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on Fuchsian buildings and Kac–Moody groups
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Abstract. In this paper we prove a rate of escape theorem and a central limit theorem

for isotropic random walks on Fuchsian buildings, giving formulae for the speed and

asymptotic variance. In particular, these results apply to random walks induced by bi-

invariant measures on Fuchsian Kac–Moody groups, however they also apply to the case

where the building is not associated to any reasonable group structure. Our primary strategy

is to construct a renewal structure of the random walk. For this purpose we define cones

and cone types for buildings and prove that the corresponding automata in the building and

the underlying Coxeter group are strongly connected. The limit theorems are then proven

by adapting the techniques in [23]. The moments of the renewal times are controlled via
the retraction of the walks onto an apartment of the building.
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1. Introduction

Let .Xn/n�1 be i.i.d. random variables taking values in Zd . Under a second
moment condition the classical central limit theorem gives

Pn
iD1Xi � nvp

n

D�! N.0; �2/;

where v D EŒX1� is the rate of escape (or drift) and �2 the asymptotic variance. A
natural and influential question, dating back to Bellman [3] and Furstenberg and
Kesten [14], is to what extent this phenomenon generalises to the situation where
.Xn/n�1 takes values in a group, or more generally, the situation where .Xn/n�1

is a random walk on a graph.
There are various settings in which central limit theorems have been estab-

lished, with key results in the contexts of Lie groups and hyperbolic groups. In
the hyperbolic setting, Sawyer and Steger [37] studied the case of the free group
Fd with d standard generators and the corresponding word distance d.�; �/. Under
a technical moment condition they show, using analytic extensions of Green func-
tions, that .d.e; Xn/ � nv/=

p
n converges in law to some non-degenerate Gauss-

ian distribution, where e is the group identity in Fd . Another proof was given by
Lalley [28] using algebraic function theory and Perron-Frobenius theory, and a
geometric proof was later presented by Ledrappier [29]. A generalisation to trees
with finitely many cone types can be found in Nagnibeda and Woess [32]. Another
generalisation to free products of graphs was given by Gilch [15].

More recently Björklund [6] proved a central limit theorem for hyperbolic
groups with respect to the Green metric, and this was pushed forward by Benoist
and Quint [5] for random walks on hyperbolic groups with respect to the word
metric under the optimal second moment condition. In this context a local limit
theorem for hyperbolic groups has also recently been obtained by Gouëzel and
Lalley [17] and Gouëzel [18].

Another approach to the central limit theorem for surface groups has been
developed by Haissinski, Mathieu, and Müller [23], where the planarity and
hyperbolicity of the Cayley graph are employed to develop a renewal theory
for random walks on these groups. The resulting central limit theorem comes
complete with formulae for the speed and variance of the walk.

Central limit theorems for semisimple real Lie groups were established by
Wehn [48], Tutubalin [45], Virtser [47], Stroock and Varadhan [40], and Guiv-
arc’h [20] in a variety of contexts, using a wide range of techniques. There is an
extensive literature on this subject, with further limit theorems for real Lie groups
given in [4, 8, 16, 21, 22, 27, 30].

The case of p-adic Lie groups is also rather well understood, with central limit
theorems established by Lindlbauer and Voit [31], Cartwright and Woess [10],
and Parkinson [34]. Further limit theorems for p-adic Lie groups are given
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in [38, 35, 43, 44]. Many of these papers employ a remarkable geometric object
called the affine building associated to the p-adic group, and utilise the rich
representation theory available in the p-adic setting.

The current paper lies at the confluent of the hyperbolic and Lie theoretic
settings. Here we prove limit theorems for random walks on Fuchsian buildings
and the Kac–Moody groups associated to them (see below for some descriptions).
From the point of view of Lie theory, this is a natural next step in the progression
from ‘spherical-type’ Lie groups (the semisimple real Lie groups) and ‘affine-
type’ Lie groups (the p-adic case) to a theory for random walks on buildings and
Kac–Moody groups of arbitrary type. From the hyperbolic point of view, the
buildings that we consider contain many copies of the hyperbolic disc tessellated
using a ‘Fuchsian Coxeter group’, and thus while the buildings are certainly not
planar, some of the renewal theory techniques from the planar surface group
case [23] can be pushed through.

Before stating our main results, let us give a brief description of the objects
involved in this paper. Buildings are geometric/combinatorial objects that can be
defined axiomatically. Initial data required to define a building includes a Coxeter
system .W; S/, and then a building .�; ı/ of type .W; S/ consists of a set� (whose
elements are the chambers of the building) along with a “generalised distance
function” ıW� � � ! W satisfying various axioms (see Definition 2.2). Thus
the “distance” between chambers x; y 2 � is an element ı.x; y/ of the Coxeter
group W , and by taking word length in W this gives rise to a metric d.�; �/ on the
building. We fix a base chamber o 2 �. The ‘spherical’ buildings are those with
jW j < 1, and the ‘affine’ buildings are those where W is a Euclidean reflection
group.

