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1. Introduction

The relations between bounded cohomology and geometric group theory have

been proved to be fruitful on several occasions. For instance, the second bounded

cohomology with real coefficients of most hyperbolic groups has uncountable di-

mension ([11]). This results generalizes an analogous fact for free non-abelian

groups (see [9], or [29] for a simpler proof) and was in turn extended by consider-

ing groups acting properly discontinuously on Gromov hyperbolic spaces ([12]).

The proper discontinuity condition was weakened in order to include other inter-

esting classes of group actions on Gromov hyperbolic spaces where a Brook’s type

argument could be applied. For example, the WPD (weakly properly discontinu-

ous) property and the the acylindricity condition were introduced by Bestvina and

Fujiwara ([3]) and Bowditch ([7]) respectively in order to study actions of map-

ping class groups on curve complexes. The second bounded cohomology for more

complicated coefficients of (most) acylindrically hyperbolic groups was shown to

be infinite-dimensional in [19] and [2].

Two other cases somehow opposite to each other are the characterization of

amenability in terms of the vanishing of bounded cohomology ([20]) and the

characterization of Gromov hyperbolicity of groups in term of the surjectivity

of the comparison map in higher degrees ([25]). The last two examples could be

exploited to prove that the simplicial volume of connected closed (and aspherical

of dimension at least 2) oriented manifolds with amenable (Gromov hyperbolic)

fundamental group vanishes (is nonzero).

In the present paper we will consider a generalization of Mineyev’s result to the

relative setting. The absolute case was considered by Mineyev in [24] and [25].

He proved that, if � is hyperbolic, the comparison map H k
b
.�; V / ! H k.�; V /

is surjective for every k � 2 and every bounded �-module V . Viceversa, if � is

finitely presented and the comparison map H 2
b
.�; V / ! H 2.�; V / is surjective

for every bounded �-module V , then � is hyperbolic (actually, it was proven by

Gromov and Rips that hyperbolic groups are finitely presented: see [15, Corol-

lary 2.2.A] or [10, Théorème 2.2]).

In this work we consider a relative version of the results of [24] and [25] which

holds for group-pairs, i.e. pairs .�; � 0/ where � is a group and � 0 is a finite

family of subgroups of �. The following is our main result (see Section 2 for

the definitions of the terms involved).

Theorem 1.1. Let .�; � 0/ be a group-pair.

(a) If .�; � 0/ is relatively hyperbolic the comparison map

H k
b .�; �

0IV / �! H k.�; � 0IV /

is surjective for every bounded �-module V and k � 2.
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(b) Conversely, if .�; � 0/ is a finitely presented group-pair such that � is finitely
generated and the comparison map is surjective in degree 2 for any bounded
�-module V , then .�; � 0/ is relatively hyperbolic.

Roughly speaking, the group-pair .�; � 0/ is finitely presented if there is a

presentation for � in the alphabet
F

i2I �i t A – where A � � is a finite set

– such that only finitely many relations involve elements of A. See Definition 8.7

for more details.

Mineyev and Yaman proved in [26] a similar theorem. In particular, they

proved (a), while the opposite implication was proved only under stronger hy-

potheses than (b) above (see [26, Theorem 59]).

In an article of Groves and Manning ([17]) written shortly thereafter, several

useful results are proved which seem to provide an alternative strategy to prove (a)

of Theorem 1.1. Indeed, quoting from [17, p. 4]:

“In particular, in [16], we define a homological bicombing on the coned-

off Cayley graph of a relatively relatively hyperbolic group (using the

bicombing from this paper in an essential way) in order to investigate

relative bounded cohomology and relatively hyperbolic groups, in anal-

ogy with [24] and [25].”

The article [16] was referred to as “in preparation,” and has never appeared. It was

our aim to provide such a proof. We take a small detour from the strategy outlined

in the quotation above, since we will use the cusped-graph defined in [17] instead

of the coned-off Cayley graph.

In [26] a weaker version of (b) is also considered. However, such implication

was proved under additional finiteness hypotheses about the action of � on a graph

or complex, which seem to be far more restricting than the finite presentability in

the absolute case. By making use of recent results in a paper of Martinez-Pedroza

[22], we will be able to prove this implication with a proof similar to the one

in [26], but without mentioning �-actions in the statement.

In Section 7 we give two applications. The first one is a straightforward

consequence of Theorem 1.1 (a) and was already proved in [26]: if the topological

pair .X; Y / is a classifying-pair for .�; � 0/, then the Gromov norm on Hk.X; Y /

– which in general is merely a semi-norm – is actually a norm, for k � 2. This

implies in particular interesting non-vanishing results for some classes of compact

manifolds with boundary. The second application easily follows from our Rips

complex construction, and can be obtained in the same way from an analogous

construction in [26, Section 2.9]. It states that, for a hyperbolic pair .�; � 0/, there

is n 2 N such that, for any �-module V , the relative (non-bounded) cohomology

of .�; � 0/ with coefficients in V vanishes in dimensions at least n.
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The plan of the paper is as follows. In sections 2 and 3 we recall some defi-

nitions and results from [26] and [17] (some technicalities pertaining to Section 2

are addressed later in the first addendum). In sections 3, 4, and 5 we introduce a

Rips complex construction as our main tool, and prove some filling-inequalities

of its simplicial chain complex, which will allow us to prove Theorem 1.1 (a) in

Section 6. In the following section we give the applications already mentioned. In

Section 8 we recall some results in [22] and prove Theorem 1.1 (b). In the second

addendum we show that the definitions of relative bounded cohomology given

in [26] and [5] respectively are isometric.

Acknowledgements. This work is part of a Ph.D. project that I am developing

under the supervision of Roberto Frigerio. I would like to thank him for several

conversations on this problem, and for having carefully read previous versions

of the present work. I am also grateful to Matthias Blank and Clara Löh for a

pleasant time I spent in Regensburg, where some of the contents of this article

were discussed.

2. Preliminaries

Several definitions and results in this section are taken from [26].

Given a set S , let RS be the vector space with basis S . Then S induces a

natural `1-norm k � k on RS










X

s2S

�ss








WD

X

s2S

j�sj

(where almost all coefficients �s are null). We denote by C�.S/ the complex

defined by

Ck.S/ D

´

¹0º if k � �1;

RSkC1 if k � 0;

with boundary operator given by

@k.s0; : : : ; sk/ WD

k
X

jD0

.�1/k.s0; : : : ; Osj ; : : : ; sk/:

Notice that @k is a bounded linear operator for every k. If � is a group acting on S ,

then � also acts diagonally on Ck.S/ via isometries, and @k is �-equivariant with

respect to this action. The complex C�.S/ admits an exact augmentation given by

C0.S/ �! R;
X

i

�isi 7�!
X

i

�i :
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The following definition of relative bounded cohomology is taken from [26]

and is modelled on the analogous one for the non-bounded version in [4]. Our

notation is slightly different from that of [26].

Definition 2.1. A �-module is a real vector space equipped with a linear �-action.

A�-moduleP is projective if, given�-equivariant maps'WV!W and f WP!W ,

with ' surjective, there exists a�-equivariant map Qf WP!V making the following

diagram commute

V

P W .

 ! ' !
Qf

 

!
f

(1)

Given a module M , a �-resolution for M is an exact �-complex

� � � �! Ek �! � � � �! E0 �!M �! 0:

A �-projective resolution ofM is a �-resolution where all theEi are �-projective.

The following lemma, (similar to [26, Lemma 52]) will be useful.

Lemma 2.2. Let P be a �-module generated as a vector space by a basis S .
Suppose that the action of � on P is such that, for every s 2 S and 
 2 �, there
is t 2 S such that 
s D ˙t . Moreover, suppose that jStab �.s/j < 1 for every
s 2 S . Then P is a �-projective module.

Proof. Let 'WV ! W and f WP ! W be �-equivariant maps, and suppose that '

is surjective. If a 2 P , let Stab �.a/ WD ¹
 2 �W 
a D �aº. Notice that jStab �.s/j

is null or equals jStab .s/j, hence in particular it is finite, if s 2 S . Fix s 2 S and

b 2 V such that f .s/ D '.b/. Put

Qf .˙˛s/ WD ˙

X


2Stab .s/


˛b �
X


2Stab �.s/


˛b

jStab .s/ [ Stab �.s/j
for all ˛ 2 �:

The definition above gives rise to a well defined R-linear and �-equivariant map

R�s ! V . Since P is a direct sum of spaces of type R�, s 2 S , we obtain a

�-equivariant map Qf WP ! V . Finally, it is easy to see that ' ı Qf D f . �

In particular, if � acts freely on S , then C�.S/ ! R ! 0 is a �-projective

resolution of the trivial �-module R.
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We also have a normed version of projectivity.

Definition 2.3. Let� be a discrete group. A bounded�-module V is anR-normed

space equipped with a (left) �-action of equibounded automorphisms, i.e. there

exists L > 0 such that

k
 � vk � Lkvk for all v 2 V; 
 2 �:

A bounded �-complex is a complex of bounded �-modules with �-equivariant

bounded boundary operators.

Definition 2.4. A map 'WV ! W between normed spaces is undistorted if there

exists K > 0 such that, for every w 2 W in the image of ', there exists v 2 V

such that

'.v/ D w; kvk � Kkwk:

Definition 2.5. A �-module P is b-projective if, given any surjective undistorted

bounded �-map 'WV ! W and any bounded �-map f WP ! W , there exists a

bounded �-map Qf WP ! V making the following diagram commute

V

P W .

 ! '

 

!
f

 !
Qf (2)

Given a moduleM , a bounded�-resolution forM is an exact bounded�-com-

plex

� � � �! Ek �! � � � �! E0 �!M �! 0:

A b-projective resolution of M is a bounded �-resolution of M where all the Ei
are b-projective and all maps are undistorted.

Given (bounded) �-modules V andW , we denote by Hom.b/.V;W / the space

of all (bounded) R-linear homomorphisms from V to W , and we denote by

Hom�
.b/.V;W / the subspace of Hom.b/.V;W / whose elements are �-equivariant.

The following lemma is a simple exercise in homological algebra:

Lemma 2.6. Given two (b-)projective �-resolutions EM and E 0
M of the same

module M , there exists a (bounded) chain �-map '�WEM ! E 0
M which extends

the identity on M . This map is unique up to (bounded) �-homotopy.
Dually, if V is any (bounded) �-module and '1, '2WEM ! E 0

M are as
above, there is a (bounded) �-homotopy between '�

1 and '�
2 WHom�

.b/.E
0
M ; V /!

Hom�
.b/.EM ; V /.
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Notice that, for every �-set S , the space RS is a bounded�-module andC�.S/

is a bounded �-complex, whose augmentation is a �-projective and �-b-projec-

tive resolution of R, if � acts on S as in Lemma 2.2.

Definition 2.7. Let � be a group, and let � 0 WD ¹�iºi2I be a finite non-empty

parametrized family of subgroups (this means that we allow repetitions among

the �i ). We call such .�; � 0/ a group-pair.

Definition 2.8. Given a group-pair .�; � 0/, let I� be the �-set
F

i2I � � � � I

(where � acts on I� by left translation of each copy of �). We consider the

complex

St D St�.I�/ WD C�.� � I /:

Let St0 be the �-subcomplex of St with basis given by the tuples .x0; : : : ; xk/ 2

.� � I /kC1 for which there exists i 2 I such that xj 2 � � ¹iº for all 0 � j � k

and xj 2 x0�i for every 1 � j � k. Finally, let Strel
� WD St� =St0� be the quotient

�-complex. If V is a (bounded) �-module, the (bounded) cohomology of the
group-pair .�; � 0/ with coefficients in V is the cohomology of the cocomplex

Strel �
.b/ .�; �

0IV / WD Hom�
.b/.Strel

� ; V /;

and it is denoted by H�
.b/
.�; � 0IV /.

