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Classifying virtually special tubular groups

Daniel J. Woodhouse

Abstract. A group is tubular if it acts on a tree with Z2 vertex stabilizers and Z edge

stabilizers. We prove that a tubular group being virtually special is equivalent to it acting

freely on either a locally finite or finite dimensional CAT.0/ cube complex. Furthermore,

we prove that if a tubular group acts freely on a finite dimensional CAT.0/ cube complex,

then it virtually acts freely on a three dimensional CAT.0/ cube complex.
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1. Introduction

A tubular group G splits as a graph of groups with Z2 vertex groups and Z edge

groups. Equivalently, G is the fundamental group of a graph of spaces, denoted

by X , with each vertex space homeomorphic to a torus and each edge space

homeomorphic to S1 � Œ�1; 1�. The graph of spaces X is a tubular space. In

this paper all tubular groups will be finitely generated and therefore have compact

tubular spaces.

Tubular groups have been studied from various perspectives: Brady and Brid-

son provided tubular groups with isoperimetric function n˛ for all ˛ in a dense

subset of Œ2; 1/ in [1]. Cashen determined when two tubular groups are quasi-

isometric [5]. Wise determined whether or not a tubular group acts freely on

a CAT.0/ cube complex [12], and classified which tubular groups are cocom-

pactly cubulated. The author determined a criterion for finite dimensional cubu-

lations [13]. Button has proven that all free-by-cyclic groups that are also tubular

groups act freely on finite dimensional cube complexes [3]. The main theorem of

this paper is the following one.

Theorem 1.1. Let G be a tubular group. The following are equivalent:

(1) G acts freely on a locally finite CAT.0/ cube complex;

(2) G acts freely on a finite dimensional CAT.0/ cube complex;

(3) G is virtually special.
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Haglund and Wise introduced special cube complexes in [7]. The main con-

sequence of a group being special is that it embeds in a right angled Artin group

(see [10] or [11] for a full outline of Wise’s program). Note that if G0 is a finite

index, special subgroup of G, then G0 acts freely on the universal cover of the

Salvetti complex of some finitely generated right angled Artin group. The Salvetti

complex is finite dimensional and locally finite, and G acts freely on X ŒGWG0�, so

we can deduce that (3) implies (1) and (2). The proof of Theorem 1.1 will therefore

be completed by proving that (1) implies (3) in Theorem 5.10, and (2) implies (1)

in Corollary 6.4.

1.1. Structure of the Paper. In [12] Wise obtained free actions of tubular groups

on CAT.0/ cube complexes by first finding equitable sets that allow the construc-

tion of immersed walls. Such a set of immersed walls determines a wallspace

. zX;W/ which yields a dual cube complex C. zX;W/ which G acts freely on.

Wallspaces were first introduced by Haglund and Paulin [6], and the dual cube

complex construction was first developed by Sageev [9]. In [13] the author de-

fined a criterion, called dilation, that determines if an immersed wall produces

infinite or finite dimensional cubulations. More precisely, if the immersed walls

are non-dilated, then C. zX;W/ is finite dimensional. We recall the relevant defi-

nitions and background in Section 2.

Section 3 establishes a technical result using techniques from [13]. It is shown

that that immersed walls can be replaced with primitive immersed walls without

losing the finite dimensionality or local finiteness of the associated dual cube

complex. The reader is encouraged to either read this section alongside [13], or

skip it on a first reading.

In Section 4 we analyze C. zX;W/ in the finite dimensional case to establish a

set of conditions that imply that GnC. zX;W/ is virtually special. We decompose

C. zX;W/ as a tree of spaces, with the same underlying tree as zX and then,

under the assumption that the walls are primitive, we show that C. zX;W/ maps

G-equivariantly into Rd � z�, where R is the standard cubulation of R, and z� is

the underlying graph of zX . A further criterion, the notion of a fortified immersed

wall, determines when C. zX;W/ is locally finite. Combining these results allow

us to give criterion for GnC. zX;W/ to be virtually special.

In Section 5 we consider a tubular group acting freely on a CAT.0/ cube

complex zY . We show that we can obtain from such an action immersed walls that

preserve the important properties of zY . More precisely, we prove the following

result.

Proposition 5.9. Let G be a tubular group acting freely on a CAT.0/ cube

complex zY . There is a tubular space X and a finite set of immersed walls in

X such that, if . zX;W/ is the associated wallspace, then

(1) G acts freely on C. zX;W/;

(2) C. zX;W/ is finite dimensional if zY is finite dimensional;

(3) C. zX;W/ is finite dimensional and locally finite if zY is locally finite.
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This Proposition is sufficient to allow us to prove Theorem 5.10 which is the

equivalence of (1) and (3) in Theorem 1.1.

In Section 6 we further exploit the results obtained in Section 4 to obtain the

following, demonstrating that the cubical dimension of tubular groups with finite

dimensional cubulations are virtually within 1 of their cohomological dimension.

Corollary 6.3. If a tubular group G acts freely on a finite dimensional CAT.0/

cube complex, then G virtually acts freely on a CAT.0/ cube complex of dimen-

sion 3.

The techniques in this section will also allow us to prove Corollary 6.4 that (2)

implies (1) in Theorem 1.1.

Acknowledgements. I would like to thank Dani Wise, Mark Hagen, Jack Button,

and Piotr Przytycki.

2. Background tubular groups and their cubulations

Let G be a tubular group with associated tubular space X and underlying graph �.

Given an edge e in a graph we will let �e and Ce respectively denote the initial

and terminal vertices of e. Let Xv and Xe denote vertex and edge spaces in this

graph of spaces. Let X�
e and XC

e be the boundary circles of Xe , and denote the

attaching maps by '�
e W X�

e ! X�e , and 'C
e W XC

e ! XCe . Note that '�
e and 'C

e

respectively represent generators of Ge in G�e and GCe. We will let zX denote

the universal cover of X . Let zXQv and zXQe denote vertex and edge spaces in the

universal cover zX , and let z� denote the Bass-Serre tree. We will assume that each

vertex space has the structure of a nonpositively curved geodesic metric space and

that attaching maps '�
e and 'C

e define locally geodesic curves in X�e and XCe.

2.1. Equitable Sets and Intersection Numbers. Given a pair of closed curves

in a torus ˛; ˇW S1 ! T , the intersection points are the elements .p; q/ 2 S1 � S1

such that ˛.p/ D ˇ.q/. For a pair of homotopy classes Œ˛�; Œˇ� of closed curves in

a torus T , their geometric intersection number #ŒŒ˛�; Œˇ�� is the minimal number

of intersection points realized by a pair of representatives from the respective

classes. This number is realized by any pair of geodesic representatives of the

classes. If B D ¹Œˇi �º is a finite set of homotopy classes of curves in T , then

#Œ˛; B� WD
P

i #Œ˛; ˇi �. Viewing Œ˛� and Œˇ� as elements of �1T D Z2, we

can compute that #ŒŒ˛�; Œˇ�� D detŒŒ˛�; Œˇ��. Given an identification of Z2 with

�1T , the elements of Z2 are identified with homotopy classes of curves in T , so it

makes sense to consider their geometric intersection number. An equitable set for

a tubular group G is a collection of sets ¹Svºv2� , where Sv is a finite set of distinct

geodesic curves in Xv disjoint from the attaching maps of adjacent edge spaces,
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such that Sv generate a finite index subgroup of �1Xv D Gv , and #Œ'�
e ; S�e� D

#Œ'C
e ; SCe�. Note that equitable sets can also be given with Sv a finite subset of

Gv that generates a finite index subgroup of Gv and satisfies the corresponding

equality for intersection numbers. This is how Wise formulates equitable sets, and

its equivalence follows from exchanging elements of Gv D �1Xv with geodesic

closed curves in Xv that represent the corresponding elements. An equitable set

is fortified if for each edge e in �, there exists ˛C
e 2 SCe and ˛�

e 2 S�e such that

#Œ˛C
e ; 'C

e � D #Œ˛�
e ; '�

e � D 0. An equitable set is primitive if every element ˛ 2 Sv

represents a primitive element in Gv.

2.2. Immersed Walls From Equitable Sets. Immersed walls are constructed

from circles and arcs. For each ˛ 2 Sv , let S1
˛ be the domain of ˛. The disjoint

union
F

S1
˛ over all ˛ 2 Sv and v 2 V � are the circles. Since #Œ'�

e ; S�e� D
#Œ'C

e ; SCe�, there exists a bijection from the intersection points between curves

in S�e and '�
e , and the intersection points between curves in SCe and 'C

e . Let

.p�; q�/ 2 S1
˛� � X�

e and .pC; qC/ 2 S1
˛C be corresponding intersection points

between ˛˙ 2 S˙e and '˙
e . Then an arc a Š Œ0; 1� has its endpoints attached

to p� and pC. The endpoints of a are mapped into X�e \ Xe and XCe \ Xe,

so the interior of a can be embedded in Xe. After attaching an arc for each pair

of corresponding intersection points, we obtain a set ¹ƒ1; : : : ; ƒnº of connected

graphs that map into X , called immersed walls. Each graph ƒi has its own graph

of groups structure with infinite cyclic vertex groups and trivial edge groups.

