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Homological shadows of attracting laminations

Asaf Hadari

Abstract. Given a free group Fn, a fully irreducible automorphism f 2 Aut.Fn/, and a

generic element x 2 Fn, the elements f k.x/ converge in the appropriate sense to an object

called an attracting lamination of f . When the action of f on Fn

ŒFn;Fn�
has finite order,

we introduce a homological version of this convergence, in which the attracting object is a

convex polytope with rational vertices, together with a measure supported at a point with

algebraic coordinates.
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1. Introduction

Let Fn D ha1; : : : ; ani be the free group on n generators. Any automorphism

f W Fn ! Fn induces an automorphism fab of H1.Fn;Z/ Š Fn

ŒFn;Fn�
Š Zn.

This gives a natural map Aut.Fn/ ! GLn.Z/. In this paper we attach a coarse-

geometric, homological invariant to any fully irreducible automorphism f such

that fab has finite order. This invariant addresses the following questions.

(a) Given a word of the form w D f N .x/, where x 2 Fn and N � 0, what are

the images in Zn of subwords of w? (Where a subword of w is an element

b 2 Fn such that w D abc for some a; c 2 Fn, and this product is reduced. )

(b) If a subword of w is chosen at random (for a suitable definition of random),

what should we expect its image in Zn to be?

(c) How do the answers to the above questions depend on N; x and the choice of

generating set for Fn?

1.1. Two examples. The following automorphisms showcase the kinds of invari-

ants we are interested in. Let F3 D ha; b; ci be the free group on three generators.

Consider the automorphism f given by f .x/ D bxb�1. Note that fab D I3,

the 3 � 3 identity matrix. Given any N , we have that w D f N .a/ D bN ab�N .



838 A. Hadari

Consider the collection of initial subwords of w, that is, subwords obtained from

w by taking all letters from the first to the j -th, for some j . The images of such

elements are exactly those vectors of the form

N[

iD0

´ 
0

i

0

!
;

 
1

N � i

0

!µ
:

Coarsely speaking, this set forms a ray in R3, namely the positive half of the

y-axis. Now suppose that we choose a random subword of w using the following

model: choose a number i uniformly from 1 to 2N C 1, and then take the subword

of w beginning at the first letter and ending at i-th letter. Under this model, all

of the elements of the set described above are equally likely. Coarsely, we get the

Lebesgue measure on the ray.

Now, consider the more complicated automorphism given by

g.a/ D cbc�1bab�1cb�1c�1;

g.b/ D cbc�1;

g.c/ D cbab�1cbc�1ba�1b�1cb�1c�1:

Once again, we have that gab D I3. However, in this case, it is very difficult to find

an explicit expression for w D gN .a/. The figures below display what we will call

the shadows of g.a/; : : : ; g6.a/ (arranged from left to right). In each, we show the

images in R3 of all subwords beginning at the first letter, and we connect two such

images with a segment if they corresponds to subwords, one of which is attained

from the other by adding one letter. Looking at the figures, a clear pattern seems

to emerge. Our goal in this paper is to describe this pattern for automorphisms of

this type.

1.2. Shadows and darkness. In this section we give the definitions necessary to

formalize the above discussion, and to state our Theorems. Let G be a graph with

N edges. Number the edges d1; : : : ; dN . Let l W E.G/ ! R>0 be a function that

assigns to each edge a positive length. Choose an identification of the i-th edge

with the interval Œ0; l.di /�. Note that this identification also gives us a preferred

orientation on each edge.
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To any path pW Œ0; 1� ! G in the graph, we associate a path zSpW Œ0; 1� ! RN

in the following way. Define a form ı on G by setting by setting ıjV.G/ D 0dt

and ıjdi
D 1

l.di /
eidt where ei is the i-th vector of the standard basis for RN . Let

zSp.t/ D
R t

0 p�ı and let Sp D Im zSp. We call Sp the shadow of p, and zSp the

parametrized shadow of p. For every integer k, we set zSk p to be the path given

by zSk p.t/ D 1
k

zSp.t/. Similarly, we let Sk p D Im zSp. Note that if p.t/ 2 V.g/,

then the i-th coordinate of zSp.t/ is the number of times (counted with direction)

in the interval Œ0; t � that p passes through the edge di .

To the path p, we also associate a measure Dp on Sp by the rule D
l p D

.zSp/��, where � is the Lebesgue measure on Œ0; 1�. We call this measure the

darkness of the shadow of p. Similarly, we define D
l
k p D .zSk/��. Note that if l

is the constant function 1, then given x 2 RN , we have that

D
l pŒB1.x/� D

# times p passes through x

total path length of p
:

When there is no chance for confusion, we will omit the l superscript, and use

Dp;Dk p.

Now, Let G D Rn be the graph given by the join of n circles. Label the n

edges with the labels a1; : : : ; an. Given any length function, l W E.G/ ! R, we

can associate to each element w 2 Fn a unique path pw W Œ0; 1� ! G that travels at

constant speed and traverses the edges given by the word w. We will often confuse

the path pw with the word w, and write Sw;Dw, etc. instead of Spw ;Dpw .

Example. Consider the subword of F2 w D ab3a�2b�1a2. The figure below

shows the path zSw. The image of this path is Sw. The measure Dw the sum of

1-dimensional Lebesgue measures supported on each of the segments.
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1.3. The main theorems. Recall that an element f 2 Aut.Fn/ is called fully

irreducible if there are no proper f i -invariant free factors of Fn for any i � 1.

Theorem 1.1 (the shape of the shadow). Let f 2 Aut.Fn/ be a fully irreducible

automorphism such that fab has finite order. Then there exists a convex polytope

S1 f � Rn with rational vertices, such that for any x 2 Fn with infinite f -

orbit,we have that

lim
k!1

Sk f k.x/ D S1 f;

where the the convergence above is in the Hausdorff topology. Furthermore, if

� 2 Aut.Fn/, and g D f � then S1 g D �ab S1 f .

Notice that the last statement in the Theorem addresses the question of how

the limiting polytope is affected by changing the generating set for Fn, since this

corresponds to conjugating the automorphism f . Thus, Theorem 1.1 canonically

associates to f a GLn.Z/ orbit of a convex polytope with rational vertices.

We call the pair .S1;D1 f / the attracting homological lamination of f .

Theorem 1.2 (the darkness of the shadow). Suppose f is fully irreducible, and

fab has finite order. Let � D �.f / be the dilatation of f . Then there exists

a measure D1 f supported at a point D1 f 2 QŒ��n such that for any length

function l W E.Rn/ ! RC, and for any x 2 Fn with infinite f -orbit,

lim
k!1

Dk f k.x/ D D1 f;

where the above convergence is in the weak-* topology. Furthermore, if � 2
Aut.Fn/, and g D f � then D1 g D �abD1 f .

Thus, Theorem 1.2 canonically associates to f a GLn.Z/ orbit of a point in

QŒ��n.

In [1] Bestvina, Feighn and Handel define a notion of a stable lamination L

for a fully irreducible automorphism f 2 Aut.Fn/, together with a topology in

which given any x 2 Fn with infinite f -orbit, the sequence ¹f i .x/º1
iD1 converges

to such a lamination. In analogy to this, we call the set S1 f , together with the

measure D1 f the homological shadow of L.

