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Abstract. Motivated by well known results in low-dimensional topology, we introduce and

study a topology on the set CO.G/ of all left-invariant circular orders on a fixed countable

and discrete group G. CO.G/ contains as a closed subspace LO.G/, the space of all left-

invariant linear orders of G, as first topologized by Sikora. We use the compactness of

these spaces to show the sets of non-linearly and non-circularly orderable finitely presented

groups are recursively enumerable. We describe the action of Aut.G/ on CO.G/ and

relate it to results of Koberda regarding the action on LO.G/. We then study two families

of circularly orderable groups: finitely generated abelian groups, and free products of

circularly orderable groups. For finitely generated abelian groups A, we use a classification

of elements of CO.A/ to describe the homeomorphism type of the space CO.A/, and to

show that Aut.A/ acts faithfully on the subspace of circular orders which are not linear. We

define and characterize Archimedean circular orders, in analogy with linear Archimedean

orders. We describe explicit examples of circular orders on free products of circularly

orderable groups, and prove a result about the abundance of orders on free products.

Whenever possible, we prove and interpret our results from a dynamical perspective.
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1. Introduction

Group actions on the circle and circular orders are closely related by a well-known
fact: a countable group G acts faithfully on S1 by orientation-preserving homeo-
morphisms if and only if G admits a left-invariant circular order. This fact, which
we restate and prove in Proposition 2.4 of §2.1, connects topological dynamics on
S1 to an algebraic property of groups called circular orderability. Roughly speak-
ing, a circular order on a groupG is a way to consistently assign either a clockwise
or counterclockwise orientation to each ordered 3-tuple of elements of G, in such
a way that orientations are invariant under left multiplication.

In general, deciding linear orderability or circular orderability of finitely-
presented groups is a very difficult question. In fact, it is provably impossible
to decide, as these are both Markov properties. A property P of finitely presented
groups is called Markov if there exists a group without property P which can not
be embedded in any group with P. Linear orderability is Markov, for example,
because HomeoC.R/ is torsion free, and every linearly orderable group can be
realized as a subgroup of HomeoC.R/. Circular orderability is Markov because
circular orders restrict to subgroups and the only finite groups which are circularly
orderable are cyclic, see Proposition 3.1. Markov properties are always undecid-
able [16]. However, determining non-orderability (circular or linear) is a decision
problem in the complexity class RE; in other words, it is in principle possible to list
all finitely-presented groups that are not orderable. See Corollaries 2.10 and 2.18,
which prove these facts using a compactness argument.

Despite the impossibility of deciding circular orderability for arbitrary groups,
it is a phenomenon that occurs frequently in low-dimensional topology. For
example, Fuchsian groups, braid and mapping class groups, and fundamental
groups of 3-manifolds which support a taut foliation, are all circularly orderable
[6, 5]. However, it is not known if (circular) orderability is a decidable property
for the class of 3-manifold groups.

By studying orderability abstractly, we hope, in further work, to better under-
stand the geometry of 3-manifolds. For example, the first author has elsewhere
shown that Fuchsian groups can be characterized as those groups which admit
faithful, orientation-preserving topological actions on S1 with three invariant lam-
inations with additional properties [2]. It is conjectured that there should be a sim-
ilar characterization of Kleinian groups (see [1] for a precise statement, and [2] for
more background). Furthermore, linear orderability has recently been the source
of attention from Heegaard–Floer theorists due to the conjecture of [3], which
contends that an irreducible rational homology 3-sphere is an L-space if and only
if its fundamental group is not linearly orderable.

Finally, we remark that Sikora first introduced a topology on the space LO.G/
of left-invariant linear orders of a countable group [18]. He used this topology to
give a new proof – via a compactness argument – of the existence of universal
Gröbner bases for ideals in polynomial rings. The topology of LO.G/ was further
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exploited to show that LO.G/ is either finite or uncountable – in which case, it
contains a Cantor set [13, 10]. An essential concept in both [13] and [10] is that of
a Conradian order. We do not know of an appropriate analog of Conradian orders
for circular orders.

The organization of this paper is as follows. In Section 2, we define “circular
order” and the topology on the set CO.G/ of all left-invariant circular orders ofG,
and study basic properties and various subspaces of CO.G/. We also introduce
the action of Aut.G/ on CO.G/. A result of Koberda [9] implies this action is
faithful when G is residually torsion-free nilpotent, but this raises the question
of when Aut.G/ acts faithfully on its collection of genuine circular orders – i.e.

circular orders that are not linear. We show in Corollary 3.11 of §3.2 that the action
is faithful for G a circularly-orderable, finitely-generated abelian group.

In Section 3, we determine CO.A/ where A is a finitely generated abelian
group. In §3.1, we use known results to classify circular orders on A. In §3.2,
we use this classification to construct convenient dense subsets of CO.A/, which
allows us to describe the topology on CO.A/. The proof that these subsets are
dense uses Noetherian induction on the poset of finitely generated abelian groups
with cyclic torsion subgroups, wherein two such groups are comparable if one
surjects onto the other. It is straightforward to see that if A is finite cyclic, CO.A/
is finite and discrete. IfA does not have a cyclic torsion subgroup, then Lemma 3.1
implies CO.A/ is empty. Finally, if A has positive rank and a cyclic torsion
subgroup, then the main result of the §3.2, Theorem 3.10, shows CO.A/ is a Cantor
set. In §3.3, we define and characterize Archimedean circular orders. We include
this in Section 3 because our characterization and a theorem of Hölder implies
such orders are always abelian.

In Section 4, we study free products of circularly orderable groups. In §4.1, we
give two proofs of the existence of circular orders on a free product of circularly
orderable groups. One is straightforward but nonconstructive, using the Kurosh
subgroup theorem; the other is an explicit and unique construction satisfying a
kind of lexicographical condition. See Theorems 4.2 and 4.3, respectively. In §4.2,
we discuss and analyze the abundance of orders on free products, following
Rivas [17]. By adapting the argument Rivas uses to show that the space of linear
orders on a free product of linearly orderable groups is a Cantor set, we show
in Theorem 4.6 that for infinite circularly orderable groups G and H , the set of
circular orders on G � H for which G acts minimally has no isolated points in
CO.G � H/. We conjecture that CO.G � H/ is always a Cantor set if G and H
are nontrivial circularly orderable groups, but, for example, it is unclear if the
lexicographical orders of Theorem 4.3 can be isolated or not.

While this article was in proof, Michael Megrelishvili pointed out to us that our
proof of the only if direction of Proposition 2.4 is incorrect. The second construc-
tion we provide does not work. Instead, one should use a blow-up construction
to show that if G acts faithfully on S1, then G also admits an action where some
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point p 2 S1 is trivially stabilized. Then one proceeds as in the first construction.
This is a standard result, and we sincerely apologize for our lack of care in its
treatment.

Finally, we remark that Conjecture 4.7 was recently disproved by Mann and
Rivas [11]

Acknowledgments. We thank Dawid Kielak and Sanghyun Kim for helpful dis-
cussions especially regarding Section 4.2. The second author thanks Universität
Bonn for hosting him, during which time part of this work was carried out. The
authors are grateful to an anonymous referee for many helpful comments. The
first author was partially supported by the ERC Grant Nb. 10160104.

2. Topology on the spaces of circular orders of groups

2.1. Three perspectives on circular orders. The following is a standard defini-
tion [4] of a circular order of a set G.

Definition 2.1. Let G be a set with at least four elements. A circular order on G
is a choice of total order on G n ¹pº for every p 2 G, such that if <p is the total
order defined by p, and p; q 2 G are two distinct elements, the total orders<p; <q

differ by a cut on their common domain of definition. That is, for any x; y distinct
from p; q , the order of x and y with respect to <p and <q is the same unless

x <p q <p y or y <p q <p x;

in which case we have

y <q p <q x or x <q p <q y;

respectively. We also say that the order<q onGn¹p; qº is obtained from the order
<p on S n ¹pº by cutting at q.

For example, every linear order < on a set G gives rise to a circular order. For
each p 2 G, we define the cut <p by

<p .x; y/ D

´

< .y; x/ if x < p < y; p < y < x or y < x < p;

< .x; y/ if y < p < x; p < x < y or x < y < p:

Here we are conflating < with the characteristic function <WG2 ! ¹0;C1º of the
positive cone: all pairs .x; y/ such that x < y. Likewise for <p . It is easy to see
that this satisfies the definition above. Note that there is another identification of
< with the opposite circular order <0

p .x; y/ WD<p .y; x/. If the reader draws
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pictures, she will see why we chose<p as the preferred identification: the natural
way to compactify a line to a circle is to make the orientations agree.

Now let G be a countable discrete group.1 Then one can consider circular
orders on G as a set. However, since we have a group structure, the natural orders
to consider are those preserved by the action of G on itself by left multiplication,
so that x <p y if and only if gx <gp gy for all g. We find it is hard to get
our hands on this definition. Fortunately, there are alternative ways to think about
circular orders on groups. We will consider certain homogeneous cocycles onG3.
Define the degenerate set �n.G/ of Gn (the product of n-copies of G) to be the
set �n.G/ D ¹.g1; : : : ; gn/ 2 G

n j gi D gj for some i ¤ j º of all n-tuples with
some repeated elements.

Definition 2.2 (Alternative definition). A circular order on a set G is a map
�WG3 ! ¹�1; 0; 1º with the following properties:

(DV) � kills precisely the degenerate set, i.e.

��1.0/ D �3.G/:

(C) � is a 2-cocycle, i.e.

�.g1; g2; g3/ � �.g0; g2; g3/C �.g0; g1; g3/ � �.g0; g1; g2/ D 0

for all g1; g2; g3; g4 2 G.

If �.x; y; z/ D C1, we say .x; y; z/ is a positively oriented triple. Likewise, if
�.x; y; z/ D �1, we say .x; y; z/ is a negatively oriented triple. If �.x; y; z/ D 0,
we say .x; y; z/ is a degenerate triple. Furthermore, if G is a group, then a left-

invariant circular order on G is a circular order on G as set that also satisfies the
homogeneity property:

(H) � is homogeneous, i.e.

�.g0; g1; g2/ D �.gg0; gg1; gg3/

for all g 2 G and .g0; g1; g2/ 2 G
3.

By abuse of language, we will often refer to a “left-invariant circular order of
a group” simply as a “circular order.”

Lemma 2.3 (Construction 2.3.4 of [4]). The definition of a circular order as a

homogeneous cocycle coincides with the definition of a circular order in terms of

cuts.

1 Countability of G is not a very strong restriction, cf. [4].
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Proof. Given a cocycle � satisfying (DV), let x <�
p y if and only if �.y; p; x/ D

C1.
Conversely, given ¹<pºp2G , define

�.x; y; z/ D

8

ˆ

<

ˆ

:

C1 if z <y x;

�1 if x <y z;

0 otherwise. �

We observe two additional properties about circular orders:

(IC) � is invariant under cyclic permutations, i.e.

�.g0; g1; g2/ D �.g1; g2; g0/

for all .g0; g1; g2/ 2 G
3.

(AT) � is antisymmetric with respect to transposing two arguments, e.g.

�.g0; g1; g2/ D ��.g0; g2; g1/

for all .g0; g1; g2/ 2 G
3.

To deduce (IC), let g3 D g0 in (C), so that (DV) implies (IC). Property (AT)
follows similarly by letting g3 D g1. Properties (IC) and (AT) are the properties
that one intuitively expects to hold for circular orders, while (C) is roughly a
compatibility condition.

