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Abstract. Let G ' M Ì C be an n-generator group which is a split extension of an

Abelian group M by a cyclic group C . We study the Nielsen equivalence classes and

T-systems of generating n-tuples of G. The subgroup M can be turned into a finitely

generated faithful module over a suitable quotient R of the integral group ring of C . When

C is infinite, we show that the Nielsen equivalence classes of the generating n-tuples of

G correspond bijectively to the orbits of unimodular rows in Mn�1 under the action of

a subgroup of GLn�1.R/. Making no assumption on the cardinality of C , we exhibit a

complete invariant of Nielsen equivalence in the case M ' R. As an application, we

classify Nielsen equivalence classes and T-systems of soluble Baumslag–Solitar groups,

split metacyclic groups and lamplighter groups.
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1. Introduction

1.1. Nielsen equivalence related to equivalence of unimodular rows. Given
a finitely generated group G, we denote by rk.G/ the minimal number of its
generators. For n � rk.G/, we let Vn.G/ be the set of generating n-vectors of G,
i.e., the set of elements in Gn whose components generate G. In order to classify
generating vectors, we can rely on a well-studied equivalence relation on Vn.G/,
namely the Nielsen equivalence relation: two generating n-vectors are said to be
Nielsen equivalent if they can be related by a finite sequence of transformations
taken in the set ¹Lij ; Ii I 1 � i ¤ j � nº where Lij and Ii replace the component
gi of g D .g1; : : : ; gn/ 2 Vn.G/ by gjgi and g�1

i respectively and leave the other
components unchanged. We recommend [25, 16, 33, 26] to the reader interested
in Nielsen equivalence and its applications. Let Fn be the free group with basis
x D .x1; : : : ; xn/. The Nielsen equivalence relation turns out to be generated
by an Aut.Fn/-action. Indeed, the set Vn.G/ identifies with the set Epi.Fn; G/
of epimorphisms from Fn onto G via the bijection g 7! �g with �g defined by
�g.x/ D g. Therefore defining g for  2 Aut.Fn/ through �g + �g ı  yields
a right group action of Aut.Fn/ on Vn.G/. Because Aut.Fn/ has a set of generators
which induce the elementary Nielsen transformations Lij and Ii [27, Proposition
4.1], this action generates the Nielsen equivalence relation.

In this article, we are concerned with finitely generated groups G containing
an Abelian normal subgroupM and a cyclic subgroup C such that G D MC and
M \ C D 1. Denoting by � the natural map G � G=M ' C , such a group G
fits into the split exact sequence

0 �! M �! G
�

��! C �! 1 (1)

where the arrow fromM to G is the inclusionM � G. The cyclic group C D hai
is finite or infinite and is given together with a generator a. The action of Aut.Fn/
on Vn.G/ is known to be transitive if n > rk.G/C 2 [15, Theorem 4.9]. Our goal
is to describe the Aut.Fn/-orbits for the three exceptional values of n, namely
rk.G/, rk.G/C 1 and rk.G/C 2. Our main results are Theorem D and Theorem E
below. They enable us to compute the exact number of Nielsen equivalence
classes and T-systems in a number of cases illustrated by Corollaries H, I, and J.
These theorems rely on Theorem A, which relate the problem of classifying
Nielsen equivalence classes to a pure module-theoretic problem involvingM . The
following definitions will make this relation precise.

The conjugacy action of C on M defined by cm + cmc�1, with m 2 M and
c 2 C extends linearily to ZŒC �, turningM into a module over ZŒC �. Let ann.M/

be the annihilator of M . Then M is a faithful module over

R + ZŒC �= ann.M/:
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Let rkR.M/ be the minimal number of generators of M considered as an
R-module. For n � rkR.M/, we denote by Umn.M/ the set of elements in
M n whose components generate M as an R-module. The group GLn.R/ acts
on Umn.M/ by matrix right-multiplication. There are two subgroups of GLn.R/
which are relevant to us. The first is En.R/, the subgroup generated by the
elementary matrices, i.e., the matrices that differ from the identity by a single off-
diagonal element (agreeing that E1.R/ D ¹1º). The second is Dn.T /, the subgroup
of diagonal matrices whose diagonal coefficients belong to T , the group of trivial
units. We call a unit inR� + GL1.R/ a trivial unit, if it lies in the image of ˙C by
the natural map ZŒC � � R. Theorem A below establishes a connection between
the Aut.Fn/-orbits of generating n-vectors and the orbits of unimodular rows in
M with size n � 1 under the action of

�n�1.R/ + Dn�1.T /En�1.R/:

Additional definitions are needed to state this result. Denoting by jC j the
cardinality of C , we define the norm element of ZŒC � to be 0 if C is infinite,
and to be 1C aC � � � C ajC j�1 otherwise. Let �.G/ be the image in R of the norm
element of ZŒC � via the natural map. Let �abWG � Gab be the abelianization
homomorphism of G and let MC be the largest quotient of M with a trivial
C -action. We assume throughout this paper that n � max.rk.G/; 2/ whenever
the integer n refers to the size of generating vectors of G. Let 'aW Umn�1.M/ !

Vn.G/ be defined by 'a.m/ D .m; a/. It is elementary to check that 'a induces a
map

ˆaW Umn�1.M/=�n�1.R/ �! Vn.G/=Aut.Fn/

If �.G/ D 0, e.g, C is infinite, then Lemma 3.3 below shows that n > rkR.M/

holds true and that ˆa is surjective. Our first result fully characterizes when the
latter two conditions hold simultaneously.

Theorem A (Theorems 3.6 and 3.12). The inequality n > rkR.M/ holds and the
map ˆa is surjective if, and only if, at least one of the following holds:

(i) n > rk.Gab/;

(ii) C is infinite;

(iii) rk.G/ > rk.MC / and MC is not isomorphic to Zrk.G/�1;

(iv) jC j 2 ¹2; 3; 4; 6º and MC is isomorphic to Zrk.G/�1.

In addition, the map ˆa is bijective if C is infinite.

Evidently, Theorem A has no bearing on the case n D rk.G/ D rkR.M/.
Proposition 3.15 below handles this situation only when M is a free module and
most of our results assume that n > rkR.M/.
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Combining Theorem A with various assumptions on C , M or R (e.g., C
is infinite and R is Euclidean), we obtain a complete description of Nielsen
equivalence classes of generating n-vectors for all n > rkR.M/. Applications
to groups with arbitrary ranks are gathered in Corollaries 3.14 and 3.16 below. We
present now an example of a group to which Theorem A applies. We shall denote
by nn.G/ the cardinality of the set of Nielsen equivalence classes of generating
n-vectors of G.

Corollary B (Corollaries 3.14 and 3.16). Let p be a prime number and let d � 1.
Let G D Fdp ÌA Z where Fp denotes the field with p elements and where
the canonical generator of Z acts on Fdp as a matrix A 2 GLd .Fp/. Then
nrk.G/.G/ D jR�=T j where R D Fp ŒX�=.P.X//, P.X/ 2 FpŒX� is the first
invariant factor of A and T is the subgroup of R� generated by the images of �1

and X . Moreover, nn.G/ D 1 if n > rk.G/.

In the above example, the polynomial P.X/ can be computed by means of
the Smith Normal Form algorithm [12, Section 12.2] and, from there, an explicit
formula can be derived for nrk.G/.G/. Indeed, if P.X/ is of degree k and has

l irreducible factors with degrees d1; : : : ; dl , then jR�j D pk
Ql
iD1.1 � pdi �k/

(use for instance Lemma 5.4) while the value of jT j can be deduced from the
computation of the order in GLk.Fp/ of the companion matrix of P.X/.

1.2. Main results. In this section, we make no assumption on the cardinality of
C but suppose that M ' R. Therefore G ' R Ì˛ C is generated by a and the
identity b of the ring R. At this stage, few more examples may help understand
the kind of two-generated groups we want to address. Assume that C is the cyclic
subgroup of GL2.Z/ generated by an invertible matrix a. Let b denote the 2-by-2
identity matrix and let G be the semi-direct product Z2 Ìa C where a acts on
Z2 via matrix multiplication. It is readily checked that rk.G/ D 2 if and only
if M + Z2 is a cyclic ZŒC �-module. If this holds, then M naturally identifies
with the subring R D Za C Zb of the ring of 2-by-2 matrices over Z and we
can certainly write G ' R Ìa C . If the minimal polynomial of a is moreover
irreducible and if ˛ 2 C is one of its roots, then G identifies in turn with the semi-
direct product G.˛/ D ZŒ˛˙1� Ì˛ h˛i where ˛ acts on ZŒ˛˙1� � C via complex
multiplication. For arbitrary choices of ˛ 2 C, the family G.˛/ provides us with
countably many interesting non-isomorphic examples. For instance, if ˛ 2 Zn¹0º,
then G.˛/ is the Baumslag–Solitar group ha; b j aba�1 D b˛i, which is handled
in Corollary H below. If ˛ is transcendental over Q, then ZŒ˛˙1� is isomorphic
to the ring ZŒX˙1� of univariate Laurent polynomials over Z. In this case, the
group G.˛/ is isomorphic to the restricted wreath product Z o Z, the subject of
Corollary K below.
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Let us return to the presentation of our results. Under the assumptionM ' R,
we shall exhibit a complete invariant of Nielsen equivalence for generating pairs.
In addition, if n D 3 and C is finite, or if n D 4, we prove that Aut.Fn/ acts
transitively on Vn.G/. Note that if n D 3 and C is infinite, then Theorem A
reduces the study of the Nielsen equivalent triples to the description of the orbit
set Um2.R/=E2.R/. Our invariant is based on a map D defined as follows.
If �.G/ D 0, there is a unique derivation d 2 Der.C; R/ satisfying d.a/ D 1

(see Section 3.4). For g D .rc; r 0c0/ 2 G2 with .r; r 0/ 2 R2 and .c; c0/ 2 C 2,
we set then

D.g/ + r 0d.c/ � rd.c0/ 2 R: (2)

If �.G/ ¤ 0, we set furthermore

D.g/ + D.��.G/R.g// 2 R=�.G/R; (3)

where ��.G/R stands for the natural map R Ì˛ C � .R=�.G/R/ Ì˛C�.G/R C

and the right-hand side of (3) is defined as in (2). The following observations will
enable us to construct the desired invariant.

Proposition C (Lemma 4.1 and Proposition 4.7). LetG ' RÌ˛C and let g 2 G2.

(i) If g 2 V2.G/, then D.g/ 2 .R=�.G/R/�.

(ii) Assume �.G/ is nilpotent. Then g generates G if and only if �.g/ generates
C and D.g/ 2 .R=�.G/R/�.

Setting
ƒ D R=�.G/R; Tƒ D ��.G/R.T /;

we define the map
�W V2.G/ �! ƒ�=Tƒ;

g 7�! TƒD.g/:

The map � is the invariant we need and we are now in position to describe the
Nielsen equivalence classes of generating n-vectors of G D R Ì˛ C for n D 2; 3,
and 4.

Theorem D (Theorems 4.6 and 4.10). Let G D R Ì˛ C . Let nn.G/ (n D 2; 3; 4)
be defined as in Corollary B. Then the following hold.

(i) Two generating pairs g; g0 of G are Nielsen equivalent if and only if �ab.g/
and �ab.g0/ are Nielsen equivalent and �.g/ D �.g0/I

(ii) IfC is infinite orGab is finite, then� induces a bijection from V2.G/=Aut.F2/
onto ƒ�=Tƒ. In particular, n2.G/ D jƒ�=Tƒj.