The complex Strel
� .�; �

0/ is provided with a natural norm, hence we can equip

Strel �
.b/ .�; �

0IV /with the corresponding `1 norm, which descends to a semi-norm

on H�
.b/
.�; � 0IV /.

By Lemma 2.2 it is easily seen that Strel
� .�; �

0/ induces a �-projective resolu-

tion of the �-module � WD ker.R.�=� 0/! R/. Moreover, Lemma 2.2 could be

easily adapted to the normed setting, proving that Strel
k .�; �

0/ is b-projective for

all k � 2. Mineyev and Yaman also proved that the boundaries of the complex

Strel
� ! � ! 0 are undistorted, hence the resolution St rel

� is b-projective (see

[26, Section 8.3]). It follows from Lemma 2.6 that the relative (bounded) coho-

mology of .�; � 0/ is computed by any �-equivariant (b-)projective resolution of

� up to canonical (bilipschitz) isomorphism. Even if we don’t actually use the

fact that Strel
� provides a b-�-projective resolution of�, we will use the following

result (proven in [26, Section 10]). For completeness we provide a proof of it in

Addendum 8.1.

Proposition 2.9 ([26, the relative cone]). Fix y 2 I�. There is a (non-R-linear)
map

Œy; ��relWStrel
1 �! Strel

2

called the relative cone, such that kŒy; b�relk � 3kbk for all b 2 Strel
1 and

@Œy; z� D z for any cycle z 2 Strel
1 with respect to the augmentation map Strel

1 ! �.
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In, we get the following corollary.

Corollary 2.10 ([26, equation (29), p. 38]). Fix y 2 I�. Let ˇ 2 Strel
2 .�; �IV /.

Then ˇ � Œy; @ˇ�rel 2 Strel
2 .�; �IV / is a cycle, and therefore also a boundary by

the exactness of Strel
� . Hence, if ˛ 2 St2b.�; �

0IV / is a cocycle, we have

h˛; ˇi D h˛; Œy; @ˇ�reli (3)

Remark 2.11. A more general notion of relative bounded cohomology for pairs

of groupoids is developed in [5]. By unravelling the definition of relative bounded

cohomology given in [5, Definition 3.5.1 and 3.5.12], it is possible to see that those

definitions are isometrically isomorphic. We refer the reader to Proposition 8.18

in Addendum 8.2 for a proof of this fact.

3. Hyperbolic group-pairs and cusped-graph construction

Given a graph G, we denote by d WD dG the graph-metric on G. This is the

path-metric on G induced by giving length 1 to every edge in G. Now, let Y be

a simplicial complex, with 1-skeleton Y .1/ D G. Given a vertex v0 2 Y
.0/ and

a number R � 0, we define the ball BR.v0/ with radius R centered in v0 as the

full subgraph of Y whose vertex set is ¹v 2 Y .0/ D G.0/W dG.v; v0/ � Rº. Notice

that this definition is slightly in contrast with the usual notion of balls in metric

spaces, since we do not equip the whole Y with a metric if dimY � 2 and, even if

Y D G, there could be a point p in the middle of an edge e such that p 2 BR.v0/,
but dG.p; v0/ > R. More generally, if A � Y .0/ and r 2 N, we denote by Nr.A/

the full subcomplex of Y whose vertex set is ¹v 2 Y .0/W dG.v; A/ � rº.
Let S 63 1 be a symmetric finite generating set of a group �, and consider the

associated simplicial Cayley graph Gsimp.�; S/. This is the simplicial graph (i.e.

no double edges allowed) whose vertex set is �, and with a single edge connecting


1 with 
2 in � if and only if 
1

�1
2 2 S . In Section 8 we will consider a non-

simplicial version of that graph.

There are many equivalent definitions of relative hyperbolicity for a group-

pair .�; � 0/. We choose the one introduced in [17, p. 21, Definition 3.12; p. 25,

Theorem 3.25(5)] which is based on the following cusped-graph construction. In

particular, we will restrict our attention to the case when � is finitely generated

and � 0 is a finite family of finitely generated subgroups of �. A (combinatorial)
horoball H D H .G/ on a graph G is the graph whose vertex set is parametrized

by G.0/ �N, and with the following edges:

� the full subgraph of H whose vertex set is G.0/ � ¹0º is a copy of G;

� there is a single edge between .g; n/ and .g; nC1/, for every .g; n/ 2 G.0/�N;

� there is a single edge between .g; n/ and .h; n/ if and only dG.g; h/ � 2
n.
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Definition 3.1 (cusped-graph). Let .�; � 0 D ¹�iºi2I / be a group-pair of finitely

generated groups, and consider a symmetric finite generating set S 63 1 of � such

that S \ �i is a finite generating set of �i for every i (i.e. S is compatible). For

every i 2 I and left coset g�i of �i in � we consider the combinatorial horoball

on the subgraph g Gsimp.�i ; S \ �i / of Gsimp.�; S/. We glue those horoballs to

Gsimp.�; S/ in the obvious way (see [17, p. 18] for more details). We obtain in this

way the cusped-graph X .

We denote by the triple .g; i; n/ 2 � � I � N a vertex of the cusped-graph.

Notice that .g; i; 0/ and .g; j; 0/ denote the same vertex for all i , j 2 I . We call

the parameter n in .g; i; n/ the height of the vertex .g; i; n/. Given a natural number

n and a horoball H , the n-horoball associated with H is the full subgraph Hn of

X whose vertices are the ones contained in H with height at least n.

We will need the following result from [17].

Proposition 3.2. [17, Lemma 3.26] If the cusped-graphX constructed in Defini-
tion 3.1 is ı-hyperbolic and C > ı, then the C -horoballs are convex in X .

Remark 3.3. From now on we fix some constant C > ı, C � 1.

Remark 3.4. Notice that, by our definition, a cusped-graph is necessarily simpli-

cial. Groves and Manning explicitely allow multiple edges in their definition of

cusped-graph. We avoid double edges because we want to consider a cusped-graph

as contained in every Rips complex over it (see the next section). By Remark 6.4,

we can apply all relevant results of [17] also in our setting.

Definition 3.5 ([17, Definition 3.12; Theorem 3.25(5)]). Let .�; � 0/ be a group-

pair of finitely generated groups. The pair .�; � 0/ is (relatively) hyperbolic if

the cusped-graph of .�; � 0/ is a Gromov hyperbolic metric space (with the graph

metric).

4. Rips complexes on cusped graphs

Definition 4.1. Given a graph G and a parameter 1 � � 2 N, the Rips complex
R�.G/ on G is the simplicial complex with the same 0-skeleton as G, and an

n-dimensional simplex for every set of nC1 vertices whose diameter (with respect

to the metric of G) is at most �.

Notice that, since k � 1, G is naturally a subcomplex of R�.G/. We need

the following fundamental result about Rips complexes over Gromov hyperbolic

graphs.
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Lemma 4.2. LetG be a ı-hyperbolic graph. Then R�.G/ is contractible for every
� � 4ı C 6.

By considering the proof of Lemma 4.2 given in [8, Proposition 3.23], it is

possible to derive a more precise version of this lemma (see Corollary 4.8).

Notation 4.3. Let G be a graph, and let R D R�.G/ be a Rips complex over

G. Then G and R induce two metrics dG and dR on G.0/ D R
.0/. For

R � 0 and a vertex v0, we denote the full subcomplex of R whose vertex set

is ¹x 2 G.0/W dG.x; v0/ � Rº by BGR .v0/, and refer to it as a G-ball.

Given a Rips complex R�.G/ over G, we have, for every l 2 N and every

vertex v, the equality

BGl�.v/ D Bl .v/: (4)

Definition 4.4. Given a topological space Z and two subspaces W1 and W2, we

say that there is a homotopy fromW1 toW2 if the inclusionW1 ,! Z is homotopic

to a map f WW1 ! Z whose image is W2.

A (geometric) simplex in a simplicial complex Z is determined by the set of

its vertices. If x0; : : : ; xn are non-necessarily distinct vertices in Z, we denote by

Œx0; : : : ; xn� the corresponding simplex (if there is one). Notice that the dimension

of Œx0; : : : ; xn� could be less than n.

Definition 4.5. If Z is a simplicial complex, W1 and W2 are subcomplexes of Z,

and w1 2 W1 and w2 2 W2 are vertices, we say that W2 is obtained from W1 by

pushing w1 toward w2 if the following conditions hold:

(1) for every set of vertices ¹x0; : : : ; xnº 2 Z.0/ n ¹w1º, Œx0; : : : ; xn; w1� is a

simplex in W1 if and only if Œx0; : : : ; xn; w2� is a simplex in W2;

(2) in that case, Œx0; : : : ; xn; w1; w2� is a simplex in Z.

Notice that it follows thatW
.0/
2 D .W

.0/
1 n ¹w1º/[ ¹w2º. Under the conditions

of Definition 4.5, there is an obvious simplicial homotopy from W1 to W2.

Lemma 4.6 ([8, Proposition 3.23]). LetG and R� D R�.G/ be as in Lemma 4.2.
Let K be a compact subcomplex of R� , and let v0 2 R

.0/
� be a vertex. Then, it is

possible to inductively homotope the complexK into a sequence of subcomplexes
K0 D K, K1, . . . , Km D ¹v0º in such a way that

(1) there is a sequence of vertices xi 2 K
.0/
i such that

dG.v0; xi / D max¹dG.v0; y/W y 2 K
.0/
i º;
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(2) KiC1 is obtained from Ki by pushing xi toward some vertex yi such that
dG.v0; yi/ < dG.v0; xi/.

Corollary 4.7. LetG be a ı-hyperbolic locally compact graph and let � � 4ıC6.
Then every G-ball BGR .v0/ � R�.G/ is a contractible topological space.

Proof. In the notations of Lemma 4.6 simply note that, by point (2), the Ki are

contained in BGR .v0/. �

Given a Rips complex R�.X/ over some cusped space X , an (n-)horoball

of R�.X/ is the full subcomplex of R�.X/ having the same vertices of an

(n-)horoball of X . Recall that we have fixed a constant C > ı (Remark 3.3).

Corollary 4.8. Let X be the cusped space of a relatively hyperbolic group-pair
.�; � 0/ (with respect to some finite generating set S as described above) and let
ı be a hyperbolicity constant of X , which we can assume to be an integer. Then,
for � � 4ı C 6, the Rips complex R D R�.X/ is contractible, with contractible
C -horoballs. Moreover, the balls of R�.X/ are also contractible.

Proof. The last assertion follows from Corollary 4.3 and equation (4). Now,

let K be a compact subcomplex contained in some C -horoball HC (recall that

HC is convex). Let vL D .g; i; n/ be the lowest vertex of K, and let D WD
max¹dX .vL; v/W v 2 K.0/º. A geodesic segment between points w1 and w2 in

a horoball can be given by two upward segments which start from w1 and w2,

reach a common height, and are joined by a vertical path of length 1 or 2. From

this, it is easy to see that K is contained in the X-ball BXDC1.g; i; nCD/.

Put r WD D C 1 and v0 WD .g; i; nCD/. Then, the X-ball BXr .v0/ contains K

and is contained in HC�1.

