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Abstract. We give new upper bounds for the diameters of finite groups which do not depend

on a choice of generating set. Our method exploits the commutator structure of certain

profinite groups, in a fashion analogous to the Solovay–Kitaev procedure from quantum

computation. We obtain polylogarithmic upper bounds for the diameters of finite quotients

of groups with an analytic structure over a pro-p domain (with exponent depending on

the dimension); Chevalley groups over a pro-p domain (with exponent independent of the

dimension) and the Nottingham group of a finite field. We also discuss some consequences

of our results for random walks on groups.
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1. Introduction

The interplay between growth, spectral gap and diameter for finite groups has been

a highly active area of study within group theory in recent years. Given a finite

group G and a generating set S � G, recall that the diameter of the pair .G; S/ is

given by

diam.G; S/ D min¹n 2 NWBS.n/ D Gº

where BS .n/ is the (closed) word-ball of radius n, given by

BS.n/ D ¹s1 � � � snW s1; : : : ; sn 2 S [ S
�1 [ ¹1ºº.

Here we investigate techniques for establishing upper bounds for diam.G; S/ (such

bounds will usually be expressed as a function of jGj).

Meanwhile the spectral gap of the pair .G; S/ is a measure of the mixing time
of the simple random walk on .G; S/, that is, if .G; S/ has large spectral gap then

only a small number of steps must be taken in such a walk before the associated

probability distribution on G is close to uniform (we make these notions and their

relationship to diameter precise later).

Our interest shall be in upper bounds for the diameter which do not depend on

the generators. With this in mind, we define for a finite group G:

diam.G/ D max¹diam.G; S/WS � G; hSi D Gº.

This quantity is referred to by many authors as the worst-case diameter for G.

1.1. Statement of Results. Fix p prime. LetR be a commutative unital Noether-

ian ring. Recall that R is called a local ring if R has a unique non-zero maximal

ideal M (we shall refer to the local ring .R;M/). The quotient R=M is called the

residue field of R. There is a topology on R, called the M-adic topology, induced

by declaring the filtration .Mn/n to be a basis for the neighbourhoods of 0.

Definition 1.1. The local ring .R;M/ is called a pro-p ring if

(i) the residue field of R is finite of characteristic p;

(ii) R is complete with respect to the M-adic topology.

A pro-p ring .R;M/where M is principal is called a discrete valuation pro-p ring
and a pro-p ring which is an integral domain will be called a pro-p domain.

Let K be the field of fractions of R. Fix c 2 .0; 1/ and define a norm k�k on R

(compatible with the M-adic topology) by

kak D cn for a 2Mn nMnC1; k0k D 0.

In particular if .R;M/ is a discrete valuation ring, with P 2M such that M D .P/,

then kPk D c. In this case, we extend k�k to K via

kak D kaPnkc�n for n sufficiently large that aPn 2 R.
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In what follows we take .R;M/ to be a pro-p domain and a discrete valuation ring.

By work of Cohen [9] every suchR arises as a finitely generated free module over

a subring of the form Zp or Fp ŒŒt ��.

Our first result concerns compact groups with a compatible structure as an R-

analytic manifold. Every such group has an open subgroup with an especially

simple R-analytic structure, called an R-standard group. Precise definitions

are given in Section 4. In a d -dimensional R-analytic group G, an R-standard

subgroup may be identified (as a space) with the product space M.d/; the balls

.Mn/.d/ around 0 form a filtration by open normal subgroups. The commutator

structure in M.d/ is controlled by the Lie algebra LG . Recall that a Lie algebra L

is called perfect if L is equal to its derived subalgebra .L;L/.

Theorem 1.2. LetG be a d -dimensionalR-standard group,Kn D .M
n/.d/ Co G.

Suppose LG is perfect. Then there exist C1.G/, C2.d/ > 0 such that

diam.G=Kn/ � C1.logjG=Knj/
C2 :

In the case R D Zp, we can say more, exploiting the concept of a uniform
subgroup and associated additional features of the Lie theory (explained in detail

in Section 4.1). Every Zp-standard group is uniform and every compact p-adic

analytic group has an open characteristic uniform subgroup. In a Zp-standard

group G, the balls Kn described in Theorem 1.2 coincide with the terms of the

lower central p-series for G.

Definition 1.3. Let G be a profinite group. G is FAb if every open subgroup has

finite abelianisation.

Theorem 1.4. Let p � 3. Let G be a d -dimensional compact p-adic analytic
group. Let K1 � G be an open characteristic uniform subgroup; .Kn/n its lower
central p-series. If G is FAb then there exist C1.G/; C2.d/ > 0 such that

diam.G=Kn/ � C1.logjG=Knj/
C2 : (1)

For G D K1 then conversely, if G satisfies (1) then G is FAb.

One familiar family of R-analytic groups is the class of Chevalley linear

algebraic groups over R. Here we have a stronger conclusion than that available

in the general setting of Theorem 1.2: the degree C2 in the diameter bound may

be taken to be independent of the dimension.

Theorem 1.5. Let .R;M/ be a commutative unital discrete valuation pro-p
domain, with M generated by P. Let G � GLd .R/ be the adjoint Cheval-
ley group of type Xl 2 ¹Al ; Bl ; Cl ; Dl ; E6; E7; E8; F4; G2º over R. Suppose
.Xl ; p/ … ¹.A1; 2/; .Bl ; 2/; .Cl ; 2/; .Dl ; 2/º. Let Kn D G \ .Id C PnMd .R//.
Then there exist C1.G/ > 0 and an absolute constant C2 > 0 such that

diam.G=Kn/ � C1.logjG=Knj/
C2 :

Moreover, the same bound holds for G D SLd .R/; SOd .R/ or Spd .R/ provided
p � 3, and for G D SLd .R/ with p D 2 provided d � 3.
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Recall the correspondence between the classical root system of type Xl and

the associated adjoint Chevalley group G: if Xl D Al then G D PSLd .R/, and in

particular if Xl D A1 then G D PSL2.R/; if Xl D Bl or Dl then G D PSOd .R/

(with the dichotomy between Bl and Dl corresponding to the parity of d ); if

Xl D Cl then G D PSpd .R/.

In the case R D Zp, this result was proved by Dinai [13], under the additional

hypothesis p > max
®

lC2
2
; 19

¯

.

Finally we consider a class of non-linear examples. Recall that, for R a

commutative unital ring, the Nottingham group N.R/ of R is the set of formal

power series overR with constant coefficient 0 and 1st order coefficient 1, with the

operation of formal composition of power series. That is, an element f 2 N.R/

has the form

f .t/ D t C

1
X

kD2

�kt
k

for some �k 2 R, and, for g 2 N,

f � g D g
�

t C

1
X

kD2

�kt
k
�

.

We take R D Fq a finite field (for q a power of the prime p) and write Nq for

N.Fq/. Nq is often used as a test case for more general techniques or conjectures

in pro-p group theory. The reason for this is twofold: first, computations in Nq

can be made reasonably explicitly and simply. Second, Nq has extreme properties

among pro-p groups: as was proved first by Camina [6] and then by Fesenko [15],

every countably based pro-p group embeds as a closed subgroup of Nq . We shall

be concerned with the filtration by open normal subgroups:

Kn D
°

t C

1
X

kDnC1

�kt
k 2 Nq

±

(so that in particular K1 D Nq).

Theorem 1.6. Suppose p � 3. Then there exist C1.q/ > 0 and an absolute
constant C2 > 0 such that

diam.Nq=Kn/ � C1.logjG=Knj/
C2 .

As an application of these results, we make some elementary observations

about mixing times of random walks in the finite groups we study. The direct

relationship between diameter and spectral gap was recently exploited by Varjú,

who in [21] used a representation-theoretic argument to produce uniform weak

spectral gap estimates for SLd .Z=p
nZ/, and deduced polylogarithmic diameter

bounds. Here we reverse the direction of the argument, and deduce weak spectral
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gap estimates from uniform diameter bounds. As an aside, the diameter estimates

for SLd .Z=p
nZ/ obtained by Varjú are uniform in p but not in d , whereas those

obtained via the Solovay–Kitaev procedure are uniform in d but not in p. It

may be instructive to apply Varjú’s method to other of the finite groups we treat

in this paper to obtain diameter or spectral gap estimates which are similarly

complementary to those given here.

Let S � � be a finite symmetric set, with 1 2 S . LetX1; X2; : : : be a sequence

of independent random variables, each with law

1

jS j
�S 2 `

2.�/:

For l 2 N, the simple random walk on .�; S/ at time l is the random variable

Yl D X1 � � �Xl .

For .R;M/ a discrete valuation pro-p domain; G a d -dimensional R-standard

group; x1; : : : ; xd an R-basis for M.d/ (a set of so-called “co-ordinates of the first

kind”) and .1 2/S � G a finite symmetric subset, we may express the simple

random walk on .G; S/ by

Yl D L
.l/
1 x1 C � � � C L

.l/

d
xd

for some random variables L
.l/
1 ; : : : ; L

.l/

d
supported on R.