(iii) If C is finite and Gab is infinite, then n2.G/ D max
�

'.jC j/
2
; 1

�

jƒ�=Tƒj.

(iv) If SL2.R/ D E2.R/, e.g., C is finite, then n3.G/ D 1.

(v) n4.G/ D 1.
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Assertion (i) of Theorem D provides us with an algorithm which decides
whether or not two generating pairs of G are Nielsen equivalent. Indeed, the
first condition in (i) can be determined by means of the Diaconis–Graham de-
terminant [11] while the second condition can be reduced to the ideal membership
problem in ZŒX˙1� which is solvable [34, 3].

Consider now the left group action of Aut.G/ on Vn.G/where we define �g for
� 2 Aut.G/ by ��g + � ı �g, using the identification of Vn.G/ with Epi.Fn; G/.
This action clearly commutes with the right Aut.Fn/-action introduced earlier so
that .�;  /g + �g �1 is a left group action of Aut.G/ � Aut.Fn/ on Vn.G/.
Following B. H. Neumann and H. Neumann [31], we call the orbits of this action
the T-systems of generating n-vectors of G, or concisely, the Tn-systems of G.
We denote by tn.G/ the cardinality of the Tn-systems of G.

Theorem E. LetG D RÌ˛ C . Let A.C/ be set of the automorphisms of C which
are induced by automorphisms of G preservingM . Let A0.C / be the subgroup of
Aut.C / generated by A.C/ and the involution c 7! c�1. Then the following hold.

(i) The cardinality t2.G/ is finite and we have t2.G/ � jAut.C /=A0.C /j, with
equality if R is a characteristic subgroup of G. If C is infinite or Gab is
finite, then t2.G/ D 1.

(ii) If C is infinite and R is characteristic in G, then we have jA.C/j � 2,

jA.C/jn2.G/t3.G/ � n3.G/; jA.C/jt3.G/ � j SK1.R/j;

where n2.G/ and n3.G/ are as in Corollary B and SK1.R/ denotes the
special Whitehead group of R (see Section 4.2 for a definition of SK1).

Note that assertion (i) of Theorem E generalizes Brunner’s theorem [9, The-
orem 2.4] according to which a two-generated Abelian-by-(infinite cyclic) group
has only one T2-system. We give a wider generalization of Brunner’s theorem
with Theorem 3.19 below.

1.3. Applications. Our first corollary shows that there is no upper bound for
t2.G/whenG ranges in the class of two-generated split Abelian-by-cyclic groups.

Corollary F (Corollary 4.11). For every integer N � 1, there exists a group GN
of the form R Ì˛ C with C finite such that t2.GN / � N , where t2 is defined as in
Theorem E.

For comparison, Dunwoody constructed for every N � 1 a two-step nilpotent
2-group DN on two generators such that t2.DN / � N [13].

Theorems D and E can be used to compute the number of generating pairs of
G D R Ì˛ C in each of its Nielsen equivalence classes when G is finite.
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Corollary G. Let G D R Ì˛ C and assume that G is finite. Then every Nielsen
class of generating pairs has the same number of elements and

j V2.G/j D
jRjjR�j

jRC jj.RC /�j
j V2.Gab/j

where RC is the largest quotient ring of R with trivial C -action.

In the above identity, the cardinality jV2.Gab/j can be computed using the
formulas of [11, Remark 1]. In many instances, all terms in Corollary G’s formula
can be computed. For example, let G D Fq Ìa F�

q where Fq is the field with
q D pk elements for p a prime number and a is a generator of F�

q acting on Fq via

multiplication. Then Corollary G yields j V2.G/j D q.q�1/
p.p�1/

j V2.Z=p.q � 1/Z/j.
We now turn to applications of Theorems D and E for three different classes

of two-generated groups, namely the soluble Baumslag–Solitar groups, the split
metacyclic groups and the lamplighter groups. A Baumslag–Solitar group is a
group with a presentation of the form

BS.k; l/ D ha; b j abka�1 D bli

for k; l 2 Z n ¹0º. Brunner proved that BS.2; 3/ has infinitely many T2-systems
whereas its largest metabelian quotient, namely G.2=3/ D ZŒ1=6� Ì2=3 Z, has
only one T2-system [9, Theorem 3.2] . The group BS.k; l/ is soluble if and only
if jkj D 1 or jl j D 1. As a result, a soluble Baumslag–Solitar group is isomorphic
to BS.1; l/ for some l 2 Z n ¹0º and hence admits a semi-direct decomposition
ZŒ1= l� Ìl Z where the canonical generator of Z acts as the multiplication by l on
ZŒ1= l� D

®

z

li
I z 2 Z; i 2 N

¯

.

Corollary H. Let G D BS.1; l/ with l 2 Z n ¹0º and let nn; tn (n D 2; 3) be
defined as in Corollary B and Theorem E. Then the following hold.

(i) n2.G/ is finite if and only if l D ˙pd for some prime number p 2 N and
some non-negative integer d . In this case, n2.G/ D max.d; 1/.

(ii) t2.G/ D n3.G/ D 1.

Define Zd D Z=dZ for d � 0 (thus Z0 D Z) and let '.d/ be the cardinality
of Z�

d
. A split metacyclic group is a semi-direct product of the form Zk Ì˛ Zl

with k; l � 0. Here the canonical generator of Zl is denoted by a and acts on Zk
as the multiplication by ˛ 2 Z�

k
.

Corollary I. Let G D Zk Ì˛ Zl (k; l � 0) and let nn; tn (n D 2; 3) be defined as
in Corollary B and Theorem E. Then the following hold.

(i) If k D 0 and ˛ D 1, then n2.G/ D max.'.l/=2; 1/.
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(ii) Assume that k ¤ 0 or ˛ ¤ 1. Then n2.G/ D '.�/
!

, where � � 0 is such that
Z� ' Zk=�.G/Zk and ! is the order of the subgroup of Z�

�
generated by �1

and the image of ˛.

(iii) t2.G/ D n3.G/ D 1.

(iv) If G is finite, then jV2.G/j D k'.k/
e'.e/

jV2.Ze � Zl/j, where e � 1 is such
that Ze ' Zk=.1 � ˛/Zk . In addition, every Nielsen equivalence class of
generating pairs has the same number of elements.

Our Corollary I applies for instance to dihedral groups and to almost all p-
groups with a cyclic subgroup of index p [8, Theorem IV.4.1].

A two-generated lamplighter group is a restricted wreath product of the form
Zk o Zl with k; l � 0. Such a group reads also as R Ìa C with C D Zl and
R D Zk ŒC �, the integral group ring of C over Zk . We are able to determine the
number of Nielsen classes and T-systems of any two-generated lamplighter groups
with the exception of Z o Z.

Corollary J (Corollaries 5.2 and 5.6). Let G D Zk o Zl (k; l � 0 and k; l ¤ 1)
and let nn and tn (n D 2; 3) be defined as in Corollary B and Theorem E. Then
the following hold.

(i) t2.G/ D 1.

(ii) If Zk or Zl is finite, then n3.G/ D 1.

(iii) Assume that Zk is finite and Zl is infinite. Then n2.G/ is finite if and only if
k is prime; in this case n2.G/ D max.k�1

2
; 1/.

(iv) Assume that Zk is infinite and Zl is finite. Then n2.G/ is finite if and only if
l 2 ¹2; 3; 4; 6º; in this case n2.G/ D 1.

The case of finite two-generated lamplighter groups is addressed by Corol-
lary 5.3 below and a formula for jV2.Zk o Zl /j is derived. For the restricted wreath
product ZoZ, we show that the problem of classifying Nielsen equivalence classes
and T-systems of generating triples is tightly related to an open problem in ring
theory.

Corollary K. Let G D Z o Z and let n2; n3 and t3 be defined as in Corollary B
and Theorem E. Then we have n2.G/ D 1 and n3.G/ � 2t3.G/. In addition, the
following are equivalent:

(i) n3.G/ D 1;

(ii) t3.G/ D 1;

(iii) the ring R of univariate Laurent polynomials over Z satisfies SL2.R/ D

E2.R/ (cf. [1, Conjecture 5.3], [7, Open Problem MA1], [5, Open problem]).
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The paper is organized as follows. Section 2 deals with notation and gathers
known facts on rings which are ubiquitous in our presentation: the generalized
Euclidean rings and the quotients of the ring of univariate Laurent polynomials
over Z. Section 3 is dedicated to the proof of Theorem A. In Section 3.1, we
determine the conditions under which the map ˆa of Theorem A is surjective
while Section 3.2 addresses the case C ' Z for which it is shown that ˆa is
bijective. Section 4 is dedicated to the proofs of Theorems D, E and F. Section 5
presents the proof of Corollary G and applications to Baumslag–Solitar groups,
split metacyclic groups and lamplighter groups, i.e., Corollaries H, I and J.

Acknowledgments. The author is grateful to both Pierre de la Harpe and Tatiana
Smirnova-Nagnibeda, as well as Laurent Bartholdi for encouragements, useful
references and comments made on preliminary versions of this paper.

2. Preliminary results

2.1. Notation and definitions. We set in this section the notation and the defini-
tions used throughout the article. A parallel is drawn between generating vectors
of a group and unimodular rows of a module.

Rings. All considered rings are commutative rings with identity. Given a ring
R, we denote by J.R/ its Jacobson radical, i.e., the intersection of all its maximal
ideals. We denote by nil.R/ the nilradical ofR, i.e., the intersection of all its prime
ideals. The nilradical coincides with the set of nilpotent elements [29, Theorem
1.2]. Let M be a finitely generated R-module. Then an R-epimorphism of M is
an R-automorphism [29, Theorem 2.4], a fact that we will use without further
notice. Let N � M be finitely generated R-modules and I � J.R/ an ideal of
R. Then the identity N C IM D M implies N D M . We refer to the latter fact
as Nakayama’s lemma [29, Theorem 2.2’s corollary]. Apart from Section 2.2,
the ring R will always be a quotient of ZŒX˙1�, the ring of univariate Laurent
polynomials over Z. In this case, we have nil.R/ D J.R/ [14, Theorem 4.19] and
we shall consistently denote by ˛ the image of X under the quotient map. We set
Zd + Z=dZ for d � 0. Thus the additive group of Zd is the cyclic group with d
elements if d > 0 whereas Z0 D Z. We denote by ' the Euler totient function, so
that '.d/ D jZ�

d
j if d > 0. We set furthermore '.0/ + 2.

Orbits of generating vectors. LetG,H be groups and let f 2 Hom.G;H/. We
denote by 1G the trivial element ofG. For g D .gi / 2 Gn, we set f .g/ + .f .gi //.
Thus the component-wise left action of Aut.G/ on Vn.G/ reads as �g D �.g/

for .�; g/ 2 Aut.G/ � Vn.G/. This action clearly coincides with the Aut.G/-
action introduced earlier. Let us examine the component-wise counterpart of
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the Aut.Fn/-action we previously defined via the identification of Vn.G/ with
Epi.Fn; G/. For  2 Aut.Fn/, set wi .x/ +  .xi/ 2 Fn for i D 1; : : : ; n. Then the
Aut.Fn/-action reads as g D .wi.g//.