Note that the identification of a linear order with a circular order given above
can be converted to the cocycle picture by sending a linear order < to the cocycle
c< defined by

c<.x; y; z/ WD

8

ˆ

<

ˆ

:

C1 if x < y < z; y < z < x; or z < x < y;

�1 if x < z < y; y < x < z; or y < x < z;

0 otherwise.

Our subsection title promised three perspectives on circular orders. The third
has already been mentioned in the introduction. We restate and sketch the proof
of this well known result here, in order to introduce notation and terminology, as
well as the basic idea used to establish later results.

Proposition 2.4 (Theorem 2.2.14 of [4]). A countable group G acts faithfully

on S1 by orientation-preserving homeomorphisms if and only if G admits a left-

invariant circular order.

Proof. We will consider S1 as the unit interval with 0 D 1, equipped with the
standard positive circular order as a set.
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Let c be a circular order on G. Enumerate G. We first construct a set map
i WG ,! S1. Send g0 to 0 and g1 to 1

2
. Send g2 to wherever c tells you to send g2

and continue. More precisely, let i.g2/ D
3
4

if c.g0; g1; g2/ D C1; otherwise, let
i.g2/ D

1
4
:

Let cS1 denote the standard circular order on S1. Our goal is to inductively
define i for all elements of G. Continue with this construction inductively as
follows: suppose we have defined i on the set ¹g0; g1; : : : ; gkº with k � 2, so that
it preserves the circular order on the set. Then S1 n i.¹g0; g1; : : : ; gkº/ consists
of k C 1 open intervals. We need to decide which of these intervals i.gkC1/

goes into. We claim that there is precisely one such interval so that the circular
order c restricted to the elements g0; : : : ; gkC1 coincides with the circular order
cS1 restricted to i.g0/; : : : ; i.gkC1/. To avoid any confusion of the notation, let
x D gkC1 and whenever we say gn the subscript is understood as an integer mod
k C 1.

To see the uniqueness, possibly after relabeling, assume that i.g0/; : : : ; i.gk/

are positively oriented in that order with respect to cS1 . Let In be the interval
between i.gn/ and i.gnC1/ for n D 0; : : : ; k. Suppose there exists n ¤ m such
that if we map x into either In or Im, then c restricted to the set ¹g0; g1; : : : ; gk; xº
coincides with cS1 restricted to i.¹g0; g1; : : : ; gk; xº/. But this is impossible, since
cS1.i.gn/; i.x/; i.gnC1// D 1 if x 2 In; otherwise, cS1.i.gn/; i.x/; i.gnC1// D
�1. To match with c.gn; x; gnC1/, the choice must be unique.

The existence is slightly less clear. First note that it suffices to show that
c.gn; x; gnC1/ D 1 for some n mod k C 1 (in this case, we let i.x/ go into
In). Suppose the negation, i.e., assume that c.gn; gnC1; x/ D 1 for all n. For
any n, the cocycle condition on c says that c.g0; gn; gnC1/ � c.g0; gn; x/ C
c.g0; gnC1; x/ � c.gn; gnC1; x/ D 0 for n D 1; : : : ; k � 1. By our assumptions,
c.g0; gn; gnC1/ D c.gn; gnC1; x/ D 1 for all n D 1; : : : ; k � 1. Hence, this
condition reduces to that c.g0; gn; x/ D c.g0; gnC1; x/ for n D 1; : : : ; k � 1.
In other words, c.g0; gn; x/ D c.g0; g1; x/ D 1 for all n � 1. In particular,
c.g0; gk; x/ D 1 but this contradicts our assumption that c.gn; gnC1; x/ D 1 for
all n where n is an integer mod k C 1.

We define i.gkC1/ to be precisely the midpoint of the unique interval which
makes i order-preserving on the set ¹g0; g1; : : : ; gkC1º. In this way, we can
inductively define i on the entire G.

Since G acts on itself bijectively by left multiplication, we get an action
of G on i.G/. By the way we used the circular order to build i , this action
preserves the order information of i.G/. Now extend this action to an action
rc WG ,! HomeoC.S1/ on all of S1 by, for example, making rc.g/ act linearly
on the interval gaps between adjacent elements in i.G/. We call rc the dynamical

realization of c (as an analogue of dynamical realization of left-invariant linear
orders in [13]). If e is the identity element of G, observe that the point i.e/ 2 S1

has trivial stabilizer.
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For the converse direction, we give two constructions. First, suppose there
exists a point p 2 S1 that is trivially stabilized by the G action �. Define

c�.x; y; z/ WD

8

ˆ

<

ˆ

:

�1 if .�.x/.p/; �.y/.p/; �.z/.p// is negatively oriented in S1;

C1 if .�.x/.p/; �.y/.p/; �.z/.p// is positively oriented in S1;

0 otherwise.
(1)

For the second construction, we only need to use faithfullness of � and the fact
that S1 is separable. Enumerate some countable dense subset Q D ¹x1; x2; : : : º
of S1. Given a triple .a; b; c/ of distinct elements of G, let

m D m.a; b; c/ WD min¹i j a � xi ¤ b � xi ¤ c � xi ¤ a � xi º:

The minimum exists becauseQ is dense and � is faithful. Now set

c.a; b; c/ WD cS1.a � xm; b � xm; c � xm/:

We leave it to the reader to check that c is a circular order on G. �

We remark that there are completely analogous constructions for left-invariant
linear orders, which fact we record here as

Proposition 2.5. A countable group G admits a faithful action on R by orienta-

tion-preserving homeomorphisms if and only if G admits a left-invariant linear

order.

This too appears in Theorem 2.2.14 of [4], although it is possible this result
was known earlier.

These last two propositions imply a third way to construct a circular order from
a linear order: given a linear order we can build an action on R. Compactify R to
S1 and extend the action so that1 is a fixed point. Proposition 2.4 now provides a
circular order. The reader can check that this construction of a circular order from
a linear order is equivalent to the previous two constructions, the first involving
cuts and the second cocycles.

In the proof of Proposition 2.4, we described the construction of an injective
homomorphism rcWG ! HomeoC.S1/ called the dynamical realization of a cir-
cular order c. rc is almost well-defined; the action ofG on i.G/ is completely well-
defined but the action on the interval gaps is well-defined up to semi-conjugacy.
Since the stabilizer of each gap acts on the open interval freely, by Hölder’s the-
orem (Theorem 6.10 of [7]), this action is always semi-conjugate to a group of
translations.

Another remark on the dynamical realization is that rc is not just a group
homomorphism from G to HomeoC.S1/, but rather a group homomorphism with
a marked point p. In the construction, p corresponds to i.e/where e is the identity
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element. One can recover c from rc with p by by declaring a distinct triple of
elements .g1; g2; g3/ to be positively oriented if and only if .g1p; g2p; g3p/ is
positively oriented with respect to the natural circular order on S1. On the other
hand, when G acts on S1 with two trivially stabilized points p; q, the circular
order on the orbit of p and one on the orbit of q might give two different circular
orders on G. The choice of p matters less for bi-invariant circular orders. Here, a
bi-invariant circular order of G is a left-invariant circular order that is also right-
invariant. In other words, the cocycle describing the order is also homogeneous
on the right.

Proposition 2.6. Given a circular order c ofG, let rc be the dynamical realization

with a marked point p. c is bi-invariant if and only if one can choose any point in

the orbit of p under rc.G/ as a new marked point.

Proof. This is straightforward. c being bi-invariant means that .ap; bp; cp/ is
oriented in the same way as .adp; bdp; cdp/ for any a; b; c; d 2 G. But this is
equivalent to saying that dp can be used as a marked point to recover c from rc. �

This means that the set of bi-invariant circular orders is essentially in one-to-
one correspondence with the set of orbit classes of trivially stabilized points under
its dynamical realizations.

2.2. The space of circular orders. We now describe a topology on the set of all
circular orders of a fixed group.

Definition 2.7. Given a group G, CO.G/ denotes the set of all left-invariant
circular orders on G.

We defined a circular order as a map from G3 into ¹�1; 0; 1º satisfying some
axioms. We topologize CO.G/ as a subspace of the space ¹�1; 0; 1ºG

3

of all maps
fromG3 to ¹�1; 0; 1º, where ¹�1; 0; 1ºG

3

is equipped with the Tychonoff topology
induced from the discrete topology on ¹�1; 0; 1º. If T 2 G3 n�.G/, we define

BT WD ¹c 2 CO.G/ j c.T / D C1º:

Similarly, given T1; : : : ; Tn 2 G
3 n�.G/, we let

BT1;:::;Tn D
n

\

iD1

BTi :

Lemma 2.8. The collection ¹BT ºT 2G3n�.G/ forms a subbasis for the topology on

CO.G/.
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Proof. Recall that the set of triples ¹�1; 0; 1ºG
3

is a Cantor set with a subbasis
given by sets of the form

BT;� D ¹f WG
3 ! ¹�1; 0; 1º j f .T / D �º

where T 2 G3 and � 2 ¹�1; 0; 1º. So a subbasis of CO.G/ is given by sets of the
form

BT;� \ CO.G/:

Note that if � D C1,
BT;C1 \ CO.G/ D BT :

So we should argue that we can throw out all sets of the form BT;�1\CO.G/ and
BT;0 \ CO.G/, yet still have a subbasis.

Our subbasis does not need sets of the form BT;0 \ CO.G/ because

CO.G/ \ BT;0 D CO.G/

for all T 2 �.G/, and
CO.G/ \ BT;0 D ;

for all T 2 G3 n�.G/.
The subbasis does not needs sets of the form BT;�1 \ CO.G/ because

BT;�1 \ CO.G/ D B� �T;C1 \ CO.G/

where � is any transposition. �

We first want to understand how CO.G/ sits inside ¹�1; 0; 1ºG
3
. Since CO.G/

is a subspace of the Cantor set ¹�1; 0; 1ºG
3
, CO.G/ is totally disconnected. In

fact, we have a little more.

Proposition 2.9. CO.G/ is a closed subspace of ¹�1; 0; 1ºG
3

.

Proof. Observe that each condition in Definition 2.2 is a closed condition. That
is, if we write

CO.G/ D
�

\

T 2�.G/

BT;0

�

\
�

\

T …�.G/

BT;�1 [ BT;C1

�

\
�

\

Q2G4

¹f 2 ¹�1; 0; 1ºG
3

j df .Q/ D 0º
�

\
�

\

g2G;T 2G3

¹f 2 ¹�1; 0; 1ºG
3

j f .g � T / D f .T /º
�

;
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then it is easy to check that any subset of ¹�1; 0; 1ºG
3

of one of the forms

BT;0;

BT;�1 [ BT;C1;

¹f j df .Q/ D 0º;

or

¹f j f .g � T / D f .T /º

is closed. �

Corollary 2.10. There is an algorithm that, when input a finitely presented group

G D hS j Ri, outputs (in finite time) NO together with an obstruction certifi-

cate if G is not circularly orderable; if G is circularly orderable, the algorithm

runs forever. In particular, non-circular-orderability is a recursively enumerable

property.

Proof. We apply the finite intersection property. The proof of the previous propo-
sition shows that CO.G/ is a closed subset of a Cantor set defined by the intersec-
tion of the collection

C WD ¹BT;0ºT 2G3 [ ¹BT;�1 [ BT;C1ºT 2G3

[ ¹¹f j df .Q/ D 0ººQ2G4 [ ¹¹f j f .g � T / D f .T /ººg2G;T 2G3

of closed subsets each defined locally, i.e. each involving only finitely many triples.
Since CO.G/ is a compact subspace of ¹�1; 0;C1ºG

3

, if CO.G/ D ;, the finite
intersection property implies that the intersection of some finite collection of sets
in C is empty. Combining these two observations, if G is not circularly orderable,
some finite obstruction to circular orderability (in the form of a finite family of
triples in G3) must exist.

