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Abstract. We define a metric ultraproduct of topological groups with left-invariant metric,

and show that there is a countable sequence of finite groups with left-invariant metric whose

metric ultraproduct contains isometrically as a subgroup every separable topological group

with left-invariant metric.

In particular, there is a countable sequence of finite groups with left-invariant metric

such that every finite subset of an arbitrary topological group with left-invariant metric may

be approximated by all but finitely many of them.

We compare our results with related concepts such as sofic groups, hyperlinear groups

and weakly sofic groups.
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Introduction

It is a major open problem whether all discrete groups are sofic, i.e. whether
all discrete groups can be metrically approximated, in a certain sense, by finite
permutation groups with the Hamming distance. On the other hand, when one
wants to approximate metric groups, say with bi-invariant distance, it is clear finite
permutation groups with the Hamming distance cannot serve for that purpose,
e.g. the group of integers with the standard metric cannot be approximated by
them. Since the introduction of sofic groups, many other classes of groups,
defined in a similar manner as groups metrically approximable by certain class
of ‘basic metric groups’, appeared in the literature. Most notably the hyperlinear
groups, formally introduced by Rǎdulescu in [15], that are directly connected to the
Connes’ embedding conjecture for group von Neumann algebras ([2]). However,
let us also mention linearly sofic groups introduced by Arzhantseva and Pǎunescu
in [1], Fc-approximable groups introduced by Thom in [17], and weakly sofic
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groups introduced by Glebsky and Rivera in [9] (see also [8]). Thom in [17]
showed that the Higman’s group is not Fc-approximable, however for all other
classes this is unknown.

In this paper, we consider metric approximation by finite groups with left-
invariant metrics (that do not have to be bi-invariant). We shall show that in this
case we can prove a positive result.

Theorem 0.1. There exists a countable sequence .Gn/n of finite groups with left-

invariant metric such that any finite subset of any topological group with left-

invariant metric can be metrically approximated by all but finitely many Gn’s.

We refer to the last section, where the theorem is proved, for a precise formu-
lation and definition of approximation.

It is common in the area of group approximations to work with metric ultra-
products of metric groups. Indeed, being C-approximable for a certain class C of
metric groups (with bi-invariant metric) is equivalent with being embeddable as
a subgroup into a metric ultraproduct of groups from C. Metric ultraproducts of
metric groups have been defined only for groups with bi-invariant metric. Here
we generalize the notion and define a metric ultraproduct of arbitrary topological
groups with left-invariant metric and obtain the following theorem.

Theorem 0.2. There exists a countable sequence .Gn/n of finite groups with left-

invariant metric whose metric ultraproduct contains isometrically an arbitrary

separable topological group with left-invariant metric.

We note that although being C-approximable and being embeddable into met-
ric ultraproduct of groups from C is rather easily checked to be equivalent when
C contains just groups with bi-invariant metric, it is not the case in our general
situation. The proof of Theorem 0.2 is substantially more involved than the proof
of Theorem 0.1. Indeed, the tricky issue with metric ultraproducts of groups with
left-invariant metric is that in some cases the ultraproduct collapses to a trivial
group, so one has to choose the sequence .Gn/n carefully.

1. Definitions and preliminaries

1.1. Norms and metrics on groups. Let G be a group. A norm (or a length

function) on G is a function �WG ! RC
0 with the following properties:

� �.x/ D �.x�1/ for every x 2 G,
� �.x � y/ � �.x/C �.y/ for every x; y 2 G,
� �.x/ D 0 iff x D 1G .

� satisfying only the right-to-left implication of the last condition is called a
seminorm.
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A (semi)norm � on G satisfying �.g�1 � h � g/ D �.h/ for every g; h 2 G is
called conjugacy-invariant.

Recall that a (pseudo)metric d on the groupG is left-invariant if d.g�x; g�y/ D

d.x; y/ for every g; x; y 2 G. Right-invariance and bi-invariance are defined
analogously.

There is a one-to-one correspondence between norms and left-invariant met-
rics (and analogously between seminorms and left-invariant pseudometrics). In-
deed, given a left-invariant metric d , the formula �d .x/ WD d.x; 1G/ gives a norm
on G; and conversely, given a norm � on G, the formula d�.x; y/ WD �.x�1 � y/

gives a left-invariant metric.
Moreover, if the metric d was bi-invariant, the the formula above gives a

conjugacy-invariant norm. Conversely, if the norm � was conjugacy-invariant,
then the formula above gives a bi-invariant metric.

It turns out it is more convenient for us to work with norms rather than metrics,
so we will do so in the sequel.

It follows that (semi)norms on groups define a topology there. However, the
topology on a group G determined by some (semi)norm � on G does not in
general make it a topological group; i.e. the group operations are not automatically
continuous. The following is a necessary and sufficient condition on a (semi)norm
to make the group operations continuous. We leave the verification to the reader.

Fact 1.1. Let � be a (semi)norm on a groupG. ThenG with the inherited topology

is a topological group if and only if for every x 2 G and every � > 0 there exists

ı > 0 such that, for all y 2 G, �.y/ < ı H) x�1 � y � x < "; in other words, the

function y ! �.x�1 � y � x/ is continuous at 1G .

We shall call such (semi)norms continuous (semi)norms. Note that when
a (semi)norm is conjugacy-invariant then it is continuous. We remark that in
literature, a norm being continuous often means that it is continuous with respect
to some given topology on the group. Here however, the only group topologies
we consider are those given by some norms, resp. pseudonorms.

Recall that when f WX ! Y is a function between metric spaces X and
Y which is continuous at the point x 2 X , then a modulus of continuity of
f at x is a function !W Œ0;1/ ! Œ0;1/ continuous at 0 and vanishing there
which quantitatively measures this continuity (of f at x). That is, we have
dY .f .x/; f .y// � !.dX .x; y//. Clearly, a modulus of continuity for a given
function at a given point is not unique, however one can always take the ‘minimal
one’ by defining !.r/ D sup¹dY .f .x/; f .y//W y 2 X; dX .x; y/ � rº. We shall use
this notion in the context of normed groups.
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Definition 1.2. Let G be a group equipped with a continuous (semi)norm �.
We say that the functions .�Gx /x2G , where �Gx W Œ0;1/ ! Œ0;1/ for every x 2 G,
are moduli of continuity, or MOC, for G if for every x 2 G:

� �Gx .r/ !r!0 0 and �Gx .0/ D 0;

� �Gx .r/ � r for every r � 0;

� for every g 2 G we have �.x�1 � g � x/ � �Gx .�.g//;

� �Gx D �G
x�1 .

When considering a single element x 2 G, we say that �Gx 2 .�Gx /x2G is a
modulus of continuity (or MOC) for x in G.

We note that in [6], in this context of groups with norms (resp. left-invariant
metrics), these moduli are called scales.