Corollary 1.7. Suppose LG is perfect and S � G generates a dense subgroup.
Then there exists C.d/ > 0, such that for anyC 0 > 0 there existsC 00.G; jS j; C 0/ >

0 and C 000.d; jR=Mj; C 0/ > 0 such that, for any .�1; : : : ; �d / 2 R
.d/, and for any

N 2 N, we have

ˇ

ˇ

ˇ

ˇ

PŒkL
.l/
1 � �1k; : : : ; kL

.l/

d
� �dk � c

N C1� �
1

jR=MjdN

ˇ

ˇ

ˇ

ˇ

� e�C 000N C 0

whenever l � C 00NCCC 0

.

In other words, for such l the probability that Yl is close to any element of

M.d/ is nearly constant, with error at most e�C 000N C 0

.

For a d -dimensional uniform pro-p group G, an alternative representation for

elements is available: for any g 2 G and any minimal (ordered) generating set

a1; : : : ; ad forG, there exist�1; : : : ; �d 2 Zp such that g D a
�1

1 � � � a
�d

d
(so-called

“co-ordinates of the second kind”). We therefore have

Yl D a
M

.l/
1

1 � � �a
M

.l/

d

d

for some random variables M
.l/
1 ; : : : ;M

.l/

d
supported on Zp .
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Corollary 1.8. Let p � 3. SupposeG is uniform and FAb and S � G generates a
dense subgroup. Then there exists C.d/ > 0, such that for any C 0 > 0 there exists
C 00.G; jS j; C 0/ > 0 and C 000.d; p; C 0/ > 0 such that, for any �1; : : : ; �d 2 Zp,
and for any N 2 N, we have

ˇ

ˇ

ˇ

ˇ

PŒkM
.l/
1 � �1k; : : : ; kM

.l/

d
� �dk � p

�N �1� �
1

pdN

ˇ

ˇ

ˇ

ˇ

� e�C 000N C 0

whenever l � C 00NCCC 0

.

In the Nottingham group Nq , the question of mixing times for the groups

Nq=Kn was raised by Diaconis [11]. We may express

Yl D t C

1
X

iD2

A
.l/
i t i

for some random variables A
.l/
i supported on Fq .

Corollary 1.9. Let p � 3. Suppose S � Nq generates a dense subgroup. Then
there exists an absolute constant C > 0, such that for any C 0 > 0 there exists
C 00.q; jS j; C 0/ > 0 and C 000.q; C 0/ > 0 such that, for any sequence .˛i /i in Fq ,
and for any N 2 N, we have

ˇ

ˇ

ˇ

ˇ

PŒA
.l/
2 D ˛2; : : : ; A

.l/
N D ˛N ��

1

qN �1

ˇ

ˇ

ˇ

ˇ

� e�C 000N C 0

whenever l � C 00NCCC 0

.

1.2. Background. The work of estimating the diameter and spectral gap for

finite groups with respect to various generating sets has been going on for many

years; see for instance [11] for an overview of some of the work on card-shuffling
problems, that is, questions of mixing and diameter in the symmetric group

Sym.n/.

In the past decade however, there has been a flood of results which provide

diameter or spectral gap estimates for finite simple groups of Lie type, and which

systematically treat all (or at least most) generating sets simultaneously. In many

ways this programme was begun by Helfgott [17] who established polylogarith-

mic diameter bounds for G D PSL2.p/, independent of S . These bounds were

deduced from lower bounds on the growth of an arbitrary generating set under

multiplication with itself. A series of papers by many authors quickly followed,

many expressed in the language of approximate groups, which generalised Helf-

gott’s work to arbitrary finite simple groups of Lie type (see [4], [20] for the most

general statements).
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A key motivation for the development of this field was the discovery, first made

by Bourgain and Gamburd in [1], that such growth results could be harnessed to

construct new examples of expanders. These are sequences of pairs .Gn; Sn/n for

which the spectral gap is bounded below, independent of n. In particular, for such

sequences diam.Gn; Sn/ is logarithmic in jGnj. Bourgain and Gamburd deduced

from Helfgott’s result that .PSL2.p//p is an expander with respect to random
generators. With the proliferation of growth results and the popularization of

the Bourgain-Gamburd philosophy came a corresponding set of papers producing

new examples of expanders, culminating in the recent work of Breuillard, Green,

Guralnick and Tao [5], who showed that any sequence of finite simple groups of

Lie type of bounded rank is an expander with respect to random generators.

For finite groupsG which arise as images of linear groups over pro-p rings, the

situation is very different from in the simple case: a group such as SLd .Z=p
nZ/

has many large normal subgroups, arising as the kernels of congruence maps

SLd .Z=p
nZ/ ! SLd .Z=p

mZ/ for m � n. The presence of such subgroups is

both a blessing and a curse. On the one hand, a clean statement about the growth

of arbitrary subsets à la Helfgott becomes less accessible (there are in some sense

too many subgroups in which a generating set may become partially trapped). On

the other, the filtration by the congruence kernels opens the way to arguments by

induction on the level of the filtration. One such is the Solovay–Kitaev Procedure,

originally applied to SU.d/ in the study of compilers in quantum computation [10],

but equally valid in the profinite world. This procedure works by exploiting the

commutator structure of the groups concerned: approximating elements at lower

levels in the filtration by commutators of elements at higher levels.

Several papers have already exploited this idea: Gamburd and Shahshahani

[16] used it to establish upper bounds on diam.SL2.Z=p
nZ//. Their analysis was

extended by Dinai [13] to arbitrary Chevalley groups over Z=pnZ, with bounds

independent of the rank of the Chevalley group scheme. Finally Bourgain and

Gamburd ([2] and [3]) combined a Solovay–Kitaev-type argument with results on

random matrix products and the sum-product phenomenon in the ring Z=pnZ to

produce many new examples of expander Cayley graphs of SLd .Z=p
nZ/ (though

without uniformity in d ). In fact, the ideas explored in [16] and [13] are relevant to

a much broader class of groups. It is the goal of this paper to present the Solovay–

Kitaev procedure for profinite groups in an appropriate level of generality and to

exploit it for uniform diameter bounds in families of finite groups which have not

been considered previously.

The paper is structured as follows. In Section 2 we discuss analogues of the

Solovay–Kitaev Procedure for profinite groups upon which all our results will be

based. In Section 3 we prove Theorem 1.5 in the case of classical groups. This

is achieved via a very concrete analysis of the Lie algebras of these groups, in

their standard matrix representation, and does not require any understanding of

the associated root systems. In Section 4 we study the Lie algebras of R-analytic

groups, prove Theorem 1.2 and deduce both Theorem 1.4 and the exceptional case
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of Theorem 1.5. In Section 5 we prove Theorem 1.6. Consequences of these results

for mixing times of random walks are explained in Section 6.

I am deeply grateful to my supervisor, Marc Lackenby, for suggesting that

I investigate diameters of p-groups; for his many suggestions concerning this

project and for his continued support and enthusiasm for my research. I am also

grateful to EPSRC for providing financial support during the undertaking of this

work. Several results from this paper were first presented at the Postgraduate

Conference in Group Theory, held at the University of Birmingham in June 2014.

I would like to thank the organizers of that conference for their hard work and for

providing me with a warm welcome.

2. The Profinite Solovay–Kitaev Procedure

In this section we prove general results about the diameters of finite quotients of

a finitely generated profinite group G under some hypotheses on the behaviour

of commutators in G. The proofs of Theorems 1.2, 1.5 and 1.6 will thereby be

reduced to a verification that commutators in the groups concerned satisfy these

hypotheses. Our first result in this direction, which will also serve as a warm-up

for the more general technical result required for some applications, is:

Proposition 2.1. Let G be a profinite group, .Kn/n�1 a descending sequence of
open normal subgroups of G. Suppose that

(i) for all m; n � 1, ŒKm; Kn� � KmCn;

(ii) there exists n0 � 1 such that for all m; n � n0 satisfying n � m � 2n, and
all g 2 KnCm, there exist

g1; : : : ; gA 2 Kn; h1; : : : ; hA 2 Km

such that Œg1; h1� � � � ŒgA; hA�g
�1 2 K2nCm.

ThenG=
T1

nD1Kn is finitely generated and there exists C > 0 (depending only on
A, jG=K2n0

j) such that for all n � 1,

diam.G=Kn/ � Cn
log.8A2C6A/

log.2/ .

Remark 2.2. In all the examples we consider below, we will have in addition that

the sequence .jKi=KiC1j/i is constant, so that a bound for diam.G=Kn/, which is

polynomial in n, is polylogarithmic in jG=Knj.

If we imagine the subgroups Kn to be balls in G around the identity of radius

cn, for some c 2 .0; 1/, then hypothesis (i) of Proposition 2.1 says roughly that a

commutator of two elements is of size quadratic in the sizes of those two elements,

whereas hypothesis (ii) says that every element may be approximated by a product
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of (a bounded number of) commutators of larger elements. Indeed, in a real

Lie group such as SUd , replacing the Kn with Euclidean balls around Id and

interpreting “size”as “Euclidean distance”, we recover the properties on which

the proof of the original Solovay–Kitaev Theorem is based. In this sense then, it

is legitimate to describe Proposition 2.1 as a “profinite Solovay–Kitaev Theorem”.

In fact, rather than hypothesis (i) itself the proof uses a reformulation (i0), as

explained in the following Lemma. Under the interpretation just outlined, hypoth-

esis (i0) says that, given a pair of elements g; h and a pair of “approximations”g0; h0

up to some error, Œg0; h0� approximates Œg; h� up to an error which is quadratic in

the sizes of g and h, and the errors in the original approximations g0 and h0.