Orbits of unimodular rows. For r 2 R and i ¤ j , we denote by Eij .r/ 2

GLn.R/ the elementary matrix with ones on the diagonal and whose .i; j /-entry
is r , all other entries being 0. For u 2 R�, we denote by Di .u/ 2 GLn.R/ the
diagonal matrix with ones on the diagonal except at the .i; i/-entry, which is set to
u. Recall that En.R/ is the subgroup of GLn.R/ generated by elementary matrices.
Given a subgroupU ofR�, we define Dn.U / as the subgroup of GLn.R/ generated
by the matrices Di.u/ with u 2 U . Following P.M. Cohn [10], we denote by
GEn.R/ the subgroup generated by En.R/ and Dn.R�/. Let � be a subgroup
of GLn.R/ and let M be an R-module. Two rows r; r0 2 M n are said to be �-
equivalent if there is 
 2 � such that r0 D r
 . A row is termed unimodular if
its components generateM as an R-module. By definition, Umn.M/ is the set of
unimodular rows of M .

Elementary rank and stable rank. We say that n � 1 belongs to the ele-
mentary range of R if EnC1.R/ acts transitively on UmnC1.R/. The elemen-
tary rank of R is the least integer er.R/ such that n lies in the elementary range
of R for every n � er.R/. We say that k lies in the stable range of R if
for every n � k and every .ri / 2 UmnC1.R/ there is .si / 2 Rn such that
.r1 C s1rnC1; r2 C s2rnC1; : : : ; rn C snrnC1/ 2 Umn.M/. The stable rank of R is
the least integer sr.M/ lying in the stable range ofM . By [30, Proposition 11.3.11]
we have

1 � er.R/ � sr.R/: (4)

If R is moreover Noetherian, the Bass Cancellation Theorem asserts [30, Corol-
lary 6.7.4] that

sr.R/ � dimKrull.R/C 1: (5)

2.2. GE-rings. Our study of Nielsen equivalence is significantly simplified
when dealing with ringsR which are similar to Euclidean rings in a specific sense.
A ring R is termed a GEn-ring if GEn.R/ D GLn.R/, which is equivalent to say-
ing that SLn.R/ D En.R/. Indeed, we have GEn.R/ D Dn.R�/En.R/ and a
matrix D 2 Dn.R�/ lies in SLn.R/ if and only if it lies in En.R/ by Whitehead’s
lemma [38, Lemma 1.3.3]. Thus the latter equality implies the former, the converse
being obvious. A ring R is called a generalized Euclidean ring in the sense of P.
M. Cohn [10], or a GE-ring for brevity, if it is a GEn-ring for every n � 1. Eu-
clidean rings are known to satisfy this property [22, Theorem 4.3.9]. The reader
is invited to check the two following elementary lemmas.
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Lemma 2.1. The following assertions hold:

(i) R is a GE2-ring if and only if 1 lies in the elementary range of R, i.e, E2.R/
acts transitively on Um2.R/;

(ii) if er.R/ D 1 then R is a GE-ring. In particular, R is a GE-ring if sr.R/ D 1.

A semilocal ring, i.e., a ring with only finitely many maximal ideals, has stable
rank 1 [6, Corollary 6.5]. As a result, semilocal rings, and Artinian rings in
particular, are GE-rings.

Lemma 2.2. The following assertions hold.

(i) Let J be an ideal contained in J.R/. Then R is a GE-ring if and only if R=J
is a GE-ring [18, Proposition 5].

(ii) Assume R is a direct product
QN
iD1Ri . Then R is a GE-ring if and only if

each factor ring Ri is a GE-ring. [10, Theorem 3.1]

Lemma 2.3. Let R be an Artinian ring. Then every homomorphic image of
RŒX˙1� is a GE-ring.

Proof of Lemma 2.3. Since J.R/ D nil.R/, we have J.R/ŒX˙1� � J.RŒX˙1�/.
As the factor ring P + RŒX˙1�=J.R/ŒX˙1� is isomorphic to a direct product of
finitely many Euclidean rings, we deduce from Lemma 2.2 that RŒX˙1� is a GE-
ring. Let us consider a quotient Q of RŒX˙1�. Then Q=J.Q/ is a quotient of P
and is therefore a direct product of finitely many Euclidean and Artinian rings. As
a result, the ring Q is a GE-ring. �

Remark 2.4. If sr.R/ D r < 1, then it easy to prove that any matrix in GLn.R/
for n > r can be reduced to a matrix of the form

�

A 0
0 In�r

�

with A 2 GLr .R/ by
elementary row transformations. Thus R is a GE-ring if it is a GEn-ring for every
n � r .

2.3. The ring of univariate Laurent polynomials and its quotients. Because
the structure of the R-moduleM fully determines G, and because R is a quotient
of ZŒZ� ' ZŒX˙1�, the ring of univariate Laurent polynomials over Z plays a
prominent role in this article. In this section, we collect preliminary facts about
ZŒX˙1� and its quotients. These facts pertain to row reduction of matrices overR
and unit group description; they enable us to count precisely Nielsen equivalence
classes in our applications.

A ring R is said to be completable if every unimodular row over R can be
completed into an invertible square matrix overR, or equivalently, if GLn.R/ acts
transitively on Umn.R/ for every n � 1.

Lemma 2.5. Every homomorphic image of ZŒX˙1� is completable.
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Proof. IfR is isomorphic to ZŒX˙1�, thenR is completable by [36, Theorem 7.2].
So we can assume that dimKrull.R/ � 1. Let n � 2 and r 2 Umn.R/. Since
sr.R/ � 2 by (5), we can find E 2 En.R/ such that rE D .r1; r2; 0; : : : ; 0/. Let
A 2 SL2.R/ be such that .r1; r2/A D .1; 0/ and set B D

�

A 0
0 In�2

�

. Then we have
rEB D .1; 0; : : : ; 0/. �

The following shows that Theorem D(iv) applies whenever C is a finite cyclic
group.

Theorem 2.6 ([19, Theorem A]). Let C be a finite cyclic group. Then every
homomorphic image of ZŒC � is a GE-ring.

The next lemma will come in handy when scrutinizing lamplighter groups in
Section 5. Before we can state this lemma, we need to introduce some notation.
Given a rational integer d > 0, we set �d + e

2i�
d and let

�d WZŒX� �! ZŒ�d �

be the ring homomorphism induced by the mapX 7! �d . Given a setD of positive
rational integers, we define

�DWZŒX� �!
Y

d2D

ZŒ�d �

by �D +
Q

d2D �d and set O.D/ + �D.ZŒX
˙1�/. Let ˛ + �D.X/ 2 O.D/.

Recall that a unit inO.D/� is said to be trivial if it lies in T , the subgroup generated
by �1 and ˛.

Lemma 2.7. Let D be a non-empty finite set of positive rational integers.

(1) The torsion-free rank of O.D/� is
P

d2D; d>2

�

'.d/
2

� 1
�

.

(2) Assume D is the set of divisors of l , with l � 2.

(i) Any non-trivial unit of finite order in O.D n ¹1º/ is of the form
u

�

1C
P

i2E ˛
i
�

for some trivial unit u and some non-empty subset
E � ¹1; 2; : : : ; l � 1º.

(ii) If l 2 ¹2; 3; 4; 6º, then the units of O.D n ¹1º/ are trivial.

Proof. The proofs of 1 and 2.i essentially adapt [4, Theorems 3 and 4] to the rings
O.D/ under consideration; we provide them for the reader’s convenience.

1. Since the additive groups of R D
Q

d2D ZŒ�d � and O.D/ are free Abelian
groups of the same rank r D

P

d2O.D/ '.d/, the latter group is of finite index
k in the former for some k � 1. By Dirichlet’s Unit Theorem, the group R� is
finitely generated and its torsion-free rank is

P

d2D; d>2

�

'.d/
2

�1
�

. Therefore, it is
sufficient to prove that O.D/� is of finite index inR�. This certainly holds if every
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unit u 2 ZŒ�d � for d 2 D is of finite order modulo O.D/. To see this, consider
the principal ideal I of ZŒ�d � generated by k. Since ZŒ�d �=I is finite, there is
k0 � 1 such that uk

0

� 1 mod I . Therefore uk
0

D 1 C k� for some � 2 ZŒ�d �.
As k� 2 O.D/, we deduce that uk

0

2 O.D/, which completes the proof.

2(i). Let g 2 O.D/ such that the projection pr1WO.D/ � O.D n ¹1º/ maps g
to a unit of finite order. Identifying O.D/ with ZŒC � for C D Z=lZ, we can write
g D

P

c2C acc with ac 2 Z. For d dividing l , let �d be the projection of O.D/
onto ZŒ�d �, let �d D �d jC and �d D �d .g/ D

P

c2C ac�d .c/. Since pr1.g/ is of
finite order, �d is a root of unity for every divisor d > 1. The characters �d form
a complete set of inequivalent characters of C by [4, Lemma 2]. Therefore, we
have

X

c2C

ac�.c/ D ��

for every � 2 yC , the character group of C , where �� is a root of unity if � ¤ 1.
Using the orthogonality relation of characters, we obtain

lac D
X

�2 yC

���.c/

for every c 2 C . Hence jac � ac0 j � 2.l�1/
l

< 2 for every .c; c0/ 2 C 2. Replacing
g by "

�

g�k
P

c2C c
�

for a suitable choice of " 2 ¹˙1º and k 2 Z, we can assume
that ac 2 ¹0; 1º for every c. Replacing g by cg for some suitable choice of c 2 C ,
we can assume that a1C

D 1. This ensures eventually that the image of g in
O.D n ¹1º/ has the desired form.

2(ii). If l 2 ¹2; 3º, then O.D n ¹1º/ D ZŒ�l � and this ring has only trivial units.
Assume now l D 4. Since R D O.¹2; 4º/ embeds into Z � ZŒi �, it has at most 8
units. It is easily checked that there are exactly 8 trivial units in R. Therefore all
units are trivial. Assume eventually that l D 6. Since R D O.¹2; 3; 6º/ embeds
into Z � ZŒ�3� � ZŒ�3�, it has only units of finite orders. Considering projections
on each of the three factors, it is routine to check that no element of the form
1 C

P

i2E ˛
i with ; ¤ E � ¹1; 2; 3; 4; 5º is a unit in R. This proves that R has

only trivial units by 2(i). �

2.4. Nielsen equivalence in finitely generated Abelian groups. In this section,
we present the classification of generating tuples modulo Nielsen equivalence
in finitely generated Abelian groups. This result is instrumental in Section 3.1
when reducing generating vectors to a standard form. Different parts of the
aforementioned classification were obtained by different authors: [31, Satz 7.5],
[13, Section 2’s lemmas], [15, Lemma 4.2], [26, Example 1.6], and [11]. The
classification reaches its complete form with
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Theorem 2.8. [32, Theorem 1.1] Let G be a finitely generated Abelian group
whose invariant factor decomposition is

Zd1
� � � � � Zdk

; 1 ¤ d1 j d2 j � � � j dk ; di � 0

Then every generating n-vector g with n � k D rk.G/ is Nielsen equivalent
to .ıe1; e2; : : : ; ek; 0; : : : ; 0/ for some ı 2 Z�

d1
where e D .ei / 2 Gk is defined by

.ei /i D 1 2 Zdi
and .ei /j D 0 for j ¤ i . Furthermore, the following hold.

� If n > k, then we can take ı D 1.

� If n D k, then ı is unique, up to multiplication by �1.

In particular,G has only one Nielsen equivalence class of generatingn-vectors
for n > k and only one Tk-system while it has max.'.d1/=2; 1/ Nielsen equiva-
lence classes of generating k-vectors where ' denotes the Euler totient function
extended by '.0/ D 2.

In the remainder of this section, we consider decompositions with cyclic
factors which might differ from the invariant factor decomposition of G.

