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Abstract. It is well known that there is a faithful representation of braid groups on

automorphism groups of free groups, and it is also well known that free groups are bi-

orderable. We investigate which n-strand braids give rise to automorphisms which preserve

some bi-ordering of the free group Fn of rank n. As a consequence of our work we find

that of the two minimal volume hyperbolic 2-cusped orientable 3-manifolds, one has bi-

orderable fundamental group whereas the other does not. We prove a similar result for the 1-

cusped case, and have further results for more cusps. In addition, we study pseudo-Anosov

braids and find that typically those with minimal dilatation are not order-preserving.
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1. Introduction

If < is a strict total ordering of the elements of a group G such that g < h implies

fg < f h for all f; g; h 2 G, we call .G;</ a left-ordered group. If the left-

ordering< is also invariant under right-multiplication, we call .G;</ a bi-ordered

group (sometimes known in the literature simply as “ordered” group). If a group

admits such an ordering it is said to be left- or bi-orderable. It is easy to see

that a group is left-orderable if and only if it is right-orderable. If .G;</ is a

bi-ordered group, then < is invariant under conjugation: g < h if and only if

fgf �1 < f hf �1 for all f; g; h 2 G. Nontrivial examples of bi-orderable groups

are the free groups Fn of rank n, as discussed in Appendix A.

An automorphism � of a group G is said to preserve an ordering< of G if for

every f; g 2 G we have f < g H) �.f / < �.g/; we also say < is �-invariant.

If �WG ! G preserves an ordering < of G, then the nth power �n preserves the

ordering < of G for each integer n. We note that if �n preserves an ordering it

does not necessarily follow that � does.

E. Artin [2, 3] observed that each n-strand braid corresponds to an automor-

phism of Fn. This paper concerns the question of which braids give rise to auto-

morphisms which preserve some bi-ordering of Fn. In turn this is related to the

orderability of the fundamental group of the complement of certain links in S3,

namely the braid closure together with its axis, which we call a braided link. We

pay special attention to pseudo-Anosov mapping classes and their stretch factors

(dilatations), and cusped hyperbolic 3-manifolds of small volume.

This paper is organized as follows: Section 2 reviews the relation among

braids, mapping class groups, free group automorphisms and certain links in the

3-sphere S3. In Section 3 we recall basic properties of orderable groups, with

explicit bi-ordering of free groups further described in Appendix A. The study

of order-preserving braids and their relation to bi-ordering the group of the corre-

sponding braided links is initiated in Section 4. Applications to cusped hyperbolic

3-manifolds of minimal volume are considered in Section 5. In Section 6 we give

many examples of non-order-preserving braids, including pseudo-Anosov braids

with minimal dilation as well as large dilatations. We also find a family of pretzel

links whose fundamental groups can not be bi-orderable. Appendix B is devoted

to a proof that the fundamental group of the Whitehead link complement is bi-

orderable.

Acknowledgment. We thank George Bergman, Tetsuya Ito, and Thomas Koberda

for helpful conversations and comments.
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2. Braids and Aut.Fn/

Let Bn be the n-strand braid group, which has the well-known presentation with

generators �1; : : : ; �n�1 subject to the relations �i�j D �j�i if ji � j j > 1 and

�j�i�j D �i�j�i if ji � j j D 1. See Figure 1(1)(2).

2.1. Mapping classes. Let Dn denote the disk with n punctures, which we

may picture as equally spaced along a diameter of the disk and labelled 1 to n.

Mod.Dn/ denotes the mapping class group ofDn and Mod.Dn; @D/ the mapping

class group of homeomorphisms fixed on the boundary pointwise. There is a well-

known isomorphism

x�WBn �! Mod.Dn; @D/

which sends �i to a half twist hi which interchanges the punctures labelled i and

i C 1, see Figure 1(3). The kernel of the obvious map Mod.Dn; @D/!Mod.Dn/

is infinite cyclic, generated by a Dehn twist along a simple closed curve parallel to

the boundary of the disk. Using the isomorphism x�WBn !Mod.Dn; @D/ together

with this obvious map, we have the surjective homomorphism

�WBn �!Mod.Dn/

whose kernel is generated by the full twist �2
n 2 Bn, where �n 2 Bn is the half

twist. (See Section 4.1 for the definition of �n.)

Elements of Mod.Dn/ are classified into three types: periodic, reducible and

pseudo-Anosov, called Nielsen–Thurston types [38]. If two given mapping classes

are conjugate to each other, then their Nielsen–Thurston types are the same. We

say that ˇ 2 Bn is periodic (resp. reducible, pseudo-Anosov) if its mapping class

�.ˇ/ 2Mod.Dn/ is of the corresponding type.

Figure 1. (1) �i 2 Bn. (2) �1�
�1
2
2 B3. (3) hi 2 Mod.Dn; @D/.
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2.2. Free group automorphisms. Let ˇ be an n-strand braid. Let �WDn! Dn

be a representative of the mapping class x�.ˇ/ 2 Mod.Dn; @D/. Obviously �

represents a mapping class �.ˇ/ 2 Mod.Dn/. If one passes to the induced map

�� D ��pW�1.Dn; p/! �1.Dn; p/ of the fundamental group ofDn, using a point

p on the boundary as basepoint, this defines the Artin representation

Bn �! Aut.Fn/

which can be defined on the generators as follows, where x1; x2 : : : ; xn are the

free generators of the free group Fn of rank n and Aut.Fn/ is the group of

automorphisms of Fn. The generator �i induces the automorphism

xi 7�! xixiC1x
�1
i ; xiC1 7�! xi ; xj 7�! xj if j ¤ i; i C 1: (2.1)

See Figure 2. It is known that the Artin representation is faithful. Its image is the

subgroup of automorphisms of Fn that take each xi to a conjugation of some xj

and which take the product x1x2 : : : xn to itself.

Figure 2. A basepoint � of �1.Dn/ lies on @D. (1) Generators xi ’s of Fn. (2) �i WFn ! Fn,

where x0 WD the image of x under �i and Nx WD x�1.

We note that if �.ˇ/ D �.ˇ0/ 2 Mod.Dn/ for n-strand braids ˇ and ˇ0,

then ˇ0 D ˇ�2k
n for some integer k. The images of ˇ and ˇ�2k

n under the Artin

representation are the same up to an inner automorphism

x 7�! .x1x2 : : : xn/
kx.x1x2 : : : xn/

�k:

By abuse of notation, from now on we will use the same symbol ˇ for the

braid, the mapping class �.ˇ/ 2 Mod.Dn/ and the corresponding automorphism

of Fn.

An automorphism � of Fn D hx1; : : : ; xni is said to be symmetric if for each

generator xj , the image �.xj / is a conjugate of some xk . Every automorphism

on Fn corresponding to the action of a braid on Fn is symmetric. A symmetric

automorphism �WFn ! Fn is pure if � sends each xi to a conjugate of itself. Pure

braids (see Section 4.2) induce symmetric and pure automorphisms.



Braids, orderings, and minimal volume cusped hyperbolic 3-manifolds 965

Since braid words, like paths, are typically read from left to right, we adopt

the convention that braids act on Fn on the right. If x 2 Fn, we denote the action

of ˇ 2 Bn by x ! xˇ , and if ˇ;  2 Bn we have the identity xˇ D .xˇ / .

Definition 2.1. An n-strand braid ˇ is said to be order-preserving if there exists

some bi-ordering < of Fn preserved by the automorphism x ! xˇ of Fn.

One sees that ˇ 2 Bn is order-preserving if and only if ˇ�2k
n is order-

preserving for some (hence all) k 2 Z (Corollary 4.2).

As discussed below, there is some ambiguity in defining the action of Bn on

Fn, depending on choices of a representative of the mapping class ˇ 2 Mod.Dn/,

basepoint in Dn and generators of �1.Dn/. As we’ll see, this ambiguity is

irrelevant in the question of whether a braid ˇ is order-preserving.

2.3. Basepoints. It is sometimes convenient to use a basepoint and genera-

tors different from that used in the Artin representation. Specifically, we con-

sider a representative �WDn ! Dn of a mapping class in Mod.Dn; @D/ and

we may assume that p; q 2 Dn are two different points (not necessarily on

the boundary of the disk), each fixed by �. Then we have induced maps

��pW�1.Dn; p/ ! �1.Dn; p/ and ��q W�1.Dn; q/ ! �1.Dn; q/. Of course,

�1.Dn; p/ and �1.Dn; q/ are isomorphic, but not canonically. We can construct

an isomorphism by choosing a path ` in Dn from q to p which then defines an

isomorphism hW�1.Dn; p/! �1.Dn; q/ sending the class of a loop ˛ inDn based

at p to the class of the loop `˛`�1 based at q. Consider the diagram

�1.Dn; p/ �1.Dn; p/

�1.Dn; q/ �1.Dn; q/

 ! h

 !��p

 ! h

 !��q

which is not necessarily commutative. However, we leave it to the reader to check

the following result.

Proposition 2.2. The above diagram commutes up to conjugation. Specifically,

h ı ��p equals ��q ı h followed by a conjugation in �1.Dn; q/, the conjugating

element being the class of the loop `.� ı `/�1 in �1.Dn; q/.

Corollary 2.3. The map ��p preserves a bi-ordering of �1.Dn; p/ if and only if

��q preserves a bi-ordering of �1.Dn; q/:

Proof. If ��p preserves the bi-ordering <p of �1.Dn; p/, define a bi-ordering

<q of �1.Dn; q/ by the formula f <q g () h�1.f / <p h�1.g/ for f; g 2
�1.Dn; q/. Then one checks that f <q g H) ��q.f / <q ��q.g/ using conjuga-

tion invariance of bi-orderings. The converse is proved similarly. �
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If one passes from Mod.Dn; @D/ to Mod.Dn/, there is a further ambiguity

regarding the action of a braid on �1.Dn/. However, this ambiguity corresponds to

conjugation by a power of�2
n, so again it is irrelevant to the question of preserving

a bi-ordering. More concretely, given an n-strand braid ˇ, let �WDn! Dn be any

representative of the mapping class ˇ 2 Mod.Dn/. We take any basepoint q of

Dn possibly �.q/ ¤ q. By choosing a path ` in Dn from q to �.q/, we have the

induced map

��q W�1.Dn; q/ �! �1.Dn; q/ (2.2)

which sends the class of a loop ˛ in Dn based at q to the class of the loop `˛`�1

based at the same point. By using Corollary 2.3, one sees thatˇ is order-preserving

if and only if ��q W�1.Dn; q/! �.Dn; q/ preserves a bi-ordering of �1.Dn; q/.