For a given groupG with a continuous (semi)norm �, moduli of continuity are
not determined uniquely. However, it is again possible to consider the minimal
moduli: for x 2 G and r 2 Œ0;1/ set

�Gx D max¹r; sup¹�.x" � g � x�"/W g 2 G; �.g/ � r; " 2 ¹1;�1ºº:

Note that such a MOC satisfies additionally

� �Gx .r/ � 2�.x/C r .

Although we shall not always work with the minimal moduli, unless stated other-
wise, �Gx will denote the minimal MOC for x 2 G in G.

Example 1.3. Let .G; �/ be a normed group. Then � is conjugacy-invariant if and
only if the minimal moduli .�Gx /x2G are constant functions, i.e. �Gx .r/ D r for
every x 2 G and r 2 Œ0;1/.

The reason to work with MOC, even though they are not unique, is to control
the ‘uniformity’ of embeddings between normed groups. Suppose that .G1; �1/ �

.G2; �2/ � � � � is an increasing sequence of groups with continuous norms. Then
the direct union .G; �/, where G D

S
nGn and � D

S
n �n, is not in general a

group with a continuous norm, i.e. the continuity of � D limn �n may be lost in
the limit. The reason for that is that when � ix is a modulus of continuity for some
x 2 Gi in Gi , it may no longer be a modulus of continuity for x 2 Gi � GiC1
in GiC1. Later on, we will work with embeddings between normed groups that
preserve some moduli of continuity in order to guarantee that norms on certain
limit groups are still continuous.

We shall conclude this section with several other facts concerning normed
groups.

First we want to recall the following geometric notion that will be useful later.



Metric topological groups 619

Definition 1.4. Let .G; �/ be a normed topological group. We say that � is proper

if for every r > 0 the set ¹g 2 GW�.g/ � rº is compact. In other words, G with
the induced metric is a proper metric space.

In case .G; �/ is countable discrete, it means that for every r > 0 the set
¹g 2 GW�.g/ � rº is finite.

Second, we mention that if we have a group with a continuous seminorm we
can always quotient to get a genuine norm on the quotient group.

Fact 1.5. LetG be a group with a continuous seminorm �. Then the setN D ¹g 2

GW�.g/ D 0º is a closed normal subgroup, and � is constant on any left coset of

N , thus it determines a continuous norm on G=N .

Proof. N is by the definition of the topology on G closed. Since for any g; h 2 G

we have �.g/ D �.g�1/, �.g �h/ � �.g/C�.h/ and � is continuous, it immediately
follows that N is a normal subgroup. Take any x 2 G and g 2 N . We show that
�.x/ D �.x � g/. We have �.x � g/ � �.x/ C �.g/ D �.x/ D �.x � g � g�1/ �

�.x � g/C �.g�1/ D �.x � g/. �

Finally, in order to persuade the reader that there are indeed a plethora
of groups with continuous (semi)norms, let us mention the classical result of
Birkhoff and Kakutani. It says that a group G with topology � is a first-countable
topological group if and only if there exists a continuous seminorm on G which
induces the topology � ofG. Moreover,G is Hausdorff if and only if the seminorm
is a norm.

1.2. Completeness in normed groups. Now for a moment, we switch to contin-
uous left-invariant (pseudo)metrics rather than (semi)norms, where by a continu-

ous left-invariant (pseudo)metric we mean a left-invariant (pseudo)metric whose
associated (semi)norm is continuous. So assume we are given a group G with a
continuous left-invariant (pseudo)metric d . It is well known that a metric com-
pletion of G with respect to d need not to be a group, however it is always a
semigroup. Indeed, it is an exercise to check that the multiplication operation
extends to the metric completion; in other words, whenever .xn/n and .yn/n are
Cauchy sequences inG, then .xn �yn/n is a Cauchy sequence as well. On the other
hand, the inverse operation might not extend to the completion since the sequence
.xn/n being Cauchy does not guarantee that the sequence of inverses .x�1

n /n is
also Cauchy. Consider for example S1, the infinite permutation group of N, with
a left-invariant metric d defined as d.x; y/ D max¹1=nW x.n/ ¤ y.n/º. Comple-
tion of S1 with respect to this metric is the semigroup of all injective mappings
from N into N.



620 M. Doucha

However, there is another way how to canonically complete a group with a
left-invariant metric.

Fact 1.6. Let G and d be as before. Consider the metric D.x; y/ WD d.x; y/ C

d.x�1; y�1/ and the completion ofG with respect toD. Then the group operations

and the original metric d extend to this completion.

We shall call it a Raı̌kov metric completion ofG, since it precisely corresponds
to the Raı̌kov completion of a topological group. A normed/metric groupG whose
Raı̌kov metric completion coincides with G is called Raı̌kov metrically complete.
Note that the Raı̌kov metric completion is nothing but adding limits for all Cauchy
sequences .xn/n � G such that the sequence of inverses .x�1

n /n is also Cauchy.

1.3. Free groups. Finally, since we shall work with free groups often we recall
some basic facts and fix some notation related to them here. LetA be a non-empty
set. Recall that the free group FA generated byA is the free group having elements
of A as free generators. Consider the disjoint union ¹1º

`
A

`
A�1 denoted by xA,

where A�1 is the set of formal inverses of A, i.e. A�1 D ¹a�1W a 2 Aº. One
can view the free group FA as the set of all reduced words over the alphabet xA.
A word w D w1 : : :wn, where w1; : : : ; wn 2 xA is reduced if either n D 1 and
w1 D 1, or there is no i � n such that wi D 1 and wi D w�1

iC1. For any word
(not necessarily reduced) w over the alphabet xA, by w0 we denote the reduction
of w, i.e. the unique reduced word obtained from w by successively removing the
pairs wi ; wiC1, where wi D w�1

iC1, and letters 1 from w till it is reduced. In case
this procedure leads to an empty word, we set w0 to be 1. For any word w, by jwj

we denote the length of the word, i.e. the number of letters from alphabet used to
make w.

Then the group multiplication of two reduced wordsw1 andw2 is defined to be
.w1w2/

0, i.e. concatenation of two words followed by reduction. The inverse of a
reduced word w1 : : : wn is the reduced word w�1

n : : : w�1
1 . The unit is the reduced

word 1.

We shall also use the following basic observation.

Observation 1.7. Let H be an at most countable group equipped with a (con-
tinuous) norm �. Then there exists a (continuous) seminorm �0 on F1, the free
group of countably many free generators, such that the quotient F1=N , where
N D ¹h 2 F1W�0.h/ D 0º, is isometrically isomorphic to .H; �/.