Corollary 2.9. [21, Corollary C] Let G D Zd1
� � � � � Zdk

with di � 0 for
i D 1; : : : ; k. Let d be the greatest common divisors of the integers di . For
g 2 Vk.G/, denote by det.g/ the determinant of the matrix whose coefficients
are the images in Zd of the .gi /j ’s via the natural maps Zdj

� Zd . Then
g; g0 2 Vk.G/ are Nielsen equivalent if and only if det.g/ D ˙ det.g0/.

Let Zd1
� � � � � Zdk

be a decomposition of G in cyclic factors such that
k D rk.G/. The identity elements of each factor ring form a generating vector
of G. We refer to this vector as the generating vector naturally associated to
the given decomposition. If e is such a vector, we define dete as the determinant
function of Corollary 2.9.

Remark 2.10. In the case k D rk.G/, Corollary 2.9 shows in particular that
g 2 Vk.G/ is Nielsen equivalent to .dete.g/e1; e2; : : : ; ek/ where e D .ei / is the
generating vector naturally associated to the given decomposition in cyclic factors
of G.

3. Nielsen equivalence classes and T-systems of M Ì˛ C

In this section, we prove Theorem A and some prerequisites of Theorems D and E.
We assume throughout that G is a group fitting in the exact sequence (1) and
n � max.rk.G/; 2/. Recall that ˛ denotes the image of a favored generator a
of C via the natural map ZŒC � � R. Computing with powers of group elements
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in G shall be facilitated by the following notation. For u 2 R� and l 2 Z [ ¹1º,
let

@u.l/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1C uC � � � C ul�1 if l > 0;

0 if l D 0; 1;

�u�1@u�1.�l/ if l < 0:

For every l 2 Z we have then .1�u/@u.l/ D 1�ul . In particular .1�˛/�.G/ D 0

for �.G/ D @˛.jC j/. IfC is infinite then @˛ is the composition of the Fox derivative
over C [17] with the natural embedding of C into R D ZŒC �. For k; l 2 Z and
m 2 M , we have the identity .mak/l D .@˛k .l/m/ akl :

The description of Bachmuth’s IA automorphisms will considerably ease off
the study of Nielsen equivalence in G D M Ì˛ C . Recall that Fn denotes the
free group on x D .x1; : : : ; xn/. For  2 Aut.Fn/, let N be the automorphism of
Zn induced by  . We denote by e D .ei / the image of x under the abelianization
homomorphism Fn � .Fn/ab D Zn: The map  7! N is an epimorphism from
Aut.Fn/ onto GLn.Z/ [27, Proposition I.4.4] whose kernel is denoted by IA.Fn/.
This group clearly contains the isomorphisms "ij defined by "ij .xi / D x�1

j xixj
and "ij .xk/ D xk if k ¤ i . In turn, IA.Fn/ is generated by the automorphisms
"ijk defined by "ijk.xi / D xi Œxj ; xk� and "ijk.xl / D xl for l ¤ i [27, Chapter I.4]
where Œx; y� + xyx�1y�1.

3.1. Reduction to an a-row. We discuss here circumstances under which a
generating n-vector g of G can be Nielsen reduced to an a-row, i.e., a generating
n-vector of the form .m; a/ with m 2 Umn�1.M/ and a a favored generator of
C fixed beforehand. We first observe that any generating n-vector g is Nielsen
equivalent to .m; ma/ for some m 2 M n�1 and somem 2 M . Indeed, we can find
 2 Aut.Fn/ such that �.g/ D .1Cn�1; a/ using Theorem 2.8. This proves the
claim. We shall establish conditions under which the element m can be cancelled
by a subsequent Nielsen transformation.

Lemma 3.1. Let g D .m; ma/ 2 Gn with m 2 M n�1 and m 2 M . Then g

generates G if and only if .m; �.G/m/ generatesM as an R-module.

Proof. Assume first that g 2 Vn.G/. Given m0 2 M there exists w 2 Fn
such that m0 D w.m; ma/. We can write w D vxsn with v lying in the normal
closure of ¹x1; : : : ; xn�1º in Fn and s 2 Z. Since conjugation by ma induces
multiplication by ˛ onM , v.g/ lies in theR-submodule ofM generated by m. As
.ma/s D .@˛.s/m/a

s , we deduce that s D 0 if C is infinite or s � 0 mod jC j if
C is finite. Therefore .ma/s belongs to Z�.G/m D R�.G/m in both cases, which
completes the proof of the ’only if’ part.
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Assume now that .m; �.G/m/ generates M as an R-module. Let H be the
subgroup of G generated by g and write m D .mi /. The subgroupH contains the
conjugates of the elementsmi by powers of a, hence it contains the submodule of
M generated by m. It also contains the powers ofma, hence the submodule ofM
generated by �.G/m. Thus it contains both M and a, so that it is equal to G. �

Lemma 3.1 implies the following inequalities:

rk.G/ � 1 � rkR.M/ � rk.G/

When every generating n-vector of G can be Nielsen reduced to an a-row, we say
that G enjoys property Nn.a/. If Nn.a/ holds for n D rk.G/, then the equality
rkR.M/ D rk.G/ � 1 must be satisfied. The converse does not hold, as the latter
is equivalent to the weaker property Nn.C / according to which every generating
n-vector can be Nielsen reduced to a c-row with c ranging among generators of
C , see Theorem 3.6 below.

Lemma 3.2. Let g D .m; ma/ 2 Vn.G/ with m 2 M n�1 and m 2 M . Then the
following hold.

(i) If m 2 .1� ˛/M then m generatesM as an R-module.

(ii) If �.G/ is nilpotent then m generatesM as an R-module.

(iii) If m generatesM as an R-module then g is Nielsen equivalent to .m; a/.

Proof. We know that .m; �.G/m/ generatesM as an R-module by Lemma 3.1. If
m 2 .1 � ˛/M then �.G/m D 0. Hence m generates M as an R-module, which
proves (i). If �.G/ 2 J.R/, the same conclusion follows from Nakayama’s lemma,
which proves (ii). Let us prove (iii). If m D .mi / generatesM as anR-module then
m is a sum of elements of the form k˛lm0 with k; l 2 Z andm0 2 ¹m1; : : : ; mn�1º.
We can subtract each of these terms from m in the last entry of g by applying
transformations of the form "li;n and L�k

n;i . �

Combining assertions (ii) and (iii) of Lemma 3.2 yields:

Lemma 3.3. If �.G/ is nilpotent then Nn.a/ holds for every n � rk.G/.

Let �abWG � Gab be the abelianization homomorphism of G. Let �C be the
natural homomorphismM � MC + M=.1�˛/M . Then we haveGab D MC�C

and �ab D �C � � .

Proposition 3.4. Let g 2 Vn.G/ and assume that at least one of the following
holds:

(i) n > rk.Gab/;

(ii) n > rk.MC / and MC is not free over Z.

Then g is Nielsen equivalent to a vector .m; a/ with m 2 Umn�1.M/.
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Proof. Let k D rk.MC /. Observe first that both assumptions imply n > k.
Let Zd1

� � � � � Zdk
be the invariant factor decomposition of MC . Let then

Zd1
� � � ��Zdn�1

�C be the decomposition ofGab where di D 1 if i > k. Define
e D .ei/ 2 Gn�1

ab
by ei D 1 2 Zdi

if i � k, ei D 0 otherwise. Set Ng D �ab.g/.

Suppose now that (ii) holds so that Zd1
must be finite. Let Qı 2 Z�

d1
be a lift of

ı + dete.Ng/ and let Qg D . Qıe1; e2; : : : ; en�1; a/. Since dete.Qg/ D ı D dete.Ng/, the
vectors Ng and Qg are Nielsen equivalent by Corollary 2.9. By Theorem 2.8 this is
also true if we assume (i) and set Qı D 1 2 Zd1

. Hence under assumption (i) or (ii)
there is  2 Aut.Fn/ such that Qg D Ng . Then g0 + g is of the form .m; ma/

with m D .m1; : : : ; mn�1/ 2 M n�1 and m 2 M such that �C .m/ D 0. Applying
Lemma 3.2 gives the result. �

Proposition 3.5. Assume C is finite and let n D rk.G/. Suppose moreover that
MC is isomorphic to Zn�1. Let g 2 Vn.G/. Then g is Nielsen equivalent to a
vector .m; ak/ with m 2 Umn�1.M/ and k D ˙ det.e;a/.Ng/ where Ng D �ab.g/ and
e is any basis of MC . In particular, rkR.M/ D rk.G/ � 1.

Proof. Let e be a basis of MC over Z. By Theorem 2.8, we can assume that
Ng D .e; ak/ for some k such that k D ˙ det.e;a/.Ng/. Hence g D .m; mak/ for
some m 2 M n�1 and m 2 .1 � ˛/M . Then g is Nielsen equivalent to .m; ak/ by
Lemma 3.2. �

Eventually, we present a characterization of property Nn.a/ which establishes
the first part of Theorem D.

Theorem 3.6. Property Nn.a/ holds if, and only if, at least one of the following
holds:

(i) n > rk.Gab/;

(ii) C is infinite;

(iii) rk.G/ > rk.MC / and MC is not isomorphic to Zrk.G/�1;

(iv) jC j 2 ¹2; 3; 4; 6º and MC is isomorphic to Zrk.G/�1.

Proof. Let us show first that any of the assertions (i) to (iv) implies Nn.a/. For
assertion (i), it is Proposition 3.4. For assertion (ii), it follows from Lemma 3.3.
For the remaining assertions, we can assume that assertion (i) doesn’t hold, so
that n D rk.G/. Then assertion (iii) implies Nn.a/, by Proposition 3.4. So does
assertion (iv) by Proposition 3.5.

Let us assume now that none of the assertions (i)–(iv) hold. We shall prove that
property Nn.a/ doesn’t hold. Since assertion (i) is assumed not to hold, we infer
that n D rk.G/. We can assume moreover that rkR.M/ D n � 1, since otherwise
Nn.a/ would fail to be true. Because none of the assertions (ii)–(iv) hold, the
group MC is isomorphic to Zrk.G/�1 and C is finite and such that '.jC j/ > 2.
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By Proposition 3.5, we can find m 2 Umn�1.M/ and k > 1 coprime with jC j

such that .m; ak/ generates G but cannot be Nielsen reduced to an a-row. �

Corollary 3.7. Property Nn.C / holds if and only if n > rkR.M/.

Proof. If Nn.C / holds, the inequality rkR.M/ � n � 1 is satisfied by definition.
Let us assume now that Nn.C / doesn’t hold. Reasoning by contradiction, we as-
sume furthermore that n > rkR.M/. Since property Nn.a/ cannot hold it follows
from Theorem 3.6 that n D rk.G/, C is finite and MC is isomorphic to Zrk.G/�1.
The latter three conditions imply Nn.C / by Proposition 3.5, a contradiction. �

Corollary 3.8. Property Nn.c/ holds for some generator c of C if and only if it
holds for all generators c of C .

3.2. Nielsen equivalence related to �n�1.R/-equivalence. In this section we
scrutinize the relation between Nielsen equivalence of generating n-vectors and
�n�1.R/-equivalence of unimodular rows. We prove here another part of Theo-
rem A, namely Proposition 3.11 below.

Recall that T denotes the subgroup of R� generated by �1 and ˛ and that
�n.R/ is the subgroup of GLn.R/ generated by En.R/ and Dn.T /. Since Dn.R�/

normalizes En.R/, we have �n.R/ D Dn.T /En.R/.

Lemma 3.9. For every n � 2, the group �n.R/ is generated by Dn.T / together
with the elementary matrices Eij .1/ with 1 � i ¤ j � n.