As in [13], all “immersed walls” in this paper are immersed walls constructed

from equitable sets as above. This means that we are free use the results obtained

in [13].

A lift of zƒi ! zX is a two sided embedding in zX , separating zX into two

halfspaces. The images of the lifts of zƒi to zX are horizontal walls Wh. The

vertical walls Wv are obtained from the lifts of curves ˛e W S1 ! Xe given by the

inclusion S1 � ¹0º ,! S1 � Œ�1; 1�. The set W D Wh t Wv of all horizontal and

vertical walls gives a wallspace . zX;W/ where the G-action on zX also gives an

action on W. The main theorem of [12] is that a tubular group acts freely on a

CAT.0/ cube complex if and only if there exists an equitable set.

A set of immersed walls is fortified if they are obtained from a fortified

equitable set. A set of immersed walls is primitive if they are obtained from a

primitive equitable set.

Let zƒ and zƒ0 be horizontal walls in zX . An point x 2 zƒ \ zƒ is a regular

intersection point if it lies in a vertex space zXQv , and the lines zƒ \ zXQv and zƒ0 \ zXQv

are non-parallel. Otherwise, a point x 2 zƒ \ zƒ0 is a non-regular intersection

point, and either x 2 zXQv where zƒ \ zXQv D zƒ0 \ zXQv , or x 2 zXQe .

An infinite cube in a CAT.0/ cube complex zY , is an sequence of c0; c1; : : :,

cn; : : : such that cn is an n-cube in zY , and cn is a face of cnC1. In [13] a dilation

function is constructed for each immersed wall RW �1ƒ ! Q�, and an immersed
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wall is said to be dilated if R has infinite image. The following is Theorem 1.2

from that paper.

Theorem 2.1. Let X be tubular space, and . zX;W/ the wallspace obtained from

a finite set of immersed walls in X . The following conditions are equivalent:

(1) the dual cube complex C. zX;W/ is infinite dimensional;

(2) the dual cube complex C. zX;W/ contains an infinite cube;

(3) one of the immersed walls is dilated.

The following result is also obtained from [13] by combining Thm 1.2, Prop

4.6, and Prop 3.4. The last part follows from the last paragraph of the proof of

Prop 3.4.

Proposition 2.2. Let X be tubular space, and . zX;W/ the wallspace obtained

from a finite set of immersed walls in X . If C. zX;W/ is infinite dimensional, then

W contains an set of pairwise regularly intersecting walls of infinite cardinality,

that correspond to the hyperplanes in an infinite cube in C. zX;W/. Moreover, the

infinite cube contains a canonical 0-cube.

3. Primitive immersed walls

The following result uses the techniques in Section 5. of [13] to compute the

dilation function. Let ƒ be an immersed wall in X , and let RW �1.ƒ/ ! Q�

be its dilation function. If R has finite image then ƒ is non-dilated. Let qW ƒ ! �

be the quotient map obtained by crushing each circle to a vertex. Note that the

arcs in � correspond to the arcs in ƒ. The dilation function R factors through

q�W �1ƒ ! �1�, so there exists a function yRW �1� ! Q� such that R D yR ı q�.

We can therefore determine if ƒ is dilated by computing the function yR.

We orient each arc in ƒ so that all arcs embedded in the same edge space are

oriented in the same direction. We orient the arcs in � accordingly. We define

a weighting !W E.�/ ! Q�. Let Xe be an edge space in X , and let � be an arc

mapped into Xe connecting the circles C � and C C. Let ˛�W C � ! X�e and

˛CW C C ! XCe be the corresponding elements in the equitable set. Then

!.�/ D
#Œ'�

e ; ˛��

#Œ'C
e ; ˛C�

:

If  D �
�1

1 � � � � �n
n is an edge path in � where �i is an oriented arc in �, and

� 2 ˙1, then yR./ D !.�1/�1 � � � !.�n/�n .
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Lemma 3.1. Let X be a tubular space, and let G D �1X . Let ƒ1; : : : ƒk be a set

of immersed walls in X obtained from an equitable set ¹Svºv2� . Then there exists

a set of primitive immersed walls ƒ0
1; : : : ; ƒ0

`
in X obtained from an equitable set

¹S 0
vºv2� . Moreover,

(1) if ƒ1; : : : ; ƒk are non-dilated, then so are ƒ0
1; : : : ƒ0

`
;

(2) if ƒ1; : : :ƒk , are fortified, then so are ƒ0
1; : : : ƒ0

`
.

Proof. Each ƒi decomposes as the union of disjoint circles, which are the domain

of locally geodesic closed paths in the equitable set and arcs. Suppose that

˛n 2 Sv, where Œ˛� 2 �1Xv D Gv is primitive. Let ƒi be the immersed wall

containing the circle S1
˛n corresponding to ˛n.

A new equitable set is obtained by replacing ˛n in Sv with n locally geodesic

curves ¹˛i W S1
i ! Xvºn

iD1 with disjoint images in Xv that are isotopic to ˛ in zXv .

This remains an equitable set since #Œ˛n; � D n#Œ˛; � D
Pn

iD1 #Œ˛i ; � for any

locally geodesic curve  in Xv . New immersed walls are obtained from ƒi by

replacing S1
gn with S1

1 ; : : : S1
n and reattaching the arcs that were attached to the

intersection points in S1
˛n to the corresponding intersection points on S1

1 ; : : : S1
n .

Let ƒi1; : : : ; ƒi` be the new set of immersed walls obtained in this way. Note that

each arc in ƒi1; : : : ; ƒi`, corresponds to a unique arc in ƒi .

Assume that ƒi is non-dilated. We claim that the new immersed walls

ƒi1; : : : ; ƒi` are also non-dilated. Let qi W ƒi ! �i and qij W ƒij ! �ij be the

quotient maps obtained by crushing the circles to vertices. Let u be the vertex

in �i corresponding to S1
˛n . Let Ri W �1ƒi ! Q� and Rij W �1ƒij ! Q� be the

dilation functions. Let yRi W �1�i ! Q� and yRij W �1�ij ! Q� be the unique maps

such that Ri D yRi ı qi and Rij D yRij ı qij . Let !i and !ij be the respective

weightings of the arcs in �i and �ij . By assumption, Ri and yRi have finite im-

age. As the arcs in ƒij correspond to arcs in ƒi , there is a map �i W �ij ! �i . We

show ƒij is non-dilated by showing that yRij ./ D yRi .�i ı /.

Let � be an oriented arc in �ij . The edge q�1
ij .�/ embeds in an edge space Xe.

If the vertices of � � are disjoint from ��1.u/, then !ij .� �/ D !i .�ij ı � �/. If the

endpoints of � � are contained in ��1
ij .v/, and correspond to the circles S1

� and S1
�

then

!ij .�˙1/ D
#Œ'�

e ; ˛��

#Œ'˙
e ; ˛� �

D
n#Œ'�

e ; ˛��

n#Œ'˙
e ; ˛� �

D
#Œ'�

e ; ˛n�

#Œ'˙
e ; ˛n�

D !.�ij ı �˙1/:

Suppose that exactly one endpoint of � � is contained in ��1
ij .u/. If � � termi-

nates a vertex in ��1
ij .u/ corresponding to S1

� , and the initial vertex corresponds

to a circle that is the domain of a locally geodesic curve ˇ then

!ij .�˙1/ D
#Œ'�

e ; ˇ�

#Œ'˙
e ; ˛� �

D
n#Œ'�

e ; ˇ�

n#Œ'˙
e ; ˛� �

D
n#Œ'�

e ; ˇ�

#Œ'˙
e ; ˛n�

D n!.�ij ı �˙1/:
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If � � starts at a vertex in ��1
ij .u/ corresponding to S1

� , and the terminal vertex

correspond to a circle that is the domain of a locally geodesic curve ˇ then

!ij .�˙1/ D
#Œ'�

e ; ˛��

#Œ'˙
e ; ˇ�

D
n#Œ'�

e ; ˛��

n#Œ'˙
e ; ˇ�

D
#Œ'�

e ; ˛n�

n#Œ'˙
e ; ˇ�

D
1

n
!.�ij ı �˙1/:

Therefore, given an edge path  in �ij , since the number of edges exiting vertices

in ��1
ij .v/ is the same as the number of vertices entering, yRij ./ D yRi .�i ı /.