The theory of spherical and affine buildings has been extensively studied.
However there are many Coxeter systems which are neither finite nor affine.
Examples of buildings of these more ‘exotic types’ arise naturally in Kac–Moody
theory. These groups can be seen as generalisations of the classical ‘groups of Lie
type’, since they admit presentations reminiscent of the Chevalley presentations of
the classical groups based around an associated Coxeter system .W; S/ (see [42]).
To each Kac–Moody group of type .W; S/ there is naturally associated a building
of type .W; S/, and the Kac–Moody group acts transitively on this building.

While the above construction produces a lot of very interesting buildings, it is
certainly not true that all buildings arise in this way (see [36], for example). Thus
in this paper we consider the building as the primary object of interest. Results
concerning groups may then be deduced as corollaries, although it is important to
note that our results apply equally well to the situation where there is no underlying
group. (Indeed the building may have trivial automorphism group!).

In this paper we consider the natural class of isotropic random walks .Xn/n�0

on buildings, where the transition probabilities p.x; y/ of the random walk depend
only on the generalised distance ı.x; y/. If the building comes from a Kac–Moody
group, then isotropic random walks are induced by measures on the group which
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are bi-invariant with respect to the ‘Borel subgroup’B . The results of much of the
preliminary sections are valid for buildings of any type, however our main results
concern the class of Fuchsian buildings. These are buildings whose Coxeter
groups are discrete subgroups of PGL2.R/, and since they are neither spherical
nor affine they are an interesting “non-classical” class of buildings.

We use a mixture of algebraic, geometric and probabilistic techniques. We
observe that the transition operator of an isotropic random walk can naturally be
regarded as an element of a Hecke algebra, and we use this result to show that our
buildings are nonamenable. Next we develop the theory of cones, cone types, and
automata for buildings, and we show that the Cannon automaton of a Fuchsian
building is strongly connected. Connectivity properties of automata have various
applications and are interesting in their own right. To our knowledge our results
on the strong connectivity of the Cannon automaton are the first besides the trivial
cases of free groups and surface groups. There are also some interesting features
of cones in buildings that are in contrast to the theory of cones in groups. For
example cones of the same type in the building are not necessarily isomorphic as
graphs (see Remark 3.9).

We use our theory of cones in buildings to develop a renewal theory for
isotropic random walks on Fuchsian buildings. The idea here is to find a decom-
position of the trajectory of the walk into aligned pieces in such a way that these
pieces are identically and independently distributed. To do this we define renewal
times .Rn/n�1 for the walk as follows. Fix a (recurrent) cone type T and let R1 be
the first time that the walk visits a cone of type T and never leaves this cone again.
Inductively define RnC1 to be the first time after Rn that the walk visits a cone of
type T and never leaves it again (see (5.3) for a more formal definition). Our main
results are as follows.

Theorem 1.1. Let .�; ı/ be a regular Fuchsian building and let .Xn/n�0 be an
isotropic random walk on � with bounded range. Then,

1

n
d.o; Xn/

a:s:�! v D EŒd.XR2
; XR1

/�

EŒR2 �R1�
> 0 as n!1: (1.1)

Theorem 1.2. Let .�; ı/ be a regular Fuchsian building and let .Xn/n�0 be an
isotropic random walk on � with bounded range. Then,

d.o; Xn/ � nvp
n

D�! N.0; �2/;

with v as in (1.1) and

�2 D EŒ.d.XR2
; XR1

/ � .R2 �R1/v/
2�

EŒR2 �R1�
:
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When a group acts suitably transitively on a regular Fuchsian building the
above theorems give limit theorems for random walks associated to these groups.
For example, suppose that G is a Kac–Moody group over a finite field with
Coxeter system .W; S/ (see [42]). Let B be the positive root subgroup ofG. Then
� D G=B is the set of chambers of a locally finite regular building of type .W; S/,
where ı.gB; hB/ D w if and only if g�1hB � BwB . Then we have the following
corollary.

Corollary 1.3. Let G be a Kac–Moody group over a finite field with Fuchsian
Coxeter system .W; S/, and let .�; ı/ be the associated Fuchsian building. Let '
be the density function of a B-bi-invariant probability measure onG, and assume
that ' is supported on finitely many BwB double cosets. Then the assignment

p.go; ho/ D '.g�1h/

defines an isotropic random walk on .�; ı/, and Theorems 1.1 and 1.2 provide a
rate of escape theorem and a central limit theorem for this random walk.

To conclude this introduction, let us outline the structure of this paper. Sec-
tion 2 gives definitions and examples of Coxeter groups and buildings. In Sec-
tion 3 we develop the theory of automata for buildings (and Coxeter groups). In
Section 4 we introduce isotropic random walks on buildings, and use algebraic
techniques to prove general results on irreducibility and the spectral radius. We
also introduce the retracted walk in this section, which is a main tool in our inves-
tigations. In Section 5 we restrict our attention to Fuchsian buildings, and develop
renewal theory for isotropic random walks on these buildings. We prove our main
theorems in this section, following the general proof strategy of [23]. Finally, in
Appendix A we explicitly construct the automaton for each Fuchsian Coxeter sys-
tem, and deduce that these automata are strongly connected (a property that was
useful in the work of Section 5).