Proof. For 1 � i ¤ j � n and .r; r 0/ 2 R2; ˇ 2 ¹˛˙1º, we have the following
identities: Di .ˇ/Eij .r/Di.ˇ/�1 D Eij .ˇr/ and Eij .r/Eij .r 0/ D Eij .r C r 0/.
Since R is generated as a ring by ˛ and ˛�1, the result follows. �

Lemma 3.10. If m;m0 2 Umn�1.M/ are �n�1.R/-equivalent, then .m; a/,
.m0; a/ 2 Vn.G/ are Nielsen equivalent.

Proof. Since .mEij .1/; a/ D .m; a/Lij for 1 � i ¤ j � n�1 and .mDi .˛/; a/ D

.m; a/"i;n for 1 � i ¤ j � n � 1, we deduce from Lemma 3.9 that .m; a/ and

.m0; a/ are Nielsen equivalent. �

We establish now a partial converse to Lemma 3.10.

Proposition 3.11. Assume C is infinite. If .m; a/; .m0; a/ 2 Vn.G/ are Nielsen
equivalent then m;m0 2 Umn�1.M/ are �n�1.R/-equivalent.



Generators of split extensions of Abelian groups by cyclic groups 783

Proof. Suppose that .m0; a/ D .m; a/ for some  2 Aut.Fn/. We claim that  
is of the form  0 1L where

�  0 2 IA.Fn/,

�  1 2 Aut.Fn�1/, i.e.,  1.xn/ D xn and  1 leaves Fn�1 D F.x1; : : : ; xn�1/

invariant,

� L belongs to the group generated by the automorphisms Ln;j .

To see this, consider the automorphism N 2 GLn.Z/ induced by  . Since
N .en/ D en, we can find a product of lower elementary matrices

xL + En;1.�1/ � � �En;n�1.�n�1/

with �i 2 Z such that N � xL�1 2 GLn�1.Z/. Let  1 2 Aut.Fn�1/ be an
automorphism inducing N � xL�1 on Zn�1. LetL be the product of automorphisms
L
�j

n;j with �j 2 Z. Then L induces xL and by construction we have  L�1 �1
1 2

IA.Fn/, which proves the claim.
The action of every IA-automorphism "ijk on .m; a/ leaves �.m; a/ invariant

and induces a transformation on m which lies in �n�1.R/. The same holds for
every automorphism in Aut.Fn�1/ and every automorphism Lij with i > j . Let
g + .m; a/ 0 1. Then we can write g D .n; ma/ with m 2 M and where n is
�n�1.R/-equivalent to m. As �.gL/ D �.m0; a/ D .1Cn�1 ; a/ we deduce that
�j D 0 for every j , i.e., L D 1. Hence m0 D n which yields the result. �

3.3. Nielsen equivalence classes. In this section, we complete the proof of The-
orem A by establishing Theorem 3.12 below. We subsequently discuss assump-
tions under which the latter theorem enables us to enumerate efficiently Nielsen
equivalence classes. Recall that the map 'aW Umn�1.M/ ! Vn.G/ is defined by
'a.m/ D .m; a/.

Theorem 3.12. The map 'a induces a map

ˆaW Umn�1.M/=�n�1.R/ ! Vn.G/=Aut.Fn/

and the two following hold

(i) Property Nn.a/ holds if and only if n > rkR.M/ and ˆa surjective.

(ii) If C is infinite then ˆa is bijective.

Proof. It follows from Lemma 3.10 that ˆa is well defined. Assertion (i) is trivial
while assertion (ii) results from Lemma 3.2(ii) and Proposition 3.11. �

Corollary 3.13. Assume that M ' R. If n > sr.R/C 1, then G D M Ì˛ C has
only one Nielsen equivalence class of generating n-vectors.

Proof. The result follows from Theorem A and the inequality (4). �
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We consider now several hypotheses under which the problem of counting
Nielsen equivalence classes is particularly tractable. One of these hypotheses is
that R be quasi-Euclidean, i.e., R enjoys the following row reduction property
shared by Euclidean rings: for every n � 2 and every r D .r1; : : : ; rn/ 2 Rn,
there exist E 2 En.R/ and d 2 R such that .d; 0; : : : ; 0/ D rE (see [2]
for a comprehensive survey on quasi-Euclidean rings). If R is a Noetherian
quasi-Euclidean ring, then M admits an invariant factor decomposition, i.e., a
decomposition of the formR=a1�R=a2�� � ��R=an withR ¤ a1 � a2 � � � � � an

where the ideals ai are referred to as the invariant factors of M (see [21, Lemma
1]). Recall that we denote by T the subgroup of R� generated by �1 and ˛

Corollary 3.14. Let G D M Ì˛ C and n D rk.G/. Then the following hold.

(i) If M is free over R, C is infinite and R is a GEn�1-ring, then nn.G/ D
jR�=T j.

(ii) If C is infinite and R is quasi-Euclidean, then nn.G/ D jƒ�=Tƒj where
ƒ D R=a1, a1 is the first invariant factor of M and Tƒ is the image of T in
ƒ under the natural map.

Proof. (i) As C is infinite, it follows from Theorem A that M ' Rn�1. For
m 2 Umn�1.M/, let Mat.m/ 2 GLn�1.R/ be the matrix whose columns are the
components of m. For every E 2 �n�1.R/, the identity Mat.mE/ D Mat.m/E
holds. As R is a GEn�1-ring, we have �n�1.R/ D Dn�1.T /SLn�1.R/. We
deduce from Whitehead’s lemma that Mat.m/ can be reduced toDn�1.u/ via right
multiplication by some E 2 �n�1.R/, where u is a member of a transversal of
R�=T . Therefore nn.G/ � jR�=T j. Since uT D det.Mat.m/E/T , we conclude
that nn.G/ D jR�=T j.

(ii) By [21, Theorem A and Corollary C], we have Umn.M/=�n.R/ ' ƒ�=Tƒ.
Theorem A implies that nn.G/ D jƒ�=Tƒj. �

We examine in the next proposition the structural implication ofM being free
over R with R-rank equal to rk.G/.

Proposition 3.15. Assume that rkR.M/ D n D rk.G/ and that M is the direct
sum of n cyclic factors, i.e.,

M D R=a1 � � � � �R=an

where the ai are ideals ofR. Let a D a1C� � �Can. Then �.G/ is invertible modulo
a. In addition, C is finite and G=aM D Z

rk.G/
d

� C where d D jR=aj < 1 is
prime to jC j.
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Proof. We can assume without loss of generality that a D ¹0º. Let e D .ei/

be a basis of M over R and let g 2 Vn.G/ for n D rk.G/. Replacing g by g 

for some  2 Aut.Fn/, if needed, we can also suppose that g D .m; ma/ with
m 2 M n�1 and m 2 M . By Lemma 3.1, the row .m; �.G/m/ generates M as an
R-module. Therefore the map e 7! .m; �.G/m/ induces an R-automorphism of
M . This shows that en D �.G/m0 for some m0 2 M . Hence a relation of the form
Pn�1
iD1 riei C .�.G/rn � 1/en D 0, with ri 2 R holds in M . It follows that �.G/ is

invertible. Thus M D �.G/M is C -invariant so that G D MC � C . As a result
M D MC is a free Zd -module with d D jRj or d D 0. Since rk.M/ D rk.G/,
the group C must be finite, d must be non-zero and prime to jC j. �

Corollary 3.16. Let G D M Ì˛ C . Assume that at least one of the following
holds.

(i) R is quasi-Euclidean.

(ii) M is free over R and R is a GE-ring.

Then nn.G/ D 1 for every n > rk.G/.

Proof. Suppose that (i) holds. By [21, Corollary B], the set Umn�1.M/=�n�1.R/

is reduced to one element and Theorem A implies nn.G/ D 1. Suppose now
that (ii) holds. If rkR.M/ D rk.G/, then G is Abelian by Proposition 3.15 and the
result follows from Theorem 2.8. Assume now thatM ' Rrk.G/�1, let k D rk.G/
and n > k. As the result certainly holds if G is cyclic, we can assume moreover
that k � 2. Let us show that Umn�1.M/=En�1.R/ is made of a single orbit. For
m 2 Umn�1.M/, let Mat.m/ be the .k � 1/-by-.n� 1/ matrix whose columns are
the components of m. Since R is a GE-ring, there is E 2 En�1.R/ such that

Mat.m/E D

�

1 0

A B

�

(6)

where A is a .k � 2/-by-1 matrix and B is a .k � 2/-by-.n � 2/ matrix. If k D 2,
then m has been reduced to a standard unimodular row. Otherwise, let m0 D mE.
Since m0 generatesM , we can find a column vector

V D

0

B

@

v1
:::

vn�1

1

C

A

such that Mat.m0/V D
�

1
0

�

. Combining the latter identity with (6), we deduce that
v1D1 and subsequently Mat.m0/P D

�

1 0
0 B

�

where P DE1;2.v2/ � � �E1;n�1.vn�1/.
By iterating this procedure, we reduce Mat.m/ to

�

Ik�1 0
�

through elementary
column reduction operations. Consequently, Umn�1 =En�1.R/ contains a single
orbit. Theorem A eventually implies that nn.G/ D 1. �



786 L. Guyot

3.4. T-systems. In this section, we prove results on the T-systems of G D

M Ì˛ C under the assumption that M is free over R. These results will be
specialized in Section 4.3 so as to prove Theorem E. We present first all the
definitions needed for describing Aut.G/. Let c 7! Nc be the restriction to C
of the natural map ZŒC � � R. We call d WC ! M a derivation if d.cc0/ D

d.c/ C Ncd.c0/ holds for every .c; c0/ 2 C 2. Given a derivation d , we denote by
Xd the automorphism of G defined by

mc 7�! md.c/c:

For t 2 AutR.M/, denote by Yt the automorphism of G defined by

mc 7�! t .m/c:

The following lemma underlines the link between Der.C;M/, the R-module
of derivations, and the automorphisms of G which leave M point-wise invariant.

Lemma 3.17. Let m 2 M . Then the following are equivalent:

(i) �.G/m D 0;

(ii) there exists d 2 Der.C;M/ such that d.a/ D m;

(iii) there exists � 2 Aut.G/ such that �.a/ D ma.

If one of the above holds, then the derivation d in (ii) is uniquely defined
by d.ak/ D @˛.k/m for every k 2 Z. If in addition the restriction to M of
the automorphism � in (iii) is the identity, then �.mc/ D md.c/c for every
.m; c/ 2 M � C .

We denote by A.C/ the subgroup of the automorphisms of C induced by
automorphisms of G preserving M . The following result is referred to in [20,
Proposition 4] where it is a key preliminary to the study of two-generatedG-limits
in the space of marked groups.

Proposition 3.18. Assume M is a free R-module and �.G/ D 0. Let n D rk.G/
and let g; g0 2 Vn.G/. Then the following are equivalent:

(i) g and g0 are related by an automorphism of G preservingM ;

(ii) �.g/ and �.g0/ are related by an automorphism in A.C/.

Proof. Clearly, assertion (i) implies (ii). Let us prove the converse. Replacing,
if needed, g by �g for some automorphism � of G that preserves M , we can
assume without loss of generality that �.g/ D �.g0/. Replacing g and g0 by g 

and g0 respectively for some  2 Aut.Fn/, we can also assume that �.g/ D
�.g0/ D .1Cn�1; a/ and hence write g D .m; ma/ and g0 D .m0; m0a/ with
m;m0 2 M n�1 and m;m0 2 M . By Lemma 3.2, the rows m and m0 are bases
of M . By Lemma 3.17, there is d 0 2 Der.C;M/ such that d 0.a/ D m � m0. Let
t 2 AutR.M/ be defined by t .m/ D m0. Then we have g D YtXd 0g0, which proves
the result. �
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Recall thatG is said to have property Nn.a/ if every of its generating n-vectors
can be Nielsen reduced to an a-row, i.e., a vector of the form .m; a/ with m 2
Umn�1.M/.

