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On self-similarity of wreath products of abelian groups
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Abstract. We prove that in a self-similar wreath product of abelian groups G D B wr X ,

if X is torsion-free then B is torsion of finite exponent. Therefore, in particular, the group

ZwrZ cannot be self-similar. Furthermore, we prove that if L is a self-similar abelian

group then L! wr C2 is also self-similar.
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1. Introduction

A group G is self-similar provided for some finite positive integer m, the group
has a faithful representation on an infinite regular one-rooted m-tree Tm such that
the representation is state-closed and is transitive on the tree’s first level. If a
group G does not admit such a representation for any m then we say G is not self-
similar. In determining that a group is not self-similar we will use the language of
virtual endomorphisms of groups. More precisely, a group G is not self-similar
if and only if for any subgroup H of G of finite index and any homomorphism
f W H ! G there exists a non-trivial subgroup K of H which is normal in G and
is f -invariant (in the sense Kf � K).

Which groups admit faithful self-similar representation is an on going topic
of investigation. The first in depth study of this question was undertaken in [2]
and then in book form in [3]. Faithful self-similar representations are known
for many individual finitely generated groups ranging from the torsion groups
of Grigorchuk and Gupta–Sidki to free groups. Such representations have been
also studied for the family of abelian groups [4], of finitely generated nilpotent
groups [7], as well as for arithmetic groups [9]. See [8] for further references.

One class which has received attention in recent years is that of wreath products
of abelian groups G D B wr X , such as the classical lamplighter group [1] in which
B is cyclic of order 2 and X is infinite cyclic. The more general class G D Cp wr X

where Cp is cyclic of prime order p and X is free abelian of rank d � 1 was the
subject of [8] where self-similar groups of this type are constructed for every finite
rank d .
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We show in this paper that the properly of B being torsion is necessary to
guarantee self-similarity of G. More precisely, we prove the following result.

Theorem 1. Let G D B wr X be a self-similar wreath product of abelian groups.

If X is torsion free then B is a torsion group of finite exponent. In particular,

ZwrZ cannot be self-similar.

Observe that though G D ZwrZ is not self-similar, it has a faithful finite-state
representation on the binary tree [5].

Next we produce a novel embedding of self-similar abelian groups into self-
similar wreath products having higher cardinality.

Theorem 2. Let L be a self-similar abelian group and L! an infinite countable

direct sum of copies of L. Then L! wr C2 is also self-similar.

2. Preliminaries

We recall a number of notions of groups acting on trees and of virtual endomor-
phisms of groups from [4].

2.1. State-closed groups. 1. Automorphisms of one-rooted regular trees T.Y /

indexed by finite sequences from a finite set Y of size m � 2, have a natural
interpretation as automata on the alphabet Y , and with states which are again
automorphisms of the tree. A subgroup G of the group of automorphisms A.Y /

of the tree is said to have degree m. Moreover, G is state-closed of degree m

provided the states of its elements are themselves elements of the same group.

2. Given an automorphism group G of the tree, v a vertex of the tree and l a
level of the tree, we let FixG.v/ denote the subgroup of G formed by its elements
which fix v and let StabG.l/ denote the subgroup of G formed by elements which
fix all v of level l . Also, let P.G/ denote the permutation group induced by G on
the first level of the tree. We say G is transitive provided P.G/ is transitive.

3. A group G is said to be self-similar provided it is a state-closed and transitive
subgroup of A.Y / for some finite set Y .

2.2. Virtual endomorphisms. 1. Let G be a group with a subgroup H of finite
index m. A homomorphism f W H ! G is called a virtual endomorphism of G

and .G; H; f / is called a similarity triple; if G is fixed then .H; f / is called a
similarity pair.

2. Let G be a transitive state-closed subgroup ofA.Y / where Y D¹1; 2; : : : ; mº.
Then the index ŒGW FixG.1/� D m and the projection on the 1st coordinate of
FixG.1/ produces a subgroup of G; that is, �1W FixG.1/ ! G is a virtual endo-
morphism of G.
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3. Let G be a group with a subgroup H of finite index m and a homomorphism
f W H ! G. If U � H and U f � U then U is called f -invariant. The largest
subgroup K of H , which is normal in G and is f -invariant is called the f -
core.H/. If the f -core.H/ is trivial then f and the triple .G; H; f / are called
simple.