This procedure produces immersed walls with one fewer non-primitive ele-

ment in the equitable set. Repeating this procedure for each non-primitive element

in the equitable set produces a primitive set of non-dilated immersed walls. It is

also clear, that if ƒ1; : : : ; ƒk are fortified, then so are the new immersed walls. �

4. Finite dimensional dual cube complexes

Let X be a tubular space and let G D �1X . Let . zX;W/ be the wallspace obtained

from a set of non-dilated immersed walls ƒ1; : : : ƒk constructed from an equitable

set, and a vertical immersed wall in each edge space. We emphasize that in this

section all immersed walls are assumed to be non-dilated, even when it is not

explicitly stated. Let zZ D C. zX;W/ and let Z D Gn zZ. By Theorem 2.1, the

immersed walls being non-dilated is equivalent to zZ being finite dimensional.

For each edge Qe in z� let zƒQe denote the vertical wall in zXQe.

We refer to [8] for full background on the dual cube complex construction.

A 0-cube z in zZ is a choice of halfspace zŒ zƒ� of zƒ for each zƒ 2 W such that

(1) if zƒ1; zƒ2 2 W, then zŒ zƒ1� \ zŒ zƒ2� ¤ ;;

(2) if x 2 X , then there are only finitely many zƒ 2 W such that x … zŒ zƒ�.

Two 0-cubes z1; z2 are adjacent if z1Œ zƒ� D z2Œ zƒ� for all but precisely one hyper-

plane zƒ12 2 W. The 1-cube joining z1 and z2 is dual to the hyperplane corre-

sponding to zƒ12. An n-cube is then present wherever the 1-skeleton of an n-cube

appears. We say that two disjoint walls zƒ; zƒ0 face each other in z if zŒ zƒ� is not

contained in zŒ zƒ0� and vice versa.

Proposition 4.1. There is a G-equivariant map f W zZ ! z�. Therefore zZ decom-

poses as a tree of spaces with zZQv D f �1. Qv/, and zZQe D f �1. Qe/ is the carrier of

the hyperplane corresponding to zƒQe 2 Wv.

By f �1.e/ we mean the union of all cubes c in zZ such that f .c/ D e.

Proof. As there is a vertical wall in each edge space, and since the vertical walls

are all disjoint we can identify C. zX;Wv/ with the Bass-Serre tree z� of zX . We

define a map f W zZ ! z�: let z be a 0-cube in Z, then define f .z/ by letting

f .z/Œ zƒe� D zŒ zƒe�. If z1; z2 are adjacent 0-cubes, then z1Œ zƒ� ¤ z2Œ zƒ� for precisely
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one wall zƒ 2 W. If zƒ is a horizontal wall then f .z1/ D f .z2/ and the 1-cube

joining them is also mapped to the same vertex. If zƒ D zƒe 2 Wv then f .z1/ and

f .z2/ are adjacent in z�, so the 1-cube joining z1 and z2 maps to the edge joining

f .z1/ and f .z2/. As f is defined on the 1-skeleton, the map extends uniquely to

the entire cube complex zZ. Then zZQv D f �1. Qv/ and zZQe D f �1. Qe/ is the carrier

of the hyperplane corresponding to zƒe . �

Proposition 4.1 implies that Z decomposes as a graph of spaces with vertex

spaces Zv , edge spaces Ze , and underlying graph � D Gnz�.

The following proposition, which collects the principal consequences of finite

dimensionality, is Proposition 4.12 in [13].

Proposition 4.2. Let X be tubular space with geodesic attaching maps, and let

. zX;W/ be the wallspace obtained from a finite set of immersed walls in X . If the

dual cube complex C. zX;W/ is finite dimensional, then the horizontal walls in W

can be partitioned into a collection P of subsets such that the following conditions

are satisfied.

(1) The partition P is preserved by G.

(2) For each A 2 P, the walls in A are pairwise non-intersecting.

(3) Let zƒ 2 A 2 P be a wall intersecting zXQv . There exists h 2 GQv stabilizing an

axis in zXQv perpendicular to zƒ \ zXQv such that A D ¹hr zƒºr2Z.

Any partition of the horizontal walls in W satisfying conditions (1)–(3) in

Proposition 4.2 will be called a stable partition.

Lemma 4.3. Let X be a tubular space and . zX;W/ be the wallspace obtained from

a finite set of immersed walls in X . Let P be a stable partition of the horizontal

walls in W. Then for each Qv 2 z�, only finitely many A 2 P contain walls

intersecting zXQv .

Proof. Suppose that zƒ is a wall intersecting zXQv , then, by condition (3) of a stable

partition, there exists some h 2 GQv that is perpendicular to zƒ \ zXQv such that

¹hr zƒºr2Z 2 P. By G-invariance we can deduce that each of the GQv-translates

of ¹hr zƒºr2Z is also in P. There are only finitely many such translates, therefore

each GQv-orbit of a wall in zXQv is contained in finitely many elements of P. The

claim then follows from the fact that there are only finitely many GQv-orbits of

walls intersecting zXQv . �

The immersed walls ƒ1; : : : ; ƒk are non-dilated, and therefore zZ is finite di-

mensional, so by Proposition 4.2 there exists a stable partition P of the hori-

zontal walls in W. Let PQv be the subpartition containing walls intersecting zXQv .

Let PQe be the subpartition of walls intersecting zXQe. By Lemma 4.3, both PQv

and PQe are finite subpartitions. If Qe is incident to the vertex Qv, then PQe � PQv.
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Let PQv D ¹A1; : : : ; Ad Qv
º. By criterion (3) of a stable partition Ai D ¹hr

i
zƒiºr2Z

such that hi 2 GQv stabilizes an axis in zXQv perpendicular to zƒi \ zXQv . The action

of GQv preserves both the partition PQv and the ordering of the walls in each Ai .

Let R denote the cubulation of R with a vertex for each integer and an edge

joining consecutive integers. Therefore, each 0-cube in Rd is an element of Zd .

We construct a free action of GQv on Rd Qv . Let g 2 GQv and let .˛1; : : : ; ˛d Qv
/ be

a 0-cube in Rd Qv . Define the map g � .˛1; : : : ; ˛d Qv
/ D .ˇ1; : : : ; ˇd Qv

/ such that

g � h
˛i

i
zƒi D h

ˇj

j
zƒj . As g permutes the walls in PQv , the map g is a bijection on the

0-cubes in Rd Qv . If g � h
˛i

i
zƒi D h

ˇj

j
zƒj , then necessarily g � h

˛i C1
i

zƒi D h
ˇj ˙1

j
zƒj ,

so adjacent 0-cubes are mapped to adjacent 0-cubes and the map extends to an

isomorphism of Rd Qv . If g � .˛1; : : : ; ˛d Qv
/ D .˛1; : : : ; ˛d Qv

/ then g would stabilize

all the walls in PQv, which would imply that it fixed every 0-cube in zZQv . Since GQv

acts freely on zZQv this would imply that g D 1G , and hence GQv acts freely on Rd Qv .

We also define an embedding �QvW zZQv ! Rd Qv . If z is a 0-cube in zZQv then

every wall zƒ that is either vertical or not in contained in the subpartition PQv

has zXQv � zŒ zƒ�. Therefore z is entirely determined by zŒ zƒ� for zƒ in PQv. For

1 � i � d Qv the set ¹hr
i

zƒi \ zXQvºr2Z is an infinite collection of disjoint parallel

lines in zXQv . As all the walls in Ai are disjoint in zX , for each 0-cube z in zZQv there

exists a unique ˛i 2 Z such that h
˛i

i
zƒi and h

˛i C1
i

zƒi face each other in z. Let

�Qv.z/ D .˛1; : : : ; ˛d Qv
/. Note that the map is injective and sends adjacent 0-cubes

to adjacent 0-cubes, so the map on the 0-cubes extends to an embedding of the

entire cube complex.

Lemma 4.4. The embedding �QvW zZQv ! Rd Qv is GQv-equivariant.

Proof. Let g 2 GQv . If �Qv.z/ D .˛1; : : : ; ˛d Qv
/ and g � �Qv.z/ D .ˇ1; : : : ; ˇd Qv

/,

then .gz/Œh
˛i

i
zƒi � D zŒgh

˛i

i
zƒi � D zŒh

ˇj

j
zƒj �, which implies that �Qv.gz/ D

.ˇ1; : : : ; ˇd Qv
/ D g�Qv.z/. �

Let Qe be an edge adjacent to Qv. Then either CQe D Qv or �Qe D Qv. We define a

free action of GQe on Rd Qe � Œ�1; 1�. After reindexing, let PQe D ¹A1; : : : ; Ad Qe
º � PQv

where dQe � dQv . Let .˛1; : : : ; ˛d Qe
; ˙1/ be a 0-cube in Rd � Œ�1; 1� and let g 2 GQe.

Then g � .˛1; : : : ; ˛d Qe
; ˙1/ D .ˇ1; : : : ; ˇd Qe

; ˙1/ such that g � h
˛i

i
zƒi D h

ˇj

j
zƒj . As

in the case of vertex spaces, this map extends to an isomorphism of Rd Qe � Œ�1; 1�.