2. Coxeter groups and buildings

2.1. Coxeter systems. A Coxeter system .W; S/ is a group W generated by a
finite set S with relations

s2 D 1 and .st/mst D 1 for all s; t 2 S with s ¤ t ;

where mst D mts 2 Z�2 [ ¹1º for all s ¤ t (if mst D 1 then it is understood
that there is no relation between s and t ). The rank of .W; S/ is jS j. The length of
w 2 W is

`.w/ D min¹n � 0 j w D s1 � � � sn with s1; : : : ; sn 2 Sº;
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and an expression w D s1 � � � sn with n D `.w/ is called a reduced expression
for w. If w 2 W and s 2 S then `.ws/ 2 ¹`.w/ � 1; `.w/ C 1º. In particular,
`.ws/ D `.w/ is impossible. The distance between elements u 2 W and v 2 W
is

d.u; v/ D `.u�1v/:

The ball of radius R � 0 with centre u 2 W is B.u; R/ D ¹v 2 W j d.u; v/ � Rº
and the sphere of radius R � 0 with centre u 2 W is S.u; R/ D ¹v 2 W j
d.u; v/ D Rº.

If I � S letWI be the subgroup ofW generated by I . Then .WI ; I / is a Coxeter
system. The subgroup WI is called the standard parabolic subgroup of type I . A
Coxeter system .W; S/ is irreducible if there is no partition of the generating set
S into disjoint nonempty sets S1 and S2 such that s1s2 D s2s1 for all s1 2 S1 and
all s2 2 S2. We will always assume that .W; S/ is irreducible.

2.2. Fuchsian Coxeter groups. We now define a special class of Coxeter groups
that are discrete subgroups of PGL2.R/, called Fuchsian Coxeter groups. Let
n � 3 be an integer, and let k1; : : : ; kn � 2 be integers satisfying

n
X

iD1

1

ki

< n � 2: (2.1)

Assign the angles �=ki to the vertices of a combinatorial n-gon F . There is a
convex realisation of F (which we also call F ) in the hyperbolic disc H2, and the
subgroup of PGL2.R/ generated by the reflections in the sides of F is a Coxeter
group .W; S/ (see [11, Example 6.5.3]). If s1; : : : ; sn are the reflections in the sides
of F (arranged cyclically), then the order of si sj is

mij D
´

ki if j D i C 1,
1 if ji � j j > 1;

(2.2)

where the indices are read cyclically with nC 1 � 1.
A Coxeter system .W; S/ given by data (2.1) and (2.2) is called a Fuchsian

Coxeter system. Observe that these systems are always infinite. The groupW acts
on H2 with fundamental domain F . Note that this action does not preserve orien-
tation, however the index 2 subgroup W 0 generated by the even length elements
of W is orientation preserving. ThusW 0 is a discrete subgroup of PSL2.R/, and
so is a ‘Fuchsian group’ in the strictest sense of the expression.

The Fuchsian Coxeter system .W; S/ induces a tessellation of H2 by isometric
polygons wF , w 2 W . The polygons wF are called chambers, and we usually
identify the set of chambers with W by wF $ w. We call this the hyperbolic
realisation of the Coxeter system .W; S/ (it is closely related to the Davis complex
from [11], see the discussion in [1, Example 12.43]).
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Example 2.1. (a) Let a; b; c � 2 be integers, and letWabc be the group generated
by S D ¹s; t; uº subject to the relations

s2 D t2 D u2 D 1 and .st/a D .tu/b D .us/c D 1:

These Coxeter groups are called triangle groups, for they can be realised as groups
generated by the reflections in the sides of a triangle on the sphere S2 (when
1
a
C 1

b
C 1

c
> 1), the Euclidean plane R2 (when 1

a
C 1

b
C 1

c
D 1), or the hyperbolic

disc H2 (when 1
a
C 1

b
C 1

c
< 1). In the latter case the Coxeter group is Fuchsian. Up

to permutation of the triple .a; b; c/, the irreducible spherical triangle groups are
given by .a; b; c/ D .3; 3; 2/; .4; 3; 2/; .5; 3; 2/, and the Euclidean triangle groups
are given by .a; b; c/ D .3; 3; 3/; .4; 4; 2/; .6; 3; 2/.

(b) Let ki D 2 for each 1 � i � n in (2.1). Thus each internal angle of the
n-gon F is a right angle, and the corresponding Coxeter group is called a right
angled polygon group (by (2.1) this group is Fuchsian if and only if n � 5).

2.3. Definition of buildings. We now give an axiomatic definition of buildings,
following [1].

Definition 2.2. Let .W; S/ be a Coxeter system. A building of type .W; S/ is a
pair .�; ı/ where � is a nonempty set (whose elements are called chambers) and
ı W � � � ! W is a function (called the Weyl distance function) such that if
x; y 2 � then the following conditions hold.

(B1) ı.x; y/ D 1 if and only if x D y.

(B2) If ı.x; y/ D w and z 2 � satisfies ı.y; z/ D s with s 2 S , then
ı.x; z/ 2 ¹w;wsº. If, in addition, `.ws/ D `.w/C 1, then ı.x; z/ D ws.