Theorem 3.19. Let n D rk.G/ and assume that M is free over R. If moreover
Nn.a/ holds or rkR.M/ D n, then G has only one Tn-system.

Proof. Assume Nn.a/ holds. Given an R-basis e of M , we shall prove that any
g 2 Vn.G/ is in the same Tn-system as .e; a/. Since Nn.a/ holds, we can assume
without loss of generality that g is of the form .m; a/ with m 2 Umn�1.M/. The
R-endomorphism t mapping e to m is anR-isomorphism. Thus .m; a/ D Yt .e; a/.
Let us assume now that rkR.M/ D n holds. The group G is then a finite Abelian
group by Proposition 3.15. Thus the result follows from Theorem 2.8. �

We denote by A0.C / the subgroup of Aut.C / generated by A.C/ and the
automorphism of C which maps a to a�1. Here is our most general result
regarding the number of T-systems.

Theorem 3.20. Let n D rk.G/ and assume that M is free over R. Then tn.G/ �
jAut.C /=A0.C /j, with equality if M is a characteristic subgroup of G and MC is
isomorphic to Zn�1.

In order to prove the above theorem, we will use this simple variation on results
found in [37].

Lemma 3.21. Let AutZ.M/ be the group of Z-automorphisms of M .

(i) Let .�; �/ 2 AutZ.M/ � Aut.C / such that �.a/ D ak and

�.cmc�1/ D �.c/�.m/�.c/�1 for all .m; c/ 2 M � C:

Then Y�;� Wmc 7! �.m/�.c/ is an automorphism of G and the map ˛ 7! ˛k

induces a ring automorphism N� of R which satisfies

�.rm/ D N�.r/�.m/ for all .r; m/ 2 R �M:

(ii) Let d 2 Der.C;M/, t 2 AutR.M/ and .�; �/ as in .i/. Then we have
��1 ı d ı � 2 Der.C;M/, ��1 ı t ı � 2 AutR.M/ and

Y�;�XdY
�1
�;� D X��1ıdı� ; Y�;�YtY

�1
�;� D Y��1ıtı� :

(iii) Let � 2 Aut.G/ such that �.M/ D M . Then there is d 2 Der.C;M/ and
.�; �/ as in .i/, such that � D XdY�;� . In particular, every automorphism in
A.C/ is induced by some Y�;� 2 Aut.G/.
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Proof. The proofs of assertions (i) and (ii) are straightforward verifications.

(iii) Let � be the restriction of � toM and let � the automorphism ofC induced
by �. It is easy to check that .�; �/ satisfy the conditions of (i). Let �0 D �Y �1

�;�
.

Then the restriction of �0 to M is the identity and there is m 2 M such that
�0.a/ D ma. By Lemma 3.17, there is d 2 Der.C;M/ such that �0 D Xd . �

Proof of Theorem 3.20. If the property Na.n/ holds, or if rkR.M/ D n, then
Theorem 3.19 implies that tn.G/ D 1 � jAut.C /=A0.C /j. Therefore we can
assume, without loss of generality that Na.n/ does not hold and rkR.M/ < n.

By Theorem A, the group C is finite and MC is isomorphic to Zn�1. Us-
ing Proposition 3.5 and reasoning with a basis e of M as in the proof of Theo-
rem 3.19(i), we see that every generating n-vector falls into the Tn-system of .e; ak/
for some k coprime with jC j. It follows from Lemma 3.21(ii) that .e; �.ak// lies in
the Tn-system of .e; ak/ for every � 2 A0.C /. Therefore tn.G/ � jAut.C /=A0.C /j.
Assume now thatM is a characteristic subgroup of G. If .e; a/ lies in the Tn-sys-
tem of .e; ak/ for some k coprime with jC j, then we can find � 2 Aut.G/
such that �.e; a/ is Nielsen equivalent to .e; ak/. By Lemma 3.21(ii), we have
�.e; a/ D .e0; m�.a// for some basis e0 of M and some .m; �/ 2 M � A.C/.
By Lemma 3.2(iii), the vector .e0; �.a// is Nielsen equivalent to .e; ak/. Propo-
sition 3.5 implies that �.a/ D a˙k, hence there is � 0 2 A0.C / such that
� 0.a/ D ak . �

4. Nielsen equivalence classes and T-systems of R Ì˛ C

In this section, we assume that M ' R, i.e., G D ha; bi is a split extension of the
form RÌ˛C with C D hai, while b is the identity of the ring R and a acts onR as
the multiplication by ˛ 2 R�. As usual, T denotes the subgroup of R� generated
by �1 and ˛.

4.1. Nielsen equivalence of generating pairs. We prove here the first two as-
sertions of Theorem D. We begin with the definition of an invariant of Nielsen
equivalence named �a. Recall that ��.G/R denotes the natural group homomor-
phism RÌC � .R=�.G/R/ÌC as well as the induced map on generating pairs.
If �.G/ D 0, there is a unique derivation da 2 Der.C; R/ satisfying da.a/ D 1.
For g D .g; g0/ D .rc; r 0c0/ 2 G2 with .r; r 0/ 2 R2 and .c; c0/ 2 C 2, we set

Da.g/ D rda.c
0/ � r 0da.c/ 2 R (7)

It is easily checked that Œg; g0� D .1 � ˛/Da.g/: If �.G/ ¤ 0, we set further

Da.g/ D Da.��.G/R.g// 2 R=�.G/R

where the right-hand side is defined as in (7).
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Lemma 4.1. We have Da.g/ 2 .R=�.G/R/� for every g 2 V2.G/.

Proof. We can assume, without loss of generality, that �.G/ D 0. Let g D

.rak ; r 0ak
0

/ 2 V2.G/ with .r; r 0/ 2 R2 and .k; k0/ 2 Z2. We first observe that

Da.gL12/ D ˛k
0

Da.g/;

Da.gL21/ D ˛kDa.g/;

Da.gI1/ D �˛�kDa.g/:

Thus Da.gAut.F2// D TDa.g/. We know from Lemma 3.2 that g is Nielsen
equivalent to .r; a/ for some r 2 R�. Therefore Da.g/ 2 rT , which shows that
Da.g/ is invertible. �

Remark 4.2. Assume �.G/ D 0. Let c be a generator ofC and let dc 2 Der.C; R/
such that dc.c/ D 1. It is easily checked that dc D dc.a/da and the identity
dc.c/ D 1 implies that dc.a/ 2 R�. For such elements c there is thus only one
map Dc up to multiplication by a unit of R.

We set

ƒ D R=�.G/R; Tƒ D ��.G/R.T /;

and define the map
�aW V2.G/ �! ƒ�=Tƒ;

g 7�! TƒD.g/:

In the course of Lemma 4.1’s proof we actually showed

Lemma 4.3. The map �a is Aut.F2/-invariant.

Here is the last stepping stone to the theorem of this section.

Lemma 4.4. Let c be such that C D hci and let g D .r; c/, g0 D .r 0; c/ with
.r; r 0/ 2 .R�/2. Then the following are equivalent:

(i) g and g0 are Nielsen equivalent;

(ii) ��.G/R.g/ and ��.G/R.g0/ are Nielsen equivalent;

(iii) �a.g/ D �a.g
0/.

Proof. (i) H) (ii). This follows from the Aut.F2/-equivariance of ��.G/R.

(ii) H) (iii). This follows from Remark 4.2 and Lemma 4.3.
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(iii) H) (i). The result is trivial if �.G/ D 0, thus we can assume that C
is finite. By hypothesis, there exist k 2 Z, r� 2 R and � 2 ¹˙1º such that
r 0 D �˛kr C r��.G/. Replacing g0 by a conjugate if needed, we can assume that
k D 0. Taking the inverse of the first component of g if needed, we can moreover
assume that � D 1, so that r 0 D r C �.G/r� . Since r 0 is a unit, we can argue as
in the proof of Lemma 3.1(iii) to get  2 Aut.F2/ such that .r 0; c/ D .r 0; r�c/.
We have then .r 0; c/ L

�jC j
1;2 D .r; r�c/. Since r is a unit, we can cancel r� using

another automorphism of F2. �

The next lemma will help us determine when �a is a complete invariant of
Nielsen equivalence.

Lemma 4.5 ([39]). Let I � R be an ideal which is contained in all but finitely
many maximal ideals of R. Then the natural map R� ! .R=I /� is surjective.

Proof. Let m1; : : : ;mk be the maximal ideals of R not containing I and let
J D .

T

i mi / \ I . By the Chinese Remainder Theorem, the map

�W r C J 7�! .r C I; r C m1; : : : ; r C mk/

is a ring isomorphism from R=J onto R=I � R=m1 � � � � � R=mk . Given u 2

.R=I /� we can find v D QuCJ 2 .R=J /� such that �.v/ D .u; 1Cm1; : : : ; 1Cmk/.
Hence we have u D QuC I . As J � J.R/, we also have Qu 2 R�. �

Given an ideal I of R, we denote by �I the natural group epimorphism
R Ì˛ C � .R=I / Ì˛CI C . Let us state the main result of this section.

Theorem 4.6. Let g; g0 2 V2.G/, e + �ab.b; a/ and RC + R=.1� ˛/R.

(1) The following are equivalent:

(i) the pairs g and g0 are Nielsen equivalent;

(ii) the pairs�I .g/ and�I .g0/ are Nielsen equivalent for every I 2¹.1�̨ /R,
�.G/Rº;

(iii) dete ı�ab.g/ D ˙ dete ı�ab.g
0/ and �a.g/ D �a.g

0/, with dete as in
Remark 2.10.

(2) If C is infinite or RC is finite then �a is surjective and the above conditions
are equivalent to �a.g/ D �a.g

0/: In this case�a is a complete invariant of
Nielsen equivalence for generating pairs.

(3) If C is finite and Gab is infinite, then n2.G/ D max.'.jC j/=2; 1/jƒ�=Tƒj.
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Proof. 1(i) H) (ii). This follows from the Aut.F2/-equivariance of �I .

1(ii) H) (iii). We deduce the identity dete ı�ab.g/ D ˙ dete ı�ab.g
0/ from

Theorem 2.8 and the identity �a.g/ D �a.g
0/ from Lemma 4.3.

1(iii) H) (i). Suppose first thatC is infinite orRC is finite. By Theorem A, we
know that g and g0 can be Nielsen reduced to .r; a/ and .r 0; a/ for some r; r 0 2 R�.
By Lemma 4.4 the pairs g and g0 are Nielsen equivalent. Suppose now that C
is finite and RC is infinite. By Proposition 3.5, we know that g and g0 can be
Nielsen reduced to .r; ak/ and .r 0; ak

0

/ for some r; r 0 2 R� and k; k0 2 Z such
that k � ˙ dete ı�ab.g/ and k0 � ˙ dete ı�ab.g

0/ modulo jC j. We deduce from
Theorem 2.8 that k0 � ˙k mod jC j. Replacing g by gI2 if needed, we can
assume that ak D ak

0

. Thanks to Remark 4.2, we can argue as in the first part of
the proof where a is replaced by ak, which proves the Nielsen equivalence of g

and g0.