By abuse of notation again, we denote the induced map ��q by ˇ, when q is

specified.

These remarks show that if one allows different choices of basepoint, say a

basepoint q, the action of Bn on Fn should really be regarded as a representation

Bn �! Out.�1.Dn; q// Š Out.Fn/;

the group of outer automorphisms. Recall that Out.G/ D Aut.G/=Inn.G/, where

Inn.G/ is the (normal) subgroup of inner automorphisms of a group G.

2.4. Mapping tori and braided links. For a braid ˇ 2 Bn, we denote the

mapping torus by

Tˇ D Dn � Œ0; 1�=.y; 1/ � .�.y/; 0/;

where �WDn ! Dn is a representative of ˇ 2 Mod.Dn/. By the hyperbolization

theorem of Thurston [37], Tˇ is hyperbolic if and only if ˇ is pseudo-Anosov.

The closure Ǒ of a braid ˇ is a knot or link in the 3-sphere S3 and the braided

link, denote by br.ˇ/, is the closure Ǒ, together with the braid axis A, which is an

unknotted curve that Ǒ runs around in a monotone manner: br.ˇ/ D Ǒ [ A. See

Figure 3(1)(2). Whereas all links can be realized as Ǒ, this is not true for br.ˇ/,

as each component of Ǒ has nonzero linking number with the braid axis A. As an

example the Whitehead link considered in Appendix B is not a braided link.

We see that Tˇ is homeomorphic with the complement of the braid closure
Ǒ in the solid torus D2 � S1. The interior Int.Tˇ / can be identified with the

complement of Ǒ [ A in S3, so we have the following.

Lemma 2.4. Int.Tˇ / is homeomorphic to S3 n br.ˇ/.

Of course the fundamental group of Int.Tˇ / is isomorphic with that of Tˇ ,

which in turn is the semidirect product

�1.S
3 n br.ˇ// Š �1.Tˇ / Š Fn Ìˇ Z:
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Figure 3. (1) Closure Ǒ. (2) br.ˇ/ D Ǒ [ A. (3) br.�1�2/ is equivalent to the .6; 2/-torus

link.

There is a (split) exact sequence

1 �! Fn �! �1.Tˇ / �! Z D hti �! 1:

One may consider Fn Ìˇ Z as the set of ordered pairs

Fn Ìˇ Z D ¹.f; tp/ j f 2 Fn; p 2 Zº;

with the multiplication given by

.f; tp/.g; tq/ D .f tpgt�p; tpCq/; where tgt�1 D gˇ :

3. Orderable groups

In this section we outline a few well-known facts about orderable groups. For

more details, see [11, 6]. Further details regarding bi-ordering of Fn may be found

in Appendix A.

Proposition 3.1. A group G is left-orderable if and only if there exists a sub-

semigroup P � G such that for every g 2 G exactly one of g D 1, g 2 P or

g�1 2 P holds.

Indeed such aP defines a left-ordering< D <P by the rule g<h() g�1h2P.

Conversely, a left-ordering < defines a positive cone P D P< WD ¹g 2 G j 1 < gº
satisfying the conditions of Proposition 3.1.

Proposition 3.2. A group G is bi-orderable if and only if it possesses P � G as

in Proposition 3.1, and in addition g�1Pg D P for all g 2 G.

We note that a left- or bi-ordering of G is preserved by an automorphism

�WG ! G if and only if �.P/ D P, where P is the positive cone of the ordering.
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Proposition 3.3. Suppose 1 ! K
i
,! G

p! H ! 1 is an exact sequence of

groups. If K and H are left-ordered with positive cones PK and PH respectively,

then G is left-orderable using the positive cone PG WD i.PK/ [ p�1.PH /.

This is sometimes called the lexicographic order ofG, considered as an exten-

sion.

Proposition 3.4. In Proposition 3.3, ifK andH are bi-ordered, then the formula

PG D i.PK/[p�1.PH / defines a bi-ordering ofG if and only if the bi-ordering of

K is respected under conjugation by elements of G; equivalently g�1PKg D PK

for all g 2 G.

A subset S of a left-ordered group .G;</ is said to be convex if for all s; s0 2 S
and g 2 G satisfying s < g < s0, we have g 2 S .

Proposition 3.5. If 1! K
i! G

p! H ! 1 is an exact sequence of groups with

.G;</ a left-ordered group and K a convex subgroup of .G;</, then there is a

left-ordering� ofH in which 1 � h if and only if some (and hence every) element

g 2 p�1.h/ satisfies 1 < g. If .G;</ is a bi-ordered group, so is .H;�/.

Being bi-orderable is a much stronger property than being left-orderable. An

intermediate property of groups is to be locally-indicable, which means that every

finitely-generated nontrivial subgroup has the infinite cyclic groupZ as a quotient.

Proposition 3.6. For a group, the following implications hold: bi-orderable

H) locally-indicable H) left-orderable H) torsion-free. None of these

implications is reversible.

Proposition 3.7 ([7]). If L is a knot or link in S3, then its group �1.S
3 n L/ is

locally indicable and therefore left-orderable.

Certain knot groups and link groups are bi-orderable, and this is a particular

focus of this paper. For example, torus knot groups are not bi-orderable, but the

figure-eight knot 41 has bi-orderable group [33], and we shall see that the same is

true of the Whitehead link and many links constructed from braids as above. One

of the reasons bi-orderability of knot groups is of interest has to do with surgery

and L-spaces, which were introduced by Ozsváth and Szabó [32] and include all

3-manifolds with finite fundamental group.

Theorem 3.8 ([10]). If K is a knot in S3 for which �1.S
3 n K/ is bi-orderable,

then surgery on K cannot produce an L-space.
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We note that this is not true in general for links. As we shall see in Theorem B.1,

the Whitehead link has bi-orderable fundamental group, but one can construct lens

spaces by certain surgeries on the link.

Consider a group K, an automorphism �WK ! K and the semidirect product

G D K Ì� Z. Recall G Š ¹.k; tp/ j k 2 K; p 2 Zº with multiplication given by

.k1; t
p/.k2; t

q/ D .k1t
pk2t

�p; tpCq/ D .k1�
p.k2/; t

pCq/;

where tkt�1 D �.k/.

Proposition 3.9. SupposeK is bi-orderable and �WK ! K is an automorphism.

Then G D K Ì� Z is bi-orderable if and only if there exists a bi-ordering of K

which is preserved by �.

Proof. Suppose that G is bi-ordered by <. Since bi-orderings are invariant under

conjugation, the equation �.k/ D tkt�1 implies that <, restricted to K, is �-

invariant. For the converse, suppose � preserves a bi-ordering � of K. Then we

use the lexicographic ordering defined by .k1; t
p/ < .k2; t

q/ if and only if p < q

as integers or p D q and k1 � k2, to order G. It is easily checked that this is a bi-

ordering using the identity tpkt�p D �p.k/ and the assumption that � preserves

the ordering �. �

Let † be an orientable surface. Then �1.†/ is bi-orderable, see [35]. Let

Mod.†/ be the mapping class group of †, let f D Œ�� 2 Mod.†/ and assume

�.p/ D p for some p 2 †. Since the fundamental group of the mapping torus Tf

of f is the semidirect product �1.†/ Ì��
Z, where ��W�1.†; p/ ! �1.†; p/ is

an automorphism induced from f , we have the following from Proposition 3.9.

Proposition 3.10. �1.Tf / is bi-orderable if and only if there exists a bi-ordering

of �1.†; p/ which is preserved by ��W�1.†; p/ ! �1.†; p/, where � is a

representative of the mapping class f .

Let �WG ! G be an automorphism of G. If �.x/ D x for x 2 G, then we say

that the orbit of x (under �) is trivial.

Proposition 3.11. LetG be a left-orderable group. If an automorphism �WG ! G

preserves a left-ordering < of G, then � cannot have any nontrivial finite orbits.

Proof. If the orbit of x 2 G is nontrivial, we may assume x < �.x/. Then

�.x/ < �2.x/, and by transitivity and induction �m.x/ < �n.x/wheneverm < n.

and therefore the orbit of x, ¹�n.x/ j n 2 Zº, is infinite. �

Proposition 3.11 says that if �WG ! G has a nontrivial finite orbit, then � does

not preserve any left-ordering of G.
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Consider an automorphism �WFn ! Fn of a free group. The following two

criteria for � being order-preserving (or not) will be useful; they involve the

abelianization �ab WZn ! Z
n and its eigenvalues, which are, a priori, n complex

numbers, possibly with multiplicity.

Theorem 3.12 ([33]). Let �WFn ! Fn be an automorphism. If every eigenvalue

of �ab WZn ! Z
n is real and positive, then there is a bi-ordering of Fn which is

�-invariant.

Theorem 3.13 ([10]). If there exists a bi-ordering of Fn which is �-invariant, then

�ab has at least one real and positive eigenvalue.

This is useful in showing that certain fibred 3-manifolds have fundamental

groups which are not bi-orderable. However, we note that in the case of braids

it does not apply in that way, for if � is an automorphism of Fn induced by a

braid ˇ 2 Bn, or more generally a symmetric automorphism, then �ab is simply

a permutation of the generators of Zn and therefore has at least one eigenvalue

equal to one.

We note that Theorem 3.12 cannot have a full converse. It has been observed

in [28] that for n � 3 there exist automorphisms of Fn which preserve a bi-

ordering of Fn, but whose eigenvalues are precisely the nth roots of unity in C.

Such examples appear in the discussion in Section 4.6.

In Appendix A a certain class of bi-orderings of the free group Fn, called

standard orderings is defined, using the lower central series.

Proposition 3.14. If �WFn ! Fn is a non-pure symmetric automorphism, then �

cannot preserve any standard bi-ordering of Fn.

Proof. Assume �WFn ! Fn is not pure, but preserves a standard bi-ordering < of

Fn. Then �ab is a nontrivial permutation of the generators of the abelianizationZ
n.

By Proposition A.1, the commutator subgroup ŒFn; Fn� is convex relative to<, and

thereforeFn=ŒFn; Fn� Š Z
n inherits a bi-ordering<1 according to Proposition 3.5.