Throughout the proof, we will use the fact that f is fully irreducible in only

one way - that f has a train-track representative with Perron–Frobenius transition

matrix (see below for definitions). The class of automorphisms that have these

properties is strictly larger than fully irreducible elements, and contains for ex-

ample automorphisms induced by pseudo-Anosov diffeomorphisms of surfaces

with many boundary components. We summarize this by stating the following

theorem.
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Theorem 1.3. Theorems 1.1 and 1.2 remain true if we replace the condition that f

projects to a fully irreducible element of Out.Fn/ to the condition that f projects

to an element with a train track representative and a Perron–Frobenius transition

matrix.

In [6], the author makes use of the above fact to answer a well known question

by proving the following theorem.

Theorem 1.4 (Hadari). Let † be a hyperbolic surface of finite type whose funda-

mental group is free. Let f 2 Mod.†/ be an infinite order element of the mapping

class group of †. Then there exists a finite cover †0 ! †, and a lift f 0 of f to †0

such that the induced action of f on H1.†0/ has infinite order.

1.4. Expanding on the analogy to laminations. The analogy between lamina-

tions and the objects provided by Theorems 1.1 and 1.2 can be made more precise,

by considering the following situation.

Suppose † D †g;1 is a surface of genus g with one boundary component, and

let p be a point on this component. Suppose f 2 Mod.†/ is a pseudo-Anosov

mapping class that fixes the boundary component pointwise. The map f induces

a fully irreducible automorphism of the free group �1.†; p/ Š F2g . Suppose 

is a non-peripheral closed curve on †. In [3] it is shown that in the appropriate

topology, the forward orbit ¹f i ./º1
iD1 converges to an object called a stable (or

attracting) projective measured lamination, L.

Given any other curve ı on †, it is possible to define its intersection number

with L, which we denote hL.ı/ D i.ı;L/. Let C be the set of simple closed

non-peripheral curves in †. Consider the functions hi WC ! R given by hi .ı/ D
i.f i ./; ı/, where i.�; �/ is the geometric intersection number. Then there is a

sequence of positive numbers ¹�iº
1
iD1 such that for any ı 2 C,

lim
i!1

�ihi.ı/ D hL.ı/:

A similar situation holds in our case. Let O{ be the oriented intersection form

on C. The form O{ is given by a symplectic form ! on H1.†;R/. Suppose that f

is a pseudo Anosov mapping class as above, such that fab has finite order. Let

x 2 F2g have infinite f -orbit. Given any word w 2 F2g , and a number j , let

dwej be the subword of w obtained by taking the first through j -th letters of w

(and set dwe0 D e). Given a number t 2 Œ0; 1�, let ri .t / D bi tc. Define a function

hi WC � Œ0; 1� ! R by setting

hi .ı; t / D O{.df i .x/eri .t/; ı/:

Now fix a curve ı, and let Oı be its image in H1.†;R/. Consider the measures

�i D
�

1
i
hi.ı; t /

�
�
�, where � is the Lebesgue measure on Œ0; 1�. Let Ri D

Range
�

1
i
hi .t; ı/

�
. Then Theorems 1.1, 1.2 immediately give the following result.
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Corollary 1.5. With the notation above, the following properties hold.

(a) In the Hausdorff topology,

lim
i!1

Ri D !. Oı; S1 f /:

(b) Let �1 be a probability measure concentrated at the point !. Oı;D1 f /. Then

lim
i!1

�i D �1;

where the above convergence is in the weak-* topology.

Thus, if the attracting projective measured laminationL controls the geometric

intersection numbers of a curve ı with iterates f i .x/, then its homological shadow

controls algebraic intersection numbers of ı with subwords of f i .x/.

Zorich explores a different perspective of this problem in [8]. He starts with a

closed 1-form on a surface (for instance a 1-form whose kernel gives a stable or

unstable foliation for a pseudo-Anosov mapping class), and studies how leaves of

the foliation given by the kernel wind through the homology of the surface. To

accomplish this, he takes a segment that is transverse to to the foliation, takes long

leaves of the foliation that intersect this segment, and uses the segment to close the

leaves into cycles. As the leaves get longer and longer, the corresponding cycles

projectively converge to an element called the asymptotic cycle (this is somewhat

reminiscent of our notion of the darkness of a shadow). Zorich is able to study the

rate and geometry of this convergence, using the Lyapunov exponents of the flow

on the surface given by the 1-form.

1.5. A topological interpretation for shadows. Our proof of Theorem 1.1 in-

cludes a method for calculating the shadow. We pick a train track representative

for the automorphism f , and associate to this representative a train track transition

graph. To each simple loop in this transition graph, we associate a real homology

class. The shadow of f is the convex hull of these homology classes (see the proof

of Theorem 1.1 for details).

When f is an automorphism associated to a pseudo-Anosov mapping class '

of a surface †, this same convex hull was studied in a different context by Fried.

This gives us a topological perspective on homological shadows.

We begin by forming the mapping torus M' D † � Œ0; 1�= � where � is the

relation given by .x; 0/ � .'.x/; 1/. By construction, this 3-manifold fibers over

the circle. It may however fiber over the circle in less obvious ways. To each

such fibration, one can associate an integral cohomology class by pulling back the

fundamental class from the circle. We say that such a cohomology class is fibered.

Thurston studied the set of fibered cohomology classes in [7]. He showed that

there exists a norm on H 1.M' IR/ (called the Thurston norm) with a polyhedral
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unit ball, and a collection of top dimensional open faces of this ball (called fibered

faces) such that the fibered cohomology classes are precisely the integral points

of the cones on the fibered faces (these are called fibered cones).

In [5], Fried showed that the convex hull which we use to calculate the shadow

of f is a cross section of a dual cone to a fibered cone of M' . Thus, we obtain the

following topological description of shadows.

Corollary 1.6. If f is as above, then the homological shadow of f is isometric

to a cross section of a dual cone to a fibered cone of M' .

Acknowledgements. The author would like to thank Yair Minsky for very valu-

able suggestions at the inception of the project. He would also like to thank Yael

Algom-Kfir, Jayadev Athreya, Danny Calegari, Benson Farb, Thomas Koberda,

Gregory Margulis, and Igor Rivin for helpful conversations.

2. Background and Notation

2.1. Graphs. In the proof we will use various graphs. We allow both directed

and undirected graphs, as well as allowing multiple edges between vertices, and

edges between a vertex and itself. Given a graph G, we will always denote the

vertex set of G by V.G/, and its edge set by E.G/. If G is directed, and e 2 E.G/,

we denote its initial vertex by �.e/, and its terminal vertex by �.e/. If the graph

G is directed, we will denote by
x
G its underlying non-directed graph, that is - the

graph we get by forgetting the directions on each edge.

Given a graph directed graph G, a path in G of length k is a function

pW ¹1; : : : ; kº ! E.G/ such that for each 1 � i � k � 1, we have that

�.i C 1/ D �.i/. In this case, we write �.p/ D �.1/, �.p/ D �.k/. The defini-

tion of a path is similar for a non-directed graph, except that every edge can be

traversed in either direction. A path p is called a circuit if �.p/ D �.p/. We denote

by Pk.G/ the set of paths of length k in G, and by P.G/ the set of all paths in G.

Similarly, given v 2 V.G/, we define Pk.G; v/ to be the set of all paths of length k

whose initial vertex is v, and P.G; v/ to be the set of all paths whose initial vertex

is v. Similarly, we define Ck.G/, C.G/ to be the sets of circuits of length k in G,

and the set of circuits in G respectively.

We will often also think of a path p of length k as continuous function from

Œ0; 1� to the geometric realization of G. We call such a path immersed if the

function p is locally injective.