Lemma 2.3. Let G be a profinite group, .Kn/n�1 a descending sequence of open
normal subgroups. The following conditions are equivalent:

(i) for all m; n � 1, ŒKm; Kn� � KmCn;

(i0) for all m;m0; n; n0 � 1, with m � m0, n � n0, and for all g; g0 2 Kn;
h; h0 2 Km with g�1g0 2 Kn0; h�1h0 2 Km0 ,

Œg; h��1Œg0; h0� 2 Kmin.mCn0;m0Cn/.

Proof. Assuming (i), write Qg D g�1g0; Qh D h�1h0. Then,

Œg0; h0� D Œg; Qh�Œg; h�ŒŒg; h�; Qh�ŒŒg; h Qh�; Qg�Œ Qg; h Qh�

by standard commutator identities. Now,

Œg; Qh� 2 KnCm0 ;

ŒŒg; h�; Qh� 2 KnCmCm0 ;

ŒŒg; h Qh�; Qg� 2 KnCn0Cm;

Œ Qg; h Qh� 2 Kn0Cm;

by (i), so that Œg; h� � Œg0; h0� mod Kmin.mCn0;m0Cn/.

Conversely, assuming (i0), let g 2 Kn, h 2 Km. We may assume n � m. Then

g�1h 2 Kn. Taking n0 D n,m0 > m in (i0), we have min.mCn0; m0Cn/ D nCm,

so we may set g0 D h0 D h to obtain:

e D Œh; h� � Œg; h� mod KnCm.

In other words, Œg; h� 2 KnCm, as required. �

The diameter bound will come from the following Lemma, the conditions of

which we shall verify in the setting of Proposition 2.1.
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Lemma 2.4. Let G be a profinite group, .Kn/n�1 a descending sequence of open
normal subgroups. Suppose there exist n0; B;D 2 N, with D � 2, such that, for
every n � n0 and every symmetric X � G with 1 2 X ,

Kn=KDn � KDnX=KDn H) KDn=KD2n � KD2nX
B=KD2n: (2)

ThenG=
T1

nD1Kn is finitely generated and there exists C > 0 (depending only on
B; jG=KDn0

j) such that for any n 2 N,

diam.G=Kn/ � Cn
log.B/

log.D/ .

Proof. Let S � G, and suppose the restriction of the natural epimorphism

�Dn0
WG � G=KDn0

to hSi is surjective. Then for some l0 2 N (independent

of S ),

KDn0
BS.l0/=KDn0

D G=KDn0

(we may always take l0 � jG=KDn0
j). In particular we have Kn0

=KDn0
�

KDn0
BS.l0/=KDn0

. By an easy induction involving (2), we have for any i 2 N,

KDi n0
=KDiC1n0

� KDiC1n0
BS .B

i l0/=KDiC1n0
.

It follows that, for any n � Din0,

diam.G=Kn; S/�B;l0
B i .

Hence for arbitrary n, choosing i such that Di�1n0 � n � D
in0,

diam.G=Kn; S/�B;l0
B

log.n/

log.D/ D n
log.B/

log.D/ .

Now let xS�G=Kn and suppose h xSiDG=Kn. If n�Dn0, then diam.G=Kn; xS/�
l0. Otherwise, the image of xS in G=KDn0

is a generating set, and the preceding

argument applies.

In particular, let zS � G be finite with image inG=KDn0
a generating set. Then

for every n, zS generates G modulo Kn, so zS maps to a topological generating set

in G=
T1

nD1Kn. �

Proof of Proposition 2.1. Let n � n0. Let X � G be symmetric, with 1 2 X , and

suppose

Kn=K2n � K2nX=K2n: (3)

Let g 2 K2n. By hypothesis (ii) there exist g1; : : : ; gA; h1; : : : ; hA 2 Kn such that

g � Œg1; h1� � � � ŒgA; hA� mod K3n.
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By (3) there exist g0
1; : : : ; g

0
A; h

0
1; : : : ; h

0
A 2 X with gi � g

0
i ; hi � h

0
i mod K2n for

i D 1; : : : ; A. By hypothesis (i0) from Lemma 2.3, Œgi ; hi � � Œg0
i ; h

0
i � mod K3n.

Hence g � Œg0
1; h

0
1� � � � Œg

0
A; h

0
A� mod K3n, so that

K2n=K3n � K3nX
4A=K3n: (4)

Likewise, let g 2 K3n. There exist g1; : : : ; gA 2 Kn, h1; : : : ; hA 2 K2n such that

g � Œg1; h1� � � � ŒgA; hA� mod K4n.

By (3) and (4) there exist g0
1; : : : ; g

0
A 2 X and h0

1; : : : ; h
0
A 2 X4A such that

gi � g0
i mod K2n and hi � h0

i mod K3n, so that Œgi ; hi � � Œg0
i ; h

0
i � mod K4n

for i D 1; : : : ; A and

g � Œg0
1; h

0
1� � � � Œg

0
A; h

0
A� mod K4n.

Hence,

K3n=K4n � K4nX
8A2C2A=K4n: (5)

Combining (3), (4), and (5), we obtain K2n=K4n � K4nX
8A2C6A=K4n. The

required result now follows from Lemma 2.4, applied with B D 8A2 C 6A,

D D 2. �

Proposition 2.1 will suffice to prove Theorem 1.5 in the case of classical groups

over pro-p rings. For general analytic pro-p groups and for the Nottingham group,

however, generating elements as products of commutators is more difficult. For

example, ŒKn; Km� may not be the whole of KnCm (as will always be the case in

the setting of Proposition 2.1) but some deeper subgroup KnCmCk (with k � 1

bounded independent ofm; n). To circumvent these and other complexities of the

general case, we prove a stronger version of Proposition 2.1, in which hypothesis

(ii) has been weakened:

Proposition 2.5. Let G be a profinite group, .Kn/n�1 a descending sequence of
open normal subgroups of G. Suppose that

(i) for all m; n � 1, ŒKm; Kn� � KmCn;

(ii) there exists � 2 .0; 1/; A;M1;M2 2 N such that for all n � M1, there exist
ni ; mi 2 N ( for i D 1; 2; 3) with

n

3
.2C i C �/ � ni � mi �

2n

3
.2C i/; ni Cmi D .2C i/n �M2;

and for all g 2 K.2Ci/n, there exist

g1; : : : ; gA 2 Kni
, h1; : : : ; hA 2 Kmi

such that Œg1; h1� � � � ŒgA; hA�g
�1 2 K.2Ci/nCni �M2

D K2ni Cmi
.
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Then G=
T1

nD1Kn is finitely generated and there exists C > 0 (depending on A,
jG=K3n0

j, where n0 D max
®

2M1;
˙

3M2

�

�¯

) such that

diam.G=Kn/ � Cn
6 log.4AC1/

log.3/ .

Proof. First claim that for any n � max
®

2M1;
3M2

�

¯

and any symmetric X � G

with 1 2 X ,

Kn=K3n � K3nX=K3n H) Kn=K6n � K6nX
.4AC1/3

=K6n: (6)

Let g 2 K3n. By .i i/, there exist g1; : : : ; gA 2 Kn1
, h1; : : : ; hA 2 Km1

with

g � Œg1; h1� � � � ŒgA; hA� mod K3nCn1�M2
.

By assumption, there exist g0
1; : : : ; g

0
A; h

0
1; : : : ; h

0
A 2 X such that gi � g

0
i , hi � h

0
i

mod K3n, so that g0
i 2 Kn1

, h0
i 2 Km1

. By Lemma 2.3,

Œgi ; hi � � Œg
0
i ; h

0
i � mod K3nCn1

.

Hence g � Œg0
1; h

0
1� � � � Œg

0
A; h

0
A� mod K3nCn1�M2

.

Therefore,

K3n=K3nCn1�M2
� K3nCn1�M2

X4A=K3nCn1�M2

and, combining with the hypothesis Kn=K3n � K3nX=K3n,

Kn=K3nCn1�M2
� K3nCn1�M2

X4AC1=K3nCn1�M2
.

In particular, since n1 � nC
�n
3
� nCM2, Kn=K4n � K4nX

4AC1=K4n.

We now simply repeat the same procedure. Let n2; m2 2 N be as above. We

deduce

K4n=K4nCn2�M2
� K4nCn2�M2

X4A.4AC1/=K4nCn2�M2
.

Combining this estimate with Kn=K4n � K4nX
4AC1=K4n, and since 4nC n2 �

M2 � 5n, we have

Kn=K5n � K5nX
.4AC1/2

=K5n.

Finally let n3; m3 2 N be as above. We have

K5n=K5nCn3�M2
� K5nCn3�M2

X4A.4AC1/2
=K5nCn3�M2

.

Combining with Kn=K5n � K5nX
.4AC1/2

=K5n, since 5n C n3 � 6n, the claim

follows.



New uniform diameter bounds in pro-p groups 815

In particular, (6) implies that for n � max
®

2M1;
3M2

�

¯

,

Kn=K3n � K3nX=K3n H) K2n=K6n � K6nX
.4AC1/3

=K6n.