Since � preserves<, one easily checks that �ab preserves the order<1 of Zn. But,

� being non-pure symmetric implies that �ab is a nontrivial permutation of the

generators of Zn which are the images of the xi . By Proposition 3.11, �ab cannot

preserve any ordering of Zn, a contradiction. �

Proposition 3.15. If �WFn ! Fn is a pure symmetric automorphism, then � is

order-preserving. In fact, it preserves every standard ordering of Fn.

Proof. A pure symmetric automorphism �WFn ! Fn induces the identity map

�ab D idWZn ! Z
n, so Proposition A.3 applies. �

For any symmetric automorphism �WFn ! Fn, there exists k � 1 so that �k

is pure symmetric. By Proposition 3.15, we have the following.
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Corollary 3.16. If �WFn ! Fn is a symmetric automorphism, then there exists

k � 1 such that �k is order-preserving.

4. Order-preserving braids

4.1. Basic properties. From Lemma 2.4 and Proposition 3.10 we have the fol-

lowing.

Proposition 4.1. A braid ˇ 2 Bn is order-preserving if and only if �1.S
3 n br.ˇ//

is bi-orderable.

Let ın be the n-strand braid

ın D �1�2 : : : �n�1

and let � D �n 2 Bn be the half twist

� D .�1�2 : : : �n�1/.�1�2 : : : �n�2/ : : : .�1�2/�1:

The full twist �2 is written by �2 D ın
n D .ın�1/

n�1, which means that ın and

ın�1 are roots of �2. We note that �2 commutes with all n-strand braids and in

fact generates the centre of Bn when n � 3, see [24, Theorem 1.24].

Corollary 4.2. A braid ˇ 2 Bn is order-preserving if and only if ˇ�2k is order-

preserving for some (hence all) k 2 Z: Moreover, they preserve exactly the same

bi-orderings of Fn.

Proof. This follows since S3 n br.ˇ/ and S3 n br.ˇ�2k/ are homeomorphic. By

using the disk twist as we shall define in Section 4.4, we see that kth power of the

disk twist tk about the disk bounded by the braid axis A of ˇ sends the exterior

E.br.ˇ// of the link br.ˇ/ to the exterior E.br.ˇ�2k//. An alternative argument is

that �2 acts by conjugation of Fn, so it preserves every bi-order of Fn. �

As noted by Garside [16] every n-strand braid has an expression ˇ�2k where

ˇ is a Garside positive braid word, meaning that ˇ can be written as a word in

the �i generators without negative exponents. Thus a question of a braid being

order-preserving can always be reduced to the case of positive braids. Notice that

changing a braid ˇ by conjugation does not change the link br.ˇ/ up to isotopy,

so we have:

Corollary 4.3. Let ˛; ˇ 2 Bn. Then ˇ is order-preserving if and only if ˛ˇ˛�1 is

order-preserving.

The very simplest of nontrivial braids are the generators �i .
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Proposition 4.4. The generators �i 2 Bn are not order-preserving.

Proof. Suppose that �i preserves a bi-order < of Fn. We may assume xi < xiC1.

Then x
�i

i < x
�i

iC1, or in other words xixiC1x
�1
i < xi , see (2.1). But conjugation

invariance of the ordering then yields xiC1 < xi , which is a contradiction.

An alternative argument is as follows. We take a basepoint p1 in the interior

of Dn. There exists a homeomorphism �WDn ! Dn which represents �i 2
Mod.Dn/ such that the induced map ��W�1.Dn; p1/ ! �1.Dn; p1/ gives rise

to the following automorphism on Fn D hx1; : : : ; xni:

�i W xi 7�! xiC1; xiC1 7�! xiC1xix
�1
iC1; xj 7�! xj if j ¤ i; i C 1; (4.1)

see Figure 4(2). (In the figures, we denote by x0, the image of x 2 Fn under

the automorphism of Fn, and denote by Nx, the inverse x�1 of x.) Suppose that

�i preserves a bi-order < of Fn. We may assume xi < xiC1. Then xiC1 <

xiC1xix
�1
iC1 since �i preserves <. This implies that xiC1 < xi by conjugation

invariance of the bi-ordering. This is a contradiction. �

Example 4.5. Proposition 4.4 together with Corollary 4.2 implies the links of Fig-

ure 5 have complements whose fundamental groups are not bi-orderable. Those

complements are homeomorphic to each other.

4.2. Pure braids. As is well known, there is a homomorphism Bn ! Sn of the

n-strand braid group onto the permutation group of n letters, and the kernel is the

group of pure braids Pn.

Proposition 4.6. Every pure braid ˇ 2 Pn is order-preserving, and in fact

preserves every standard bi-order of Fn.

Proof. For a pure braid ˇ, the image of the Artin representation is pure symmetric.

This completes the proof by Proposition 3.15. �

The square �2
i of each generator �i is a pure braid. Thus we have the following.

Corollary 4.7. The braids �2
i 2 Pn are order-preserving.

Example 4.8. The 2-strand braid �2
1 gives rise to the examples of links in Figure 6

whose complements have bi-orderable fundamental groups. All the link comple-

ments are homeomorphic to one another. It is clear that they are homeomorphic

with D2 � S1, whose fundamental group is isomorphic with F2 � Z.
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Figure 4. A basepoint � of �1.Dn/ is taken to be in the interior of Dn. (1) Generators xi ’s

of Fn. (2) �i WFn ! Fn. (3) ınW xn 7! xn�1 7! � � � 7! x1 7! xn.

Figure 5. Links whose groups are not bi-orderable.

Figure 6. Links whose groups are bi-orderable.
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By Corollary 3.16, we immediately obtain the following.

Corollary 4.9. For every braid ˇ some power ˇk is order-preserving. The

fundamental group �1.Tˇk / is bi-orderable and may be regarded as a normal

subgroup of index k in �1.Tˇ /.

4.3. Periodic braids. Suppose that ˇ 2 Bn is a periodic braid. It is known (see

for example [17, p. 30]) that there exists an integer k 2 Z such that ˇ is conjugate

to either

Type 1. .ın�1/
k D .�1�2 : : : �n�1�1/

k or

Type 2. ık
n D .�1�2 : : : �n�1/

k.

Theorem 4.10. Let ˇ 2 Bn be a periodic braid.

(1) Ifˇ is conjugate to .ın�1/
k for some k, thenˇ is order-preserving and�1.Tˇ /

is bi-orderable.

(2) If ˇ is conjugate to ık
n for some k with k 6� 0 .mod n/, then ˇ is not order-

preserving and �1.Tˇ / can not be bi-orderable.

Note that ık
n is order-preserving when k � 0 .mod n/ since ın

n D �2.

Theorem 4.10 is a consequence of [7, Theorem 1.5]. If ˇ is a periodic braid, then

Tˇ is a Seifert fibered 3-manifold. If ˇ is of type 1, then Tˇ has no exceptional

fibres. If ˇ is of type 2 and if k is not a multiple of n, then Tˇ has an exceptional

fibre.

We will give an alternative, more explicit proof of Theorem 4.10 in Section 4.5.

4.4. Disk twists. We review a method to construct links in S3 whose comple-

ments are homeomorphic to each other. LetL be a link in S3. We denote a tubular

neighborhood of L by N.L/, and the exterior of L, that is S3 n int.N.L// by E.L/.

Suppose that L contains an unknot K as a sublink. Then E.K/ (resp. @E.K/) is

homeomorphic to a solid torus (resp. torus). We denote the link L n K by LK .

Taking a disk D bounded by the longitude of N.K/, we define two homeomor-

phisms

TDWE.K/ �! E.K/

and

tDWE.L/.D E.K [ LK// �! E.K [ TD.LK//

as follows. We cut E.K/ along D. We have resulting two sides obtained from

D. Then we reglue the two sides by rotating either of the sides 360 degrees so

that the mapping class of the restriction TDj@E.K/W @E.K/ ! @E.K/ defines the

right-handed Dehn twist about @D, see Figure 7(1). Such an operation defines

the homeomorphism TDWE.K/ ! E.K/. If m segments of LK pass through D,

then TD.LK/ is obtained from LK by adding a full twist braid �2
m near D. In
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the case m D 2, see Figure 7(2). For example, if L is equivalent to br.ˇ/ for

some ˇ 2 Bn and if K is taken to be the braid axis A of ˇ, then TD.LK/ is

equivalent to the closure of ˇ�2
n. Notice that TDWE.K/ ! E.K/ determines the

latter homeomorphism

tDWE.L/.D E.K [ LK// �! E.K [ TD.LK//:

We call tD the (right-handed) disk twist aboutD.

For any integer m ¤ 0, we have a homeomorphism of the mth power

Tm
D WE.K/ ! E.K/ so that Tm

D j@E.K/W @E.K/ ! @E.K/ is the mth power of the

right-handed Dehn twist about @D. Observe that Tm
D converts L D K [LK into a

link K[Tm
D .LK/ in S3 such that S3 nL is homeomorphic to S3 n .K[Tm.LK//.

We denote by t
m
D , a homeomorphism: E.L/.D E.K [ LK// ! E.K [ Tm

D .LK//

and call tmD the mth power of (right-handed) disk twist tD aboutD.

Figure 7. (1) Image of ` under TD, where ` is an arc on @E.K/ which passes through @D.

(2) Local picture of LK and its image TD.LK/.

4.5. Alternative proof of Theorem 4.10

Proof of Theorem 4.10. We prove the claim (1). Consider the pure 2-strand braid

�2
1 . Then br.�2

1 / is a link consisting of three unknotted components, including

the axis. Performing a disk twist n times on one of the components of the closed

braid c�2
1 converts the braided link of the 2-strand braid �2

1 to the braided link of

the .nC 2/-strand braid ˇ0, which is conjugate to the type 1 braid �1�2 : : : �nC1�1,

see Figure 8. But the disk twist being a homeomorphism of the complement of

the link, we see that T�2
1
' Tˇ 0 . But since �2

1 is pure, T�2
1

has bi-orderable

fundamental group, in fact isomorphic with F2�Z:Hence the fundamental group

of Tˇ 0 is bi-orderable and �1�2 : : : �nC1�1 is order-preserving. Thus the kth power

.�1�2 : : : �nC1�1/
k is also order-preserving.

