Groups Geom. Dyn. 12 (2018), 865[–887](#page-22-0) DOI 10.4171/GGD/458

Groups, Geometry, and Dynamics © European Mathematical Society

Palindromic automorphisms of right-angled Artin groups

Neil J. Fullarton and Anne Thomas

Abstract. We introduce the palindromic automorphism group and the palindromic Torelli group of a right-angled Artin group A_{Γ} . The palindromic automorphism group ΠA_{Γ} is related to the principal congruence subgroups of $GL(n, \mathbb{Z})$ and to the hyperelliptic mapping class group of an oriented surface, and sits inside the centraliser of a certain hyperelliptic involution in Aut (A_{Γ}) . We obtain finite generating sets for ΠA_{Γ} and for this centraliser, and determine precisely when these two groups coincide. We also find generators for the palindromic Torelli group.

Mathematics Subject Classification (2010). Primary: 20F28; Secondary: 20F05, 20F36.

Keywords. Right-angled Artin groups, automorphism groups of groups, palindromes, Torelli group.

1. Introduction

Let Γ be a finite simplicial graph, with vertex set $V = \{v_1, \ldots, v_n\}$. Let $E \subset V \times V$ be the edge set of Γ . The graph Γ defines the *right-angled Artin group* A_{Γ} via the presentation

$$
A_{\Gamma} = \langle v_i \in V \mid [v_i, v_j] = 1 \iff (v_i, v_j) \in E \rangle.
$$

One motivation, among many, for studying right-angled Artin groups and their automorphisms (see Agol [\[1\]](#page-21-0) and Charney [\[3\]](#page-21-1) for others) is that the groups A_{Γ} and Aut (A_{Γ}) allow us to interpolate between families of groups that are classically well-studied: we may pass between the free group F_n and free abelian group \mathbb{Z}^n , between their automorphism groups $Aut(F_n)$ and $Aut(\mathbb{Z}^n) = GL(n, \mathbb{Z})$, and even between the mapping class group $Mod(S_g)$ of the oriented surface S_g of genus g and the symplectic group $Sp(2g, \mathbb{Z})$ (this last interpolation is explained in [\[7\]](#page-21-2)). See Section [2](#page-3-0) for background on right-angled Artin groups and their automorphisms.

In this paper, we introduce a new subgroup of $Aut(A_{\Gamma})$ consisting of so-called 'palindromic' automorphisms of A_{Γ} , which allows us a further interpolation, between certain previously well-studied subgroups of Aut (F_n) and of $GL(n, \mathbb{Z})$. An automorphism $\alpha \in Aut(A_{\Gamma})$ is said to be *palindromic* if $\alpha(v) \in A_{\Gamma}$ is a palindrome for each $v \in V$; that is, each $\alpha(v)$ may be expressed as a word $u_1 \dots u_k$ on $V^{\pm 1}$ such that $u_1 \dots u_k$ and its reverse $u_k \dots u_1$ are identical as words. The collection ΠA_{Γ} of palindromic automorphisms is, a priori, only a subset of Aut(A_{Γ}). While it is easy to see that ΠA_{Γ} is closed under composition, it is not obvious that it is closed under inversion. In Corollary [3.5](#page-13-0) we prove that ΠA_{Γ} is in fact a subgroup of Aut(A_{Γ}). We thus refer to ΠA_{Γ} as the *palindromic automorphism group of* A_{Γ} .

When A_{Γ} is free, the group ΠA_{Γ} is equal to the palindromic automorphism group ΠA_n of F_n , which was introduced by Collins [\[5\]](#page-21-3). Collins proved that ΠA_n is finitely presented and provided an explicit finite presentation. The group ΠA_n has also been studied by Glover and Jensen [\[10\]](#page-21-4), who showed, for instance, that it has virtual cohomological dimension $n-1$. At the other extreme, when A_{Γ} is free abelian, the group ΠA_{Γ} is a finite extension of the principal level 2 congruence subgroup $\Lambda_n[2]$ of $GL(n, \mathbb{Z})$. Thus ΠA_{Γ} enables us to interpolate between these two classes of groups.

Let *i* be the automorphism of A_{Γ} that inverts each $v \in V$. In the case that A_{Γ} is free, it is easy to verify that the palindromic automorphism group $\Pi A_{\Gamma} = \Pi A_n$ is equal to the centraliser $C_{\Gamma}(i)$ of ι in Aut (A_{Γ}) (hence ΠA_n is a group). For a general A_{Γ} , we prove that ΠA_{Γ} is a finite index subgroup of $C_{\Gamma}(t)$, by first considering the finite index subgroup of ΠA_{Γ} consisting of 'pure' palindromic automorphisms; see Theorem [3.3](#page-11-0) and Corollary [3.5.](#page-13-0) The index of ΠA_{Γ} in $C_{\Gamma}(\iota)$ depends entirely on connectivity properties of the graph Γ , and we give conditions on Γ that are equivalent to the groups ΠA_{Γ} and $C_{\Gamma}(t)$ being equal, in Proposition [3.6.](#page-13-1) In particular, there are non-free A_{Γ} such that $\Pi A_{\Gamma} = C_{\Gamma}(t)$.

The order 2 automorphism ι is the obvious analogue in Aut(A_{Γ}) of the hyperelliptic involution s of an oriented surface S_g , since ι and s act as $-I$ on $H_1(A_\Gamma, \mathbb{Z})$ and $H_1(S_g, \mathbb{Z})$, respectively. The group ΠA_{Γ} also allows us to generalise a com-parison made by the first author in [\[9,](#page-21-5) Section 1] between $\Pi A_n \leq Aut(F_n)$ and the centraliser in $Mod(S_g)$ of the hyperelliptic involution s, which demonstrated a deep connection between these groups. Our study of ΠA_{Γ} is thus motivated by its appearance in both algebraic and geometric settings.

The main result of this paper finds a finite generating set for ΠA_{Γ} . Our generating set includes the so-called *diagram automorphisms* of A_{Γ} , which are induced by graph symmetries of Γ , and the *inversions* $\iota_i \in Aut(A_{\Gamma})$, with ι_i mapping v_j to v_j^{-1} and fixing every $v_k \in V \setminus \{v_j\}$. The function $P_{ij}: V \to A_{\Gamma}$ sending v_i to $v_j v_i v_j$ and v_k to v_k ($k \neq i$) induces a well-defined automorphism of A_{Γ} , also denoted P_{ij} , whenever certain connectivity properties of Γ hold (see Section [3.2\)](#page-11-1). We establish that these three types of palindromic automorphisms suffice to generate ΠA_{Γ} .

Theorem A. The group ΠA_{Γ} is generated by the finite set of diagram automor*phisms, inversions and well-defined automorphisms* Pij *.*

We also obtain a finite generating set for the centraliser $C_{\Gamma}(i)$, in Corollary [3.8,](#page-14-0) by combining the generating set given by Theorem \overline{A} \overline{A} \overline{A} with a short exact sequence involving $C_{\Gamma}(t)$ and the pure palindromic automorphism group (see Theorem [3.3\)](#page-11-0). Our generating set for $C_{\Gamma}(t)$ consists of the generators of ΠA_{Γ} , along with all welldefined automorphisms of A_{Γ} that map v_i to $v_i v_j$ and fix every $v_k \in V \setminus \{v_i\}$, for some $i \neq j$ with $[v_i, v_j] = 1$ in A_{Γ} .

Further, for any re-indexing of the vertex set V and each $k = 1, \ldots, n$, we provide a finite generating set for the subgroup $\Pi A_{\Gamma}(k)$ of ΠA_{Γ} which fixes the vertices v_1, \ldots, v_k , as recorded in Theorem [3.11.](#page-18-0) The so-called *partial basis complex* of A_{Γ} , which is an analogue of the curve complex, has as its vertices (conjugacy classes of) the images of members of V under automorphisms of Aut(A_{Γ}). This complex has not, to our knowledge, appeared in the literature, but its definition is an easy generalisation of the free group version introduced by Day and Putman [\[8\]](#page-21-6) in order to generate the Torelli subgroup of $Aut(F_n)$. A 'palindromic' partial basis complex was also used in [\[9\]](#page-21-5) to approach the study of palindromic automorphisms of F_n . Theorem [3.11](#page-18-0) is thus a first step towards understanding stabilisers of simplices in the palindromic partial basis complex of A_{Γ} .

We prove Theorem [A](#page-1-0) and our other finite generation results in Section [3,](#page-8-0) us-ing machinery developed by Laurence [\[16\]](#page-22-1) for his proof that $Aut(A_{\Gamma})$ is finitely generated. The added constraint for us that our automorphisms be expressed as a product of *palindromic* generators forces a more delicate treatment. In addition, our proof uses Servatius' Centraliser Theorem [\[18\]](#page-22-2), and a generalisation to A_{Γ} of arguments used by Collins [\[5,](#page-21-3) Proposition 2.2] to generate ΠA_n . Throughout this paper, we employ a decomposition into block matrices of the image of $Aut(A_{\Gamma})$ in GL(n, Z) under the canonical map induced by abelianising A_{Γ} ; this decomposition was observed by Day $[6]$ and by Wade $[19]$.

We also in this work introduce the *palindromic Torelli group* \mathfrak{PT}_{Γ} *of* A_{Γ} *, which* we define to consist of the palindromic automorphisms of A_{Γ} that induce the identity automorphism on $H_1(A_{\Gamma}) = \mathbb{Z}^n$. The group $\mathfrak{P} \mathfrak{I}_{\Gamma}$ is the right-angled Artin group analogue of the hyperelliptic Torelli group $S_{\mathcal{G}}$ of an oriented surface $S_{\mathcal{G}}$, which has applications to Burau kernels of braid groups [\[2\]](#page-21-8) and to the Torelli space quotient of the Teichmüller space of S_g , see [\[12\]](#page-22-4). Analogues of these objects exist for right-angled Artin groups (see, for example, [\[4\]](#page-21-9)), but are not yet well-developed. We expect that the palindromic Torelli group will play a role in determining their structure.