Applying (6) again, with n replaced by 2n and X replaced by X .4AC1/3

,

K2n=K12n � K12nX
.4AC1/6

=K12n

so that in particular,K3n=K9n � K9nX
.4AC1/6

=K9n. The result now follows from

Lemma 2.4, applied with B D .4AC 1/6, D D 3. �

The proof of Proposition 2.5 is sufficiently robust that qualitatively similar

(though quantitatively worse) diameter bounds should be available under even

weaker hypotheses. We shall not pursue such results here, as the level of generality

already achieved is sufficient for all the examples we shall consider. We conclude

this section by noting some cases in which hypothesis (i) of Propositions 2.1

and 2.5 is always satisfied.

Example 2.6. (i) Let G be any pro-p group; Kn be the nth term of the lower

central p-series for G.

(ii) Let R be a unital profinite ring; G � R�; I C R a proper two-sided open

ideal. Define Kn D G \ .1C I
n/ C G. Let n;m 2 N with n � m and let g 2 Kn,

h 2 Km. Let a; Qa 2 Im, b; Qb 2 I n be such that

g D 1C a; g�1 D 1C Qa; h D 1C b; h�1 D 1C Qb:

Then aC QaC Qaa D b C Qb C Qbb D 0, so

Œg; h� � 1C ab C Qab C Qa Qb C Qba

� 1C ab � ba mod I 2nCm.

In particular, Œg; h� 2 KnCm.

(iii) As a particular case of (ii), letting R D FpG and I C R be the

augmentation ideal, Kn is the nth mod-p dimension subgroup of G.

3. Classical Groups over R

In this section we prove Theorem 1.5 in the case for which Xl is classical, so

that the associated adjoint Chevalley group over R is one of PSLd .R/, PSOd .R/,

or PSpd .R/ (with d even in the latter case). To be more precise, we prove the

diameter bound forG D SLd .R/; SOd .R/ or Spd .R/;Kn D G\.IdCP
nMd .R//.

It shall be useful at this point to make a general observation, to the effect that diam

behaves well with respect to extensions.
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Lemma 3.1. Let G be a finite group,K C G. Then,

(i) diam.G=K/ � diam.G/;

(ii) diam.G/ � .2 � diam.G=K/C 1/ �
�

diam.K/C 1
2

�

� 1
2
.

Proof. (i) is straightforward.

(ii) Let S � G be a generating set. Then BS .diam.G=K// contains a

transversal T to K in G, with 1 2 T . By the Reidemeister-Schreier process,

BS .2 � diam.G=K/C 1/ contains a generating set for K. Hence,

diam.G; S/ � diam.G=K/C diam.K/ � .2 � diam.G=K/C 1/: �

The required result for the adjoint form then follows straightforwardly: letting

�WG ! GLD.R/ be the adjoint representation of G on the associated Lie algebra

(of dimension D), for any g 2 G, if g � Id mod Pn then �.g/ � ID mod Pn.

Thus letting Kn D G \ .Id C PnMd .R//, Ln D �.G/ \ .ID C PnMD.R//,

� descends to an epimorphism G=Kn � �.G/=Ln. By Lemma 3.1 (i),

diam.�.G/=Ln/ � diam.G=Kn/ � C1.logjG=Knj/
C2 :

The polylogarithmic diameter bound in jG=Knj then translates to a polyloga-

rithmic bound in j�.G/=Lnj (with possibly larger constant C1). For jG=Knj �

jR=Mjd
2n and j�.G/=Lnj � jR=Mj

n.

We verify the hypotheses of Proposition 2.1 for G D SLd .R/, SOd .R/, or

Spd .R/. Recall that we permit ourselves the assumption that p � 3 unless G D
SLd .R/ and d � 3. Hypothesis (i) follows immediately from Example 2.6 (ii).

Moreover, for g 2 Kn, h 2 Km, with n � m � 2n, writing

g D Id C PnX; h D Id C PmY

for some X; Y 2Md .R/, we have

Œg; h� � Id C PmCn.X; Y / mod PmC2n

where .X; Y / D XY � YX is the Lie bracket. Hence for g1; : : : ; gA 2 Kn,

h1; : : : ; hA 2 Km, writing gi D Id C PnXi , hi D Id C PmYi , we have

Œg1; h1� � � � ŒgA; hA� � Id C PmCn..X1; Y1/C � � � C .XA; YA// mod PmC2n:

To verify hypothesis (ii) of Proposition 2.1, it therefore suffices to find A 2
N (independent of G) such that, for any g 2 KmCn, we can find X1; : : :XA,

Y1; : : : ; YA 2Md .R/ such that

(1) g � Id � PmCn..X1; Y1/C � � � C .XA; YA// mod PmC2n;
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(2) there exist g1; : : : ; gA 2 Kn, h1; : : : ; hA 2 Km such that

gi � Id � PnXi mod P2n; hi � Id � PmYi mod P2m;

for 1 � i � A.

As in the statement of Proposition 2.1, finding A independent of G yields an

exponent C2 in Theorem 1.5 independent of Xl . For G D SLd .R/, SOd .R/

or Spd .R/, let g D sld .R/, sod .R/ or spd .R/ be the associated Lie ring over

R. Conditions (a), (b) above will follow straightforwardly from the following

assertions, which we then verify for each group scheme in turn.

(a0) For every n 2 N and every g 2 Kn, there exists X 2 g such that such that

g � Id � PnX mod P2n.

(b0) There exists A 2 N (independent of g) such that every element of g is the

sum of at most A brackets in g (as we shall see, it suffices to take A D 3).

(c0) There exists B � g, generating g as a Z-module, such that for every n 2 N

and every X 2 B, there exists g 2 Kn such that g � Id � PnX mod P2n.

For, given g 2 KnCm, we immediately produce Xi ; Yi as in (a) by applying (a0),

(b0) to g. Now writing an arbitrary element Z 2 g as
Pr

iD1Zi , for Zi 2 B, and

letting k1; : : : ; kr 2 Kl be such that ki � Id � PlZi mod P2l as in (c0), we have

Id C PlZ � k1 � � �kr 2 Kl mod P2l :

Applying this observation to Xi ; Yi with l D n;m respectively, we obtain gi ; hi

as in (b).

3.1. SLd . Let sld .R/ denote the space of traceless d � d matrices over R; it is

spanned over R by the matrices Ei;j , Da;b, for i ¤ j , a < b, where

.Ei;j /r;s D ıi;rıj;s; .Da;b/r;s D ıa;rıa;s � ıb;rıb;s:

(a0) Let g 2 Kn. Write g D Id C PnX , for some X 2Md .R/. Then,

1 D det.g/ � 1C Pn tr.X/ mod P2n

so tr.X/ � 0 mod Pn. Hence there exists X 0 2 sld .R/ such that X � X 0

mod Pn.

(b0) First suppose d � 3. Define theR-module endomorphisms T1; T2W sld .R/!
sld .R/ by

T1.X/ D
�

X;

d�1
X

iD1

EiC1;i

�

; T2.X/ D
�

X;

d�1
X

iD1

Ei;iC1

�

.
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Then,

Dj;j C1 D T1.Ej;j C1/ for j D 1; : : : ; d � 1,

Ei;j �1 � EiC1;j D T1.Ei;j / for 1 � i � d � 1, i C 2 � j � d ,

E1;iC1 D T1.�Ei;1/ for 2 � i � d � 1,

E3;2 � 2E2;1 D T1.D1;2/.

Transposing, the following also lie in im.T2/:

Ei�1;j �Ei;j C1; for 1 � j � d � 1, j C 2 � i � d ,

Ej C1;1; for 2 � j � d � 1,

E2;3 � 2E1;2:

It may therefore be seen that im.T1/[ im.T2/ contains anR-basis for sld .R/,

so sld .R/ D im.T1/C im.T2/. Now suppose d D 2 and p > 2. Then for any

a; b; c;2 R,

�

a b

c �a

�

D

��

0 �b
c 0

�

;

�

1
2

0

0 �1
2

��

C

��

0 a

0 0

�

;

�

0 0

1 0

��

.

(c0) Let B D ¹xEi;j W x 2 R; i ¤ j º [ ¹x.Da;b C Ea;b � Eb;a/W x 2 R; a < bº.

ThenB clearly spans sld .R/ and, for any n 2 N,X 2 B, det.IdCPnX/ D 1.

Remark 3.2. The preceding argument breaks down for d D 2, p D 2. Let

X; Y 2M2.R/ with tr.X/ D tr.Y / D 0. Then,

.X; Y / � .X12Y21 �X21Y12/

�

1 0

0 �1

�

mod P.

Hence we cannot express an arbitrary traceless matrix as a sum of brackets, as we

do above in higher characteristic.

3.2. SOd . Denote by sod .R/ the space of skew-symmetric d � d matrices over

R; it is spanned over R by the matrices Xi;j D Ei;j �Ej;i , for 1 � i < j � d .

(a0) Let g 2 Kn. Write g D Id C PnX , for some X 2Md .R/. Then,

Id D .Id C PnX/.Id C PnXT / � Id C Pn.X CXT / mod P2n

so XT � �X mod Pn. Hence there exists X 0 2 sod such that X � X 0

mod Pn.
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(b0) Define the R-module endomorphisms T1; T2; T3W sod .R/! sod .R/ by

T1.X/ D
�

X;

d�1
X

iD1

Xi;iC1

�

;

T2.X/ D .X;X1;d�1 CX1;d CX2;d /;

T3.X/ D .X;X1;2/.

