ei / on the variables sm will be the same for

all points in the same unprojectivized simplex, as they only depend on the loop

decomposition. We also get that the dependence of `G.Ei / on sij and `.ei / is

linear. Let U be the open subset of the unprojectivized rose simplex cross R
r.r�1/
C

so that each expression in the right-hand side of (21) is positive for each i . This is

an open set containing .x0; Es/. For any point y in the unprojectivized simplex of

x one can use (19) and (20) to get y0 and Eu so that y D F.y0; Eu/. Hence for each

.y0; u/ in this neighborhood the point F.y0; Eu/.T 0/ is in the same unprojectivized

open simplex as x. �

6.3. Folding a transitive graph to a rose

Definition 6.16. A transitive graph G is a directed graph G with the following

property: for any two vertices w; w0 there exists a directed path from w to w0.

Note that it is enough to check that for any choice of preferred vertex v, there

exists a directed path to and from each other vertex v0.

The proof of the following is left to the reader.

Observation 6.17. Let G be a directed graph and let f W G ! G0 be a direction

matching fold of two oriented edges e1; e2 in G, starting at a common vertex v.

Then

(1) if G is transitive, then G0 is transitive;

(2) if the lengths of the edges of G are rationally independent, then the lengths

of the edges of G0 are rationally independent.

Lemma 6.18. Let G be any transitive graph with rationally independent edge
lengths and let ¹E; E 0º be either a positive or negative turn. Then there exists a
fold sequence f1; : : : ; fk containing only direction matching folds and satisfying
that fk ı � � � ı f1.G/ is a rose. Further, assuming G is trivalent, we may choose f1

so that it folds the turn ¹E; E 0º.
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Proof. We perform the following steps.

Step 1. Let c.G/ denote the number of directed embedded paths in G between

(distinct) vertices. For each pair of vertices w; w0 there exists a directed path from

w to w0, thus it follows that there exists an embedded directed path from w to w0.

We decrease c.G/ by folding two directed embedded paths ˛; ˇ so that i.˛/ D i.ˇ/

and ter.˛/ D ter.ˇ/ and ˛ \ ˇ D ¹i.˛/; ter.˛/º: Note that the edges in ˛ and ˇ are

distinct and thus we are consecutively performing folds as in Definition 3.5. Also,

if G is trivalent and we choose a decomposition as in Lemma 6.6, then we can

choose the first ˛ to contain E and the first ˇ to contain E 0 and fold ˛; ˇ so that

the first combinatorial fold folds the turn ¹E; E 0º. Denote the new graph by G0.

Then, by Observation 6.17, G0 is transitive and has rationally independent edge

lengths. The complexity has decreased, i.e. c.G0/ < c.G/.

At the end of this step we may assume that we have a connected graph G so that

G D
`n

iD1 
i= �, where 
i is a circle and for each i ¤ j : 
i \ 
j is either empty

or a single point (see Figure 4). We call such a graph a gear graph. Notice that

given a gear graph, such a decomposition into circles is unique up to reindexing.

Figure 4. This graph is an example of a gear graph.

Step 2. For a gear graph, we define a new complexity. Let V be the set of vertices

(of valence > 2). Our object is to remove one by one all vertices other than v0.

Let w ¤ v0 be a vertex and let 
1; 
2 be circles so that w D 
1\
2 and suppose

that v ¤ w is a vertex on 
2 (see Figure 5). Let 
2 D ˛ˇ where i.˛/ D v D ter.ˇ/

and ter.˛/ D w D i.ˇ/. By folding, wrap ˇ over 
1 until v is on the image of 
1

(we may have to wrap ˇ multiple times over 
1). Now there are two paths from

v to w: ˛ and 
 01, the remaining part of 
1. Fold N̨ over 
 01. G0 is a gear graph.

Moreover, the valence of the image of w decreases. We continue this process for

all loops based at w until it becomes a valence-2 vertex and we drop it out of the

set of vertices. When all vertices other than v0 have valence 2 then G is a rose. �

Figure 5. Step 2 (ˇ0 is the remaining portion of ˇ, after it is wrapped around 
1) .