With the notation as in Lemma 4.6, consider the sequence of compact sets

K1, . . . ,Km which collapses to the point v0. ThoseKi are contained in BXr .v0/ �
HC�1. We now prove that theKi are actually contained in HC . Indeed,K1 � HC

by hypothesis. Suppose by induction thatKi contains no vertices of height C � 1,

and suppose that the vertex wiC1 2 KiC1 n Ki has height C � 1. Let wi 2 Ki
be a vertex such that dX .wiC1; v0/ < dX .wi ; v0/. Then we get a contradiction,

because dX .wiC1; v0/ � height.v0/ � .C � 1/ � r , and dX .wi ; v0/ � r because

Ki � B
X
r .v0/.

Hence K is contractible in HC . By the arbitrariness of the compact subcom-

plex K, it follows that all homotopy groups of HC are trivial and the conclusion

follows from Whitehead’s Theorem. �
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Notice that, in order to prove that C -horoballs are contractible, we have actu-

ally proved the following more precise statement.

Proposition 4.9. Every compact complexK in someC -horoball HC is contained
in a contractible space BXr .v0/ \HC , for some r > 0, whose diameter in R� is
linearly bounded by the diameter of K.

5. Filling inequalities on R�.X/

If Y is a CW -complex, by C�.Y / we mean the real cellular chain complex of Y ,

i.e. the complex H�.Y
.�/; Y .��1// with real coefficients. We denote by Zk.Y /

the subspace of cycles of Ck.Y /. There will be no confusion with the notation of

Section 2. Notice that, if Y is a simplicial complex, the cellular chain complex

� � � ! C2.Y / ! C1.Y / ! C0.Y / ! R ! 0 is identifiable with the simplicial

chain complex of oriented simplices. This is the chain complex whose k-th module

is the real vector space generated by tuples .y0; : : : ; yn/ up to the identification

.y0; : : : ; yi ; : : : ; yj ; : : : ; yn/ D �.y0; : : : ; yj ; : : : ; yi ; : : : ; yn/

(see [27, Chapter 1, paragraph 5] for more details).

We see a simplicial chain c 2 Ck.Y / as a finitely supported map from the set

of n-dimensional oriented simplices of Y to R, and we define the support Supp.c/

of c as the set of unoriented n-dimensional simplices � of Y such that c.�/ ¤ 0,
where � is one of the two oriented simplices over�. By maxh c (minh c) we mean

the height of the highest (lowest) vertex of simplices in Supp.c/. We denote by

Supp.0/.c/ the set of vertices that belong to some simplex in Supp.c/. If A is a

subset of Y and c D
P

i �i�i is a simplicial k-chain, we define the restriction of

c to A as the chain

cjA WD
X

i W�
.0/

i
�A

�i�i :

5.1. A local lemma. From now on we assume that R� D R�.X/ satisfies the

hypotheses of Corollary 4.8. Recall that C is a fixed constant greater than ı.

Lemma 5.1 (Local lemma). For every i � 0, there are non-decreasing functions

RWN �! N and MlocWN �N �! R�0

such that, for every D 2 N�1, v0 2 R
.0/
� and z 2 Zi .R�/ such that Supp z �

BD.v0/, there is a 2 CiC1.R�/ such that

(1) @a D z;

(2) Suppa � BR.D/.v0/;
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(3) kak �Mloc.D;maxh.z//kzk;

(4) if z is contained in some C -horoball, then a is contained in the same
C -horoball (C as in Remark 3.3).

Proof. Fix integers h;D and j 2 I . Let c1, . . . , cn be the collection of the

i-dimensional simplices contained in BD..1; j; h//. Let z1, . . . , zm be a basis

of the subspace of cycles in hc1; : : : ; cniR, which extends bases of the spaces of

cycles contained in the C -horoballs. We choose a1, . . . , am so that @a1 D z1, . . . ,

@am D zm. If zk is not contained in any C -horoball, the chain ak may be chosen

in BD..1; j; h//, since this is contractible by Corollary 4.8. Otherwise, if zk is

contained in some C -horoball, we take ak in the subcomplex BXr .v0/ contained

in that horoball, as described in Proposition 4.9.

We extend the map zk 7! ak by linearity, obtaining a linear map �h;j;D between

normed spaces, where the first one is finite dimensional. Therefore �h;j;D is

bounded (with respect to any norm on the finite dimensional vector space).

Let now z be a cycle in Ci .R�/ with diam.Supp z/ � D, and maxh.z/ � H .

Up to �-action, we may suppose that z contains a vertex of the form .1; j; h/ for

some h � H , and j 2 I . It follows that Supp z � BD..1; j; h//. Then we set

a WD �h;j;D.z/. Since .h; j / is an element of the finite set ¹1; 2; : : : ; H º � I , we

may bound the norm of a uniformly, and putMloc.D;H/ WDmax¹k�h;j;DkW h�H ,

j 2 I º. �

5.2. Finite sets of geodesic segments in hyperbolic spaces and filling inequal-

ities. The results we are going to present are inspired by the well-known fact that

geodesics in hyperbolic spaces can be approximated by embedded trees (see [13,

Chapter 2]). The idea is that a set of n geodesic segments resembles a simplicial

tree where all pairs of edges having a point in common diverge very rapidly from

that point. In other words, the vertices of the tree are the only points near which

two edges may be close to each other. Moreover, this tree is finite, and the number

of vertices and edges depends only on n. Hence, we can split this tree into a set

of balls of fixed diameter and a set of subedges that are very far from each other.

Let k � 1 and let z be a k-dimensional cycle. If Supp z is contained in the

L-neighborhood of a set of n geodesic segments, we will be able to express it as a

sum of edge-cycles and vertex-cycles, that we can fill using the Local Lemma 5.1

and Corollary 5.3 respectively. Therefore we will be able to fill z with some control

on its norm, as described in Theorem 5.6. Some of the methods of this section are

inspired by the proof of [23, Lemma 5.9].

Let Œ0; j
 j� 3 t 7! 
.t/ be an arc-length parametrization of a geodesic segment


 (where j
 j is the length of 
) in some metric space W . Let x D 
.t/, for some

t 2 Œ0; j
 j�, and let s 2 R. By “
.x C s/” we mean the point 
.t C s/, if this

is defined. Otherwise, if t C s > j
 j (t C s < 0) we set 
.x C s/ WD 
.j
 j/
(
.x C s/ WD 
.0/). If t < r and y D 
.r/, by 
 jŒx;y� we mean the restriction of 


to the interval Œt; r � (or its image in W ).
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Lemma 5.2. Let i � 1. Then there are functions RWN ! N, DWN ! N and
LWN�N! R which satisfy the following properties: let z 2 Zi .R�/ be such that
Supp z � NS .
/, for some geodesic segment 
 and S 2 N. Then, for R D R.S/

and D D D.S/ there is an expression

z D
X

k

zk

where the zk are cycles such that

(1) Supp zk � BR.xk/, where xk WD 
.kD CD=2/;

(2)
P

k kzkk � L.S;maxh.z//kzk;

(3) if Supp z � HC for a C -horoball HC , then the same is true for every zk.

Proof. Take D � 2S C 3. Let yk WD 
.kD/. We put

Nzk WD zjB.kC1/D.y0/ � zjBkD.y0/:

In other words, Nzk is the restriction of z to the set of simplices contained in

B.kC1/D.y0/ that are not contained in BkD.y0/. It follows immediately that

z D
P

k Nzk . Let us put

R WD D=2C 2S; r WD S C 1:

Notice that D > 2S C 2 D 2r . We have

Supp Nzk � NS .
/\.B.kC1/D.y0/nBkD�1.y0// � BD=2C2S .xk/ D BR.xk/: (5)

In fact, let v be a vertex in NS .
/ \ .B.kC1/D.y0/ n BkD�1.y0//. Let x 2 


be such that d.v; x/ � S . Notice that x 2 B.kC1/DCS .y0/ n BkD�1�S.y0/,

i.e. kD � S � d.y0; x/ � .k C 1/D C S . Hence d.x; xk/ � D=2 C S , and

d.v; xk/ � d.v; x/C d.x; xk/ � D=2C 2S , whence the second inclusion in (5)

follows. It follows from (5) that

kNzkk � kzjBR.xk/k: (6)

Now, from the first inclusion of (5) we get

Supp.0/.@ Nzk/

� NS.
/ \ .¹x 2 R
.0/
� .X/W kD � d.y0; x/ � kD C 1º

t ¹x 2 R
.0/
� .X/W .k C 1/D � 1 � d.y0; x/ � .k C 1/Dº/

� BSC1.
.kD// t BSC1.
..k C 1/D//

D Br.yk/ t Br.ykC1/:
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Therefore, since the last two subcomplexes are disjoint, we can put

@ Nzk D b
0
k C bk Supp b0

k � Br.yk/; Suppbk � Br.ykC1/:

Notice that kb0
k
k C kbkk D kb

0
k
C bkk � .i C 1/kNzkk � .i C 1/kzjBR.xk/k.

We have

0 D @z D
X

k

@ Nzk D
X

k

bk C b
0
k D

X

k

bk C b
0
kC1:

By looking at supports, we note that it follows that bk D �b
0
kC1

. Since b0
k
C bk

is a cycle (in the augmented simplicial chain complex of R�) and bk and b0
k

have

disjoint supports, it follows that bk and b0
k

are cycles too, if their dimension is at

least 1. The same is true if the b
.0/

k
are 0-dimensional. Indeed, it is easy to see that

b0
0 D 0, hence b0 D b0

1 is a cycle. By induction, if b0
k

is a cycle, it follows that

bk D b
0
kC1

is a cycle too. Hence all the b
.0/

k
are cycles.

We fill bk and b0
k

by a0
k

and ak using the local lemma, and we also require

that a0
k
D �ak�1. Since bk and b0

k
have diameter bounded by 2r , by the local

lemma we have a function L.S; �/ WD Mloc.2r; �/ D Mloc.2.S C 1/; �/ such that

kakk � L.S;maxh.bk//kbkk. If H D maxh.z/, then

kakk � L.S;maxh.bk//kbkk � L.S;H/.i C 1/kzjBR.xk/k: (7)

Hence also

ka0
kk D kak�1k � L.S;H/.i C 1/kzjBR.xk�1/k: (8)

We put

zk WD Nzk � a
0
k � ak :

By (6), (7) and (8), there is a function L0WN �N! R such that

kzkk � L
0.S;H/kzjBRCD.xk/k:

We have @zk D bk C b
0
k
� b0

k
� bk D 0, and

X

k

zk D
X

k

Nzk � a
0
k � ak D

X

k

Nzk �
X

k

Na0
k C ak D z �

X

k

Na0
k C ak�1 D z:

Finally, since the balls BRCD.xk/ and BRCD.xkC5/ have disjoint supports

(because 4S < 2D H) 2R D D C 4S � 3D H) 2.RCD/ � 5D), we have

X

k

kzjBRCD.xk/k D

4
X

jD0










X

kDj mod 5

zjBRCD.xk/








 � 5kzk:

Therefore, Condition (2) in the statement holds with L.S;H/ D 5L0.S;H/.

Finally, (3) follows from the local lemma. �
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Corollary 5.3. For every i 2 N there are functions

S 0WN �! N and MthinWN �N �! R

such that, for every geodesic segment 
 and every cycle z 2 Zi .R�/with Supp z �
NS .
/ for some S � 0, there is a filling a of z with Supp a � NS 0.
/ and such
that

kak �Mthin.S;maxh.z//kzk:

Moreover, we may impose that a is contained in a C -horoball HC , if the same is
true for z (C is as in Remark 3.3).