Then for 1 < i < d � 1,

Xi;iC2 �Xi�1;iC1 D T1.Xi;iC1/; XiC1;d �Xi�1;d �Xi;d�1 D T1.Xi;d /.

For 1 < j < d � 1,

X2;j CX1;j C1 �X1;j �1 D T1.X1;j /.

For 1 < i; j < d , with i C 1 < j ,

XiC1;j C Xi;j C1 � Xi�1;j �Xi;j �1 D T1.Xi;j /.

For 3 � j � d � 2,

X1;j D T2.Xj;d�1/; Xj;d D T2.�X2;j /

and

X1;2 D T2.�X2;d /; Xd�1;d D T2.X1;d�1/;

X1;d�1 D T3.�X2;d�1/; X1;d D T3.�X2;d /; X2;d D T3.�X1;d /:

Therefore im.T1/ [ im.T2/ [ im.T3/ contains an R-basis for sod .R/, so

sod .R/ D im.T1/C im.T2/C im.T3/.

(c0) For ˛ 2 R, l 2 N, consider the polynomial f .X/ D X2 � .1 � ˛2P2l /.

Then f .1/ D ˛2P2l � 0 mod P2l but f 0.1/ D 2 6� 0 mod P. By Hensel’s

Lemma, there exists ˇ 2 R such that f .ˇ/ D 0 and ˇ � 1 mod P2l . Hence

for any i ¤ j ,

g
.l/
i;j .˛/ WD Id C ˛P

l.Ei;j �Ej;i /C .ˇ � 1/.Ei;i CEj;j / 2 Kl

and g
.l/
i;j .˛/ � Id C ˛P

l .Ei;j �Ej;i / mod P2l .

Remark 3.3. In contrast to the cases of SLd .R/ and Spd .R/, SOd .R/ is not in

general the universal form of the Chevalley group of its type; the universal form

is rather a proper central extension of SOd .R/ by a finite group. Increasing the

constant C1 in Theorem 1.5, the diameter bounds obtained above for SOd extend

to the universal form by Lemma 3.1 (ii).
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3.3. Spd . Let d D 2g and let � D
�

0 Ig

�Ig 0

�

, so that spd .R/ is the set of d � d

matrices X over R satisfying the relation XT�C�X D 0. Suppose p > 2.

For 1 � i; j � g, define the following elements of spd .R/:

Ai;j D

�

Ei;j 0

0 �Ej;i

�

; Bi;j D

�

0 Ei;j CEj;i

0 0

�

;

Ci;j D

�

0 0

Ei;j CEj;i 0

�

:

We have

.Ai;j ; Ak;l/ D ıj;kAi;l � ıi;lAk;j ;

.Ai;j ; Bk;l/ D ıj;kBi;l C ıj;lBi;k;

.Ai;j ; Ck;l/ D ıi;lCj;k � ıi;kCj;l ;

.Bi;j ; Ck;l/ D ıj;kAi;l C ıj;lAi;k C ıi;kAj;l C ıi;lAj;k.

Hence,

Ai;j D .Ai;j ; Aj;j /; for i ¤ j ,

Ai;i D
�1

2
Bi;i ;

1

2
Ci;i

�

;

Bi;j D .Ai;k; Bk;j /; for i ¤ k ¤ j ,

Ci;j D .Ak;i ; Cj;k/; for i ¤ k ¤ j .

(a0) Let g 2 Kn. Write g D Id C PnX , for some X 2Md .R/. Then,

� D gT�g

D �C Pn.�X CXT�/C P2nXT�X

� �C Pn.�X CXT�/ mod P2n

so �X C XT� � 0 mod Pn. Hence there exists X 0 2 spd .R/ such that

X � X 0 mod Pn.

(b0) Define the R-module endomorphisms U1; U2W spd .R/! spd .R/ by

U1.X/ D
�

X;

g
X

iD1

Ai;i

�

U2.X/ D
�

X;

g
X

iD1

.Bi;i C Ci;i /
�

.

Then for any 1 � i; j � g, Bi;j ; Ci;j 2 im.U1/, Ai;j CAj;i 2 im.U2/. Define

the R-Lie subring V � spd .R/:

V D

²�

X 0

0 �XT

�

WX 2 glg.R/

³

:
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We show that, for any X 2 sog.R/, there exist v1; v2 2 V and symmetric

Z 2 glg.R/ such that
�

X 0

0 X

�

D .v1; v2/C

�

Z 0

0 �Z

�

:

Now for an arbitrary element v 2 spd .R/ there exist X 2 sog.R/ and

symmetric B;C; Y 2 glg .R/ such that

v D

�

X 0

0 X

�

C

�

Y 0

0 �Y

�

C

�

0 B

C 0

�

D .v1; v2/C

�

0 B

C 0

�

C

�

Y CZ 0

0 �.Y CZ/

�

and
�

0 B
C 0

�

2 im.U1/,
�

Y CZ 0
0 �.Y CZ/

�

2 im.U2/, so that every element of

spd .R/ is expressible as a sum of three brackets.

It will suffice to check that any element of sog.R/ is expressible as the

sum of a bracket in glg .R/ and a symmetric matrix. Define the R-module

endomorphisms S1; S2W glg.R/! glg.R/ by

S1.X/ D .X;E1;1/; S2.X/ D
�

X;

d�1
X

iD1

.Ei;iC1 �EiC1;i /
�

and for X 2 glg.R/, write X D X1 C X2, with X1 symmetric, X2 skew-

symmetric. Then,

�

X;E1;1 C

d�1
X

iD1

.Ei;iC1 � EiC1;i /
�

� S1.X1/ � S2.X2/

is symmetric. We already described the image of S2 jsog.R/ (in the guise of

T1 in our analysis of SOd ). For 2 � i � g,

S1.E1;i CEi;1/ D Ei;1 �E1;i .

These elements, together with im.S2 jsog.R//, span sog.R/ over R, and the

result follows.

(c0) For any ˛ 2 R and any l 2 N we have

Id C ˛P
lBi;j ; Id C ˛P

lCi;j 2 Kl for any 1 � i; j;� d ,

Id C ˛P
lAi;j 2 Kl provided i ¤ j .

Finally, .1C ˛Pl/�1 � 1� ˛Pl mod P2l , so

g WD I C

�

˛PlEi;i 0

0 ..1C ˛Pl /�1 � 1/Ei;i

�

2 Kl

and g � I C ˛tPAi;i mod P2l .
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Remark 3.4. For R D Zp, the value A D 3 was achieved in [13], under the ad-

ditional assumption that p � lC2
2

, where l is the rank of the associated Chevalley

group scheme. This assumption was necessary in the specific manipulations the

root systems which were applied in Dinai’s argument. Hence even in the p-adic

case, the results of this Section are new in large rank for small p.

4. Analytic Pro-p Groups

In this section we prove Theorem 1.2. We start by recalling some preliminaries

about groups with an R-analytic structure. Recall that .R;M/ is a discrete valu-

ation pro-p domain, with M generated by P 2 M. For proofs of results quoted,

refer to Chapter 13 of [14].

Definition 4.1. Denote by RŒŒ
x
X;
x
Y �� the ring of formal non-commuting power

series in the 2d variablesX1; : : : ; Xd ; Y1; : : : ; Yd . For i D 1; : : : ; d , letFi .
x
X;
x
Y / 2

RŒŒ
x
X;
x
Y ��. Then

x
F D .F1; : : : ; Fd / is a formal group law, of dimension d over R,

if

(i)
x
F.
x
X;
N
0/ D

x
X and

x
F.
N
0;
x
Y / D

x
Y ,

(ii)
x
F.
x
X;
x
F.
x
Y;
x
Z// D

x
F.
x
F.
x
X;
x
Y /;
x
Z/.

Proposition 4.2 (13.16 in [14]). Let
x
F be a formal group law. There exist power

series
x
B.
x
X;
x
Y /,
x
I.
x
X/,
x
O.
x
X;
x
Y /,
x
P.
x
X/,
x
Q.
x
X;
x
Y /, with

x
B bilinear in

x
X and

x
Y ;

every term of
x
O;
x
P;
x
Q having total degree at least 3 and every term of

x
O;
x
Q having

degree at least 1 in each of
x
X;
x
Y , such that

(i)
x
F.
x
X;
x
Y / D

x
X C

x
Y C

x
B.
x
X;
x
Y /C

x
O.
x
X;
x
Y /,

(ii)
x
I.
x
X/ D �

x
X C

x
B.
x
X;
x
X/C

x
P.
x
X/ and

x
F.
x
X;
x
I.
x
X// D

N
0 D
x
F.
x
I.
x
X/;
x
X/,

(iii)
x
F..
x
I ı
x
F /.
x
Y;
x
X/;
x
F.
x
X;
x
Y // D

x
B.
x
X;
x
Y / �

x
B.
x
Y;
x
X/C

x
Q.
x
X;
x
Y /.

Definition 4.3. AnR-standard group of dimension d is a topological group .G; �/
with underlying space G D M.d/ such that there exists a formal group law

x
F of

dimension d such that, for all g; h 2 G,

g � h D
x
F.g; h/:

Note that, for
x
B;
x
I;
x
Q as in Proposition 4.2, we have

g�1 D
x
I.g/; Œg; h� D

x
B.g; h/�

x
B.h; g/C

x
Q.g; h/:

Example 4.4. (i) .M.d/;C/ is an R-standard group of dimension d .