As with the vertex spaces, there is a GQe-equivariant embedding �QeW zZQe !
Rd Qe � Œ�1; 1�. Let z be a 0-cube in zZQe. Then for each 1 � i � dQe there exists

a unique ˛i such that h
˛i

i
zƒi faces h

˛i C1
i

zƒi in z, and zX˙Qe � zŒ zƒQe�. Define

�Qe.z/ D .˛1; : : : ; ˛d Qe
; ˙1/.

Let Qv D ˙Qe. The free action of GQv on Rd Qv restricts to a free action of GQe.

We claim that we can embed Rd Qe � ¹˙1º into Rd Qv in a GQe-equivariant way.

Let HQe � zZ be the hyperplane corresponding to zƒe. As zZQe is the carrier of HQe,
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we can identify zZQe with HQe � Œ�1; 1�. Note that HQe � ¹˙1º embeds as a subspace

in zZQv, and �Qe restricts to an embedding �˙
Qe

W HQe � ¹˙1º ! Rd Qe , where Qv D ˙Qe.

We construct an embedding ‰˙
Qe

W Rd Qe ! Rd Qv . Recall thatPQe D¹A1; : : : ; Ad Qe
º�

PQv D ¹A1; : : : ; Ad Qv
º. For dQe < j � dQv if hr

j
zƒj 2 Aj , then zXQe � zŒhr

j
zƒj � for all 0-

cubes z in zZQe . Therefore, there is a unique ˛ Qe
j 2 Z such that h

˛ Qe
j

j
zƒj faces h

˛ Qe
j

C1

j
zƒj

for every 0-cube z in zZQe and dQe < j � dQv . Thus we define

‰˙
Qe .˛1; : : : ; ˛d Qe

/ D .˛1; : : : ; ˛d Qe
; ˛ Qe

d QeC1; : : : ; ˛ Qe
d Qv

/:

The GQe-equivariance of ‰˙
Qe

will require a further assumption.

Lemma 4.5. The following commutative square is GQe-equivariant provided the

immersed walls are primitive.

HQe � ¹˙1º �
� �˙

Qe
//

� _

��

Rd Qe

‰˙
Qe

��

zZQv
� � � Qv

// Rd Qv

Moreover, ‰˙
Qe

is a GQe-equivariant inclusion that is equivalent to extending the

GQe-action on Rd Qe by a trivial action on Rd Qv�d Qe .

Proof. Let z be a 0-cube in HQe � ¹˙1º. Then by construction

‰˙
Qe ı �˙

Qe .z/ D .˛1; : : : ; ˛d Qe
; ˛ Qe

d QeC1; : : : ; ˛ Qe
d Qv

/ D �Qv.z/:

To verify that ‰Qe is GQe-equivariant, let g 2 GQe. For 1 � i � dQe there exists

1 � j � dQe and ǰ be such that g � h
˛i

i
zƒi D h

ˇj

j
zƒj . For dQe < i � dQv the

intersection zƒi \ zXQv is a geodesic line parallel to zXQe \ zXQv . Thus, GQe stabilizes
zƒi \ zXQv . As the immersed walls are primitive we can deduce that GQe stabilizes
zƒi . For dQe < i � dQv we deduce that g � h˛

i
zƒi D h˛

i
zƒi for ˛ 2 Z, and conclude

g � ‰Qe.˛1; : : : ; ˛Qe/ D g � .˛1; : : : ; ˛d Qe
; ˛ Qe

d QeC1; : : : ; ˛ Qe
d Qv

/

D .ˇ1; : : : ; ˇd Qe
; ˛ Qe

d QeC1; : : : ; ˛ Qe
d Qv

/

D ‰Qe.ˇ1; : : : ; ˇQe/

D ‰Qe.g � .˛1; : : : ; ˛Qe//:

Observe that GQe acts trivially on the last dQv � dQe coordinates. �
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Let d D max¹jPQvj j Qv 2 V z�º, which is finite, since there are only finitely

many vertex orbits.

Proposition 4.6. If the immersed walls ƒ1; : : : ; ƒk are primitive, then G acts

freely on Rd � z� such that the action on the z� factor is the action of G on the

Bass-Serre tree. Moreover, there is a G-equivariant embedding �W zZ ! Rd � z�.

Proof. The GQv and GQe-actions on Rd Qv and Rd Qe can be equivariantly extended to

actions on Rd D Rd Qv � Rd�d Qv D Rd Qe � Rd�d Qe such that GQv and GQe act trivially

on the additional factors. Therefore, the GQe-commutative square in Lemma 4.5

can be extended:

HQe � ¹˙1º
� �

�˙
Qe

//
� _

��

Rd Qe

‰˙
Qe

��

// Rd

��

zZQv
� � � Qv

// Rd Qv // Rd

The right square commutes and is GQe-equivariant since by Lemma 4.5, the

GQe-equivariant inclusion ‰˙
Qe

is equivalent to extending Rd Qe by the trivial action

on Rd Qv�d Qe .

The decomposition of zZ into a tree of spaces with underlying tree z� gives a

decomposition of Z as a graph of spaces with underlying graph �. By taking the

quotient by GQe of the top row of the above diagram, the bottom row by GQv , and

forgetting the middle column we obtain the following diagram:

GQenHQe � ¹˙1º //

��

GQenRd

��

GQvnZQv
// GQvnRd

The vertical maps on the left give the attaching maps of the edge spaces in Z. The

vertical maps on the right can be used as attaching maps of edge spaces for a new

graph of spaces Z with underlying graph � and �1Z D G. The universal cover of

Z will be zZ D Rd � z�, and there is a �1-isomorphic map Z ! Z, determined by

the horizontal maps on the vertex and edge spaces in the above diagram, that lifts

to a G-equivariant inclusion of the universal covers zZ ! zZ D Rd � z�.

Therefore, we obtain a G-action on Rd � z� and a G-equivariant embedding of

the tree of spaces zZ ! Rd � z�. �

Proposition 4.7. zZ is locally finite if and only if ƒ1; : : : ; ƒk are fortified.
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Proof. If ƒ1; : : : ; ƒk is not fortified, then there exists a vertex space zXQv and an

adjacent edge space zXQe such that every horizontal wall zƒ in PQv intersects zXQv as a

line zƒ \ zXQv that intersects zXQv \ zXQe. Therefore, every horizontal wall intersecting
zXQv intersects zXQe, soPQe D PQv . Let Qe1; : : : ; Qei ; : : : be an enumeration of the GQv-orbit

of Qe. Then PQei
D PQv and zƒQei

intersects all the horizontal walls in PQv .

Let z be a 0-cube in zZQv . There is a 0-cube zi such that zi Œ zƒ� D zŒ zƒ� for
zƒ ¤ zƒQei

, and zi Œ zƒQei
� ¤ zŒ zƒQei

�. To verify zi is a 0-cube note that every wall in

PQv intersects zƒQe, and every other wall zƒ that is not zƒe has zXQe � zi Œ zƒ�. Therefore

zi Œ zƒQe� \ zi Œ zƒ� ¤ ; for all zƒ 2 W � ¹ zƒQeº. For any walls zƒ1; zƒ2 2 W � ¹ zƒQeº

the intersection zi Œ zƒ1� \ zi Œ zƒ2� D zŒ zƒ1� \ zŒ zƒ2� ¤ ;. Finally, if x 2 zX , then

x 2 zi Œ zƒ� for all but finitely many zƒ 2 W, because it is true for z, which differs

from zi on precisely one wall. Each zi is adjacent to z since they differ on precisely

one wall, so z1; : : : ; zi ; : : : is an infinite collection of distinct 0-cubes adjacent to z,

and zZ is not locally finite.

To show the converse, we first observe that the embedding �QvW zZQv ! Rd Qv

proves that zZQv is always locally finite, irrespective of whether the immersed

walls are fortified. Let z be a 0-cube in zZQv , and let Qu be adjacent to Qv in z�

via an edge Qe. Then z can be adjacent to at most one 0-cube zQe in zZ Qu such

that zŒ zƒ� D zQeŒ zƒ� for all zƒ 2 W except zƒe . This zQe may not always define

a 0-cube however. Let Qe be an edge adjacent to Qv. As the immersed walls are

fortified there exists ¹hr zƒºr2Z 2 PQv such that ¹hr zƒ \ zXQvºr2Z is an infinite set

of lines parallel to zXQe \ zXQv . As ¹hr zƒº is a set of disjoint walls, there exists r

such that hr zƒ and hrC1 zƒ are facing in z. There are only finitely many edges

g1 Qe; : : : ; gm Qe 2 GQv Qe such that zXgi Qe � zŒhr zƒ� \ zŒhrC1 zƒ�. If g Qe is an edge such

that zXgi Qe is not contained in zŒhr zƒ�\zŒhrC1 zƒ�, then either zg QeŒhr zƒ�\zg QeŒ zƒe� D ;

or zg QeŒhrC1 zƒ� \ zg QeŒ zƒe� D ; so zg Qe is not a 0-cube. As there are only finitely

many GQv-orbits of edges incident to Qv we conclude that QzQe is a 0-cube for finitely

many edges Qe incident to Qv. �

Proposition 4.8. If ƒ1; : : : ; ƒk are primitive, fortified, non-dilated immersed

walls, then G is virtually special.