2. We already showed in the proof of .1/ that �a is injective if C is infinite or
RC is finite. Thus we are left with the proof of�a’s surjectivity. Clearly, it suffices
to show that the natural map R� ! .R=�.G/R/� is surjective. This is trivial if C
is infinite since �.G/ D 0 in this case. So let us assume thatRC is finite. Since we
have .1 � ˛/�.G/ D 0, the ring element �.G/ belongs to every maximal ideal of
R which doesn’t contain 1� ˛. Hence it belongs to all but finitely many maximal
ideals of R. Now Lemma 4.5 yields the conclusion.

3. This is a direct consequence of the characterization 1(iii). �

We end this section with an algorithmic characterization of generating pairs.

Proposition 4.7. Assume �.G/ is nilpotent and let g 2 G2. Then the following
are equivalent:

(i) g generates G;

(ii) �.g/ generates C and Da.g/ 2 .R=�.G/R/�.

Proof. (i) H) (ii). This follows from �’s surjectivity and Lemma 4.1.

(ii) H) (i). Since �.g/ generates C there is  2 Aut.F2/ such that �.g/ D
.1C ; a/. Replacing g by g , we can then assume that g D .r; r 0a/ for some
r; r 0 2 R. Since �a.g/ D r C �.G/R 2 .R=�.G/R/� and �.G/ 2 J.R/ we
deduce that r 2 R�. Therefore g generates G. �

4.2. Nielsen equivalence of generating triples and quadruples. In this section,
we prove the last two assertions of Theorem D. Since rk.G/ D 2 and dimKrull.R/ �
2, Corollary 3.13 ensures thatG has only one Nielsen class of generating n-vectors
for n > 4. Using Theorem A in combination with a theorem of Suslin [36,
Theorem 7.2], we show in Theorem 4.10 below that this remains true if n > 3.
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Recall that the map

ˆaW r�n�1.R/ 7�! .r; a/Aut.Fn/

defined in Theorem A is a bijection Umn�1.R/=�n�1.R/ ! Vn.G/=Aut.Fn/
provided that C is infinite.

Lemma 4.8. Let n � 3. If R is a GEn�1-ring, then nn.G/ D 1.

Proof. Let g 2 Vn.G/. We shall show that g is Nielsen equivalent to g1 + .r1; a/

with r1 D .1; 0; : : : ; 0/ 2 Umn�1.R/. As n > rk.G/, the property Nn.a/ holds by
Theorem A. Therefore g can be Nielsen reduced to a vector of the form .r; a/with
r 2 Umn�1.R/. Since R is a GEn�1-ring and R is completable by Lemma 2.5,
the group En�1.R/ acts transitively on Umn�1.R/. Hence r can be transitioned to
r1 under the action of En�1.R/. Lemma 3.10 implies that g is Nielsen equivalent
to g1. �

Our forthcoming result on generating triples involves the following definitions
from algebraic K-theory. For every n � 1, the map A 7!

�

A 0
0 1

�

defines an
embedding from SLn.R/ into SLnC1.R/, respectively from En.R/ into EnC1.R/.
Denote by SL.R/ and E.R/ the respective ascending unions. Then E.R/ is normal
in SL.R/ and the group SK1.R/, the special Whitehead group ofR, is the quotient
SL.R/=E.R/ (see, e.g., [28]). The next lemma shows in particular that the image
in SK1.R/ of a matrix in SL2.R/ depends only on its first row.

Lemma 4.9. Let R be any commutative ring with identity. Denote by yE2.R/ the
normal closure of E2.R/ in SL2.R/. Let �W SL2.R/ ! Um2.R/ be defined by
�

a b
c d

�

7! .a; b/. Then the map � induces a bijection from SL2.R/=yE2.R/ onto

Um2.R/=yE2.R/.

Proof. For every A;B 2 SL2.R/ the identity �.AB/ D �.A/B holds. Therefore
the map O�WAyE2.R/ 7! �.A/yE2.R/ is well defined. Let .a; b/ 2 Um2.R/ and
let a0; b0 2 R be such that aa0 C bb0 D 1. Then A +

�

a b
�b0 a0

�

2 SL2.R/ and
.a; b/ D �.A/, so that �, and hence O� is surjective. Let us prove that O� is injective.
Consider for this A;B 2 SL2.R/ such that O�.A/ D O�.B/. Multiplying A on the
right by a matrix in yE2.R/ if needed, we can assume that �.A/ D �.B/. Thus
�.AB�1/ D �.A/B�1 D �.B/B�1 D .1; 0/, which shows that AB�1 2 E2.R/.
The result follows. �

The Mennicke symbol Œr� of r 2 Um2.R/ is the image in SK1.R/ of any matrix
of SL2.R/ whose first row is r. We are now in position to prove the following
result.
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Theorem 4.10. The following hold.

(i) If C is infinite then V3.G/=Aut.F3/ surjects onto SK1.R/.

(ii) If R is a GE2-ring, e.g., C is finite, then n3.G/ D 1.

(iii) n4.G/ D 1.

Proof. (i) By Theorem A, we can identify the two orbit sets V3.G/=Aut.F3/ and
Um2.R/=�2.R/. The classical properties of the Mennicke symbol [23, Proposi-
tion VI.3.4] imply that the map Œ��W Um2.R/ ! SK1.R/ is �2.R/-invariant. This
yields a map Um2.R/=�2.R/ ! SK1.R/. By Remark 2.4, the latter map is sur-
jective.

(ii) This is Lemma 4.8 for n D 3.

(iii) We can assume that C is infinite since Lemma 4.8 applies otherwise. If
dimKrull.R/ � 1, then n4.G/ D 1 by Corollary 3.13. Thus, we can also suppose
that R D ZŒX˙1�. Since V4.G/=Aut.F4/ identifies with Um3.R/=�3.R/ by
Theorem A and since E3.R/ acts transitively on Um3.R/ by [36, Theorem 7.2],
we deduce that n4.G/ D 1. �

4.3. T-systems of generating pairs and triples. This section is dedicated to the
proofs of Theorems E and F. Recall that nn.G/ denotes the number of Nielsen
equivalence classes of generating n-vectors of G and tn denotes the number of
Tn-systems of G, both numbers may be infinite. We refer the reader to Lem-
mas 3.17 and 3.21 for the definition of the automorphismsXd and Y�;� used below.

Proof of Theorem E. (i) This is a specialization of Theorems 3.19 and 3.20 to
G D R Ì˛ C .

(ii) Consider the action of Aut.G/ on V3.G/=Aut.F3/ defined by

� � .gAut.F3// D .�g/Aut.F3/; g 2 V3.G/; � 2 Aut.G/:

Regarding the first inequality, it suffices to show that the stabilizer Sg of gAut.F3/
has index at most jA.C/jn2.G/ in Aut.G/ for every g 2 V3.G/. By Theorem A(i),
such a triple g is Nielsen equivalent to .r; s; a/ for some r; s 2 R. Since R D
rRCsR D ZŒ˛˙1�, we easily see that every automorphismXd stabilizes gAut.F3/.
For an automorphism Y�;1 of G, we observe that � 2 AutZ.R/ is actually an R-
automorphism, so that � is the multiplication by some unit u� ofR. If u� is a trivial
unit, we see that Y� D Y�;1 stabilizes gAut.F3/ considering conjugates of the first
two components of g. IfA.C/ contains an automorphisms � which maps a to a�1,
we let ��1 be an automorphism of the form Y�;� whose image is � through the
natural map Aut.G/ � A.C/. Otherwise we set ��1 D 1. Let V be a transversal
of R�=T . It follows from Lemma 3.21 that ¹Y��

�
�1I � 2 ¹0; 1º; �.b/ 2 V º is

a transversal of Aut.G/=Sg. Since n2.G/ D jR�=T j by Theorem D(ii), we
deduce that

ˇ

ˇAut.G/=Sg

ˇ

ˇ � jA.C/jn2.G/, which completes the proof of the first
inequality.
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In order to prove the second inequality, we consider the action of Aut.G/ on
SK1.R/ defined by � � Œr� D Œ�.r/� for .�; r/ 2 Aut.G/ � Um2.R/ and where Œr�
denotes the Mennicke symbol of r. The fact that this action is well defined follows
from Lemma 3.21 and the classical properties of Mennicke symbols. Indeed, every
automorphism � 2 ¹Xd ; Yt j d 2 Der.C; R/; � 2 AutR.R/º fixes every symbol Œr�.
Besides, the group automorphism ��1 induces a ring automorphism of R, so that
Œr� D Œr0� implies Œ��1.r/� D Œ��1.r

0/� for any two rows defining the same symbol.
We actually showed that the Aut.G/-action on SK1.R/ factors through an A.C/-
action. The map .r; a/Aut.F3/ 7! Œr� induces an Aut.G/-equivariant map � from
V3.G/=Aut.F3/ onto SK1.R/. As Aut.G/n SK1.R/ ' A.C/n SK1.R/, � induces
a surjective map from Aut.G/n V3.G/=Aut.F3/ ontoA.C/n SK1.R/, which yields
the result. �

With Theorem E, we observed that t2.G/ D 1 holds if C is infinite or Gab is
finite. With Corollary 4.11 below, we prove the first part of Theorem F, that is, G
can have arbitrarily many T2-systems when C is finite but Gab isn’t.

Corollary 4.11. Let q D pd and N D q � 1, with p a prime integer and d � 2

an even integer. Let ˆN;p.X/ be the N -th cyclotomic polynomial over Fp and let
P 2 ZŒX� be a monic polynomial of degree d whose reduction modulo p is an
irreducible factor of ˆN;p.X/. Let R D ZŒX�=.X � 1/I where I D .p; P.X//

is the ideal generated by p and P.X/. Then the image ˛ of X in R is invertible.
It generates a subgroup C � R� with N elements and the number of T2-systems
of G D R Ì˛ C is t2.G/ D '.N/=d .

We will use the following straightforward consequence of Lemma 3.21.

Lemma 4.12. Let k 2 Z. The following are equivalent:

(i) there is � 2 A.C/ such that �.a/ D ak;

(ii) the map ˛ 7! ˛k induces a ring automorphism of R.

Lemma 4.13. The two following hold.

(i) Let g D rak 2 G with r 2 R, k 2 Z. Then g centralizes its conjugacy class
if and only if .1� ˛k/2 D 0 D .1� ˛/.1� ˛k/r .

(ii) Let ! be the order of ˛ inR�. Assume that ! D jC j and that for every k 2 Z,
we have .1�˛k/2 ¤ 0whenever ˛k ¤ 1. ThenR is a characteristic subgroup
of G.

Proof. Assertion (i) is a direct consequence of the identity

Œg; hgh�1� D .1� ˛k/..1� ˛k/r � .1� ˛k
0

/r 0/; where h D r 0ak
0

:
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In order to prove (ii), consider � 2 Aut.G/ and write �.b/ D rak where b is
the identity of the ring R. Since b centralizes its conjugacy class, so does �.b/.
By (i), we have .1� ˛k/2 D 0, which yields ˛k D 1. As ! D jC j, we deduce that
�.b/ D r and hence �.R/ D R. �

Proof of Corollary 4.11. The existence of the polynomial P.X/ is guaranteed by
[24, Theorem 2.47]. Let xP.X/ 2 FpŒX� be the reduction of P.X/ modulo p.
By the Chinese Remainder Theorem, the ring R identifies with Z � Fq where
Fq D ZpŒX�=. xP.X// is the field with q elements. As a result, the element ˛ iden-
tifies with .1; x/ where x 2 F�

q is an N -th primitive root of unity. Thus C ' F�
q

and the ring automorphisms of R induced by maps of the form ˛ 7! ˛k corre-
spond bijectively to powers of the Frobenius endomorphism of Fq . Lemma 4.13’s
hypotheses are easily checked so that R is a characteristic subgroup of G. By
Lemma 4.12, we have then jA.C/j D d and hence jA0.C /j D d for d is even. By
Theorem E, we obtain t2.G/ D jAut.C /=A0.C /j D '.N/=d . �

5. Baumslag–Solitar groups, split metacyclic groups,

and lamplighter groups

This section is dedicated to the proofs of the Corollaries G, H, I, J and K.