(ii) Let GL1
d .R/ D Id C PMd .R/. Then GL1

d .R/ � GLd .R/ and, identifying

GL1
d .R/ with M.d2/ in the obvious way, multiplication in GL1

d .R/ is given by a

formal group law of dimension d2.
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(iii) Let SL1
d .R/ D SLd .R/ \ GL1

d .R/ be the kernel of the congruence

map SLd .R/ � SLd .R=M/. Then we may identify SL1
d .R/ with M.d2�1/

via A 7! ..A � Id /i;j /.i;j /¤.d;d/ (since these d2 � 1 co-ordinates together with

the determinant condition uniquely determine Ad;d ). Under this identification,

multiplication in SL1
d .R/ is given by a formal group law of dimension d2 � 1.

Proposition 4.5 (13.22 in [14]). For n;m 2 N, let Kn D .M
n/.d/ � G. Then,

(i) Kn Co K1 D G;

(ii) ŒKn; Km� � KnCm;

(iii) if m � n, Kn=KnCm is isomorphic to the additive group .Mn=MnCm/.d/;

(iv) G Š lim
 �

G=Kn is a pro-p group.

Theorem 4.6 (13.20 in [14]). Let G be an R-analytic group. Then G has an open
R-standard subgroup.

Proposition 4.7 (13.24 in [14]). For v; w 2M.d/, define

.v; w/ D
x
B.v; w/�

x
B.w; v/.

Then L.G/ D .M.d/;C; .�; �// is a R-Lie ring. That is, .�; �/ satisfies the Jacobi
identity (and is obviously R-bilinear antisymmetric).

Remark 4.8. For each n, PnL.G/ is a Lie subring of L.G/. As a set it is equal to

KnC1. Moreover by Proposition 4.2, the additive cosets of PnL.G/ in L.G/ are

the same as the multiplicative cosets of KnC1 in G.

Definition 4.9. The Lie algebra of G is LG D L.G/˝R K, where K is the field

of fractions of R.

Example 4.10. (i) For G D .M.d/;C/, LG is the d -dimensional abelian K-Lie

algebra;

(ii) LGL1
d .R/
D gld .K/;

(iii) LSL1
d .R/
D sld .K/.

Proposition 4.11. Suppose LG is perfect. There exists k 2 N such that every
element of .Mk/.d/ is expressible as a sum of at most d brackets in LG .

Proof. Let ¹x1; : : : ; xd º be aR-basis forL.G/. Then there exist ri ; si 2 ¹1; : : : ; dº

such that ¹.xr1
; xs1

/; : : : ; .xrd
; xsd

/º is a K-basis for LG . Let �i;j 2 K be such that

xi D

d
X

j D1

�i;j .xrj
; xsj

/.
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Let k 2 N be defined by

kPk�k D max.¹1º [ ¹k�i;jkW 1 � i; j � dº/.

Then for any 1 � i; j � d , Pk�i;j 2 R. Hence for any x 2 L.G/, there exist

�1; : : : ; �d 2 R such that

Pkx D Pk

d
X

iD1

�ixi D Pk

d
X

iD1

�i

d
X

j D1

�i;j .xrj
; xsj

/

D

d
X

j D1

�

d
X

iD1

�iP
k�i;jxrj

; xsj

�

as required. �

Proof of Theorem 1.2. We verify the hypotheses of Proposition 2.5. Hypothe-

sis (i) is Proposition 4.5 (ii). For hypothesis (ii), we take � arbitrary; A D d ;

M1 � max
®

k
3
C 1; 2

¯

; M2 D k, where k is as in Proposition 4.11. For i D 1; 2; 3

choose n
3
.2C i C �/ � ni � mi �

2n
3
.2C i/ such that ni Cmi D .2C i/n �M2

(this is possible by our choice of M1;M2).

Let g 2 K.2Ci/n. Let h 2 KM2
be such that g D Pni Cmih. Selecting

g1; : : : ; gd ; h1; : : : ; hd 2 G such that

h D

d
X

iD1

.gi ; hi/

and

g D

d
X

iD1

.Pnigi ;P
mihi /

�

d
X

iD1

ŒPnigi ;P
mihi � mod P2ni Cmi (by Proposition 4.2 (iii))

� ŒPnig1;P
mih1� � � � ŒP

nigd ;P
mihd � mod P2ni C2mi (by Proposition 4.2 (i)).

Since 2ni Cmi D .2C i/nC ni �M2, we are done. �

4.1. FAb p-adic Analytic Groups. In the case of a group G with an analytic

structure over Zp, there is an alternative approach to constructing the Lie algebra

of G, based on the concept of a uniform subgroup, rather than a Zp-standard
subgroup. We will utilise this approach to complete the proof of Theorem 1.4. Let

p � 3 be prime. LetG be a finitely generated pro-p group. Let .Gn/n be the lower

central p-series of G.
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Definition 4.12. G is powerful if G=Gp is abelian. G is uniform if it is powerful

and torsion-free. The dimension of a uniform group G is the minimal size of a

topological generating set.

Example 4.13. Recall ([19]) that every compactp-adic analytic group has an open

characteristic uniform subgroup. Indeed, every Zp-standard group of dimension

d is a uniform pro-p group of dimension d (8.31 of [14]). Conversely, if G is

a d -dimensional uniform pro-p group, then G2 is a d -dimensional Zp-standard

group (8.23 (iii) of [14]). In particular, every compact p-adic analytic group has

an open characteristic Zp-standard subgroup. We describe the formal group law

on G2 below.

We recall some properties of uniform groups. Unless otherwise specified, let

G be a d -dimensional uniform group.

Theorem 4.14 (3.6, 4.9 in [14]). Let ¹a1; : : : ; ad º be a topological generating set
for G; n;m 2 N.

(i) .�1; : : : ; �d / 7! a
�1

1 � � �a
�d

d
defines a homeomorphism Zd

p ! G;

(ii) GnC1 is uniform of dimension d ;

(iii) .GnC1/mC1 D GmCnC1;

(iv) GnC1 D ¹x
pn
W x 2 Gº;

(v) ¹a
pn

1 ; : : : ; a
pn

d
º is a topological generating set for GnC1.

There is a complete normed Qp-algebra yA, an embedding G ,! yA� satisfying

g � 1 2 yA0; for all g 2 G;

where yA0 D ¹x 2 yAW kxk � p
�1º and mutually inverse analytic functions:

logW 1C yA0 �! yA0; expW yA0 �! 1C yA0:

yA is naturally a Qp-Lie algebra with Lie bracket:

.x; y/ D xy � yx.

log.G/ is a free d -dimensional Zp-module and a Zp-Lie subalgebra of yA.

Lemma 4.15 (6.25 and 7.12 from [14]). Let x 2 yA0, n 2 Z.

(i) exp.nx/ D exp.x/n.

(ii) log..1C x/n/ D n log.1C x/.

(iii) .log.G/; log.G// � p log.G/.

Moreover, for g 2 G, � 2 Zp, � log.g/ D log.g�/.
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Combining this Lemma with Theorem 4.14 (iv), we have:

Corollary 4.16. For all n 2 N, pn log.G/ D log.GnC1/.

Proposition 4.17 (6.27 and 6.28 in [14]). There are formal non-commutative
power series ˆ.X; Y /, ‰.X; Y / satisfying:

ˆ.X; Y / D X C Y C
1

2
.XY � YX/C h:o:.X; Y /;

‰.X; Y / D .XY � YX/C h:o:.X; Y /

(with h:o:.X; Y / denoting terms composed of brackets of length at least three)
such that, for x; y 2 yA0,

(i) ˆ.x; y/ converges to log.exp.x/ exp.y//,

(ii) ‰.x; y/ converges to log.exp.�x/ exp.�y/ exp.x/ exp.y//.

Remark 4.18. Let x1; : : : ; xd 2 log.G/ be a Zp-basis for log.G/. Identify Z
.d/
p

with log.G/ via

� W .˛i /
d
iD1 7�!

d
X

iD1

˛ixi .

Then, identifying Z
.d/
p with G via exp ı� , multiplication in G corresponds to the

formal group law

.
N
a;
N
b/ 7�! ��1.ˆ.�.

N
a/; �.

N
b///

on Z
.d/
p . Moreover, under this identification the subgroup GnC1 corresponds to

pn log.G/ D �..pnZp/
.d//, by Corollary 4.16. In particular, G2 Š .pZp/

.d/ is a

Zp-standard subgroup.

Proposition 4.19 (4.8 and 4.31 in [14]). Let H be a uniform closed subgroup of
G; N C G be closed such that G=N is uniform.

(i) log.H/ is a Zp-subalgebra of log.G/.

(ii) N is uniform, with dim.N / D dim.G/ � dim.G=N/.

(iii) log.N / is an ideal in log.G/, and log.G=N/ Š log.G/= log.N /.

Proposition 4.20 (7.15 in [14]). Let S be a Zp-Lie subalgebra of log.G/ such that
the Zp-module log.G/=S is torsion-free.

(i) exp.S/ is a closed uniform subgroup of G.

(ii) If S is an ideal of log.G/, then exp.S/ C G and G= exp.S/ is uniform.