Given a field K (which we will always take to be R), let KG be the abstract K

vector space spanned by the set E.G/. We have isomorphisms KG Š KE.G/ Š
K jE.G/j. Choose a positive orientation on each of the edges of G (if G is di-

rected, we simply take the positive direction to be given by the direction in G).
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Lety� WP.G/ ! KG given by Op D
P

e2E.G/ nee where ne is the number of times

p crosses e in the positive direction minus the number of times it crosses it in the

negative direction.

Notice that if we view
x
G as a 1-dimensional simplicial complex, we have a

natural identification

span bC.
x
�/ Š H1.

x
G; K/

and an inclusion span bC.
x
�/ ,! KG.

2.2. Adjacency graphs, transition matrices and Perron–Frobenius matrices.

A matrix A 2 Mn.R�0/ is called a Perron–Frobenius Matrix if there exists k > 0

such that Ak 2 Mn.R>0/. The following is a theorem of Perron and Frobenius,

which we use extensively.

Theorem 2.1. Let A be a Perron–Frobenius matrix. Then A has a real eigenvalue

� > 0 (called the Perron–Frobenius eigenvalue) of multiplicity 1, such that for

any other eigenvalue �, we have that � > j�j. Furthermore, the coordinates of

the eigenvalue corresponding to � are all positive.

Given a graph G, let A.G/ be its adjacency matrix, that is - if V.G/ D
¹v1; : : : ; vkº, then A.G/i;j is the number of edges connecting vi to vj . It is a

standard fact that for any k, .A.G//k
i;j is the number of paths in G whose initial

vertex is vi and whose terminal vertex is vj . We call a graph Perron–Frobenius

if A.G/ is Perron–Frobenius. An equivalent way of stating this definition is that

G is Perron–Frobenius if there is a number N > 0 such that for any k > N and

for any v; w 2 V.G/, there exists a path p of length k such that �.p/ D v and

�.p/ D w.

Suppose G is undirected, and E.G/ D ¹e1; : : : ; eN º. To any continuous map

�W G ! G that sends paths to paths, we can associate a matrix T 2 MN .R/,

called the transition matrix of � in the following way. Set Ti;j to be the number of

times �.ei / passes through ej (in either direction). The map � is called Perron–

Frobenius if the transition matrix T is Perron–Frobenius.

2.3. Fully irreducible automorphisms and their train track representatives.

Given a graph G, and a vertex v 2 V.G/, we have �1.
x
G; v/ Š F where F is

a free group. Since
x
G is a KF;1 space, any element � 2 Aut.F / is induced by a

continuous function �W G ! G. Furthermore, given an edge e 2 E.G/, we have

that f .e/ is a path in G.

A subgroup H < F is called a free factor if there is a subgroup K < F such

that F D H � K. An element � 2 Aut.F / is called fully irreducible if for every

i > 0, there is no free factor H such that f .H/ is conjugate to H .
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Given f 2 Aut.Fn/, a train track representative of f is a triple .G; �; �v/

of a graph, map, and a collection of equivalence relations with the following

properties.

(a) The graph G satisfies �1.G; v/ Š Fn, for any v 2 G.

(b) The map �W G ! G is a continuous map that sends paths to paths and induces

the same outer automorphism of Fn as f .

(c) The set �D ¹�vºv2V.G/ is a collection of equivalence relations on the edges

incident at each vertex v, such that �v has at least two equivlaence classes

for each v. A path p in G is called legal if no two of its concurrent edges are

�-equivalent. The relationship satisfies the condition that given any legal

path p, the path �.p/ is also legal. In particular, the path �.p/ is immersed.

If f has a train track representative .G; �; �/, then by replacing f with f K for

some integer K we can assume that f fixes a vertex v 2 V.G/. In this case, f and

� will induce the same automorphism of �1.G; v/ D Fn.

The following Theorem is due to work of Bestvina and Handel [2].

Theorem 2.2. Let f 2 Aut.Fn/ be fully irreducible. Then there exists at least

one train track representative for f . Furthermore, there exists a number �.f / > 1

called the dilatation of f such that for any train track representative .G; �; �/ the

transition matrix T of � is Perron–Frobenius with highest eigenvalue equal to �.

If we let l be the eigenvector of T corresponding to the eigenvalue �, then its

coordinates give a function l W E.G/ ! RC. We call this length function the train

track length function. Since l is a �-eigenvector, it follows that if p 2 P.G/ then

l.�.p// D � � l.p/.

2.4. Bounded cancellation In free groups. In the proof of Theorems 1.1 and 1.2,

we will require the following theorem of Thurston (c.f. [4]).

Theorem 2.3. Let B be a finite generating set for Fn, and let j � j be the word

length function given by the generating set B . The for every � 2 Aut.Fn/, there

exists a number C > 0, such that for every ˛; ˇ 2 Fn,

j�.˛/j C j�.ˇ/j � C � j�.˛ˇ/j:
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2.5. The Hausdorff Metric. Recall that given two compact sets X; Y � RN ,

the Hausdorff distance between X and Y is defined as

dH .X; Y / D max¹sup
x2X

d.x; Y /; sup
y2Y

d.y; X/º;

where d is the Euclidean metric. A related notation we will often use, given a

compact set X and a real number R > 0 is

BR.X/ D ¹x 2 RN j d.x; X/ < Rº:

2.6. Weak-* convergence of measures. We say that a sequence of probability

measures ¹�kº1
kD1

on Rn weak-* converge to the measure � if, for every bounded,

continuous function hWRn ! R,

lim
k!1

Z

Rn

h�k D

Z

Rn

h�:

One convenient criterion that we will use for weak-* convergence is the following.

Lemma 2.4. Let ¹�kº1
kD1

be a sequence of probability measures on Rn, and let

� be a probability measure supported at the point Q 2 Rn. Suppose that for

every closed ball B � Rn, limk!1 �k ŒB� D �ŒB�. Then the measures �k weak-*

converge to �.

Proof. Let hWRn ! R be a bounded continuous function. Let M be an upper

bound for jhj. Fix � > 0. Since h is continuous, there exists a ı such that

jh.x/ � h.y/j < � for all x; y 2 Bı.Q/. For all sufficiently large values of k

we have that �k.Bı.Q/
c
/ < �

M
. For these values of k,

ˇ̌
ˇ̌
Z

Rn

h�k � h.Q/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
Z

Bı.Q/

h�k � h.Q/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌
Z

Bı.Q/
c

h�k

ˇ̌
ˇ̌ � .1 � �/� C �

and the result follows. �

3. Proofs of main Theorems

3.1. Proof of Theorem 1.1

3.1.1. Reduction to the case where fab is the identity matrix. During the

course of the proof, we will often replace f with some power of itself. To do

this, we require the following Lemma.

Lemma 3.1. If f 2 Aut.Fn/ is fully irreducible such that fab has finite order,

and the conclusion of Theorem 1.1 holds for f L for some L > 0, then it holds for

f as well.
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Proof. Choose x 2 Fn for which the orbit of x under f is infinite. Then the orbit

of x under f L is infinite, as is the orbit of f rx under the action of f L, for any

r � 1. Write g D f L. Given any integer P , we have that P D qL C r for some

q; r 2 N, and

SP f P x D SP gq.f rx/ D
P

q
Sq gqf r .x/:

The number r can take on the values 0; : : : ; L � 1. For each particular value of

r we have that

lim
q!1

Sq gq.f r.x// D S1 g:

Furthermore, limP !1
P
q

D L. Thus, it follows that

lim
P !1

SP f P .x/ D L � S1 : �

One immediate consequence of this Lemma is that we can (and will) assume

henceforth that fab D In. Furthermore, whenever we have a graph G, and a map

�W G ! G that realized the same outer automorphism as f , we will always assume

� fixes a vertex of G by replacing f with a power of itself.

