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Properties of sets of isometries of Gromov hyperbolic spaces

Eduardo Oregón-Reyes1

Abstract. We prove an inequality concerning isometries of a Gromov hyperbolic metric

space, which does not require the space to be proper or geodesic. It involves the joint stable

length, a hyperbolic version of the joint spectral radius, and shows that sets of isometries

behave like sets of 2�2 real matrices. Among the consequences of the inequality, we obtain

the continuity of the joint stable length and an analogue of Berger–Wang theorem.

Mathematics Subject Classification (2010). 53C23, 20F65, 15A42.

Keywords. Gromov hyperbolic space, stable length, joint spectral radius.

1. Introduction

Let X be a metric space with distance d.x; y/ D jx � yj. We assume this space is

ı-hyperbolic in the Gromov sense. This concept was introduced in 1987 [14] and

has an important role in geometric group theory and negatively curved geometry

[7, 14, 16]. There are several equivalent definitions [8], among which the following

four points condition (f.p.c.). For all x; y; s; t 2 X the following holds:

jx � yj C js � t j � max.jx � sj C jy � t j; jx � t j C jy � sj/ C 2ı: (f.p.c.)

This paper deals with isometries of hyperbolic spaces. We do not assume X to

be geodesic nor proper, since these conditions are irrelevant for many purposes

[4, 9, 15, 27]. We also do not make use of the Gromov boundary, deriving our

fundamental results directly from (f.p.c.).

Let us introduce some terminology and notation. Let Isom.X/ be the group of

isometries of X . For x 2 X and † � Isom.X/ define

j†jx D sup
f 2†

jf x � xj:

We say that † is bounded if j†jx < 1 for some (and hence any) x 2 X .

1 Supported by CONICYT Scholarship 22172003, and partially supported by FONDECYT
project 1140202 and by CONICYT PIA ACT172001.
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For a single isometry f the stable length is defined by

d 1.f / D lim
n!1

jf nx � xj

n
D inf

n

jf nx � xj

n
:

This quantity is well defined and finite by subadditivity and turns to be indepen-

dent of x 2 X .

Our first result gives a lower bound for the stable length.

Theorem 1.1. If x 2 X and f 2 Isom.X/ then

jf 2x � xj � jf x � xj C d 1.f / C 2ı: (1)

The main result of this paper is a version of Theorem 1.1 for two isometries.

Theorem 1.2. For every x 2 X and every f; g 2 Isom.X/ we have

jfgx � xj � max
�

jf x � xj C d 1.g/; jgx � xj C d 1.f /;

jf x � xj C jgx � xj C d 1.fg/

2

�

C 6ı:

(2)

For the generalization of the stable length and Theorem 1.1 to bounded sets of

isometries, some notation is required. If † � Isom.X/ we denote by †n the set

of all compositions of n isometries of †. Note that if † is bounded then each †n

is bounded. We define the joint stable length as the quantity

D.†/ D lim
n!1

j†njx

n
D inf

n

j†njx

n
:

Similarly as before, this function is well defined, finite and independent of x. Also,

it is useful to define the stable length of † as

d 1.†/ D sup
f 2†

d 1.f /:

Taking supremum over f; g 2 † in both sides of (2) and noting that d 1.†2/ �

D.†2/ D 2D.†/ we obtain a lower bound for the joint stable length similar to

Theorem 1.1.

Corollary 1.3. For every x 2 X and every bounded set † � Isom.X/ the

following holds:

j†2jx � j†jx C
d 1.†2/

2
C 6ı � j†jx C D.†/ C 6ı: (3)

Inequalities (1) and (3) are inspired by lower bounds for the spectral radius

due to J. Bochi [3, eq. 1, Theorem A]. As we will see, the connection between the

spectral radius and the stable length will allow us to deduce Bochi’s inequalities

from (1) and (3) (see Section 2 below), and actually improve them using (2).

We present some applications of Theorems 1.1 and 1.2.
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Berger–Wang like theorem. The joint stable length is inspired by matrix the-

ory. Let Md .R/ be the set of real d �d matrices and let k:k be an operator norm on

Md .R/. We denote the spectral radius of a matrix A by �.A/. The joint spectral

radius of a bounded set M � Md .R/ is defined by

R.M/ D lim
n!1

sup ¹kA1 : : : Ank1=nW Ai 2 Mº:

Note the similarity with the definition of the joint stable length.

The joint spectral radius was introduced by Rota and Strang [26] and pop-

ularized by Daubechies and Lagarias [10]. This quantity has aroused research

interest in recent decades and it has appeared in several mathematical contexts

(see e.g. [18, 20]). An important result related to the joint spectral radius is the

Berger–Wang theorem [1] which says that for all bounded sets M � Md .R/ we

have R.M/ D lim supn!1 sup
®

�.A/1=nW A 2 Mn
¯

: From Corollary 1.3 we prove

a similar result for the joint stable length in a ı-hyperbolic space.1

Theorem 1.4. Every bounded set † � Isom.X/ satisfies

D.†/ D lim sup
n!1

d 1.†n/

n
D lim

n!1

d 1.†2n/

2n
:

A question that arose from the Berger–Wang theorem is the finiteness con-

jecture proposed by Lagarias and Wang [21] which asserts that for every finite

set M � Md .R/ there exists some n � 1 and A1; : : : ; An 2 M such that

R.M/ D �.A1 : : : An/1=n. The failure of this conjecture was proved by Bousch

and Mairesse [5].

In the context of sets of isometries, following an idea of I. D. Morris (personal

communication) we refute the finiteness conjecture for X D H
2.

Proposition 1.5. There exists a finite set † � Isom.H2/ such that, for all n � 1,

D.†/ >
d 1.†n/

n
:

Let us interpret these facts in terms of Ergodic Theory. Given a compact set

of matrices M, the joint spectral radius equals the supremum of the Lyapunov

exponents over all ergodic shift-invariant measures on the space MN (see [24]

for details). Therefore, Berger–Wang says that instead of considering all shift-

invariant measures, it is sufficient to consider those supported on periodic orbits.

A far-reaching extension of this result was obtained by Kalinin [19].

1 Very recently, Breuillard and Fujiwara [6] gave a different proof of this result assuming
that X is ı-hyperbolic and geodesic. They also proved the first formula in Theorem 1.4 when X

is a symmetric space of non-compact type
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Classification of semigroups of isometries. The stable length gives relevant

information about isometries in hyperbolic spaces. Recall that for a ı-hyperbolic

space X an isometry f 2 Isom.X/ is either elliptic, parabolic, or hyperbolic. This

classification is directly related to the stable length [8, Chapter 10, Proposition 6.3].

Proposition 1.6. An isometry f of X is hyperbolic if and only if d 1.f / > 0:

There also exists a classification for semigroups of isometries in three disjoint

families (also called elliptic, parabolic and hyperbolic) obtained by Das, Simmons

and Urbański. An application of Theorem 1.4 is the following generalization of

Proposition 1.6, which serves as a motivation to study the joint stable length D.†/.