We turn to the claim (2). We use the basepoint p1 in the interior ofDn. There

exists a homeomorphism �WDn ! Dn which represents ın 2 Mod.Dn/ such

that the induced map ��W�1.Dn; p1/ ! �1.Dn; p1/ gives rise to the following
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automorphism1 on Fn D hx1; : : : ; xni:

ınW x1 7�! xn 7�! xn�1 7�! � � � 7�! x2 7�! x1; (4.2)

see Figure 4(2). The orbit of x1 is nontrivial (since x1 ¤ xn) and finite. By

Proposition 3.11, ın is not order-preserving. Then k 6� 0 .mod n/ if and only if

ık
n has a nontrivial finite orbit of x1. Thus ık

n is not order-preserving. �

Proposition 4.11. The half twist �n 2 Bn is order-preserving if and only if n is

odd.

Proof. If n D 2m C 1, then �n is conjugate to .�1�2 : : : �2m�1/
m, and if n D

2m, then �n is conjugate to .�1�2 : : : �2m�1/
m with m 6� 0 .mod 2m/. By

Theorem 4.10, we finish the proof. �

Figure 8. nth power of the disk twist converts the braided link of �2
1

to that of

�1�2 : : : �nC1�1. (n D 2 in this case.)

As a special case of Theorem 4.10(2), we see that the periodic 3-strand braid

�1�2 is not order-preserving. Another way to see this is to observe that the 3-strand

braid �1�2 gives the following automorphism on F3 D hx; y; zi by using the Artin

representation B3 ! Aut.F3/:

z 7�! y 7�! x 7�! xyzy�1x�1:

One can show this doesn’t preserve a bi-order of F3 as follows. Assume some

bi-order < were preserved by the map, then supposing without loss of generality

that x < y, we would have xyzy�1x�1 < x (applying �1�2), hence yzy�1 < x

(conjugation invariance), so xyx�1 < xyzy�1x�1 (applying �1�2) and then

xyx�1 < x (transitivity) and finally the contradiction y < x (conjugation again).

On the other hand �1�
�1
2 2 B3 is pseudo-Anosov, and in fact it is the simplest

pseudo-Anosov 3-strand braid; see Section 6.1. We thank George Bergman for

1 The product �1�2 : : : �n�1 2 Aut.�1.Dn; p1// of �i ’s in (4.1) is given by x1 7! xn,
xj ! xnxj �1x�1

n if j ¤ 1. This is equal to ın 2 Aut.�1.Dn; p1// in (4.2) up to an inner
automorphism.
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pointing out the following argument. It will also follow from a more general result

in Section 6.2; see Corollary 6.4.

Theorem 4.12. The braid �1�
�1
2 2 B3 is not order-preserving.

Proof. Let x; y; z be the free generators of F3. Using the Artin representation

B3 ! Aut.F3/, one sees that the action of �1�
�1
2 is

x 7�! xzx�1; y 7�! x; z 7�! z�1yz:

Consider the orbit of the element w D y�1x under this action. Assuming there

is a bi-order < of F3 invariant under this action, we may assume without loss of

generality that 1 < w, and therefore all elements of the orbit of w are positive.

Moreover 1 < w implies y < x and since w 7! zx�1 we have y < x < z.

Now the calculation

w 7�! zx�1 7�! z�1yzxz�1x�1 D .z�1y/zx�1x.xz�1/x�1

and the facts that z�1y and x.xz�1/x�1 are negative show that the action is

decreasing on the orbit of zx�1, which is also the orbit of w.

Calculating the preimages of the generators, we have the action of �1�
�1
2

expressed as

y 7�! x; y�1xyzy�1x�1y 7�! y; y�1xy 7�! z;

and therefore

y�1xyz�1y�1x�1yy 7�! y�1x D w:
But notice that y�1xyz�1y�1x�1yy D w.yz�1/y�1.x�1y/y and since the ex-

pressions in the parentheses are < 1 (i.e, yz�1 < 1 and y�1.x�1y/y < 1), we

conclude that the action is increasing on the orbit of w. This contradiction shows

that an invariant bi-order of F3 cannot exist. �

4.6. Explicit orderings preserved by periodic braids of type 1. We have seen

that for n � 3 the root ın�1 of the full twist �2 2 Bn preserves an ordering of Fn.

In this section we will explicitly construct uncountably many such orderings.

Recall that ın 2 Bn induces the following automorphism on Fn, using the

basepoint in the interior of Dn

ınW x1 7�! xn 7�! xn�1 7�! � � � 7�! x2 7�! x1;

see (4.2). By (4.1) �1 2 Bn induces the following automorphism on Fn, using the

same basepoint:

�1W x1 7�! x2; x2 7�! x2x1x
�1
2 ; xj 7�! xj if j ¤ 1; 2:
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Thus the automorphism ın�1 on Fn is given by

ın�1W x1 7�! xn;

x2 7�! x2;

x3 7�! x2x1x
�1
2 ;

x4 7�! x3;
:::

xn 7�! xn�1:

(For the case n D 3, just take the first three terms above.)

Here is another way to realize this automorphism of Fn, elaborating on Ex-

ample 3.6 in [28]. Fix n � 3 and consider the free group F2 D hu; vi of rank 2

and the homomorphism of F2 onto the cyclic group G D ht j tn�1 D 1i given

by u ! t and v ! 1. The kernel K D Kn of this map is a normal subgroup of

F2, of index n� 1. If we realize F2 as the fundamental group of a bouquet of two

circles labelled u and v, the covering space corresponding to K is a finite planar

graph as pictured in Figure 9 whose fundamental group is free of rank n. Using

the basepoint in the covering space depicted in Figure 9, we see that K has the

free generators z1; : : : ; zn, where

z1 D v;
z2 D un�1;

z3 D un�2vu2�n;

z4 D un�3vu3�n;
:::

zn�1 D u2vu�2;

zn D uvu�1:

Now consider the automorphism of the normal subgroup K of F2 given by

�.x/ D uxu�1. This is not an inner automorphism of K but it is an inner

automorphism of the larger group F2. Therefore, if we take any bi-ordering of

F2, then its restriction to K will be preserved by �. By inspection, the action of �

on K is given by

z1 7�! zn; z2 7�! z2; z3 7�! z2z1z
�1
2 ; z4 7�! z3; : : : ; zn 7�! zn�1:

Under the isomorphism K Š Fn given by zi 7! xi for each i , we see that �

corresponds to ın�1. One can use this isomorphism to see that any bi-ordering of

F2 restricted to K provides an ordering of Fn invariant under ın�1. Finally note

that any ordering of Fn respected by ın�1 will also be respected by .ın�1/
k for

any integer k.
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Figure 9. (1) A bouquet of two circles u and v. (2) Covering space corresponding to Kn

when n D 3. (3) Covering space corresponding to Kn when n D 9.

Note that we can use, for example, any standard ordering of F2. However, this

ordering restricted to K cannot be a standard ordering (defined using the lower

central series of K) by Proposition 3.14.

4.7. Tensor product of braids. Given braids ˛ 2 Bm and ˇ 2 Bn one can form

the .m C n/-strand braid ˛ ˝ ˇ 2 BmCn with ˛ on the first m strings and ˇ on

the last n strings, but no crossings between any of the first m strings with any of

the last n strings (Figure 10); see for example [24, p. 69]. The action of ˛ ˝ ˇ on

FmCn Š Fm ? Fn is just the free product ˛ ? ˇWFm ? Fn ! Fm ? Fn.

Figure 10. (1) ˛ 2 Bm. (2) ˇ 2 Bn. (3) ˛ ˝ ˇ 2 BmCn.

The following lemma and proposition are proved in [34, Corollaries 3 and 9].

Lemma 4.13. Suppose .G;<G/ and .H;<H / are bi-ordered groups. Then there

is a bi-ordering ofG ?H which extends the orderings of the factors and such that

whenever �WG ! G and  WH ! H are order-preserving automorphisms, the

ordering of G ?H is preserved by the automorphism � ?  WG ?H ! G ?H .

Proposition 4.14. The braids ˛ 2 Bm and ˇ 2 Bn are order-preserving if and

only if ˛ ˝ ˇ 2 BmCn is order-preserving.

There is a natural inclusion Bm � BmCn (n � 1) given by ˇ 7! ˇ˝ 1n, where

1n is the identity braid of Bn.



980 E. Kin and D. Rolfsen

Corollary 4.15. A braid ˇ 2 Bm is order-preserving if and only if ˇ˝1n 2 BmCn

is order-preserving.

4.8. Do order-preserving braids form a subgroup? Let OPn � Bn denote

the set of n-strand braids which are order-preserving. It is clear that ˇ 2 OPn

if and only if ˇ�1 2 OPn and that the identity braid belongs to OPn. Moreover,

Pn � OPn by Proposition 4.6. It is natural to ask whether OPn forms a subgroup

of Bn, in other words whether OPn is closed under multiplication. For n D 2 the

answer is affirmative. Noting that �2
2 D �2

1 we conclude from Propositions 4.4

and 4.6 and Corollary 4.2 that OP2 consists of exactly the 2-strand braids �k
1 with

k even. Therefore OP2 is exactly the subgroup P2.

Proposition 4.16. For n > 2 the set OPn is not a subgroup of Bn.

Proof. Consider the n-strand braids ˛ D �1�2�1 and ˇ D ��2
1 . Then ˛ is order-

preserving, being an extension in Bn of type 1 periodic braid �1�2�1 2 B3 (see

Corollary 4.15), and ˇ is order-preserving, being a pure braid. But ˛ˇ D �1�2�
�1
1

is not order-preserving, as it is conjugate to �2 which is not order-preserving by

Proposition 4.4. �

Although not a subgroup for n > 2, OPn is a large subset of Bn:

Proposition 4.17. For n > 2 the set OPn of order-preserving n-braids gener-

ates Bn.

Proof. We saw above that �1�2�
�1
1 is a product of braids ˛; ˇ 2 OPn; therefore

�2 is also a product of appropriate conjugates of ˛ and ˇ; these conjugates are also

in OPn. But all the generators �i of Bn are conjugate to each other, and therefore

are also products of elements of OPn. It follows that all braids are products of

elements of OPn. �

5. Small volume cusped hyperbolic 3-manifolds

It is known by Gabai, Meyerhoff, and Milley [15] that the Weeks manifold is the

unique closed orientable hyperbolic 3-manifold of smallest volume. Its fundamen-

tal group is not left-orderable; see Calegari and Dunfield [8]. In this section we

will see that certain minimum volume orientable n-cusped 3-manifolds can be dis-

tinguished by orderability properties of their fundamental groups. We also prove

that some orientable hyperbolic n-cusped 3-manifolds with the smallest known

volumes have bi-orderable fundamental groups.