Even in the free group case, where \mathcal{PI}_{Γ} is denoted by \mathcal{PI}_{n} , little seems to be known about the palindromic Torelli group. Collins [\[5\]](#page-21-3) observed that \mathfrak{P}_{n} is non-trivial, and Jensen-McCammond-Meier [\[14,](#page-22-5) Corollary 6.3] proved that \mathfrak{Pl}_n is not homologically finite if $n \geq 3$. An infinite generating set for \mathfrak{P}_n was obtained recently in [\[9,](#page-21-5) Theorem A], and this is made up of so-called *doubled commutator transvections* and *separating* π -twists. In Section [4](#page-18-1) we recall and then generalise the definitions of these two classes of free group automorphisms, to give two classes of palindromic automorphisms of a general A_{Γ} , which we refer to by the same names. As a first step towards understanding the structure of \mathcal{PI}_{Γ} , we obtain an explicit generating set as follows.

Theorem B. *The group* \mathfrak{P}_{Γ} *is generated by the set of all well-defined doubled commutator transvections and separating* π -twists in ΠA_{Γ} .

The generating set we obtain in Theorem **[B](#page-3-1)** compares favourably with the generators obtained in [\[9\]](#page-21-5) in the case that A_{Γ} is free. Specifically, the generators given by Theorem [B](#page-3-1) are the images in Aut(A_{Γ}) of those generators of \mathfrak{P}_n that descend to well-defined automorphisms of A_{Γ} (viewing A_{Γ} as a quotient of the free group F_n on the set V).

The proof of Theorem [B](#page-3-1) in Section [4](#page-18-1) combines our results from Section [3](#page-8-0) with results for \mathfrak{P}_n from [\[9\]](#page-21-5). More precisely, as a key step towards the proof of Theo-rem [A,](#page-1-0) we find a finite generating set for the pure palindromic subgroup of ΠA_{Γ} (Theorem [3.7\)](#page-13-2). We then use these generators to determine a finite presentation for the image Θ of this subgroup under the canonical map $Aut(A_{\Gamma}) \rightarrow GL(n, \mathbb{Z})$ (Theorem [4.2\)](#page-19-0). In order to find this finite presentation for $\Theta \leq GL(n, \mathbb{Z})$, we also need Corollary 1.1 from [\[9\]](#page-21-5), which leverages the generating set for \mathfrak{P}_{n} from [\[9\]](#page-21-5) to obtain a finite presentation for the principal level 2 congruence subgroup $\Lambda_n[2] \leq GL(n, \mathbb{Z})$. Finally, using a standard argument, we lift the relators of Θ to obtain a normal generating set for $\mathcal{P}J_{\Gamma}$.

Acknowledgements. The authors would like to thank Tara Brendle and Stuart White, for encouraging their collaboration on this paper. We also thank an anonymous referee for spotting a gap in the proof of Proposition [3.1](#page-9-0) in an earlier version, and for other helpful comments.

2. Preliminaries

In this section we give definitions and some brief background on right-angled Artin groups and their automorphisms. Throughout this section and the rest of the paper, we continue to use the notation introduced in Section [1.](#page-0-0) We will also frequently use $v_i \in V$ to denote both a vertex of the graph Γ and a generator of A_{Γ} , and when discussing a single generator we may omit the index *i*. Section [2.1](#page-4-0) recalls definitions related to the graph Γ and Section [2.2](#page-4-1) recalls some useful combinatorial results about words in the group A_{Γ} . In Section [2.3](#page-6-0) we recall a finite generating set for Aut(A_{Γ}) and some important subgroups of Aut(A_{Γ}), and in Section [2.4](#page-6-1) we recall a matrix block decomposition for the image of $Aut(A_{\Gamma})$ in $GL(n, \mathbb{Z})$.

2.1. Graph-theoretic notions. We briefly recall some graph-theoretic definitions, in particular the domination relation on vertices of Γ .

The *link* of a vertex $v \in V$, denoted $lk(v)$, consists of all vertices adjacent to v, and the *star* of $v \in V$, denoted st(v), is defined to be $lk(v) \cup \{v\}$. We define a relation \leq on V, with $u \leq v$ if and only if $lk(u) \subset st(v)$. In this case, we say *v dominates u*, and refer to \leq as the *domination* relation [\[15\]](#page-22-6), [\[16\]](#page-22-1). Figure [1](#page-4-2) demonstrates the link of one vertex being contained in the star of another. Note that when $u \le v$, the vertices u and v may be adjacent in Γ , but need not be. To distinguish these two cases, we will refer to *adjacent* and *non-adjacent* domination.

Figure 1. An example of a vertex u being dominated by a vertex v . The dashed edge is meant to emphasise that u and v may be adjacent, but need not be.

Domination in the graph Γ may be used to define an equivalence relation \sim on the vertex set V, as follows. We say $v_i \sim v_j$ if and only if $v_i \le v_j$ and $v_j \le v_i$, and write [v_i] for the equivalence class of $v_i \in V$ under \sim . We also define an equivalence relation \sim' by $v_i \sim' v_j$ if and only if $[v_i] = [v_j]$ and $v_i v_j = v_j v_i$, writing $[v_i]'$ for the equivalence class of $v_i \in V$ under \sim' . We refer to $[v_i]$ as the *domination class of* v_i and to $[v_i]'$ as the *adjacent domination class of* v_i . Note that the vertices in $[v_i]$ necessarily span either an edgeless or a complete subgraph of Γ ; in the former case, we will call $[v_i]$ a *free domination class*, while in the latter, where $[v_i] = [v_i]'$, we will call $[v_i]$ an *abelian domination class.*

2.2. Word combinatorics in right-angled Artin groups. In this section we recall some useful properties of words on $V^{\pm 1}$, which give us a measure of control over how we express group elements of A_{Γ} . We include the statement of Servatius' Centraliser Theorem [\[18\]](#page-22-2) and of a useful proposition of Laurence from [\[16\]](#page-22-1).

First, a word on $V^{\pm 1}$ is *reduced* if there is no shorter word representing the same element of A_{Γ} . Unless otherwise stated, we shall always use reduced words when representing members of A_{Γ} . Now let w and w' be words on $V^{\pm 1}$. We say that w and w' are *shuffle-equivalent* if we can obtain one from the other via repeatedly exchanging subwords of the form uv for vu when u and v are adjacent vertices in Γ . Hermiller–Meier [\[13\]](#page-22-7) proved that two reduced words w and w' are equal in A_{Γ} if and only if w and w' are shuffle-equivalent, and also showed that any word can be made reduced by a sequence of these shuffles and cancellations

of subwords of the form $u^{\epsilon}u^{-\epsilon}$ $(u \in V, \epsilon \in {\pm 1})$. This allows us to define the *length* of a group element $w \in A_{\Gamma}$ to be the number of letters in a reduced word representing w, and the *support* of $w \in A_{\Gamma}$, denoted supp (w) , to be the set of vertices $v \in V$ such that v or v^{-1} appears in a reduced word representing w. We say $w \in A_{\Gamma}$ is *cyclically reduced* if it cannot be written in reduced form as $vw'v^{-1}$, for some $v \in V^{\pm 1}$, $w' \in A_{\Gamma}$.

Servatius [\[18,](#page-22-2) Section III] analysed centralisers of elements in arbitrary A_{Γ} , showing that the centraliser of any $w \in A_{\Gamma}$ is again a (well-defined) right-angled Artin group, say A_{Λ} . Laurence [\[16\]](#page-22-1) defined the *rank* of $w \in A_{\Gamma}$ to be the number of vertices in the graph Δ defining A_{Δ} . We denote the rank of $w \in A_{\Gamma}$ by rk (w) .

In order to state his theorem on centralisers in A_{Γ} , Servatius [\[18\]](#page-22-2) introduced a canonical form for any cyclically reduced $w \in A_{\Gamma}$, which Laurence [\[16\]](#page-22-1) calls a *basic form* of w. For this, partition the support of w into its connected components in Γ^c , the complement graph of Γ , writing

$$
\mathrm{supp}(w)=V_1\sqcup\cdots\sqcup V_k,
$$

where each V_i is such a connected component. Then we write

$$
w = w_1^{r_1} \dots w_k^{r_k},
$$

where each $r_i \in \mathbb{Z}$ and each $w_i \in \langle V_i \rangle$ is not a proper power in A_{Γ} (that is, each $|r_i|$) is maximal). Note that by construction, $[w_i, w_j] = 1$ for $1 \le i \le j \le k$. Thus the basic form of w is unique up to permuting the order of the w_i , and shuffling within each w_i . With this terminology in place, we now state Servatius' 'Centraliser Theorem' for later use.

Theorem 2.1 (Servatius, [\[18\]](#page-22-2)). Let w be a cyclically-reduced word on $V^{\pm 1}$ representing an element of A_{Γ} . Writing $w = w_1{}^{r_1} \ldots w_k{}^{r_k}$ in basic form, the centraliser *of* w in A_{Γ} is isomorphic to

$$
\langle w_1 \rangle \times \cdots \times \langle w_k \rangle \times \langle \mathrm{lk}(w) \rangle,
$$

where $lk(w)$ *denotes the subset of* V *of vertices which are adjacent to each vertex* in supp (w) *.*

We will also make frequent use of the following result, due to Laurence [\[16\]](#page-22-1), and so state it now for reference.

Proposition 2.2 (Proposition 3.5, Laurence [\[16\]](#page-22-1)). Let $w \in A_T$ be cyclically *reduced, and write* $w = w_1^{r_1} \dots w_k^{r_k}$ *in basic form, with* $V_i := \text{supp}(w_i)$ *. Then*

(1) $rk(v) \geq rk(w)$ *for all* $v \in supp(w)$

and

- (2) if $rk(v) = rk(w)$ *for some* $v \in V_i$ *, then*
	- (a) $v \leq u$ *for all* $u \in \text{supp}(w)$;
	- (b) *each* V_i *is a singleton* ($j \neq i$); *and*
	- (c) v *does not commute with any vertex of* $V_i \setminus \{v\}$ *.*

Recall that a *clique* in a graph Γ is a complete subgraph. If Δ is a clique in Γ then A_{Λ} is free abelian of rank equal to the number of vertices of Δ , so any word supported on Δ can be written in only finitely many reduced ways. The set of cliques in Δ is partially ordered by inclusion, giving rise to the notion of a maximal clique in a graph Γ .