Theorem 1.7. The semigroup generated by a bounded set † � Isom.X/ is

hyperbolic if and only if D.†/ > 0:

In addition, we give a sufficient condition for a product of two isometries to be

hyperbolic, and a lower bound for the stable length of the product, improving [8,

Chapter 9, Lemma 2.2].

Proposition 1.8. Let K � 7ı and f; g 2 Isom.X/ be such that jf x � gxj >

max.jf x � xj C d 1.g/; jgx � xj C d 1.f // C K for some x 2 X . Then fg is

hyperbolic, and

d 1.fg/ > d 1.f / C d 1.g/ C 2K � 14ı:

Continuity results. The group Isom.X/ possesses a natural topology induced

by the product topology on XX , which is called the point-open topology. In this

space it coincides with the compact-open topology [9, Proposition 5.1.2]. Using

Theorem 1.1 we will prove that the stable length behaves well with respect to this

topology.

Theorem 1.9. The map f 7! d 1.f / is continuous on Isom.X/ with the point-

open topology.

Remark 1.10. The stable length may be discontinuous if we do not assume that

X is ı-hyperbolic. Take for example X D C with the Euclidean metric, and let

fuWC ! C be given by fu.z/ D uz C 1, where u is a parameter in the unit

circle. For u ¤ 1 we have that fu is a rotation, and hence d 1.fu/ D 0. But f1

is a translation and d 1.f1/ D 1. However, the stable length is of course upper

semi-continuous for all metric spaces.

Since in general the space Isom.X/ is not metrizable, we need a suitable

generalization of the Hausdorff distance. Let C.Isom.X// be the set of non empty
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compact (with respect with the point-open topology) sets of isometries of X

endow this set with the Vietoris topology [22]. This topology is natural in the

sense that its separation, compactness and connectivity properties derive directly

from the respective properties on Isom.X/ [22, §4]. In fact, when Isom.X/ is

metrizable the Vietoris topology coincides with the one induced by the Hausdorff

distance.

With these notions it is easy to check that every non empty compact set

† � Isom.X/ is bounded, and hence the joint stable length is well defined. As a

consequence of Corollary 1.3 we obtain the following result.

Theorem 1.11. Endowing C.Isom.X// with the Vietoris topology, the joint stable

length † 7! D.†/ and the stable length † 7! d 1.†/ are continuous.

Organization of the paper. Section 2 is devoted to the relationship between

Theorems 1.1 and 1.2 and matrix theory. Proving these results and applying them

in the hyperbolic plane we deduce Bochi’s inequalities in dimension 2. Also we

give a counterexample to the finiteness conjecture on Isom.H2/. Then in Section 3

we prove Theorems 1.1 and 1.2. In Section 4 we prove the Berger–Wang theorem

for sets of isometries and study the basic properties of the stable lengths, reviewing

some known results, and their geometric or dynamical interpretations, specifically

on the classification of generated semigroups of isometries on hyperbolics spaces.

In Section 5 we study the point-open and Vietoris topologies on Isom.X/ and

C.Isom.X// respectively and we give proofs of the continuity properties of the

stable length and the joint stable length. In section 6 we pose some open questions

related to the joint stable length. We leave Appendix A for the technical results that

we used in Section 5, and we prove them for the Vietoris topology of an arbitrary

topological group.

2. The case of the hyperbolic plane

2.1. Derivation of matrix inequalities. In this section we relate the stable

lengths for sets of isometries and the spectral radii for sets of 2 � 2 matrices.

To do this, we study the hyperbolic plane.

Let H
2 be the upper-half plane ¹z 2 CW Im.z/ > 0º endowed with the Rie-

mannian metric ds2 D dz2=Im.z/2: This space is log 2-hyperbolic (log 2 is

the best possible constant [25, Corollary 5.4]). It is known that SL˙
2 .R/ D

¹A 2 M2.R/W det A D ˙1º is isomorphic to Isom.H2/, with isomorphism given
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by

A D

�

a b

c d

�

7�! zAz D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

az C b

cz C d
if det A D 1;

a Nz C b

c Nz C d
if det A D �1:

The relation between the distance dH2 and the Euclidean operator norm k:k2 on

M2.R/ is established in the following proposition.

Proposition 2.1. For every A 2 SL˙
2 .R/ and every bounded set M � SL˙

2 .R/

the following holds:

i) dH2. zAi; i/ D 2 log .kAk2/;

ii) d 1. zA/ D 2 log.�.A//;

iii) D. zM/ D 2 log .R.M//, where zM D ¹ zB W B 2 Mº � Isom.H2/.

Proof. By the definition of the joint stable length and Gelfand’s formula �.A/ D

limn!1 .kAnk2/1=n it is easy to see that ii) and iii) are consequences of i).

The proof of i) is simple. In the case that zA fixes i , that is, A is an orthogonal

matrix, the equality is trivial. In the case that A is a diagonal matrix, the proof is a

straightforward computation. The general case follows by considering the singular

value decomposition. �

Corollary 2.2. For every A 2 SL˙
2 .R/ and z 2 H

2,

dH2. zAz; z/ D 2 log .kSAS�1k2/

where S is any element in SL˙
2 .R/ that satisfies zSz D i .

Proof. By Proposition 2.1 i),

dH2. zAz; z/ D dH2. zA zS�1i; zS�1i/ D dH2. zS zA zS�1i; i/ D 2 log.kSAS�1k2/;

where we used that zS is an isometry. �

Now we present the lower bound for the spectral radius due to Bochi.

Proposition 2.3. Let d � 2. For every A 2 Md .R/ and every operator norm k:k

on Md .R/,

kAd k � .2d � 1/�.A/kAkd�1: (4)

The generalization of Proposition 2.3 to a lower bound for the joint spectral

radius is as follows.
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Theorem 2.4 (Bochi [3]). There exists C D C.d/ > 1 such that, for every

bounded set M � Md .R/ and every operator norm k:k on Md .R/,

sup
Ai 2M

kA1 : : : Ad k � CR.M/ sup
A2M

kAkd�1: (5)

Dividing by 2, applying the exponential function in (1), and using Proposi-

tion 2.1 i) and Corollary 2.2 we obtain

kSA2S�1k2 � 2�.A/kSAS�1k2: (6)

To replace k:k2 by an arbitrary operator norm we use the following lemma [3,

Lemma 3.2].

Lemma 2.5. There exists a constant C0 > 1 such that for every operator norm

k:k on M2.R/ there exists some S in SL˙
2 .R/ such that for every A 2 M2.R/,

C0
�1kAk � kSAS�1k2 � C0kAk:

With this lemma we can give another prove of Bochi’s Proposition 2.3 for

d D 2, replacing the constant .22 � 1/ by 2C0
2, where C0 is the constant given by

Lemma 2.5. This involves three steps.