3.1.2. Controlling the action on RG for a general graph G . Let G be a graph

with N edges, and v0 2 V.G/ such that �1.G; v0/ Š Fn. Let �W .G; v0/ ! .G; v0/

be a continuous function that sends edges to paths, such that � induces the

automorphism f on Fn. Choose a preferred orientation on each of the edges of G.

Let �ab be the action induced by � on RG. Note that the fact that fab D In

does not imply that �ab D IN . However, the action of �ab on bPG is relatively

simple. Indeed, for every v 2 V.G/, choose a path pv 2 P.G/ that connects v to

v0. Given any path p, let Np be the path obtained by traversing p backwards from

�.p/ to �.p/. Given a path p 2 P.G/ such that �.p/ D v and �.p/ D w,

�ab Op D �ab Op � �abcpv C �abcpw C �abcpv � �abcpw

D �ab.2pvppw/ � �abcpv C �abcpw :

Since pvppw is a circuit, �ab acts trivially on it. Thus, setting u D cpw � cpv

we get

�ab Op D Op C .u � �abu/:

Setting R D �ab � IN we can write �ab Op D Op C R. Op/. The above argument

shows that R. Op/ depends only on the initial and terminal vertices of p, and thus

can take on only finitely many values.
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3.1.3. Half-point sets of shadows and their iterates. Fix a graph G as above.

Call a point y 2 RN path accessible if there exists a path p 2 P.G/ such that

y 2 S.p/. Let A � RN be the set of path accessible points. Let

H D
°
x 2

1

2
ZN

ˇ̌
ˇ exactly one coordinate of x is not an integer

±
\ A:

Given a path p 2 P.G/, define the half point set of p, or HP.p/, to be the set

S.p/ \ H. The set HP.p/ has the property that dH .HP.p/; S.p// � 1
2
. We

will study the sets HP.�k.p//. These are relatively simple to study because of

the following lemma, that shows that given a path p, the set HP.�.p// can be

determined solely by considering HP.p/.

Lemma 3.2. There exists a function LWH ! 2H such that, for any path p 2 P.G/,

HP.�.p// D
[

x2HP.p/

L.x/:

Proof. Each element x 2 H has a preferred coordinate - the nonintegral one.

This coordinate corresponds to an element in E.G/ which we denote e.x/. If

x 2 HP.p/, then p passes through the edge e.x/ at least once, either in the positive

or negative direction.

Given an edge e 2 E.G/, let pe be the path that traverses e in the positive

direction. Let x 2 H. Define bxc D x � 1
2
1pe.x/, and set

L.x/ D HP.�.pe.x/// C �abbxc

where the above expression is taken to mean the translation of the set HP.�.pe.x///

by the vector �abbxc. Notice that if p, and p D p1p2 then

Sp D Sp1 [ .Sp2 C �abcp1/:

Fix x 2 H. We consider two cases.

Case 1. Let p be a path of the form p D p1pe.x/, such that the last segment of
zSp passes through x then

S�.p/ D S.p1/ [ .S�.pe.x// C �ab.cp1//

D S.p1/ [ .S�.pe.x// C �abbxc/:

So,

HP.p/ D HP.p1/ [ L.x/:
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Case 2. Now suppose p is a path of the form p D p1pe.x/, such that the last

edge of zSp passes through x then

S�.p/ D Sp1 [ .S�.pe.x// C �ab.cp1// D Sp1 [ .S�.pe.x// C �ab.cp1//:

Now notice that cp1 D bxc C bpe. Thus

S�.p/ D Sp1 [ .S�.pe.x// C �ab.bpe/ C �abbxc/:

Furthermore, we have that S �.pe.x// C �ab.bpe/ D S�.pe.x//. Indeed, as paths in

RN ,

zS�.p/ C �ab.bpe/ D zS�.p/:

Both paths traverse the same edges in reverse order. Thus, once again, in this case

HP.�.p// D HP.p1/ [ L.x/:

The result now follows from induction on the length of the path p. �

Lemma 3.3. For any x1; x2 2 H, L.x1/ � x1 D L.x2/ � x2.

Proof. If x 2 H, there is a path px 2 P.G; v0/ such that bxc 2 S.p/. Thus,

�abbxc D bxc C R.bxc/, where R.bxc/ is depends only on the terminal vertex

of px , and thus it is a function of e.x/. Thus, the set L.x/ � x depends only on

e.x/. �

By Lemma 3.3, there is a function L0W E.G/ ! 2R
N

such that for any x 2 H,

we have that L.x/ � x D L0.e.x//.

Now consider the following directed graph, which we call the half point graph

of � or HP� . For every edge e 2 E.G/, there is a vertex ve 2 V.HP�/. Given

an edges d; e 2 E.G/, connect the vertex vd to ve with m edges emanating from

vd , where m is the number of times �.d/ passes through the edge e (in either

direction).

Let � 2 E.HP�/. The edge � associated to a segment in �.d/, for some

d 2 E.G/, which is in turn associated to a segment in S �.d/. Let y� be the

half-point of this segment and let x� D 1
2

Od . Define H.�/ D y� � x� . Extend H

linearly to a function H WRHP� ! RN .

Example. Let G D R2. Label the edges of G a and b. Let �W G ! G be

given by �.a/ D ababa�1, and �.b/ D bab�1a�1b. The figures below show

the parametrized shadows zS �.a/, zS�.b/.
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The graph HP� has two vertices va; vb. The path �.a/ has length five. Three

of its segments pass through the edge a and two through b. Thus, there will be

three edges from va to va, whose H values are

�
0

0

�
;

�
1

1

�
;

�
1

2

�
;

and two from va to vb whose H values are

 
1
2

1
2

!
;

 
3
2

3
2

!
:

Similarly, vb is connected by three edges two itself whose H values are

�
0

0

�
;

�
0

0

�
;

�
1

0

�
;

and by two to va, whose H values are

 
1
2

1
2

!
;

 
1
2

�1
2

!
:

Given a path p 2 P.G/, the graph HP� can be used to find HP.�k.p// for any

value of k.

Lemma 3.4. Let p 2 P.G/. Write p D p1 � : : : � ps as a concatenation of edges,

and let e1; : : : ; es be these edges. Let P k
i D 5Pk.HP� ; ei / � RHP� . Then, for any

k � 1,

HP.�k.p// D

s[

iD1

Œ4p1 � � � pi�1 C H.P k
i /�:
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Proof. Given x 2 HP.�k.p//, by Lemmas 3.2 and 3.3, we have that x D

xk�1 C yk�1 where xk�1 2 HP.�k�1.p// and yk�1 2 L0.e.xk�1//. Similarly,

xk�1 D xk�2 C yk�2, where xk�2 2 HP.�k�2.p// and yk�2 2 L0.e.xk�2//.

Continuing in this manner, we can associate, perhaps non uniquely, to x two

sequence x0; x1; : : : ; xk�1, where xi 2 HP.�i .p// and yi 2 L0.e.xi//. We have

that yi D H.�i / for some edge �i 2 HP� . Furthermore, by definition we must have

that �.�i/ D �.�iC1/. The point x is completely determined by x0 and the sequence

of yi ’s . The sequence of yi ’s determines a path � of length k in Pk.HP� ; ve.x0//,

and their sum is x0 C H. O�/ . Similarly, any such path determines a sequence of

xi ’s and yi ’s, and hence a point in HP.�k.p//. �

The following lemma and proposition describe the set 6Pk.HP� ; vei
/ when the

map � is Perron–Frobenius.