The brute-force algorithm proceeds by enumerating every finite subset of
triples of elements of G and checking if that finite subset can possibly satisfy
the homogeneous 2-cocycle conditions. If a subset is found that can not, the
algorithm outputs NO, together with that subset. If G is not circularly orderable,
the previous paragraph shows such a subset will always eventually be found.
If G is circularly orderable, such a finite subset will never be found, so the
algorithm runs without terminating. Finally, to see that non-circular-orderability is
a recursively enumerable property, simply enumerate all finitely presented groups
while applying the brute-force search in parallel as you enumerate; whenever
an obstruction is found for a group, add that group to the list of non-circularly-
orderable groups. �
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2.3. Subspaces of CO.G/. As discussed, the definition of left-invariant circular
order can be strengthened to require that the order be homogeneous with respect
to right multiplication as well, and such an order is called a bi-invariant circular
order.

Definition 2.11. BCO.G/ � CO.G/ is the subspace of bi-invariant circular
orders.

For example, if A is an abelian group, all left invariant orders are automati-
cally bi-invariant, so BCO.A/ D CO.A/. More generally, arguing as we did in
Proposition 2.9, it is easy to check

Lemma 2.12. BCO.G/ is a closed subspace of CO.G/.

In Section 2.1 we constructed circular orders from linear orders. Now we define
a map from the set LO.G/ of left-invariant linear orders to CO.G/:

i WLO.G/ ,�! CO.G/;
< 7�! c< ;

where c< was defined in equation 1 of Subsection 2.1. The map i is obviously
injective. Suppose<1; <2 are two different left-invariant linear orders onG. Then
there exists a non-trivial element g of G such that g >1 e and g <2 e. But then,
c<1.g

�1; e; g/ D C1 and c<2.g
�1; e; g/ D �1. Hence, i.<1/ ¤ i.<2/.

Definition 2.13. Let LO.G/ WD i.LO.G// denote the subspace of CO.G/ con-
sisting of all left-invariant linear orders. A circular order that can not be real-
ized as arising from a linear order is called a genuine or proper circular order.
COg.G/ WD CO.G/ n LO.G/ denotes the subspace of genuine circular orders.

For example, since HomeoC.R/ is torsion-free, any circular order on a finite
cyclic group is genuine. If G D Z=nZ is a finite cyclic group, then there are
precisely �.n/ circular orders on G, where � is Euler’s totient function. Let †g;n

be a surface of genus g with n punctures, and let MCG.†g;n/ or MCGg;n denote
the mapping class group of the surface†g;n. Since MCGg;n has torsion elements,
it is not left-orderable, hence CO.MCGg;n/ D COg.MCGg;n/.

Topologizing a space of orders is not a new idea. Indeed, as discussed in the
introduction, Sikora introduced a topology on LO.G/ [18] in which a subbasis
consists of sets of the form

Sa;b D ¹<2 LO.G/ j a < bº

where a; b 2 G. Here < is to be considered as a total order in the usual way, and
not as a function on triples.
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Proposition 2.14. The inclusion map i WLO.G/ ,! CO.G/ is an embedding,

where LO.G/ is topologized as by Sikora and CO.G/ is topologized as a subspace

of ¹�1; 0; 1ºG
3

.

Proof. By Lemma 2.8, CO.G/ has a basis given by sets of the form

BT1;:::;Tn WD ¹c 2 CO.G/ j c.Tj / D C1º

where Tj WD .xj ; yj ; zj / 2 G
3. Then

i�1.BT1;:::;Tn/ D ¹<2 LO.G/ j c<.Tj / D C1º

D
\

j

.Sxj ;yj ;zj [ Syj ;zj ;xj [ Szj ;xj ;yj /

where
Sx;y;z WD Sx;y \ Sy;z:

This shows i is a continuous injection. Theorem 1.4 of [18] says that LO.G/
is a compact (and totally disconnected) space. This suffices to prove i is an
embedding, since a continuous injective function on a compact set is always an
embedding (i.e. a homeomorphism onto its image). �

Next, we show LO.G/ is closed inside of CO.G/. To do so, we shall find
a simple criterion to tell which circular orderings are not genuine. Our starting
point is the following characterization of left-invariant orders on G:

Lemma 2.15. A group G admits a left-invariant order if and only if there is a

disjoint partition of G D N [ ¹eº [ P such that P � P � P and P�1 D N

Proof. If G has a left-invariant order <, then we can set P D ¹g 2 GW g > eº.
For the converse, we can define an order by h < g if and only if h�1g 2 P for all
g; h 2 G. �

For a linear order < on G, the set P D ¹g 2 GW g > eº is the positive cone

of G with respect to the order <. We just observed that a left-invariant positive
cone characterizes a left-invariant order. This can be used to characterize the non-
genuine circular orderings on G.

Proposition 2.16. Let c be a circular ordering on a group G. Then c is linear

if and only if c satisfies c.h�1g�1; e; gh/ D 1 whenever both c.h�1; e; h/ and

c.g�1; e; g/ are 1.

Proof. Suppose a circular ordering c is induced by a linear order < on G and let
P be the positive cone of G with respect to <. By definition, c.h�1; e; h/ D 1

if either h�1 < e < h, e < h < h�1 or h < h�1 < e. But since < is a linear
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order, we know that if e < h, ie., h 2 P , then we must have h�1 < e. Hence
the only possibility is h�1 < e < h and we can conclude that c.g�1; e; g/ D 1 if
and only if g 2 P for all g 2 G. Since P is invariant under left-multiplication, if
c.h�1; e; h/ D c.g�1; e; g/ D 1, then c.h�1g�1; e; gh/ D 1.

Conversely, suppose a circular ordering c on G satisfies c.h�1g�1; e; gh/ D 1
whenever both c.h�1; e; h/ and c.g�1; e; g/ are 1. Then one can define a positive
cone P by ¹g 2 GW c.g�1; e; g/ D 1º. Hence one obtains a left-invariant order by
setting h < g if and only if h�1g 2 P . �

It is straightforward to show that the condition of the proposition is a closed
condition in CO.G/. We conclude

Corollary 2.17. LO.G/ is closed in CO.G/.

In particular, the proof of Corollary 2.10 can be modified to show

Corollary 2.18. There is an algorithm that, when input a finitely presented group

G D hS j Ri, outputs (in finite time) NO together with an obstruction certificate if

G is not linearly orderable; if G is linearly orderable, the algorithm runs forever.

In particular, non-linear-orderability is a recursively enumerable property.

Since LO.G/ is closed in CO.G/, one might wonder if it is also open. In
Section 3 we will see that LO.Zn/ is very far from being open, as COg.Z

n/ is
dense in CO.Zn/. We pose the following general

Question 2.19. For a given group G, what is the limit set of COg.G/ inside
CO.G/? In particular, are there examples of groups where the limit set of COg.G/

is not all of LO.G/?

For example, Navas and Rivas have shown that the set of bi-invariant linear
orders on Thompson’s group F consists of 8 isolated points and 4 Cantor sets [15].
Are these 8 exotic linear orders still isolated in CO.F /?

2.4. Aut.G/ action on CO.G/. Let Aut.G/ be the set of automorphisms of G.
There is a natural left action of Aut.G/ on CO.G/.

Lemma 2.20. Let � 2 Aut.G/ and � 2 CO.G/. Define a map

� � �WG3 �! ¹�1; 0; 1º

by

� � �.g0; g1; g2/ D �.�
�1.g0/; �

�1.g1/; �
�1.g2//; for all g0; g1; g2 2 G:

Then � � � is again in CO.G/. Moreover, Aut.G/ acts on CO.G/ by homeomor-

phisms.
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Proof. It is straightforward to check � � � 2 CO.G/. It is also straightforward
to check that Aut.G/ acts by homeomorphisms once we know � 7! � � � is a
continuous map, so we show this.

Suppose .�i / is a sequence in CO.G/ converging to � 2 CO.G/. Setting
Ai WD ¹.g0; g1; g2/ 2 G

3W�i.g0; g1; g2/ D �.g0; g1; g3/º, �i ! � is equivalent to
that the sequence .Ai/ has an increasing subsequence .Aij / so that

S

j Aij D G
3.

For any � 2 Aut.G/, it is clear that .��1.Aij // is an increasing sequence so
that

S

j �
�1.Aij / D ��1.G3/ D G3. Furthermore, ��1.Ai/ D ¹.g0; g1; g2/ 2

G3W � � �i .g0; g1; g2/ D � � �.g0; g1; g3/º. Hence � � �i converges to � � �. �

Let BCO.G/ be the set of bi-invariant circular orders on G, i.e. the circular
orders which are invariant under both left and right mulplication. It is easy to see
that Inn.G/ acts trivially on BCO.G/, hence the Aut.G/ action on CO.G/ induces
an action of Out.G/ on BCO.G/.

Further fruitful analysis of the action of Aut.G/ on CO.G/would likely require
restrictions on G. One result in this direction is

Proposition 2.21. Let G be a residually torsion-free nilpotent group. Then the

map Aut.G/! Homeo.CO.G// is injective.

Proof. Theorem 1.1 of [9] states that the action Aut.G/ on LO.G/ is faithful, given
such a G. Since LO.G/ is an invariant subset of CO.G/, the result follows. �

Observe that Koberda’s theorem provides a criterion for left-orderability. In-
deed, for any residually torsion-free nilpotent group G with non-trivial Aut.G/, it
follows that G is left-orderable. But, since our theorem is obtained as a corollary
of Koberda’s, it does not provide a similar criterion for genuine circular orderabil-
ity. In particular, it says nothing about whether Aut.G/ acts on COg.G/ faithfully,
and fails for groups with nontrivial torsion. In this direction, Corollary 3.11 of
the next section shows that when A is a finitely generated abelian group that is
circularly orderable, Aut.A/ acts faithfully on COg.A/.

3. Finitely generated abelian groups

In this section we will describe the space of circular orders CO.A/ of a finitely
generated abelian group A. We assume the torsion subgroup of A is cyclic, since
otherwise A is not circularly orderable.

Lemma 3.1. Let G be a circularly orderable group with finite torsion subgroup

T � G. Then T is a finite cyclic group.
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Proof. Any circular order on G restricts to a circular order on T . Thus it suffices
to show that the only circularly orderable finite groups are cyclic groups. The
circular order on G restricts to yield an action of T on S1 with some trivially
stabilized point p0 2 S

1. Let O D ¹p0; : : : ; pn�1º be the orbit of p0 under T .
The order structure on T is encoded in its order-preserving action on this finite
circularly ordered set O. We can think of O as the oriented cyclic digraph Cn, and
the action of T is by digraph automorphisms. But the automorphism group of Cn

is isomorphic to Z=nZ. Thus T injects into Z=nZ. Since O is the orbit of p0

under T , this map is surjective as well, so we conclude T ' Z=nZ. �

In contrast to this proposition, results in the next subsection imply that every
finitely generated abelian group with cyclic torsion subgroup is circularly order-
able. By abuse of language, such a group will be called a circularly-orderable

abelian group.
We remark that the assumption of the lemma that the torsion subgroup T be

finite is necessary. Indeed, consider the Prüfer group

T D lim
n!1

Z=pnZ:

This is a torsion group with a natural rotation action on S1. In particular, T is
circularly orderable. As for finitely generated, infinite torsion groups–so called
Burnside groups–the conclusion of the lemma is also known to hold [14]. In
general, the problem of deciding when the homeomorphism group of a manifold
has the Burnside property is open, although recent progress has been made in the
case of compact surfaces [8].