Step 1. The result is valid for all operator norms and A 2 SL˙
2 .R/.

Consider the operator norm k:k on M2.R/ and the respective S 2 SL˙
2 .R/

given by Lemma 2.5. Using this in (6) we obtain

kA2k � C0kSA2S�1k2 � 2C0�.A/kSAS�1k2 � 2C0
2�.A/kAk:

Step 2. We extend the result to A 2 GL2.R/.

This is easy since inequality (6) is homogeneous in A.

Step 3. We can consider A an arbitrary matrix in M2.R/.

We use that GL2.R/ is dense in M2.R/ considering the metric given by k:k2. In

this case the matrix multiplication and the spectral radius are continuous functions.

So the conclusion follows.

If we do the same process to recover Theorem 2.4 in dimension 2 from

Theorem 1.2 we will obtain a stronger result.

Proposition 2.6. For all pairs of matrices A; B; 2 M2.R/ and all operator norms

k:k on M2.R/,

kABk � 8C0
2 max .kAk�.B/; kBk�.A/;

p

kAkkBk�.AB//: (7)
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Proof. The case with k:k D k:k2 and A; B 2 SL˙
2 .R/ is a consequenceof applying

Proposition 2.1 in (2). Steps 1 and 3 are exactly the same as we did before. Step 2

follows by noting that (7) is a bihomogeneous inequality, in the sense that when

we fix A it is homogeneous in B and when we fix B it is homogeneous in A. �

2.2. Finiteness conjecture on Isom.H2/. We finish this section giving a neg-

ative answer to the finiteness conjecture when X D H2. This is equivalent to

finding a counterexample to the finiteness conjecture for matrices in SL˙
2 .R/.

The following construction was communicated to us by I. D. Morris. Let

A.t/ D .A
.t/
0 ; A

.t/
1 / 2 SL˙

2 .R/, where A
.t/
0 D

�

2 1
3 2

�

, A
.t/
1 D

�

2t�1 3t
t�1 2t

�

and t 2 R
C.

Theorem 2.7. The family .A.t//t�1 contains a counterexample to the finiteness

conjecture.

Proof. The argument is similar to the one used in [2]. First, note that for all

t � 1 the set A.t/ satisfies the hypotheses of the Jenkinson–Pollicott’s Theorem

[17, Theorem 9] and therefore one of the following options holds: either A.t/

is a counterexample to the finiteness conjecture, or there exists a finite product

A
.t/
� D A

.t/
i1

: : : A
.t/
in

with � D .i1; : : : ; in/ 2 ¹0; 1ºn not being a power such that

�.A
.t/
� /1=n D R.A.t// and, more importantly, the word � is unique modulo cyclic

permutations.

Suppose that no counterexample exists. As the map t 7! A.t/ is continuous,

by the continuity of the spectral radius and joint spectral radius on SL˙
2 .R/ and

SL˙
2 .R/ respectively, the maps t 7! R.A.t// and t 7! �.A

.t/
� / are continuous for

all � 2 ¹0; 1ºn. So for all � , the sets P. N�/ D ¹t 2 Œ1; 1/W �.A
.t/
� /1=n D R.A.t//º

are closed in Œ1; 1/, where N� denotes the class of � modulo cyclic permutation.

If the cardinality of N� such that P. N�/ ¤ ; was infinite countable, then the

compact connected set Œ1; 1� would be partitioned in a countable family of non-

empty closed sets, a contradiction (see [11, Theorem 6.1.27]). So, P. N�/ is empty for

all but a finite number of N� . But by connectedness, it happens that Œ1; 1/ D P. N�/

for a unique class N� . Since A
.1/
1 is the transpose of A

.1/
0 , the only option is the

class of � D .0; 1/ 2 ¹0; 1º2, but for t large enough we have �.A
.t/
� /1=n < R.A.t//,

contradiction again. So, for some t0, A.t0/ is a desired counterexample. �

Remark 2.8. The continuity of the maps t 7! R.A.t// and t 7! �.A
.t/
� / also

follows from the general results proved in Section 5.

Proof of Proposition 1.5. Just take † D zA.t0/ for t0 found in Theorem 2.7. �
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3. Proof of Theorems 1.1 and 1.2

We begin with the proof of Theorem 1.1, which basically follows from (f.p.c.).

Proof of Theorem 1.1. We follow the arguments in [8, Chapter 9, Lemma 2.2].

Fix x as base point and f isometry. Let n � 2 be an integer. Using (f.p.c.) on the

points x; f 2x; f x and f nx we obtain

jf 2x � xj C jf nx � f xj

� max.jf x � xj C jf nx � f 2xj; jf nx � xj C jf 2x � f xj/ C 2ı:

As f is an isometry, if we define an D jf nx � xj, the inequality is equivalent to

a2 C an�1 � max.an�2; an/ C a1 C 2ı: (8)

Now, let a D a2 � a1 � 2ı. We need to show that a � d 1.f /. If a � 0 there is

nothing to prove. So, we assume that a is positive. We claim that a C an � anC1

for all n � 1, which is clear for n D 1. If we suppose it valid for some n, we know

from (8) that

a C anC1 � max.anC2; an/:

If anC2 < an, then

an < a C .a C an/ � a C anC1 � an

a contradiction. Therefore a C anC1 � anC2, completing the proof of the claim.

So, by telescoping sum, na � an for all n, and then

a � lim
n

an

n
D d 1.f /

as we wanted to show. �

Now we proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. First we suppose that ı > 0. Let x be a base point and

f; g 2 Isom.X/. We use (f.p.c.) on the points x; fgx; f x and f 2x

jfgx�xjCjf x�xj � max.jf x�gxjCjf x�xj; jf 2x�xjCjgx�xj/C2ı; (9)

and we separate into two cases.
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Case i) jfx �gxj � max.jfx �xjCd1.g/; jgx �xjCd1.f //C4ı. Using

this into (9) we obtain

jfgx � xj � max.jf x � gxj; jf 2x � xj C jgx � xj � jf x � xj/ C 2ı

(by Theorem 1.1)

� max.jf x � gxj; d 1.f / C jgx � xj C 2ı/ C 2ı

(by Case i)

� max.d 1.g/ C jf x � xj; d 1.f / C jgx � xj/ C 6ı

completing the proof of the proposition in this case.