LetC3 andC4 be the chain links with 3 and 4 components as in Figure 11(1) and

(2). For n � 5, let Cn be the minimally twisted n-chain link; see [23, Section 1]

for the definition of such a link.
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Figure 11(3) and (4) show C5 and C6. Let Wn be the n-fold cyclic cover over

one component of the Whitehead link complementW. (See Figure 22(2) for W3.)

It seems that S3nCn and Wn�1 play an important role for the study of the minimal

volume hyperbolic 3-manifolds with n cusps, where n � 3, as we shall see below.

Figure 11. (1) C3. (2) C4. (3) C5. (4) C6.

5.1. One cusp. Cao and Meyerhoff [9] proved that a minimal volume orientable

hyperbolic 3-manifold with 1 cusp is homeomorphic to either the complement

of figure-eight knot in S3 or its sibling manifold (which can be described as 5/1

Dehn surgery on one component of the Whitehead link). We note that the sibling

manifold cannot be described as a knot complement, as its first homology group

is Z˚ Z=5Z.

Like the figure-eight knot complement, it can be described as a punctured torus

bundle over S1.

Theorem 5.1. The figure-eight knot complement has bi-orderable fundamental

group. The fundamental group of its sibling is not bi-orderable.

Proof. The first assertion is proved in [33], using the monodromy
�

2 1
1 1

�
associated

with the fibration, which has two positive eigenvalues, and Theorem 3.12. The

sibling has the monodromy
�

�2 �1
�1 �1

�
, see [22, Proposition 3 and Note]. This has

the two negative eigenvalues .�3 ˙
p
5/=2. By Theorem 3.13, the sibling has

non-bi-orderable fundamental group. �

5.2. Two cusps. Agol [1] proved that the minimal volume orientable hyperbolic

3-manifold with 2 cusps is homeomorphic to either the Whitehead link comple-

ment W or the .�2; 3; 8/-pretzel link complement W0.

Theorem 5.2. The fundamental group of W is bi-orderable. The fundamental

group of W0 is not bi-orderable.
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Proof. The first assertion follows from Theorem B.1. We shall prove in Theo-

rem 6.1 that ı5�
2
1 2 B5 is not order-preserving. This together with Proposition 4.1

implies the second assertion, since br.ı5�
2
1 / is equivalent to the .�2; 3; 8/-pretzel

link; see Figure 19. �

5.3. Four cusps. It is proved by Ken’ichi Yoshida [39] that the minimal volume

orientable hyperbolic 3-manifold with 4 cusps is homeomorphic to S3 n C4.

Theorem 5.3. The complement S3 n C4 has bi-orderable fundamental group.

Proof. Consider ��2
1 �2

2 2 P3. Then �1.S
3 n br.��2

1 �2
2 /// is bi-orderable by

Proposition 4.6. We now see that S3nbr.��2
1 �2

2 / is homeomorphic to S3nC4. Take

a diskD bounded by the thickened unknotK � br.��2
1 �2

2 /, see Figure 12(1). Then

the left-handed disk twist t�1
D sends E.br.��2

1 �2
2 // to the exterior of a link L as

shown in Figure 12(2). We observe that L is equivalent to C4, see Figure 12(2)(3).

Thus �1.S
3 n C4/ is bi-orderable. �

Figure 12. S3 nbr.��2
1
�2

2
/ is homeomorphic to S3 nC4. (1) br.��2

1
�2

2
/. (2)(3) Links which

are equivalent to C4.

Remark 5.4. In the proof of Theorem 5.3, if we replace t�D with t
C
D, then t

C
D sends

E.br.��2
1 �2

2 // to E.br.��2
1 �3�2�3//. It follows that S3 n br.��2

1 �2
2 / is homeomor-

phic to S3nbr.��2
1 �3�2�3/. By Proposition 4.1, ��2

1 �3�2�3.D �3�
�2
1 �2�3/which

is conjugate to ��2
1 �2�

2
3 2 B4 is order-preserving.

5.4. Five cusps. It has been conjectured [1] that S3 nC5 has the smallest volume

among orientable hyperbolic 3-manifolds with 5 cusps.

Theorem 5.5. The complement S3 n C5 has bi-orderable fundamental group.
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Proof. We take ��2
1 ��2

2 ��2
3 2 P4. Then �1.S

3nbr.��2
1 ��2

2 ��2
3 // is bi-orderable.

To see S3 n br.��2
1 ��2

2 ��2
3 / is homeomorphic to S3 n C5, we first take a disk D

bounded by the thickened unknot K � br.��2
1 ��2

2 ��2
3 / as in Figure 13(1). The

disk twist tD sends E.br.��2
1 ��2

2 ��2
3 // to the exterior of a link L as shown in

Figure 13(2). Next we take a disk D0 bounded by the thickened unknot K 0 � L,

see Figure 13(2). Then tD0 sends E.L/ to the exterior of a linkL0 as in Figure 13(2).

We see that L0 is equivalent to C5. Thus S3 n br.��2
1 ��2

2 ��2
3 / ' S3 n C5, and

�1.S
3 n C5/ is bi-orderable. �

Figure 13. S3 n br.��2
1
��2

2
��2

3
/ is homeomorphic to S3 n C5. (1) br.��2

1
��2

2
��2

3
/. (3)

Link which is equivalent to C5.

5.5. Three cusps. The 3-chain link complement N D S3 n C3, which Gordon

and Wu [18] named the magic manifold, has the smallest known volume among

orientable hyperbolic 3-manifolds with 3 cusps. The magic manifold N is home-

omorphic to S3 n br.�2
1�

�1
2 /, where �2

1�
�1
2 2 B3. To see this, we take a disk D

bounded by the thickened unknot K � br.�2
1�

�1
2 / as shown in Figure 14(1). Then

t
�1
D sends E.br.�2

1�
�1
2 // to the exterior of a link L as shown in Figure 14(2). Since

L is equivalent to C3, it follows that S3 n br.�2
1�

�1
2 / is homeomorphic to N . We

note that the 2nd power .�2
1�

�1
2 /2 is a pure braid. Hence �1.S

3 n br..�2
1�

�1
2 /2//

is bi-orderable, and it has index 2 in �1.N /.

Question 5.6. Is �1.N / bi-orderable? In other words is �2
1�

�1
2 2 B3 order-

preserving?

5.6. n cusps for n � 6. It is a conjecture by Agol [1] that for n � 10, the

minimally twisted n chain link complement S3 n Cn has the minimal volume

among orientable hyperbolic 3-manifold with n cusps.

The following theorem follows from Lemmas 5.8 and 5.9 below.

Theorem 5.7. The complement S3 n C6 has bi-orderable fundamental group.
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Figure 14. S3 n br.�2
1
��1

2
/ is homeomorphic to S3 nC3. (1) br.�2

1
��1

2
/. (2) Link which is

equivalent to C3.

Let L1 be the 6-circle link as shown in Figure 15(2).

Figure 15. (1) br.��2
1
��2

2
��2

3
��2

4
/. (2) The 6-circled link L1. The complements of these

links are homeomorphic to each other.

Lemma 5.8. Let ˇ D ��2
1 ��2

2 ��2
3 ��2

4 2 P5. Then S3 n L1 is homeomorphic to

S3 n br.ˇ/, and �1.S
3 n L1/ is bi-orderable.

Proof. We consider the two trivial components K, K 0 � br.ˇ/ bounded by the

closure of the first string and the closure of the last string. Let D and D0 be the

disk bounded by K and K 0. We do the disk twists tD and tD0 . Then the resulting

link is equivalent to L1. Thus S3 n br.ˇ/ is homeomorphic to S3 nL1. Since ˇ is

a pure braid, this implies that �1.S
3 n L1/ is bi-orderable. �

We thank Ken’ichi Yoshida who conveys the following argument to the authors.

Lemma 5.9. S3 n L1 is homeomorphic to S3 n C6.
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Proof. We take four 3-punctured spheres embedded in the exterior E.L1/ as

shown in Figure 16(2). The four 3-punctured spheres are also embedded in E.C6/

as shown in Figure 18(2). Let U (resp. U 0) be a subset of E.L1/ (resp. a subset

of E.C6/) bounded by these 3-punctured spheres. Note that E.L1/ (resp. E.C6/)

are the double of U (resp. U 0) with respect to the four 3-punctured spheres, see

Figure 16 and Figure 18(3). We now see that U is homeomorphic to U 0. This is

enough to prove the lemma since the double of a manifold is uniquely determined.

We push the bottom shaded 3-punctured sphere in U as shown in Figure 16(3),

and deform it into the shaded 3-punctured sphere as in Figure 16(6). (The middle

red colored annulus in (3) is modified into the bottom red colored annulus in (6).)

As a result, we get U 0. �

Kaiser, Purcell, and Rollins proved that the volume of Wn�1 is strictly smaller

than that of S3 n Cn if 12 � n � 25 or n � 60; see [23, Theorems 1.1 and 4.1].

At the time of this writing, it seems that Wn�1 has the smallest known volume

among orientable hyperbolic 3-manifolds with n cusps if n � 11. (See also Table 1

in [23].)

Figure 16. (1) (A part of)L1. (2) A subsetU � E.L1/ bounded by four 3-punctured spheres.

Figures (3)–(6) show a modification of U into U 0. (cf. Figure 18(2).)
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Figure 17. The double of U with respect to the four 3-punctured spheres is homeomorphic

to E.L1/.

Figure 18. (1) C6. (2) A subset U 0 � E.C6/ bounded by four 3-punctured spheres.

(cf. Figure 16(6).) (3) The double of U 0 with respect to the four 3-punctured spheres is

homeomorphic to E.C6/.

Proposition 5.10. The fundamental group of Wn is bi-orderable for each n � 2.

Proof. Since Wn !W is a covering map, �1.Wn/ is isomorphic with a subgroup

of the bi-orderable group �1.W/. �

5.7. A result by M. Baker and a question. We learned the following theorem

from Hidetoshi Masai.