Lemma 3.5. In the notation above, if � is Perron–Frobenius then HP� is Perron–

Frobenius.

Proof. Let A be the adjacency matrix of HP� . Given an integer k, and a pair of

indices i; j we have that .Ak/i;j > 0 if and only if there is a path of length k from

vei
to vej

. By lemma 3.4, this happens if and only if �k.ei/ passes through ej .

Since � is Perron–Frobenius, this happens for all sufficiently large values of the

number k. �

Proposition 3.6. Let � be a finite, Perron–Frobeniusdirected graph with N edges.

Then there exists a convex polytope … � RN with rational vertices such that, for

any v0 2 V.�/,

lim
k!1

1

k
3P.�; v0/ D …;

where the above limit is in the Hausdorff metric.

Proof. Fix a vertex v0 2 V.�/. Choose an ordering e1; : : : ; eN of E.�/. This

gives an identification of R� with RN . Given an real number k > 0, let

†k D span bC.
x
�/ \

´ x1

:::

xN

!
2 RN

ˇ̌
ˇ̌
ˇ

x1 C : : : C xN D k; and

for all i such that xi � 0

µ
:

For k1 � k2 let †Œk1;k2� D
S

k2Œk1;k2� †k . Let †Z

Œk1;k2�
D †Œk1;k2� \ZN . Since

the graph � it is Perron–Frobenius, it is strongly connected, that is, each point can

be connected by a path to each other point. This means that there is a constant

C1 such that any path can be extended to a circuit in � containing v0 by adding at

most C1 (positively oriented) edges. Thus, 3Pk.�; v0/ � †Z

Œk;kCC1�
. This gives

3Pk.�; v0/ � BC1
.†Œk;kCC1�/:
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By definition, we have 1
k

†k D †1, so

1

k
3Pk.�; v0/ � B C1

k

.†�
1;1C

C1
k

�/:

Let t > 1. Since †t D t†1, we have that any point in y 2 †t is of the form tp

for some p 2 †1, and thus

d.y; †1/ � d.p; tp/ D .t � 1/kpk2 � .t � 1/ max
q2†1

kqk2:

Setting D D 1 C maxq2†1
kqk2, we get †�

1;1C
C1
k

� � B DC1
k

.†1/,

1

k
3Pk.�; v0/ � B 2DC1

k

.†1/:

For x D
PN

iD1 ai ei 2 R�, let supp.x/ D ¹ei j ai ¤ 0º. Let k 2 N and fix

some x 2 †Z

k
. The set supp.x/ can be viewed as a subgraph of

x
� in an obvious

way. We claim that if supp.x/ is connected, then x 2 cPk .

To see this, note that since x 2 span bC.
x
�/, there exists circuits 1; : : : ; l in

x
�

such that
Pl

iD1 bi D x. If c1; c2 are two intersecting circuits in
x
�, then there is a

circuit c3 in
x
� such that bc3 D bc1 C bc2. This circuit is given by following c1 until

it first intersects c2, then following all of c2, and finally resuming c1. Since the

graph supp.x/ is connected, reorder the i ’s such that for all i > 2, i intersectsS
j <i j . Thus, there is a circuit  in

x
� such that O D x.

Since  a circuit in
x
�, it may contain edges whose direction is opposite the

direction given by �. Suppose, without loss of generality that e1 D .v; w/ 2 E.�/,

and .w; v/ is an edge in  . Since x 2 †k, we have that a1 � 0. Therefore, e1 is

also an edge in  . Since  is a circuit, we can cyclically reorder  to get a circuit

ı D .v; w/ 0
1.w; v/ 0

2;

where  0
1,  0

2 are circuits in
x
�. We have that Oı D b 0

1 C b 0
2 D x. The circuits  0

1 and

 0
2 must intersect, because their union equals the support of x, which is connected.

Using the procedure described above, we find a circuit  0 in
x
� such that b 0 D x.

Furthermore,  0 traverses the same edges as  the same number of times, except

for e1 which it traverses one less time in each direction, so its length is 2 less than

the length of  . We can proceed inductively in this manner, until we get a circuit

0 which traverses all edges in the direction given by �, such that b0 D x.

For any k let

�k D ¹x 2 †k j supp.x/ is not connected º:

The above discussion gives us that

†Z

k � �k � 1Pk.�/:
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The space span bC.
x
�/ is a subspace of R� that is defined over Z, and thus

span bC.
x
�/ \ ZN is a lattice of rank dim span bC.

x
�/ in span bC.

x
�/. Therefore, there

exists a constant C2 such that, for any k, dH .†k; †Z

k
/ < C2, so we have

†k � �k � BC2
. 1Pk.�// � BC1CC2

. 3Pk.�; v0//:

If supp.x/ is not connected, then it is a proper, disconnected subgraph of �. Let

�1; �2 be two connected components of supp.x/. For i D 1; 2, choose vertices

vi 2 V.�i /. Since � is strongly connected, there are paths P1;2 and P2;1 in

� connecting v1 to v2 and v2 to v1 respectively. Since � is directed, we can’t

have that bP1;2 D �bP2;1. The cycle P1;2P2;1 has nontrivial image in R�, and is

not contained in spanC.supp.x//. Thus span 4C.supp.x// is a proper subspace of

span bC.
x
�/. Since †k is a dim span bC.

x
�/ � 1 dimensional polytope that does not

pass through the origin, we that †k \ span 4C.supp.x// is a polytope of dimension

� dim span bC.
x
�/ � 2. Thus †k � span 4C.supp.x// is dense in †k. Since

�k �
[

�0 is a disconnected

subgraph of �

span 1C.
S
� 0/

and the above union is finite, we have that †k � �k is dense in †k . Thus,

†k � BC1CC2
. 3Pk.�; v0//

and

†1 � B C1CC2
k

� 1

k
3Pk.�; v0/

�
:

Putting the above inclusions together, we get

†1 � B C1CC2
k

� 1

k
3Pk.�; v0/

�
� B C1CC2C2DC1

k

.†1/

and thus

lim
k!1

1

k
3Pk.�; v0/ D †1:

Since †1 is the intersection of a convex polytope (a simplex) with a subspace,

it is a convex polytope itself. Since †1 was defined by equations and inequalities

with coefficients in Z, it has rational vertices. �

Corollary 3.7. In the notation above, if the transition matrix of � is Perron–

Frobenius then there exists a convex polytope S1 � � RG with rational vertices

such that for any path p 2 P.G; v0/

S1 � D lim
k!1

Sk.�k.p//:
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Proof. Set S1 � D H.†1/, where †1 � RHP� is the set defined in the proof of

Proposition 3.6. For convexity, note that this is just the image of a convex polytope

under a linear map. For the rationality of the vertices, note that H is given by a

matrix with integer entries, and that †1 has rational coefficients. The convergence

follows directly from Proposition 3.6, lemmas 3.4 and 3.5 and the fact that for any

path p, we have that dH .Sp; HP.p// � 1
2
. �

3.1.4. Passing from shadows in RG to shadows in Rn. Let G; � be as above.

Let T be a minimal spanning tree for G. Let A D E.G/ � E.T /. There is a map

RAWP.G; v0/ ! FA Š Fn, (where FA is the free group on the set A) given by

reading off the edges in A that p passes through, and obtaining a reduced word

in FA.

A path p 2 P.G/ is called reduced if it immersed, that is, it does not contain

any subpaths of the form e Ne, where e 2 E.G/. Given any path p consider the

following path: start with p, and repeatedly removing all subpaths of the form

e Ne, until there are none left to remove. We denote this new path pred. We define

S
red.p/ D S.pred/ and call this the reduced shadow of p.