4. Given a triple .G; H; f / and a right transversal L D ¹x1; x2; : : : ; xmº of H

in G, the permutational representation � W G ! Perm.1; 2; : : : ; m/ is g� W i ! j

which is induced from the right multiplication Hxig D Hxj . Generalizing
the Kalujnine-Krasner procedure [6] , we produce recursively a representation
'W G ! A.Y /, defined by

g' D ..xig:.x.i/g� /�1/f '/1�i�mg� ,

seen as an element of an infinitely iterated wreath product of Perm.1; 2; : : : ; m/.
The kernel of ' is precisely the f -core.H/ and G' is state-closed and transitive
and H ' D FixG' .1/.

Lemma 1. A group G is self-similar if and only if there exists a simple similarity

pair .H; f / for G.

3. Proof of Theorem 1

We recall B , X are abelian groups, X is a torsion-free group and G D B wr X .
Denote the normal closure of B in G by A D BG . Let .H; f / be the similarity
pair with respect to which G is self-similar and let ŒG W H� D m. Define

A0 D A \ H; L D .A0/f \ A; Y D X \ .AH/.

Note that if x 2 X is nontrivial then the centralizer CA.x/ is trivial. We develop
the proof in four lemmas.

Lemma 2. Either Bm is trivial or .A0/f � A. In both cases A 6D A0.

Proof. We have Am � A0 and Xm � H . As A is normal abelian and X is abelian,

ŒAm; Xm� C G;

ŒAm; Xm� � ŒA0; Xm� � A0:

Also,

f W ŒAm; Xm� �! Œ.Am/f ; .Xm/f � � .A0/f \ G0

� .A0/f \ A D L.
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(1) If L is trivial then ŒAm; Xm� � ker.f /. Since f is simple, it follows
that ker.f / D 1 and ŒAm; Xm� D 1 D ŒBm; Xm�. As Xm 6D 1, we conclude
Am D 1 D Bm.

(2) If L is nontrivial then L is central in M D A.A0/f D A.X \ M/ which
implies X \ M D 1 and .A0/f � A.

(3) If B is a torsion group then tor.G/DA; clearly, .A0/f �A and A¤A0. �

Let G be a counterexample; that is, B has infinite exponent. By the previous
lemma .A0/f � A and so we may use Proposition 1 of [8] to replace the simple
similarity pair .H; f / by a simple pair . PH; Pf / where PH D A0Y (Y � X) and

.Y /
Pf � X . In other words, we may assume .Y /f � X .

Lemma 3. If z 2 X is nontrivial and x1; : : : ; xt ; z1; : : : ; zl 2 X , then there exists

an integer k such that

zk¹z1; : : : ; zlº \ ¹x1; : : : ; xtº D ;:

Proof. Note that the set ¹k 2 Z j ¹zkzj º \ ¹x1; : : : ; xtº 6D ;º is finite, for each
j D 1; : : : ; l . Indeed, otherwise there exist k1 6D k2 such that zk1�k2 D 1, a
contradiction. �

Lemma 4. If x 2 X is nontrivial, then .xm/f is nontrivial.

Proof. Suppose that there exists a nontrivial x 2 X such that xm 2 ker.f /. Then
for each a 2 A and each u 2 X we have

.a�muamuxm

/f D .a�mu/f .amuxm

/f

D .a�mu/f ..amu/f /.xm/f

D .a�mu/f .amu/f

D 1:

Since Am.xm�1/ � ker.f / and is normal in G, we have a contradiction. �

Lemma 5. The subgroup Am is f -invariant.

Proof. Let a 2 A. Consider T D ¹c1; : : : ; crº, a transversal of A0 in A, where r

is a divisor of m. Since Am is a subgroup of A0 and A D
L

x2X Bx , there exist
x1; : : : ; xt such that

h.cm
i /f j i D 1; : : : ; ri � Bx1 ˚ � � � ˚ Bxt

and z1; : : : ; zl 2 X such that

h.am/f i � Bz1 ˚ � � � ˚ Bzl :

Since ŒG W H� D m, it follows that Xm � Y . Fix a nontrivial x 2 X and let
z D .xm/f .
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For each integer k, define ik 2 ¹1; : : : ; rº such that

axmk

c�1
ik

2 A0:

Then
..axmk

c�1
ik

/m/f D ..axmk

c�1
ik

/f /m 2 Am;

but .axmk
c�1

ik
/m D amxmk

c�m
ik

, thus

..axmk

c�1
ik

/m/f D .amxmk

/f .c�m
ik

/f D .amf /zk

c
�mf
ik

.