A dense geodesic ray in the Out.Fr/-quotient of reduced Outer Space 605

7. Existence and continuity of rose–to–rose fold lines

In Subsection 6.2 we defined a rose–to–graph fold line Œx0; x� D F.x0; Es/, given

a point x and a loop decomposition of its underlying graph. We also had two

continuity statements: (1) x0; Es vary continuously as a function of x by Lemma 6.14

and (2) F.x0; Es/ vary continuously as a function of x0; Es by Lemma 6.15. We need

similar existence and continuity statements for the full rose–to–rose fold line.

Proposition 7.1. Let x be any point of yXr satisfying that q.x/ is in a top-
dimensional simplex of reduced Outer Space with rationally independent edge
lengths. Let ¹E; E 0º be a pair of adjacent edges in the underlying graph of
x. Then there exists a positive rose–to–rose fold line, which we denote by
R.x0; Es/W Œ0; L� ! Xr , containing x and containing the fold of ¹E; E 0º.

Proof. By Lemma 6.14 there exists a rose point x0 and a vector Es so that the

rose–to–graph fold segment F.x0; Es/ terminates at the point x. We consider the

orientation on x given by the loop decomposition in Lemma 6.6. We may apply

Lemma 6.18 to obtain a fold sequence f1; : : : ; fk which terminates in a rose z0

with some valence-2 vertices and so that f1 folds the turn ¹E; E 0º. Removing the

valence-2 vertices gives a rose, which we denote by z. The line just described will

be denoted R.x0; Es/. It satisfies the statement in the theorem. �

Notation. Let x0 be a rose, let Es 2 R
r.r�1/, and letR.x0; Es/ be the fold line defined

by these parameters. We will denote by x the trivalent metric graph at the end of

the rose–to–graph fold segment, i.e. x D R.x0; Es/.
P

si /, by z the end-point of the

rose–to–rose fold segment, and by z0 the point in the graph–to–rose fold segment

from which z is obtained by removing the valence-2 vertices.

Definition 7.2 (proper fold line). Let R.x0; Es/ be a rose–to–rose fold line and let

f1; : : : ; fk be the sequence of combinatorial folds from x to z0. If for each l the

fold fl is a proper full fold, then we will say that R.x0; Es/ is a proper fold line.

For example, for each x as in Proposition 7.1, the fold line constructed in

the proposition is a proper fold line since the edge lengths in x are rationally

independent.

Proposition 7.3. For each proper rose–to–rose fold line R.x0; Es/ and " > 0, there
exists a neighborhood U of .x0; Es/ so that for any point .y0; Eu/ 2 U the following
holds.

(1) The endpoints of the rose–to–graph fold segments

y WD F.y0; Eu/.T 0/; x WD F.x0; Es/.T /

lie in the same unprojectivized open simplex and are "-close.
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(2) The sequence of combinatorial folds from x to z0 appearing in the graph–to–
rose fold segment is allowable in y.

(3) Let R.y0; Eu/ be the fold line defined by concatenating F.y0; Eu/ with the
fold segments from (2), then the terminal points w WD R.y0; Eu/.L0/ and
z WD R.x0; Es/.L/ are "-close.

Proof. By Lemma 6.15 there exists a neighborhood U of .x0; Es/ so that for each

.y0; Eu/ 2 U the fold line F.y0; Eu/ terminates at some point y lying in the same

unprojectivized top-dimensional simplex as x. Since the edge lengths of y vary

continuously with the edge lengths of y0 and Es, we can make U smaller, if

necessary, to ensure that y and x are "-close. This proves Item 1.