The following lemma is a key ingredient in the proof of Corollary G.

Lemma 5.1. Let G D R Ì˛ C be as in Section 4. Assume that the natural map
R� ! R�

C is surjective and that C is infinite or RC + R=.1� ˛/R is finite. Then
Aut.G/� Aut.F2/ acts transitively on V2.Gab/ where the action of Aut.G/ is the
action induced by the natural homomorphism Aut.G/ ! Aut.Gab/.

Recall that for t 2 R� ' AutR.R/, the automorphism Yt of G ' R Ì˛ C is
defined by rc 7! t .r/c.

Proof. Let us assume first that C is infinite. By Theorem 2.8, every generating
pair ofGab D RC�C is Nielsen equivalent to .u; a/ for some u 2 R�

C . Let t be the
multiplication by u�1 onRC . By hypothesis, we can find a lift Qu of u inRwhich is
moreover a unit. Let � be the multiplication by Qu�1 onR. Then the automorphism
Yt 2 Aut.Gab/ is induced by Y� 2 Aut.G/ and we have Yt .u; a/ D . Nb; a/ where Nb
denotes the identity of RC . Therefore every generating pair of G is in the orbit of
. Nb; a/ under the action of Aut.G/ � Aut.F2/.

Assume now that both C and RC are finite and let d be the greatest common
divisor of jC j and jRC j. For g 2 Gab , we define det.g/ as in Corollary 2.9, con-
sidering the decomposition RC � C . The latter corollary implies that generating
pairs with the same determinant are Nielsen equivalent. Hence it suffices to prove
that the orbit of an arbitrary generating pair .x; y/ 2 V2.Gab/ contains a pair of
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determinant 1 2 Zd . By Lemma 4.5, there is a lift u of det.g/ in R�
C and by hy-

pothesis, there is in turn a lift Qu of u in R�. Reusing the notation of the previous
paragraph, we see that Yt .x; y/ is a generating pair of determinant 1. The proof is
then complete. �

Proof of Corollary G. Since t2.G/ D 1 by Theorem E(i), the group Aut.G/
acts transitively on V2.G/=Aut.F2/. Therefore the Nielsen equivalence classes
of generating pairs have the same number of elements. Let us establish the
formula. By Lemma 4.5, the natural map R� ! .RC /

� is an epimorphism.
Since Aut.G/ � Aut.F2/ acts transitively on V2.Gab/ by Lemma 5.1, the number
of preimages of Ng in V2.G/with respect to the abelianization homomorphism �ab
does not depend on Ng. Hence it suffices to compute this number for Ng D . Nb; a/

where Nb denotes the image of b in Gab . A generating pair g 2 V2.G/ which maps
to . Nb; a/ via �ab is of the form .r; sa/ with r 2 1C .1� ˛/R and s 2 .1� ˛/R. It
follows from Lemma 3.2(i) that a pair of this form generates G if and only if r is,
in addition, a unit. Therefore the number of preimages of Ng is jR�j

j.RC /�j
jRj

jRC j
. �

Proof of Corollary I. (i) SinceG D Z�Zl by hypothesis, the result follows from
Theorem 2.8.

(ii) By Theorem D(ii), we have

n2.G/ D j.R=�.G/R/�=h˙˛�.G/Rij

with R D Zk . Thus n2.G/ D '.�/
!

follows from the definitions of � and !.

(iii) By Theorem E(i) we have t2.G/ D 1. Since Zk is a GE-ring, it follows
from Theorem D(iv) that n3.G/ D 1.

(iv) Corollary G applies with R D Zk and RC D Zk=.1� ˛/Zk ' Ze. �

Proof of Corollary H. (i) LetG D BS.1; l/. By Theorem D(ii), we have n2.G/ D

jR�=h˙˛ij with R D ZŒ1= l� and ˛ D l . The prime divisors of l form a basis of a
free Abelian subgroup of R� of index 2. Thus n2.G/ is finite if only if l D ˙pd

for some prime p and some d � 0. If d D 0, then R D Z and clearly n2.G/ D 1.
Otherwise, n2.G/ D jh˙pi=h˙pd ij D d .

(ii) By Theorem E(i) (equivalently Brunner’s theorem [9]) we have t2.G/ D 1.
Since ZŒ1= l� is Euclidean, it follows from Theorem D(iv) that n3.G/ D 1. �

We consider now the two-generated lamplighter groups, i.e., the restricted
wreath products of the form G D Zk o Zl with k; l � 0 and k; l ¤ 1. Such a
group G reads also as G D R Ìa C with C D Zk D hai and R D Zk ŒC � '

Zk ŒX�=.X
l � 1/. As before, we denote by T the subgroup of R� generated by

�1 and a. We also set ƒ + R=�.G/R and Tƒ + ��.G/R.T /, like in Section 4.1.
Corollary J will be obtained in combining Corollaries 5.2 and 5.6 below.
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Corollary 5.2. Let k; l � 0 with k; l ¤ 1 and letG D Zk oZl . Then the following
hold.

(i) t2.G/ D 1.

(ii) If Zk is finite or Zl is infinite, then n2.G/ D jƒ�=Tƒj :

(iii) If Zk or Zl is finite, then n3.G/ D 1.

Proof. (i) If Zk is finite, or Zl is infinite, then t2.G/ D 1 by Theorem E(i).
Otherwise, Theorem E(ii) applies and t2.G/ � jAut.C /=A0.C /j. It is easy to
see that the map a 7! ai induces a ring automorphism of R for every i coprime
with l . Thus A0.C / D Aut.C / by Lemma 4.12, which implies t2.G/ D 1.

(ii) This is an immediate consequence of Theorem D(ii).

(iii) If Zk is finite then R is a GE-ring by Lemma 2.3. If Zl is finite then R is
GE-ring by Theorem 2.6. Therefore n3.G/ D 1 by Theorem D(iv). �

Corollary 5.3. Assume that both Zk and Zl are finite and non-trivial. Given a
prime divisor p of k, we denote by �l .p; d/ the number of distinct irreducible
factors of

1CX C � � � CX l�1

in ZpŒX� which are monic of degree d . Let l 0 D 2l if k ¤ 2, l 0 D l otherwise.
Then we have

n2.Zk o Zl / D
kl�1

l 0

Y

p;d

�

1 �
1

pd

��l.p;d/

where p ranges over the prime divisors of k and d over the positive integers.

The following lemma makes easy the task of computing the cardinality of the
unit group in each finite ring under consideration.

Lemma 5.4 ([35, Exercise 44]). Let R be a finite ring. Then

jR�j D jRj
Y

m

�

1 �
1

jR=mj

�

where m ranges over the maximal ideals of R.

Proof of Corollary 5.3. Since �.G/R D Zk�.G/, the ring ƒ has kl�1 elements.
Each maximal ideal m is generated by a prime divisor p of k and the image in ƒ
of a polynomial P 2 ZkŒX� whose reduction modulo p is an irreducible monic
factor of 1 C X C � � � C X l�1. Hence ƒ=m D Fpd where d is the degree of P .
Thus jƒ�j D kl�1

Q

p;d .1� 1

pd /
�l.p;d/ by Lemma 5.4 and we conclude the proof

in observing that l 0 D jTƒj. �
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Given a prime divisor p of k, we denote by �l .p; d/ the number of distinct
irreducible factors of 1 � X l in ZpŒX� which are monic of degree d . Using
Lemma 5.4, it is straightforward to establish the formula

j.ZkŒZl �/
�j D kl

Y

p;d

�

1�
1

pd

��l .p;d/

:

where p ranges over the prime divisors of k.

Corollary 5.5. Assume that both Zk and Zl are finite and non-trivial. Then we
have

jV2.Zk o Zl /j D
kl�1

'.k/
j.Zk ŒZl �/

�j jV2.Zk � Zl /j

and the number of elements in a Nielsen equivalence class of generating pairs is

l 0kl�1 jV2.Zk � Zl /j :

where l 0 is as in Corollary 5.3.

Proof. Let G D Zk o Zl . As Zk ŒZl �=.1 � ˛/ ' Zk , we have Gab ' Zk � Zl .
We obtain the first formula by applying Corollary G with R D ZkŒZl � and
RC D Zk . By the same corollary and Corollary 5.3, the Nielsen equivalence
classes of generating pairs have the same number of elements, given by

j V2.G/j

n2.G/
D
l 0kl

'.k/

Y

p;d

�

1�
1

pd

��l .p;d/��l .p;d/

jV2.Gab/j

where p ranges over the prime divisors of k. The integer �l .p; d/ � �l .p; d/ is
the number of monic irreducible polynomials in ZpŒX� of degree d which divides
1�X l but not 1CXC� � �CX l�1. Therefore �l.p; d/��l.p; d/ D 1 if d D 1 and

it cancels otherwise. Thus we have
Q

p;d

�

1� 1

pd

��l .p;d/��l .p;d/ D
Q

p

�

1� 1
p

�

D

'.k/
k

, which gives the result �

Corollary 5.6. Let k; l � 0 and k; l ¤ 1.

(i) Assume that Zk is finite and Zl is infinite. Then n2.G/ is finite if and only if
k is prime; in this case n2.G/ D max

�

k�1
2
; 1

�

.

(ii) Assume that Zk is infinite and Zl is finite. Then n2.G/ is finite if and only if
l 2 ¹2; 3; 4; 6º; in this case n2.G/ D 1.
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Proof. (i) The result follows from Corollary 5.2(ii) and the isomorphisms

.ZkŒX
˙1�/� ' Z�

k
� UX � UX�1 � Z�:

T ' ¹˙1º � ¹1º � ¹1º � Z:

where � is the number of prime divisors of k and UY D 1 C Y nil.Zk/ŒY � with
Y 2 ¹X˙1º (see e.g., [38, Exercise 3.17] where the units in the ring of Laurent
polynomials are determined).

(ii) As ƒ D ZŒX�=.1CX C � � � CX l�1/, the ring ƒ identifies with O.D n ¹1º/

as defined in Lemma 2.7 and where D is the set of divisors of l . By Lemma 2.7,
the group ƒ� is finite if and only if l 2 ¹2; 3; 4; 6º; in this case the equality
ƒ� D Tƒ holds. Since n2.G/ D max.'.l/=2; 1/ jƒ�=Tƒj by Theorem D(iii),
the result follows. �

We conclude with the group G D Z oZ, which is isomorphic to ZŒX˙1�ÌX Z.

Proof of Corollary K. It follows from Lemma 4.13 thatR D ZŒX˙1� is character-
istic inG. The inequality n3.G/ � 2t3.G/ is then a consequence of Theorem E(ii).
The implication (i) H) (ii) is obvious while the equivalence (i) () (iii) results
from Theorem A and Lemma 2.1(i). In order to prove (ii) H) (i), we assume
that (ii) holds true, fix g0 2 V2.G/ and let g be an arbitrary generating triple of
G. As t3.G/ D 1 by hypothesis, we deduce that g is Nielsen equivalent to a triple
of the form .1G ; g1/ with g1 2 V2.G/. By Corollary 5.2(ii), we have n2.G/ D 1,
so that .1G ; g1/ is Nielsen equivalent .1G ; g0/. Therefore n3.G/ D 1. �
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