Define LG D spanQp
.log.G//, a d -dimensional Qp-Lie algebra. By Re-

mark 4.18, this is isomorphic to the Lie algebra described in Definition 4.9.
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Proposition 4.21. The following are equivalent:

(i) G has finite abelianisation;

(ii) G is FAb;

(iii) LG is perfect.

Proof. (ii) H) (i) is clear.

For (iii) H) (ii), suppose H �o G is such that there exists �WH � Zp.

We may suppose that H D Gpn
for some n 2 N. For if h 2 H is such

that Zp D h�.h/i, and n 2 N is such that Gpn
� H , then hpn

2 Gpn
, and

pnZp D h�.hpn
/i � �.Gpn

/ � Zp , so �.Gpn
/ �o Zp, and �.Gpn

/ Š Zp.

Now let N D ker.�/, so that by Proposition 4.19 (ii), N Cc H is uniform of

dimension d � 1; log.H/ D pn log.G/ and log.H/= log.N / Š Zp.

Hence LH D LG so LG=LN Š Qp , and LG is not perfect.

For (i) H) (iii), suppose I C LG , with dim.I/ D d�1. Let I D log.G/\I C

log.G/ (so that I D spanQp
.I /). Let v 2 log.G/, and suppose that there exists

� 2 Zp n ¹0º such that �v 2 I . Then v D ��1.�v/ 2 I, so v 2 I \ log.G/ D I .

Thus log.G/=I is torsion-free, so by Proposition 4.20, exp.I / C G is uniform

and G= exp.I / is uniform, with

dim.G= exp.I // D dim.G/ � dim.exp.I //

D rk.log.G// � rk.I /

D dim.LG/ � dim.I/

D 1.

and a 1-dimensional uniform group is by definition infinite procyclic, so we have

G= exp.I / Š Zp. �

Proof of Theorem 1.4. First suppose that G is a FAb compact p-adic analytic

group. As noted in Example 4.13, G has an open characteristic uniform sub-

group H . By Remark 4.18, H2 is Zp-standard. Let Kn Co H2 be as in Theo-

rem 1.2. Then by Remark 4.18 and Theorem 4.14 (iii),

Kn D .H2/n D HnC1

and HnC1 is a characteristic subgroup of H . In particular, Kn Co G. As in the

proof of Theorem 1.2, .Kn/n satisfies the hypotheses of Proposition 2.5 and the

result follows.
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Now suppose that G is uniform and not FAb. By Proposition 4.21, there exists

�WG � Zp. By Proposition 4.19, N D ker.�/ is uniform of dimension d � 1.
We may therefore choose a generating set S D ¹a1; : : : ; ad º for G such that

¹a1; : : : ; ad�1º is a generating set for N and h�.ad /i D Zp.

Let �nWZp � Z=pnZ be the natural projection. ThenGnC1 � ker.�n ı�/, so

diam.G=GnC1; S/ � diam.Z=pnZ; ¹.�n ı �/.ad /º/ � Cp
n D C jG=GnC1j

1
d .

In particular diam.G=GnC1; S/ is not polylogarithmic in jG=GnC1j. �

4.2. Exceptional groups over R. With Theorem 1.2 in hand we may complete

the proof of Theorem 1.5. We start by marshalling some facts about Chevalley

groups. Unless otherwise stated, proofs of assertions left unproven in this section

may be found in [8].

Let ˆ be a root system of type Xl 2 ¹Al ; Bl ; Cl ; Dl ; E6; E7; E8; F4; G2º,

… � ˆ be a fundamental system of roots, and S be a commutative unital

ring. We define the universal Chevalley group of type Xl over S to be the

group GS .Xl / abstractly generated by the symbols ¹x˛.t /º˛2ˆIt2S , subject to the

Steinberg relations. These are described in detail in [8]; the only fact we require

about them is the following:

(a) if S 0 is a subring of S , then the inclusion of ¹x˛.t /º˛2ˆIt2S 0!¹x˛.t /º˛2ˆIt2S

induces a homomorphism  WGS 0.Xl /! GS .Xl / (in other words, for eachˆ,

every Steinberg relation over S 0 is also a Steinberg relation over S ).

We define, for each ˛ 2 ˆ; s 2 S�, the element

c˛.s/ D x˛.s/x�˛.�s
�1/x˛.s/.x˛.1/x�˛.�1/x˛.1//

�1.

Trivially,

(b) c˛.1/ D e.

Theorem 4.22 (Exercise 13.11 in [14]). Let .R;M/ be a pro-p domain. For each
n � 1, let Gn � GR.Xl / be the subgroup generated by the set

¹x˛.t /º˛2ˆIt2Mn [ ¹c˛.1C s/º˛2ˆIs2Mn .

Then,

(i) Gn Cf GR.Xl /, for all n � 1.

(ii) The map �nW .M
n/.jˆjCj…j/! Gn, given by

�.
N
t / D

�

Y

˛2ˆC

x˛.t˛/
��

Y

˛2…

c˛.1C t˛/
��

Y

˛2ˆ�

x˛.t˛/
�

(with the products ordered by the height function induced on ˆ by …) is a
bijection, for every n � 1. Identifying G1 with M.jˆjCj…j/ via �1, G1 is an
R-standard group of dimension jˆj C j…j.
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(iii) LG1
is perfect, unless p D 2 and Xl D A1 or Cl . Indeed LG1

is the K-Lie
algebra of type Xl .

For K a field, GK.Xl / acts on the K-Lie algebra LK.Xl / of type Xl by linear

automorphisms. For ¹E˛º˛2ˆ[¹Hˇºˇ2… a Chevalley basis for LK.Xl /, the action

may be defined by

(i) x˛.t /.E˛/ D E˛

(ii) x˛.t /.E�˛/ D E�˛ C tH˛ � t
2E˛

(iii) x˛.t/.H˛/ D H˛ � 2tE˛

(iv) x˛.t/.Hˇ / D Hˇ � Aˇ;˛tE˛

(v) x˛.t/.Eˇ / D Eˇ C
Pq

iD1M˛;ˇ;i t
iEi˛Cˇ

for any ˛; ˇ 2 ˆ linearly independent and t 2 K. Here Aˇ;˛ D
2.ˇ;˛/
.˛;˛/

is the

Cartan integer;M˛;ˇ;i are integers and q 2 N is maximal such that q˛ C ˇ 2 ˆ.

Now takeK D K, the field of fractions ofR. Let �WGK.Xl /! GLd .K/ be the

above-described action (where d = jˆj C j…j is the dimension of LK.Xl /). Let

 WGR.Xl / ! GK.Xl / be as described in observation (a). The adjoint Chevalley
group of type Xl over R is defined to be the group Gad D �. .GR.Xl ///. It is

clear from (i)-(v) above that

(c) Gad � GLd .R/;

(d) for any ˛ 2 ˆI s; t 2 R and n � 1, if s � t mod Mn then �.x˛.s// �
�.x˛.t // mod Mn;

(e) in particular, for t 2Mn, �.x˛.t // � Id mod Mn.

From observations (b) and (d), it follows that for any ˇ 2 ˆ; s 2Mn,

�.cˇ .1C s// � Id mod Mn:

Combining with observation (e), we have:

�. .Gn// � Kn WD Gad \ .Id CMd .M
n//: (7)

Proof of Theorem 1.5. IfXl 2 ¹Al ; Bl ; Cl ; Dlº,Gad is one of PSLd .R/, PSOd .R/

or PSpd .R/. The result then follows as in Section 3. If not, then letting G1 be

as in Theorem 4.22, G1 satisfies the hypothesis of Theorem 1.2, so that for some
zC1; C2 > 0,

diam.GR.Xl /=Gn/ � zC1.logjGR.Xl /=Gnj/
C2 .

The map � ı  WGR.Xl / � Gad descends, by (7), to an epimorphism

GR.Xl /=Gn �� Gad=Kn:
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By Lemma 3.1 (i),

diam.Gad=Kn/ � diam.GR.Xl /=Gn/.

Finally, jGR.Xl /=Gnj �R;Xl
jR=Mjdn and jGad=Knj � jR=Mj

n, so

.logjGR.Xl /=Gnj/
C2 � .logjGad=Knj/

C2

and the result follows (replacing zC1 by some larger constant C1).

The bound we thus obtain for C2 is independent of Xl , since we need only

apply Theorem 1.2 for finitely many types Xl . �

Remark 4.23. (i) The method of this section is also applicable to the classical

Chevalley groups, though does not yield uniformity in the exponent C2. In

particular we obtain a diameter bound in the case .Xl ; p/ D .Bl ; 2/ or .Dl ; 2/,

which does not fall under the purview of Theorem 1.5. The case .Xl ; p/ D .A1; 2/

or .Cl ; 2/ is beyond the scope of our methods, however, because the associated

Lie algebras are not perfect.

(ii) The best degree C2 in Theorem 1.5 which we can obtain by the above

method is based on taking A D 248 in Proposition 2.5, because 248 is the

dimension of GR.Xl / as an R-analytic group in the case Xl D E8. It is likely

that this is far from optimal, and that a much lower degree could be obtained via

a more direct analysis of the Lie algebras of the exceptional groups, akin to that

employed for the classical groups in Section 3. In the case R D Zp, this has

already largely been achieved by Dinai in [13]: he showed that for p > 19, every

element of the Zp-Lie ring associated to an exceptional group can be expressed

as the sum of three brackets.