If p 2 P.G; v0/, we have that RA.p/ D RA.pred/. Let RAWRG ! FA be

the projection map that reads off the coordinates corresponding to edges in A.

If RA.p/ D w then we have that RA.Sred p/ D Sw.

Let FA be the free group on the elements of A. The map � induces an

automorphism fA of FA. If we identify FA with Fn, then this automorphism is

conjugate to f .

Proposition 3.8. Let G; � be a train track representative for f . Then, for any

word w 2 FA with infinite fA-orbit, we have that

lim
k!1

Sk f k.w/ D RA S1 �:

Proof. Suppose p is a legal path then �k.p/red D �kp. Thus, if p is legal, then

RA.Sk �k.p// D Sk f k
A .RA.p//:

Since � is a train track representative, the transition matrix for � is Perron–

Frobenius. Thus. by Corollary 3.7

lim
k!1

Sk f k
A .RA.p// D RA.S1 �/

and RA.S1 �/ is a convex polytope with rational vertices.

Now suppose that p 2 P.G; v0/ is a general, not necessarily legal such that

the forward orbit of p under the action of � is infinite. An illegal subpath of p

of length 2 is called an illegal turn. Let I.p/ be the number of illegal turns in p.

Since paths of length 1 are legal, as are all their images under �k for every k, we
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get that I.�k.p/red/ � I.p/ for every k. Since the length of �k.p/ goes to infinity,

we get that given any L > 0, the paths �k.p/red will contain a legal subpath of

length > L for all sufficiently large k.

By [1], if there exists a number C > 0 such that if p contains a legal subpath

p0 of length greater than C , then p0 contains a subpath p00 such that �k.p00/ is a

subpath of �k.p/red, for any k. Replace f with a sufficiently high power of itself,

such that �.p/red is a legal subpath of length greater than C . Since � is Perron–

Frobenius, by taking an even higher power we can assure that the path p00 passes

through v0. By replacing p00 with a legal subpath of itself, we can take �.p00/ D v0.

Write q D �.p/ D xp00y where x; y are paths. Then, for any k,

Ox C S �k.p00/ � S
red �k.q/I

this gives

k

k � 1

� Ox

k � 1
C Sk�1 �k�1.q/

�
�

k

k � 1
S

red
k�1 �k�1.q/ D S

red
k �k.p/ � Sk �k.p/:

Since the leftmost and rightmost expressions above converge to S1 �,

lim
k!1

S
red
k �k.p/ D S1 �

as long as p has an infinite � orbit and therefore

lim
k!1

Sk f k
A .R.p// D RA S1 �

as long as R.p/ has infinite fA orbit. The result now follows. �

3.1.5. Passing from fA shadows to f shadows. Suppose f D gfAg�1 for

g 2 Aut.Fn/. Suppose w has infinite f orbit. Then g�1.w/ will have infinite

fA orbit. The sets Sk f k
A .g�1w/ converge to RA S1 �. To conclude the proof of

Theorem 1.1, we need to describe Sk gf k
A .g�1w/

Lemma 3.9. Let h 2 Aut.Fn/. There exists a number C D C.h/ such that for any

word w 2 Fn, we have dH .Sh.w/; hab Sw/ < C .

Proof. Let C1 D C1.h/ be a number as provided by Theorem 2.3 for the automor-

phism h . Let w 2 Fn, and x 2 Sw \ Zn. Write w D w1w2, as a reduced product

of words such that cw1 D �.zSw1/ D x. Let y D habx D �.zSh.w1//. It might be

true that y … Sh.w/. However, by Theorem 2.3, there exists y0 2 Sh.w/ such that

d.y; y0/ < C1, or, in other words,

hab Sw � BC1
.Sh.w//:
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Let C2 D C2.h�1/ be a number as provided by Theorem 2.3, for the automorphism

h�1. By the argument above, h�1
ab

Sh.w/ � BC2
.Sw/ so

Sh.w/ � habBC2
.Sw/ � BkhabkC2

.hab S.w//;

where khabk is the operator norm of hab . The result now follows by setting

C D max¹C1; khabkC2º. �

We now have that dH .Sk gf k
A .g�1w/; gab Sk f k

A .g�1w// � C
k

. Theorem 1.1

follows immediately, where S1 f D gab ı RA S1 �.

3.2. Proof of Theorem 1.2. As in the proof of Theorem 1.1, we begin by noting

that we can replace f with a power of itself. The proof of the following lemma is

nearly identical to the proof of Lemma 3.1, and we do not include it.

Lemma 3.10. Let f 2 Aut.Fn/ be fully irreducible such that fab has finite order.

Suppose that there exists an integer N such that the conclusion of Theorem 1.2

holds for f N , then it holds for f as well.

3.2.1. Half-point darkness measures. Let G; � be a train track representative

graph with N edges, with �1.G; v0/ Š Fn, and let �W .G; v0/ ! .G; v0/ be a

continuous function that induces f . Assume further that � is Perron–Frobenius.

Let l W E.G/ ! R>0 be a length function. Given a path p 2 P.G/, the measure

Dp is supported on segments of the form Œx; x C ei � where x 2 ZN , and ei is a

standard basis vector. Let � be such a segment. The restriction of Dp to � is a 1-

dimensional Lebesgue measure. Each such � corresponds to an edge e� 2 E.G/.

Let c� .p/ be the number of times p traverses � (in either direction). If we let l.p/

be the total length of p, then

DpŒ�� D
c� .p/l.e�/

l.p/
:

The measure Dp is completely determined by evaluating it on all segments �

as described above. We define a new measureDHP.p/ on H, by setting, for every

x 2 H, DHP.p/Œx� D DpŒ�x� where �x is the segment that passes through x.

For any integer k, we define similarly a measure Dk HP.p/ on 1
k
H. The following

lemma allows us to prove work with half-point measures.

Lemma 3.11. Suppose ¹pkº1
kD1

is a sequence in P.G/ such
S1

kD1 Sk pk is a

bounded subset of RN , and

lim
k!1

Dk HP.pk/ D D1

in the weak-* topology, where D1 is a measure supported at a single point. Then:

lim
k!1

Dk pk D D1 :
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Proof. Let hWRN ! R be a bounded continuous function. Let Q D E.D1/. We

have that

lim
k!1

Z

RN

hDk HP.pk/ D h.Q/:

The supports of all the measures Dk pk , and Dk HP.pk/ lie in some compact set

X � RN . By absolute continuity, for every � > 0, there is a ı > 0 such that

whenever y 2 RN , and � is a segment containing y, of length less than ı, we have

j
R

�
hds � h.y/j < � � length.�/ where ds is a Lebesgue measure on � of total

measure length.�/.

Thus, fixing a value of � > 0, if 1
k

< ı and p is any path such that Sk p � X ,

we have that ˇ̌
ˇ̌
Z

RN

hDk p �

Z

RN

hDk HP.p/

ˇ̌
ˇ̌ < �:

Since � was arbitrary, we get limk!1

R
RN hDk pk D h.Q/, as required. �

Notice that to apply this Lemma, we will need the fact that for any path p, the

set
S1

kD1 Sk �k.p/ is bounded. This follows immediately from Corollary 3.7.