Proof. By Proposition 4.6, there is a free action of G on Rd � z�, so G is a

subgroup of Isom.Rd � z�/ Š .Zd
Ì Aut.Œ�1; 1�/d / � Aut.z�/. Therefore, there

is a projection �W G ! Zd
Ì Aut.Œ�1; 1�d /. Each vertex group GQv embeds in Zd ,

and the mapping is invariant under conjugation. As there are only finitely many

orbits of vertices in z�, there exists a finite index subgroup .DZ/d
6 Zd such

that if Qe is incident to Qv then GQe \ .DZ/d is generated by a primitive element in

GQv \ .DZ/d . Let G0 D ��1..DZ/d /. Then G0
6 G is a finite index subgroup

that embeds in .DZ/d � Aut.z�/ such that each edge group is generated by an

element that is primitive in the adjacent vertex groups. By Proposition 4.6 there is

a G-equivariant embedding �W zZ ! Rd � z�. As G0 does not permute the factors
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of Rd we can deduce that the hyperplanes in .Rd � z�/=G do not self-intersect,

so neither do the hyperplanes in zZ=G0. Indeed, they are also 2-sided and cannot

inter-osculate.

Let G00 be a finite index subgroup such that the underlying graph � 00 has girth

at least 2. Let zZC

Qe
and zZC

Qe
denote the subcomplexes HQe � ¹�1º and HQe � ¹C1º

respectively. Let Qe be an edge such that CQe D Qv. As ƒ1; : : : ; ƒk are fortified, we

conclude that dQv > dQe and zZC

Qe
is a proper subcomplex of zZQv . As G00

Qe
is primitive,

if g 2 G00
Qv

� G00
Qe

then ghr
d Qv

zƒd Qv
¤ hr

d Qv

zƒd Qv
as g acts by translation on zXQv in a

direction non-parallel to zƒd Qv
\ zXQv . Thus, zZ˙

Qe
is not stabilized by g, so we can

deduce that StabG00
Qv
. zZC

Qe
/ D G00

Qe
. Therefore, G00

Qe
n zZC

Qe
embeds in G00

Qv
n zZQv .

Let Z00 D G00n zZ. Let z be a 0-cube in Z00
v . Let He be the vertical hyperplane

contained in Z00
e , and dual to an edge incident to v. As the attaching maps of Z00

e are

embeddings, and � 00 has girth at least 2, we deduce that z can only be incident to

one end of a single 1-cube intersected by He. Therefore He does not self-osculate.

Let � be a 1-cube in Rd � z� that projects to a 1-cube in Rd . The G00-orbit of

� is a set of 1-cubes, that all project to the same factor of Rd , since G00 does not

permute the factors of Rd . As G00 does not invert hyperplanes, after subdividing

Rd we can assume that the G00-orbit of � is a disjoint set of 1-cubes. Therefore,

after the corresponding subdivision, we conclude that the horizontal hyperplanes

in Z00 don’t self-osculate. �

We note that the requirement in Proposition 4.8 that the immersed walls are

fortified is necessary, as the following example demonstrates.

Example 4.9. Let G D ha; b; t j Œa; b� D 1; tat�1 D ai. We can decompose G

as the cyclic HNN extension of the vertex group Gv D ha; bi with stable letter t .

Thus, G is a tubular group. Let X be the corresponding tubular space with a

single vertex space Xv and edge space Xe. There is an equitable set ¹˛1; ˛2º

where ˛1 is a geodesic curve in Xv representing ab 2 Gv, and ˛2 is a geodesic

curve in Xv representing ab�1 2 Gv . Note that each attaching map 'C
e and '�

e

intersects each curve in the equitable set precisely once. Therefore, we obtain a

pair of embedded immersed horizontal walls ƒ1 and ƒ2, by connecting respective

intersection points with 'C
e and '�

e by an arc. A vertical wall ƒe is also embedded

in Xe.

In the wallspace . zX;W/ we can decompose W into three sets of disjoint walls:

the walls W1 that cover ƒ1, the walls W2 that cover ƒ2, and the walls We that

cover ƒe . These walls are disjoint since the immersed walls are embedded.

Furthermore, the walls in different sets pairwise intersect. Therefore we can

conclude that C. zX;W/ D R2 � z�. As this is not locally finite, GnC. zX;W/ cannot

be virtually special.
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5. Revisiting equitable sets

Although Wise proved in [12] that a tubular group acting freely on a CAT.0/

cube complex zY implied the existence of an equitable set, and thus a system of

immersed walls as in Section 2, no relationship was established between zY and the

resulting dual C. zX;W/. Proposition 5.9 gives the relationship required to reduce

Theorem 1.1 to considering cubulations obtained from equitable sets.

This section will apply the following theorem from [14]. A cubical quasiline

is a CAT.0/ cube complex quasi-isomorphic to R.

Theorem 5.1. Let G be virtually Zn. Suppose G acts properly and without

inversions on a CAT.0/ cube complex zY . Then G stabilizes a finite dimensional

subcomplex zZ � zY that is isometrically embedded in the combinatorial metric,

and zZ Š
Qm

iD1 Ci , where each Ci is a cubical quasiline and m � n. Moreover,

StabG.ƒ/ is a codimension-1 subgroup for each hyperplane ƒ in zZ.

Theorem 5.1 allows us to prove the following result.

Lemma 5.2. Let G be a tubular group acting freely on a CAT.0/ cube complex zY .

Let Gv be a vertex group in G, then there exists a Gv-equivariant subspace zXv � zY
homeomorphic to R2. Moreover, zXQv has a metric such that the intersection of a

hyperplane in zY with zXv is either empty, or a geodesic line.

Proof. By Theorem 5.1, there exists a Gv-equivariant subcomplex zYv � zY that

isometrically embeds in the combinatorial metric, and such that zYv Š
Qm

iD1 Ci

where each Ci is a cubical quasiline. By the flat torus theorem [2], Gv stabilizes a

flat zXv � zYv, that is a convex subset in the CAT.0/ metric of zYv. As the stabilizers

of hyperplanes in zYv are codimension-1 subgroups of Gv , the intersection of a

hyperplane in zY with zXv is either empty or a geodesic line in the CAT.0/ metric

inherited from zYv . �

If S is a subset of a CAT.0/ cube complex zY , then let hull.S/ denote the

combinatorial convex hull of S . The combinatorial convex hull of S is the minimal

convex subcomplex containing S . Equivalently, hull.S/ is the intersection of all

closed halfspaces containing S .

Definition 5.3. Let X be a tubular space and let Y be a nonpositively curved cube

complex. A map f W X ! Y is an amicable immersion if

(1) f�W �1X ! �1Y is an isomorphism;

(2) the G-equivariant map Qf W zX ! zY embeds each vertex space zXQv in zY ;

(3) each zXQv has a Euclidean metric such that if H � zY is a hyperplane, then the

intersection H \ zXQv is either the empty set, or a single geodesic line in zXQv;
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(4) each edge space zXQe is embedded transverse to the hyperplanes;

(5) each zXQe is contained in hull
�

Qf
� S

Qv2V z�
zXQv

��
.

Note that the Euclidean metric on each zXQv is not necessarily the subspace metric

induced from zY .

Lemma 5.4. Let X be a tubular space and let Y be a nonpositively curved cube

complex. Let F W �1X ! �1Y be an isomorphism. Then there is an amicable

immersion f W X ! Y such that f� D F .

Proof. Use F to identify G D �1X with �1Y . The claim is proven by constructing

a G-equivariant map between the tree of spaces zX ! zY . By Lemma 5.2 for

each Qv 2 V z�, we can GQv-equivariantly embed a Euclidean flat zXQv in zY such

that if H � zY is a hyperplane, then the intersection H \ zXQv is either the empty

set, or a single geodesic line in zXQv . Moreover, we can ensure that
S

Qv2V z�
zXQv is

G-equivariant. The edges spaces zXQe can then be mapped into zY transverse to the

hyperplanes in zY and so that zXQe is contained inside hull
� S

Qv2V z�
zXQv

�
. �

Lemma 5.5. Let f W X ! Y be an amicable immersion, where Y is finite dimen-

sional. If Qv is a vertex in z�, then hull. Qf . zXQv// embeds as a subcomplex of Rd for

some d .