Indeed, just pick some countable set of generators (with possible repetition)
.hn/n. For each reduced word w over the alphabet ¹1; hn; h

�1
n W n 2 Nº denote by

wH its evaluation inH , i.e. the group element ofH that corresponds to the natural
evaluating of w in H . Then we consider the free group freely generated by .hn/n
and define the seminorm �0 by the formula �0.w/ D �.wH / for any word w over
the alphabet ¹1; hn; h

�1
n W n 2 Nº.
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2. Normed ultraproducts of normed groups

and group embeddings into them

Metric ultraproducts of groups with bi-invariant metric, resp. conjugacy-invariant
norms are well-known from the literature. We refer to the appendix in [3] for
information about them. LetM be some class of groups equipped with bi-invariant
metric/conjugacy-invariant norms. It is of great current interest which (discrete)
groups can be embedded into a metric ultraproduct of groups from M.

As already mentioned in the introduction, the most interesting cases are when
M is the set of unitary groups of finite rank equipped with the Hilbert-Schmidt
distance and when M is the set of finite permutation groups equipped with the
normalized Hamming distance. The former are the hyperlinear groups and the
latter are the sofic groups. We recall they were introduced by Gromov ([11]). They
are related to the Gottschalk’s surjunctivity conjecture. The major open problem
is whether every group is hyperlinear and sofic (we note that every sofic group is
hyperlinear [7]). We refer the reader to the survey [14] and to the monograph [3]
where these classes of groups are defined and metric ultraproducts of groups with
bi-invariant metrics are treated.

Weakly sofic groups are M-approximable groups, where M is the class of
all finite groups with arbitrary bi-invariant metric. Weakly sofic groups as a
generalization of sofic groups were introduced by Glebsky and Rivera in [9] (see
also [8]) as the existence of a non-weakly sofic group is equivalent to a certain
conjecture about pro-finite topology on finitely generated free groups.

We also recall from the introduction the linear sofic groups introduced by
Arzhantseva and Paunescu in [1], which are groups approximable by general linear
groups with the normalized rank distance. When M is the set of finite groups with
a commutator-contractive bi-invariant metric, then such M-approximable groups
were called as Fc-approximable groups in [17]. Finally, let us mention that when
M consists of all finite groups with the trivial metric (i.e. taking only ¹0; 1º as
values), then such groups were called LEF (locally embeddable into finite) by
Gordon and Vershik ([10]) (similarly, M is LEA if it consists of finitely generated
amenable groups with trivial metric).

So far, it has been widely open whether there are groups which are not approx-
imable by any such classes M mentioned. The only exceptions besides the rather
simple case of LEF groups (or analogously LEA groups) is when M is Fc , as it
was proved by Thom in [17] that the Higman’s group is not Fc-approximable.

2.1. Definition of the metric ultraproduct. Let now .Gn; �n/n2N be a sequence
of general normed groups and fix some non-principal ultrafilter U on N. We
would like to define a metric/normed ultraproduct of them. Before we proceed
any further let us remark here that in this paper we consider only ultraproducts
of countable sequences of groups, thus all ultrafilters are over N. Also, whenever
we say ultraproduct we automatically mean an ultraproduct determined by a non-
principal ultrafilter.
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We begin with recalling some standard constructions of metric ultraproducts.
At first, one takes the direct product

Q
nGn. In order to define an ultraproduct

norm there one has to restrict to a subgroup of the product of those elements
whose coordinates have norm bounded by one common constant. That is, using a
Banach space theory notation, let .Gn/`1

D ¹.gn/nW supn �n.gn/ < 1/º. Let �1

be the supremum norm on .Gn/`1
. Consider then the subgroup N D ¹.gn/n 2

.Gn/`1
W limU �n.gn/ D 0º. If all the �n’s were conjugacy-invariant, then N is a

normal subgroup and the quotient .Gn/`1
=N D .Gn/U with the quotient norm is

the metric ultraproduct of the sequence .Gn; �n/n.
Alternatively, one might equip .Gn/`1

with the ultraproduct seminorm �U,
where �U..gn// D limU �n.gn/ and again consider the kernel N D ¹.gn/n 2

.Gn/`1
W�U..gn// D 0º. If the norm �U is continuous, N will be a normal

subgroup and we can take the quotient. Again, if all �n’s are conjugacy invariant
then �U will be conjugacy-invariant as well, and thus continuous. SoN is a normal
subgroup.

If not all �n’s are conjugacy-invariant then �U is an ultraproduct seminorm
which however does not have to be continuous, thus ..Gn/`1

; �U/ is not a topo-
logical group and the kernel subgroup does not have to be normal. In such a case,
one has to restrict the subgroup .Gn/`1

�
Q
nGn more. More precisely, we shall

restrict to a subset of .Gn/`1
�

Q
nGn (which will turn out to be a subgroup) of

elements that obey some modulus of continuity. That is the content of the follow-
ing definition.

Definition 2.1. Call an element .gn/n 2 .Gn/`1
continuous in the ultraproduct

if for all " > 0 there exist ı > 0 and A 2 U such that, for all n 2 A and hn 2 Gn,

�n.hn/ � ı H) �n.g
�1
n � hn � gn/ < " and �N .gn � hn � g�1

n / < ": (2.1)

Equivalently, one can view elements that are continuous in the ultraproduct as
follows. For each .gn/n 2 .Gn/`1

take some corresponding sequence .�n/n of
moduli of continuity (provided they do exist), i.e �n is an MOC for gn in Gn. We
take the ultralimit of this sequence of moduli, i.e. we define �U.r/ D limU �n.r/.
If this ultralimit �U is again a MOC (for .gn/n in .Gn/`1

), then .gn/n is continuous
in the ultraproduct. Conversely, if .gn/n is continuous in the ultraproduct then
there exists a sequence .�n/n of moduli of continuity such that �n is an MOC for
gn in Gn and the ultralimit �U is an MOC for .gn/n in .Gn/`1

.

Denote by .Gn/C � .Gn/`1
the subset of elements continuous in the ultra-

product.

Lemma 2.2. .Gn/C is a subgroup of .Gn/`1
. Moreover, if �n’s were conjugacy-

invariant, then .Gn/C D .Gn/`1
.



Metric topological groups 623

Proof. If .gn/n 2 .Gn/C then by definition also .g�1
n /n 2 .Gn/C, thus .Gn/C is

closed under taking inverses. Now pick some .gn/n; .hn/n 2 .Gn/C. We show that
.gn �hn/n 2 .Gn/C. Take some " > 0 and we must find corresponding A" 2 U and
ı > 0 from the definition. By assumption, there are some ı0 > 0 and Ag 2 U such
that for all n 2 Ag and fn 2 Gn such that �n.fn/ � ı0 we have �n.g�n �fn �g��

n / < ",
for � 2 ¹1;�1º. Similarly, by assumption, there are some ı > 0 and Ah 2 U such
that for all n 2 Ah and fn 2 Gn such that �n.fn/ � ı we have �n.h�n �fn �h��

n / < ı
0,

for � 2 ¹1;�1º. Now it is clear A" D Ag \ Ah and ı > 0 are as desired.
The moreover statement from the lemma is easy and left to the reader. �

We consider the ultraproduct seminorm � on .Gn/C.