3.1. Classifying elements of CO.A/. For the rest of the section, Awill denote a
circularly-orderable abelian group. The first step in our description of CO.A/ is to
use two known results to construct a recursive classification of the elements. For
background and development of both these results, the reader is referred to Ghys’s
highly readable paper [7]. The first result goes back to Poincaré and involves a
careful analysis of rotation numbers.

Proposition 3.2 (Proposition 5.6 of [7]). LetG be any subgroup of HomeoC.S1/.

Then there are three mutually exclusive possibilities.

(1) There is a finite orbit.

(2) All orbits are dense.

(3) There is a compactG-invariant subsetC � S1 which is infinite and different

from S1 and such that the orbits of points in C are dense in C . This set C

is unique, contained in the closure of any orbit and is homeomorphic to a

Cantor set. C is called the exceptional minimal set of G.
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In both cases 1 or 3, we associate to G the stabilizer subgroup K of the finite
orbit or the Cantor set C , respectively. We call K the blowdown kernel.

In case 3, we can blow down the gaps of S1 n C to get an action of type 2.
That is, we construct a quotient of S1 so that the closure of each maximal,
connected, open interval of S1 n C is replaced by a point. The resulting space
is homeomorphic to S1, and the fact that the action is of type 2 is a consequence
of the following proposition.

Proposition 3.3 (Proposition 5.8 of [7]). Let G be a group. Consider a ho-

momorphism r WG ! HomeoC.S1/ such that r.G/ has an exceptional minimal

set K. Then there is a homomorphism Nr WG ! HomeoC.S1/ such that r is semi-

conjugate to Nr and Nr.G/ has dense orbits on the circle.

We call a subgroup G of HomeoC.S1/ minimal if all of its orbits are dense.
Similarly, we say a circular order is minimal if its dynamical realization is mini-
mal. Let COmin.G/ denote the set of minimal circular orders of G, let COfin.G/

be the set of circular orders of G with a finite orbit, and let COblow.G/ be the set
of circular orders of type 3.

The second result we exploit is a sort of Tits alternative due to Margulis [12].

Theorem 3.4 ([12], see also Corollary 5.15 of [7]). Let G be a subgroup of

HomeoC.S1/ such that all orbits are dense in the circle. Exactly one of the

following properties holds:

(1) G contains a non abelian free subgroup;

(2) G is abelian and is conjugate to a group of rotations.

Finally, a piece of notation. LetTn D S1�� � ��S1 denote the n-torus, where we
identify the circle S1 D Œ0; 1�=¹0 D 1º with the unit interval with endpoints glued
together. An irrational point on the torus Tn is a point such that each coordinate
is irrational. A totally irrational point is an irrational point such that all of the
coordinates are pairwise noncommensurable, i.e. their ratios are not rational. We
denote the set of totally irrational points on Tn by Tn.

We are now well positioned to classify the set of circular orders on Zn.

Theorem 3.5. The set CO.Zn/ of left invariant circular orders on Zn is a disjoint

union of COfin.Z
n/, COmin.Z

n/ and COblow.Z
n/, with

COfin.Z
n/ D

G

K�Z
n

rank KDn

ŒLO.K/ � CO.Zn=K/�;

COblow.Z
n/ D

G

K�Z
n

rank K<n

ŒLO.K/ � CO.Zn=K/�;

COmin.Z
n/ D Tn:
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In particular,

COg.Z
n/ D

G

K<Z
n

K¤Z
n

rank KDn

ŒLO.K/ � CO.Zn=K/�[ COmin.Z
n/ [ COblow.Z

n/:

The reader will notice that we have referred to CO.Zn=K/ without describ-
ing it. Of course, for K full rank, Zn=K is finite, and hence CO.Zn=K/ is
finite (possibly empty), consisting of “rotation orders.” For rank.K/ < n,
CO.Zn=K/ will be empty if the quotient has a noncyclic torsion subgroup; oth-
erwise, Zn=K D Zn�rank K � Z=m for some integer m, in which case we give a
description of CO.Zn=K/ in the next theorem. So by combining Theorems 3.5
and 3.6, we will in fact have a kind of recursive classification.

Proof. The first statement, that CO.Zn/ is a disjoint union of COfin; COmin and
COblow follows from the definitions and the fact that the three types of subgroups
of Proposition 3.2 are mutually exclusive. For the three middle statements, we
will analyze the possiblities for a dynamical realization rc of a circular order c on
Zn. By Proposition 3.2, there are three cases to consider.

(1) First suppose rc has a finite orbit O D ¹p1; : : : ; pmº with pm < p1 < � � � <
pm. Then there is an induced order preserving action � of Zn on O. This is
equivalent to the homomorphism � WZn ! Z=m where the kernel is

K WD ker� D
m

\

iD1

StabZn.pi /;

i.e. the blowdown kernel. Since K fixes all of the pi and consists of order
preserving maps, K maps the intervals I1; : : : ; In of S1 n O to themselves.
Our action is a dynamical realization action, so there is a marked trivially
stabilized point q in one of the Ii such that the order structure of q is c. Now
consider the restricted action of K on Ii ' R. The orbit structure of q under
K in Ii induces a linear order on K, since Ii maps to itself by K. Since
Zn=K ' Z=m, K must be full rank, i.e.K ' Zn. This construction yields a
map

COfin.Z
n/ �!

G

K�Z
n

rank KDn

ŒLO.K/ � CO.Zn=K/�:

Inversely, for any full rank subgroupK < Zn of indexm, we can intertwine
a linear order on K with a circular order on Zn=K. More specifically, let
Zn=K ' Z=m act by the rotation action indicated by the circular order, pick
a point p, replace each point in the orbit of p under Z=m with identical
blown-up intervals, and let K act simultaneously and identically on these m
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intervals I1; : : : ; Im by the dynamical realization of the linear order on K,
with marked trivially stabilized point q. Since HomeoC.R/ is divisible, we
can extend the K action on S1 to an action of Zn by rotating S1 and acting
inside the blow-up intervals accordingly. Clearly the order structure of q is
inverse to the construction of the previous paragraph, so we have established
a bijection between orders with finite orbits and

G

K�Z
n

rank KDn

ŒLO.K/ � CO.Zn=K/�:

(2) Now suppose rc is minimal. Theorem 3.4 implies the image of Zn in
HomeoC.S1/ is conjugate to a group of rotations. Since rc is an injection, we
need the generators of Zn to map to irrational rotations that are all pairwise
incommensurable. Of course, if the collection of images of the generators
are distinct, the circular orders are distinct. Conversely, any assignment of
incommensurable irrational rotations to the standard generators of Zn yields
an injection into HomeoC.S1/with trivial stabilizers. This explains the com-
ponent of CO.Zn/ parametrized by Tn.

(3) Finally, suppose rc is of type 3, so there is an invariant Cantor set C . Let q
be the marked trivially stabilized point of the dynamical realization. Blow
rc down to C via b to get a new action r D b ı rc , which may no longer
be faithful. The blowdown kernel K stabilizes b.q/, hence K acts on the
interval b�1.b.q// in a way such that q is trivially stabilized. Thus c restricts
to a linear order on K. Of course, Zn=K acts faithfully on S1 via r and
trivially stabilizes b.q/. Thus we get a circular order on Zn=K. Moreover,
Proposition 3.2 implies all r orbits are dense in b.S1/ D S1, so the action of
Zn=K on S1 is minimal. In particular, we conclude rankK < n. Thus every
type 3 circular order of Zn yields a rank subgroupK not of full rank, together
with a linear order onK and a circular order on the quotient. Moreover, given
such data, by the same procedure in the case of a finite orbit, we can construct
a circular order on Zn inverse to this.

The last statement about the genuine orders is clear. �

The arguments given in the proof of Theorem 3.5 to classify COfin.Z
n/ and

COblow.Z
n/ are fairly general. As such, there are clear generalizations of these de-

scriptions for arbitrary groups. On the other hand, the classification of COmin.Z
n/

is highly dependent on Margulis’s Theorem 3.4 and the fact that our group is
abelian. We see that by applying this theorem to Zn � Z=m we can similarly
classify CO.Zn � Z=m/.
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Theorem 3.6. The set CO.Zn � Z=m/ of left invariant circular orders on

Zn � Z=m is a disjoint union of COfin.Z
n � Z=m/, COmin.Z

n � Z=m/ and

COblow.Z
n � Z=m/, with

COfin.Z
n � Z=m/ D

G

K�Z
n�Z=m

rank KDn

ŒLO.K/� COŒ.Zn � Z=m/=K��;

COblow.Z
n � Z=m/ D

G

K�Z
n�Z=m

rank K<n

ŒLO.K/� COŒ.Zn � Z=m/=K��;

COmin.Z
n � Z=m/ D Tn � CO.Z=m/:

Since Zn � Z=m has torsion, LO.Zn � Z=m/ D ;, i.e. COg.Z
n � Z=m/ D

CO.Zn � Z=m/.

We should say a word about why we can sensibly consider Theorems 3.5
and 3.6 as classification theorems. Indeed, by the previous remark and Margulis’s
theorem, we could give a superficially similar classification for CO.G/ for any
G with no nonabelian free subgroups. However, for arbitrary G, determining
and describing possible blowdown kernels is a hard problem. While we have
admittedly not explicitly described the solution to this problem for a finitely
generated abelian group A, it is clear that the blowdown kernels in this case are
precisely subgroups K � A such that A=K is a free abelian group with cyclic
torsion subgroup. Furthermore, for arbitrary G and blowdown kernel K � G,
we do not necessarily have a good understanding of dense subsets of LO.K/ or
CO.G=K/. But for a finitely generated abelian group A, we do, which is the topic
of the next subsection.

3.2. Topology of CO.A/. We now want to understand how COfin.A/, COmin.A/

and COblow.A/ relate to the topology of CO.A/. For convenience, we introduce
new notation: COrot.A/ consists of orders which have a dynamical realization that
is a rotation action. Thus, for A D Zn �Z=m with n > 0, COrot.A/ D COmin.A/,
and for Awith rank.A/ D 0, COrot.A/ D CO.A/. For c 2 COrot.A/, we will write
c D c� for � 2 Tn if A D ZN has no torsion, c D ck if A D Z=m and c D c�;k for
A D Zn � Z=m. Here 0 � k < m is an integer coprime to m, and indicates that a
fixed generator of Z=m (say, N1) acts by a rotation of angle k

m
(recall that our circle

is S1 D Œ0; 1�=¹0 D 1º). By abuse of notation, even if A has no rank or torsion,
we may write c D c�;k , in which case we simply ignore � or k, respectively.

Our goal now is to show that COrot.A/ is dense in CO.A/. We will conclude as
a corollary that when rank.A/ > 0 and the torsion subgroup of A is cyclic, CO.A/
is a Cantor set and LO.A/ is not open.
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First we isolate convenient dense subsets of COfin.A/ and COblow.A/. By the
proof of Theorem 3.6, we know for every c 2 COfin.A/ [ COblow.A/ there is a
blowdown kernel K � A, a linear order on K and a circular order on A=K such
that c is constructed by intertwining the two. Given such aK, we let LOtran.K/ be
the subspace of LO.K/ consisting of “translation orders.” More precisely, suppose
K ' Zk is rank k and consider the set

Sk�1 D
°

.x1; : : : ; xk/ 2 .R
�/k

ˇ

ˇ

ˇ

xi

xj

… Q for all i ¤ j
±

=RC

where RC acts diagonally by scaling. We say c 2 LO.K/ is a translation order

if it has a dynamical realization such that the i th standard generator (under some
fixed identification K D Zk) acts by translation by a distance xi . Sk�1 could be
loosely considered as the totally irrational points on the sphere Sk�1, hence is
an LO analog to the totally irrational rotation circular orders. Notice we get the
sphere Sk�1 and not RPk�1, since the action is by RC and not R n ¹0º.