(B3) If ı.x; y/ D w and s 2 S , then there is a chamber z 2 � with ı.y; z/ D s

and ı.x; z/ D ws.

Let .�; ı/ be a building of type .W; S/ and let s 2 S . Chambers x; y 2 � are
s-adjacent (written x �s y) if ı.x; y/ D s. One useful way to visualise a building
is to imagine an jS j-gon with edges labelled by the generators s 2 S (think of
the edges as being coloured by jS j different colours). Call this jS j-gon the base
chamber which we denote by o. Now take one copy of the base chamber for each
element x 2 �, and glue these chambers together along edges so that x �s y if
and only if the chambers are glued together along their s-edges.

A gallery of type .s1; : : : ; sn/ joining x 2 � to y 2 � is a sequence
x0; x1; : : : ; xn of chambers with

x D x0 �s1
x1 �s2

� � � �sn
xn D y:

This gallery has length n.
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The Weyl distance function ı has a useful description in terms of minimal
length galleries in the building: if s1 � � � sn is a reduced expression in W then
ı.x; y/ D s1 � � � sn if and only if there is a minimal length gallery in � from x

to y of type .s1; : : : ; sn/. The (numerical) distance between chambers x; y 2 � is

d.x; y/ D .length of a minimal length gallery joining x to y/ D `.ı.x; y//;

Note that we use the same notation d.�; �/ for distance in both the Coxeter system
and the building.

A building .�; ı/ is called thick if j¹y 2 � j x �s yºj � 2 for all chambers
x 2 �, and thin if j¹y 2 � j x �s yºj D 1 for all chambers x 2 �. A building
.�; ı/ is regular if

qs WD j¹y 2 � j x �s yºj is finite and does not depend on x 2 �:

For the remainder of this paper we will assume that .�; ı/ is regular. The numbers
.qs/s2S are called the thickness parameters of the building.

If I � S and x 2 � then the set RI .x/ D ¹y 2 � j ı.x; y/ 2 WI º (called
the I -residue of x) is a building of type .WI ; I /with thickness parameters .qs/s2I

(see [1, Corollary 5.30]).
For each x 2 � and each w 2 W , let

�w.x/ D ¹y 2 � j ı.x; y/ D wº be the “sphere of radius w” centred at x.

By [33, Proposition 2.1] the cardinality qw D j�w.x/j does not depend on x 2 �,
and is given by

qw D qs1
� � �qs`

whenever w D s1 � � � s` is a reduced expression.

We call .�; ı/ a Fuchsian building if .W; S/ is a Fuchsian Coxeter system, and
we call .�; ı/ a triangle building if W is an infinite triangle group.

Finally, a word about notation. Typically the letters u; v; w will be used for
elements of a Coxeter group W , and the letters x; y; z will be used for chambers
of a building .�; ı/.

2.4. Examples of buildings. We now give some examples of buildings that are
relevant to this paper. We also show that the class of locally finite thick Fuchsian
buildings is sufficiently rich by proving existence of many such buildings.

Example 2.3 (Thin buildings). Let .W; S/ be a Coxeter system. Let � D W ,
and define ıW� � � ! W by ı.u; v/ D u�1v. It is immediate that .�; ı/ is a
building of type .W; S/. This rather simple example is called the Coxeter complex
of .W; S/. It is a thin building, because ¹v 2 W j u �s vº D ¹usº for each
u 2 W . Conversely it is not difficult to see that every thin building is isomorphic
to a Coxeter complex.
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Example 2.4 (Generalised polygons). If .W; S/ is a dihedral group of order 2m
(that is, S D ¹s; tº with s2 D t2 D .st/m D 1) then buildings of type .W; S/ are
called generalisedm-gons. These ‘basic building blocks’ play an important role in
the theory (see the monograph [46] which is devoted to the study of generalisedm-
gons). The Feit-Higman Theorem [13] implies that locally finite thick generalised
m-gons only exist for m 2 ¹2; 3; 4; 6; 8;1º.

If .�; ı/ is a locally finite thick regular building of general type .W; S/, then the
“rank 2” residuesRst .x/ D R¹s;tº.x/ are generalisedmst -gons, and so necessarily

mst 2 ¹2; 3; 4; 6; 8;1º for all s; t 2 S with s ¤ t : (2.3)

A sufficient condition for the existence of a locally finite thick regular building
of type .W; S/ is that mst 2 ¹2; 3; 4; 6;1º for all s; t 2 S (see Example 2.5).
Allowing mst D 8 introduces some complications, see Proposition 2.7).

Example 2.5 (Buildings from groups with BN -pairs). Let G be a group with a
BN -pair .B;N/ and Coxeter system .W; S/ (see [1, § 6.2.6] for the definition of
BN -pairs). An instructive example is G D GLn.F/ where F is a field, with B
the upper triangular invertible matrices, N the monomial matrices (matrices with
exactly one nonzero entry in each row and column) and W D N=.N \ B/ the
symmetric group on n letters (represented as permutation matrices) with S being
the elementary transpositions.