Theorem 5.11 (Baker [4]). The 6-circle link L1 is an arithmetic link. Every link

L in S3 occurs as a sublink of a link J such that S3 n J is a covering space of

S3 n L1. In particular L is a sublink of an arithmetic link in S3.

Theorem 5.11 and Lemma 5.8 immediately give us the following.

Theorem 5.12. Let L be a link in S3. Then L is a sublink of a link whose

complement has bi-orderable fundamental group.
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The link with 4 components shown in Figure 22(2) is obtained from C3

adding a trivial knot. Its complement which is homeomorphic to W3 has bi-

orderable fundamental group (Proposition 5.10), although we have not decided

yet N D S3 n C3 has bi-orderable fundamental group. We ask the following.

Question 5.13. LetM be a 3-manifold. Does there exist a knotK inM such that

�1.M nK/ is bi-orderable?

6. Non-order-preserving braids

In this section, we give some sequences of non-order-preserving braids. Our se-

quences include examples of pseudo-Anosov braids with small dilatations. We

also provide examples of non-order-preserving pseudo-Anosov braids with arbi-

trary large dilatations.

6.1. Pseudo-Anosov braids with smallest dilatations. Let ˇ 2 Bn be a pseudo-

Anosov braid. Let �.ˇ/ > 1 be the dilatation (i.e, stretch factor) of the correspond-

ing pseudo-Anosov mapping class ˇ 2 Mod.Dn/. (See [12] for the definition of

dilatations, for example.) It is known that there exists a minimum, denoted by

ı.Dn/ among dilatations for all pseudo-Anosov n-strand braids. The explicit val-

ues of minimal dilatations ı.Dn/’s are determined for 3 � n � 8 by Koo Los, and

Song, Ham, and Song, and Lanneau and Thiffeault. The following n-strand braids

realize ı.Dn/.

� n D 3; ��1
1 �2 2 B3, see [29, 19] for example.

� n D 4; ��1
1 �2�3 2 B4, see [36]. (See also [20].)

� n D 5; ı5�
�1
4 ��1

3 2 B5, see [20].

� n D 6; �2�1�2�1ı
2
5 2 B6, see [27].

� n D 7; ��2
4 ı2

7 � ı2
7�

�1
6 ��1

5 2 B7, see [27].

� n D 8; ��1
2 ��1

1 ı5
8 � ı5

8�
�1
7 ��1

6 2 B8, see [27].

Here ˇ � ˇ0 means that ˇ is conjugate to ˇ0. We will prove in Section 6.2 that for

3 � n � 8 except n D 6, the above n-strand braids with the smallest dilatations

are not order-preserving (Corollary 6.4, Theorem 6.7, Lemma 6.8). At the time of

this writing we do not know whether the above 6-strand braid �2�1�2�1ı
2
5 is order-

preserving or not. We remark that Question 5.6 is equivalent to the one asking

whether �2�1�2�1ı
2
5 is order-preserving or not, since S3 nbr..�2�1�2�1ı

2
5/

�1�2/

is homeomorphic to the magic manifold N , see [26, p. 39 and Corollary 3.2].
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6.2. Sequences of pseudo-Anosov braids

Theorem 6.1. For n � 3 and k � 1, ın�
2k
1 D .�1�2 : : : �n�1/�

2k
1 2 Bn is not

order-preserving.

If n � 5, then ın�1�2 2 Bn is pseudo-Anosov, see [21, Theorem 3.11]. This

claim can be proved by using the criterion by Bestvina and Handel [5]. (See also

[21, Section 2.4].) Since ın�
2
1 � ın�1�2, the braid ın�

2
1 is pseudo-Anosov. By

using the same criterion, it is not hard to see that �2k�2
1 ın�1�2 � ın�

2k
1 is pseudo-

Anosov for n � 5 and k � 1. Viewing the transition matrix associated to the

pseudo-Anosov braid ın�
2k
1 , we see that the largest eigenvalue of the transition

matrix, which is equal to �.ın�
2k
1 /, goes to1 as n goes to1.

Proof of Theorem 6.1. We fix a basepoint of�1.Dn/ in the interior ofDn. By (4.2)

we have the automorphism

ınW x1 7�! xn 7�! xn�1 7�! � � � 7�! x3 7�! x2 7�! x1:

We turn to braid �2k
1 2 Bn. By (4.1) we have the following automorphism induced

by �1 2 Bn using the same basepoint of �1.Dn/:

�1W x1 7�! x2; x2 7�! x2x1x
�1
2 ; xj 7�! xj for j ¤ 1; 2:

Computing the automorphism �2
1 on Fn, we get

�2
1 W x1 7�! x2x1x

�1
2 ; x2 7�! x2x1x2x

�1
1 x�1

2 ; xj 7�! xj for j ¤ 1; 2:

In the same manner, the automorphism �2k
1 for k � 1 is given by

�2k
1 W x1 7�! .x2x1/

k�1x2x1x
�1
2 .x�1

1 x�1
2 /k�1;

x2 7�! .x2x1/
kx2.x

�1
1 x�1

2 /k ;

xj 7�! xj for j ¤ 1; 2:

Thus ın�
2k
1 induces the following automorphism on Fn.

� WD ın�
2k
1 W x1 7�! xn 7�! xn�1 7�! � � � 7�! x3 7�! .x2x1/

kx2.x
�1
1 x�1

2 /k ;

x2 7�! .x2x1/
k�1x2x1x

�1
2 .x�1

1 x�1
2 /k�1:

We assume that � preserves some bi-ordering< onFn. Without loss of generality,

we may assume that x1 < x2. Then we have

.x2x1/
k�1x2x1x

�1
2 .x�1

1 x�1
2 /k�1 D .x2x1/

kx1.x
�1
1 x�1

2 /k

< .x2x1/
kx2.x

�1
1 x�1

2 /k
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by conjugation invariance of the bi-ordering. This implies that

x2 D ��1..x2x1/
k�1x2x1x

�1
2 .x�1

1 x�1
2 /k�1/

< ��1..x2x1/
kx2.x

�1
1 x�1

2 /k/

D x3;

since ��1 also preserves the same bi-ordering <. Hence we have x1 < x2 < x3.

Notice that x3 is contained in the orbit O.x1/ under �, i.e,

x1 7�! �.x1/ D xn 7�! � � � 7�! x3 7�! .x2x1/
kx2.x

�1
1 x�1

2 /k 7�! � � � :

Since x1 < x3, this implies that the ordering < is increasing on O.x1/, i.e,

x1 < �.x1/ D xn < �
2.x1/ D xn�1 < � � � < x3 < .x2x1/

kx2.x
�1
1 x�1

2 /k < � � � :

Notice that x1 < x2 implies that

�.x1/ D xn < �.x2/ D .x2x1/
k�1x2x1x

�1
2 .x�1

1 x�1
2 /k�1:

This together with x1 < xn tells us that

x1 < .x2x1/
k�1x2x1x

�1
2 .x�1

1 x�1
2 /k�1: (6.1)

We multiply the both sides of (6.1) by .x2x1/
k�1x2 on the right,

x1.x2x1/
k�1x2 < .x2x1/

k�1x2x1x
�1
2 .x�1

1 x�1
2 /k�1.x2x1/

k�1x2

D .x2x1/
k�1x2x1:

Thus

.x1x2/
k D x1.x2x1/

k�1x2 < .x2x1/
k�1x2x1 D .x2x1/

k:

On the other hand, since x2 < x3 and x3 < .x2x1/
kx2.x

�1
1 x�1

2 /k, we have

x2 < .x2x1/
kx2.x

�1
1 x�1

2 /k: (6.2)

Multiply the both sides of (6.2) by .x2x1/
k on the right.

x2.x2x1/
k < .x2x1/

kx2.x
�1
1 x�1

2 /k.x2x1/
k D x2.x1x2/

k:

This implies that .x2x1/
k < .x1x2/

k.< .x2x1/
k/, a contradiction. Thus ın�

2k
1 is

not order-preserving. �

We have br.ın�
2k
1 / D br.�2k

1 ın/, and it is equivalent to the .�2; 2kC1; 2n�2/-
pretzel link; see Figure 19 in the case n D 5 and k D 1. By Theorem 6.1 and

Proposition 4.1, we have the following.
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Corollary 6.2. For each n � 3 and k � 1, the fundamental group of the

.�2; 2k C 1; 2n� 2/-pretzel link complement is not bi-orderable.

We turn to another sequence of braids.

Theorem 6.3. Let n � 3 and k � 1. Then ın�1
n �2k

1 D .�1�2 : : : �n�1/
n�1�2k

1 2
Bn is not order-preserving.

Proof. Fix a basepoint of �1.Dn/ in the interior of Dn. By using (4.2), we

calculate the automorphism ın�1
n D .�1�2 : : : �n�1/

n�1.

ın�1
n W x1 7�! x2 7�! � � � 7�! xn�1 7�! xn 7�! x1:

In the same manner as in the proof of Theorem 6.1, we have the following auto-

morphism on Fn obtained from the braid ın�1
n �2k

1 using the same basepoint of

�1.Dn/:

ın�1
n �2k

1 W x2 7�! x3 7�! � � �
7�! xn�1 7�! xn 7�! .x2x1/

k�1x2x1x
�1
2 .x�1

1 x�1
2 /k�1;

x2 7�! .x2x1/
kx2.x

�1
1 x�1

2 /k :

Assume that ın�1
n �2k

1 preserves some bi-ordering on Fn. In the same manner as

in the proof of Theorem 6.1, one arrives a contradiction. �

Figure 19. br.�2k
1
ın/ is equivalent to the .�2; 2kC 1; 2n� 2/-pretzel link (n D 5, k D 1 in

this case), see (1)! (2)! (3)! (4). (1) br.�2
1
ı5/. (4) .�2; 3; 8/-pretzel link.