By Lemma 4, z 6D 1. There exists by Lemma 3 an integer k0 such that

¹zk0

z1; : : : ; zk0

zlº \ ¹x1; : : : ; xtº D ;;

and so,

.Bzk0

z1 ˚ � � � ˚ Bzk0

zl / \ .Bx1 ˚ � � � ˚ Bxt / D 1:

It follows that

.amf /zk0

c
�mf
ik

2 Am \ Œ.Bzk0

z1 ˚ � � � ˚ Bzk0

zl / ˚ .Bx1 ˚ � � � ˚ Bxt /�I

But as
Am D

M

x2X

Bmx

we conclude, .amf /zk0

2 Bmzk0

z1 ˚ � � � ˚ Bmzk0

zl � Am and amf 2 Am. Hence,
.Am/f � Am. �

With this last lemma, the proof of Theorem 1 is finished.

4. Proof of Theorem 2

Let L be a self-similar abelian group with respect to a simple triple .L; M; �/;
then � is a monomorphism. Define B D

P

i�1 Li , a direct sum of groups where
Li D L for each i . Let X be cyclic group of order 2 and G D B wr X , the wreath
product of B by X . Denote the normal closure of B in G by A; then,

A D BX D
�

L1 ˚
X

i�2

Li

�

� B

G D A � X:

Define the subgroup of G

H D
�

M ˚
X

i�2

Li

�

� BI
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an element of H has the form

ˇ D .ˇ1; ˇ2/

where

ˇi D .ˇij /j �1; ˇij 2 L;

ˇ1 D .ˇ1j /j �1; ˇ11 2 M:

We note that ŒG W H� is finite; indeed,

ŒA W H� D ŒL W M� and ŒG W H� D 2ŒL W M�:

Define the maps

�0
1W M ˚

�

X

i�2

Li

�

�! B; �0
2W B �! B;

where for ˇ D .ˇ1; ˇ2/ D ..ˇ1j /; .ˇ2j //j �1; ˇ11 2 M;

�0
1W ˇ1 7�! .ˇ

�
11ˇ12; ˇ13; : : : /; �0

2W ˇ2 7�! .ˇ22; ˇ21; ˇ23; : : : /:

Since L is abelian, �0
1 is a homomorphism and clearly �0

2 is a homomorphism as
well.

Define the homomorphism

f W
�

M ˚
X

i�2

Li

�

� B �! A

by
f W .ˇ1; ˇ2/ 7�! ..ˇ1/�0

1 ; .ˇ2/�0

2/:

Suppose by contradiction that K is a nontrivial subgroup of H , normal in
G and f -invariant and let � D .�1; �2/ be a nontrivial element of K. Since X

permutes transitively the indices of �i , we conclude �i1 2 M for i D 1; 2. Let si

(call it degree) be the maximum index of the nontrivial entries of �i ; if �i D 0 then
write si D 0 . Choose � with minimum s1 C s2; we may assume s1 be minimum
among those si 6D 0. Since

�1 D .�1j /j �1; �11 2 M;

.�1/�0

1 D .�
�
11�12; �13; : : : /;

we conclude .�1/�0

1 has smaller degree and therefore

�1 D .�11; e; e; e; : : : / or .�11; �
��
11 ; e; e; : : : /:
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Suppose �1 D .�11; e; e; e; : : : /. As, � D .�1; �2/ 2 K, we have �11 2 M and
therefore

�f D ..�1/�0

1 ; .�2/�0

2/ 2 K;

.�1/�0

D ..�11/� ; e; e; e; : : : /;

.�11/� 2 M I

�f 2

D ..�1/.�0

1
/2

; �2/;

.�1/.�0

1
/2

D ..�11/�2

; e; e; e; : : : /;

.�11/�2

2 M ;

etc. By simplicity of �, this alternative is out. That is,

�1 D .�11; �
��
11 ; e; e; : : : /; �11 2 M:

Therefore

� D .�1; �2/;

�x D .�2; �1/; �xf D ..�2/�0

1 ; .�
��
11 ; �11; e; e; : : : //;

�xf x D ..�
��
11 ; �11; e; e; : : : /; .�2/�0

1/

are elements of K and so, �
�
11 2 M . Furthermore,

�xf xf D ..�
��2

11 �11; e; e; : : : /; .�2/�0

1
�0

2/;

�
��2

11 �11 2 M ;

successive applications of f to �xf x produces �
�i

11 2 M . Therefore, h�
�i

11 j i � 0i

is a �-invariant subgroup of M ; a contradiction is reached.
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