The group G admits a Bruhat decomposition G D
F

w2W BwB . Let � D
G=B , and define ıW� ��! W by

ı.gB; hB/ D w () g�1hB � BwB:

Then .�; ı/ is a thick building of type .W; S/ (see [1, Theorem 6.56]).
All groups of Lie type (classical groups, Chevalley groups, Steinberg groups,

Suzuki-Ree groups) admit aBN -pair. More generally, every “Kac–Moody group”
admits a BN -pair. A Kac–Moody algebra (cf. [26]) is a generalisation of the
more familiar semisimple Lie algebras. These algebras share many properties
with their finite dimensional counterparts, for example, Cartan subalgebras, root
space decompositions, and Weyl groups. However in contrast to the semisimple
Lie algebra case, the root systems and Weyl groups for infinite dimensional Kac–
Moody algebras are infinite. There are Kac–Moody algebras associated to each
crystallographic Coxeter system (that is, mst 2 ¹2; 3; 4; 6;1º for all s; t 2 S ). To
each such algebra, and for each choice of ground field F, one can define a Kac–
Moody group G D G.F/ by generators and relations in an analogous way to the
construction of Chevalley groups in the finite dimensional setting (see [39] for
the finite dimensional theory, and [42] for the Kac–Moody case). The group G
has a BN -pair, with Coxeter system .W; S/. The associated building .G=B; ı/ has
uniform thickness parameter jFj, and so taking F D Fq to be the finite field with
q elements yields a regular building of type .W; S/ with thickness q.
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Example 2.6 (Ronan’s free construction). Suppose that .W; S/ is a Coxeter sys-
tem such that every irreducible rank 3 parabolic subgroup is infinite. Suppose that
.qs/s2S is a sequence of integers, and that for each pair s; t 2 S with s ¤ t there
exists a generalisedmst -gon �st with parameters .qs; qt /. Then Ronan’s free con-
struction [36] implies that there exists a locally finite thick regular building .�; ı/
of type .W; S/ with thickness parameters .qs/s2S .

It is obvious that every irreducible rank 3 parabolic subgroup of a Fuchsian
Coxeter system .W; S/ is infinite, and thus Ronan’s free construction applies to
Fuchsian buildings. Thus to exhibit the existence of a thick regular Fuchsian
building .�; ı/ of type .W; S/ with thickness parameters .qs/s2S it is sufficient to
exhibit the existence of a family ¹�st j s; t 2 S; s ¤ tº of generalisedmst -gons �st

with thickness parameters .qs; qt/. In the following proposition we use this idea
to classify those infinite triangle Coxeter systems admitting locally finite thick
regular buildings. This is elementary, although we have been unable to find a
reference in the literature.

Proposition 2.7. Let .W; S/ be an infinite triangle Coxeter system, with the
generators s; t; u arranged so thatmst � mtu � mus . A locally finite thick triangle
building of type .W; S/ exists if and only if

.mst ; mtu; mus/

2 ¹.a; b; c/ j a; b; c 2 ¹2; 3; 4; 6; 8ºº n ¹.8; 3; 3/; .8; 6; 3/; .8; 6; 6/; .8; 8; 8/º:

Thus there are precisely 24 infinite triangle Coxeter systems (up to permuting the
generators) admitting locally finite thick triangle buildings. Moreover, for each of
these infinite triangle Coxeter systems .W; S/ there are infinitely many pairwise
nonisomorphic buildings of type .W; S/.

Proof. Suppose that a locally finite thick regular building .�; ı/ of type .W; S/
exists. By (2.3) we have mst 2 ¹2; 3; 4; 6; 8;1º, and the case mst D 1 is
excluded for triangle groups by definition. Since infinite triangle groups have
m�1

st C m�1
tu C m�1

us � 1 this leaves precisely 28 infinite triangle groups with
mst � mtu � mus and mst ; mtu; mus 2 ¹2; 3; 4; 6; 8º. We now show that the
four cases .mst ; mtu; mus/ D .8; 3; 3/, .8; 6; 3/, .8; 6; 6/, or .8; 8; 8/ do not admit
locally finite thick buildings. We recall from [46, §1.7] that in a finite thick
generalised m-gon with parameters .q; q0/ we necessarily have that q D q0 if
m D 3, pqq0 2 Z if m D 6, and

p
2qq0 2 Z if m D 8. For example, consider the

.mst ; mtu; mus/ D .8; 6; 6/ case. If a locally finite thick building with parameters
qs; qt ; qu exists, then Rst .o/ is a generalised 8-gon with parameters .qs; qt/, and
Rtu.o/ and Rus.o/ are generalised 6-gons with parameters .qt ; qu/ and .qu; qs/