Case ii) jfx�gxj > max.jfx�xjCd1.g/; jgx�xjCd1.f //C4ı. Using

this we get

jf 2x � xj C jgx � xj � jf x � xj C d 1.f / C jgx � xj C 2ı

< jf x � xj C jf x � gxj � 2ı:
(10)

So,

max.jf x � xj C jf x � gxj; jf 2x � xj C jgx � xj/ D jf x � xj C jf x � gxj

and we obtain from (9) that

jfgx � xj � jf x � gxj C 2ı: (11)

Now, we use (f.p.c.) three times. First, on x; f x; fgx and f 2x,

jf x � xj C jf x � gxj

� max.jfgx � xj C jf x � xj; jf 2x � xj C jgx � xj/ C 2ı:

But again by (10), it cannot happen that

jf x � xj C jf x � gxj � jf 2x � xj C jgx � xj C 2ı;

so

jf x � gxj � jfgx � xj C 2ı

and combining with (11) we obtain

j jfgx � xj � jf x � gxj j � 2ı: (12)
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As our hypothesis is symmetric in f and g, an analogous reasoning allows us to

conclude that

j jgf x � xj � jf x � gxj j � 2ı: (13)

Combining with (12) we obtain

j jfgx � xj � jgf x � xj j � 4ı: (14)

Next, we use (f.p.c.) on x; fgx; f x; and fgf x,

jfgx � xj C jgf x � xj � max.2jf x � xj; jfgf x � xj C jgx � xj/ C 2ı: (15)

But by (14) and assumption ii),

jfgx � xj C jgf x � xj � 2jf x � gxj � 4ı

> 2.jf x � xj C d 1.g/ C 4ı/ � 4ı

> 2jf x � xj C 2ı:

So, using this with (14), in (15),

2jfgx � xj � jfgf x � xj C jgx � xj C 6ı: (16)

Finally, by (f.p.c.) on x; fgf x; fgx; .fg/2x we obtain

jfgf x � xj C jfgx � xj

� max.jfgx � xj C jgx � xj; j.fg/2x � xj C jf x � xj/ C 2ı:

If the maximum in the right hand side were jfgx � xj C jgx � xj, we would have

jfgf x � xj � jgx � xj C 2ı. But then, by (12) and (13),

2jf x � gxj � 4ı � .jfgx � xj C jgf x � xj/

(by (15))

� max.2jf x � xj; jfgf x � xj C jgx � xj/ C 2ı

� 2 max.jf x � xj; jgx � xj/ C 4ı

(by Case ii)

< 2jf x � gxj � 4ı:

This contradiction and Theorem 1.1 applied to fg show us that

jfgf x � xj � j.fg/2x � xj C jf x � xj C 2ı � jfgx � xj

� .jfgx � xj C d 1.fg/ C 2ı/ C jf x � xj C 2ı � jfgx � xj

� jf x � xj C d 1.fg/ C 4ı:
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Using this with (16) we can finish:

jfgx � xj � .jfgf x � xj C jgx � xj/=2 C 3ı

� .d 1.fg/ C jf x � xj C jgx � xj/=2 C 5ı:

In both cases our claim is true. To conclude the proof, note that a 0-hyperbolic

space is ı-hyperbolic for all ı > 0. �

As a corollary of the proof of Theorem 1.2 we obtain Proposition 1.8.

Proof of Proposition 1.8. Since K � 4ı, we are in Case ii) of the previous proof.

So we have jfgx � xj � .d 1.fg/ C jf x � xj C jgx � xj/=2 C 5ı. But by (12)

and our assumption, we obtain

jf x � xj C jgx � xj C d 1.f / C d 1.g/

2

� max.jf x � xj C d 1.g/; jgx � xj C d 1.f //

< jf x � gxj � K

� jfgx � xj C 2ı � K

�
jf x � xj C jgx � xj C d 1.fg/

2
C 7ı � K

The conclusion follows easily. �

4. Berger–Wang and further properties of the stable length

and joint stable length

4.1. A Berger–Wang Theorem for sets of isometries. Now we prove Theo-

rem 1.4. We follow the arguments used in [3, Corollary 1].

Proof of Theorem 1.4. It is clear that D.†/ � lim supn!1 d 1.†n/=n. Fixing a

base point x and applying Corollary 1.3 to †n we have

j†2njx � j†njx C d 1.†2n/=2 C 6ı:

Dividing by n, taking lim inf when n ! 1 and using that D.†2/ D 2D.†/, we

obtain the result. �

As a consequence we can describe the joint stable length of a bounded set of

isometries in terms of the joint stable lengths of its finite non empty subsets.

Proposition 4.1. If X is ı-hyperbolic then for every bounded set † � Isom.X/

we have

D.†/ D sup ¹D.B/W B � † and B is finite and non emptyº:
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Proof. Let L be the supremum in the right hand side. Clearly L � D.†/. For the

reverse inequality, let � > 0 and n � 1 be such that jD.†/ � d 1.†n/=nj < �=2.

Also let B D ¹f1; : : : ; fnº � † be such that d 1.†n/ � d 1.f1 : : : fn/ C �=2. So

we have

D.†/�d 1.†n/=n C �=2<d 1.f1 : : : fn/=n C � �D.Bn/=n C � DD.B/ C �:

Then it follows that D.†/ � L. �

4.2. Dynamical interpretation and semigroups of isometries. The stable

length plays an important role in geometry and group theory (see e.g. [13] and

the appendix in [12]). In this section we see its relation with isometries of Gro-

mov hyperbolic spaces.

It is a well known fact that an isometry f of an hyperbolic metric space X

belongs to exactly one of the following families:

i) elliptic if the orbit of some (and hence any) point by f is bounded;

ii) parabolic if it is not elliptic and the orbit of some (and hence any) point by

f has a unique accumulation point on the Gromov boundary @X ;

iii) hyperbolic if it is not elliptic and the orbit of some (and hence any) point by

f has exactly two accumulation points on @X .

A proof of this classification for general hyperbolic spaces can be found in [9,

Theorem 6.1.4], while for proper hyperbolic spaces this result is proved in [8,

Chapter 9, Theorem 2.1].

As we said in the introduction, an isometry of X is hyperbolic if and only

if its stable length is positive. We want to extend this result for bounded sets

of isometries. For our purpose we count with a classification for semigroups of

isometries.

A semigroup G � Isom.X/ is

i) elliptic if Gx is a bounded subset of X for some (hence any) x 2 X ;

ii) parabolic if it is not elliptic and there exists a unique point in @X fixed by all

the elements of G;

iii) hyperbolic if it contains some hyperbolic element.

An important result is that these are all the possibilities [9, Theorem 6.2.3].

Theorem 4.2 (Das, Simmons, and Urbański). A semigroup G � Isom.X/ is either

elliptic, parabolic or hyperbolic.

So, as a corollary of Theorem 1.4 we obtain a criterion for hyperbolicity for

a certain class of semigroups given by Theorem 1.7, that extends Proposition 1.6.

Let † be a subset of Isom.X/ and denote by h†i the semigroup generated by †;

that is, h†i D
S

n�1 †n.
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Proof of Theorem 1.7. By Theorem 1.4, D.†/ > 0 if and only if d 1.†n/ > 0 for

some n � 1, which is equivalent to d 1.f / > 0 for some f 2
S

n�1 †n D h†i.