Fix a train track representative G; � for f . Suppose that G has N edges, and

let l W E.G/ ! RC be any length function. Let p 2 P.G/, and write p D p1 : : : ps

as a concatenations of directed edges. Suppose that the edges p passes through

are e1; : : : ; es. Suppose that the graph HP� has M edges. Let X D
UM

1 RHP�

(recall that we are using the notation RHP� for the abstract vector space spanned

by the edges of HP� . In other words, RHP� Š C1.HP� ;R/, the space of 1-chains

in HP�). For every 1 � i � M , let X i denote the i-th copy of RHP� . Extend

the function H defined in Ssection 3.1.3 to a function HpW X ! RN by setting by

setting HpjXi
D 4p1 � � � pi�1 CH . Define functions ck on X by setting, for x 2 X i ,

ck.x/ D #¹q 2 Pk.HP� ; pi/j Oq D xº:

Given such an x, the point H.x/ is the a half point in RN , corresponding to the

edge e.x/ 2 E.G/. Define l.x/ D l.e.x//. Define a measure �k on X by setting,

for any x 2 X ,

�k.x/ D
ck.x/l.x/

l.�k.p//
:

Following the definitions, we get DHP.�k.p// D Hp��k .

3.2.2. Train track length functions and random walks on graphs. Now fix

l W E.G/ ! RC be the train track length function. For this function, the measures

�k are simpler to describe. Fix a path p D p1 � : : : � ps. For any k, and any path q,
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we have that l.�k.q// D �kl.q/. Thus,

�k D

sX

iD1

l.�k.pi //

l.�k.p//
.HpjXi /� DHP.�k.pi //

D

sX

iD1

l.pi /

l.p/
.HpjXi /� DHP.�k.pi //:

Thus �k is a convex combination of the measures .HpjXi /� DHP.�k.pi //. We

will study each of these separately. Henceforth, assume s D 1, so p D p1, and p1

corresponds to the edge � 2 E.G/.

Proposition 3.12. Let G; �; l be as above. Then there exists a point D1 � 2
QŒ�.�/�N such that for any path p D p1 of length 1, we have that

lim
k!1

Dk �kp D D1 �

in the weak-* topology, where D1 � is a point measure supported at D1 �.

Proof. Given vertices vd ; ve 2 E.HP�/, each edge h connecting vd to ve corre-

sponds to a half point in x 2 HP.�.d// such that e.x/ D e. Let

�.h/ D
l.e/

l.�.d//
:

Notice that � defines a probability measure on the outgoing edges of each vertex

in HP� . Given an integer k, we can use � to define the random walk measure �k

on Pk.HP�/. This is given by �k.h1 : : : hk/ D
Qk

iD1 �.hi/. Suppose hi connects

the vertex vei
to the vertex veiC1

. Since � multiplies lengths of all paths by �,

�k.h1 : : : hk/ D

Qk
iD1 l.eiC1/
Qk

iD1 l�.ei /
D

l.ekC1/

�kl.e1/
D

l.ekC1/

l.�k.e1//
:

Let �red
k

be the probability measure �k restricted to the set Pk.HP� ; v�/. From

the above equation, we get by definition that �k D .y� /��red
k

, where y� is viewed as

a function from Pk.HP� ; v�/ to ZM .

Let X be the set of bi-infinite indexed paths in HP� , that is X is the set of all

functions pWZ ! E.HP�/ such that for each i 2 Z, we have that p.i/p.i C 1/ is a

path in HP� . A cylindrical set in X is a set of the form C.
N
i;

N
e/ D ¹p 2 Xjp.ij / D

ej ; for all 1 � j � lº, where
N
i D .i1; : : : ; il/ is an increasing sequence of length

l in Z and
N
e D .e1; : : : ; el/ 2 E.HP�/l . Let � be the �-algebra generated by all

cylindrical sets.



Homological shadows of attracting laminations 859

Define a measure � on X on sets in � in the following way. Let C.
N
i;

N
e/ as

above. Let k D il � i1. Let

�.C.
N
i;

N
e// D �k.¹p 2 Pk.HP�/jp.ij � ii / D ej ; for all 1 � j � lº/:

It is a standard fact that such a definition gives rise to a well define measure of

finite mass on X. Let sWZ ! Z be given by s.x/ D x C 1. Let T WX ! X be given

by T .p/ D p ı s. It is clear that the measure � is T invariant, and is standard that

T is ergodic with respect to �.

Given an edge e 2 E.HP�/, and a number i 2 Z, let �e
i D 1C.e;i/. Notice that

�e
i D f e

0 ı T i . Let ‰k WX ! RM be given by

‰k.p/ D
� kX

iD1

�e
i

�
e2E.HP�/

.p/ D
� kX

iD1

�e
0 ı T i

�
e2E.HP�/

.p/

Given a path p0 2 Pk.HP�/, choose a path p 2 X such that, for every 1 � i � k,

p0.i/ D p.i/. We have that bp0 D ‰k.p/.

Furthermore, if we set �red to be the measure � restriced to the set ¹p 2

Xj�.p.1// D v�º, we have by definition that �k D ‰k��red.

Now, let gk WRM ! RM be given by gk.x/ D x
k
, and e�k D .gk/��k . Then we

have that

Dk HP.�k.p1// D H�e�k D ŒHp ı ‰k ���red:

By Birkhoff’s ergodic theorem, the functions 1
k

‰k converge almost surely as

k ! 1 to a T -invariant function ‰1. Since T is ergodic, this function is constant

� almost everywhere. Call this constant Q. Since �red is absolutely continuous

with respect to �, this function is equal to Q, �red almost everywhere. This implies

that for any � > 0 and 0 < C < 1, and for all sufficiently large value of k,

�redŒ 1
k

‰�1
k

B�.Q/� > C , and thus Q�k ŒB�.Q/� > C . Similarly, for P ¤ Q, for

all sufficiently large values of k, Q�k ŒB�.P /� < C . This immediately implies that

the measures Q�k weak-* converge to a point measure supported at Q, and thus

the measures Dk HP.�k.p1// weak-* converge to a point measure supported at

H.Q/.

To calculate the point Q, notice that for every i , and every e 2 E.HP�/,

E.�e
i / D �.e/. Thus,

E
�1

k
‰k

�
D

1

k

kX

iD1

�.e/ D �.e/:

So ‰1 D .�.e//e2E.HP�/, almost everywhere. By definition, �.e/ is in the

field generated by � and the lengths of the edges in G. Since these lengths are

simply coordinates of a �-eigenvector of a matrix with coefficients in Z, they

belong to the field QŒ��, as required. �
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Since the measure provided by Proposition 3.12 doesn’t depend on the choice

of the initial path p, we get the following.

Corollary 3.13. Let G; �; l be as above. Then there exists a point D1 � 2

QŒ�.�/�N such that for any path p of length 1, we have that

lim
k!1

Dk �kp D D1 �

in the weak-* topology where D1 � is a point measure supported at D1 �.

We generalize this corollary, by allowing the length function l to vary.

Lemma 3.14. Let G; �; l;D1 � be as above. Let l 0 be any length function on

E.G/. Then for any path p,

lim
k!1

D
l 0

k �kp D D1 �:

Proof. There is a constant C > 0 such that for any path q 2 P.G/, we have that

1

C
l 0.q/ � l.p/ � C l 0.q/:

If we set �k to be the measure described above with respect to l , and �0
k

to be the

same measure with respect to l 0, we have that, for every point x,

1

C 2
�0

k.x/ � �k.x/ � C 2�k.x/:

This immediately implies the result. �

3.2.3. Switching from the train track graph to Rn. Let T , A, RA, and fA be

the tree, set, map and automorphism defined in Section 3.1.4. We can view l as a

length function on Rn. Extend l to a length function l W E.G/ ! RC.