(respectively). This implies that
p
2qsqt 2 Z, and

p
qtqu;

p
quqs 2 Z, a

contradiction. The remaining cases are similar.
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We now show that there exist locally finite thick regular buildings for each of
the remaining 24 infinite triangle Coxeter systems, and moreover, that for each
of these triangle Coxeter systems there are infinitely many buildings. For this
we recall some known examples of generalised m-gons (see [46] for details). If
m D 2; 3; 4 or 6 then there is a generalised m-gon with parameters .q; q/ for each
prime power q. Thus if mst ; mtu; mus 2 ¹2; 3; 4; 6º we can take generalised m-
gons with parameters .q; q/ as the basic building blocks, verifying the claim in
this case. The cases where at least one of the m’s is 8 require a little more care.
We recall that there are generalised 4-gons with parameters .q; q2/ and .q2; q/ for
each prime power q, and that for each r D 22kC1 there are generalised 8-gons with
parameters .r; r2/ and .r2; r/ (in fact, these are the only known examples of finite
thick generalised 8-gons). For example, consider the .8; 6; 4/ triangle group. For
each r D 22kC1 there exists a generalised 8-gon with parameters .r2; r/, a gen-
eralised 6-gon with parameters .r; r/, and a generalised 4-gon with parameters
.r; r2/, and so there is a thick regular triangle building of type .W; S/ with pa-
rameters .r2; r; r/. By varying k we obtain infinitely many buildings (pairwise
non-isomorphic because they have different thicknesses). The remaining exam-
ples are similar. �

Similar ideas show that there are infinitely many Fuchsian Coxeter systems
.W; S/ with jS j � 4 for which locally finite thick regular buildings of type .W; S/
exist, and therefore the class of Fuchsian buildings is reassuringly rather large.

2.5. Apartments and retractions. Let .�; ı/ be a building of type .W; S/. The
thin sub-buildings of .�; ı/ of type .W; S/ are called the apartments of .�; ı/.
Thus each apartment is isomorphic to the Coxeter complex of .W; S/. Two key
facts concerning apartments are as follows.

(A1) If x; y 2 � then there is an apartment A containing both x and y.

(A2) If A and A0 are apartments containing a common chamber x then there is
a unique isomorphism � WA0 ! A fixing each chamber of the intersection
A \ A0.

In fact conditions (A1) and (A2) can be taken as an alternative, equivalent defi-
nition of buildings (see [1, Definition 4.1] for the precise statement, and [1, Theo-
rem 5.91] for the equivalence of the two axiomatic systems).

Given chambers x; y 2 �, the convex hull Œx; y� of x and y is the union of
all chambers on minimal length galleries from x to y. That is, Œx; y� D ¹z 2
� j d.x; y/ D d.x; z/ C d.z; y/º: Another useful fact about apartments is the
following one.

(A3) If A is an apartment containing x and y then Œx; y� � A.

In fact, if� is thick then Œx; y� is the intersection of all apartments A containing x
and y.
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The hyperbolic realisation of each apartment of a Fuchsian building is a tes-
selation of the hyperbolic disc, as in Figure 1(b) and (c). Roughly speaking, the
properties (A1) and (A2) ensure that the hyperbolic metric on each apartment can
be coherently ‘glued together’ to make .�; ı/ a CAT.�1/ space (see [11, Theo-
rem 18.3.9] for details).

Retractions play an important role in building theory, and indeed in this current
work. Let A be an apartment, and let x be a chamber of A. The retraction �A;x of
� onto A with centre x is defined as follows: for each chamber y 2 �,

�A;x.y/ D z; where z is the unique chamber of A with ı.x; z/ D ı.x; y/:

Alternatively, let A0 be any apartment containing x and y (using (A1)) and let
� WA0 ! A be the isomorphism from (A2) fixing A \ A0. Then

�A;x.y/ D �.y/:

Thus �A;x W�! A “radially flattens” the building onto A, with centre x 2 A.
Fix, once and for all, an apartment A0 and a chamber o 2 A0. Canonically

identify A0 with the Coxeter complex of .W; S/ such that o is identified with 1,
the neutral element of W . Thus we regard W D A0 as a “base apartment” of �.
To simplify notation, we write � D �W;o for the retraction of� onto the apartment
W with centre o. Thus

�W� �! W is given by �.x/ D ı.o; x/: (2.4)

We also note that in the apartment A0 D W the Weyl distance function is given
by

ı.u; v/ D u�1v for all u; v in the base apartment W :

3. Automata for Coxeter groups and buildings

The notions of cones, cone types, and automata are well established for finitely
generated groups, with [12] being a standard reference. Let us briefly recall these
notions in the specific context of Coxeter groups, and then extend the ideas into
the (non-group) realm of buildings.

Let .W; S/ be a Coxeter system. Let w 2 W . The cone of .W; S/ with root w
is the set

CW .w/ D ¹v 2 W j d.1; v/ D d.1; w/C d.w; v/º:
Thus CW .w/ is the set of all elements v 2 W such that there exists a geodesic
from 1 to v passing through w. The cone type of the cone CW .w/ is

TW .w/ D ¹w�1v j v 2 C.w/º D w�1CW .w/:
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(a) Affine triangle group .333/.

(b) Fuchsian triangle group .334/.

(c) Right angled polygon group.

Figure 1. Triangle and polygon groups.
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Let T.W; S/ be the set of cone types of .W; S/. By [9, Theorem 2.8] there are
only finitely many cone types in a Coxeter system .W; S/, and so jT.W; S/j <1.