2.3. Automorphisms of right-angled Artin groups. In this section we recall a finite generating set for Aut (A_{Γ}) . This generating set was obtained by Laurence [\[16\]](#page-22-1), confirming a conjecture of Servatius [\[18\]](#page-22-2), who had verified that the set generates $Aut(A_{\Gamma})$ in certain special cases.

In the following list, the action of each generator of $Aut(A_{\Gamma})$ is given on $v \in V$, with the convention that if a vertex is omitted from discussion, it is fixed by the automorphism. There are four types of generators.

- (1) *Diagram automorphisms* ϕ : each $\phi \in Aut(\Gamma)$ induces an automorphism of A_{Γ} , which we also denote by ϕ , mapping $v \in V$ to $\phi(v)$.
- (2) *Inversions* u_j : for each $v_j \in V$, u_j maps v_j to v_j^{-1} .
- (3) *Dominated transvections* τ_{ij} : for v_i , $v_j \in V$, whenever v_i is dominated by v_j , there is an automorphism τ_{ij} mapping v_i to $v_i v_j$. We refer to a (well-defined) dominated transvection τ_{ij} as an *adjacent transvection* if $[v_i, v_j] = 1$; otherwise, we say τ_{ij} is a *non-adjacent transvection*.
- (4) *Partial conjugations* $\gamma_{i,D}$: fix $v_i \in V$, and select a connected component D of $\Gamma \setminus \text{st}(v_i)$ (see Figure [2\)](#page-7-0). The partial conjugation $\gamma_{v_i,D}$ maps every $d \in D$ to $v_i dv_i^{-1}$.

We denote by D_{Γ} , I_{Γ} and PC(A_{Γ}) the subgroups of Aut(A_{Γ}) generated by diagram automorphisms, inversions and partial conjugations, respectively, and by Aut⁰(A_{Γ}) the subgroup of Aut(A_{Γ}) generated by all inversions, dominated transvections and partial conjugations.

2.4. A matrix block decomposition. Now we recall a useful decomposition into block matrices of an image of $Aut(A_{\Gamma})$ inside GL (n, \mathbb{Z}) . This decomposition was observed by Day [\[6\]](#page-21-7) and by Wade [\[19\]](#page-22-3).

Let Φ : Aut $(A_{\Gamma}) \rightarrow GL(n, \mathbb{Z})$ be the canonical homomorphism induced by abelianising A_{Γ} . Note that since D_{Γ} normalises $Aut^0(A_{\Gamma})$, any $\phi \in Aut(A_{\Gamma})$ may be written (non-uniquely, in general), as $\phi = \delta \beta$, where $\delta \in D_{\Gamma}$ and $\beta \in \text{Aut}^0(A_{\Gamma}).$

Figure 2. When we remove the star of v , we leave three connected components D , D' , and D'' .

By ordering the vertices of Γ appropriately, matrices in $\Phi(\text{Aut}^0(A_{\Gamma})) \leq$ $GL(n, \mathbb{Z})$ will have a particularly tractable lower block-triangular decomposition, which we now describe. The domination relation \leq on V descends to a partial order, also denoted \leq , on the set of domination classes V / \sim , which we (arbitrarily) extend to a total order,

$$
[u_1] < \cdots < [u_k]
$$

where $[u_i] \in V / \sim$. This total order may be lifted back up to V by specifying an arbitrary total order on each domination class $[u_i] \in V / \sim$. We reindex the vertices of Γ if necessary so that the ordering v_1, v_2, \ldots, v_n is this specified total order on V. Let n_i denote the size of the domination class $[u_i] \in V / \sim$. Under this ordering, any matrix $M \in \Phi(\text{Aut}^0(A_{\Gamma}))$ has block decomposition:

$$
\begin{pmatrix} M_1 & 0 & 0 & \dots & 0 \\ * & M_2 & 0 & \dots & 0 \\ * & * & M_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \dots & M_k \end{pmatrix},
$$

where $M_i \in GL(n_i, \mathbb{Z})$ and the (i, j) block $*(j < i)$ may only be non-zero if u_j is dominated by u_i in Γ . This triangular decomposition becomes apparent when the images of the generators of Aut⁰ (A_{Γ}) are considered inside GL (n, \mathbb{Z}) . The diagonal blocks may be any $M_i \in GL(n_i, \mathbb{Z})$, as by definition each domination class gives rise to all $n_i(n_i-1)$ transvections in $GL(n_i, \mathbb{Z})$, which, together with the appropriate inversions, generate $GL(n_i, \mathbb{Z})$. A diagonal block corresponding to a free domination class will also be called *free*, and a diagonal block corresponding to an abelian domination class will be called *abelian*.

This block decomposition descends to an analogous decomposition of the image of Aut $^{0}(A_\Gamma)$ under the canonical map Φ_2 to $\mathrm{GL}(n,\mathbb{Z}/2),$ as this map factors through the homomorphism $GL(n, \mathbb{Z}) \rightarrow GL(n, \mathbb{Z}/2)$ that reduces matrix entries mod 2.

3. Palindromic automorphisms

Our main goal in this section is to prove Theorem [A,](#page-1-0) which gives a finite generating set for the group of palindromic automorphisms ΠA_{Γ} . First of all, in Section [3.1,](#page-8-1) we derive a normal form for group elements $\alpha(v) \in A_{\Gamma}$ where $v \in V$ and α lies in the centraliser $C_{\Gamma}(i)$. In Section [3.2](#page-11-1) we introduce the pure palindromic automorphisms $\overline{PIA_{\Gamma}}$, and prove that $\overline{PIA_{\Gamma}}$ is a group by showing that it is a kernel inside $C_{\Gamma}(t)$. We then show that ΠA_{Γ} is a group, and determine when the groups $C_{\Gamma}(t)$ and ΠA_{Γ} ΠA_{Γ} ΠA_{Γ} are equal. The proof of Theorem A is carried out in Section [3.3,](#page-13-3) where the main step is to find a finite generating set for $P\Pi A_{\Gamma}$. We also provide finite generating sets for $C_{\Gamma}(\iota)$ and for certain stabiliser subgroups of ΠA_{Γ} .

3.1. The centraliser $C_{\Gamma}(t)$ and a clique-palindromic normal form. In this section we prove Proposition [3.1,](#page-9-0) which provides a normal form for reduced words $w = u_1 \dots u_k$ ($u_i \in V^{\pm 1}$) that are equal (in the group A_{Γ}) to their *reverse*,

$$
w^{\text{rev}} := u_k \dots u_1.
$$

We then in Corollary [3.2](#page-10-0) derive implications for the diagonal blocks in the matrix decomposition discussed in Section [2.4.](#page-6-1) The results of this section will be used in Section [3.2](#page-11-1) below.

Green, in her thesis [\[11\]](#page-21-10), established a normal form for elements of A_{Γ} , by iterating an algorithm that takes a word w_0 on $V^{\pm 1}$ and rewrites it as $w_0 = pw_1$ in A_{Γ} , where p is a word consisting of all the letters of w_0 that may be shuffled (as in Section [2.2\)](#page-4-1) to be the initial letter of w_0 , and w_1 is the word remaining after shuffling each of these letters into the initial segment p . We now use a similar idea for palindromes.

Let ι denote the automorphism of A_{Γ} that inverts each $v \in V$. We refer to ι as the *(preferred) hyperelliptic involution of* A_{Γ} . Denote by $C_{\Gamma}(t)$ the centraliser in Aut (A_{Γ}) of ι . Note that this centraliser is far from trivial: it contains all diagram automorphisms, inversions and adjacent transvections in Aut (A_{Γ}) , and also contains all palindromic automorphisms. The following proposition gives a normal form for the image of $v \in V$ under the action of some $\alpha \in C_{\Gamma}(i)$.

Proposition 3.1 (clique-palindromic normal form). Let $\alpha \in C_{\Gamma}(t)$ and $v \in V$. *Then we may write*

$$
\alpha(v) = w_1 \dots w_{k-1} w_k w_{k-1} \dots w_1,
$$

where w_i is a word supported on a clique in Γ ($1 \leq i \leq k$), and if $k \geq 3$ then $[w_i, w_{i+1}] \neq 1 \ (1 \leq i \leq k-2)$. Moreover, this expression for $\alpha(v)$ is unique up to the finitely many rewritings of each word w_i in $A_\Gamma.$

We refer to this normal form as *clique-palindromic* because the words under consideration, while equal to their reverses in the group A_{Γ} as genuine palindromes are, need only be palindromic 'up to cliques', as in the expression in the statement of the proposition.

Proof. Suppose $\alpha \in C_{\Gamma}(i)$ and $v \in V$. Write $\alpha(v) = u_1 \dots u_r$ in reduced form, where each u_i is in $V^{\pm 1}$. Since $\alpha \iota(v) = \iota \alpha(v)$, we have that

$$
u_1 \dots u_r = u_r \dots u_1 \tag{1}
$$

in A_{Γ} . If $\alpha(v)$ is supported on a clique, then there is nothing to show. Otherwise, put $A_1 = \alpha(v)$ and let Z_1 be the (possibly empty) subset of V consisting of the vertices in supp (A_1) which commute with every vertex in supp (A_1) . We note that Z_1 is supported on a clique, and that Z_1 is, by assumption, a proper subset of $supp(A_1)$.