Given any immersed loop p 2 P.G; v0/, we have that l.RA.p// > 0. Write

Dp D D
A p C D

T p, where D
A p is supported on shadows of edges in A,

and D
T p is supported on shadows of edges in T . Define, similarly, DA

k p and

D
T
k p Let mA.p/; mT .p/ be the total masses of DA p, and D

T p respectively. By

definition,

DRA.p/ D
1

mA.p/
RA� D

A p:

Now add the assumptions that p is legal. For every edge e 2 E.G/, let ne be

the number of times p traverses this edge (in either direction.) For any k,

Dk RA.�k.p// D
1

mA.�kp/
RA�ŒDA

k �k.p/�:



Homological shadows of attracting laminations 861

Let ‚ be the transition matrix for �, and let v be its Perron–Frobenius eigenvec-

tor. Each coordinate of v D .ve/e2E.G/ is positive. Let kvkA D
P

e2A jvej. Notice

that kvkA ¤ 0. Let �A D
P

e2A l.e/, � D
P

e2E.G/ l.e/. For any k, the coordi-

nates of the vector ‚k.ne/e2E.G/ give the number of times �k.p/ passes through

each edge of E.G/. For all sufficiently high values of k, the vectors ‚k.ne/e2E.G/

are in the positive orthant, and hence the sequence ¹‚k.ne/e2E.G/º
1
kD1

converges

projectively to v. Thus,

lim
k!1

mA.�k.p// D
�A � kvkA

� � kvk1

> 0I

Therefore, there exists C > 0 such that, for all sufficiently large k, mA.�k.p// >

C . Now, since Dk �k.p/ D D
A
k �k.p/ C D

T
k �k.p/, and limk!1 Dk �k.p/ D

D1 � is a measure supported at a point, we must have that the measuresDA �k.p/

converge to a point measure supported at the same point. Thus,

lim
k!1

Dk f k
A .p/ D RA� D1 �

and the right hand side of the above equality is a measure supported at a point

in QŒ��. Now suppose that p has infinite � orbit, but remove the assumption that

it is legal. Notice that now, Dk f k
A .p/ D RA� D

A
k Œ�k.p/�red. Replacing p with

.�M p/red for a sufficiently large M , we get that p contains arbitrarily long legal

subpaths. Thus, we can assume that p contains a legal subpath q that is a circuit,

such that �k.q/ is a subpath of �k.p/red for any k. Given any path � 2 P.G/, a

subpath � 0 of � red and a set B � RN ,

l.� 0/

l.� red/
D� 0ŒB� � D� redŒB� �

l.�/

l.� red/
D�ŒB�I

in particular, for any k,

l.�kq/

l..�kp/red/
Dk �kqŒB� � Dk.�kp/redŒB� �

l.�kp/

l..�kp/red/
Dk �kpŒB�:

Lemma 3.15. In the notation above, there exists a constant C > 0, such that for

every k,

l.�kq/

l..�kp/red/
� C;

l.�kp/

l..�kp/red/
� C:

Proof. Suppose first that l is the train length function. In this case, l.�kp/ D

�kl.p/, and l.�kq/ D �kl.q/. Furthermore, we have that

l.�kq/ � ..�kp/red/ � l.�kp/
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and the result follows immediately for this case. Now suppose we choose a

different length function, l 0. Since the metrics given by l 0 and l are bi-Lipschitz

equivalent, we that there exists a constant D > 0 such that for every path r ,
1
D

l 0.r/ � l.r/ � Dl 0.r/ and thus

l 0.�kq/

l 0..�kp/red/
� D2 l.�kq/

l..�kp/red/

and
l 0.�kp/

l 0..�kp/red/
� D2 l.�kp/

l..�kp/red/

and the result now follows for the general case. �

Now, since limk!1 Dk �kq D limk!1 Dk �kp D D1 �, Lemma 3.15 gives

that, for any open ball B ,

1

C
Dk �kqŒB� � Dk.�kp/redŒB� � C Dk �kpŒB�

and thus, in the weak-* topology,

lim
k!1

Dk.�k/red D D1 �:

Since mA.DA
k �k.q// � mA.DA

k .�kp/red/, then the same argument as the legal

case gives that

lim
k!1

Dk f k
A .RA.p// D lim

k!1
RA� D

A
k .�kp/red D RA� D1 �:

We denote the pointE.RA� D1 �/ D D1 fA. Note that this point does not depend

on the length function l .

3.2.4. Behavior under conjugation. We’ve now proved Theorem 1.2 for the

autmorphism fA, which is conjugate to f . We want to prove it for f , as well

as proving it more generally for hf h�1, where h 2 Aut.Fn/. The following

Proposition will complete the proof.

Proposition 3.16. Given the notation above, and any h 2 Aut.Fn/, any length

function l on E.Rn/, and any word w with infinite f -orbit,

lim
k!1

Dk hf kh�1.w/ D hab� D1 f:

Proof. Given a word w, D h.w/ does not in general equal hab� Dw. Using the

fact that h is an automorphism of Fn, we can quantify the difference between these

two measures. This difference is the main technical tool in our proof.
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Pick a free generating set for Fn, and let j � j be the word length metric in this

generating set. Let C1 D C1.h/ be a number as provided by Theorem 2.3 for the

automorphism h. That is, given any ˛; ˇ 2 Fn, we have that jh.˛/jCjh.ˇ/j�C1 �

jh.˛ˇ/j. Let C 0
1 be a similar number provided by Theorem 2.3 to the automorphism

h�1.

Let C2 D lM
lm

where lM is the length of the longest edge of Rn and lm is the

length of the shortest. Let C3; C 0
3 be numbers such that, for any x 2 Fn,

1

C3

kxk � khxk � C3kxk;

1

C 0
3

kxk � kh�1.x/k � C 0
3kxk:

Set C D max¹C1; C 0
1; C2; C3; C 0

3º.

Given any v 2 Fn, and any edge e of S v, corresponding to the edge d of

Rn, we have that D vŒe� D l.d/ne

l.v/
, where ne is the number of times zS v passes

through e. As in the proof of Lemma 3.9, if zS v passes through e, then zShv passes

through at least one edge in BC .habe/, which will have at length at least 1
C

l.d/.

Furthermore, by the same reasoning, if zS v passes j times through e, any two of

which are separated by at least C edges, then zShv passes at least j times through

edges in BC .habe/, each of which has length at most C l.e/ . Also notice that

l.hv/ < C l.v/. Thus,

D hvŒBC .habe/� �
1
C

l.d/
�

ne

C

˘

C l.v/
�

1

2C 3
D vŒe�:

Pick R > 0, a sufficiently large number such that h�1
ab

BC .0/ � BR.0/. Then, by

the same reasoning applied to h�1,

D vŒBCCR.e/� �
1

2C 3
D hvŒBC .habe/�:

Thus, for any open ball X � RN we have that

1

2C 3
hab� D vŒX� � D hvŒX� � 2C 3hab� D vŒBRCC .X/�

and thus, for any k,

1

2C 3
hab� Dk vŒX� � D hvŒX� � 2C 3hab� Dk vŒB RCC

k

.X/�:
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Writing

Dk hf k
A f �1w D D h.f k

A .h�1w//;

and using the fact that limk!1 Dk f k
A .h�1w/ D D1 f , the above inequality

implies that if D1 f ŒX� D 0 (that is - h�1
ab

X does not contain the center of mass

of D1 f ) then limk!1 Dk hf k
A f �1wŒX� D 0. Since all of the above measures

are probability measures, this implies

lim
k!1

Dk hf k
A h�1wŒhabD1 �� D 1:

Therefore, limk!1 Dk hf k
A f �1w D hab� D1 f , as required. �
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