Definition 3.1. The Cannon automaton of the Coxeter system .W; S/ is the di-
rected graph A.W; S/ with vertex set T.W; S/ and with labelled edges defined as
follows. There is a directed edge with label s 2 S from cone type T to cone type
T0 if and only if there exists w 2 W such that T D TW .w/ and T0 D TW .ws/ and
d.1; ws/ D d.1; w/C 1.

A cone type T0 is accessible from the cone type T if there is a path from T to
T0 in the (directed) graph A.W; S/. In this case we write T ! T0. A cone type
T is called recurrent if T ! T, and otherwise it is called transient. The set of
recurrent vertices induces a (directed) subgraphAR.W; S/ ofA.W; S/. We call the
automaton A.W; S/ strongly connected if each recurrent cone type is accessible
from any other recurrent cone type in the subgraph AR.W; S/.

;

1

12

1211212212

21

2

13

131

31 1312

3

32

232

23

2321

12123

Figure 2. The Cannon automaton for W.3;3;4/ .

Figure 2 depicts the Cannon automaton for the (Fuchsian) triangle group
W.3;3;4/ (see Appendix A for details). The generators are labelled 1, 2, and 3,
and the labels on the edges are indicated by line styles (solid, dashed, and dotted
respectively). The cone types are given by the base element of a representative
cone of that type. Thus the vertex 131 is the cone type T .131/. All cone types
except for ;, 1, 2, and 3 are recurrent, and the automaton is strongly connected.
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To see this, observe that 12! 121! 1212! 12123! 131! 1312! 232!
2321! 212! 23! 31! 12! 121! 13! 32! 21! 212! 23! 31!
12 is a loop visiting all cone types other than ;, 1, 2, 3.

The existence of a strongly connected Cannon automaton is important for our
renewal theory arguments in Section 5, thus in Appendix A we prove the following
result.

Theorem 3.2. The Cannon automaton of a Fuchsian Coxeter system is strongly
connected.

Remark 3.3. It does not appear to be known in the literature which Coxeter
systems have strongly connected automata. For example, our direct calculations
in Appendix A show that affine triangle groups do not have strongly connected
Cannon automata, and we suspect that no affine Coxeter group has a strongly
connected Cannon automaton.

We now extend the above concepts to buildings. Let .�; ı/ be a building of
type .W; S/ with fixed base chamber o. Let x 2 � be a chamber. The cone of
.�; ı/ with root x is the set

C�.x/ D ¹y 2 � j d.o; y/ D d.o; x/C d.x; y/º:

Thus C�.x/ is the set of all chambers y 2 � such that there exists a geodesic from
o to y passing through x. The cone type of the cone C�.x/ is

T�.x/ D ¹ı.x; y/ j y 2 C�.x/º:

If A is an apartment of � containing o and x 2 A we write

CA.x/ D ¹y 2 A j d.o; y/ D d.o; x/C d.x; y/º:

We collect together some useful facts about cones and cone types in buildings, and
the connection with cones and cone types in Coxeter systems. Recall the definition
of the canonical retraction �W�! W from (2.4).

Proposition 3.4. Let .�; ı/ be a building of type .W; S/.

(1) If A is an apartment containing the chambers o and x then the isomorphism
�jAWA! W maps CA.x/ onto CW .�.x//.

(2) �.C�.x// D CW .�.x// for all x 2 �.

(3) T�.x/ D TW .�.x// for all x 2 �.

(4) ��1.CW .w// D
F

x2�w.o/ C�.x/ for all w 2 W .

Proof. If A is an apartment containing o and x then the restriction �jAWA! W is
an isomorphism. Thus �jA and �j�1

A map minimal galleries to minimal galleries,
and hence part 1 follows.
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Next we claim that C�.x/ D
S

A CA.x/ where the union is over all apartments
A containing o and x. It is clear that CA.x/ � C�.x/ for each apartment A
containing o and x, and thus

S

A CA.x/ � C�.x/. On the other hand, suppose
that y 2 C�.x/. Let A be an apartment containing o and y. Then A contains x
by (A3), and so y 2 CA.x/, completing the proof of the claim. Part 2 follows using
part 1, since �.C�.x// D

S

A �.CA.x// D CW .�.x//:

To prove part 3, note that by part 2,

TW .�.x// D �.x/�1CW .�.x// D �.x/�1�.C�.x// D �.x/�1¹�.y/ j y 2 C�.x/º:

If y 2 C�.x/ then ı.o; y/ D ı.o; x/ı.x; y/. Thus �.y/ D �.x/ı.x; y/, and so
TW .�.x// D T�.x/.

From part 2 it is immediate that ��1.CW .w// D
S

x2�w.o/ C�.x/ for all
w 2 W . To see that the union is disjoint, suppose that y 2 C�.x/ \ C�.x

0/

with x; x0 2 �w.o/. Let A be an apartment of � containing o and y. Since x
and x0 are both on minimal galleries from o to y, (A3) implies that x; x0 2 A.
Since �jAWA ! W is an isomorphism, and since �.x/ D w D �.x0/, we have
x D x0. �

We make a completely analogous definition to Definition 3.1 for the Cannon
automaton A.�; ı/ of a building .�; ı/.