Lemma 2.3. The ultraproduct seminorm�on .Gn/C is continuous, thus the kernel

subgroup is normal and we can quotient.

Proof. Indeed, take some .gn/n 2 .Gn/C and " > 0. By definition, there is some
B 2 U and ı > 0 such that for every n 2 B we have �n.g�1

n � h � gn/ < " for every
h 2 Gn such that �n.h/ < ı. Take now some .hn/n 2 .Gn/C such that �..hn// < ı.
We need to show that �..gn/�1 � .hn/ � .gn// < ". It suffices to find A" 2 U such
that for every n 2 A" we have �n.g�1

n � hn � gn/ < ". Since �..hn// < ı there is
some C 2 U such that for every n 2 C we have �n.hn/ < ı. Thus it suffices to
take A" D B \ C . �

We note that one typical element of .gn/n 2 .Gn/C is such that there is a single
MOC � such that � is a MOC for gn in .Gn; �n/ for every n.

2.2. Raı̌kov metric completeness. Finally, we make some observations regard-
ing the Raı̌kov metric completeness defined in the previous section. It is known
that ultraproducts of normed vector spaces or groups with conjugacy-invariant
norms are complete. A group with a norm cannot be always complete as noted in
Subsection 1.2. However, they may be Raı̌kov metrically completed as mentioned
in Fact 1.6.

Lemma 2.4. A metric ultraproduct of normed groups .Gn; �n/ is Raı̌kov metri-

cally complete, regardless of whether Gn’s were Raı̌kov metrically complete.

Proof. Suppose we have a sequence (of sequences) ..gn;m/n/m � .Gn/C of
elements, resp. representatives from the equivalence classes, from the metric
ultraproduct such that both the sequence and the sequence of its inverses are
Cauchy. We shall show that the limit is in .Gn/C. The limit is constructed as
in the case of normed vector spaces or groups with conjugacy-invariant norms.
That is, let .An/n be a strictly decreasing sequence of sets from the ultrafilter U
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such that
T
nAn D ;, and .kn/n a strictly increasing sequence of natural numbers

such that for every m and every i; j � km

�n.g
�1
n;i � gn;j / < 1=2

m and �n.gn;i � g�1
n;j / < 1=2

m; for all n 2 Am:

The limit sequence .hn/n is defined so that for all n … A1 we have hn D 1 and for
any m and n 2 Am n AmC1 we have hn D gn;km

. We claim that .hn/n 2 .Gn/C
and that it is the limit of ..gn;m/n/m, while .h�1

n /n is the limit of ..g�1
n;m/n/m. The

latter is verified as in the classical case of groups with conjugacy-invariant norms,
so we only check the former, i.e. that .hn/n 2 .Gn/C.

By definition, we must check that for every " > 0 there are ı > 0 and
A" 2 U such that for every n 2 A" and fn 2 Gn with �n.fn/ < ı we have
�n.h

�1
n � fn � hn/ < " and �n.hn � fn � h�1

n / < ". Pick l such that 1=2l < "=3. Since
.gn;kl

/n 2 .Gn/C we have that there is some A0 2 U and some ı > 0 such that for
every n 2 A0 and every fn 2 Gn with �n.fn/ < ı we have

�n.g
�1
n;kl

� fn � gn;kl
/ < "=3 and �n.gn;kl

� fn � g�1
n;kl

/ < "=3: (2.2)

Set A" D A0 \ Al 2 U. For any n 2 A" � Al and any i > kl we thus have

�n.g
�1
n;i � gn;kl

/ < "=3 and �n.gn;i � g�1
n;kl

/ < "=3: (2.3)

Putting (2.2) and (2.3) together we get that for every n 2 A" and every fn 2 Gn
with �n.fn/ < ı we have

�n.h
�1
n � fn � hn/ � �n.h

�1
n � gn;kl

/C �n.g
�1
n;kl

� fn � gn;kl
/C �n.g

�1
n;kl

� hn/

< "=3C "=3C "=3

D ":

Analogous inequalities give that

�n.hn � fn � h�1
n / < ";

and so we are done. �

2.3. Some pathological examples. We finish this section by presenting some
pathological examples which show that metric ultraproducts of groups with gen-
eral continuous norms are rather delicate. We show, as mentioned in the intro-
duction, that a metric ultraproduct of normed topological groups may collapse to
a trivial group. Also, we show that for some normed topological groups it may
happen that their metric ultrapower is the group itself.

Let us start with the former.

Lemma 2.5. There exists a sequence of non-trivial normed topological groups

.Gn; �n/ such their metric ultraproduct, over any non-principal ultrafilter, is a

trivial group.



Metric topological groups 625

Proof. For every n 2 N, let Gn be F2, the free group on two free generators.
Let j � j be the canonical length function on F2, i.e. identifying F2 with the set
of reduced words over the alphabet ¹a; b; a�1; b�1º, jxj, for x 2 F2, is the length
of x as a word. Let �n be the rescaling j � j=n. We claim this sequence is as
desired. Fix any non-principal ultrafilter U onN. Suppose there exists a non-trivial
element .gn/n 2 .Gn/U in the metric ultraproduct, or rather its representative from
.Gn/`1

. Since �U..gn// > 0, there exist " > 0 and A 2 U such that for all n 2 A,
�n.gn/ > ". Then we claim that there are no ı > 0 and B 2 U such that for all
n 2 B and hn 2 Gn with �n.hn/ < ı we have �n.g�1

n � hn � gn/ < ", thus violating
the condition that .gn/n is continuous in the ultraproduct. Suppose otherwise and
fix corresponding ı > 0 andB 2 U. We may suppose thatB � A. Pick n 2 B such
that 1=n < ı. Recall that gn is some reduced word w1 : : : wm over the alphabet
¹a; b; a�1; b�1º. Take x 2 ¹a; bº such that x ¤ w1 and x ¤ w�1

1 . We have that
�n.x/ D 1=n < ı. However, �n.g�1

n � x � gn/ > 2"C 1=n. Indeed, by assumption
there is no cancelation in the word w D w�1

m : : : w�1
1 xw1 : : : wm, thus g�1

n � h � gn
corresponds to the reduced word w. This finishes the proof. �

Next, we present an example of a normed topological group whose metric
ultrapower is equal to the original group itself.

Lemma 2.6. Consider the group S1 of all permutations ofN with the norm �.p/,

for p 2 S1, defined as max¹1=nWp.n/ ¤ nº, which was already considered in this

section. Then its metric ultrapower (over any ultrafilter onN) is equal to S1 itself.

Proof. Let us start with an observation.