In [9], Koberda constructs a subspace of LO.Zn/ we shall call LOflag.Z
n/,

consisting of positive cones constructed from rational flags in Zn. He then shows
LOflag.Z

n/ is dense in LO.Zn/. The interested reader can easily check that the
limit set of LOtran.Z

n/ in LO.Zn/ contains LOflag.Z
n/. The important fact for our

purposes is that we can deduce

Lemma 3.7. LOtran.Z
n/ is dense in LO.Zn/.

Now define

COfin;tran.A/ WD
G

K�A

rank KDn

LOtran.K/ � CO.A=K/ � COfin.A/

and
COblow;tran.A/ WD

G

K�A

rank K<n

LOtran.K/ � CO.A=K/ � COblow.A/

to be subspaces consisting of orders whose restriction to their blowdown kernels
are translation orders. By the previous lemma, we have

Lemma 3.8. LOtran.K/�CO.A=K/ is dense in LO.K/�CO.A=K/. In particular,

COfin;tran.A/ is dense in COfin.A/ and COblow;tran.A/ is dense in COblow.A/.

We can now establish our key result for understanding the topology of CO.A/.

Theorem 3.9. For any finitely generated abelian group A, the space COrot.A/ of

rotation orders of A is dense in the space CO.A/ of all circular orders.
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Proof. The proof proceeds via direct analysis and Noetherian induction. We con-
sider the poset of finitely generated abelian groups with cyclic torsion subgroups
where A > B if there is a surjection A � B . Of course, the base cases are
cyclic groups of prime order, but the statement of the theorem is trivial for all
cyclic groups because COrot.A/ D CO.A/. We will show in separate cases that
COmin.A/ is dense in both COfin.A/ and COblow.A/.

First we will show COrot.A/ is dense in COfin.A/. For this case, we will not
need induction. Let c 2 COfin.A/ and let S � A � A � A be a finite subset of
triples. Write

A D Z � � � � � Z � Z=m0:

We will find � 0 2 Tn and k with .k;m0/ D 1; 0 � k < m0 such that c� 0;k jS D cjS .
Let �S be the set of elements of A involved in the triples of S , i.e.

�S WD ¹a 2 A jthere exist b; c 2 A

with .a; b; c/ 2 S; .b; a; c/ 2 S or .b; c; a/ 2 Sº:

Let
� D min

a;b2�S
a¤b

j.rc.a//.0/ � .rc.b//.0/j:

It suffices to find � 2 Tn and k with .k;m0/ D 1; 0 � k < m0 such that

j.rc�;k .a//.0/� .rc.a//.0/j <
�

2

for all a 2 �S . Furthermore, by Lemma 3.8 it suffices to assume c 2 COfin;tran.A/.
We will give an explicit description of a dynamical realization of such a c and do
some simple analysis with it.

Let the blowdown kernel of c be

K D m1Z � � � � �mnZ �mnC1Z=m0 � A;

so that c 2 LOtran.K/ � CO.A=K/. Note that LO.K/ is empty if K has torsion,
so we assume

K D m1Z � � � � �mnZ < A:

Let the translation order of cjK have a dynamical realization encoded by the
translation data Œ.m1x1; : : : ; mnxn/� 2 Sn�1, meaning miei 2 K acts by the
translation of length mixi . Let x D .x1; : : : ; xn/. Since

A=K D Z=m1 � � � � � Z=mn � Z=m0

is assumed to be cyclic, we fix an isomorphism

A=K �! Z=M
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where M WD m1 : : : mnm0 by letting ei 7!
M
mi

.mod M/. Let the blown-down

circular order onA=K have a dynamical realization in which e1 C � � � C en C e0 D
1 .mod M/ acts by the rotation

k

M

where .k;M/ D 1. Thus ei acts by the rotation ri D
k

mi
. Encode these rotation

angles in the vector r D .r1; : : : ; rn; r0/. Let a D a1e1 C � � �anen C a0e0 D
.a1; : : : ; an; a0/ 2 Zn � Z=m0 and a0 D .a1; : : : ; an/. Then we can describe a
dynamical realization of c by

.rc.a//.0/ D Ta0�x ıRa�r .0/ mod 1

where a � r and a0 � x are dot products of vectors, Ra�r is a rotation by angle a � r
and the support of Ta0�x is the union of the blow-up intervals, on each of which
Ta0 �x acts by the translation of distance a0 �x. More explicitly, there are 1

M
blow-up

intervals Ii , each of length ` D 1
2M

, and on each of these we might have

Ta0�x.p/ D h
�1
i

� `

�
arctan

h

tan
��

`
hi.p/

�

C a0 � x
i�

;

where hi W Ii !
�

� `
2
; `

2

�

is an orientation preserving isometry taking the midpoint
of Ii to 0. Such a requirement for the hi ’s is important, because it ensures rc
actually yields a group action.

We compute

.rc.a//.0/ D a1r1 C � � � C anrn C a0r0 C
� `

�
arctan

�

a0 � x
�

�

D a � r C
� `

�
arctan.a0 � x/

�

:

We need to find � 0 2 Tn close to r 0 D .r1; : : : ; rn/ and in the linear regime of
arctan as a function of all the a0 found in �S . Write � D r C .ı; 0/, � 0 D r 0 C ı0

where ı0 D .ı1; : : : ; ın/. Then

j.rc�0;k
.a//.0/ � .rc.a//.0/j D

ˇ

ˇ

ˇa � � � a � r �
� `

�
arctan

�

a0 � x
��ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇa0 � ı �
� `

�
arctan

�

a0 � x
��ˇ

ˇ

ˇ:

The essential observation is that we can scale x sufficiently small enough so that
arctan .a0 � x/ is approximately linear for all a0 involved in �S . This is devious
because we change the dynamical realization of c depending on �S .
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Now clearly we can pick ı1; : : : ; ın so that r C ı 2 Sn�1 and

ˇ

ˇ

ˇa0 � ı �
� `

�
arctan.a0 � x/

�ˇ

ˇ

ˇ <
�

2
:

This shows COrot.A/ is dense in COfin.A/.
To show COrot.A/ is dense in COblow.A/, we apply the induction hypothesis.

Specifically, induction tells us

COblow;tran;rot.A/ D
G

K�A

rank K<n

LOtran.K/ � COrot.A=K/ � COblow;tran.A/

is a dense subset of COblow;tran.A/, hence COblow;tran;rot.A/ is dense in COblow.A/.
But now a hands-on analytic argument can be applied exactly as above. We spare
the reader any more details. �

Finally, we can address the topology of CO.A/.

Theorem 3.10. Suppose rank.A/ > 0 and A has a cyclic torsion subgroup. Then

CO.A/ is a Cantor set.

Proof. Let rank.A/ D n and the torsion subgroup of A have order m, so

A D Z � � � � � Z � Z=m:

We already know CO.A/ is a closed subset of a Cantor set, so it suffices to
show it is perfect. In fact, since COrot.A/ is dense, it suffices to show COrot.A/ is
perfect. To check for perfectness, we ought to show that every basis open set is
either empty or infinite. So let

B D Bt1;:::;tl D ¹c 2 CO.A/ j c.t1/ D � � � D c.tl/ D 1º

be a nonempty basis set, where t1; : : : ; tl 2 A3 is a finite set of triples ofA. Then by
density there is some c�;k 2 B with c�;k 2 COrot.A/, where � D .�1; : : : ; �n/ 2 Tn

and .k;m/ D 1; 0 � k < m. Recall that k indicates that the standard generator of
Z=m acts by rotation k

m
. Write S D ¹t1; : : : ; tlº and let

�S D ¹a 2 Zn jthere exist b; c 2 Zn

with .a; b; c/ 2 S; .b; a; c/ 2 S or .b; c; a/ 2 Sº

be the set of elements of A involved in S . Suppose our marked trivially stabilized
point for the dynamical realization rc�;k of c�;k is 0 2 S1. Let

� D min
a;b2�S

a¤b

j.rc�;k .a//.0/� .rc�;k .b//.0/j
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be the smallest distance between points in the orbit of 0 under rc�;k restricted to
elements of Zn involved in S . Note this minimum makes sense because S is finite.
In particular, 0 < � < 1.

By the triangle inequality, it suffices to find infinitely many D . 1; : : : ;  n/ 2
Tn such that

j.rc�;k .a//.0/� .rc ;k .a//.0/j <
�

2

for all a 2 �T .
Notice that we can write

.rc�;k .a//.0/ D a �
�

�;
k

m

�

;

where � is the dot product and a 2 A D Z � � � � � Z � Z=m. Now we can use the
Cauchy-Schwarz inequality to conclude

j.rc�;k .a//.0/� .rc ;k.a//.0/j D ja � .� �  ; 0/j � kak2k� �  k2 < Ck� �  k2

where C is some finite constant depending only on �S . Of course, we can find
infinitely many  2 Tn such that

k� �  k2 <
�

2C

so the claim follows. �

The density of rotation orders can also be used to show

Corollary 3.11. Let A be a finitely generated abelian group. Then Aut.A/ acts

faithfully on COg.A/.

Indeed, this corollary follows immediately from the fact that COrot.A/ �
COg.A/ is dense and the following

Theorem 3.12. Let A be a finitely generated abelian group that is circularly

orderable. Then Aut.A/ acts faithfully on COrot.A/. In fact, Aut.A/ acts freely.

Proof. Let A D Zn � Z=mZ, with m D 0 corresponding to the case of A free
abelian. Then

Aut.A/ ' Aut.Zn/˚Hom.Zn;Z=mZ/˚Aut.Z=mZ/

where
Hom.Zn;Z=mZ/ ' .Z=mZ/n:
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To see this, let ˛ be an automorphism of A. Let i1WZn ! A and i2WZ=mZ ! A

be the natural inclusions, and let �1WA! Zn and �2WA! Z=mZ be the natural
projections. Then, by the universal properties of direct sum and direct product of
abelian groups (which are the same), ˛ is determined by the four maps

�1 ı ˛ ı i1W Z
n �! Zn;

�1 ı ˛ ı i2W Z=mZ �! Zn;

�2 ı ˛ ı i1W Z
n �! Z=mZ;

�2 ı ˛ ı i2W Z=mZ �! Z=mZ:

Of course, �1 ı ˛ ı i2 has to be trivial. A simple check shows ˛ is bijective if
and only if �1 ı ˛ ı i1 and �2 ı ˛ ı i2 are. In particular, �2 ı ˛ ı i1 can be any
homomorphism.