Proof. Split z as the sum of the cycles zk be as in the previous lemma. Now,

let R D R.S/ as in the previous lemma. If Supp z \ BR.xk/ ¤ ;, we have

maxh.zk/ � maxh.BR.xk//; otherwise it is clear from the construction of zk that

zk D 0. In any case we have maxh.zk/ � maxh.Supp.z//C 2R. Moreover, by (1)

of the previous lemma, max diam.zk/ � 2R. Fill zk with ak as in the local lemma,

and put a D
P

k ak . Let MlocWN �N! R be as in the local lemma. Hence

kak �
X

k

kakk

�Mloc.maxdiam.zk/;maxh.z/C 2R/
X

k

kzkk

�Mloc.2R;maxh.z/C 2R/ L.S;maxh.z//kzk:

So we can put Mthin.S; h/ WDMloc.2R; hC 2R/L.S; h/. �

The next lemma holds for every ı-hyperbolic space X .

Lemma 5.4. Let ˛1, . . . , ˛n be n geodesic segments. Then, for every S 2 N, there
exist constants R D R.S; n/, p D p.n/, q D q.n/, points x1, . . . , xp 2 X and
geodesic segments 
1, . . . , 
q such that

n
[

kD1

˛k �

p
[

iD1

BR.xi / [

q
G

jD1

N2ı.
j /

where the 
j are S -far from each other.

Proof. We prove the statement by induction on n. The case n D 1 is obvious.

Suppose that the statement is proved for n � 1 segments, and put

p D p.n� 1/; q D q.n � 1/:
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Hence we have balls BR.x1/, . . . , BR.xp/ and geodesic segments 
1, . . . , 
q
associated with ˛1, . . . , ˛n�1 as in the statement. We fix an orientation on ˛n
and for every 1 � j � q such that d.
j ; ˛n/ � S (here d denotes the distance

between sets) we denote by xj (resp. yj ) the first (resp. the last) point on ˛n such

that d.xj ; 
j / � S , d.yj ; 
j / � S . By hyperbolicity, it is easy to see that

˛njŒxj CSCı;yj �S�ı� � N2ı.
j /

(some of these intervals may be empty). Since the 
j are .2S C 6ı C 1/-far from

each other, we claim that, up to reindexing, we have

x1 � y1 � x2 � y2 � � � � � xk � yk

for k � q. Indeed, xj � yj by definition. Moreover, the points between xj and yj
are .S C 3ı/-close to 
j . Since there cannot be points in X that are (S C 3ı)-close

to two different 
j , we have Œxj ; yj � \ Œxk ; yk� D ;, for j ¤ k, whence the claim.

The segments of type ˛njŒyj CSCı; xj C1�S�ı� (where by y0 and xkC1 we mean

the left and right extreme of ˛n respectively) areS -far from all the 
j and (2SC2ı)-

far from each other. Adding to the 
j the segments of type ˛njŒyj CSCı;xj C1�S�ı�

and to theBR.xi / the balls of typeBSCı.xj /, BSCı.yj /we complete the inductive

step. �

We need in Theorem 5.6 a stronger version of the lemma above in order to deal

with 1-dimensional cycles. In the notation of Lemma 5.4, we say that two distinct

balls B1 and B2 are linked if there is a 
j such that d.
j ; B1/ � S , d.
j ; B2/ � S

and, if v1; v2 2 
j are such that d.v1; B1/ � S , d.v2; B2/ � S , there is no point

v3 2 
j between v1 and v2 such that d.v3; B3/ � S , for some ballB3 distinct from

B1 and B2. We thus get a graph structure on the balls of Lemma 5.4.

For any r 2 N, we call r-cycle a sequence ¹Buºu2Z=rZ of r distinct balls, with

Bu linked to BuC1 for all u 2 Z=rZ. In the following lemma we prove that, if the

balls are sufficiently far apart, there are no r-cycles for r � 3. Hence the graph is a

forest, i.e. a graph which is a disjoint union of trees. Notice that, in the conditions

of Lemma 5.5, for any pair of balls B1 and B2, there is at most one 
j such that

d.
j ; B1/ � S and d.
j ; B2/ � S .

Lemma 5.5. Suppose that we have an inclusion

n
[

kD1

˛k �

p
[

uD1

BR.xu/ [

q
G

jD1

N2ı.
j /

where the ˛k and 
j are geodesic segments, and the 
j are S -far apart, for some
S > .p C 6/ı.

Moreover, suppose that the xu are 2p.R C S/-far apart. Then there are no
r-cycles, for any r � 3.
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Proof. Up to reindexing, we may suppose that the balls BR.x1/, .., BR.xr/ con-

stitute an r-cycle. Put Bu WD BR.xu/. We slightly abuse notation by identifying

the natural numbers 1, .., r with the corresponding elements of Z=rZ. Let lu be

the minimal subsegment of some 
j such that the ends of lu are S -close to Bu and

BuC1 respectively.

In the following, we denote by Œxu; xuC1�
0 the subsegment of Œxu; xuC1� which

is outside the ballsBRCS .xu/ andBRCS .xuC1/. By ı-hyperbolicity, the Hausdorff

distance between lu and Œxu; xuC1�
0 is at most 4ı. For a geodesic r-agon in a

ı-hyperbolic space, any edge is contained in the .r�2/ı-neighborhoodof the union

of the other edges. Hence Œxu; xuC1� �
S

k¤u N.r�2/ı.Œxk; xkC1�/, therefore

Œxu; xuC1�
0 �

[

k¤u

N.r�2/ı.Œxk; xkC1�
0/ [

[

k¤u

BRCSC.r�2/ı.xk/

Since the length of Œxu; xuC1�
0 is at least

2p.RC S/ � 2.RC S/ > .r � 1/.RC S C .r � 2/ı/;

it follows that the r�1 ballsBRCSC.r�2/ı.xk/ can’t cover all of Œxu; xuC1�
0. Hence

there is some k ¤ u such that d.Œxu; xuC1�
0; Œxk; xkC1�

0/ � .r � 2/ı. Since the

Hausdorff distance between lu and Œxu; xuC1�
0 (lk and Œxk ; xkC1�

0) is at most 4ı, it

follows that the distance between lu and lk is less than .r C 6/ı � .p C 6/ı < S ,

whence the contradiction. �

We now consider the problem of filling cycles whose supports are close to

geodesic segments.

Theorem 5.6. Let n; i; L 2 N, i � 1, and let C 2 N be as in Remark 3.3. Then
there exists L0 D L0.n; i; L/ 2 N such that, for every cycle z 2 Zi .R�/ and every
family of geodesic segments ˛1, . . . , ˛n such that Supp z � NL.˛1 [ : : : [ ˛n/,
there exists a 2 CiC1.R�/ with @a D z and

Supp a � NL0.Supp z/: (9)

In particular, up to increasing L0, we have Suppa � NL0.˛1 [ : : : [ ˛n/,
and maxh.a/ � maxh.z/ C L0. Moreover, there exists a function M D
M .n; i; L/WN! N such that

kak �M.maxh.z//kzk: (10)

Finally, we can require that, if z is contained in some C -horoball, a is con-
tained in the same C -horoball.
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Proof. Fix S 2 N such that S � 2LC 4ı C 1, S > .p C 6/ı. Let R D R.S; n/,

p D p.n/ and q D q.n/ be as in Lemma 5.4, in such a way that for some vertices

xu and geodesic segments 
j which are S -far from each other

[

k

˛k �

p
[

uD1

BR.xu/ [

q
G

jD1

N2ı.
j /: (11)

Let z be a cycle whose support is contained in the L-neighborhood of the ˛u.

Hence

Supp z �

p
[

uD1

BRCL.xu/ [

q
G

jD1

N2ıCL.
j /: (12)

The fact that the N2ıCL.
j / are pairwise disjoint is a consequence of our require-

ments on S .

By suitably choosing a subset I of ¹1; : : : ; pº, we get that there existsRCSC

1 � R0 � .2p C 1/p.R C S C 1/ such that the xu, u 2 I , are 2p.R0 C S/ far

apart, and
Sp
uD1 BRCSC1.xu/ �

F

u2I BR0.xu/. Indeed, the case p D 1 is trivial.

Otherwise, if two balls BRCSC1.xu1
/ and BRCSC1.xu2

/ are not 2p.R C S/ far

apart, we consider the balls B.2pC1/.RCSC1/.xu/, for all u ¤ u2. We have that

BRCSC1.xu1
/[BRCSC1.xu2

/ � B2p.RCSC1/.xu1
/. Then we continue by reverse

induction on p.

We have

Supp z �

p
[

uD1

BRCLC1.xu/ [

q
G

jD1

N2ıCL.
j / �
G

u2I

BR0.xu/ [

q
G

jD1

N2ıCL.
j /:

(13)

Put

z0 WD z
j
FN

j D1 N2ıCL.
j /
:

There is a unique expression

z0 D

q
X

jD1

z
j
where Supp z
j

� N2ıCL.
j /:

By (13) and the definition of z0 and
Sp
uD1 BRCLC1.xu/ �

F

u2I BR0.xu/ we get

Supp @z
j
�

G

u2I

BR0.xu/:

Hence we can put

@z
j
D

X

u2I

buj Suppbuj � BR0.xu/ (14)

(this expression being unique).



938 F. Franceschini

Suppose that the dimension i is at least 2. Then, by (14) and the disjointness

of the BR0.xu/, u 2 I , the buj must all be cycles.

The same is true if i D 1. Fix j and u such that d.BR0.xu/; 
j / � S . Consider

the set T
j
u of ball-indices Ou for which there is a sequence

BR0.xu/ D BR0.xu1
/; BR0.xu2

/; : : : ; BR0.xus
/ D BR0.x Ou/

such that BR0.xui
/ is linked to BR0.xuiC1

/, for 1 � i � s � 1, and every such link

is realized by some 
 O| ¤ 
j . Moreover, consider the set T
j
u

0 of indices O| ¤ j for

which d.
 O| ; BR0.x Ou// � S for some Ou 2 T
j
u .

If u ¤ u0 are such that d.BR0.xu/; 
j / � S and d.BR0.xu0/; 
j / � S , then

T
j
u \ T

j
u0 D ; and T

j
u

0 \ T
j
u0

0 D ;. Otherwise there would be r-cycles, for some

r � 3.

Consider the chain t
j
u WD

P

Ou2T
j
u
.z � z0/jBR0 .x Ou/

C
P

O|2T
j
u

0 z
 O|
. By the

disjointness above, Supp.t
j
u /\ Supp.t

j
u0/ D ;. Since z
j

C
P

uWd.BR0 .xu/;
j /�S
t
j
u

is a cycle and Supp.t
j
u / \ Supp.z
j

/ � BR0.xu/ for any such u, we have that the

0-chain buj D @z
j jBR0 .xu/ D �@t
j
u is a cycle, whence the claim for dimension

i D 1 too.