Observation 2.7. Take any p 2 S1. For any n we want to compute the ı > 0

such that whenever �.s/ < ı then we have �.p�1 � s � p/ < 1=n, and conversely
that there exists s 2 S1 such that �.s/ � ı and �.p�1 � s � p/ � 1=n. Set
m D max¹p.l/W l � nº. We claim that we may take ı D 1=m. Indeed, suppose
that for some s 2 S1 we have �.s/ < 1=m. Then s � ¹1; : : : ; mº D id. It follows
that p�1 � s � p � ¹1; : : : ; nº D id, thus �.p�1 � s � p/ < 1=n. Conversely, let
m0 D p.n/ � m. Let s 2 S1 be arbitrary with the property that s.m0/ > m. Then
�.s/ � 1=m and p�1 � s � p � ¹1; : : : ; nº ¤ id, thus �.p�1 � s � p/ � 1=n.

Now consider the ultrapower of S1 with respect to some non-principal ul-
trafilter U (on N). Let .pn/n be some sequence representing an element of the
ultrapower. We claim that for all n there exist m and A 2 U such that

pi .l/ � m for all i 2 A and l � n:

Otherwise, we would get that there is n such that for every m there is A 2 U such
that for every i 2 A we have pi .n/ > m. Note that the preceding formula is not a
formal negation of the formula above, however it is equivalent to it. However,
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it follows from Observation 2.7 that such a sequence is not continuous in the
ultrapower. The same argument gives that for all n there exist m and A 2 U

such that
p�1
i .l/ � m for all i 2 A and l � n:

Now it follows that for any n there isAn 2 U and sn 2 S1 such that for every i 2 A

and every l � n we have pi .l/ D sn.l/ and p�1
i .l/ D s�1

n .l/. A straightforward
argument gives that .sn/n converges to some s 2 S1, and that .pn/n is equal to
the constant sequence consisting of s in the ultrapower. �

3. Proof of the main theorems

In the last section, we prove Theorems 0.1 and 0.2. The meaning of Theorem 0.2
is now clear after we have defined metric ultraproducts of normed groups in the
previous section. We precisely restate Theorem 0.1 here. We start with a definition
first.

Definition 3.1. Let .G; �/ and .H; �/ be normed groups, and let F � G be a finite
subset and " > 0 arbitrary. We say that �WF ! H is an "-homomorphism if

� �.�.g � h/�1 � �.g/ � �.h// < ", for all g; h 2 F such that g � h 2 F ;

� j�.�.g//� �.g/j < " for all g 2 F .

Theorem 3.2. There exists a countable sequence .Gn; �n/n of finite normed

groups such that for any normed topological group .H; �/, in particular for any

discrete group, and any " > 0 and any finite subset F � H there exists i0 such

that for all i � i0 there is an "-homomorphism �WF ! Gi .

Moreover, we may require that for every f 2 F , �
Gi

�.f /
� 2�H

f
C "id.

The rest is devoted to the proofs of the main theorems. We prove Theorem 0.2
and then show how Theorem 3.2 follows.

Again, we need some definitions before we can continue.

Definition 3.3. Let G be a finitely generated group. Let A � G be some finite
symmetric subset, i.e. A D A�1 D ¹a�1W a 2 Aº, containing the unit 1G and
generating G. Consider a function �0WA ! R satisfying the following conditions:

� For x 2 A, �0.x/ D 0 if and only if x D 1G ;

� For any x 2 A, �0.x/ D �0.x�1/.

Then we call �0 a partial pre-norm. If �0 additionally satisfies condition

� For any x1; : : : ; xn 2 A such that x1 � � � � �xn 2 A, �0.x � � � � �xn/ �
Pn
iD1 �

0.xi /

then we call �0 a partial norm.
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Construction 3.4. Let G be a group, A a finite symmetric subset containing the
unit and generatingG, and let �0WA ! R be a partial pre-norm. Then the following
formula defines a norm � on G. For any x 2 G we set

�.x/ D min¹�0.x1/C � � � C �0.xn/W x1; : : : ; xn 2 A; x D x1 � � � � � xnº:

Indeed, it immediately follows from the definition that for any x; y 2 G we
have �.x � y/ � �.x/C �.y/. Since �0 was a symmetric function vanishing at 1G
we get that also � is symmetric and vanishes at 1G .

We shall call such � finitely generated.
Moreover, if G is a finitely generated free group then observe that if �0 is a

partial norm then � extends �0, and � is proper.

Now suppose we have finitely many finitely generated free groups F1; : : : ; Fn.
For each i � n, suppose that Fi is freely generated by xi;1; : : : ; xi;ni

. Suppose
also that for each i � n there is a pre-norm �0

i : defined on some finite symmetric
Ai � Fi that contains ¹1; xi;1; : : : ; xi;ni

º, which thus defines some norm �i on Fi .
.Fi ; �i/ is a discrete normed group, thus a topological group. For any i � n and
j � ni denote by �ji the minimal MOC for xi;j in Fi . That is, for any r 2 Œ0;1/

define

�
j
i .r/ D max¹r; sup¹�i.x

"
i;j � g � x�"

i;j /W g 2 Fi ; �i.g/ � r; " 2 ¹1;�1ºº:

Now consider the free product F D F1 � � � � � Fn. We would like to define a
finitely generated norm F which extends the particular norms on Fi ’s in such a
way that the minimal moduli of continuity of the free generators in F are ‘close’
to the minimal moduli of the generators in the appropriate Fi ’s. Before doing so,
we need the following definition, first used in [5] and implicitly present already
in [16].

Definition 3.5 (match). Let A be some symmetric alphabet, i.e. if a 2 A, then
also its formal inverse a�1 belongs toA. Letw D wm : : : wmCn be some word over
A, for technical reasons enumerated by an arbitrary interval of natural numbers.
Denote by J that interval, i.e. J D ¹m; : : : ; m C nº. A match on J for w is a
bijection �W J ! J such that

� � ı � D idJ , i.e. for every i 2 J we have � ı �.i/ D i ,
� for no i; j 2 J we have i < j < �.i/ < �.j /,
� if �.i/ ¤ i , for some i 2 J , then wi D w�1

�.i/
.

Notice that for any match � on J for a word w enumerated by J and for any
i 2 J such that i < �.i/, we have that � � Œi C 1; : : : ; �.i/ � 1� is a match on
Œi C 1; : : : ; �.i/� 1� for the corresponding subword of w.

Also, if J and K are disjoint intervals such that max J C 1 D minK, and �J
is a match on J for some word wJ while �K is a match on K for some word wK ,
then �J [ �K is a match on J [K for wJwK .
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The reader should view a match � for some word w as a way how to build w
from its subwords by means of concatenation and conjugation. For example, for a
word w D a�1bca and a match �.1/ D 4; �.4/ D 1; �.2/ D 2; �.3/ D 3 for w one
sees w as being built first by concatenating letters b and c to obtain the word bc,
and then conjugating bc to obtain a�1bca.

Now we are ready to state the proposition.