We now rewrite $A_1 = u_1 \dots u_r$ as $w_1 u_1' \dots u_s'$, where $u_j' \in V^{\pm 1}$ $(1 \le j \le s)$, and $w_1 \in A_{\Gamma}$ is the word consisting of all the u_i which are not in $Z_1^{\pm 1}$ and which may be shuffled to the start of $u_1 \dots u_r$. That is, w_1 consists of all letters $u_i \notin Z_1^{\pm 1}$ so that if $i \geq 1$, the letter u_i commutes with each of u_1, \ldots, u_{i-1} . Notice that w_1 is nonempty since the first u_i which is not in Z_1 will be in w_1 . By construction, w_1 is supported on a clique in Γ .

Now any u_i that may be shuffled to the start of $u_1 \ldots u_r$ may also be shuffled to the end of $u_r \dots u_1$, by [\(1\)](#page-9-1). Hence we may also rewrite A_1 as $u''_1 \dots u''_s w_1$ for the same word w_1 . Since the support of w_1 is disjoint from Z_1 , the letters of A_1 used in the copy of w_1 at the start of $w_1u_1' \ldots u_s'$ are disjoint from the letters of A_1 used in the copy of w_1 at the end of $u''_1 \dots u''_s w_1$. We thus obtain that

$$
A_1 = \alpha(v) = w_1u_1'' \dots u_t''w_1
$$

in A_{Γ} , with $u_i'' \in V^{\pm 1}$. Since $\alpha \iota(v) = \iota \alpha(v)$, it must be the case that $u_1'' \dots u_t'' =$ $u_t'' \dots u_1''$ in A_{Γ} .

Now put $A_2 = u_1'' \dots u_t''$, so that $A_1 = w_1 A_2 w_1$. Note that supp (A_2) contains Z_1 . If A_2 is supported on a clique, for example if supp $(A_2) = Z_1$, then we put $w_2 = A_2$ and are done. (In this case, supp $(A_2) = Z_1$ if and only if w_1 and w_2 commute.) If A_2 is not supported on a clique, we define Z_2 to be the vertices in $\text{supp}(A_2)$ which commute with the entire support of A_2 , and iterate the process described above. Since each word w_i constructed by this process is nonempty, the word A_{i+1} is shorter than A_i , hence the process terminates after finitely many steps. Notice also that $Z_1 \subseteq Z_2 \subseteq \cdots \subseteq Z_i \subseteq \text{supp}(A_{i+1}),$ so any letters of A_i which lie in Z_i become part of the word A_{i+1} . In particular, any letter of $A_1 = \alpha(v)$ which is in some Z_i , for example a letter in $Z(A_{\Gamma})$, will end up in the word w_k when the process terminates.

By construction, each w_i is supported on a clique in Γ . Now the word A_{i+1} is not supported on a clique if and only if a further iteration is needed, which occurs if and only if $i \le k - 2$. In this case, Z_i must be a proper subset of supp (A_{i+1}) and so w_{i+1} does not commute with w_i (the word w_k may or may not commute with w_{k-1}). Thus the expression obtained for $\alpha(v)$ when this process terminates is as in the statement of the proposition. Moreover, this expression is unique up to rewriting each of the w_i , as they were defined in a canonical manner. This completes the proof. \Box

This normal form gives us the following corollary regarding the structure of diagonal blocks in the lower block-triangular decomposition of the image of $\alpha \in C_{\Gamma}(\iota)$ under the canonical map Φ : Aut $(A_{\Gamma}) \to GL(n, \mathbb{Z})$, discussed in Section [2.4.](#page-6-1) Recall that $\Lambda_k[2]$ denotes the principal level 2 congruence subgroup of $GL(k, \mathbb{Z})$.

Corollary 3.2. *Write* $\alpha \in C_{\Gamma}(t)$ *as* $\alpha = \delta\beta$ *, for some* $\beta \in Aut^0(A_{\Gamma})$ *and* $\delta \in D_{\Gamma}$ *. Let* M *be the matrix appearing in a diagonal block of rank* k *in the lower blocktriangular decomposition of* $\Phi(\beta) \in GL(n, \mathbb{Z})$ *. Then*

- (1) *if the diagonal block is abelian, then* M may be any matrix in $GL(k, \mathbb{Z})$; and
- (2) *if the diagonal block is free then* M *must lie in* $\Lambda_k[2]$, up to permuting *columns.*

Proof. First, note that since $D_{\Gamma} \leq C_{\Gamma}(\iota)$, we must have that $\beta \in C_{\Gamma}(\iota)$. We deal with the abelian block case first. The group $C_{\Gamma}(\iota) \cap Aut^0(A_{\Gamma})$ contains all the adjacent transvections and inversions necessary to generate $GL(k, \mathbb{Z})$ under Φ , so the matrix M in this diagonal block may be any member of $GL(k, \mathbb{Z})$.

Now, suppose that the diagonal block is free. Suppose the column of M corresponding to $v \in V$ contains two odd entries, in turn corresponding to vertices $u_1, u_2 \in [v]$, say. This implies that $\beta(v)$ has odd exponent sum of u_1 and of u_2 . Use Proposition [3.1](#page-9-0) to write

$$
\beta(v)=w_1\ldots w_k\ldots w_1
$$

in normal form, with each $w_i \in A_{\Gamma}$ being supported on some clique in Γ . It must be the case that w_k has odd exponent sum of u_1 and of u_2 , since all other w_i $(i \neq k)$ appear twice in the normal form expression. Thus u_1 and u_2 commute. This contradicts the assumption that the diagonal block is free, so there must be precisely one odd entry in each column of M . Hence up to permuting columns, we have $M \in \Lambda_k[2]$.

3.2. Pure palindromic automorphisms. In this section we introduce the pure palindromic automorphisms $\overline{PIA_{\Gamma}}$, which we will see form an important finite index subgroup of ΠA_{Γ} . In Theorem [3.3](#page-11-0) we prove that $\text{P}\Pi A_{\Gamma}$ is a group, by showing that it is the kernel of the map from the centraliser $C_{\Gamma}(t)$ to $GL(n, \mathbb{Z}/2)$. induced by mod 2 abelianisation. Proposition [3.4](#page-12-0) then says that any element of ΠA_{Γ} can be expressed as a product of an element of $\text{P}\Pi A_{\Gamma}$ with a diagram automorphism, and as Corollary [3.5](#page-13-0) we obtain that the collection of palindromic automorphisms ΠA_{Γ} is in fact a group. This section concludes by establishing a necessary and sufficient condition on the graph Γ for the groups ΠA_{Γ} and $C_{\Gamma}(t)$ to be equal, in Proposition [3.6.](#page-13-1)

We define $\text{PIA}_{\Gamma} \subset \text{TA}_{\Gamma}$ be the subset of palindromic automorphisms of A_{Γ} such that for each $v \in V$, the word $\alpha(v)$ may be expressed as a palindrome whose middle letter is either v or v^{-1} . For instance, $I_{\Gamma} \subset \overline{P} \Pi A_{\Gamma}$ but $D_{\Gamma} \cap \overline{P} \Pi A_{\Gamma}$ is trivial. If $v_i \leq v_j$, there is a well-defined pure palindromic automorphism $P_{ij} := (i\tau_{ij})^2$, which sends v_i to $v_j v_i v_j$ and fixes every other vertex in V. We refer to P_{ij} as a *dominated elementary palindromic automorphism of* A_{Γ} .

The following theorem shows that $P\Pi A_{\Gamma}$ is a group, by establishing that it is a kernel inside $C_{\Gamma}(t)$. We will thus refer to $\text{P}\Pi A_{\Gamma}$ as the *pure palindromic automorphism group of* A_{Γ} .

Theorem 3.3. *There is an exact sequence*

$$
1 \longrightarrow \text{PIIA}_{\Gamma} \longrightarrow C_{\Gamma}(t) \longrightarrow \text{GL}(n, \mathbb{Z}/2). \tag{2}
$$

Moreover, the image of $C_{\Gamma}(t)$ *in* $GL(n, \mathbb{Z}/2)$ *is generated by the images of all diagram automorphisms and adjacent dominated transvections in* Aut(A_Γ).

Proof. Let Φ_2 : Aut $(A_{\Gamma}) \rightarrow GL(n, \mathbb{Z}/2)$ be the map induced by the mod 2 abelianisation map $A_\Gamma \to (\mathbb{Z}/2)^n$. We will show that $\overline{\text{PIA}}_\Gamma$ is the kernel of the restriction of Φ_2 to $C_{\Gamma}(i)$.

Let $\alpha \in C_{\Gamma}(i)$. Note that for each $v \in V$, the element $\alpha(v)$ necessarily has odd length, since $\alpha(v)$ must survive under the mod 2 abelianisation map $A_{\Gamma} \rightarrow (\mathbb{Z}/2)^n$. Now for each $v \in V$, write $\alpha(v)$ in clique-palindromic normal form $w_1 \dots w_k \dots w_1$, as in Proposition [3.1.](#page-9-0) Both the index k and the word w_k here depend upon v, so we write $w(v)$ for the central clique word in the cliquepalindromic normal form for $\alpha(v)$. Then each word $w(v)$ is a palindrome of odd length which is supported on a clique in Γ . It follows that the automorphism α lies in P ΠA_{Γ} if and only if for each $v \in V$, the exponent sum of v in the word $w(v)$ is odd, and every other exponent sum is even. Thus $\text{P}\Pi\text{Ar}$ is precisely the kernel of the restriction of Φ_2 .

We now derive the generating set for $\Phi_2(C_{\Gamma}(i))$ in the statement of the theorem. Given $\alpha \in C_{\Gamma}(\iota)$, write $\alpha = \delta \beta$, where $\delta \in D_{\Gamma}$ and $\beta \in \text{Aut}^0(A_{\Gamma})$. We map β into GL(n, $\mathbb{Z}/2$) using the canonical map Φ_2 , and give $\Phi_2(\beta)$ the lower blocktriangular decomposition discussed in Section [2.4.](#page-6-1)

By Corollary [3.2,](#page-10-0) we can reduce each diagonal block of $\Phi_2(\beta)$ to an identity matrix by composing $\Phi_2(\beta)$ with appropriate members of $\Phi_2(C_{\Gamma}(i))$: permutation matrices (in the case of a free block), or images of adjacent transvections (in the case of an abelian block). The resulting matrix $N \in \Phi_2(C_{\Gamma}(t))$ lifts to some $\alpha' \in C_{\Gamma}(t)$.