Proof. Let G D �1X . Let y be a 0-cube in hull. Qf . zXQv//. If H is a hyperplane in zY ,

let yŒH� denote the halfspace of H containing y. Each 0-cube is determined by

the halfspace containing it for each hyperplane. If H is a hyperplane that doesn’t

intersect Qf . zXQv/, then yŒH� is the halfspace containing zXQv , and therefore yŒH� is

fixed for all 0-cubes y in hull. Qf . zXQv//.

Let HQv denote the hyperplanes intersecting zXQv . Let H 2 HQv . The intersection
zXQv \ H is a geodesic line in zXQv . Let g 2 GQv be an isometry that stabilizes an

axis in zXQv that is not parallel to zXQv \ H . Then ¹grH ºr2Z is an infinite family of

hyperplanes such that ¹grH \ zXQvºr2Z is a set of disjoint parallel lines in zXQv . As
zY is finite dimensional, there exists an N such that H and gN H do not intersect.

Otherwise ¹grH ºr2Z would be an infinite set of pairwise intersecting hyperplanes,

which would imply that there are cubes of arbitrary dimension in zY .

Therefore, as there are only finitely many GQv-orbits of hyperplanes inter-

secting zXQv , there exists a finite set of hyperplanes H1; : : : ; Hd 2 HQv and

g1; : : : ; gd 2 G such that HQv D ¹gr
1H1; : : : ; gr

d
Hd ºr2Z, and each ¹gr

i Hiºr2Z

is a disjoint set of hyperplanes in zY . Therefore ¹gr
i Hi \ zEºr2Z is a set of dis-

joint geodesic lines in zXQv . Thus, given a 0-cube y, there exists a unique yi 2 Z

such that yŒg
yi

i Hi � and yŒg
yi C1
i Hi � properly intersect each other. Therefore, con-

struct �W hull. Qf . zXQv// ! Rd by letting �.y/ D .y1; : : : ; yd / for each 0-cube y.
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The map � extends to the 1-skeleton of hull. Qf . zXQv// since adjacent 0-cubes lie on

the opposite sides of precisely one hyperplane. Therefore � extends to the higher

dimensional cubes, and thus hull. Qf . zXQv//. �

Let Qf W zX ! zY be the lift to the universal cover of an amicable immersion

f W X ! Y . Let zXQe be an edge space adjacent to a vertex space zXQv . A hyperplane

H in zY intersects zXQv parallel to zXQe if H \ zXQv is a geodesic line parallel to zXQe \ zXQv.

Otherwise, if H \ zXQv is a geodesic line that is not parallel to zXQe \ zXQv , then we

say H intersects zXQv non-parallel to zXQe .

Lemma 5.6. Let f W X ! Y be an amicable immersion. Let Qe be an edge in z�.

Suppose that H � zY is a hyperplane intersecting zX�Qe non-parallel to zXQe , then

H intersects zXCQe non-parallel to zXQe . Moreover, there is an arc in H \ zXQe joining

H \ zX�Qe to H \ zXCQe .

Proof. Let G D �1X . The geodesic lines H \ zX�Qe and zXQe \ zX�Qe are non parallel

in zX�Qe , and therefore intersect in a single point p 2 zXQe \ zX�Qe . As H intersects
zXQe transversely, H \ zXQe contains a curve  with basepoint p that is the point of

intersection H \ zXQe . As H is 2-sided and only intersects zXe�Qe
\ zXQe at p, if  is

a closed arc in zXQe , then  must have an endpoint in zXCQe \ zXQe . In which case H

intersects zXCQe non-parallel to zXQe . Otherwise, if  is not a closed arc, then  is a

ray going to infinity in zXQe . As the GQe-translates of  are all distinct, this would

imply that a point in zXCQe and a point in zX�Qe are separated by infinitely many

hyperplanes in zY , which is impossible. �

Lemma 5.7. Let f W X ! Y be an amicable immersion, where Y is a finite di-

mensional, locally finite, nonpositively curved cube complex. If �1X Š Z2 �ZZ
2,

then for every vertex space zXQv and adjacent edge space zXQe there is a hyperplane

H in zY that intersects zXQv parallel to zXQe .

Proof. Let G D �1X . There are precisely two vertex orbits and one edge orbit

in z�. Assume that zY D hull. Qf . zX//. Let H denote the set of all hyperplanes in zY

intersecting zX . Let HQv denote the set of all hyperplanes intersecting zXQv .

For each vertex Qv, there is precisely one GQv-orbit of adjacent edges Qe. There-

fore, if H 2 HQv intersects zXQv non-parallel to an incident edge space XQe, it is

non-parallel to all edge spaces incident to zXQv . By Lemma 5.6 H must then in-

tersect each vertex space adjacent to zXQv non-parallel to their own incident edge

spaces. Repeating this argument we can conclude that H intersects every vertex

and edge space in zX . Therefore, the hyperplanes in H can be partitioned into two

sets: the set H1 of all hyperplanes that intersect every vertex and edge space in
zX , and the set H2 of hyperplanes that only intersect vertex spaces parallel to the

incident edge spaces. Note that every hyperplane in H1 intersects every hyper-

plane in H2, so zY D C. zY;H1/ � C. zY;H2/ (see [4, Lem 2.5]). The action of G
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preserves the partition H D H1 t H2 and decomposes as a product of actions on

each C. zY;Hi/ respectively.

Suppose that there exists a vertex Qv in z� such that no hyperplane in HQv

is parallel to the incident edge spaces. Then HQv D H1 so hull. Qf . zXQv// Š

C. zY;H1/ � C where C is some n-cube. Therefore C. zY;H1/ will embed in Rd by

Lemma 5.5. Note that Gv fixes a 0-cube c1 in C. zY;H2/ determined by orienting

all the hyperplanes in H2 towards zXQv .

Let Qu be a vertex in the same G-orbit as Qv. Then H Qu D H1 and the same

arguments apply so there exists a 0-cube c2 in C. zY;H2/ fixed by G Qu.

Let g1 2 GQv and g2 2 G Qu be elements such that hg1; g2i is a rank two free

subgroup. As C. zY;H2/ is locally finite there exists n; m such that gn
1 and gm

2 fix

both c1 and c2. Thus hgn
1 ; gm

2 i is a rank 2 free group that acts freely on C. zY;H1/,

which is impossible since C. zY;H1/ embeds in Rd . �

Lemma 5.7 is a special case of the following more general statement.

Corollary 5.8. Let f W X ! Y be an amicable immersion, where Y is a finite

dimensional, locally finite, nonpositively curved cube complex. Then for every

vertex space zXQv and adjacent edge space zXQe there is a hyperplane H in zY that

intersects zXQv parallel to zXQe .

Proof. For every edge Qe in z� there is a subgroup G0 D hG�Qe; GCQei � G such

that G0 Š Z2 �Z Z2. Let Y 0 D G0n zY . Then there is an amicable immersion

X 0 ! Y 0 such that zX 0
Qe

D zXQe and zX 0
˙Qe

D zX˙Qe . Therefore, by Lemma 5.7, there is

a hyperplane intersecting zX�Qe parallel to zXQe , and similarly for zXCQe. �

The following proposition is a strengthening of one direction of Theorem 1.1

in [12]. Let f1W A ! C and f2W B ! C be maps between topological spaces

A; B; C . The fiber product A ˝C B D ¹.a; b/ 2 A � B j f1.a/ D f2.b/º. Note

that there are natural projections p1W A ˝C B ! A and p2W A ˝C B ! B .

Proposition 5.9. Let G be a tubular group acting freely on a CAT.0/ cube

complex zY . There is a tubular space X with a finite set of immersed walls such

that, if . zX;W/ is the associated wallspace, then

(1) G acts freely on C. zX;W/;

(2) C. zX;W/ is finite dimensional if zY is finite dimensional;

(3) C. zX;W/ is finite dimensional and locally finite if zY is locally finite.

Proof. Let y be a 0-cube in zY . By possibly replacing zY with hull.Gy/ we can

assume that zY has finitely many G-orbits of hyperplanes. Assume that zY is

minimal in the sense that we cannot replace zY with a convex G-subcomplex

with less hyperplane orbits. Let Y D Gn zY . Let h1; : : : ; hm be the immersed
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hyperplanes in Y . By Lemma 5.4 we can find an amicable immersion f W X ! Y .

Every hyperplane in zY must intersect zX . Otherwise, if h is a hyperplane in zY
that doesn’t intersect zX , there is a 0-cube y in zY in the same halfspace of h as
Qf . zX/, and hull.Gy/ is a convex G-subcomplex that doesn’t contain the G-orbit of

h, contradicting the minimality of zY .