Proposition 3.6. There exists a finitely generated norm � on F satisfying

� that for any i � n, � � Fi D �i , i.e. � extends �i ,

� for every i � n and j � ni and any y 2 F , " 2 ¹1;�1º we have

�.x"i;j � y � x�"
i;j / � 2�

j
i .�.y//, i.e. 2�

j
i is a MOC for xi;j (and x�1

i;j ) in F .

Remark 3.7. We stress the importance of the second item in the proposition, i.e.
that there are moduli of the free generators in the free product that are close to the
minimal moduli of the free generators in the original free groups.

Proof. The norm � will be constructed in three steps. In the first step, we shall
construct a finitely generated norm on F that extends each �i . However, this norm
will not yet satisfy the second condition from the statement of the proposition. In
the second step, we shall modify the norm from the first step so that it still extends
�i ’s and moreover the minimal moduli satisfy the second condition. While doing
so, we shall however break the condition that the norm is finitely generated. That
will be fixed in the last third step.

Step 1. First, set B 0 D
Sn
iD1Ai and � 0 D

Sn
iD1 �

0
i . We view B 0 as a finite

subset of F D F1 � � � � � Fn. It is clearly symmetric, contains the generators and
the unit and � 0 is a partial pre-norm. Moreover, the norm � on F determined by
� 0 extends �i for each i � n. Indeed, take any i � n and y 2 Fi . It follows from
the definition that �.y/ � �i .y/. Suppose that �.y/ < �i .y/. Then there exists
y1; : : : ; ym 2 B 0 such that y D y1 � � � � � ym and �.y/ D

Pm
jD1 �

0.yj /. For any
j � m if yj … Ai then set Qyj D 1, if yj 2 Ai then let Qyj D yj . Since y 2 Fi we
have that y D

Qm
jD1 Qyj and

�i .y/ �

mX

jD1

� 0. Qyj / �

mX

jD1

� 0.yj / D �.y/;

a contradiction.
However, 2�ji is not necessarily a MOC for every xi;j (and its inverse) any-

more. That will be fixed in the next step.
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Step 2. Denote by I the set ¹.i; j /W i � n; j � niº. Then for every .i; j / 2 I and
r 2 R we set �i;j .r/ D �

j
i C r . Clearly, for every r , �i;j .r/ � 2r and �i;j � 2�

j
i .

Now denote by SW the alphabet ¹x"i;j W .i; j / 2 I; " 2 ¹1;�1ºº [ ¹1º. We recall
that the elements of F correspond to reduced words over the alphabet SW.

Let now w D w1 : : :wn be any word (not necessarily reduced) over SW and
let � be a match on I D ¹1; : : : ; nº for w. Then we define the value ��.w/ by
induction on n.

For technical reasons we also allow the case when n D 0, i.e. w is an empty
word. Then we set ��.w/ D 0.

Suppose that n D 1. Then the match � is trivial and we set ��.w/ D �.w/ D

�.w1/.
Suppose now that n > 1 and we have defined ��.w/ for every w of length

less than n and every match � for w. If �.1/ D n then w D x"i;j Qwx�"
i;j for some

.i; j / 2 I and " 2 ¹1;�1º, where Qw D w2 : : : wn�1. By �0 we denote the match
� � Œ2; : : : ; n � 1� for Qw and we set

��.w/ D �i;j .��0. Qw//:

Suppose now that �.1/ … ¹1; nº. Then denote by �1 the match � � Œ1; : : : ; �.1/�

for w1 : : :w�.1/ and by �2 the match � � Œ�.1/C 1; : : : ; n� for w�.1/C1 : : : wn. And
we set

��.w/ D ��1
.w1 : : :w�.1//C ��2

.w�.1/C1 : : : wn/:

Finally, suppose that � D id¹1;:::;nº. Then we set ��.w/ D �.w0/, where, we
recall, w0 is the reduced word obtained from w; i.e. an element of F .

We may now define the norm Q� as follows. For any x 2 F we set

Q�.x/ D min¹��.w/Ww
0 D x; � is a match on ¹1; : : : ; jwjº for wºº:

Note that since F and � are finitely generated we may indeed use the minimum in
the formula above.

It follows from the definition that Q� is a norm. Indeed, clearly it is symmetric,
since � was symmetric, and it vanishes only at 1 since the minimum is used in the
definition. Take now some x; y 2 F . Let wx be a word satisfying w0

x D x and �x
a match forwx such that ��x

.wx/ D Q�.x/. We also take �y andwy with analogous
properties for y. Then we get that

Q�.x � y/ � ��x[�y
.wxwy/ D ��x

.wx/C ��y
.wy/:

We now show that for each .i; j / 2 I and " 2 ¹1;�1º and any y 2 F we have
Q�.x"i;j �y �x�"

i;j / � �i;j . Q�.y//. Let wy be a word satisfying w0
y D y and �y a match

for wy such that ��y
.wy/ D Q�.y/. Suppose that jwyj D l and let � be a match on

¹1; : : : ; l C 2º, defined by �.1/ D l C 2, �.l C 2/ D 1 and for any 1 < i < l C 2,
�.i/ D �y.i � 1/, for the word x"i;jwyx

�"
i;j . Then

Q�.x"i;j � y � x�"
i;j / � ��.x

"
i;jwyx

�"
i;j / D �i;j . Q�.y//:
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Moreover, we claim that Q� still extends �i on Fi for each i � n. This is done
completely analogously as we did it for � . That is, for any i � n and x 2 Fi ,
if Q�.x/ < �i .x/, then there would be a word wx over SW and a match � for
wx such that w0

x D x and ��.wx/ < �i .x/. Replace in wx each letter from
SW n ¹x"i;j W j � ni ; " 2 ¹1;�1ºº by 1 and denote the obtained word vx. Since
x 2 Fi we still have that v0

x D x and it follows directly from definition that
�i .x/ � ��.vx/ � ��.wx/.

Step 3. Now, for every .i; j / 2 I , let ri;j be (the minimal number) such that
�i;j .ri;j / � 2�i .xi;j /C ri;j . Set r 0 D max.i;j /2I ri;j and r D max.i;j /2I �i;j .r 0/.
Since, as it it straightforwards to check, Q� is still proper, the set Y D ¹y 2

F W Q�.y/ � rº is finite.
Finally, we define a finitely generated norm � with the desired properties.

We let � be generated by values of Q� on B D B 0 [ Y , i.e. for any x 2 F we
set

�.x/ D min¹ Q�.x1/C � � � C Q�.xm/W x1; : : : ; xm 2 B; x D x1 � � � � � xmº:

Clearly, � extends �i on Fi since �i was generated by Bi , Bi � B 0 � B and Q�

extends �i . Also, � coincides with Q� on Y .
And moreover, for any .i; j / 2 I and " 2 ¹1;�1º and any y 2 F we have

�.x"i;j � y � x�"
i;j / � �i;j .�.y//:

Indeed, take any .i; j / 2 I , " 2 ¹1;�1º and y 2 F . If �.y/ > r 0 then
�i;j .�.y// � 2�.xi;j / C �.y/. However, �.x"i;j � y � x�"

i;j / � 2�.xi;j / C �.y/.