If N has an off-diagonal 1 in its *i* th column, this corresponds to $\alpha'(v_i)$ having odd exponent sum of both v_i and v_j , say. Writing $\alpha'(v_i)$ in clique-palindromic normal form $w_1 \ldots w_k \ldots w_1$, we must have that v_i and v_j both have odd exponent sum in w_k , and hence commute, by Proposition [3.1.](#page-9-0) The presence of the 1 in the (j, i) entry of N implies that $v_i \leq v_i$, and so we can use the image of the (adjacent) transvection τ_{ij} to clear it.

Thus we conclude that $\Phi_2(\beta)$ may be written as a product of images of diagram automorphisms and adjacent transvections. Hence $\Phi_2(C_{\Gamma}(i))$ is also generated by these automorphisms.

We now use Theorem [3.3](#page-11-0) to prove that the collection of palindromic automorphisms ΠA_{Γ} is a subgroup of Aut (A_{Γ}) . We will require the following result.

Proposition 3.4. *Let* $\alpha \in Aut(A_{\Gamma})$ *be palindromic. Then* α *can be expressed as* $\alpha = \delta \gamma$ where $\gamma \in \text{PIIA}_{\Gamma}$ and $\delta \in D_{\Gamma}$.

Proof. Let $\alpha \in \Pi A_{\Gamma}$. Define a function $\delta: V \to V$ by letting $\delta(v)$ be the middle letter of a reduced palindromic word representing $\alpha(v)$. Note that δ is well-defined, because all reduced expressions for $\alpha(v)$ are shuffle-equivalent, and in any such reduced expression there is exactly one letter with odd exponent sum. The map δ must be bijective, otherwise the image of α in GL(n, $\mathbb{Z}/2$) would have two identical columns. We now show that δ induces a diagram automorphism of A_{Γ} , which by abuse of notation we also denote δ .

Since $\delta: V \to V$ is a bijection and Γ is simplicial, it suffices to show that δ induces a graph endomorphism of Γ . Suppose that $u, v \in V$ are joined by an edge in Γ . Then $[\alpha(v), \alpha(u)] = 1$, and so we apply Servatius' Centraliser Theorem (Theorem [2.1\)](#page-5-0). Write $\alpha(u)$ in basic form $w_1^{r_1} \dots w_s^{r_s}$ (see Section [2.2\)](#page-4-1). Since $\alpha(u)$ is a palindrome, all but one of these w_i will be an even length palindrome, and exactly one will be an odd length palindrome, with odd exponent sum of $\delta(u)$. We know by the Centraliser Theorem that $\alpha(v)$ lies in

$$
\langle w_1 \rangle \times \cdots \times \langle w_s \rangle \times \langle \mathrm{lk}(\alpha(u)) \rangle.
$$

Since $\delta(v) \neq \delta(u)$, the only way $\alpha(v)$ can have an odd exponent of $\delta(v)$ is if $\delta(v) \in \text{lk}(\alpha(u))$. In particular, $[\delta(v), \delta(u)] = 1$. Thus δ preserves adjacency in Γ and hence induces a diagram automorphism.

The proposition now follows, setting $\gamma = \delta^{-1} \alpha \in \text{PIIA}_{\Gamma}$.

The following corollary is immediate.

Corollary 3.5. *The set* $\prod A_{\Gamma}$ *forms a group. Moreover, this group splits as* $P\Box A_{\Gamma} \rtimes D_{\Gamma}$.

We are now able to determine precisely when the groups ΠA_{Γ} and $C_{\Gamma}(i)$ appearing in the exact sequence (2) in the statement of Theorem [3.3](#page-11-0) are equal.

Proposition 3.6. *The groups* ΠA_{Γ} *and* $C_{\Gamma}(i)$ *are equal if and only if* Γ *has no adjacent domination classes.*

Proof. If Γ has an adjacent domination class, then the adjacent transvections to which it gives rise are in $C_{\Gamma}(\iota)$ but not in ΠA_{Γ} .

For the converse, suppose $\alpha \in C_{\Gamma}(t) \setminus \Pi A_{\Gamma}$. Write $\alpha = \delta \beta$, where $\delta \in D_{\Gamma}$ and $\beta \in$ Aut⁰(A_{Γ}), as in the proof of Theorem [3.3.](#page-11-0) Note that since $D_{\Gamma} \leq C_{\Gamma}(\iota)$ we have that $\beta \in C_{\Gamma}(i)$. There must be a $v \in V$ such that $\beta(v)$ has at least two letters of odd exponent sum, say u_1 and u_2 , as otherwise α would lie in ΠA_Γ . Recall that u_1 and u_2 must commute, as they both must appear in the central clique word of the clique-palindromic normal form of $\beta(v)$, in order to have odd exponent.

Consider $\Phi(\beta)$ in GL (n, \mathbb{Z}) under our usual lower block-triangular matrix decomposition, discussed in Section [2.4.](#page-6-1) It must be the case that both u_1 and u_2 dominate v. This is because the odd entries in the column of $\Phi(\beta)$ corresponding to v that arise due to u_1 and u_2 either lie in the diagonal block containing v, or below this block. In the former case, this gives $u_1, u_2 \in [v]$, while in the latter, the presence of non-zero entries below the diagonal block of v forces $u_1, u_2 > v$ (as discussed in Section [2.4\)](#page-6-1). If v dominates u_1 , say, in return, then we obtain $u_1 < v < u_2$, and so by transitivity u_1 is (adjacently) dominated by u_2 , proving the proposition in this case.

Now consider the case that neither u_1 nor u_2 is dominated by v. By Corol-lary [3.2,](#page-10-0) we may carry out some sequence of row operations to $\Phi(\beta)$ corresponding to the images of inversions, adjacent transvections, or P_{ii} in $\Phi(C_{\Gamma}(u))$, to reduce the diagonal block corresponding to $[v]$ to the identity matrix. The resulting matrix lifts to some $\beta' \in C_{\Gamma}(u)$, such that $\beta'(v)$ has exponent sum 1 of v, and odd exponent sums of u_1 and of u_2 . As we argued in the proof of Corollary [3.2,](#page-10-0) this means u_1, u_2 and v pairwise commute, and so v is adjacently dominated by u_1 (and u_2). This completes the proof. \Box

3.3. Finite generating sets. In this section we prove Theorem [A](#page-1-0) of the introduction, which gives a finite generating set for the palindromic automorphism group ΠA_{Γ} . The main step is Theorem [3.7,](#page-13-2) where we determine a finite set of generators for the pure palindromic automorphism group $P\Pi A_{\Gamma}$. We also obtain finite generating sets for the centraliser $C_{\Gamma}(t)$ in Corollary [3.8,](#page-14-0) and for certain stabiliser subgroups of ΠA_{Γ} in Theorem [3.11.](#page-18-0)

Theorem 3.7. *The group* PIIA_{Γ} *is generated by the finite set comprising the inversions and the dominated elementary palindromic automorphisms.*

Before proving Theorem [3.7,](#page-13-2) we state a corollary obtained by combining Theorems [3.3](#page-11-0) and 3.7

Corollary 3.8. The group $C_{\Gamma}(t)$ is generated by diagram automorphisms, adja*cent dominated transvections and the generators of* $P \Pi A_\Gamma$.

Our proof of Theorem [3.7](#page-13-2) is an adaptation of Laurence's proof [\[16\]](#page-22-1) of finite generation of Aut (A_{Γ}) . First, in Lemma [3.9](#page-14-1) below, we show that any $\alpha \in {\rm P}\Pi A_{\Gamma}$ may be precomposed with suitable products of our proposed generators to yield what we refer to as a 'simple' automorphism of A_{Γ} (defined below). The simple palindromic automorphisms may then be understood by considering subgroups of P ΠA_{Γ} that fix certain free product subgroups inside A_{Γ} ; we define and obtain generating sets for these subgroups in Lemma [3.10.](#page-16-0) Combining these results, we complete our proof of Theorem [3.7.](#page-13-2)

For each $v \in V$, we define $\alpha \in P\Pi A_{\Gamma}$ to be *v*-simple if supp $(\alpha(v))$ is connected in Γ^c . We say that $\alpha \in \text{PIIA}_{\Gamma}$ is *simple* if α is *v*-simple for all $v \in V$. Laurence's definition of a v-simple automorphism $\phi \in Aut(A_{\Gamma})$ is more general and differs from ours, however the two definitions are equivalent when $\phi \in \text{PIA}_{\Gamma}$.

Let S denote the set of inversions and dominated elementary palindromic automorphisms in ΠA_{Γ} (that is, the generating set for $\text{P}\Pi A_{\Gamma}$ proposed by Theo-rem [3.7\)](#page-13-2). We say that $\alpha, \beta \in {\rm P}\Pi A_{\Gamma}$ are π -equivalent if there exists $\theta \in \langle S \rangle$ such that $\alpha = \beta \theta$. In other words, $\alpha, \beta \in \text{PIIA}_{\Gamma}$ are π -equivalent if $\beta^{-1}\alpha \in \langle S \rangle$.

Lemma 3.9. *Every* $\alpha \in \text{PIIA}_\Gamma$ *is* π -equivalent to some simple automorphism $\chi \in \text{P}\Pi\text{A}_\Gamma.$

Proof. Suppose $\alpha \in \text{PIA}_\Gamma$. We note once and for all that the palindromic word $\alpha(u)$ is cyclically reduced, for any $u \in V$.