Now let cE�;k
be an element of COrot.A/, where E� D .�1; : : : ; �n/ 2 Tn and

k is coprime to m. Recall the subscripts indicate that c D cE�;k
has a dynamical

realization rc in which

rc.a1; : : : ; an; a/ D E� � .a1; : : : ; an/C
ka

m
2 S1 � HomeoC.S1/

for all .a1; : : : ; an; a/ 2 A. Then ˛ has the following effect on the dynamical
realization of c:

r˛�c D E� � Œ.�1 ı ˛
�1/.a1; : : : ; an; a/�C

k

m
Œ.�2 ı ˛

�1/.a1; : : : ; an; a/�:

To see this, note that because c is a rotation order, the dynamical realization is con-
jugate to the (set-theoretic) order-preserving embedding ic WA ,! S1 constructed
in Proposition 2.4. Thinking of ic as a way to label points in S1 by elements of
A, it is clear the affect of ˛ on this labelling is to change the label x to the label
˛�1.x/.

If ˛ � c D c, then r˛�c D rc. Since rc is faithful, for all .a1; : : : ; an; a/ in A
conclude

�1 ı ˛
�1.a1; : : : ; an; a/ D .a1; : : : ; an/

and
�2 ı ˛

�1.a1; : : : ; an; a/ D a:

The components
�1 ı ˛

�1 ı i1

and
�2 ı ˛

�1 ı i2

of ˛ are therefore identity maps, and the component

�2 ı ˛
�1 ı i1

must be the zero map. Thus ˛�1, hence ˛, is the identity map. �
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3.3. Archimedean Orders. In the theory of left-invariant linear orders, there
are special classes of orders which have been isolated. For instance, a linear order
< on G is called Archimedean if for any g; h 2 G n ¹eº, there exists n 2 Z such
that gn > h. We propose a similar notion for circular orders.

For a countable group G that is not infinite cyclic, we say a circular order c is
Archimedean if for any two elements g; h of G which are not powers of the same
element of G, there exists a positive integer n such that

c.e; g; h/ ¤ c.e; gn; h/:

We exclude the case that G D Z, since otherwise every order on Z would be
Archimedean, and the results of this subsection would have to be modified.

The Archimedean property for circular orders is a generalization of the
Archimedean property of linear orders, in the sense that if c were a linear order
and for all triples with c.e; g; h/ D C1 (i.e. e < g < h) there exists an n > 0 such
that the condition c.e; gn; h/ D �1 holds, then c would be called an Archimedean
linear order. On the other hand, the fact that our definition of Archimedean circular
order does not require c.e; g; h/ D C1 imposes more serious restrictions.

Lemma 3.13. An Archimedean circular order is always genuine.

Proof. Suppose c is an Archimedean circular order of a groupG which is induced
by a linear order < of G. Take any g; h 2 G satisfying e < h < g or g < e < h.
But the Archimedean property for circular orders implies that e < gn < h for
some power n, which is impossible. �

We close this section by answering a natural question: which circular orders
are Archimedean? It turns out that as in the case of linear orders (see Section 3
of [13]), Archimedean circular orders arise from free actions.

Proposition 3.14. Let G be a group that is not infinite cyclic. Then a circular

order c on G is Archimedean if and only if the dynamical realization rc is a free

action.

Proof. We begin by observing that if G is finite cyclic, then every order on G
is vacuously Archimedean, and every dynamical realization is a rotation action,
hence free. Thus the proposition holds for G finite cyclic. For the remainder of
the proof, we assume G is noncyclic.

Suppose c is not Archimedean. Then there exists g; h 2 G which are not
powers of the same element such that

c.p; rc.g/.p/; rc.h/.p// D c.p; rc.g
n/.p/; rc.h/.p//

for all n > 0. This implies that the orbit of p under forward iterates of g is
completely contained in one of the connected components of S1 n ¹p; rc.h/.p/º.
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Since g is a homeomorphism, rc.gn/.p/ accumulates to a point, and such a point
must be fixed by g.

Conversely, suppose c is Archimedean, and let p 2 S1. If p is in the image
of G under the order-preserving embedding used to construct rc, then p must be
trivially stabilized. So suppose p is not in this image, and let g 2 G. We will
show g does not fix p.

If g is a torsion element, then g is conjugate to a rotation, hence has no fixed
points. So we suppose g is not torsion.

Since G is not infinite cyclic, there exists h 2 G such that h and g are not in a
cyclic subgroup. Let n > 1 be the smallest positive integer such that

c.e; g; h/ ¤ c.e; gn; h/:

For convenience, we will assume c.e; g; h/ D C1. Consider the four open
intervals .e; g/; .g; h/; .h; gn/ and .gn; e/ comprising the connected components
of S1 n ¹e; g; h; gnº. Here, the notation .x; y/means the component of S1 n ¹x; yº
such that .x; p; y/ is positively oriented for all p in that component. We will
consider four cases corresponding to which interval Ii contains p. For now, we
will assume n > 2. The reader is highly encouraged to draw pictures for what
follows.

(1) If p 2 .e; g/, we consider two subcases. If for all 1 < i < n, gi 2 .p; g/,
then p 2 .e; gi/ for all i . Hence,

g � p 2 g � .e; gn�1/ D .g; gn/ 63 p:

On the other hand, if there exists 1 < i < n such that gi … .p; g/, let j be
the smallest such i , so that p 2 .e; gj �1/. Then

g � p 2 g � .e; gj �1/ D .g; gj / 63 p:

(2) If p 2 .g; h/, we have two subcases similar to before. If for all 1 < i < n,
gi 2 .g; p/, then

g � p 2 g � .gn�1; e/ D .gn; g/ 63 p:

On the other hand, if there exists 1 < i < n such that gi … .g; p/, let j be
the smallest such i , so that p 2 .gj �1; e/. Then

g � p 2 g � .gj �1; e/ D .gj ; g/ 63 p:

(3) If p 2 .h; gn/, then p 2 .gi ; e/ for all 1 � i < n. In particular, p 2 .gn�1; e/,
hence

g � p 2 g � .gn�1; e/ D .gn; g/ 63 p:
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(4) If p 2 .gn; e/, then, since g is not torsion, gn is also not torsion. We can now
adapt the argument of cases 1 and 2, with g replaced by gn to show that gn

does not stabilize p. Of course this is enough to show g does not stabilize p
either.

If n D 2, then we can go through these cases again. We leave it to the reader to
modify the arguments to show the conclusion holds for each. �

The proof of Proposition 3.6 of [13] shows that the dynamical realization of
an Archimedean linear order as an action on R is free. On the other hand, if one
views it as a circular order and considers the dynamical realization as an action on
S1, such an action necessarily has a global fixed point. In summary, Archimedean
linear orders corresponds to free actions on R, and Archimedean circular orders
correspond to free actions on S1.

Hölder showed that (see Theorem 6.10 in [7] for instance) any group acting
freely on either R or S1 is abelian. Therefore linear or circular Archimedean
orders exist only for abelian groups both for linear and circular orders.

4. Free products

One might try to understand circular orders on 3-manifold groups using the
amalgamated product presentations arising from Heegaard splittings. To this end,
we initiate a study of circular orders on free products. We remark that at this time it
is unclear how to deal with amalgamations of free products, since, for example, the
Weeks’ manifold admits no circular orders [5], but there appears to be no known
computable criterion for the existence of orders on 3-manifold groups.

4.1. Existence. We show here that a free product of groups G �H is circularly
orderable if and only if both G and H are circularly orderable. Of course,
by restriction, one direction of this equivalence is obvious. To prove the other
direction, we need the following well-known lemma.

Lemma 4.1. Let 0 ! K ! G ! H ! 0 be a short exact sequence where K

is LO and H is CO. Then G is circularly orderable in such a way that the maps

K ! G and G ! H are order preserving.

Proof. This is rather classical. See, for instance, Lemma 2.2.12 of [4]. �

Now we prove the converse:

Theorem 4.2. Let G and H be groups with circular orders cG and cH . Then

G �H is orderable in a way that extends cG and cH .
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Proof. Since G and H are circularly orderable, they act faithfully on S1. By the
universal property of free products, this defines an action of G �H on S1, call it
�WG �H ! S1. Since Im.�/ acts faithfully on S1, Im.�/ is circularly orderable.
On the other hand, ker.�/ is a normal subgroup ofG �H that does not intersectG
or H , since each of G and H acts faithfully. Therefore, by the Kurosh subgroup
theorem, ker.�/ is a free group. In particular, ker.�/ is LO. By Lemma 4.1, G �H
is CO. �

The previous theorem gives an existence result, but is non-constructive. In the
next result, we construct an explicit order on G �H extending initial orders on G
and H .

Theorem 4.3. LetG andH be circularly ordered groups, with orders cG and cH .

Then there exists a unique circular order c on G �H that is lexicographical with

respect to cG and cH . More precisely, there exists a unique circular order c on

G �H that satisfies the initial conditions

c j G3 D cG ; c j H
3 D cH ; c.e; g; h/ D C1

c.g1; g2; h/ D cG.g1; g2; e/; and c.g; h1; h2/ D cH .e; h1; h2/

for all g; g1; g2 2 Gn¹eº, and h; h1; h2 2 H n¹eº, together with the lexicographical

condition

c.xw1; w2; w3/ D c.x; w2; w3/

for all reduced words xw1; w2 and w3 in G � H such that x is not the leftmost

letter of w2 or w3.

Before proving this, let’s consider an example to clarify what we mean by
lexicographical order, and to indicate where the cocycle description in the theorem
comes from. In doing so, we will give a sketch of the proof from a topological
perspective. The only essential detail missing is a proof that the final subset �1

of the plane is circularly ordered.
Let G D Z D hai and H D Z=3Z D hb j b3 D ei. Let cG be a rotation order

on G with rotation angle � , and let cH be the order realized by

r WZ=3Z�! S1;

bk 7�! k=3:

Let S1
G be a copy of the circle together with an orientation-preserving embedding

G ,! S1
G, which we think of as a marking of some points of S1

G by elements of
G. Similarly, let S1

H be a copy of S1, together with the three points 0; 1=3 and 2=3
marked by the corresponding elements of Z=3Z. Wedge the two circles together
at 0 to form a planar graph

� WD S1
G _ S

1
H
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as in Figure 1. We shall blow-up � to a seed �0 which generates a new planar
graph �1 on which G �H will act faithfully.

Figure 1. The marked wedge S1
G
_ S1

H
.

First modify � by blowing up every point in G [H � � to an interval, and
marking one of the endpoints of the resulting interval with the same marking as
before. Be sure to pick the same endpoint for all intervals (with respect to the
orientation of �), as in Figure 2. Call this graph �0.

Figure 2. The seed �0.

Now let w 2 G � H be any word of length one. That is, w is an element of
either G or H . If w is in H , take a copy of S1

G together with the marking by G,
and relabel every marked point by appendingw onto the left end. Call this marked
circle S1

w �G. Blow it up along the marked points and glue the result onto �0 along
the edge that contains the marking w, so that this piece is contained in the closure
of the unbounded component of R2 n �0. Do this for all the elements w in G
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and H . Of course, this requires a choice of how to squeeze the infinitely many
circles into the plane, but these choices will not affect the final order we construct.
Call the resulting planar graph �1. Supposing inductively that �l is construction,
we can repeat a similar procedure to construct �lC1. See Figure 3.

Figure 3. �1, an intermediate step in the construction of �1.

Notice that �l � �lC1 for all l . Define

� 0
1 WD

[

l�0

�l :

G �H acts on � 0
1 in a way that continuously extends the actions of G and H on

the blown-up copies of S1
G and S1

H inside � 0
1, respectively. Let E be the set of

points in the interiors of the internal edges of � 0
1. That is, E consists of the orbit

of the interiors of the edges constructed when blowing up � to �0. Define

�1 WD �
0
1 n E:

�1 contains the orbit of the point marked e, which moreover is trivially stabilized.
Then the order structure c induced by the free action of G � H on e extends cG

and cH .
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To connect this to Theorem 4.3, observe that the marking of the seed �0 con-
tains the data of the initial conditions mentioned in the theorem. The lexicograph-
ical condition can be understood by observing that the order of a triple of long
words in G �H alternating between G andH depends only on their leftmost let-
ter, so long as the leftmost letters of the three words are distinct; this is clearly the
case with the dynamical construction we just outlined.