Thus suppose that �.y/ � r 0. Then y 2 Y and �.y/ D Q�.y/. We have that
Q�.x"i;j � y � x�"

i;j / � �i;j . Q�.y// � �i;j .r
0/ � r . It follows that x"i;j � y � x�"

i;j 2 Y and

thus �.x"i;j � y � x�"
i;j / D Q�.x"i;j � y � x�"

i;j / � �i;j .�.y//. That finishes the proof. �

Remark 3.8. Matches were originally used by Ding and Gao in [5] for a conve-
nient computation of the Graev bi-invariant metric. The same authors then used
matches for constructing also continuous norms, or continuous left-invariant met-
rics in [6], which is close to the approach we used in the previous proposition.
The reader is invited to compare the construction in Step 2 in Proposition 3.6 with
the construction in Definition 3.3 in [6]. The same constructions were later used
by Ding in [4] to construct surjectively universal Polish groups. A reader familiar
with these results will recognize that our construction is, in a sense, a generaliza-
tion of those in [6].

The next proposition is a, sort of, metric residual finiteness of normed free
groups. It shows that normed free groups may be approximated by finite normed
groups. That will be used in producing the desired sequence of finite normed
groups from Theorems 3.2 and 0.2.
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Proposition 3.9. Let F be a finitely generated free group with a norm �. Then

for any finite subset A � F containing the generators there exists a finite group

H with a norm � and a partial monomorphism �WA � F ,! H which is also an

isometry with respect to � and � .

Moreover, if � is proper and for any free generator x of F some MOC �x of x

in F is given, such that it is eventually greater than 2�.x/C id, then, provided A

is large enough, �x remains a MOC for �.x/ in H .

Proof. Let M D max¹�.x/W x 2 Aº, let m D min¹�.x/W x 2 A n ¹1ºº and
let K D max¹jxjW x 2 Aº. Let B D ¹x 2 F W jxj � K � dM

m
eº. Note that

A � B . Since F is residually finite there exists a finite group H together with
a partial monomorphism �WB � F ,! H . Moreover, we may assume that �ŒB�
generates H . Note that then in fact �ŒA� generates H as A contains the (free)
generators of F .

To simplify the notation, for every x 2 B denote by x0 the element �.x/ 2 H .
For every x 2 A set � 0.x0/ D �.x/. Let � be a norm on H generated by � 0. It
suffices to prove that for every x 2 A we have �.x0/ D � 0.x0/ (D �.x/).

Note that although � 0 is a partial norm on �ŒA�, it does not follow automatically
that � extends � 0 as H is not free, it is a finite group.

Suppose that for some x 2 A we have �.x0/ < � 0.x0/. Then there exist
x1; : : : ; xn 2 A such that x0 D x0

1 � � � � � x0
n and

�.x0/ D

nX

iD1

� 0.x0
i / < �.x/:

We claim that n � M
m

. Indeed, we have � 0.x0/ � M and for every i � n,
� 0.x0

i / � m. Thus if n > M
m

, then
Pn
iD1 �

0.x0
i / > m � M

m
> M , a contradiction.

Moreover, for each i � n we have jxi j � K. Thus jx1 � � � � � xnj � K � M
n

.
Consequently, x1 � � � � � xn is in B , so in the domain of �. However, then it follows
that x D x1 � � � � � xn as � is a partial monomorphism. But we have

�.x/ � �.x1/C � � � C �.xn/ D � 0.x0
1/C � � � C � 0.x0

n/ D �.x0/;

a contradiction.

It remains to prove the ‘moreover’ part from the statement of the proposition.
Suppose that .F; �/ is such that � is proper, e.g. � is finitely generated. Take
some generator x 2 F and let �x be a MOC for x in F such that there is
some r 0 such that �x.r 00/ � 2�.x/ C r 00 for r 00 � r 0. Set r D �x.r

0/. Then
the set B D ¹y 2 F W�.y/ � rº is finite. Suppose now that .H; �/ is a finite
normed group and �WA � F ! H a partial monomorphism on some finite set A
containing B which is isometric. Then we claim that �x is a MOC for �.x/ inH .
Indeed, take some y 2 H . If �.y/ > r 0 then �x.�.y// � 2�.�.x// C �.y/ �

�.�.x/�1 � y � �.x//. If �.y/ � r 0 then y D �.y0/ for some y0 2 B and
�.y0/ D �.y/. Since �.x�1 �y0 �x/ � �x.�.y

0// � r we have x�1 �y0 �x 2 B , thus
�.�.x/�1 � y � �.x// D �.x�1 � y0 � x/ � �x.�.y

0// D �x.�.y//. �



632 M. Doucha

Construction 3.10. Let ¹.Fn; �n/W n 2 Nº be an enumeration of all finitely
generated free groups with rational finitely generated norms, i.e. norms taking
values in the rationals. We shall denote the generators of Fi by xi;1; : : : ; xi;ni

,
for each i . For each n 2 N we use Proposition 3.6 to define a norm �n on
Gn D F1 � � � � � Fn which extends �i for i � n, and moreover, for each i � n,
j � ni we have that 2�ji is a modulus of continuity of xi;j in Gn (where �ji was
the minimal MOC for xji in Fi ). Suppose that �n is generated by some �0

n defined
on a finite set An � Gn. Set kn D maxx2An

jxj and let Bn D ¹x 2 GnW jxj � knº.
We use Proposition 3.9 to get a finite group Hn with a norm �n such that there is
a partial monomorphism �nWBn ,! Hn which is isometric with respect to �n and
�n, and moreover, for every generator xi;j , i � n, j � ni , �i;j D 2�

j
i is a MOC

for �n.xi;j / in Hn.
Finally, consider any non-principal ultrafilter on N and set G to be the corre-

sponding metric ultraproduct of the sequence .Hn; �n/n.

Theorem 3.11. G contains isometrically every separable normed topological

group.

Remark 3.12. Theorem 3.11 covers Theorem 0.2 from the introduction. Theo-
rem 0.1, resp. Theorem 3.2 will follow by a rather standard argument which we
shall provide after the proof of Theorem 3.11.

Proof. Let .E; �/ be an arbitrary separable normed group. Let .en/n be an infinite
set of generators such that the Raı̌kov metric completion of the subgroup generated
by .en/n contains E. By Observation 1.7, we may suppose that the subgroup
generated by .en/n is free if we view � as a seminorm. For any x 2 E by �x
we shall denote �Ex , i.e. the minimal modulus of continuity for x in E.