Let f1; : : : ; fk be the combinatorial fold sequence from x to z0, as described in

Lemma 6.18. For each combinatorial proper full fold folding ei over ej , there

corresponds a square m � m folding matrix (here m > r), which we denote

T 0ij D .akl /, so that akl D 1 for k D l and aij D �1, but otherwise akl D 0

when k ¤ l (compare with Definition 3.4). Let T 01; : : : ; T 0
k

be the fold matrices

corresponding to f1; : : : ; fk. Then just as in Lemma 3.15, the combinatorial fold

sequence f1; : : : ; fk is allowable in the point y if and only if for each l the vector

T 0
l

� � � T 01.`.y// is positive for each 1 � l � k. This defines an open neighborhood

of x where Item 2 holds. Item 3 follows from the fact that matrix multiplication

is continuous. �

Lemma 7.4. Let hW x0 ! z be a homotopy equivalence representing the map from
the initial rose x0 to the terminal rose z in a rose–to–rose fold line. Let H be a
matrix representing the change-of-metric from the rose z to the rose x0. Then H

is a nonnegative invertible integer matrix and it equals the transition matrix of h.

Proof. Let x0 be the initial rose with edges e1; : : : ; er and let z be the terminal rose

with edges e01; : : : ; e0r . Let z0 be the graph on the fold line just before z, i.e. z is

obtained from z0 by unsubdividing at all of the valence-2 vertices. Let hW x0 ! z

and gW x0 ! z0 be the relevant homotopy equivalences. Since g is a subdivision

followed by folding maps, each of which is a positive map, we have for each i

that gjei
is a local isometry. Thus, hjei

is a local isometry. Moreover, h maps the

unique vertex of x0 to the unique vertex of z. Suppose h.ei/ contains a part of an

edge e0i , then h.ei / contains a full appearance of e0i (since there is no backtracking

and the vertex maps to the vertex). Therefore, hjei
is an edge-path in z. Thus, we

may write

l.ei / D
X

j

m.i; j /l.e0j /; (22)

where the m.i; j / are the nonnegative integer entries of the transition matrix of h.

By Equation 22, the change-of-metric matrix from z to x0 coincides with the

transition matrix of the homotopy equivalence h. Therefore, H is nonnegative,
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and integer. Moreover, since all the folds in a rose–to–rose fold line are direction

matching, h is a positive map. Thus, H is equal to Ab.h/, the map induced by h

(viewed as an automorphism) by abelianization. Therefore, H is invertible. �

Lemma 7.5. For each " > 0 and proper fold line R.x0; Es/, there exists a neigh-
borhood U of the terminal rose z such that, for each w 2 U , there exists a proper
rose–to–rose fold line R.y0; Eu/ terminating at w satisfying that

(1) the top graphs x; y are "-close,

(2) the combinatorial fold sequence corresponding to the graph–to–rose seg-
ments are the same in both lines, and

(3) the change-of-metric matrix for both fold lines is the same.

Proof. We prove (1) and (2). By Lemma 7.4, the change-of-metric matrix H from

z to x0 is nonnegative. Thus, for any w in the same unprojectivized simplex

as z, we have that H`.w/ is also positive. By Proposition 7.3, there exists a

neighborhood V of x0 so that for each y0 2 V there exists a vector Eu so that

if y is the top graph of the fold line F.y0; Eu/, then x and y are "-close and their

combinatorial fold sequences are the same. The neighborhood U can be taken in

H�1.V /. This proves (1) and (2). Since the combinatorial folds are the same, the

transition matrix y0 ! w is the same as the transition matrix x0 ! z. (3) follows

from Lemma 7.4. �

Definition 7.6 (rational rose–to–rose fold lines). A rose–to–rose fold line R.x0; Es/

is called rational if for each edge e in G and for each loop ˛i in the loop decom-

position of the underlying graph of x, the quotient l.e;x/
l.˛i ;x/

is rational.

Proposition 7.7. For each " > 0 and for each x in an unprojectivized top-
dimensional simplex of reduced Outer Space, with rationally independent edge-
lengths, there exists a rational proper rose–to–rose fold line passing through some
x0 in the same open unprojectivized simplex as x, satisfying that d.x0; x/ < ".