Let auj , u 2 I , be such that @auj D buj as in the local lemma. By definition

of z0,

Supp.z � z0/ �
G

u2I

BR0.xu/:

For u 2 I , let zu be the restriction of z � z0 to BR0.xu/. Then

z � z0 D
X

u2I

zu

and

0 D @z

D @.z � z0/C @z0

D
X

u2I

�

@zu C

q
X

jD1

buj

�

D
X

u2I

@
�

zu C

q
X

jD1

auj

�

H) @
�

zu C

q
X

jD1

auj

�

D 0 for all u 2 I;
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the implication being true because the BR0.xu/ are disjoint. The chain Nz
j
D

z
j
�

P

u2I a
u
j is a cycle (by (14)), and zu D zu C

Pq
jD1 a

u
j , for u 2 I , is also a

cycle by the equality above. By summing, we get

q
X

jD1

Nz
j
C

X

u2I

Nzu D

q
X

jD1

�

z
j
�

X

u2I

auj

�

C
X

u2I

�

zu C

q
X

jD1

auj

�

D

q
X

jD1

z
j
C

X

u2I

zu �

q
X

jD1

X

u2I

auj C
X

u2I

q
X

jD1

auj

D

q
X

jD1

z
j
C

X

u2I

zu

D z:

For all u, Supp zu[
S

j Supp b
j
u � BR0.xu/. By the local lemma, there is a con-

stant R00 D R00.R0/ such that
S

j Supp a
j
u � BR00.xu/, hence Supp Nzu � BR00.xu/

too. Analogously, we have Supp z
j
[

S

u b
u
j � N2ıCL.
j /, hence also Supp Nz
j

�
Supp z
j

[
S

u a
u
j � NS 0.
j /, where we can put S 0 D max ¹2ı C L; R00º.

We fill the Nzu and the Nz
j
by au and a
j

as in the local lemma and Corollary 5.3

respectively, and put

a WD
X

u2I

au C

q
X

jD1

a
j
:

By the local lemma again, the filling au of Nzu has support contained in some

BR000.xu/, where R000 only depends on R00. Finally, by Lemma 5.3, we get that

Supp a
j
� NS 00.
j /, for some S 00 which only depends on S 0. Hence condition (9)

is easily verified, and we can put L0 D max¹S 00; R000º.
In order to check the condition about the horoballs note that, if z is contained

in some C -horoball, then all the z
j
and zu are contained in the same C -horoball.

Hence, by (4) in the local lemma and (3) in Corollary 5.3, the same is true for the

au and the a
j
.

We are finally left to prove (10). Let

K WD max¹Mthin.S
00;maxh.z/C S 00/; Mloc.2R

00;maxh.z//º;

where Mthin is the function of Corollary 5.3 andMlocWN�N! R is the function

of point (3) of the local lemma. Then

kak �
X

u2I

kauk C

q
X

jD1

ka
j
k � K

�

X

u2I

kNzuk C

q
X

jD1

kNz
j
k
�

;

X

u

kNzuk �
X

u

kzuk C
X

uj

kauj k;
X

j

kNz
j
k �

X

j

kz
j
k C

X

uj

kauj k:
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By disjointness of the supports of the zu and the Nz
j
we get

X

u

kzuk D









X

u

zu








 � kzk

X

j

kNz
j
k D










X

j

Nz
j









� kzk:

Now, from the construction of the buj , we get maxh.buj / � maxh.z/. Since the auj
fill the buj as in the local lemma, we get

X

uj

kauj k �Mloc.R
0;maxh.z//

X

ju

kbuj k;

because the buj are contained in balls of radius R0. �

6. Proof of part .a/ of Theorem 1.1

Let .�; � 0/ be a group-pair. Let St� and St0� be as in Definition 2.8. The augmented

complexes StC� WD St� ! R ! 0 and St0C� WD St� ! R.�=� 0/ ! 0 are

�-projective resolutions of R and R.�=� 0/ (see Definition 2.1). In general, by

a map between resolutions of the same �-moduleM we mean a chain �-map that

extends the identity of M .

The following homological lemma helps us to outline the strategy we intend

to pursue in order to prove Theorem 1.1 (a).

Lemma 6.1 (Homological lemma). Let 'i WSt� ! St�, i D 1; 2 be chain �-maps
which satisfy the following hypotheses:

(1) 'i extends to a map between resolutions 'C
i WStC� ! StC� ;

(2) 'i restricts to a map '0
i WSt0� ! St0�;

(3) '0
i extends to a map between resolutions '0C

i WSt0C� ! St0C� .

Then there is a �-equivariant homotopy T between 'C
1 and 'C

2 that restricts to
a homotopy between '0C

1 and '0C
2 (in St0�). Given a �-module V , the dual maps

'1 and '2 of '1 and '2 induce homotopically equivalent maps on the complex
Hom�.St� =St0�; V / DW Strel �.�; � 0IV /, for every �-module V .
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We will apply the homological lemma to the diagram

:::
:::

:::
?

?

y

?

?

y

?

?

y

St2.�/
 2
�! C2.R�/

'2
�! St2.�/

?

?

y

?

?

y

?

?

y

St1.�/
 1
�! C1.R�/

'1
�! St1.�/

?

?

y

?

?

y

?

?

y

St0.�/
 0
�! C0.R�/

'0
�! St0.�/

?

?

y

?

?

y

?

?

y

R
Id
�! R

Id
�! R

?

?

y

?

?

y

?

?

y

0 0 0,

(15)

where R� D R�.X/ and � � 4ı C 6 as in Corollary 4.8.

We wish to prove that the composition '� ı  � satisfies the hypotheses of the

homological lemma, and that  n ı 'n.f / D f ı 'n ı  n is a bounded cocycle

for every n � 2 and for every cocycle f 2 Hom�.StnIV /. This will prove the

surjectivity of the comparison map since, by Lemma 6.1, for any given cocycle f ,

the cocycle f ı 'n ı  n is cobordant to f and bounded.

In order to fulfill conditions (1), (2), (3) of the homological lemma it is suffi-

cient to find �-equivariant chain maps '� and  � such that  � maps simplices in

St0 into simplices in the corresponding C -horoballs of R� , and vice versa for  �.

We now define '�. If n � 1 we set '0.g; i; n/ WD .g; i/. Otherwise, we define

'0.g; 0/ WD
1

jI j

P

i2I .g; i/. Form � 1 and anm-dimensional simplex Œx0; : : : ; xm�

of R�.X/ we set

'm.Œx0; : : : ; xm�/ WD
1

.1Cm/Š

X

�2SmC1

".�/.'0.x�.0//; : : : ; '0.x�.m///; (16)

where SmC1 is the group of permutations of ¹0; : : : ; mº, and ".�/ D ˙1 is the

sign of � . The apparently cumbersome definition of the map '� follows from the

fact that in C�.R�/ we have oriented simplices, whereas in St� we have ordered
ones, and that the action of � on R�.X/ may map a simplex to itself, changing

the order of the vertices.

Much more effort will be needed for the definition of  �, to which the rest of

this section is dedicated. The fundamental tool that we will use is the bicombing

defined in [17].
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Definition 6.2 ([24, Section 3]). Given a group � acting on a graph G through

simplicial automorphisms, a homological bicombing is a function

qWG.0/ �G.0/ �! C1.G/

such that @q.a; b/ D b � a for all .a; b/ 2 G.0/ � G.0/. We say that q is

antisymmetric if q.a; b/ D �q.b; a/ for all a; b 2 G.0/, and �-equivariant if


q.a; b/ D q.
a; 
b/ for all 
 2 � and a; b 2 G.0/. Moreover, q is quasi-geodesic
if there is a constantD > 0 such that, for all a, b 2 G.0/:

(1) kq.a; b/k � Dd.a; b/;

(2) Suppq.a; b/ � ND.Œa; b�/.

We note that, if G is a hyperbolic graph, the precise choice of a geodesic Œa; b�

between a and b is, up to increasing the constantD, irrelevant.

Note that, by the antisymmetricity requirement in the definition of homological

bicombing, we can extend q to a function on 1-dimensional oriented simplices of

the graph.

The homological bicombing Q in the following theorem is based on the bi-

combing constructed by Mineyev in [24]. The relevant properties of Q are de-

scribed in [17, Section 5] and [17, Theorem 6.10].

Theorem 6.3. If .�; � 0/ is a relatively hyperbolic pair, there is a bicombingQ on
the associated cusped space X such that

(1) Q is quasi-geodesic;

(2) Q is �-equivariant;

(3) Q is antisymmetric;

(4) there isK > 0 such that, for all a, b, c 2 X .0/, there are 1-dimensional cycles
z D z.a; b; c/ and w D w.a; b; c/ such that

� Q.@.a; b; c// D z C w;

� minh.w/ � C > ı;

� kzk � K;

� maxh.z/ � K;

� for all 
 2 �,
z.
a; 
b; 
c/ D 
z.a; b; c/

and
w.
a; 
b; 
c/ D 
w.a; b; c/I

� z and w are contained in the K-neighborhood of Œa; b�[ Œb; c�[ Œc; a�.
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Remark 6.4. Groves and Manning allow multiple edges in their definition of

cusped graph (as already noted in Remark 3.4). However, it is easy to see that,

if xX is the simplicial graph obtained by identifying edges of X with the same

endpoints, the obvious bicombing induced byQ on xX satisfies all of the properties

of Theorem 6.3. See also [17, Remark 6.12]

We want to find a decomposition ¹ k D zk C wkºk�2WSt�.�/ ! C�.R�/ of

 k into �-equivariant chain maps ¹zkºk�2 and ¹wkºk�2 such that

(A) kzk.�/k is uniformly bounded independently on the simplex � in Stk;

(B) maxh.zk.�// is uniformly bounded independently of � 2 Stk;

(C) minh.wk.�// � C for every � 2 Stk;

(D) z� and w� map elements in the basis of St0 into C -horoballs.

We now show how the conclusion follows from the existence of a map  �

satisfying the four conditions above, and then we construct such a  �. It is easy

to see that, if an i-dimensional simplex s of R�.X/ is not contained in a single

C -horoball, it must satisfy maxh.s/ � 2�C2. For i � 2, let f WSti =St0i ! V be a

�-equivariant map, that we see as a map defined on Sti which is null on St0i . Then

f ı 'i WCi .R�.X//! V is a bounded map: in fact,

sup¹kf ı 'i .s/kW s is an i-dimensional simplex in R�.X/º

D sup¹kf ı 'i .s/kWmaxh.s/ � 2� C 2º

<1;

because, up to the �-action, there is only a finite number of simplices s with

maxh.s/ � 2�C 2. Moreover, f ı'i ı i is also bounded since, for every simplex

� 2 Stk ,

kf ı 'i ı  i .�/k D kf ı 'i ı zi .�/k;

and zi is a bounded map.

We now construct �, inductively verifying that it satisfies conditions (A), . . . ,

(D) above. Recall that, by our hypotheses, X is a subcomplex of R�.X/. Let Q

be the bicombing of Theorem 6.3. SinceQ is quasi-geodesic and C -horoballs are

convex, it follows that Q.a; b/ is completely contained in a C -horoball HC if a

and b lie in HL, for L sufficiently large. Therefore for such an L we set

 0.g; i/ WD .g; i; L/

 1..g; i/; .h; j // WD Q. 0.g; i/;  0.h; j // 2 C1.X/ � C1.R�.X//:
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In order to simplify our notation, we denote by �m a generic m-dimensional

simplex in St. If �2 D .p0; p1; p2/, we write

 1.@�
2/ D z.�2/C w.�2/;

where z.�2/ WD z. 0.p0/;  0.p1/;  0.p2// as in the notation of Theorem 6.3,

and w.�2/ D  1.@�
2/ � z.�2/.