This is equivalent to the hyperbolicity of h†i by Proposition 1.6. �

4.3. Relation with the minimal length. When we require X to be a geodesic

space (i.e. every pair of points x; y can be joined by an arc isometric to an interval)

we have another lower bound for the stable length. If f 2 Isom.X/ define

d.f / D inf
x2X

jf x � xj:

This number is called the minimal length of f . It is clear that d 1.f / � d.f /.

On the other hand we have

Proposition 4.3. If X is ı-hyperbolic and geodesic and f 2 Isom.X/ then

d.f / � d 1.f / C 16ı:

For a proof of this proposition see [8, Chapter 10, Proposition 6.4]. This gives

us another lower bound for the joint stable length.

Proposition 4.4. With the same assumptions of Proposition 4.3, for all bounded

sets † � Isom.X/ we have

sup
f 2†

d.f / � D.†/ C 16ı:

Remark 4.5. A result similar to Proposition 4.3 is false if we do not assume

X to be geodesic. Indeed, consider a ı-hyperbolic space X and f 2 Isom.X/

with a fixed point and such that supx2X jf x � xj D 1. So, for all R > 0 the

set XR D ¹x 2 X W jf x � xj � Rº is a ı-hyperbolic space and f restricts to an

isometry fR of XR. This is satisfied for example by every non-identity elliptic

Möbius transformation in H
2. But d 1.fR/ D d 1.f / D 0 and d.fR/ � R.

This is one of the reasons, together with Proposition 1.6, we work with a gen-

eralization of the stable length instead of the minimal length (elliptic or parabolic

isometries can satisfy d.f / > 0).

We finish this section showing that the generalizations of the minimum dis-

placement and the stable distance in general may be different. This is the case

of H2.

Proposition 4.6. There exists † � Isom.H2/ such that

D.†/ < inf
z2H2

j†jz;

where j:j denotes the distance in H
2.
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Proof. Let A D ¹F0; F1º be a counterexample to the finiteness conjecture given

by Theorem 2.7. We will prove that † D zA satisfies our requirements.

Let fi D zFi for i 2 ¹0; 1º. By the construction made in Subsection 2.2, it is a

straightforward computation to see that f0 and f1 are hyperbolic isometries and

that they have disjoint fixed point sets in @H2 D R [ ¹1º. Hence, by properties

of hyperbolic geometry, given K � 0 the set Ci .K/ D ¹z 2 H
2W jfiz � zj � Kº is

within bounded distance from the axis of fi . We conclude that C0.K/ \ C1.K/ is

compact and the map z ! j†jz D max .jf0z � zj; jf1z � zj/ is proper.

Now suppose that D.†/ D infz2H2 j†jz and let .zn/n be a sequence in H
2

such that j†jzn
! D.†/. By the properness property the sequence .zn/n must be

bounded and by compactness we can suppose that it converges to w 2 H2. So by

continuity we haveD.†/ D j†jw . But then the setAwould have as extremal norm

kAk D kSAS�1k2 where S 2 SL˙
2 .R/ satisfies zSw D i , and by [21, Theorem 5.1],

A would satisfy the finiteness property, a contradiction. �

5. Continuity

5.1. Continuity of the stable length. Now we study the continuity properties

of the stable and joint stable lengths. Throughout the section we assume that

Isom.X/ has the finite-open topology. It is generated by the subbasic open sets

G.x; U / D ¹f 2 Isom.X/W f .x/ 2 U º where x 2 X and U is open in X , and

makes Isom.X/ a topological group [9, Proposition 5.1.3]. The finite-open topol-

ogy is also called the pointwise convergence topology because of the following

property [11, Proposition 2.6.5].

Proposition 5.1. A net .f˛/˛2A � Isom.X/ converges to f if and only if .f˛x/˛2A

converges to f x for all x 2 X .

Corollary 5.2. For all n 2 Z and x 2 X the function from Isom.X/ to R that

maps f to jf nx � xj is continuous.

Proof. As Isom.X/ is a topological group, by Proposition 5.1 the function f 7!

f nx is continuous for all x 2 X and n 2 Z. The conclusion follows by noting that

the map f 7! jf nx � xj is a composition of continuous functions. �

With Corollary 5.2 we can prove Theorem 1.9.

Proof of Theorem 1.9. We follow an idea of Morris (see [23]). By subadditivity,

d 1.f / is the infimum of continuous functions, hence is upper semi-continuous.

For the lower semi-continuity, Theorem 1.1 implies that, for any x 2 X ,

d 1.f / D sup
n�1

jf 2nx � xj � jf nx � xj � 2ı

n
:

So d 1.f / is also the supremum of continuous functions. �
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5.2. Vietoris topology and continuity of the joint stable length. For the con-

tinuity of the joint stable length we need to work in the correct space. A natural

candidate is B.Isom.X//, the space of non empty bounded sets of Isom.X/. Also,

let BF.Isom.X// be the set of closed and bounded subsets of Isom.X/. First of

all, by the following lemma it is sufficient to consider closed (and bounded) sets

of isometries.

Lemma 5.3. If † 2 B.Isom.X// then

i) x† 2 BF.Isom.X//;

ii) j.†n/jx D j.x†/njx D j†njx for all x 2 X; n � 1;

iii) D.x†/ D D.†/:

Proof. Assertion i) is trivial and iii) is immediate from ii). For the latter, let

f 2 x† and f˛ a net in † converging to f . As jf˛x � xj � j†jx for all ˛, then

jf x � xj � j†jx. So j x†jx � j†jx � jx†jx and

j x†jx D j†jx : (17)

Now, let g D f .1/f .2/ : : : f .n/ 2 x†n with f .i/ 2 x†. There exist nets .f
.i/

˛ /˛2Ai

such that f
.i/

˛ tends to f .i/ for all i . But since Isom.X/ is topological group,

f˛ D f
.1/

˛1
f

.2/
˛2

: : : f
.n/

˛n
(with ˛ D .˛1; : : : ; ˛n/ 2 A1 � � � � � An) defines a net in

†n that tends to g. We conclude that .x†/n � .†n/ and by (17) we obtain

j†njx � j.x†/njx � j.†n/jx D j†njx :

The conclusion follows. �

Our next step is to define a topology onBF.Isom.X//. We follow the construc-

tion given by E. Michael [22]. Let P.Isom.X// be the set of non empty subsets of

X . If U1; : : : ; Un are non empty open sets in Isom.X/ let

hU1; : : : ; Uni WD
®

E 2 P.Isom.X//W E �
S

i Ui and E \ Ui ¤ ; for all i
¯

:

The Vietoris topology onP.Isom.X// is the one which has as base the collection of

sets hU1; : : : ; Uni. We say that a subset of P.Isom.X// with the induced topology

also has the Vietoris topology.

With this in mind the space BF.Isom.X// satisfies one of our requirements.

Proposition 5.4. For all x 2 X the map † 7! j†jx is continuous onBF.Isom.X//.