Let hi ! Y be an immersed hyperplane in Y . We obtain horizontal immersed

walls in X by considering the components of the fiber product X ˝Y hi of X ! Y

and h ! Y . Each component of X ˝Y hi has a natural map into X . The

components of X ˝Y hi that have image in X contained in an edge space are

ignored. Let ƒp be a component of X ˝Y hi whose image in X intersects a vertex

space Xv � X . We will show that after a minor adjustment to ƒp, we obtain a

horizontal immersed wall and by considering all such components we obtain a set

of horizontal walls in X obtained from an equitable set.

Using the map ƒp ! X we can decompose ƒp into the components of the

preimages of vertex space and edge spaces. As the intersection of each hyperplane

H � zY with each vertex space zXQv is either empty or a geodesic line, the

intersection of each hi with Xv is a set of geodesic curves, so ƒp restricted to

the preimage of Xv is a set of geodesic curves. By Lemma 5.6 each hyperplane

H � zY that intersects a vertex space XQv non-parallel to an adjacent edge space zXQe

will intersect zXQe as an arc with endpoints in zX�Qe and zXCQe . Thus the components

of the intersection Xe \ hi that intersect X�e or XCe , are arcs with endpoints in

both X�e and XCe. Therefore, ƒp decomposes into circles that map as geodesics

into vertex spaces, and arcs that map into edges spaces Xe with an endpoint in

each of X�e and XCe .

Let ¹ƒ
p
1 ; : : : ; ƒ

p

k
º be the set of all such components of X ˝Y hi that intersect

vertex spaces. Let S
p
v be the set curves that map the circles in ¹ƒ

p
i ºk

iD1 to the vertex

space Xv . The elements of S
p
v and the attaching maps '˙

e of the edge spaces in

X are locally geodesic curves, and #Œ'C
e ; SCe� D #Œ'�

e ; S�e� since both sides are

equal to the number of arcs in ¹ƒ
p
i ºk

iD1 that map into Xe . As G acts freely on zY ,

there must be hyperplanes intersecting each vertex space zXQv as geodesics in at

least two parallelism classes. This implies that S
p
v contains curves generating at

least two non-commensurable cyclic subgroups of Gv , and therefore S
p
v generates

a finite index subgroup of Gv.

S
p
v is almost an equitable set: the images of the curves in S

p
v may have images

in Xv that coincide with each other or the image of an attaching map into Xv .

Suppose that ˛1; : : : ˛m 2 Sv is a maximal set of curves that have identical image

in Xv . Let N�.Q/ denote the �-neighborhood of a subset Q of either Y or zY with

respect to the CAT.0/ metric. For � > 0 there is a homotopy of
Fk

iD1 ƒ
p
i ! X that

is the identity outside of
Fk

iD1 ƒ
p
i \ N�.˛1/ such that ˛1; : : : ; ˛m are homotoped

to a disjoint set of geodesic curves in Xv \ N�.˛1/ transverse or disjoint from all

the other curves in S
p
v and the attaching maps into Xv . By choosing � < 1

3
small

enough we can perform such a homotopy ˆW
Fk

iD1 ƒ
p
i � Œ0; 1� ! X such that all
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sets of overlapping curves in ¹S
p
v ºv2V � are homotoped to a disjoint set of geodesic

curves that are either disjoint or transverse to the attaching maps, and such that ˆ

is the identity map outside of the �-neighborhood of the overlapping curves. The

restriction of ˆ to ƒ
p
i �¹1º ! X is an immersed wall which we will denote by ƒi .

Thus, the immersed walls ¹ƒiº
k
iD1 are obtained from an equitable set ¹Svºv2V � .

We refer to ¹ƒ
p
i ºk

iD1 as the immersed proto-walls and the lifts zƒ
p
i ! zX as the

proto-walls. Note that proto-walls have regular and non-regular intersections in

the same way that walls do.

Let . zX;W/ be the wallspace obtained from the immersed walls ¹ƒiº
k
iD1 and

adding a single vertical wall for each edge space. Each wall zƒ ! zX covers an

immersed wall ƒ ! X . There exists a homotopy of ƒ ! X to the corresponding

immersed proto-wall ƒp ! X . This homotopy lifts to a homotopy from the

immersed wall zƒ ! zX to a unique proto-wall zƒp ! zX . Note that each wall is

contained in the �-neighborhood of its corresponding proto-wall. Each proto-wall

corresponds to the intersection of a unique hyperplane in zY with the image of zX
in zY . Therefore, each wall in W corresponds to a unique hyperplane in zY .

Let zƒ be a wall in W, and let zƒp be the corresponding proto-wall. Note that
zƒ\ zXQv and zƒp \ zXQv are either parallel geodesic lines, or both empty intersections.

Therefore, if zƒ1; zƒ2 2 W are a pair of regularly intersecting walls, then they

correspond to a pair of regularly intersecting proto-walls, which correspond to a

pair of intersecting hyperplanes in zY .

If a pair of proto-walls zƒ
p
1 and zƒ

p
2 are disjoint, then the corresponding walls in

zƒ1 and zƒ2 in W are also disjoint. Moreover, since zƒ is contained in the �-neigh-

borhood of zƒp, a halfspace of zƒ determines a halfspace of zƒp and therefore a

halfspace of the hyperplane H corresponding to zƒp.

To prove (2), suppose that C. zX;W/ were infinite dimensional, then by Propo-

sition 2.2, there would exists an infinite set of pairwise regularly intersecting walls

in W, which implies there is an infinite set of pairwise regularly intersecting proto-

walls. Therefore, there is an infinite set of pairwise intersecting hyperplanes in zY .

This would imply that zY is an infinite dimensional CAT.0/ cube complex. There-

fore, if zY is finite dimensional, then so is C. zX;W/.

To prove (3) we first prove the following fact.

Claim. If zY is locally finite, then C. zX;W/ is finite dimensional.

Proof. Suppose that zY is locally finite. If C. zX;W/ is infinite dimensional, then

by Lemma 2.2 it contains an infinite cube containing a canonical 0-cube z. Let
zƒ1; : : : ; zƒn; : : : be the set of infinite pairwise crossing walls corresponding to the

infinite cube. Let zƒ
p
1 ; : : : ; zƒ

p
n ; : : : be the corresponding set of infinite pairwise

crossing proto-walls, and let H1; : : : ; Hn; : : : be the corresponding infinite family

of pairwise crossing hyperplanes.
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Suppose that Q is a subcomplex in zY . Let U.Q/ denote the cubical neigh-

borhood of Q, which is the union of all cubes in U.Q/ that intersect Q. As zY is

locally finite, if Q is compact, then U.Q/ is also compact. By [7, Lemma 13.15],

if Q is convex, then so is U.Q/. Let U n.Q/ denote the cubical neighborhood of

U n�1.Q/.

Let x 2 zX be a point determining the canonical 0-cube z in C. zX;W/. Let x be

contained in a cube C in zY . As C is compact and convex, U n.C / is also compact

and convex, and therefore can only be intersected by finitely many Hi . Moreover,

as
S

n U n.C / D zY , every hyperplane intersects U n.C / for n sufficiently large.

Thus, there exists N; i > 1 such that Hi intersects U N C2.C /, but not U N C1.C /.

As U N .C / and the carrier of Hi are disjoint convex subcomplexes, there exists

a hyperplane H that separates Hi from U N .C /. Note that d zY .x; H/ � N and

d zY .H; Hi/ � 1. Let zƒp be the proto-wall corresponding to H and zƒ be the

corresponding wall. As zƒp separates x from zƒ
p
i , we can conclude zƒ separates

x from zƒi since the zƒ and zƒi are respectively contained in the �-neighborhoods

of zƒp and zƒ
p
i . This contradicts the fact that z is incident to a 1-cube dual to

hyperplane corresponding to zƒi . 4

As C. zX;W/ is finite dimensional, we can apply Corollary 5.8 to each edge

group in G to deduce that ¹ƒiº
k
iD1 are fortified. Therefore, by Proposition 4.7 we

deduce that C. zX;W/ is locally finite. �

We can now prove the equivalence of (1) and (3) in Theorem 1.1.

Theorem 5.10. A tubular group G acts freely on a locally finite CAT.0/ cube

complex if and only if G is virtually special.

Proof. As explained in the introduction, G being virtually special immediately

implies that G acts on a locally finite CAT.0/ cube complex.

Conversely, suppose that G acts freely on a locally finite CAT.0/ cube complex.

Let X be a tubular space such that G D �1X . By Proposition 5.9 there exists a

finite set of immersed walls such that the dual of the associated wallspace C. zX;W/

is finite dimensional and locally finite. By Theorem 2.1 and Proposition 4.7 this

is equivalent to saying that the immersed walls are non-dilated and fortified. By

Lemma 3.1 we can assume that the immersed walls are also primitive. Therefore,

by Proposition 4.8, G is virtually special. �

6. Virtual cubical dimension

Let G be a tubular group. The first homology of G can be written as a direct sum

of two factors: H1.G/ D H
v
1.G/ � H

s

1.G/. The first factor Hv1.G/ is generated by

the image of the vertex groups of G, and the second factor Hs1.G/ is generated

by the stable letters in the presentation corresponding to the graph of groups

decomposition.
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Proposition 6.1. Let X be a tubular space and G D �1X . Suppose that the

natural maps H1.Gv/ ! H1.G/ are injections as summands for all v 2 V �. Given

a primitive element av in a vertex group Gv , we can find non-dilated, primitive,

embedded, pairwise disjoint immersed walls ¹ƒa
i º such that there is precisely one

circle in each vertex space, and the circle in Xv represents av in �1Xv .