Notice that the cycles z.�2/ fulfill the conditions of Theorem 5.6 for a uniform

constantL and with maxh.z.�2// uniformly bounded. Therefore we can fill z.�2/

with a chain z2.�
2/, where maxh.z2.�

2// and its norm kz2.�
2/k are uniformly

bounded (i.e. independently of �2), and moreover Supp.z2.�
2// is contained

in some C -horoball, if the same is true for Supp.z.�2//. We extend z and z2
by linearity. In what follows, all fillings are required to satisfy the conditions of

Theorem 5.6. We have

z.@�3/C w.@�3/ D 0

hence �z.@�3/ D w.@�3/ is a 1-dimensional cycle with bounded norm and

minimum height at least C . Hence Supp.w.@�3// is contained in the union of

someC -horoballs. Since theC -horoballs ofX are disjoint complexes and because

of (4) of Lemma 5.1, we have that w.@�3/jHC
is a cycle for every C -horoball HC .

Let !2.�
3/ be a filling of w.@�3/ as in Theorem 5.6, i.e.

@!2.�
3/ D �z.@�3/ D w.@�3/:

Applying Theorem 5.6 we find a chain z3 such that

@.z3.�
3// D z2.@.�

3//C !2.�
3/:

Fix m � 4, and suppose by induction that, for any m-symplex in Stm

@.zm.�
m// D zm�1.@�

m/C !m�1.�
m/;

with zm, zm�1 and !m�1 of uniformly bounded maximum height and `1-norm,

and such that minh.!m�1/ � C . Moreover, suppose that the geometric conditions

of Theorem 5.6 for zm, zm�1 and !m�1 are also satisfied, where n and L in the

statement of Theorem 5.6 that only depends on the dimension m. Then

@.zm.@�
mC1// D zm�1.@.@�

mC1//C !m�1.�
mC1/ D !m�1.@�

mC1/;

hence we can find a filling !m.�
mC1/ of the cycle �!m�1.@�

mC1/. Finally, we

define zmC1 in such a way that

@.zmC1.p0; : : : ; pmC1// D zm.@.p0; : : : ; pmC1//C !m.p0; : : : ; pmC1/:

All inductive conditions are satisfied.
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Now we consider the construction of w�. Similarly as before, by Theorem 6.3,

minh.w.�2// � C . Hence w.�2/jHC
is a cycle for every C -horoball HC . By the

contractibility of the C -horoballs (Corollary 4.8), we can fill every w.�2/jHC
in

HC . Let w2.�
2/ be a filling of w.�2/ given by filling any w.�2/jHC

in the same

C -horoball. Note that we have defined !� in such a way that @!2.�
3/ D w.@�3/,

and @!mC1.�
mC2/ D �!m.@�

mC2/ for m � 2. We have that

@w2.@�
3/ D w.@�3/ D @!2.�

3/:

Hence we can define w3.�
3/ in such a way that

@w3.�
3/ D w2.@�

3/ � !2.�
3/:

Now, fix m � 4, and suppose by induction that

@wm.�
m/ D wm�1.@�

m/ � !m�1.�
m/:

Then @wm.@�
mC1/ D �!m�1.@�

mC1/ D @!m.�
mC1/, hence wm.@�

mC1/ �

!m.�
mC1/ is a cycle, which we can fill by wmC1.�

mC1/.

This concludes the construction of  �, whence the proof of Theorem 1.1 (a).

7. Applications

Let .X; A/ be a topological pair. Let S�.X/ be the singular complex of X with

real coefficients. In other words, Sk.X/ is the real vector space whose basis is the

set C 0.�k; X/ of singular k-dimensional simplices in X , and we take the usual

boundary operator @k WSk.X/ ! Sk�1.X/, for k � 1. The natural inclusion of

complexes S�.A/ ,! S�.X/ allows us to define the relative singular complex

S�.X; A/ WD S�.X/=S�.A/. Dually, we define the relative singular cocomplex as

S�.X; A/ D Hom.S�.X; A/;R/;

where Hom.S�.X; A/;R/ denotes the set of real linear maps on S�.X; A/. We put

S�.X; ;/ DW S�.X/. We will often identify S�.X; A/with the subspace of S�.X/

whose elements are null on S�.A/. We put an `1-norm on S�.X; A/ through the

identification

S�.X; A/ � R.C 0.�i ; X/ n C 0.�i ; A//:

Given a cochain f 2 S�.X; A/, the (possibly infinite) `1-norm of f is

kf k1 WD sup¹jf .c/jW c 2 S�.X; A/; kck � 1º:



946 F. Franceschini

We denote by S�
b
.X; A/ the subcocomplex of S�.X; A/ whose elements have

finite `1-norm. Since the boundary operator @�WS�.X; A/ ! S��1.X; A/ is

bounded with respect to the `1-norms, its dual maps bounded cochains into

bounded cochains (and is bounded with respect to the `1-norm). Therefore

S�
b
.X; A/ is indeed a cocomplex.

The following definition appeared for the first time in [14, Section 4.1].

Definition 7.1. Given a topological pair .X; A/, the relative bounded cohomology
H�
b
.X; A/ is the cohomology of the cocomplex S�

b
.X; A/.

Definition 7.2. Let S�.X; A/ be the real singular chain complex of a topological

pair. The norm on S�.X; A/ descends to a natural semi-norm on homology, called

Gromov norm: for every ˛ 2 H�.X; A/,

k˛k D inf ¹kckW c 2 S�.X; A/; Œc� D ˛º :

IfM is an n-dimensional oriented compact manifold with boundary, the simplicial
volume of M is the Gromov norm of the fundamental class in Hn.M; @M/.

Definition 7.3. A topological pair .X; Y / is a classifying space for the group-pair

.�; ¹�iºi2I / if

(1) X is path-connected, and Y D
F

i2I Yi is a disjoint union of path-connected

subspaces Yi of X parametrized by I ;

(2) there are basepoints x 2 X and yi 2 Yi , and isomorphisms �1.X; x/ � �

and �1.Yi ; yi/ � �i ;

(3) the Yi are �1-injective in X , and there are paths 
i from x to yi such that the

induced injections

�1.Yi ; yi/ ,�! �1.X; x/

correspond to the inclusions �i ,! � under the isomorphisms above;

(4) X and Y are aspherical.

The following theorem applies in particular to negatively curved compact

manifolds with totally geodesic boundary.

Theorem 7.4. Let .X; Y / be a classifying space of a relatively hyperbolic pair
.�; � 0/. Then the Gromov norm on Hk.X; Y / is a norm for any k � 2.

Proof. Let H�.�; � 0/ be the relative cohomology of .�; � 0/ as defined in [4] (the

definition of Bieri and Eckmann is completely analogous to the one of Mineyev

and Yaman, but without any reference on the norm). It is possible to define natural

maps

H�
b .X; Y / �! H�

b .�; �
0/ �! H�.�; � 0/ �! H�.X; Y / (17)
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such that the first map is an isometric isomorphism, the third one is an isomor-

phism, and the compositions of all maps in (17) is the comparison map from sin-

gular bounded cohomology to singular cohomology (the fact that the first map

is an isometry also follows from weaker hypotheses; see [5, Theorem 5.3.11]).

By hypothesis, the second map in (17) is surjective. Hence the conclusion follows

from the following proposition ([26, Proposition 54]), which is the relative ver-

sion of an observation by Gromov ([14, p. 17]) and could be generalized for any

normed chain complex (see [21, Theorem 3.8]).

Proposition 7.5. For any z 2 Hk.Y; Y 0IR/,

kzk D sup
�° 1

kˇk1
Wˇ 2 H k

b .Y; Y
0IR/W hˇ; zi D 1

±

[ ¹0º
�

: �

Now we consider our second application: a relatively hyperbolic group-pair

has finite cohomological dimension. More precisely

Theorem 7.6. Let .�; � 0/ be a relatively hyperbolic pair. Then there is n 2 N

such that, for every m > n and every bounded �-module V , Hm.�; � 0IV / D 0.

We note that this theorem admits a straightforward proof in the case of a

torsion-free hyperbolic group �. Indeed, consider a contractible Rips complex

Y over the Cayley-graph X of �. The complex Y is finite dimensional by the

uniform local compactness of X . Since Y is contractible and � acts freely on it,

the cohomology of � is isomorphic to the (simplicial) cohomology of Y , whence

the conclusion.

Let R� WD R�.X/ be the Rips complex associated to a cusped space X of the

relatively hyperbolic pair .�; � 0/, as described in Corollary 4.8. Then

Lemma 7.7. For every C > 0 there exists n 2 N such that, for every m � n and
for every m-simplex � of R�.X/, we have minh.�/ > C .

Proof. For m sufficiently large, every subset A � R�.X/
.0/ of cardinality m and

such that minh.A/ � C has X-diameter greater than �. This follows easily from

the fact that, up to �-action, there are only finitely many such sets A. Therefore,

by definition of Rips complex, the conclusion follows. �

We can now prove Theorem 7.6.

Proof. Let V be a bounded �-module, and let f be a cochain in Hom�.Strel
k ; V /,

which we can see as a �-equivariant map which is null on St0k � Stk . By Lemma

7.7, f ı'k ı k D 0, for k sufficiently big and independent of f . If f is a cocycle,

by Lemma 6.1, f is cohomologous to the null map, hence H k.�; � 0IV / D 0 by

the arbitrariness of f . �
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8. Proof of part .b/ of Theorem 1.1

In the following we will work in the category of combinatorial cell complexes
(see [8, 8A.1]). We are particularly interested in the 2-skeleton of a combinatorial

complex X . This is described as follows: X .1/ is any graph, and the 2-cells are

l-polygons e�, l � 2, such that the attaching map @e� ! X .1/ is a loop whose

restriction to any open cell of @e� (i.e., open edge or point) is a homeomorphism

to some open cell of X .1/.

The following characterization of relative hyperbolicity is due to Bowditch [6,

Definition 2].

Definition 8.1. Let G be a graph. A circuit in G is a closed path that meets any

vertex at most once. We say that G is fine if, for any edge, the set of circuits

of any given length containing e is finite. A group � is hyperbolic relative to a
finite collection of subgroups � 0 if � acts on a connected, fine, ı-hyperbolic graph

G with finite edge stabilizers, finitely many orbits of edges, and � 0 is a set of

representatives of distinct conjugacy classes of vertex stabilizers (such that each

infinite stabilizer is represented).

Definition 8.2 ([22, Definition 1.2]). Let K 2 ¹Z;Q;Rº and let X be a combi-

natorial cell complex. The homological Dehn function of X over K is the map

FVX;KWN! R defined by

FVX;K.k/ WD sup¹k
kf;KW 
 2 Z1.X;Z/; k
k � kº

where

k
kf;K WD inf¹k�kW� 2 C2.X;K/; @� D 
º:

By a result given in [25] (which generalizes [1, Theorem 3.3]) the linearity

of FVX;K is equivalent to the undistortedness of the boundary @2WC2.X;K/ !