For any n, let En be the free group freely generated by e1; : : : ; en. Let Cn be
the set ¹x 2 EnW jxj � nº.

We define a rational partial norm (note that � in contrast may be just a semi-
norm) � 0

n onCn. We take as � 0
n any rational partial norm � 0 onEn with the property

that for every w 2 Cn we have

� 0.w/ � �.w/ and �.w/� �.wh/ � 1=m; (3.1)

where m D jCnj.

Claim 3.13. Such a rational partial norm � exists.

To show it enumerate Cn as c1; : : : ; cm in such a way that

�.c1/ � �.c2/ � � � � � �.cm/:

Let

Cmin D min¹1=m;min¹j�.ci / � �.cj /jW i; j � m; �.ci/ ¤ �.cj /ºº:
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Let .ıi /2mC1
iD1 be an increasing sequence of positive real numbers such that, for

each i � 2mC 1,

� ıi < Cmin,

� if for some i ¤ j , �.ci / D �.cj /, then ıi D ıj ,

� �.ci/C ıi 2 Q.

Then for ci ¤ 1we set � 0.ci / D �.ci /Cıi , and � 0.1/ D 0. Clearly, it is rational,
and it is symmetric since if ci D c�1

j then ıi D ıj , thus � 0.ci / D �.ci/ C ıi D

�.cj / C ıj D � 0.cj /. Let ci D ci1 � � � � � cij . If for any l � j we have il � i , i.e.
�.ci / � �.cil /, then we have

� 0.ci / D �.ci /C ıi � �.ci /C .�.cil / � �.ci // �

�.cil /C ıil D � 0.cil / �

jX

lD1

� 0.cil /:

If for every l � j we have �.ci / > �.cil /, then for every l � j we have ıi � ıil
and thus

� 0.ci / D �.ci/C ıi �

jX

lD1

�.cil /C ıil D

jX

lD1

� 0.cil /:

This proves the claim.

We set �n to be the (rational finitely generated) norm on En generated by � 0
n.

For each n, there is i.n/ such that .En; �n/ is equal to .Fi.n/; �i.n//. It follows
that we can find a strictly increasing sequence of natural numbers i1 < i2 < � � �

such that for each k 2 N and every ik � l < ikC1, Gl contains Fi.k/ D Ek as
a subgroup. Thus for every n, m � n and im � l < imC1 fix some isometric
monomorphism �W .Em; �m/ ! Gl and denote by eln the element �.en/ 2 Gl . For
l < in, set eln D 1. So we have defined elements eln for all n; l 2 N.

Now notice that by (3.1), for any w 2 E we have

�.w/ D lim
n
�n.w/: (3.2)

For any n � m 2 N, let �men
be the minimal MOC for en in .Em; �m/ and �en

the
minimal MOC for en in .E; �/. It follows from (3.1) and (3.2) that

�en
D lim

m
�men

; (3.3)

i.e. for any r , �en
.r/ D limm �

m
en
.r/. By Proposition 3.6, we have

�
Gl

el
n

� 2�men
; for all n;m � n; im � l < imC1: (3.4)
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Thus, if we denote by f mn the element �m.emn / in Hm, for all n;m 2 N, we
still have that �Hm

fm
n

� 2�men
(by Proposition 3.9). Recall that �m is the partial

isometric monomorphism from Construction 3.10 (where it was obtained using
Proposition 3.9).

For each n consider the sequence .f mn /m. By (3.3) and (3.4), the elements
.f mn /m are bounded by a common MOC, thus .f mn /m is continuous in the ultra-
product and belongs to G. We shall denote the corresponding element there by
gn.

We now claim that hgnW n 2 Ni � G is isometrically isomorphic to henW n 2

Ni � E. For each n 2 N and w 2 En, denote by wG the corresponding element
in hgnW n 2 Ni, i.e. an element obtained by a canonical evaluation where en is
evaluated as gn. Similarly, for all m � in denote by wm the evaluation of w in
hf mi W i � ni � Hm. Then for any n and w 2 En we have

�.wG/ D lim
U

�m.wm/ D lim
m!1

�m.wm/ D �.w/:

Since G is Raı̌kov metrically complete, it contains isometrically E. �

Proof of Theorem 3.2. We claim that the sequence .Hn; �n/n from Construc-
tion 3.10 is as desired. Fix some normed topological group .G; �/, some finite
subset F � H and some " > 0. We may without loss of generality suppose that
G is separable; otherwise we could replace G by some separable subgroup of G
containing F . Suppose, to reach a contradiction, that there is an infinite subset
A � N such that for all i 2 A there is no "-homomorphism from F into Gi . Let U
be an arbitrary non-principal ultrafilter on N such that A 2 U. By Theorem 3.11,
the metric ultraproduct of the sequence .Gn/n using U contains G isometrically.
Moreover, it follows from the proof of Theorem 3.11 that if we choose some gener-
ating sequence .en/n of G so that it contains the elements of F , then we obtain an
isometric embedding  WG ! G, where G is the ultraproduct, such that for every
f 2 F ,

�G

 .f / � 2�Gf :

As usual, we shall suppose that for each g 2 G,  .g/ is a sequence from
Q
nGn

rather than some equivalence class, and for each i 2 N, by  .g/i we denote the
corresponding projection on the i-th coordinate.

Then by a standard ultraproduct argument (essentially by the classical Łoś
theorem) there exists a set B 2 U such that for all i 2 B the map �i WF ! Gi

defined by f !  .f /i is an "-homomorphism such that moreover �Gi

�i .f /
�

2�G
f

C "id. Taking any i 2 A \ B leads to a contradiction. �
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Let us conclude with few problems. First, we want to ask whether the analo-
gous result holds in the category of groups with bi-invariant metric. Thus we want
to ask whether not only every discrete group is weakly sofic, which is the problem
of Glebsky and Rivera, but whether actually every group with bi-invariant metric
is weakly sofic.

Question 3.14. Does every group with bi-invariant metric isometrically embed

into a metric ultraproduct of finite groups with bi-invariant metric?

Let us offer also a weakening of the previous question. As weakly sofic groups
generalize sofic groups, one can generalize the notion of hyperlinear groups by
defining weakly hyperlinear groups as those groups that can be approximated
by compact groups with bi-invariant metric, or equivalently, as those groups that
embed as subgroups into metric ultraproducts of compact groups with bi-invariant
metric. This notion was introduced by Jakub Gismatulin. Clearly, the notion
of weakly hyperlinear groups makes again sense also for metric groups with bi-
invariant metric.

Question 3.15. Is every group with bi-invariant metric weakly hyperlinear?

Remark 3.16. During the review process of the paper, Question 3.14 was an-
swered negatively. Nikolov, Schneider and Thom in [13] prove that no compact
connected non-abelian Lie group with a compatible bi-invariant metric embeds
into a metric ultraproduct of finite groups with bi-invariant metric.
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