Corollary 6.4. Let n � 3 and k � 1. Then ��2k
1 ın D ��2kC1

1 �2�3 : : : �n�1 2
Bn is not order-preserving. In particular ��1

1 �2�3 : : : �n�1 2 Bn is not order-

preserving for each n � 3.
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Proof. By Theorem 6.3, the inverse .ın�1
n �2k

1 /�1 is not order-preserving. Hence

.ın�1
n �2k

1 /�1�2` is not order-preserving for each ` 2 Z. We have

.ın�1
n �2k

1 /�1�2 D ..�1�2 : : : �n�1/
n�1�2k

1 /�1.�1�2 : : : �n�1/
n

D ��2k
1 .��1

n�1�
�1
n�2 : : : �

�1
1 /n�1.�1�2 : : : �n�1/

n

D ��2k
1 �1�2 : : : �n�1.D ��2k

1 ın/:

This completes the proof. �

Remark 6.5. For each n � 3, ��2
1 ın D ��1

1 �2�3 : : : �n�1 2 Bn is pseudo-Anosov,

see [21, Theorem 3.9]. It is not hard to see that

��2k
1 ın D ��2kC1

1 �2 : : : �n�1

is pseudo-Anosov for n � 3 and k � 1 by using the Bestvina–Handel criterion.

The Nielsen-Thurston types of a mapping class and its inverse are the same. Thus

ın�1
n �2k

1 2 Bn in Theorem 6.3 is pseudo-Anosov for n � 3 and k � 1.

Using similar modifications of links as in Figure 19, we verify that br.��2k
1 ın/

is equivalent to the .�2;�2kC1; 2n�2/-pretzel link. Thus we have the following.

Corollary 6.6. For each n � 3 and k � 1, the fundamental group of the

.�2;�2k C 1; 2n� 2/-pretzel link complement is not bi-orderable.

We turn to the last sequence of braids which plays an important role for the

study of pseudo-Anosov minimal dilatations, see [21, 26].

Theorem 6.7. For each n � 5,

ı2
n�

�1
n�1�

�1
n�2 D .�1�2 : : : �n�1/.�1�2 : : : �n�3/ 2 Bn

is not order-preserving.

The braid ı2
n�

�1
n�1�

�1
n�2 is reducible if n is even. (In fact it is easy to find an

essential simple closed curve on Dn containing the punctures labelled 2; 4; : : : ,

n � 2 which is invariant under the corresponding mapping class of Mod.Dn/.)

If n is odd, the braid ı2
n�

�1
n�1�

�1
n�2 is pseudo-Anosov, see [21, Theorem 3.11,

Figure 18(c)].

Proof of Theorem 6.7. We fix a basepoint of �1.Dn/ in the interior of Dn. From

the automorphism �i of Fn for each i D 1; : : : ; n � 1 (see (4.1)), we calculate the

automorphism ��1
i on Fn:

��1
i W xi 7�! x�1

i xiC1xi ; xiC1 7�! xi ; xj 7�! xj if j ¤ i; i C 1:
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By (4.2) together with automorphisms ��1
i for i D n � 1; n � 2, we see that the

following automorphism is arisen from the braid ın�
�1
n�1�

�1
n�2 D �1�2 : : : �n�3:

ın�
�1
n�1�

�1
n�2W x1 7�! xn�2 7�! xn�3 7�! � � � 7�! x2 7�! x1;

xn�1 7�! x�1
n�2xn�1xn�2;

xn 7�! x�1
n�2xnxn�2;

see Figure 20. Thus the automorphism  WD ın.ın�
�1
n�1�

�1
n�2/WFn ! Fn is given

by

 D ı2
n�

�1
n�1�

�1
n�2 W x1 7�! x�1

n�2xnxn�2;

x2 7�! xn�2; x3 7�! x1; : : : ; xn�2 7�! xn�4; xn�1 7�! xn�3;

xn 7�! x�1
n�2xn�1xn�2:

Suppose that n is even. Then the orbit of x2 under  is nontrivial and finite:

x2 7�! xn�2 7�! xn�4 7�! � � � 7�! x4 7�! x2:

Thus  does not preserve any left-ordering on Fn by Proposition 3.11.

Suppose that n is odd. Then the above automorphism WFn ! Fn is described

as follows:

xn�1 7�! xn�3 7�! � � � 7�! x2 7�! xn�2 7�! xn�4 7�! x1 7�! x�1
n�2xnxn�2;

xn 7�! x�1
n�2xn�1xn�2:

We suppose that  preserves a bi-ordering < of Fn. Without of loss of generality,

we may assume that xn�1 < xn. By the conjugation invariance of the bi-ordering,

x�1
n�2xn�1xn�2 < x�1

n�2xnxn�2 holds. Since  �1 preserves the same ordering

<, this implies that xn < x1, see the above definition of  . Hence we have

xn�1 < xn < x1. This tells us that the ordering < is increasing on the orbit

O.xn�1/, i.e,

xn�1 < xn�3 < � � � < x2 < xn�2 < xn�4 < x1 < x
�1
n�2xnxn�2 < � � � :

In particular xn�2 < x
�1
n�2xnxn�2 which implies that xn�2 < xn by the conjugation

invariance of the bi-ordering. This together with the  -invariance of < gives us

that xn�4 < x
�1
n�2xn�1xn�2.

On the other hand, by xn�1 < xn�2, we have x�1
n�2xn�1xn�2 < xn�2 by the

conjugation invariance again. However we have xn�2 < xn�4 < x�1
n�2xn�1xn�2,

in particular

xn�2 < x
�1
n�2xn�1xn�2 .< xn�2/;

which is a contradiction. This completes the proof. �
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Figure 20. ın�
�1
n�1

��1
n�2
D �1�2 : : : �n�3WFn ! Fn.

Finally we claim that the following pseudo-Anosov braid with the minimal

dilatation ı.D8/ is not order-preserving.

Lemma 6.8. The braid ı5
8�

�1
7 ��1

6 D .�1�2�3�4�5�6�7/
4�1�2�3�4�5 2 B8 is not

order-preserving.

Proof. Fix a basepoint of �1.D8/ in the interior of D8. The following automor-

phism corresponds to the braid ı5
8�

�1
7 ��1

6 .

� WD ı5
8�

�1
7 ��1

6 W x7 7�! x2 7�! x5 7�! x6 7�! x1 7�! x4 7�! x�1
6 x8x6;

x8 7�! x3 7�! x�1
6 x7x6:

Assume that � preserves a bi-ordering <. Without loss of generality, we may

suppose that x7 < x8. Then x�1
6 x7x6 < x�1

6 x8x6 by the conjugation invariance.

Since ��1 preserves the same ordering <, we have

x8 D ��2.x�1
6 x7x6/ < x1 D ��2.x�1

6 x8x6/:

From x7 < x8 and x8 < x1, we get x7 < x1. Hence the ordering is increasing on

the orbit of x7:

x7 < x2 < x5 < x6 < x1 < x4 < x
�1
6 x8x6 < �.x

�1
6 x8x6/ < � � � :

In particular x6 < x�1
6 x8x6, and this implies that x6 < x8 by the conjugation

invariance. Then we get �2.x6/ D x4 < �2.x8/ D x�1
6 x7x6. On the other hand,

x7 < x6 implies that x�1
6 x7x6 < x6 by the conjugation invariance again. But this

is a contradiction, since

x6 < x1 < x4 < x
�1
6 x7x6.< x6/:

Thus we conclude that � does not preserve any bi-ordering of F8. �

6.3. Questions. Consider the braid ˇm;n 2 BmCnC1 for m; n � 1 given by

ˇm;n D ��1
1 ��1

2 : : : ��1
m �mC1�mC2 : : : �mCn;
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see Figure 21(1). For example ˇ1;2 D ��1
1 �2�3. The link br.ˇm;n/ is equivalent

to a 2-bridge link as shown in Figure 21(2). For any m; n � 1, the braid ˇm;n is

pseudo-Anosov, see [21, Theorem 3.9]. We proved in Corollary 6.4 that ˇ1;n D
��1

1 �2 : : : �nC1 is not order-preserving for each n � 1. We conjecture that ˇm;n is

not order-preserving for any m; n � 1.
Let us introduce the braid m;n 2 BmCnC3 for m; n � 0. If m; n � 1, m;n is

of the form

m;n D ��2
1 ��1

2 : : : ��1
mC1�mC2 : : : �mCnC1�

2
mCnC2:

For example 1;1 D ��2
1 ��1

2 �3�
2
4 2 B5. If we ignore the 1st string and the last

string of m;n, the resulting braid is an .mC nC 1/-strand braid which is equal to

ˇm;n. We let 0;0 D ��2
1 �2

2 2 P3, 0;1 D ��2
1 �2�

2
3 2 B4 (see Remark 5.4), and

1;0 D ��2
1 ��1

2 �2
3 2 B4.

One can prove in the same manner as in Theorem 5.3 and Remark 5.4 that for

each m; n � 0
S3 n br.m;n/ ' S3 n br.��2

1 �2
2 / ' S3 n C4:

Since ��2
1 �2

2 is a pseudo-Anosov, pure 3-strand braid (in other words, S3 n C4 is

a hyperbolic 3-manifolds whose fundamental group if bi-orderable), we have the

following.

Lemma 6.9. The braid m;n is pseudo-Anosov and order-preserving form; n � 0.

If .m; n/ ¤ .0; 0/, braids m;n’s are non-pure and order-preserving. By

Proposition 3.14, the braid m;n preserves some bi-ordering which is not standard

ordering of the free group. Notice that for m; n � 0, the permutation of SmCnC3

associated to m;n has more than 1 cycle, i.e, the closure of the braid m;n is a link

with more than 1 component. We ask the following.

Question 6.10. Does there exist an order-preserving braid ˇ 2 Bn (n � 3) whose

permutation is cyclic (i.e, the closure Ǒ is a knot)?

Figure 21. (1) ˇm;n 2 BmCnC1. (2) 2-bridge link which is equivalent to br.ˇm;n/. (3)

m;n 2 BmCnC3.
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Appendices

A. Ordering free groups

For any group G the lower central series G D 1G � 2G � � � � is defined induc-

tively by the formula kC1G WD ŒG; kG�. It is well known (see for example [30])

that if F is a free group (or hyperbolic surface group) then the lower central quo-

tients kF=kC1F are free abelian of finite rank and also that \1
kD1

kF D ¹1º.
Following [31] one can bi-orderF as we will now describe. Choose an arbitrary bi-

order <k of the (free abelian) group kF=kC1F and define the positive cone for

an ordering < of F as follows. For 1 ¤ g 2 F , declare g to be positive if 1 <k Œg�

in kF=kC1F , where k is the unique integer for which g 2 kF n kC1F . It

is routine to check that this defines a bi-ordering < of F . We shall say that an

ordering of F defined in this way is a standard ordering of F . If the rank of F is

greater than one, there are uncountably many standard orderings. However there

are uncountably many non-standard orderings of F as well, for example as in the

end of Section 4.6.