C1.X;K/, if K 2 ¹Q;Rº. Indeed, given a cycle z 2 Z1.X;K/, we can express

it as a sum of circuits z D
P

c acc in such a way that K 3 ac � 0 for all c,

and kzk D
P

c ackck (see [25, Theorem 6 (b)], with T D ;). Suppose that

kckf;K � Kkck for some constant K � 0 and any circuit c. Then

kzkf;K �
X

c

g.c/kckf;K � K
X

c

g.c/kck D Kkzk:

Moreover, we have

Proposition 8.3. Let X be a simply connected combinatorial cell complex. Then

FVX;Q D FVX;R:
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Proof. We have to prove that FVX;Q � FVX;R, since the opposite inequality

is clear. Let 
 2 Z1.X;Z/, and let a D
P

i �i�i 2 C2.X;R/ be such that

@a D 
 . We approximate the �i with rational coefficients �0
i , in such a way

that, if a0 D
P

i �
0
i�i , then k@.a � a0/k � ". Let W be the normed subspace

of Z1.X;Q/ whose elements are Q-linear combinations of faces of the �i . Let

� WW ! C2.X;Q/ be a Q-linear map such that @�.w/ D w for all w 2 W . Since

W is finite-dimensional, � is bounded. Moreover, @.a � a0/ 2 W . Hence

@.a0 C �@.a � a0// D 


and

ka0 C �@.a � a0/k � ka0k C k�k1"

from which the conclusion follows immediately by the arbitrariness of ". �

The following lemma is stated as such in [22], but is proven in [17, Theorem

2.30] with a different notation.

Lemma 8.4. [22, Theorem 3.4] Let X be a simply connected complex such that
there is a bound on the length of attaching maps of 2-cells. If FVX;Q is bounded
by a linear function, then the 1-skeleton of X is a hyperbolic graph.

The following theorem is a slight modification of the “if part” of [22, Theorem

1.8]: we require the complex to be simply connected instead of 1-acyclic, and we

write FVX;Q instead of FVX;Z in (2).

Theorem 8.5. Let .�; � 0/ be a group-pair. Then .�; � 0/ is relatively hyperbolic if
there is a simply connected combinatorial complex X such that

(1) � acts cocompactly on X .2/;

(2) FVX;Q.k/ � Ck for every k 2 N;

(3) the stabilizers in � of edges are finite;

(4) � 0 is a set of representatives of (distinct) conjugacy classes of stabilizers of
0-cells such that each infinite stabilizer is represented. This means that there
is an injection

� 0 �! ¹ŒStab .v/�W v 2 X .0/º; �i 7�! Œ�i �

(where ŒH � denotes the conjugacy class of a subgroupH of �) whose image
contains all conjugacy classes of infinite stabilizers in � of vertices in X .0/.

Proof. Points (1) and (2) imply the hyperbolicity of the graph by Lemma 8.4.

Hence, in order to apply Bowditch’s characterization of relative hyperbolicity it

remains to prove that X .1/ is fine.
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Condition (1) in the statement implies that there is a bound on the number of

edges on the boundary of 2-cells. Moreover, conditions (1) and (3) imply that

any edge belongs to just a finite number of 2-cells (because edge-stabilizers act

cocompactly on the 2-cells adjacent to the edge).

We conclude by means of the following lemma, which is proven in [22,

Theorem 1.6 (2)]. �

Lemma 8.6. Let X be a simply connected combinatorial cell complex such that
each 1-cell is adjacent to finitely many 2-cells and there is a bound on the length
of attaching maps of 2-cells. Suppose that there is C � 0 such that

FVX;Q.k/ � Ck for all k 2 N:

Then X .1/ is fine.

Definition 8.7 ([28, Definition 2.1]). Let .�; � 0/ be a group-pair. We say that � is

finitely presented relative to � 0 if

(1) � is generated by
S

i2I �i and a finite subset A of �;

(2) the kernel of the natural projection

F.A/ � .�i2I�i / �! �

is generated – as a normal subgroup of F.A/ � .�i2I�i / – by a finite set

R � F.A/ � .�i2I�i / of relations.

In this case, the datum of hA; � 0jRi is a finite presentation of .�; � 0/.

Notation 8.8. From now on, we will assume that .�; � 0 D ¹�iºi2ID¹1;:::;nº/ is a

finitely presented group-pair, and that � is finitely generated. By a result in [28,

Proposition 2.29], it follows that the groups in � 0 are finitely generated too.

Since there exist slightly different definitions of Cayley-graph in the literature,

from now on we will rely on the following one. Let S be a (non-necessarily

symmetric) generating set of a group �. The Cayley graph G D G.�; S/ of �
with respect to S is the graph whose 0-skeleton is � and with an edge connecting

x and xs labelled by .x; s/, for any .x; s/ 2 � � S .

Notice that � acts freely and isometrically on G.�; S/ by mapping the vertex

x to 
x and the edge .x; s/ to the edge .
x; s/.

Recall that a compatible generating set S of .�; � 0/ is a generating set of �

which restricts to a generating set for any group in � 0.

Definition 8.9 ([17, relative Cayley complex]). Let G WD G.�; S/ be the Cayley

graph of �, with respect to some compatible generating set S . Consider the graph

GI constructed as follows:
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(1) .GI /.0/ D G.0/ � I ;

(2) for any i 2 ¹1; : : : ; nº D I , Gi WD G � ¹iº. For all v 2 G.0/ and 1 � i < n

there is a single edge connecting .v; i/ and .v; i C 1/.

We call the edges contained in someGi horizontal, and the other ones vertical.
By writing elements of R with the alphabet S , we can, for every i , (non-

uniquely) associate them to loops in Gi based in 1. We add �-equivariantly

2-cells to those loops and their �-translates. Let i 2 I , i < n. If ei is an

edge in Gi we have a corresponding edge eiC1 in GiC1, and two vertical edges

connecting the initial and final points of ei and eiC1. We add a rectangular 2-cell to

this quadrilateral. We denote by Cay.�; � 0/ the 2-dimensional combinatorial cell

complex obtained in this way, and call it the relative Cayley-complex of .�; � 0/

(with respect to S).

The group � naturally acts on Cay.�; � 0/.

Definition 8.10. The 2-dimensional quotient complex yX D yX.�; � 0/ is the CW-

complex obtained by collapsing to points the full subcomplexes of Cay.�; � 0/

whose vertices are contained in the same left coset of �i � ¹iº, i 2 I .

Remark 8.11. This means that, if Yi is the full subcomplex of Cay.�; � 0/ whose

vertices correspond to �i � ¹iº, then all (left) �-translates of Yi are collapsed to

points. It is easily seen that yX could be given the structure of a combinatorial

complex.

At the 0-dimensional level, we have a natural �-isomorphism �=� 0 WD
F

i2I �=�i !
yX .0/. We use it to label the vertices of yX .0/ by �=� 0. Given a

horizontal edge .x; s/ in Gi � Cay.�; � 0/, this is either collapsed to a point in
yX if s 2 �i , or is left unchanged. Hence the horizontal edges of yX are naturally

labelled by the set
F

i2I ��.Sn�i /. Notice that vertical edges are never collapsed.

The complex yX carries a natural �-action. The action on the 0-skeleton has

already been described. A cell of dimension at least 1 in yX corresponds to exactly

one cell of the same dimension in Cay.�; � 0/, hence the action of� on yX is defined

accordingly. Notice that, since the action of � on the Cayley complex is free, the

same is true for the action of � on the 1-skeleton of yX . In particular Condition (3)

of Theorem 8.5 holds.

Proposition 8.12. yX is simply connected.

Proof. Let Yi be the full subcomplex of Cay.�; � 0/whose vertices are labelled by

�i �¹iº. For all i 2 I , we add �-equivariantly 2-cells to Yi and to its �-translates,

in order to make them simply connected. LetZ be the combinatorial complex thus

obtained. This comples is homotopically equivalent to the complexZ0 obtained by

contracting the vertical edges to points and the 2-cells to edges. The complexZ0 is

simply connected by construction and Definition 8.7, henceZ is simply connected

too.
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The complex obtained by collapsing to points the simply connected full sub-

complexes of Z containing Yi and their �-translates is simply connected. More-

over, it is obviously homeomorphic to yX . �

We add �-equivariantly higher dimensional cells to yX in order to make it a

contractible combinatorial complex, that we also denote by yX , and call it the

quotient complex. Consider the exact cellular sequence

� � � �! C1. yX/ �! C0. yX/ �! R �! 0:

Recall that we have a �-isomorphism between the �-sets yX .0/ and �=� 0. There-

fore, if � is the kernel of the augmentation map R.�=� 0/! R we also have the

exact sequence

C�. yX/ �! � �! 0: (18)

By the following lemma, the sequence (18) provides a �-projective resolution

of � (i.e., all the �-modules except � are �-projective).

Lemma 8.13. Let X be a contractible CW-complex, and let � act on X through
cellular homeomorphisms. Suppose that the stabilizers in � of 1-cells are finite.
Then Ck.X/ is a �-projective module for every k � 1.

Proof. For k � 1, the stabilizer of any k-dimensional cell is finite. By (arbitrarily)

choosing an orientation for every k-cell of X , we get a basis of Ck.X/. Then we

conclude by applying Lemma 2.2 to such a basis. �

We are now ready to prove Theorem 1.1 (b). Most of the proof follows almost

verbatim [26, Theorem 57]. We note however that the existence of a combinatorial

isoperimetric function required in the statement of Theorem 57 is never actually

exploited in its proof.

Proof. We will prove that yX satisfies conditions (1), . . . , (4) of Theorem 8.5.

Condition (4) is obvious. Since yX .2/ is a quotient of the relative Cayley complex,

the �-action on it is obviously cocompact, whence (1). Condition (3) was already

proved in Remark 8.11.

Now, let V WD .B1. yX/I k � kf /, where B1. yX/ � C1. yX/ is the set of boundaries

and k � kf is the filling norm

kckf WD inf¹kakW a 2 C2. yX/; @a D cº:

This is actually a norm (and not just a semi-norm) because, by Condition (1), the

boundary map @2WC2. yX/! C1. yX/ is bounded, with respect to the `1-norms.

We have already seen that Strel
� .�; �

0/ and C�. yX/ provide �-projective reso-

lutions of �. Hence by Lemma 2.6 there are, up to (non-bounded) �-homotopy,

unique chain maps

'�WStrel
� .�; �

0/ �! C�. yX/;  �WC�. yX/ �! Strel
� .�; �

0/
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that extend the identity on �. Put

u WD @2WC2. yX/ �! V:

The cochain u is a cocycle. Since  2 ı '2 induces the identity in ordinary

cohomology, there is v 2 C 1.X; V / such that

u D  2.'2.u//C ıv:

From the surjectivity hypothesis we get

'2.u/ D u0 C ıv0;

for some bounded cocycle u0 2 St2rel.�; �
0IV / and v0 2 C 1rel.�; �

0/. Let b 2 C1. yX/

be a cycle, and let a 2 C2. yX/ be a filling of b. Then

b D @a D hu; ai D h. 2 ı '2/.u/C ıv; ai D h. 2 ı '2/.u/; ai C hv; bi: (19)

By Corollary 2.10 we have

h. 2 ı '2/.u/; ai D h'2.u/;  2.a/i

D h'2.u/; Œy; @. 2.a//�reli

D h'2.u/; Œy;  1.b/�reli

D hu0 C ıv0; Œy;  1.b/�reli

D hu0; Œy;  1.b/�reli C hv
0; @Œy;  1.b/�reli

D hu0; Œy;  1.b/�reli C hv
0;  1.b/i

D hu0; Œy;  1.b/�reli C h 
1.v0/; bi:

Summarizing,

b D hu0; Œy;  1.b/�reli C h 
1.v0/C v; bi:

Hence

jbjf � jhu
0; Œy;  1.b/�relijf C jh 

1.v0/C v; bijf

� ju0j1kŒy;  1.b/�relk C j 
1.v0/C vj1kbk

� 3ju0j1k 1.b/k C j 
1.v0/C vj1kbk

� .3ju0j1j 1j1 C j 
1.v0/C vj1/kbk:

Hence it remains to prove that .3ju0j1j 1j1 C j 
1.v0/C vj1/ is bounded.