Select a vertex $v \in V$ of maximal rank for which $\alpha(v)$ is not v-simple. Now write

$$
\alpha(v) = w_1^{r_1} \dots w_s^{r_s}
$$

in basic form, reindexing if necessary so that $v \in \text{supp}(w_1)$. The ranks of v and $\alpha(v)$ are equal, since α induces an isomorphism from the centraliser in A_{Γ} of v to that of $\alpha(v)$. Hence by Proposition [2.2,](#page-5-1) parts 2(b) and 2(a) respectively, each $w_i \in A_{\Gamma}$ (for $i > 1$) is some vertex generator in V, and $w_i \geq v$. Moreover, for $i > 1$, each r_i is even, since $\alpha(v)$ is palindromic.

Now, for $i > 1$, suppose $w_i \geq v$ but $[v]' \neq [w_i]'$. By Servatius' Centraliser Theorem (Theorem [2.1\)](#page-5-0), we know that the centraliser of a vertex is generated by its star, and hence conclude that $rk(w_i) > rk(v)$. This gives that α is w_i -simple,

by our assumption on the maximality of the rank of v . In basic form, then,

$$
\alpha(w_i)=p^{\ell},
$$

where $\ell \in \mathbb{Z}$, $p \in A_{\Gamma}$, and supp (p) is connected in Γ^{c} . Note also that supp (p) contains w_i , since $\alpha \in \text{P}\Pi A_{\Gamma}$.

Suppose there exists $t \in \text{supp}(p) \setminus \{w_i\}$. As for v before, by Proposition [2.2,](#page-5-1) we have $t \geq w_i$, since $rk(\alpha(w_i)) = rk(w_i)$. We know $w_i \geq v$, and so $t \geq v$. Since w_i , v and t are pairwise distinct, this forces w_i and t to be adjacent, which contradicts Proposition [2.2,](#page-5-1) part 2(c). So

$$
\alpha(w_i)=w_i^{\ell},
$$

and necessarily $\ell = \pm 1$. Knowing this, we replace α with $\alpha \beta_i$ where $\beta_i \in \langle S \rangle$ is the palindromic automorphism of the form

$$
v \longmapsto w_i \frac{\ell r_i}{2} v w_i \frac{\ell r_i}{2}.
$$

By doing this for each such w_i , we ensure that any w_i that strictly dominates v is not in the support of $\alpha\beta_i(v)$. Note $\alpha(v') = \alpha\beta_i(v')$ for all $v' \neq v$.

If $s = 1$, then α is v-simple, so by our assumption on v, we must have $s > 1$. Because we have reduced to the case where $w_i \in [v]'$ for $i > 1$, we must have $w_1 = v^{\pm 1}$, otherwise we get a similar adjacency contradiction as in the previous paragraph: if there exists $t \in \text{supp}(w_1) \setminus \{v\}$, then, as before, $t \ge v$, and since $[w_i]' = [v]'$, this would force t and v to be adjacent. Thus $\alpha(v) \in \langle [v]' \rangle$. Indeed, the discussion in the previous two paragraphs goes through for any $u \in [v]$, so we may assume that $\alpha(u) \in \langle [v]'\rangle$ for any $u \in [v]'$. Thus $\alpha \langle [v]'\rangle \le \langle [v]'\rangle$, with equality holding by $[16,$ Proposition 6.1].

The group $\langle v | v \rangle$ is free abelian, and by considering exponent sums, we see that the restriction of α to the group $\langle [v]' \rangle$ is a member of the level 2 congruence subgroup $\Lambda_k[2]$, where $k = |[v]^\prime|$. We know that Theorem [3.7](#page-13-2) holds in the special case of these congruence groups (see [\[9,](#page-21-5) Lemma 2.4], for example), so we can precompose α with the appropriate automorphisms in the set S so that the new automorphism obtained, α' , is the identity on $\langle [v]' \rangle$, and acts the same as α on all other vertices in V. The automorphisms α and α' are π -equivalent, and α' is v-simple (indeed: $\alpha'(v) = v$).

From here, we iterate this procedure, selecting a vertex $u \in V \setminus \{v\}$ of maximal rank for which α' is not u-simple, and so on, until we have exhausted the vertices of Γ preventing α from being simple. \Box

Now, for each $v \in V$, define Γ^v be the set of vertices that dominate v but are not adjacent to v. Further define $X_v := \{v = v_1, \ldots, v_r\} \subseteq \Gamma^v$ to be the vertices of Γ^v that are also dominated by v. Partition Γ^v into its connected components in

the graph $\Gamma \setminus \text{lk}(v)$. This partition is of the form

$$
\left(\bigsqcup_{i=1}^t \Gamma_i\right) \sqcup \left(\bigsqcup_{i=1}^r \{v_i\}\right),
$$

where $\bigsqcup_{i=1}^t \Gamma_i = \Gamma^v \setminus X_v$. Letting $H_i = \langle \Gamma_i \rangle$, we see that

$$
H := \langle \Gamma^v \rangle = H_1 * \cdots * H_t * \langle X_v \rangle,
$$
 (3)

where $F_r := \langle X_v \rangle$ is a free group of rank r. Notice that H is itself a right-angled Artin group.

The final step in proving Theorem [3.7](#page-13-2) requires a generating set for a certain subgroup of palindromic automorphisms in Aut(H), which we now define. Let \mathcal{Y} denote the subgroup of $Aut(H)$ consisting of the pure palindromic automorphisms of H that restrict to the identity on each H_i . The following lemma says that this group is generated by its intersection with the finite list of generators stated in Theorem [3.7.](#page-13-2) In the special case when there are no H_i factors in the free product (3) above, this result was established by Collins $[5]$. Our proof is a generalisation of his.

Lemma 3.10. *The group* \mathcal{Y} *is generated by the inversions of the free group* F_r *and the elementary palindromic automorphisms of the form* $P(s,t)$ *: s* \mapsto *tst, where* $t \in \Gamma^v$ and $s \in X_v$.

Proof. For $\alpha \in \mathcal{Y}$, we define its *length* $l(\alpha)$ to be the sum of the lengths of $\alpha(v_i)$ for each $v_i \in X_v$. We induct on this length. The base case is $l(\alpha) = r$, in which case α is a product of inversions of F_r . From now on, assume $l(\alpha) > r$.

Let $L(w)$ denote the length of a word w in the right-angled Artin group H, with respect to the vertex set Γ^v . Suppose for all $\epsilon_i, \epsilon_j \in \{\pm 1\}$ and distinct $a_i, a_j \in \alpha(\Gamma^v)$ we have

$$
L(a_i^{\epsilon_i} a_j^{\epsilon_j}) > L(a_i) + L(a_j) - 2([L(a_i)/2] + 1),
$$
\n(4)

where |x| is the integer part of $x \in [0, \infty)$. Conceptually, we are assuming that for every expression $a_i^{\epsilon_i} a_j^{\epsilon_j}$ ϵ_j , whatever cancellation occurs between the words $a_i^{\epsilon_i}$ and $a_i^{\epsilon_j}$ j^{i_j} , more than half of $a_i^{\epsilon_i}$ and more than half of $a_j^{\epsilon_j}$ $j_j^{\epsilon_j}$ survives after all cancellation is complete.

Fix $v_i \in X_v$ so that $a_i := \alpha(v_i)$ satisfies $L(a_i) > 1$. Such a vertex v_i must exist, as we are assuming that $l(\alpha) > r$. Notice that since $L(a_i) > 1$, we have $v_i \neq a_i^{\pm 1}$. Now, any reduced word in H of length m with respect to the generating set $\alpha(\Gamma^v)$ has length at least m with respect to the vertex generators Γ^v , due to our cancellation assumption. Since $v_i \neq a_i^{\pm 1}$, the generator v_i must have length strictly greater than 1 with respect to $\alpha(\Gamma^v)$, and so v_i must have length strictly greater than 1 with respect to Γ^v . But v_i is an element of Γ^v , which is a contradiction. Therefore, the above inequality [\(4\)](#page-16-2) fails at least once.

We now argue each case separately. Let $a_i, a_j \in \alpha(\Gamma^v)$ be distinct and write

$$
a_i = \alpha(v_i) = w_i v_i^{\eta_i} w_i^{\text{rev}}
$$
 and $a_j = \alpha(v_j) = w_j v_j^{\eta_j} w_j^{\text{rev}}$,

where $v_i, v_j \in \Gamma^v, w_i, w_j \in H$ and $\eta_i, \eta_j \in \{\pm 1\}$. Suppose the inequality [\(4\)](#page-16-2) fails for this pair when $\epsilon_i = \epsilon_j = 1$. Then it must be the case that $w_j = (w_i^{\text{rev}})^{-1} v_i^{-\eta_i} z$, for some $z \in H$, since H is a free product. In this case, replacing α with $\alpha P(v_i, v_i) = \alpha P_{ii}$ decreases the length of the automorphism. We reduce the length of α in the remaining cases as follows:

- for $\epsilon_i = \epsilon_j = -1$, replace α with $\alpha i_j P(v_j, v_i)^{-1} = \alpha i_j P_{ji}^{-1}$;
- for $\epsilon_i = -1$ and $\epsilon_i = 1$, or vice versa, replace α with $\alpha v_i P(v_i, v_i) = \alpha v_i P_{ii}$.

By induction, we have thus established the proposed generating set for the group \mathcal{Y} .

We now prove Theorem [3.7,](#page-13-2) obtaining a finite generating set for the group $P\Box A_{\Gamma}$.

Proof of Theorem [3.7](#page-13-2)*.* Let S denote the set of inversions and dominated elementary palindromic automorphisms in PIA_{Γ} . By Lemma [3.9,](#page-14-1) all we need do is write any simple $\alpha \in \text{PIIA}_{\Gamma}$ as a product of members of $S^{\pm 1}$.