Proof. It follows from Theorem 1.9 and the fact that taking supremum preserves

continuity on BF.Isom.X//, see [22, Proposition 4.7]. �
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For the continuity of the composition map .†; …/ 7! †… we must impose

further restrictions. So we work on C.Isom.X//, the set of non empty compact

subsets of Isom.X/. In this space all our claims are satisfied.

Proof of Theorem 1.11. The idea of the proof of the continuity of the joint stable

length is the same one that we used in the proof of Theorem 1.9. We claim that

in C.Isom.X// the maps † 7! j†jx and † 7! †n are continuous for all x 2 X

and n 2 ZC. The first assertion is Proposition 5.4 and the second one comes

from a general result in topological groups. We prove it in Appendix A (see

Corollary A.3). Similarly the continuity of the stable length follows as in the proof

of Proposition 5.4. �

It follows from Theorem 1.11 that the joint stable length is continuous on

the set of non empty finite subsets of Isom.X/. This affirmation together with

Proposition 4.1 allows us to conclude a semi-continuity result on BF.Isom.X//.

Theorem 5.5. The map D.:/WBF.Isom.X// ! R is lower semi-continuous.

Proof. Let � > 0 and † 2 BF.Isom.X//. By Proposition 4.1 there is B � † finite

with D.†/ � D.B/ < �=2. As B 2 C.Isom.X//, by Theorem 1.11 there exist open

sets U1; : : : ; Un � Isom.X/ such that V D hU1; : : : ; Uni is an open neighborhood

of B and if F is finite and F 2 V then jD.B/ � D.F /j < �=2:

Let W D hIsom.X/; U1; : : : ; Uni. Clearly W is an open neighborhood of

†, and if A 2 W , then there exist f1; : : : ; fn with fi 2 A \ Ui for all i . So

C D ¹f1; : : : ; fnº 2 V and then jD.B/ � D.C /j < �=2: We have

D.†/ < D.B/ C �=2 < D.C / C � � D.A/ C �

and the conclusion follows. �

6. Questions

In this section we pose some questions related to the results we have obtained.

6.1. Lower bound for the j.s.l. in geodesic spaces. Is it true that for a ı-hyper-

bolic geodesic space X there exists a real constant C D C.X/ such that for all

bounded † � Isom.X/ we have2

inf
x2X

j†jx � D.†/ C C ‹

This result would be a better generalization of Proposition 4.3 than Proposition 4.4.

2 After this paper was written, Breuillard and Fujiwara [6] gave an affirmative answer to this
question.
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Using Lemma 2.5 and the equality R.M/ D infk:knorm sup ¹kAkW A 2 Mº valid

for every bounded M � M2.R/ (see [26, Proposition 1]), it is easy to see that H2

satisfies this condition with C D 2 log C0.

6.2. Continuity onBF.Isom.X//. If X is hyperbolic but not proper, is the joint

stable length continuous on BF.Isom.X//? A natural candidate to test continuity

is the infinite dimensional hyperbolic space H
1 (see [9, Part 1, Chapter 2]).

6.3. Related inequalities on other kinds of spaces. What happens when we

relax the curvature conditions? Do modified versions of inequality (3) hold?

Motivated by the matrix inequality (5), the following inequality seems a natural

candidate:

j†d jx � .d � 1/j†jx C D.†/ C C; (18)

where the constants C and d depend only on X but not on the point x and the

bounded set †.

For the purpose of applications as those obtained in this paper, such an in-

equality would be sufficient.

Let us see that for Euclidean spaces, all such inequalities fail.

Proposition 6.1. If n � 2, Rn does not satisfy inequality (18) for any d � 2 and

C > 0.

Proof. First consider n D 2, that is X D C. Suppose that for some d and C

inequality (18) holds. Fix x D 0 and consider the isometries fu;a.z/ D uz C a,

where juj=1 and a 2 C is fixed such that jaj > C . Then for u ¤ 1, by (18) we have

jud�1a C ud a C � � � C uaj � .d � 1/juaj C C:

Taking the limit when u ! 1 we obtain d jaj � .d � 1/jaj C C , contradicting the

choice of a and concluding the proof in this case. In the case of Rn with n > 2,

the same example multiplied by the identity works. �

In particular, Proposition 6.1 shows that (18) fails for CAT(0) spaces, at least

without further hypothesis. We ask if there are natural classes of metric spaces for

which inequality (18) holds.

Appendix A. Vietoris topology over topological groups

This appendix is dedicated to the topological results that we used in Section 5.

Assume that X is a Hausdorff topological space and let P.X/ be the set of non

empty subsets of X endowed with the Vietoris topology defined in Section 5. Also

let C.X/ be the set of non empty compact subsets of X .
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The following theorem is a criterion for convergence of nets in P.X/ when the

limit is compact. We need some notation. If A; B are directed sets, the notation

B �h A means that hW B ! A is a function satisfying the following condition: for

all ˛ 2 A there is some ˇ 2 B such that 
 � ˇ implies h.
/ � ˛. We say that

a net .xh.ˇ//ˇ2B is a subnet of the net .x˛/˛2A if B �h A. For our purposes the

criterion is as follows.

Theorem A.1. A net .†˛/˛2A � P.X/ converges to † 2 C.X/ if and only if both

conditions below hold:

i) for every f 2 † and every open set U containing f there exists ˛ 2 A such

that ˇ � ˛ implies †ˇ \ U ¤ ;;

ii) every net .fh.ˇ//ˇ2B with B �h A and fh.ˇ/ 2 †h.ˇ/ has a convergent subnet

.fhık.
//
2C with C �k B and with limit in †.

This result is perhaps known, but in the lack of an exact reference we provide

a proof (compare with [7, Chapter I.5, Lemma 5.32]).

Proof. We first prove the “if” part.

Let hU1; : : : ; Uni a basic open containing †. We must show that for some

˛ 2 A, if ˇ � ˛ then †ˇ �
S

1�i�n Ui and †ˇ \ Ui ¤ ; for all i .

Suppose that our first claim is false. Then for all ˛ 2 A there exists h.˛/ � ˛

such that †h.˛/ 6�
S

1�i�n Ui . That is, for all ˛ there exists fh.˛/ 2 †h.˛/ such

that fh.˛/ … Ui for all i . Hence .fh.˛//˛2A is a net with A �h A and since we

are assuming ii), it has a convergent subnet .fh.k.
///
2C with limit f 2 † and

C �k A. But f 2 Uj for some j and there is 
 2 C with fh.k.
// 2 Uj ,

contradicting the definition of h.k.
//. So there exists ˛0 such that ˇ � ˛0 implies

†ˇ �
S

1�i�n Ui .