The cocycle u0 is bounded by definition. Moreover  1WC1. yX/ ! Strel
1 .�; �

0/

and  1.v0/ C vWC1. yX/ ! V are �-equivariant, hence also bounded by the

cocompactness of the action of � over yX .2/.
It follows that @WC2.X;R/! C1.X;R/ is undistorted, hence FVX;R D FVX;Q

is linearly bounded. �
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Remark 8.14. The proof of part (b) of Theorem 1.1 could be adapted, as in [26],

by weakening the hypotheses in the statement by requiring the surjectivity only for

Banach coefficients (that is, Banach spaces equipped with an isometric �-action).

8.1. Addendum I: the relative cone of [26]. We recall the definition and prop-

erties of the relative cone given in [26, 10.1,. . . , 10.5].

Consider the (non-linear) map ˆWSt0.�/! St1.�/,

ˆ.c/ WD
1

P

x2I� ˛
C
x

X

x;y2I�

˛�
x ˛

C
y Œx; y�;

where c 2 St0 is written as c D
P

x ˛
C
x x �

P

x ˛
�
x x with all the ˛C

x and ˛�
x

non-negative and, for any x 2 I�, ˛C
x D 0 or ˛�

x D 0. The following fact is

immediate.

Proposition 8.15. For every c 2 St0, kˆ.c/k � kck. If c is contained in the kernel
of the map St0 ! R, then

@ˆ.c/ D c: (20)

Definition 8.16. [26, The absolute cone] Fix y 2 I� and k � 0. The k-dimen-
sional cone (associated to y) is the map Œy; ��WStk ! StkC1 given by

Œy; .
0; : : : ; 
k/� WD .y; 
0; : : : ; 
k/ for all 
0; : : : ; 
k 2 I�

and extended over the whole Stk by linearity.

It is trivialy seen that Œy; �� is a linear map of norm 1 for every k. Moreover,

@Œy; z� D z; (21)

for any k-dimensional cycle z, k � 0.

Let pr�WSt� ! Strel
� be the projection, and let j�WStrel

� ! St� be the obvious

right inverse of pr�. This map has norm 1. For any left coset s 2 �=� 0 and a 2 St�,

let @s.a/ be the restriction of @a to s.

Definition 8.17. [26, The relative cone] Fix y 2 I�. The 1-dimensional relative
cone (associated to y) is the (non-linear!) map

Œy; ��relWStrel
1 �! Strel

2 ;

Œy; b�rel WD pr2

h

y; j.b/�
X

s2�=�0

ˆŒ@s.j.b//�
i

for all b 2 Strel
1 .�/:
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We prove Proposition 2.9. Let b 2 Strel
1 .

kŒy; b�relk D







 pr
h

y; j.b/ �
X

s2�=�0

ˆŒ@s.j.b//�
i








�









h

y; j.b/ �
X

s2�=�0

ˆŒ@s.j.b//�
i








D









h

j.b/ �
X

s2�=�0

ˆŒ@s.j.b//�
i









� kj.b/k C
X

s2�=�0

kˆŒ@s.j.b//�k

� kbk C
X

s2�=�0

k@s.j.b//�k

� kbk C









X

s2�=�0

@s.j.b//�









D kbk C k@.j.b//�k

� kbk C 2kj.b/k

� kbk C 2kbk

D 3kbk:

Now, let b 2 Strel
1 be a cycle with respect to the augmentation map

Strel
1 �! �; pr2.x; y/ 7�! Œy� � Œx�

(where Œ�� refers to the class in �=� 0). We prove that

@relŒy; b�rel D b: (22)

Write

b D
X

i

�i Œxi ; yi �

(if Œxi ; yi � … �
0 we will identify Œxi ; yi � and pr.Œxi ; yi �/). By hypothesis,

X

i

�i.Œyi � � Œxi �/ D 0 2 � � R.�=� 0/:

Equivalently, for any s 2 �=� 0,
P

yi 2s �i �
P

xj 2s �j D 0. Hence, @sj.b/ D
P

yi 2s �iyi �
P

xj 2s �jxj is a cycle with respect to the augmentation map

St0.�; �
0/! R! 0. Therefore we get

@
X

s2�=�0

ˆ.@s.j.b/// D
X

s2�=�0

@ˆ.@s.j.b/// D
X

s2�=�0

@s.j.b//;
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because of 20. Moreover

@relŒy; b�rel WD @
rel pr2

h

y; j.b/�
X

s2�=�0

ˆŒ@s.j.b//�
i

D pr2 @
h

y; j.b/�
X

s2�=�0

ˆŒ@s.j.b//�
i

D pr2

�

j.b/ �
X

s2�=�0

ˆŒ@s.j.b//�
�

D b

because ˆŒ@s.j.b//� 2 St02 for every s 2 �=� 0.

8.2. Addendum II: coincidence between Mineyev–Yaman and Blank defini-

tions of relative bounded cohomology. We prove that Blank’s definition of rel-

ative bounded cohomology for pairs of groupoids, when restricted to group-pairs,

coincides with the one of Mineyev and Yaman, up to isometry.

First we briefly sketch Blank’s definition of relative bounded cohomology for

groupoids. For more details, see [5, Chapter 3]. If G is a groupoid, we write

“g 2 G” if g 2 Hom.e; f /, i.e. if g is a morphism between two objects e and

f of G. In that case we also put s.g/ D e, t .g/ D b. A bounded G-module V
is a set of normed vector spaces = ¹Veºe2obj.G/ which carries a bounded groupoid

G-action. This means that to any g 2 G an operator �g WVs.e/ ! Vt.e/ is assigned

whose norm is bounded independently of g 2 G, and the composition rule

�gıh D �g ı �h is respected when defined (our definition of bounded groupoid

module is slightly more general than that of normedG-module in [5, Chapter 3.3.1]

in that we consider actions by uniformly bounded operators on normed spaces,

instead of isometries on Banach spaces). If V andW are boundedG-modules, by

Homb
G.V;W / we mean the space of bounded maps .feWVe ! We/e2obj.G/ such

that �g ı fs.g/ D ft.g/ ı �g and kfek � L for some L independent of e 2 obj.G/.

To G we associate the Bar resolution ¹Cn.G/ºn2N defined as follows. For n 2
N put Cn.G/ WD ¹Cn.G/ºe2obj.G/, where .Ck.G//e is the normed space generated

by the n C 1-tuples .g0; : : : ; gn/ such that s.g0/ D e and s.gj / D t .gj�1/, for

1 � j � n, with the corresponding `1-norm. The module Cn.G/ is equipped with

the G-action

g 7�! �g WCs.e/.G/ �! Ct.e/.G/; �g.g0; g1; : : : ; gn/ WD .gg0; g1; : : : ; gn/:

For n � 1 we define the boundary map Cn.G/! Cn�1.G/ by the formula

@.g0; : : : ; gn/ WD

n�1
X

jD0

.�1/j .g0; : : : ; gi � giC1; gn/C .�1/
n.g0; : : : ; gn�1/:
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We also have an augmentation

C0.G/ �! RG; g 7�! t .g/ � 1;

where RG is the groupoid ¹Reºe2obj.G/, where G acts on RG by mapping g to the

map IdRWGs.e/ ! Gt.e/ (see [5, Definition 3.2.4]). Notice that we have equipped

Ck.G/ with a structure of bounded G-module, and that the boundary maps are

G-linear.

If .G; A/ is a pair of groupoids (i.e. if A is a subgroupoid of G) we have an

inclusion of complexes C�.A/ ,! C�.G/. The relative bounded cohomology of
.G; A/ with coefficients in V is then given by the cocomplex

C
�
b .G; AIV / WD ¹f 2 Homb

G.C�.G/; V /W fejC�.A/e D 0 for all e 2 obj.G/º

and is denoted by H
�
b
.G; AIV / (see [5, Definition 3.5.1(iii), (iv)]).

Let .�; � 0D¹�iºi2I / be a group-pair. Let �I be the groupoid with obj.G/DI ,

and Hom.i; j / D G, for all i; j 2 obj.G/. If V is a bounded �-module,

then VI denotes the bounded �I -module .Vi /i2obj.�I / with �I -action given by

�g .v/ D gv, where v 2 Vs.g/ and gv 2 Vt.g/. Let
F

i2I �i be the groupoid with

obj
� F

i2I �i
�

D I and Hom.i; j / D G if i D j , and Hom.i; j / D ; otherwise

(see [5, Definitions 3.1.10, 3.5.11, Examples 3.1.3(iii)]). The relative bounded
cohomology of the group-pair .�; � 0/ with coefficients in V is defined to be the

relative bounded cohomology of the corresponding groupoid-pair
�

�I ;
F

i2I �i
�

,

i.e.

H
�
b .�; �

0IV / WD H
�
b

�

�I ;
G

i2I

�i IV
�

(see [5, Definition 3.5.12]).

Proposition 8.18. Let .�; � 0/ be a group-pair, and let V be a bounded �-module.
There is a natural isometric chain isomorphism C

�
b
.�; � 0IV /! St�b.�; �

0IV /.

Proof. We see an element in Strel k
.b/ .�; �

0IV / WD Hom�
.b/.Strel

k ; V / as a �-linear

map f WR.� � I /kC1 ! V which is null on St 0
k
, i.e. on tuples .x0; : : : ; xn/ for

which there exists i 2 I such that xj 2 � � ¹iº for all 0 � j � k and xj 2 x0�i
for every 1 � j � k. If i; j 2 I and g 2 �, we write gi!j for the corresponding

element in Hom.i; j /, and gi for the corresponding element in � � ¹iº � I�.

Fix N{ 2 I and consider the maps

'k WCkb .�I IV / �! Stk.�; � 0IV /  kWStkrel.�; �
0IV / �! C

k
b .�; �

0IV /

defined as follows: if f 2 C
k
b
.�; � 0IV / we set

'k.f / .g
i0
0 ; : : : ; g

in
n / WD f .g

i0!N{
0 ; .g�1

0 g1/
i1!i0; : : : ; .g�1

n�1gn/
in!in�1/:
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If h 2 Stkrel.�; �
0IV / we set

 k.h/ .g
i0!N{
0 ; g

i1!i0
1 ; : : : ; gin!in�1

n / D h.g
i0
0 ; .g0g1/

i1; : : : .g0 � � �gn/
in/:

The computations that show that '� and  � are mutually inverse chain maps

are similar to the ones that prove that the bar-resolution and the homogeneous

bar-resolution are isomorphic. Indeed, they resemble dual versions of the ones

in [18, Chapter VI 13 (b)]. We simply note that those maps are well-defined,

i.e. the restrictions of 'k.f / on St 0
k

and of  k.h/ on R
�F

i �i
�nC1

are null.

Indeed, if gi0; : : : ; g
i
n 2 .�i � ¹iº/

nC1, then .gi!N{
0 ; .g�1

0 g1/
i!i ; : : : ; .g�1

n gn/
i!i/

is an .nC 1/-tuple of elements in a �-translate of �i � Hom.i; i/, and therefore

f is null on it. Conversely, if .gi!i
0 ; gi!i

1 ; : : : ; gi!i
n / is a tuple of elements in

�i � Hom.i; i/, then .gi0; .g0g1/
i ; : : : .g0 � � �gn/

i / 2 .�i �¹iº/
nC1, hence h is null

over it. �
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