Proposition A.1. For any standard ordering of the free group F , all the lower

central subgroups kF are convex.

Proof. Using invariance under multiplication it is sufficient to suppose 1 < f < g

and g 2 kF , and show that f 2 kF . Now f 2 jF n j C1F for some unique

positive integer j . Assume for contradiction that j < k. By the definition of <

we have that 1 <j Œf � in jF=j C1F . But since j < k we also have g 2 jF and

we see that f �1g 2 jF n j C1F . But since 1 < f �1g we have 1 <j Œf
�1g�

in jF=j C1F . However, g 2 j C1 and so Œf �1g� D Œf �1�, which implies the

contradiction that 1 <j Œf
�1�. Therefore we conclude that j � k and therefore

f 2 jF � kF . �

Note that for any automorphism of a group �WG ! G we have �.kG/ D kG

and so there are induced automorphisms �k W kG=kC1G ! kG=kC1G. In

particular, �1 is the same as the abelianization �abWG=ŒG;G� ! G=ŒG;G�. The

following is a well-known group theoretic result, but we include a proof, suggested

by Thomas Koberda, for the reader’s convenience.

Lemma A.2. Suppose �WG ! G is an automorphism of a group G such that

the abelianization �abWG=ŒG;G� ! G=ŒG;G� is the identity map. Then for each

k � 1, the homomorphism �kW kG=kC1G ! kG=kC1G is also the identity

map.

Proof. We prove �k D id by induction on k, the hypothesis being the base case.

Note that the hypothesis implies that, for every g 2 G we have �.g/ D gc where
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c 2 2G may depend upon g. Now, suppose that �k W kG=kC1G ! kG=kC1G

is the identity. This implies that for h 2 kG we have that �.h/ D hd , where

d 2 kC1G, also dependent upon h.

To show that �kC1 D id, consider any nonidentity element of kC1G. Such an

element is a product of commutators of the form Œg; h� with g 2 G; h 2 kG, so it

suffices to show that

�kC1.Œg; h�/ � Œg; h� mod nC2G:

We calculate �kC1.Œg; h�/ � Œ�.g/; �.h/� D Œgc; hd � D gchdc�1g�1d�1h�1 �
gchc�1g�1h�1, the latter equivalence following because d 2 kC1G commutes

with every element ofG, modulo kC2G. But note that gchc�1g�1h�1 D Œg; h�x,

where x D hg.h�1chc�1/g�1h�1. Observe that the expression in parentheses is

a commutator of h�1 2 kG and c 2 2G. It is well-known (see for example

[30, p. 293]) that ŒmG; nG� � mCnG. Therefore, h�1chc�1 2 kC2G. Being a

conjugate, x also belongs to kC2G, and therefore �kC1.Œg; h�/ � Œg; h�x � Œg; h�
mod kC2G: �

Proposition A.3. Suppose �WFn ! Fn is such that �ab WZn ! Z
n is the identity

map �ab D idWZn ! Z
n. Then � preserves every standard bi-ordering of Fn.

Proof. By Lemma A.2, with G D Fn we see that �k is the identity automorphism

of kFn=kC1Fn and therefore preserves every ordering of kFn=kC1Fn. It

follows that � preserves the positive cone of every standard ordering of Fn. �

B. The Whitehead link

Let W be the Whitehead link in S3, see Figure 22(1). Our goal is to prove:

Theorem B.1. The fundamental group of the Whitehead link complement W D
S3 nW is bi-orderable.

Figure 22. (1) Whitehead linkW . (2) W3 is homeomorphic to the complement of this link.
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We first recall the Murasugi sum of surfaces. See [25, Section 4.2] for more

details. Let R1, R2 and R be compact oriented surface embedded in S3. We say

that R is a (2n-)Murasugi sum of R1 and R2 if we have the following.

(1) R D R1 [R2, and R1 \R2 is a disk D which satisfies the following:

(1.1) @D is a 2n-gon with edges a1; b1; a2; b2; : : : ; an; bn enumerated in this

order;

(1.2) ai � @R1, and ai is a proper arc in R2 for all i ;

(1.3) bi � @R2, and bi is a proper arc in R1 for all i .

(2) There exist 3-balls B1 and B2 in S3 such that

(2.1) B1 [B2 D S3, B1 \B2 D @B1 D @B2 D S2;

(2.2) Bi � Ri for i D 1; 2;
(2.3) @B1 \ R1 D @B2 \R2 D D.

In this paper we only use 2-, 4-Murasugi sums, see Figures 24 and 26.

A 2-Murasugi sum corresponds to a connected sum of links. A 4-Murasugi sum

is a so-called plumbing. To state the next theorem, we let Li D @Ri for i D 1; 2

and L D @R which are oriented links.

Theorem B.2 (Theorem 1.3 and Corollary 1.4 in Gabai [13]). Suppose that R is a

Murasugi sum of R1 and R2. Then L is a fibered link with a fiber R if and only if

Li is a fibered link with a fiber Ri for i D 1; 2.

Let Ri , R and Li be as in Theorem B.2, and let fi WRi ! Ri denote the

monodromy. We may assume that fi j@Ri
equals the identity map id. Let R be

a Murasugi sum of R1 and R2. By Theorem B.2, L D @R is a fibered link with a

fiber R if Li is a fibered link with a fiber Ri for i D 1; 2. The following theorem

tells us what the monodromy f WR! R looks like.

Theorem B.3 (Corollary 1.4 in [13]). The monodromy f WR ! R is given by the

product (i.e, the composition) f D f 0
2f

0
1 WR ! R, where f 0

i jRi
equals fi and

f 0
i jRnRi

equals the identity map for i D 1; 2.

Convention B.4. The product f 0
2f

0
1 means that we first apply f 0

2 , then apply f 0
1 .

A Hopf band is an unknotted annulus in S3. Two kinds of Hofp bands SC and

S� as in Figure 23(1) and (2) are called positive and negative respectively. The

links LC D @SC and L� D @S� are called the Hopf links. It is known that L˙ is a

fibered link with a fiber S˙. The monodromy fCWSC! SC (resp. f�WS� ! S�)

is the right handed Dehn twist (resp. left handed Dehn twist) about the core circle

of the annulus, see [14, Figure 1].
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Proof of Theorem B.1. We will find a fibered surface S of the Whitehead link W

and its monodromy f WS ! S . Let yS be the 2-Murasugi sum of Hopf bands

SC and S�, see Figure 24(1). Figure 24(3) is a surface which is isotopic to yS .

By Theorem B.2, @ yS is a fibered link with a fiber yS . Theorem B.3 tells us that

f 0
Cf

0
�W yS ! yS serves the monodromy yf W yS ! yS . Figure 25(1)(2) shows the

images of two proper arcs (solid and broken arcs) under yf W yS ! yS . This is the

so-called point-pushing map, see [12, Section 4.2].

A 4-Murasugi sum of yS and SC gives rise to a fibered surface S ofW , which is

a torus with 2 boundary components, see Figure 26. By Theorem B.3, the product

. Of /0f 0
CWS ! S serves the monodromy f WS ! S . Note that . Of /0WS ! S is a

pushing map along the arcm, and f 0
CWS ! S is the right handed Dehn twist about

a simple closed curve `, see Figure 27(1).

Shrinking one of the boundary components to a puncture, one can take a simple

model as a representative of S , which is a torus with one boundary component and

with a puncture as in Figure 27(2). Abusing the notation, we denote such a simple

model by the same notation S . We also denote the corresponding loop based at

the puncture and the corresponding closed loop in the simple model by the same

notations m and `, see Figure 27(2).

We choose a basepoint p on @S , and take oriented loops c0, c1 and c2 based at

this point so that c0 is a loop surrounding the puncture, and c1, c2 are the meridian

and the longitude of the torus, see Figure 28(1). Abusing the notations, we denote

the equivalence class of ci in �1.S; p/ D F3 by the same notation ci . (Then

¹c0; c1; c2º is a generating set of �1.S; p/.) The images of c1, c2 and c3 under

f� D .. Of /0f 0
C/�W�1.S; p/! �1.S; p/ are given as follows. See Convention B.4.

f�.c0/ D c2c
�1
0 c1c0c

�1
1 c0c

�1
2 ;

f�.c1/ D c2c
�1
0 c1;

f�.c2/ D c2c
�1
0 ;

see Figure 28(3) for f�. Let us consider the abelianization .f�/abWZ3 ! Z
3. From

the above computation of f�.ci /, we have

.f�/abŒc0� D Œc0�;

.f�/abŒc1� D �Œc0�C Œc1�CŒc2�;

.f�/abŒc2� D �Œc0� CŒc2�:

By calculation one sees that the characteristic polynomial of .f�/ab equals .t�1/3,

and all eigenvalues of .f�/ab are 1. By Theorem 3.12, it follows that f� is order-

preserving. Note that �1.W/ D F3 Ìf�
Z. By Proposition 3.10, we conclude that

�1.W/ is bi-orderable. �
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Figure 23. Hopf bands (1) SC and (2) S�. (3) Monodromy fCWSC ! SC is the right

handed Dehn twist about the core circle of SC. The figure illustrates the image of a proper

arc (as shown in the left) under fC.

Figure 24. (1) 2-Murasugi sum yS of SC and S�. (The 2-gon with edges a1, b1 is shaded.)

(2)(3) Surfaces which are isotopic to yS .
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Figure 25. (1) Of D f 0
C
f 0

�W yS ! yS using yS in Figure 24(1). (2) Of D f 0
C
f 0

�W yS ! yS using

yS in Figure 24(3). Both (1) and (2) illustrate the images of solid and broken arcs (as shown

in the left) under Of .

Figure 26. (1) yS . (2) SC. (3)(4) 4-Murasugi sum of yS and SC is a fibered surface S of W .

(The 4-gon with edges a1; b1; a2; b2 is shaded in the figures (1)(2).)
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Figure 27. (1) A fibered surface S of W . (2) A simple model of S .

Figure 28. (1) Loops c0, c1, c2. (2) Images of ci ’s under . Of /0, where c0
i
WD . Of /0.ci /. (3)

Images of ci ’s under f D . Of /0f 0
C

, where c00
i
WD f .ci /.
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