Now, fix j 2 ¹1; : : : ; nº and suppose that for all ˛, †ˇ.˛/ \ Uj D ; for some

ˇ.˛/ � ˛. Noting that hUj ; Xi also contains †, there exists f 2 † \ Uj , and by i)

there is some ˛ such that †ˇ \ Uj ¤ ; for ˇ � ˛, contradicting the existence of

†ˇ.˛/. So for all j , there is some j̨ such that †ˇ \ Uj ¤ ; for ˇ � j̨ and hence

any ˛ � j̨ for 0 � j � n satisfies our requirements.

For the converse, suppose that †˛ tends to †. Let f 2 † and U be an open

neighborhood of f . The set hU; Xi is open and contains †. So there exists some

˛ such that for all ˇ � ˛, †ˇ 2 hU; Xi and hence †ˇ \ U ¤ ;.

Finally, let .fh.ˇ//ˇ2B be a net with B �h A and fh.ˇ/ 2 †h.ˇ/. We claim that

this net has a subnet converging to an element of †. For ˇ 2 B consider the set

E.ˇ/ D
®

fh.
/W 
 2 B and 
 � ˇ
¯

� X and let F.ˇ/ D E.ˇ/.

If
T

ˇ2B F.ˇ/\† D ;, the collection ¹XnF.ˇ/ºˇ2B is an open cover of † and

by compactness it has a minimal finite subcover ¹XnF.ˇi /º1�i�m. This implies

that † 2 hXnF.ˇi /i1�i�m and by our convergence assumption, for some ˛0 2 A

it happens that †˛ �
S

1�i�m XnF.ˇi / when ˛ � ˛0. But B �h A, so if we

take ˇ0 2 B such that h.ˇ0/ � ˛0 and ˇ0 greater than ˇi for all 0 � i � m, then



908 E. Oregón-Reyes

fh.ˇ 0/ … F.ˇi / for some i . This contradicts that fh.ˇ 0/ 2 E.ˇi / � F.ˇi /. So there

exists some f 2
T

ˇ2B F.ˇ/ \ †.

Then for every open neighborhood U of f and every ˇ 2 B , there exists

some k.U; ˇ/ � ˇ such that fh.k.U;ˇ// 2 U \ E.ˇ/. Let N be the set of open

neighborhoods of f partially ordered by reverse inclusion. In this way N�B with

the product order becomes a directed set. Now consider the map kWN � B ! B

and let ˇ 2 B . For some U0 2 N , every .V; 
/ 2 N � B with .V; 
/ � .U0; ˇ/

satisfies k.V; 
/ � 
 � ˇ. So N � B �k B and .fhık.�//�2N�B is a subnet of

.fh.ˇ //ˇ2B . To finish the proof we must verify that f is the limit to this subnet.

So, let U 2 N. For .U; ˇ/ 2 N � B we have that .V; 
/ � .U0; ˇ/ implies

fhık.V;
/ 2 V \E.
/ � U . So f is our desired limit and our claim is proved. �

As application to Theorem A.1 let G be a Hausdorff topological group with

identity e. If oW G �G ! G is the composition map and †; … 2 C.G/ then †… D

o.† � …/ 2 C.G/, so it induces a composition map � WC.G/ �C.G/ ! C.G/. We

establish that this map is continuous.

Theorem A.2. The composition map � WC.G/�C.G/ ! C.G/ given by �.†; …/ D

†… is continuous.

Proof. Let .†˛; …˛/˛2A be a net that converges to .†; …/. We claim that

.†˛…˛/˛2A tends to †…. For that, we use the equivalence given by Theorem A.1.

Let f 2 †, g 2 … and U be an open neighborhood of fg. So f �1Ug�1 is an open

neighborhood of e and hence there exists V open with e 2 V � V 2 � f �1Ug�1.

Then we have f 2 f V and g 2 Vg.

So there exists ˛1 and ˛2 such that ˇ � ˛1 implies †ˇ \ f V ¤ ; and ˇ � ˛2

implies †ˇ \ Vg ¤ ;. If we take ˛0 greater than ˛1 and ˛2, for ˇ � ˛0 there

exists fˇ 2 †ˇ and gˇ 2 †ˇ such that fˇ 2 f V and gˇ 2 Vg. We conclude that

for all ˇ � ˛0; fˇ gˇ 2 f V 2g � U , hence †ˇ …ˇ \ U ¤ ; for all ˇ � ˛0.

Now, let B �h A be such that .fh.ˇ/gh.ˇ//ˇ2B is a net with with fh.ˇ/ 2 †h.ˇ/

and gh.ˇ/ 2 …h.ˇ/. We must exhibit a subnet converging to an element in †…. But

it is easy. Since †h.ˇ/ ! †, there exists C �k B such that .fhık.
//
2C is a net

that tends to f 2 †. Also, as C �hık A there exists D �l C with .ghıkıl.�//�2D

a net that converges to g 2 …. Then .fhıkıl.�/ghıkıl.�//�2D tends to fg 2 †….

Our proof is complete. �

Corollary A.3. The map † 7! †n is continuous in C.G/ for all n 2 ZC.

Acknowledgments. I am grateful to my advisor J. Bochi for very valuable dis-

cussions and corrections throughout all this work. I also thank to I. D. Morris for

communicating us the counterexample given in Theorem 2.7, and helping in the

proofs of Theorem 1.9 and Proposition 4.6.



Properties of sets of isometries of Gromov hyperbolic spaces 909

References

[1] M. A. Berger and Y. Wang, Bounded semigroups of matrices. Linear Algebra

Appl. 166 (1992), 21—27. Zbl 0818.15006 MR 1152485

[2] V. D. Blondel, J. Theys and A. A. Vladimirov, An elementary counterexample to

the finiteness conjecture. SIAM J. Matrix Anal. Appl. 24 (2003), no. 4, 963-–970.

Zbl 1043.15007 MR 2003315

[3] J. Bochi, Inequalities for numerical invariants of sets of matrices. Linear Algebra

Appl. 368 (2003), 71–81. Zbl 1031.15023 MR 1983195

[4] M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces. Geom. Funct.

Anal. 10 (2000), no. 2, 266-–306. Zbl 0972.53021 MR 1771428

[5] T. Bousch and J. Mairesse, Asymptotic height optimization for topical IFS, Tetris

heaps, and the finiteness conjecture. J. Amer. Math. Soc. 15 (2002), no. 1, 77–111.

Zbl 1057.49007 MR 1862798

[6] E. Breuillard and K. Fujiwara, On the joint spectral radius for isometries of non-

positively curved spaces and uniform growth.

Preprint 2018. arXiv:1804.00748 [math.GR]

[7] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature.

†Grundlehren Math. Wiss. 319, Springer-Verlag, Berlin, 1999. Zbl 0988.53001

MR 1744486

[8] M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes.