Proof. Let x be a point in an unprojectivized top-dimensional simplex and hav-

ing rationally independent edge lengths. Let R.x0; Es/ be a proper rose–to–rose

fold line containing x. Let V be a neighborhood of .x0; Es/ guaranteed by Propo-

sition 7.3. Let U be a neighborhood of x in the same top-dimensional simplex

and such that for each y 2 U there exists some .y0; Eu/ 2 V with y the terminal

point of F.y0; Eu/. This is possible by Lemma 6.14. Let x0 be a point in U which

is "-close to x and such that the ratios l.e0;x0/
l.˛i ;x0/

are rational. Then the resulting fold

line through x0 will have the required properties. �
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8. Constructing the fold ray

Enumerate Pr by ¹viº
1
iD1 (see Section 4). There are countably many rational

proper rose–to–rose fold lines with rational edge lengths. Thus there are countably

many such rose–to–rose fold lines terminating arbitrarily close to the rose with

length-vector vi . For such lines that land sufficiently close to vi there is a rose–

to–rose fold line terminating at vi that fellow-travels the rational one, i.e. follows

the same fold sequence. For each such fold line Rij , let Fij denote its folding

matrix and Hij its inverse – an invertible nonnegative matrix. Let Uij denote the

neighborhood of vi from Lemma 7.5 (for " D 1 will suffice), i.e. for each w 2 Uij

there exists a proper fold line terminating at w, passing through the same simplices

as Rij and satisfying that their fold matrices are the same.

Since each Ai D Avi
is a positive matrix, for each i; j there exists an integer

n.i; j / satisfying that for each n > n.i; j / we have q.An
i .Rr

C// � Uij .

Recall that gvi
has a decomposition into fold automorphisms obtained from

Brun’s algorithm, this induces a decomposition of Ai into unfolding matrices and

A�1
i into folding matrices. We then create a sequence of pairs denoted ¹akº which

satisfies:

(1) if ak D .i; j / for an odd k then there exists some n such that n > n.i; j / so

that akC1 D .i; n/;

(2) for each i; N 2 N there exists an n > N and an even k so that .i; n/ D ak;

(3) for each i; j 2 N, there exist infinitely many odd k’s so that ak D .i; j /.

To each ak in this sequence we attach an (unfolding) matrix or sequence of

matrices and automorphisms: if k is odd and ak D .i; j /, we attach the matrix Hij

related to the rose–to–rose fold line Rij and define fk to be its change-of-marking

automorphism. And if k is even and ak D .i; n/, we attach a sequence of unfolding

matrices according to a Brun’s algorithm decomposition An
i D .M i

1 : : : M i
k
/n and

a sequence of fold automorphisms. We get a sequence of matrices, which we

denote by ¹Dlº
1
lD1

. For each l , either Dl D Hij or Dl D M i
j for some i; j . We

emphasize that we have not decomposed Hij . Moreover, we get a sequence of

automorphisms ¹flº
1
lD1

. Let ¹Zlº
1
lD1

denote the sequence of folding matrices, i.e.

Zl D D�1
l

for each l .

Definition 8.1 (ray R). We construct as follows the geodesic fold ray R that we

later prove is dense. Let x0 be a rose in the unprojectivized base simplex (i.e. hav-

ing the identity marking) with the length vector w0 provided by Lemma 3.16 for

the matrix sequence ¹Dlº defined in the paragraph above. For each k, let xk be the

rose with length vector inductively defined as wk D Zkwk�1 and with the mark-

ing fk ı � � � ı f1. For each l , if Zl is a single fold matrix coming from the matrix

decomposition of An
i , let the line from xl to xlC1 be the single proper full fold fold

line corresponding to Zl . This fold is allowable since Zlwl D wlC1 is positive.
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If Zl D Hi;j for some i; j coming from ak D .i; j /, then akC1 D .i; n/ for

n > n.i; j /. Hence, there is a number s so that the following s matrices ¹Dd ºlCs
dDlC1

are the matrices of the decomposition of An
i . Therefore, wlC1 D An

i .wlCs/ for

n > n.i; j /. Thus xkC1 2 Uij , so the fold line corresponding to Rij is allowable

in xk D Hij .xkC1/. We insert this fold line between such xk and xkC1. This

defines a fold ray connecting the xk’s.