Let v be a vertex of maximal rank that is not fixed by α . Define Γ^v , its partition, and the free product it generates using the same notation as in the discussion before the statement of Lemma 3.10 . By maximality of the rank of v, any vertex of any Γ_i must be fixed by α (since it has rank higher than that of v). By Lemma 5.5 of Laurence and its corollary $[16]$, we conclude that (for this v we have chosen), $\alpha(H) = H.$

This establishes that α restricted to H lies in the group $\mathcal{Y} <$ Aut(H), for which Lemma [3.10](#page-16-0) gives a generating set. Thus we are able to precompose α with the appropriate members of $S^{\pm 1}$ to obtain a new automorphism α' that is the identity on H, and which agrees with α on $\Gamma \setminus \Gamma^v$. In particular, α' fixes v. We now iterate this procedure until all vertices of Γ are fixed, and have thus proved the theorem. \Box

With Theorem [3.7](#page-13-2) established, we are now able to prove our first main result, Theorem [A,](#page-1-0) and so obtain our finite generating set for ΠA_{Γ} .

Proof of Theorem [A](#page-1-0). By Corollary [3.5,](#page-13-0) we have that ΠA_{Γ} splits as

$$
\Pi A_{\Gamma} \cong P \Pi A_{\Gamma} \rtimes D_{\Gamma},
$$

and so to generate ΠA_{Γ} , it suffices to combine the generating set for $\text{P}\Pi A_{\Gamma}$ given by Theorem [3.7](#page-13-2) with the diagram automorphisms of A_{Γ} . Thus the group ΠA_{Γ} is generated by the set of all diagram automorphisms, inversions and well-defined dominated elementary palindromic automorphisms.

We end this section by remarking that the proof techniques we used in establishing Theorem [A](#page-1-0) allow us to obtain finite generating sets for a more general class of palindromic automorphism groups of A_{Γ} . Having chosen an indexing v_1, \ldots, v_n of the vertex set V of Γ , denote by $\Pi A_{\Gamma}(k)$ the subgroup of ΠA_{Γ} that fixes each of the vertices v_1, \ldots, v_k . Note that a reindexing of V will, in general, produce non-isomorphic stabiliser groups. We are able to show that each $\Pi A_{\Gamma}(k)$ is generated by its intersection with the finite set S .

Theorem 3.11. The stabiliser subgroup $\Pi A_{\Gamma}(k)$ is generated by the set of di*agram automorphisms, inversions and dominated elementary palindromic automorphisms that fix each of* v_1, \ldots, v_k .

Throughout the proof of Theorem [3.7,](#page-13-2) each time that we precomposed some $\alpha \in \text{PIIA}_{\Gamma}$ by an inversion ι_i , an elementary palindromic automorphism P_{ij} , or its inverse P_{ij}^{-1} , it was because the generator v_i was not fixed by α . If $v_j \in V$ was already fixed by α , we had no need to use ι_j or any of the $P_{jk}^{\pm 1}$ ($j \neq k$) in this way. (That this claim holds in the second-last paragraph of the proof of Lemma [3.9,](#page-14-1) where we are working in the group $\Lambda_k[2]$, follows from [\[9,](#page-21-5) Lemma 3.5].) The same is true when we extend \overline{PIA}_{Γ} to \overline{IA}_{Γ} using diagram automorphisms, in the proof of Theorem [A.](#page-1-0) Thus by following the same method as in our proof of Theorem [A,](#page-1-0) we are also able to obtain the more general result, Theorem [3.11:](#page-18-0) our approach had already written $\alpha \in \Pi A_{\Gamma}(k)$ as a product of the generators proposed in the statement of Theorem [3.11.](#page-18-0)

4. The palindromic Torelli group

Recall that we defined the *palindromic Torelli group* \mathfrak{P}_{Γ} to consist of the palindromic automorphisms of A_{Γ} that act trivially on $H_1(A_{\Gamma}, \mathbb{Z})$. Our main goal in this section is to prove Theorem [B,](#page-3-1) which gives a generating set for $\mathcal{P}J_{\Gamma}$. For this, in Section [4.1](#page-18-2) we obtain a finite presentation for the image in $GL(n, \mathbb{Z})$ of the pure palindromic automorphism group. Using the relators from this presentation, we then prove Theorem \overline{B} \overline{B} \overline{B} in Section [4.2.](#page-20-0)

4.1. Presenting the image in $GL(n, \mathbb{Z})$ **of the pure palindromic automorphism group.** In this section we prove Theorem [4.2,](#page-19-0) which establishes a finite presentation for the image of the pure palindromic automorphism group $P\Pi A_{\Gamma}$ in $GL(n, \mathbb{Z})$, under the canonical map induced by abelianising A_{Γ} . Corollary [4.3](#page-20-1) then gives a splitting of $P\Pi A_\Gamma$.

Recall that $\Lambda_n[2]$ denotes the principal level 2 congruence subgroup of GL(n, \mathbb{Z}). We start by recalling a finite presentation for $\Lambda_n[2]$ due to the first author. For $1 \le i \ne j \le n$, let $S_{ij} \in \Lambda_n[2]$ be the matrix that has 1s on the diagonal and 2 in the (i, j) position, with 0s elsewhere, and let $Z_i \in \Lambda_n[2]$ differ from the identity matrix only in having -1 in the (i, i) position. Theorem [4.1](#page-19-1) gives a finite presentation for $\Lambda_n[2]$ in terms of these matrices.

Theorem 4.1 (Fullarton [\[9\]](#page-21-5)). *The principal level 2 congruence group* $\Lambda_n[2]$ *is generated by*

 $\{S_{ij}, Z_i \mid 1 \leq i \neq j \leq n\},\$

subject to the defining relators

(1) Z_i^2 , (2) $[Z_i, Z_j]$, (3) $(Z_i S_{ij})^2$, (4) $(Z_j S_{ij})^2$, (5) $[Z_i, S_{jk}],$ (6) $[S_{ki}, S_{ki}]$, (7) $[S_{ij}, S_{kl}]$, (8) $[S_{ii}, S_{ki}]$ (9) $[S_{kj}, S_{ji}] S_{ki}^{-2},$ (10) $(S_{ij}S_{ik}^{-1}S_{ki}S_{ji}S_{jk}S_{kj}^{-1})^2$,

where $1 \leq i, j, k, l \leq n$ *are pairwise distinct.*

We will use this presentation of $\Lambda_n[2]$ to obtain a finite presentation of the image of P ΠA_{Γ} in GL (n, \mathbb{Z}) . Observe that $i_j \mapsto Z_j$ and $P_{ij} \mapsto S_{ji}$ $(v_i \le v_j)$ under the canonical map Φ : Aut $(A_{\Gamma}) \rightarrow GL(n, \mathbb{Z})$. Let R_{Γ} be the set of words obtained by taking all the relators in Theorem [4.1](#page-19-1) and removing those that include a letter S_{ii} with $v_i \nleq v_i$.

Theorem 4.2. *The image of* $\text{P}\Pi\text{A}_{\Gamma}$ *in* $\text{GL}(n,\mathbb{Z})$ *is a subgroup of* $\Lambda_n[2]$ *, with finite presentation*

$$
\langle \{Z_k, S_{ji} : 1 \le k \le n, v_i \le v_j \} | R_{\Gamma} \rangle.
$$

Proof. By Theorem [3.7,](#page-13-2) we know that $\text{P}\Pi A_{\Gamma} \leq \text{Aut}^0(A_{\Gamma})$, and so matrices in $\Theta := \Phi(P \Pi A_{\Gamma}) \leq GL(n, \mathbb{Z})$ may be written in the lower-triangular block decomposition discussed in Section [2.4.](#page-6-1) Moreover, the matrix in a diagonal block of rank k in some $A \in \Theta$ must lie in $\Lambda_k[2]$.

We now use this block decomposition to obtain the presentation of Θ in the statement of the theorem. Observe that we have a forgetful map $\mathcal F$ defined on Θ , where we forget the first $k := |[v_1]|$ rows and columns of each matrix. This is a well-defined homomorphism, since the determinant of a lower block-triangular matrix is the product of the determinants of its diagonal blocks. Let Q denote the image of this forgetful map, and K its kernel. We have $K = \Lambda_k[2] \times \mathbb{Z}^t$, where t is the number of dominated transvections that are forgotten under the map \mathcal{F} , and the $\Lambda_k[2]$ factor is generated by the images of the inversions and dominated elementary palindromic automorphisms that preserve the subgroup $\langle v_1 \rangle$.

The group Θ splits as $\mathcal{K}\rtimes\mathcal{Q}$, with the relations corresponding to the semi-direct product action, and those in the obvious presentation of K , all lying in R_{Γ} . Now, we may define a similar forgetful map on the matrix group Ω , so by induction Λ is an iterated semi-direct product, with a complete set of relations given by R_{Γ} . \Box

Using the above presentation, we are able to obtain the following corollary, regarding a splitting of the group $\rm{PIIA_{\Gamma}}$. Recall that I_{Γ} is the subgroup of Aut(A_{Γ}) generated by inversions. We denote by $E\Pi A_{\Gamma}$ the subgroup of $P\Pi A_{\Gamma}$ generated by all dominated elementary palindromic automorphisms.

Corollary 4.3. *The group* PIIA_{Γ} *splits as* $\text{E}\Pi\text{A}_{\Gamma} \rtimes I_{\Gamma}$ *.*

Proof. The group P ΠA_{Γ} is generated by $E\Pi A_{\Gamma}$ and I_{Γ} by Theorem [3.7,](#page-13-2) and I_{Γ} normalises E ΠA_{Γ} . We now establish that $\text{E}\Pi A_{\Gamma} \cap I_{\Gamma}$ is trivial. Suppose $\alpha \in \text{ETA}_{\Gamma} \cap I_{\Gamma}$. By Theorem [4.2,](#page-19-0) the image of α under the canonical map Φ : Aut $(A_{\Gamma}) \rightarrow GL(n, \mathbb{Z})$ lies in the principal level 2 congruence group $\Lambda_n[2]$. This implies that $\Phi(\alpha)$ is trivial, since $\Lambda_n[2]$ is itself a semi-direct product of groups containing the images of the groups $E\Pi A_{\Gamma}$ and I_{Γ} , respectively: this is verified by examining the presentation of $\Lambda_n[2]$ given in Theorem [4.1.](#page-19-1) So the automorphism α must lie in the palindromic Torelli group $\mathcal{P}J_{\Gamma}$, which has trivial intersection with I_{Γ} , and hence α is trivial.