Les groupes hyperboliques de Gromov. Lecture Notes in Math. 1441, Springer-Verlag,

Berlin, 1990. Zbl 0727.20018 MR 1075994

[9] T. Das, D. Simmons and M. Urbański, Geometry and dynamics in Gromov hyperbolic

metric spaces. With an emphasis on non-proper settings. Math. Surveys Monogr. 218,

Amer. Math. Soc., Providence, RI, 2017. Zbl 06729361 MR 3558533

[10] I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which con-

verge. Linear Algebra Appl. 161 (1992), 227–263. Zbl 0746.15015 MR 1142737

[11] R. Engelking, General topology. Second edition. Sigma Series in Pure Math. 6,

Heldermann Verlag, Berlin, 1989. Zbl 0684.54001 MR 1039321

[12] S. M. Gersten and H. B. Short, Rational subgroups of biautomatic groups. Ann. of

Math. (2) 134 (1991), no. 1, 125—158. Zbl 0744.20035 MR 1114609

[13] M. Gromov, Hyperbolic manifolds, groups and actions. In Riemann surfaces and

related topics: Proc. 1978 Stony Brook Conf. Ann. of Math. Stud. 97, Princeton Univ.

Press, Princeton, N.J., 1981, 183–213. Zbl 0467.53035 MR 0624814

[14] M. Gromov, Hyperbolic groups. In Essays in group theory, Math. Sci. Res. Inst. Publ.

8, Springer, New York, 1987, 75—263. Zbl 0634.20015 MR 0919829

[15] M. Hamann, Group actions on metric spaces: fixed points and free subgroups. Abh.

Math. Semin. Univ. Hambg. 87 (2017), no. 2, 245–263. Zbl 1377.05199 MR 3696149

[16] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Math. Univ.

Chicago Press, Chicago, IL, 2000. Zbl 0965.20025 MR 1786869

http://zbmath.org/?q=an:0818.15006
http://www.ams.org/mathscinet-getitem?mr=1152485
http://zbmath.org/?q=an:1043.15007
http://www.ams.org/mathscinet-getitem?mr=2003315
http://zbmath.org/?q=an:1031.15023
http://www.ams.org/mathscinet-getitem?mr=1983195
http://zbmath.org/?q=an:0972.53021
http://www.ams.org/mathscinet-getitem?mr=1771428
http://zbmath.org/?q=an:1057.49007
http://www.ams.org/mathscinet-getitem?mr=1862798
http://arxiv.org/abs/1804.00748
http://zbmath.org/?q=an:0988.53001
http://www.ams.org/mathscinet-getitem?mr=1744486
http://zbmath.org/?q=an:0727.20018
http://www.ams.org/mathscinet-getitem?mr=1075994
http://zbmath.org/?q=an:06729361
http://www.ams.org/mathscinet-getitem?mr=3558533
http://zbmath.org/?q=an:0746.15015
http://www.ams.org/mathscinet-getitem?mr=1142737
http://zbmath.org/?q=an:0684.54001
http://www.ams.org/mathscinet-getitem?mr=1039321
http://zbmath.org/?q=an:0744.20035
http://www.ams.org/mathscinet-getitem?mr=1114609
http://zbmath.org/?q=an:0467.53035
http://www.ams.org/mathscinet-getitem?mr=0624814
http://zbmath.org/?q=an:0634.20015
http://www.ams.org/mathscinet-getitem?mr=0919829
http://zbmath.org/?q=an:1377.05199
http://www.ams.org/mathscinet-getitem?mr=3696149
http://zbmath.org/?q=an:0965.20025
http://www.ams.org/mathscinet-getitem?mr=1786869


910 E. Oregón-Reyes

[17] O. Jenkinson and M. Pollicott, Joint spectral radius, Sturmian measures, and the

finiteness conjecture. Ergodic Theory Dynam. Systems, to appear.

[18] R. Jungers, The joint spectral radius. Theory and applications. Lect. Notes Control

Inf. Sci. 385, Springer-Verlag, Berlin, 2009. MR 2507938

[19] B. Kalinin, LivMsic theorem for matrix cocycles. Ann. of Math. (2) 173 (2011), no. 2,

1025–1042. Zbl 1238.37008 MR 2776369

[20] V. Kozyakin, An annotated bibliography on convergence of matrix products and the

theory of joint/generalized spectral radius. Preprint.

[21] J. C. Lagarias and Y. Wang, The finiteness conjecture for the generalized spectral

radius of a set of matrices. Linear Algebra Appl. 214 (1995), 17–42. Zbl 0818.15007

MR 1311628

[22] E. Michael, Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–

182. Zbl 0043.37902 MR 0042109

[23] I. D. Morris, An inequality for the matrix pressure function and applications. Adv.

Math. 302 (2016), 280—308. Zbl 1350.15005 MR 3545931

[24] I. D. Morris, Mather sets for sequences of matrices and applications to the study

of joint spectral radii. Proc. Lond. Math. Soc. (3) 107 (2013), no. 1, 121-–150.

Zbl 1277.15009 MR 3083190

[25] B. Nica and J. MSpakula, Strong Hyperbolicity. Groups Geom. Dyn. 10 (2016), no. 3,

951–964. Zbl 1368.20057 MR 3551185

[26] G. C. Rota and G. Strang, A note on the joint spectral radius. Indag. Math. (N.S.) 22

(1960), 379—381. Zbl 0095.09701 MR 0147922

[27] J. Väisälä, Gromov hyperbolic spaces. Expo. Math. 23 (2005), no. 3, 187—231.

Zbl 1087.53039 MR 2164775

Received September 24, 2016

Eduardo Oregón-Reyes, Facultad de Matemáticas,

Pontificia Universidad Católica de Chile, Av. VicuQna Mackenna 4860, Macul, Santiago,

Chile

e-mail: ecoregon@mat.uc.cl

http://www.ams.org/mathscinet-getitem?mr=2507938
http://zbmath.org/?q=an:1238.37008
http://www.ams.org/mathscinet-getitem?mr=2776369
http://zbmath.org/?q=an:0818.15007
http://www.ams.org/mathscinet-getitem?mr=1311628
http://zbmath.org/?q=an:0043.37902
http://www.ams.org/mathscinet-getitem?mr=0042109
http://zbmath.org/?q=an:1350.15005
http://www.ams.org/mathscinet-getitem?mr=3545931
http://zbmath.org/?q=an:1277.15009
http://www.ams.org/mathscinet-getitem?mr=3083190
http://zbmath.org/?q=an:1368.20057
http://www.ams.org/mathscinet-getitem?mr=3551185
http://zbmath.org/?q=an:0095.09701
http://www.ams.org/mathscinet-getitem?mr=0147922
http://zbmath.org/?q=an:1087.53039
http://www.ams.org/mathscinet-getitem?mr=2164775
mailto:ecoregon@mat.uc.cl

	Introduction
	The case of the hyperbolic plane
	Proof of Theorems 1.1 and 1.2
	Berger–Wang and further properties of the stable length and joint stable length
	Continuity
	Questions
	Vietoris topology over topological groups
	Acknowledgments
	References