Theorem B. For each r � 2, there exists a geodesic ray Q
 W Œ0; 1/ ! RXr so that
the projection of Q
 to URXr= Out.Fr / is dense.

Proof. We will show that, for each r � 2, the fold ray R of Definition 8.1

is contained in URXr and projects densely into Ur . The ray is geodesic by

Corollary 3.19.

To prove that R never leaves RXr , i.e. contains no graph with a separating

edge, it will suffice to show that at each point x 2 R, the underlying graph can be

directed so that it is a transitive graph. This clearly holds for each proper full fold

of a rose, hence for the fold sequences coming from the decompositions of the

gk
vi

. Moreover, for each i; j we have that Rij consists of transitive graphs, since

all folds are direction matching, see Observation 6.17(2).

Let x be a point in an unprojectivized top-dimensional simplex with rationally

independent edge lengths. Let G be its underlying graph and ¹E; E 0º a turn.

By Proposition 7.1 we can construct a proper positive rose–to–rose fold line

R D R.x0; Es/ containing x and the combinatorial fold f1 of ¹E; E 0º directly

after x. We may assume that the terminal point of this rose–to–rose fold line z

lies in �0. For each " > 0, by Proposition 7.7, there exists a proper rational rose–

to–rose fold lineR0 containing a point x0 in the same unprojectivized open simplex

as x, so that x; x0 are "-close, and so that the fold f1 is the fold following x0. Let

H be the unfolding matrix corresponding to R0.

For each " > 0, there exists, as in Lemma 7.4, an open neighborhood U of

the terminal point of R0 so that for each w 2 U , there exists a proper rose–to–

rose fold line R0.y0; Eu/, terminating at w and such that the top graphs x0; y are

"-close, the combinatorial fold sequence in the graph–to–rose segments are the

same, and the change-of-metric matrix for R0.y0; Eu/ is H . Since the set of PF

eigenvectors is dense, there exists an i so that the PF eigenvector vi is contained

in U . Hence, there exists a rose–to–rose fold line Rij passing through the same

unprojectivized simplices as R0 and having the same change-of-metric matrix

Hij D H . Moreover, there exists a point x00ij 2 Rij in the same unprojectivized

top-dimensional simplex as x0 and "-close to x0. By Definition 8.1, there exist

infinitely many k’s so that the fold line between xk and xkC1 is the one passing

through the same unprojectivized simplices as Rij (hence R0). In fact, these occur

before arbitrarily high powers of gvi
, so that they terminate arbitrarily close to a

rose with length vector vi . Let k be such a number and let ‰k be the composition

of the automorphisms f1; f2; : : : up to xk . Thus, by Lemma 7.4, there exists a
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point � 2 Œxk�1; xk� � ‰�1
k

in the same unprojectivized top-dimensional simplex

as x00ij and "-close to x00ij . Hence, � is the point on the ray defined in Definition 8.1

that is 3"-close to our original point x and the fold immediately after � is the one

folding the turn ¹E; E 0º. �

Theorem A. For each r � 2, there exists a geodesic fold ray in the reduced Outer
Space RXr whose projection to RXr= Out.Fr / is dense.

Proof. This is an immediate corollary of Theorem B. �

9. Appendix: Limits of fold geodesics

In many cases, as in the case of the geodesic that we construct in this paper, a

concatenation of fold segments ¹
i W Œi; i C 1� ! yXrº1iD1 that glue together to a ray


 W Œ0; 1/ ! yXr , projecting under q to a Lipschitz geodesic, satisfies the properties

of a semi-flow line below.

Definition 9.1 (semi-flow line; cf. [13, p. 3], definition of a “fold line”). A semi-
flow line in unprojectivized Outer Space is a continuous, injective, proper function

R ! yXr defined by a continuous 1-parameter family of marked graphs t ! Gt

for which there exists a family of homotopy equivalences htsW Gs ! Gt defined

for s � t 2 R, each of which preserves marking, such that the following hold.

(1) Train track property. For all s � t 2 R, the restriction of hts to the interior

of each edge of Gs is locally an isometric embedding.