4.2. A generating set for the palindromic Torelli group. Using the relators in the presentation given by Theorem [4.1,](#page-19-1) we are now able to obtain an explicit generating set for the palindromic Torelli group \mathfrak{P}_{Γ} , and so prove Theorem **B**.

Recall that when A_{Γ} is a free group, the elementary palindromic automorphism P_{ij} is well-defined for every distinct i and j. The first author defined *doubled commutator transvections* and *separating* π -twists in Aut(F_n) ($n \geq 3$) to be conjugates in ΠA_n of, respectively, the automorphisms $[P_{12}, P_{13}]$ and $(P_{23}P_{13}^{-1}P_{31}P_{32}P_{12}P_{21}^{-1})^2$. The latter of these two may seem cumbersome; we refer to [\[9,](#page-21-5) Section 2] for a simple, geometric interpretation of separating π twists.

The definitions of these generators extend easily to the general right-angled Artin groups setting, as follows. Suppose $v_i \in V$ is dominated by v_j and by v_k , for distinct i , j and k . Then

$$
\chi_1(i, j, k) := [P_{ij}, P_{ik}] \in \text{Aut}(A_{\Gamma})
$$

is well-defined, and we define a *doubled commutator transvection* in $Aut(A_{\Gamma})$ to be a conjugate in ΠA_{Γ} of any well-defined $\chi_1(i, j, k)$. Similarly, suppose $[v_i] = [v_j] = [v_k]$ for distinct *i*, *j* and *k*. Then

$$
\chi_2(i, j, k) := (P_{jk} P_{ik}^{-1} P_{ki} P_{kj} P_{ij} P_{ji}^{-1})^2 \in \text{Aut}(A_{\Gamma})
$$

is well-defined, and we define a *separating* π -twist in Aut (A_{Γ}) to be a conjugate in ΠA_{Γ} of any well-defined $\chi_2(i, j, k)$.

We now prove Theorem [B,](#page-3-1) showing that \mathcal{PI}_{Γ} is generated by these two types of automorphisms.

Proof of Theorem **[B](#page-3-1)**. Recall that $\Theta := \Phi(P \Pi A_{\Gamma}) \leq GL(n, \mathbb{Z})$. The images in Θ of our generating set for P ΠA_{Γ} (Theorem [3.7\)](#page-13-2) form the generators in the presentation for Θ given in Theorem [4.2.](#page-19-0) Thus using a standard argument (see, for example, the proof of [\[17,](#page-22-8) Theorem 2.1]), we are able to take the obvious lifts of the relators of Θ as a normal generating set of \mathfrak{PT}_{Γ} in $\Gamma\Box A_{\Gamma}$, via the short exact sequence

$$
1 \longrightarrow \mathcal{PI}_{\Gamma} \longrightarrow \mathcal{P}\Pi A_{\Gamma} \longrightarrow \Theta \longrightarrow 1.
$$

The only such lifts and their conjugates that are not trivial in $\text{P}\Pi\text{Ar}$ are the ones of the form stated in the theorem.

References

- [1] I. Agol, The virtual Haken conjecture. *Doc. Math.* **18** (2013), 1045–1087. With an appendix by I. Agol, D. Groves, and J. Manning. [Zbl 1286.57019](http://zbmath.org/?q=an:1286.57019) [MR 3104553](http://www.ams.org/mathscinet-getitem?mr=3104553)
- [2] T. Brendle, D. Margalit, and A. Putman, Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at $t = -1$. *Invent. Math.* **200** (2015), no. 1, 263–310. [Zbl 1328.57021](http://zbmath.org/?q=an:1328.57021) [MR 3323579](http://www.ams.org/mathscinet-getitem?mr=3323579)
- [3] R. Charney, An introduction to right-angled Artin groups. *Geom. Dedicata* **125** (2007), 141–158. [Zbl 1152.20031](http://zbmath.org/?q=an:1152.20031) [MR 2322545](http://www.ams.org/mathscinet-getitem?mr=2322545)
- [4] R. Charney, N. Stambaugh, and K. Vogtmann, Outer space for right-angled Artin groups I. *Geom. Topol.* **21** (2017), no. 2, 1131–1178. [Zbl 06701804](http://zbmath.org/?q=an:06701804) [MR 3626599](http://www.ams.org/mathscinet-getitem?mr=3626599)
- [5] D. J. Collins, Palindromic automorphisms of free groups. In A. J. Duncan, N. D. Gilbert, and J. Howie (eds.), *Combinatorial and geometric group theory.* (Edinburgh, 1993.) London Mathematical Society Lecture Note Series, 204. Cambridge University Press, Cambridge, 1995, 63–72. [Zbl 0843.20022](http://zbmath.org/?q=an:0843.20022) [MR 1320275](http://www.ams.org/mathscinet-getitem?mr=1320275)
- [6] M. B. Day, Peak reduction and finite presentations for automorphism groups of right-angled Artin groups. *Geom. Topol.* **13** (2009), no. 2, 817–855. [Zbl 1226.20024](http://zbmath.org/?q=an:1226.20024) [MR 2470964](http://www.ams.org/mathscinet-getitem?mr=2470964)
- [7] M. B. Day, Symplectic structures on right-angled Artin groups: between the mapping class group and the symplectic group. *Geom. Topol.* **13** (2009), no. 2, 857–899. [Zbl 1181.20032](http://zbmath.org/?q=an:1181.20032) [MR 2470965](http://www.ams.org/mathscinet-getitem?mr=2470965)
- [8] M. B. Day and A. Putman, The complex of partial bases for F_n and finite generation of the Torelli subgroup of Aut (F_n) . *Geom. Dedicata* **164** (2013), 139–153. [Zbl 1294.20041](http://zbmath.org/?q=an:1294.20041) [MR 3054621](http://www.ams.org/mathscinet-getitem?mr=3054621)
- [9] N. J. Fullarton, A generating set for the palindromic Torelli group. *Algebr. Geom. Topol.* **15** (2015), no. 6, 3535–3567. [Zbl 1368.20026](http://zbmath.org/?q=an:1368.20026) [MR 3450770](http://www.ams.org/mathscinet-getitem?mr=3450770)
- [10] H. H. Glover and C. A. Jensen, Geometry for palindromic automorphism groups of free groups. *Comment. Math. Helv.* **75** (2000), no. 4, 644–667. [Zbl 0972.20021](http://zbmath.org/?q=an:0972.20021) [MR 1789180](http://www.ams.org/mathscinet-getitem?mr=1789180)
- [11] E. R. Green, *Graph products of groups.* Ph.D. thesis. University of Leeds, Leeds, 1990.

- [12] R. Hain, Finiteness and Torelli spaces. In B. Farb (ed.), *Problems on mapping class groups and related topics.* Proceedings of Symposia in Pure Mathematics, 74. American Mathematical Society, Providence, R.I., 2006, 57–70. [Zbl 1222.14014](http://zbmath.org/?q=an:1222.14014) [MR 2264131](http://www.ams.org/mathscinet-getitem?mr=2264131)
- [13] S. Hermiller and J. Meier, Algorithms and geometry for graph products of groups. *J. Algebra* **171** (1995), no. 1, 230–257. [Zbl 0831.20032](http://zbmath.org/?q=an:0831.20032) [MR 1314099](http://www.ams.org/mathscinet-getitem?mr=1314099)
- [14] C. Jensen, J. McCammond, and J. Meier, The Euler characteristic of the Whitehead automorphism group of a free product. *Trans. Amer. Math. Soc.* **359** (2007), no. 6, 2577–2595. [Zbl 1124.20037](http://zbmath.org/?q=an:1124.20037) [MR 2286046](http://www.ams.org/mathscinet-getitem?mr=2286046)
- [15] K. H. Kim, L. M.-Limanov, J. Neggers, and F. W. Roush, Graph algebras. *J. Algebra* **64** (1980), no. 1, 46–51. [Zbl 0431.05023](http://zbmath.org/?q=an:0431.05023) [MR 0575780](http://www.ams.org/mathscinet-getitem?mr=0575780)
- [16] M. R. Laurence, A generating set for the automorphism group of a graph group. *J. London Math. Soc.* (2) **52** (1995), no. 2, 318–334. [Zbl 0836.20036](http://zbmath.org/?q=an:0836.20036) [MR 1356145](http://www.ams.org/mathscinet-getitem?mr=1356145)
- [17] W. Magnus, A. Karrass, and D. Solitar, *Combinatorial group theory.* Presentations of groups in terms of generators and relations. Second revised edition. Dover Publications, New York, 1976. [Zbl 0362.20023](http://zbmath.org/?q=an:0362.20023) [MR 0422434](http://www.ams.org/mathscinet-getitem?mr=0422434)
- [18] H. Servatius, Automorphisms of graph groups. *J. Algebra* **126** (1989), no. 1, 34–60. [Zbl 0682.20022](http://zbmath.org/?q=an:0682.20022) [MR 1023285](http://www.ams.org/mathscinet-getitem?mr=1023285)
- [19] R. D. Wade, Johnson homomorphisms and actions of higher-rank lattices on rightangled Artin groups. *J. Lond. Math. Soc.* (2) **88** (2013), no. 3, 860–882. [Zbl 1291.20028](http://zbmath.org/?q=an:1291.20028) [MR 3145135](http://www.ams.org/mathscinet-getitem?mr=3145135)

Received September 2, 2016

Neil J. Fullarton, Room 420, Department of Mathematics, Rice University, MS136, 6100 Main Street, Houston, TX 77005, USA

e-mail: neil.fullarton@rice.edu

Anne Thomas, School of Mathematics and Statistics F07, University of Sydney NSW 2006, Australia

e-mail: anne.thomas@sydney.edu.au