Moreover, given primitive, incommensurable elements a1v; : : : ; anv 2 Gv with

n > 1, the corresponding set of immersed walls yields an .n C 1/-dimensional

CAT.0/ cube complex with a free G-action.

Proof. By our hypothesis, there are inclusion maps �vW Gv ! H
v
1.G/, and projec-

tion maps pvWHv1.G/ ! Gv for every vertex v 2 V �. Let ge generate the edge

group Ge and recall that '˙
e W X˙

e ! X˙e denotes the attaching maps, so .'�
e /�

and .'C
e /� denote the inclusions of Ge into G�e and GCe respectively. Let av be

a primitive element in Gv, and let a D �v.av/ 2 H
v

1.G/.

Suppose that Hv1.G/ Š Z2, then �v and pv are isomorphisms for all v 2 V �.

Let Su D ¹au D pu.a/º. Note that ¹Suºu2V � is not an equitable set for G as

each Su contains a single element, but we will show that #ŒS�e; .'�
e /�.ge/� D

#ŒSCe; .'C
e /�.ge/� for all e 2 E� so ¹Suºu2V � can be used to construct an

immersed walls in X .

There is an isomorphism Ae D pCe ı ��e W G�e ! GCe that maps .'�
e /�.ge/ 7!

.'C
e /�.ge/, and a�e 7! aCe . By identifying G�e and GCe with Z2 we can say that

A 2 GL2.Z/. As the elements of GL2.Z/ have determinant ˙1, the geometric

intersection number #Œ�; �� is preserved by A. Therefore,

#Œa�e; .'�
e /�.ge/� D #ŒA.a�e/; A.'�

e /�.ge/� D #ŒaCe; .'C
e /�.ge/�;

As Sv contains precisely one element for each v 2 V �, after adding non-

intersecting arcs we obtain embedded immersed walls ¹ƒa
i º that are pairwise

non-intersecting and have exactly one circle in each vertex space. As they are

embedded, each ƒ
av

i is non-dilated. By construction, the circle in Xv represents

av 2 �1Xv . Since av is primitive in Gv , we deduce that a D �v.av/ is also

primitive in Hv1.G/ as �v is an isomorphism, and thus au D pu.a/ is also primitive

since pu is an isomorphism.

If Hv1.G/ Š Zd with d > 2, there exist vertex groups Gu and Gv that embed

into Hv1.G/ as distinct summands. Let Gu D hgu; g0
ui and Gv D hgv ; g0

vi. We can

assume, since they are distinct summands, that gu is disjoint from the image of

Gv in Hv1.G/, and that gv is disjoint from the image of Gu in Hv1.G/. By attaching

an edge space to X connecting Xu and Xv , that has attaching maps representing

gu and gv respectively we obtain a new graph of spaces X 0. The resulting tubular

group G0 D �1X 0 has Hv1.G0/ Š Zd�1 and H1.G0
v/ embeds as a summand in

H1.G0/. By repeating this process we can obtain a tubular group yG that is the

fundamental group of a tubular space yX such that Hv1. yG/ Š Z2, the homology

H1. yGv/ embeds as a summand in H1. yG/, and X � yX is a sub-graph of spaces.
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Therefore, by applying the case d D 2, for av 2 yGv D Gv we can find a set of

non-dilated, primitive embedded immersed walls ¹ yƒa
i º that are pairwise disjoint,

and such that each vertex space yXv contains precisely one circle in the collection

of immersed walls, and the circle mapping into yXv D Xv represents av . By

restricting these immersed walls to X we prove the first part of the claim.

Let a1v; : : : ; anv 2 Gv be incommensurate primitive elements with d � 2,

then ha1v; : : : ; anvi is a finite index subgroup of Gv. Similarly,

ha1u D pu ı �v.a1v/; : : : ; anu D pu ı �u.anv/i

is a finite index subgroup of Gu. Therefore,

¹Su D ¹pu ı �v.a1v/; : : : ; pu ı �u.anv/ººu2V �

is an equitable set. Applying the first part of the Proposition to each aiv yields

a collection of pairwise disjoint embedded, non-dilated immersed walls. After

including the vertical immersed walls we conclude that any set of pairwise inter-

secting walls in the associated wallspace . zX;W/ can contain at most .nC1/ walls:

a vertical wall, and a single wall corresponding to each element in ¹a1v; : : : ; anvº.
Therefore C. zX;W/ is of dimension at most .nC1/, and since it was obtained from

an equitable set, G acts freely on C. zX;W/. �

Lemma 6.2. Let X be a tubular space and G D �1X . Suppose there exists an

equitable set that produces primitive, non-dilated immersed walls in X . Then there

exists a finite index subgroup G0
6 G such that the natural map H1.G0

v/ ! H1.G0/

is an injection as a summand for each vertex group G0
v of the induced splitting

of G0.

Proof. Let z� be the Bass-Serre tree. By Proposition 4.6, since there are immersed

walls that are primitive and non-dilated, G acts freely on Rd � z� such that

GQv fixes the vertex Qv in z�. Therefore G is a subgroup of Aut.Rd � z�/ Š

Zd
Ì Aut.Œ�1; 1�d / � Aut.z�/. Let K be the kernel of the quotient map G !

Aut.Œ�1; 1�d /. Note that K 6 G is a finite index subgroup that embeds in

Zd � Aut.z�/. Let pW K ! Zd be the projection onto the first factor. Each

vertex group in K survives in the image of p, and therefore we have embedding

H1.Kv/ ,! H
v

1.G00/ ,! Zd .

For each vertex group Kv in the graph of groups decomposition of K, there

is a finite index subgroup Av 6 Zd such that p.Kv/ \ Av is a summand of Av.

Let A D
T

v Av and G0 D p�1.A/. Note that G0
6 K 6 G are finite index

subgroups. Each vertex group in G0 will be a factor in A. As A is free abelian,

the map G0 ! A will factor through Hv1.G0/, so each vertex group survives as a

retract in H1.G0/. Each vertex group in G0 therefore survives as a summand in the

first homology. �
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Corollary 6.3. If a tubular group G acts freely on a finite dimensional CAT.0/

cube complex, then G virtually acts freely on a CAT.0/ cube complex of dimen-

sion 3.

Proof. If G acts freely on a finite dimensional CAT.0/ cube complex, then by

Proposition 5.9, Theorem 2.1 and Proposition 3.1 there is an equitable set that

produces primitive, non-dilated immersed walls. Thus, by Lemma 6.2, there exists

a finite index subgroup G0
6 G such that the natural map H1.G0

v/ ! H1.G0/

is an injection as a summand for each vertex group G0
v of the induced splitting

of G0. By making a choice of two elements generating some vertex group Gv and

applying Proposition 6.1 we obtain a free action of G0 on a CAT.0/ cube complex

of dimension 3. �

The following Corollary completes the proof of Theorem 1.1

Corollary 6.4. Let X be a tubular space. If the tubular group G D �1X acts

freely on a finite dimensional CAT.0/ cube complex, then G acts on a locally

finite, finite dimensional CAT.0/ cube complex

Proof. If G acts freely on a finite dimensional CAT.0/ cube complex, then by

Proposition 5.9, Theorem 2.1 and Proposition 3.1 there is an equitable set that

produces primitive, non-dilated immersed walls. By Lemma 6.2 there exists

G0
6 G such that the natural map H1.G0

v/ ! H1.G0/ is an injection as a

summand for each vertex group G0
v of the induced splitting of G0. Therefore,

by Proposition 6.1, for each edge group Ge D hgei there is a pair of primitive,

non-dilated, immersed walls ƒC
e and ƒ�

e such that ƒ˙
e contains a circle that maps

into X˙e , representing .'˙
e /�.ge/. If the circles in the immersed walls ¹ƒ˙

e ºe2E�

don’t constitute an equitable set, use Proposition 6.1, to find more primitive, non-

dilated walls, so that the circles do constitute an equitable set. By construction the

set of immersed walls is fortified.

By Theorem 2.1, Proposition 4.8, and Theorem 1.1 the corresponding dual cube

complex C. zX;W/ is finite dimensional, locally finite, and admits a free G0 action.

There is an induced free action of G on C. zX;W/ŒGWG0�, which is also a locally

finite, finite dimensional CAT.0/ cube complex. �
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