One might try to adapt this example to prove Theorem 4.3. The main difficulty
lies in showing the final graph in the construction is circularly orderable as a set,
which would amount to checking a cocycle condition anyway.

Proof of Theorem 4.3. Using the diamond lemma, we first prove uniqueness, after
which it will be easy to define c. Consider the following three types of reductions
on the set .G �H/3 of ordered triples of reduced words in G �H :

(1) If x 2 G [H and w1 D xw
0
1; w2 D xw

0
2 and w3 D xw

0
3 are reduced,

.w1; w2; w3/ 7�! .w0
1; w

0
2; w

0
3/:

(2) If x 2 G [H is the leftmost letter of precisely two words, left multiply the
triple by x�1 and reduce. For example, if w1 D xw

0
1, w3 D xw

0
3 andw2 does

not start with x, then

.w1; w2; w3/ 7�! .w0
1; x

�1w2; w
0
3/;

where it is understood that x�1w2 has been reduced if need be. There are
two more versions of this move, which we do not make explicit.

(3) If x 2 G[H is the leftmost letter of precisely one word, remove the subword
to the right of x. For example, if w2 D xw0

2 and neither w1 nor w3 begins
with x, then

.w1; w2; w3/ 7�! .w1; x; w3/:

All three reductions strictly decrease the sum of the three word lengths involved.
Thus there are no infinite sequences of reductions. It is completely straightforward
to check cases and show that two reductions of a fixed triple have a mutual
reduction. Indeed, if a triple can have a type 1 reduction applied, it is unique,
and that triple can not have a type 2 or type 3 applied. If a triple can have a type 2
reduction applied, then it can always also have a unique type 3 reduction applied.
For instance, let w1 D xw0

1; w2 D yw0
2; w3 D xw0

3 be reduced words. Then
the following digram shows the two different sequences of reductions to reach a
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mutual reduction.

.xw0
1; yw

0
2; xw

0
3/

.w0
1; x

�1yw0
2; w

0
3/ .xw0

1; y; xw
0
3/

.w0
1; x

�1y; w0
3/

 

!

2:

 

!
3:

 

!3:

 

!

2:

The final case to consider is a triple that admits three different type 3 reductions.
More precisely, let w1 D xw0

1; w2 D yw0
2; w3 D zw0

3, where x; y and z are all
distinct. Then clearly .x; y; z/ is a mutual reduction for all three of the type 3
reductions of .w1; w2; w3/. We conclude by the diamond lemma (also known as
Newman’s lemma) that every triple can be reduced to a unique minimal triple, i.e.

a triple which admits no reductions. Moreover, it is easy to verify that the minimal
triples are precisely the elements of .G [H/3.

Any circular order c satisfying the lexicographical condition in the statement
of the theorem must be invariant under the 3 reductions. Indeed, Reductions 1 and
2 follow from left invariance, and Reduction 3 follows from the cocycle condition
together with the lexicographical condition. Since the minimal reduction of every
triple is in .G [ H/3, c is uniquely specified by imposing the initial conditions.
So we define the unique lexicographical extension of cG and cH that satisfies the
initial conditions of the theorem by

c.w1; w2; w3/ WD c.x; y; z/;

where .x; y; z/ 2 .G [H/3 is the minimal reduction of .w1; w2; w3/.
Note that homogeneity of c follows immediately from the definition of the

minimal reduction of a triple. We conclude by using induction to show that c
is a cocycle. Our induction occurs inside .G � H/4, where .w1; w2; w3; w4/ �
.w0

1; w
0
2; w

0
3; w

0
4/ if each w0

i is a subword of wi . It is straightforward to show this
is a Noetherian poset, so our induction is well-founded.

Before beginning, we observe that since the minimal reduction of a triple is
equivariant with respect to the action of the symmetric group S3 on triples, c is
invariant under cyclic permutations of its input and antisymmetric with respect to
transposing two of its arguments. This uses the initial conditions and the fact that
cG and cH both have both of these properties. We will need these properties in
what follows.

For the base cases, consider a quadruple .w; x; y; z/ 2 .G [H/4. We need to
show

dc.w; x; y; z/ D 0;

where

dc.w; x; y; z/ D c.x; y; z/� c.w; y; z/C c.w; x; z/� c.w; x; y/:
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If all four elements are inG or all four are inH , dc.w; x; y; z/D 0 because cG and
cH are cocycles. Suppose, by way of example, that .w; x; y; z/ D .g1; h1; h2; g2/

where g1; g2 2 G n ¹eº and h1; h2 2 H n ¹eº. Then

dc.g1; h1; h2; g2/ D c.h1; h2; g2/ � c.g1; h2; g2/C c.g1; h1; g2/ � c.g1; h1; h2/

D cH .h1; h2; e/� cG.g1; e; g2/C cG.g1; e; g2/ � cH .e; h1; h2/

D 0:

All the cases – namely, .g1; g2; g3; h1/, .g1; g2; h1; h2/, .g1; h1; h2; h3/ and their
permutations – are similar. Indeed, the initial conditions immediately imply

dc.g1; g2; g3; h1/ D dc.g1; g2; g3; e/

and

dc.g1; h1; h2; h3/ D dc.e; h1; h2; h3/;

so these cases (and similarly, their permutations) easily follow because dcjG D 0
and dcjH D 0, respectively. The remaining three cases are the permutations
of .g1; g2; h1; h2/ (modulo symmetry of the cases with respect to reindexing and
switching G and H ), one of which we showed above, and the other two of which
are here:

dc.g1; g2; h1; h2/ D c.g2; h1; h2/ � c.g1; h1; h2/C c.g1; g2; h2/ � c.g1; g2; h1/

D c.e; h1; h2/ � c.e; h1; h2/C c.g1; g2; e/ � c.g1; g2; e/

D 0

and

dc.g1; h1; g2; h2/ D c.h1; g2; h2/ � c.g1; g2; h2/C c.g1; h1; h2/ � c.g1; h1; g2/

D c.h1; e; h2/ � c.g1; g2; e/C c.e; h1; h2/ � c.g1; e; g2/

D 0:

Consider a quadruple of reduced words, which, without loss of generality, we
suppose is of the form .xw1; w2; w3; w4/ where xw1 is the longest word in the
quadruple. (To see why this is acceptable, note that if c is symmetric with respect
to cyclic permutations, and antisymmetric with respect to transpositions, then

dc.w; x; y; z/ D �dc.x; y; z; w/;

so that one side is 0 if and only if the other side is too.) In particular, we
assume w1 is not the empty word, since that would put us back in the base
case. We suppose inductively that for every .v1; v2; v3; v3/ � .xw1; w2; w3; w4/,
dc.v1; v2; v3; v4/ D 0. By definition

dc.xw1; w2; w3; w4/

D c.w2; w3; w4/ � c.xw1; w3; w4/C c.xw1; w2; w4/ � c.xw1; w2; w3/:
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To compute any further, we consider several cases, based on the combinatorics of
the reduced words:

(1) x does not begin w2; w3 or w4

dc.xw1; w2; w3; w4/ D c.w2; w3; w4/ � c.xw1; w3; w4/

C c.xw1; w2; w4/ � c.xw1; w2; w3/

D c.w2; w3; w4/ � c.x; w3; w4/

C c.x; w2; w4/ � c.x; w2; w3/

D dc.x; w2; w3; w4/

D 0;

where the last equality follows by induction, and the assumption that w1 is
not the empty word. The next three cases will not need induction.

(2) w2 D xw
0
2, x does not begin w3 or w4

dc.xw1; w2; w3; w4/ D dc.xw1; xw
0
2; w3; w4/

D c.xw0
2; w3; w4/ � c.xw1; w3; w4/

C c.xw1; xw
0
2; w4/ � c.xw1; xw

0
2; w3/

D c.x; w3; w4/ � c.x; w3; w4/

C c.w1; w
0
2; x

�1w4/ � c.w1; w
0
2; x

�1w3/

D 0C c.w1; w
0
2; x

�1/ � c.w1; w
0
2; x

�1/

D 0:

(3) w3 D xw
0
3, x does not begin w2 or w4

dc.xw1; w2; w3; w4/ D dc.xw1; w2; xw
0
3; w4/

D c.w2; xw
0
3; w4/ � c.xw1; xw

0
3; w4/

C c.xw1; w2; w4/ � c.xw1; w2; xw
0
3/

D c.w2; x; w4/ � c.w1; w
0
3; x

�1w4/

C c.x; w2; w4/ � c.w1; x
�1w2; w

0
3/

D c.w2; x; w4/C c.x; w2; w4/

� c.w1; w
0
3; x

�1/ � c.w1; x
�1; w0

3/

D 0 � 0

D 0:
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(4) w4 D xw
0
4, x does not begin w2 or w3

dc.xw1; w2; w3; w4/ D dc.xw1; w2; w3; xw
0
4/

D c.w2; w3; xw
0
4/ � c.xw1; w3; xw

0
4/

C c.xw1; w2; xw
0
4/ � c.xw1; w2; w3/

D c.w2; w3; x/ � c.w1; x
�1w3; w

0
4/

C c.w1; x
�1w2; w

0
4/ � c.x; w2; w3/

D c.w2; w3; x/ � c.x; w2; w3/

� c.w1; x
�1; w0

4/C c.w1; x
�1; w0

4/

D 0:

(5) w2 D xw
0
2, w3 D xw

0
3 and x does not begin w4. Write

w4 D yw
0
4:

Then

dc.xw1; w2; w3; w4/ D dc.xw1; xw
0
2; xw

0
3; yw

0
4/

D c.xw0
2; xw

0
3; yw

0
4/ � c.xw1; xw

0
3; yw

0
4/

C c.xw1; xw
0
2; yw

0
4/ � c.xw1; xw

0
2; xw

0
3/

D c.w0
2; w

0
3; .x

�1y/w0
4/ � c.w1; w

0
3; .x

�1y/w0
4/

C c.w1; w
0
2; .x

�1y/w0
4/ � c.w1; w

0
2; w

0
3/

D c.w0
2; w

0
3; .x

�1y// � c.w1; w
0
3; .x

�1y//

C c.w1; w
0
2; .x

�1y// � c.w1; w
0
2; w

0
3/

D c.xw0
2; xw

0
3; y/ � c.xw1; xw

0
3; y/

C c.xw1; xw
0
2; y/ � c.xw1; xw

0
2; xw

0
3/

D dc.xw1; xw
0
2; xw

0
3; y/

D 0;

where the fourth equality follows from Reduction 1 (since .x�1y/ can’t begin
w1; w

0
2 or w0

3), and the last equality follows by induction. Note that if w0
4 is

the empty word, this calculation has not shown anything, so we have some
subcases. Write xw1 D vav1; w2 D xw

0
2 D vbv2; w3 D xw

0
3 D vcv3; w4 D

y, where v is the longest rightmost common subword between xw1; w2 and
w3, and a; b; c 2 G [H . In particular, a; b and c are not all the same.
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Suppose a; b and c are all distinct, and let d 2 G [H be the first letter of
v�1. Then by homogeneity and type 3 reductions

dc.xw1; w2; w3; w4/ D dc.av1; bv2; cv3; v
�1y/

D c.bv2; cv3; v
�1y/ � c.av1; cv3; v

�1y/

C c.av1; bv2; v
�1y/ � c.av1; bv2; cv3/

D c.b; c; d/� c.a; c; d/C c.a; b; d/� c.a; b; c/

D dc.a; b; c; d/

D 0;

where the last equality follows from the base case.