5. The Nottingham Group

We first collect some facts about generation and commutators in Nq with which to

deduce Theorem 1.6 from Proposition 2.5. Details can be found in [7]; [18]; [22].

For n � 2 and � 2 Fq , define

en;�.t / D t C �t
nC1 2 Kn.

The elements en;� form an infinite topological generating set forNq , as follows:

Lemma 5.1. (i) For any n � 1 �; � 2 Fq ,

en;� � en;� � en;�C� mod K2n

(so in particular ek
n;�
� en;k� mod K2n for all k 2 N).

(ii) Nq D ¹e1;�1
� e2;�2

� � � W .�k/k 2 FN
q º.
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The commutator structure of Nq is well-behaved; in particular we verify hy-

pothesis (i) of Proposition 2.5:

Lemma 5.2. Let m; n 2 N.

(i) Letg D tC
P1

kDnC1 �kt
k 2 KnnKnC1, h D tC

P1
kDmC1 �kt

k 2 KmnKmC1,
so that �nC1; �mC1 ¤ 0. Then,

Œg; h� � t C �n�m.n �m/t
mCnC1 mod KmCnC1.

(ii) For any �; � 2 Fq ,

Œen;�; em;�� � e
n�m
mCn;��

mod Kmin.mC2n;2mCn/.

(iii) For p � 3, if p − .n�m/ (respectively p j .n�m/), then ŒKn; Km� D KmCn

(respectively ŒKn; Km� D KmCnC1).

We shall show that, provided p � 3, for n � m � 2n satisfying p − .m � n/
every element of KmCn may be expressed, modulo KmC2n, as Œg1; h1�Œg2; h2� for

some gi 2 Km, hi 2 Kn. Now, for any � 2 .0; 1/, n � 5 and i D 1; 2; 3, there exist

ni ; mi 2 N such that ni C mi D .2C i/n; n
3
.2C i C �/ � ni � mi �

2n
3
.2C i/

and mi � ni 2 ¹1; 2º. We therefore satisfy hypothesis (ii) of Proposition 2.5 with

� arbitrary; A D 2; M1 D 5; M2 D 0.
For any �i ; � 2 Fq; K;M;N 2 N with N �M ; applying Lemma 5.2 (iii) and

an easy induction, we have:

Œg; eM;�� � ŒeN;�1
; eM;�� � � � ŒeN CK�1;�K

; eM;�� mod K2N CM C1

where g D eN;�1
� � � eN CK�1;�K

. Moreover, by Lemma 5.1 (i) and Lemma 5.2 (ii),

ŒeN Ci;�iC1
; eM;�� � .eM CN Ci;�iC1�/

.N �M /Ci mod K2N CM C2iKN C2M Ci

� eM CN Ci;�iC1�..N �M /Ci/ mod K2M C2N C2i .

Hence for any �i ; �i 2 Fq , setting

g1 D en;�1
� � � e2n�1;�n

g2 D en;�1
� � � e2n�2;�n�1

we have

Œg1; em;1�Œg2; emC1;1� �
�

n�1
Y

iD0

enCmCi;�iC1.nCi�m/

��

n�1
Y

iD1

enCmCi;�i .n�m�2Ci/

�

� enCm;�1.n�m/

�

n�1
Y

iD1

enCmC1;�iC1.n�mCi/C�i .n�m�2Ci/

�

mod K2nCm

since KnCm=K2nCm is abelian. p − .n � m/, and since p � 3, for each

1 � i � n � 1, p divides at most one of n � m C i; n � m � 2 C i . Hence

by varying the �i and �i , using the form described in Lemma 5.1 (ii), we can

express any element of KnCm modulo K2nCm.
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6. Limit Theorems for Random Walks

The purpose of this section is to prove Corollaries 1.7, 1.8 and 1.9. Let � be

a countable group. For �;  2 `2.�/, with � of finite support, we define the

convolution � �  2 `2.�/ by

.� �  /.g/ D
X

h2�

�.h/ .h�1g/.

For l 2 N, we define the convolution power ��l of � recursively by

��0 D �e; ��.lC1/ D ��l � �.

Let S � � be a finite symmetric set. Let X1; X2; : : : be a sequence of

independent random variables, each with law

1

jS j
�S 2 `

2.�/:

For l 2 N, the simple random walk Yl D X1 � � �Xl on .�; S/ at time l has law
1

jS jl
��l

S . We relate the asymptotics of the distributions of the Yl to diameters of

finite groups via the following method.

For G a finite group, S � G a symmetric generating set, define a linear

operator AS W `
2.G/! `2.G/ (called the adjacency operator) by

AS.f / D
� 1

jS j
�S

�

� f:

Let `2
0.G/ � `2.G/ be the space of functions of mean zero on G (that is,

the orthogonal complement of the constant functions), and note that `2
0.G/ is

preserved by AS . Let � be the norm of AS j`2
0

.G/ in the Banach spaceB.`2
0.G// of

bounded linear operators on `2
0.G/. We define the spectral gap of the pair .G; S/

to be the quantity 1 � �. As we intimated in the introduction, a large spectral gap

implies rapid mixing of the random walk on .G; S/. Specifically:

Lemma 6.1. For any l 2 N; g; h 2 G,
ˇ

ˇ

ˇ

ˇ

hAl
S�g ; �hi �

1

jGj

ˇ

ˇ

ˇ

ˇ

� �l :

Proof. Noting that �g �
1

jGj
�G 2 `

2
0.G/,

ˇ

ˇ

ˇ

ˇ

hAl
S�g ; �hi �

1

jGj

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

D

Al
S

�

�g �
1

jGj
�G

�

; �h

E

ˇ

ˇ

ˇ

ˇ

�









Al
S

�

�g �
1

jGj
�G

�









2
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by the Cauchy-Schwarz inequality. The result follows, since









�g �
1

jGj
�G









2

� 1: �

Finally, � is related to diam.G; S/ via the following inequality (see [12] for a

proof):

Proposition 6.2. Suppose 1 2 S . Then,

diam.G; S/� 1

logjGj
�

1

1� �
� jS j diam.G; S/2:

In particular, for diam.G; S/ � C1 logC2 jGj,

1� � �
1

jS jC 2
1 log2C2 jGj

so, setting C3 D jS jC
2
1 , and applying Lemma 6.1, we have

ˇ

ˇ

ˇhAl
S�g ; �hi �

1

jGj

ˇ

ˇ

ˇ �
�

1 �
1

C3 log2C2 jGj

�l

:

Recall that
�

1 � 1
x

�x
is an increasing function for x > 1, converging to e�1 as

x !1. Hence, setting l D C3 log2C2CC4 jGj, for some C4 > 0, we deduce

ˇ

ˇ

ˇhAl
S�g ; �hi �

1

jGj

ˇ

ˇ

ˇ � e� logC4 jGj:

Moreover, the quantity
ˇ

ˇhAl
S�g ; �hi�

1
jGj

ˇ

ˇ is non-increasing, so this last inequality

holds for any l � C3 log2C2CC4 jGj.

Proof of Corollary 1.7. We may identify

G=KN C1 Š ¹�1x1 C � � � C �dxd W�1; : : : ; �d 2 R=M
N º Š .R=MN /d ,

as a set, so jG=KN C1j D jR=Mj
dN and

ˇ

ˇ

ˇ

ˇ

PŒkL
.l/
1 � �1k; : : : ; kL

.l/

d
� �dk � c

N C1��
1

jR=MjdN

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

hAl
S�e; �gi �

1

jG=KN C1j

ˇ

ˇ

ˇ

ˇ
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where g D �1x1 C � � � C �dxd 2 G=KN C1. The result is now a consequence of

Theorem 1.2 and the discussion following Proposition 6.2, taking

C D 2C2;

C 0 D C4;

C 00 D C3.d � logjR=Mj/2C2CC4 ;

C 000 D .d � logjR=Mj/C4 : �

Proof of Corollary 1.8. By Theorem 4.14,

G=KN C1 Š hKN C1a1i � � � � � hKN C1ad i Š .Z=p
NZ/d ,

as a set, so jG=KN C1j D p
dN and

ˇ

ˇ

ˇ

ˇ

PŒkM
.l/
1 � �1k; : : : ; kM

.l/

d
� �dk � p

�N �1��
1

pdN

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

hAl
S�e; �gi �

1

jG=KN C1j

ˇ

ˇ

ˇ

ˇ

where g D KN C1a
�1

1 � � �a
�d

d
2 G=KN C1. The result now follows from Theo-

rem 1.4 and the discussion following Proposition 6.2, taking

C D 2C2;

C 0 D C4;

C 00 D C3.d � log.p//2C2CC4 ;

C 000 D .d � log.p//C4 : �

Proof of Corollary 1.9. Letting GN D Nq=KN , jGN j D q
N �1, so

ˇ

ˇ

ˇ

ˇ

PŒA
.l/
2 D ˛2; : : : ; A

.l/
N D ˛N ��

1

qN �1

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

hAl
S�e; �gi �

1

jGN j

ˇ

ˇ

ˇ

ˇ

;

where g D tC
PN

iD2 ˛i t
i . The result follows from Theorem 1.6 and the discussion

following Proposition 6.2, taking

C D 2C2;

C 0 D C4;

C 00 D C3.log.q//2C2CC4 ;

C 000 D log.q/C4 : �
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