(2) Semiflow property. hut ı hts D hus for all s � t � u 2 R and hssW Gs ! Gs

is the identity for all s 2 R.

Handel and Mosher ([13, §7.3]) prove each semi-flow line converges (in the

axes or Gromov-Hausdorff topologies) to a point T1 in Xr , the direct limit of the

system.

Theorem 9.2. For any semi-flow line, its direct limit T1 is an Fr -tree that has
trivial arc stabilizers. Hence, in particular, not every point in the boundary is the
direct limit of a semi-flow line.

Remark 9.3. This theorem could also be deduced from the proof of Proposi-

tion 3.15 of [2]. It is shown there that if ¹Giº
1
iD1 � yXr , ¹ zGiº limits to T as an R-tree

and T has a nontrivial arc-stabilizer, then qvol.T / > qvol. zGi / D vol.Gi / for each

i . However, if GiC1 is obtained from Gi by folding, then vol.GiC1/ < vol.Gi /,

which is a contradiction. In order to avoid the definitions above we give a more

direct proof.
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Proof. We lift the maps htsW Gs ! Gt to fts W Ts ! Tt to a direct system on

trees ¹fts W Ts ! Ttº that are Fr -equivariant, restrict to isometric embeddings

on edges, and form a direct system. In [13, §7.3] it is shown that the maps

f1s W Ts ! T1 that are given by the direct limit construction are also edge-

isometries and Fr -equivariant.

Assume x; y 2 T1 are such that 
 2 StabŒx; y�. Without generality loss,

assume d.x; y/ D 1 in T1. We will show this leads to a contradiction. For each

t 2 Œa; 1/, we denote by At .
/ the axis of 
 in Tt . Letting " D 1
5
, there exists some

s � a so that f1s.xs/ D x, f1s.ys/ D y, and d.xs ; 
xs/ < "; d.ys ; 
ys/ < ",

and jd.xs ; ys/ � 1j < ".

Since fts is distance non-increasing for all t; s, we have for all t � s that

1 � d.fts.xs/; fts.ys// � 1 C ":

Note that for all fts.xs/ and fts.ys/, they are at most a distance of "
2

from

At .
/. Otherwise, for example, d.fts.xs/; 
fts.xs// � ", which contradicts the

fact that the maps are distance non-increasing.

Thus, for each t � s there exist zt ; wt such that Œzt ; wt � � At .
/ \
Œfts.xs//; fts.ys//�, and d.zt ; fts.xs// < "

2
and d.wt ; fts.ys// < "

2
. Hence,

d.zt ; wt / � 1 � ".

Let N be the number of f1s-illegal turns in the path Œxs ; ys�. Thus, the number

of f1t -illegal turns in the path Œfts.xs/; fts.ys/� is � N . Hence, the number of

f1t -illegal turns in the path Œzt ; wt � is � N . Let us denote the points of Œzt ; wt �

where the illegal turns occur by a1
t ; : : : aN

t , and we also denote a0
t WD zt and

aNC1
t WD wt .

However, for sufficiently large t , the translation length of 
 in Tt is < 1�"
3.NC1/

.

Note that since Œzt ; wt � is on At .
/, we have that Œzt ; wt � \ 
Œzt ; wt � is equal

to Œzt ; wt � with (possibly) segments of lengths � 1�"
3.NC1/

cut from either end.

Since there are � N C 1 segments .ai
t ; aiC1

t / in Œzt ; wt �, one of them has length

� 1�"
NC1

. Thus, for some i D 0; 1; : : : ; N , we have 
.ai
t / 2 .ai

t ; aiC1
t / or


�1.aiC1
t / 2 .ai

t ; aiC1
t /, which are both legal segments. Without generality loss

suppose the former. Thus, the turn taken by Œzt ; wt � at ai
t is illegal, but the turn

taken by 
Œzt ; wt � at 
.ai
t / is legal, since it equals the turn taken by Œzt ; wt � at


.ai
t /. This is a contradiction to the equivariance. �
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