If precisely two of a; b and c are equal, then we proceed as in Cases (2), (3)
or (4) above.

(6) w2 D xw
0
2, w4 D xw

0
4 and x does not begin w3. Follows like (5).

(7) w3 D xw
0
3, w4 D xw

0
4 and x does not begin w2. Follows like (5).

(8) w2 D xw
0
2; w3 D xw

0
3; w4 D xw

0
4,

dc.xw1; w2; w3; w4/ D dc.xw1; xw
0
2; xw

0
3; xw

0
4/

D dc.w1; w
0
2; w

0
3; w

0
4/

D 0;

by homogeneity and induction.

This completes the proof that c is a cocycle. �

Theorem 4.3 says there is a unique way to extend circular orders on two groups
to a circular order c on their free product satisfying certain initial conditions. The
initial conditions could also be described as an “interleaving pattern.” It could be
interesting to understand, for two fixed starting orders, which interleaving patterns
are admissible for constructing a (unique) extending circular order. Loosely
speaking, the proof of the next Theorem 4.6 exploits perturbations of interleaving
patterns to show a certain subset of CO.G � H/ has no isolated points. We
shall use very special perturbations though, for which we can guarantee that
the stabilizer of the marked point with respect to the perturbed action is free
(and hence linearly orderable). For arbitrary perturbations, it is unclear how to
understand the resulting stabilizer.

4.2. Abundance. Rivas showed that the space of linear orders of a free group
LO.Fn/ does not have an isolated point, and, hence, is a Cantor set [17]. In this
subsection, we give a partial generalization of the result to circular orders.
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Before we proceed to our main result of this section, we note that Lemma 4.1
admits a dynamical interpretation, which we formalize below.

Let X be a G-set, i.e., a set which admits a left G-action. A circular order

on X is said to be G-invariant if for each g 2 G, X
g
�! X; x 7! gx, is

order-preserving. More precisely, for all g 2 G, x1; x2; x3 2 X , one has
c.x1; x2; x3/ D c.gx1; gx2; gx3/. The following lemma slightly generalizes
Lemma 4.1, and since we found no literature stating this in this generality, we
include the proof.

Lemma 4.4. Let X be a G-set with a G-invariant circular order. Suppose

StabG.x0/ is LO for some x0 2 X . Then G is CO so that the inclusion map

StabG.x0/ ! G and the map �WG ! X; g 7! gx0, respect the orders in an

appropriate sense.

Proof. First we pick a left-invariant linear order � on StabG.x0/. We define a
linear order on each coset g StabG.x0/ as follows. For any two elements h; h0

of g StabG.x0/, we say h < h0 if and only if g�1h < g�1h0 with respect to
the linear order we chose on StabG.x0/. To see this is well-defined, assume
g StabG.x0/ D g0 StabG.x0/. Then g0�1g 2 StabG.x0/. By the left-invariance,
g�1h < g�1h0 if and only if g0�1gg�1h < g0�1gg�1h0, i.e., g0�1h < g0�1h0.
Hence, our linear on a coset does not depend on the choice of a representative.

Let’s finally define a circular order c on G. The recipe is almost exactly same
as the one given in the proof of Lemma 2.2.12 of [4]. For each distinct triple
g1; g2; g3 of elements of G, we circularly order them as follows.

(1) If �.g1/; �.g2/; �.g3/ are distinct, circularly order them by the circular order
on their image in X .

(2) If �.g1/ D �.g2/ but these are distinct from �.g3/, then g1 and g2 belong
to the same coset. If g1 < g2 with respect to the linear order we defined on
the coset then g1; g2; g3 is positively ordered, and otherwise it is negatively
ordered.

(3) If �.g1/ D �.g2/ D �.g3/ then g1; g2; g3 are all in the same coset. If
g1 < g2 < g3 (up to cyclic permutation) then they are negatively ordered.

One can easily check that this defines a left-invariant circular order on G. �

Note that, in the above lemma, one can easily see that the set, say K, of all
cosets of StabG.x0/ has a natural circular order so that K is order-isomorphic
to the orbit of x0 under G. More precisely, we can define a circular order on
the set K of cosets of StabG.x0/ by using the circular order on X . We say
.g1 StabG.x0/; g2 StabG.x0/; g3 StabG.x0// is positively oriented if and only if
.g1x0; g2x0; g3x0/ is positively oriented with respect to the G-invariant circular
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order onX . Again, this is well-defined, since two representatives of each coset dif-
fer by an element of StabG.x0/ so the image of x0 under two different representa-
tives coincide. Hence, the lemma can be seen as a generalization of Lemma 2.2.12
of [4], in the sense that one can construct a circular order on a group G from a
linear order on a (not necessarily normal) subgroup H , and a circular order on
the set of cosets which is compatible with the left-action of G. This formulation
is useful especially when one wants to circularly order a group from its action on
the circle which may not have a trivially stabilized point, or even not be faithful.

Proposition 4.5. Let G be a group acting (not necessarily faithfully) on S1, and

p a point in S1. If StabG.p/ is LO, then G is CO.

Proof. The orbit of p under the action of G is a G-set with a circular order
inherited from the circle. Obviously this order is G-invariant. The claim follows
from an application of Lemma 4.4 by setting X to be the orbit of p under the
action of G, and x0 D p. �

For a set A of elements of a group G, two circular orders c and c0 are said to
coincide on A if they coincide on the set of triples consisting of elements in A.

Theorem 4.6. Let G;H be countable infinite groups. Suppose a circular order c

of G �H admits a dynamical realization rc which restricts to a minimal action of

G, i.e. all orbits under the action of G are dense in S1. Then c is not an isolated

point of CO.G �H/.

Proof. It is enough to show that for an arbitrary finite set S of elements of G �H ,
there exists a circular order c0 on G � H which coincides with c on S but such
that c0 ¤ c. For each s 2 S , consider it as an alternating product of elements of G
and elements of H, and add all rightmost sub-words of s to S . For instance, if s is
g1h1g2h2, then we add h2; g2h2; h1g2h2 to S . We also add the group identity
element e to S . If a circular c0 coincides with c on this enlarged set S , then
obviously they coincide on the original finite set of elements of G �H .

We shall construct c0 by conjugating the action of one of the factors in the
free product by a homeomorphism of S1 supported on a small interval, thereby
modifying the interleaving pattern of G and H .

Let rcWG �H ! HomeoC.S1/ be the dynamical realization of c with marked
point p 2 S1. As usual, we consider G � H as a subset of S1 using rc , i.e. as
the orbit of p. Let I � S1 be a connected component of the complement of the
elements of G �H involved in S , such that I contains a point g in the G-orbit of
p and a point h in theH -orbit of p. I , g and h exist becauseH is infinite and the
G action is minimal by our assumption. Choose an open connected arc J which
is properly contained in I and contains both g and h. Let rG

c WG ! HomeoC.S1/

be the restriction of rc to the factor G, and define rH
c similarly.
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Let ˛ be a homeomorphism of the circle satisfying the following properties:

(i) ˛ is the identity map on S1 n J ;

(ii) the circular order of the triple .e; g; h/ is different from the circular order of
.e; g; ˛.h//, where e is one of the endpoints of J ; and

(iii) ˛ induces a bijection on G � H (considered as a subset of S1 according to
the unperturbed order).

Such ˛ exists since any countable dense subset of an open interval is order-
isomorphic to Q with the usual order relation. Now perturb rH

c by conjugating
with ˛. Namely, define rH

˛ D ˛rH
c ˛

�1. Let r˛WG � H ! HomeoC.S1/ be the
canonical homomorphism determined by rG

c and rH
˛ . Note that r˛ may not be

injective. In particular, K WD Stabr˛.G�H/.p/may not be trivial. We show that K
is a free group, hence left-orderable.

By Kurosh’s subgroup theorem, it is enough to show thatK trivially intersects
the conjugates of G and H in r˛.G � H/. Suppose the negation. For instance,
say K intersects r˛.wHw�1/ for some w 2 G � H . That means, there exists h
such that .r˛.w//.˛h˛�1/.r˛.w/

�1/ fixes p where h; w are their images under the
original action rc . This is equivalent to that h fixes ˛�1r˛.w/

�1.p/.
Suppose w is written as g1h1g2h2 : : : gnhn as a reduced word. Then r˛.w/ D

g1˛h1˛
�1g2˛h2˛

�1 : : : gn˛hn˛
�1. Understanding gi and hi are their images

under rc, now we have that h fixes h�1
n ˛�1g�1

n : : : g�1
1 .p/. But since ˛ maps the

rc.G � H/-orbit of p to itself, this point h�1
n ˛�1g�1

n : : : g�1
1 .p/ must be still in

the the rc.G � H/-orbit of p. But this is impossible, since h does not fix any
point in the orbit of p in the original action (recall that p is trivially stabilized by
rc.G�H/. This implies thatK does not interest any conjugate ofH in r˛.G�H/.
The exact same argument works if one replaces H by G. Hence, K must be free
by Kurosh’s theorem. Pick an arbitrary left-order of K.

Now applying Proposition 4.5 (or rather the proof of Lemma 4.4) by setting X
to be the orbit of p under r˛.G �H/, and x0 D p, we obtain a circular order on
G �H from the perturbed action r˛ , call this new circular order c0.

The circular order of the orbit of p under r˛ may be different from one for rc,
but the enlarging process for S given at the beginning of the proof ensures that
at least the circular order on the set S has not been changed. More precisely, the
sets ¹r˛.s/.p/W s 2 Sº and ¹rc.s/.p/W s 2 Sº are order-isomorphic. Therefore,
c coincides with c0 on S . But the property (ii) of ˛ ensures that c ¤ c0, which
completes the proof. �

One may wonder if the assumption in Theorem 4.6 is vacuous. In fact, it is
easy to produce an example in this situation. For instance, let r be a rigid rotation
by an irrational angle. Then a minor variation of the proof of Proposition 4.5
of [7] shows that for a generic choice of a loxodromic isometry f of H 2, the
group generated by r and f is free. The set Xw in Ghys’ proof can be replaced
by the set Xw D ¹k 2 RWw.r; fk/º where w is a non-trivial word in F2 and fk
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denotes the map z ! kz in the upper half plane. One can easily show that Xw is
a proper subset of R, and then a similar argument goes through to show that for a
generic choice of k, the group generated by r and fk is free. In fact, by choosing a
finite number of such loxodromic isometries which do not share fixed points and
possibly raising their powers, one can produce non-isolated circular orderings of
free groups of finite rank.

It is not clear if one could generalize Theorem 4.6 to all of CO.G�H/. Indeed,
the existence of I; g and h are needed for the local perturbation argument, and
these need not exist without the assumptions of minimality of the G action2 and
infiniteness of H . For example, in contrast to Rivas’ case of linear orders, G and
H could be finite cyclic groups and S could involve all the elements of G andH .
In this case any perturbation would have to occur on triples involving words of
G �H that alternate many times between G and H , in which case the universal
property of free products can not be so easily exploited. Nevertheless, we propose
the following

Conjecture 4.7. If G and H are circularly orderable groups, then CO.G � H/
either has no isolated points or is finite. In particular, CO.G �H/ is a Cantor set

if it is infinite.
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