Definition 3.5. Let .�; ı/ be a building of type .W; S/. The Cannon automaton
of .�; ı/ is the directed graph A.�; ı/ with vertex set T.�; ı/ and with labelled
edges defined as follows. There is a directed edge with label s 2 S from cone
type T to cone type T0 if and only if there exists x 2 � and y 2 �s.x/ such that
T D T�.x/ and T0 D T�.y/ and d.o; y/ D d.o; x/C 1.

Proposition 3.6. Let .�; ı/ be a building of type .W; S/. Then A.�; ı/ Š
A.W; S/.

Proof. By Proposition 3.4 there is a bijection between the vertex sets of A.�; ı/
and A.W; S/, and it is elementary to check that this bijection preserves labelled
oriented edges. �

For the remainder of this paper, when it is clear from context we will typically
write C.�/ and T .�/ for cones and cone types in either Coxeter groups or buildings.

The boundary of a cone C of .�; ı/ is

@C D ¹y 2 C j there exists z 2 � n C with d.y; z/ D 1º:

If L � 1, the L-boundary of a cone C of .�; ı/ is defined to be

@LC D ¹y 2 C j there exists z 2 � n C with d.y; z/ � Lº: (3.1)
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In particular, @1C D @C . We call IntLC D C n@LC theL-interior ofC . We make
analogous definitions for the boundary,L-boundary and L-interior of a cone C of
.W; S/.

The L-boundary of a cone type T (of � or W ) is defined by

@LT D ¹w 2 T j there exists v 2 W n T with d.w; v/ � Lº;

and the L-interior of the cone type T is IntLT D T n @LT.

Lemma 3.7. Let x 2 � and y 2 C�.x/. If there is a chamber z 2 � with
d.y; z/ D 1 and z … C�.x/ then there is a chamber z0 2 � with d.y; z0/ D 1 and
�.z0/ … CW .�.x//.

Proof. Since d.y; z/ D 1 we have ı.y; z/ D s for some s 2 S . If `.ı.o; y/s/ D
`.ı.o; y//C1 then every minimal gallery from o to y can be extended to a minimal
gallery from o to z, and thus since y 2 C�.x/ there is a minimal gallery from o

to z passing through x, a contradiction.
Thus `.ı.o; y/s/ D `.ı.o; y// � 1. Let A be an apartment containing o and y,

and hence A contains x by (A3). Let z0 2 A be the unique chamber of A with
ı.y; z0/ D s. We claim that �.z0/ … CW .�.x//. Suppose, for a contradiction, that
�.z0/ 2 CW .�.x//. Then part 1 of Proposition 3.4 gives z0 2 CA.x/, and hence
z0 2 C�.x/. In particular z0 ¤ z and so since both z and z0 are s-adjacent to y we
have ı.z0; z/ D s. Since z0 2 C�.x/ there is a minimal gallery from o to z0 passing
through x, and since ı.o; z0/ D ı.o; y/s we have `.ı.o; z0/s/ D `.ı.o; z0//C 1 and
so we can extend this minimal gallery to give a minimal gallery from o to z passing
through x. Thus z 2 C�.x/, a contradiction, and so �.z0/ … CW .�.x//. �

Proposition 3.8. Let .�; ı/ be a building of type .W; S/. Then for each x 2 �
and each L � 1 we have

�.@LC�.x// D @LCW .�.x//:

Proof. Suppose that v 2 @LCW .�.x//. Thus there is an element v0 2 W with
d.v; v0/ � L and v0 … CW .�.x//. Choose any apartment A containing o and x.
Let y be the unique chamber of A with ı.o; y/ D v, and let y0 be the unique
chamber of A with ı.o; y0/ D v0. Since �.y/ D v and �.y0/ D v0 and since
�jAWA ! W is an isomorphism we have d.y; y0/ D d.v; v0/. Moreover, from
part 1 of Proposition 3.4 we have y0 … CA.x/ and it follows, using (A3), that
y0 … C�.x/. Thus y 2 @LC�.x/ and so v D �.y/ 2 �.@LC�.x//, giving
@LCW .�.x// � �.@LC�.x//.

Suppose that y 2 @LC�.x/, and so there is a chamber z with d.y; z/ � L

such that z … C�.x/. Choose this chamber z with d.y; z/ minimal, and let
y D y0 � y1 � � � � � yk�1 � yk D z be a minimal length gallery from y to z. By
minimality of d.y; z/ we have that yk�1 2 C�.x/. Since z … C�.x/ Lemma 3.7
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implies that there is a chamber z0 adjacent to yk�1 such that �.z0/ … CW .�.x//.
Since d.�.y/; �.z0// � d.y; z0/ D d.y; z/ � L we have �.y/ 2 @LCW .�.x//, and
hence �.@LC�.x// � @LCW .�.x//. �

Remark 3.9. In the traditional setup of cones in groups, two cones with the same
cone type are necessarily isomorphic since there is a group element taking one
cone to the other. In the context of buildings the situation is quite different,
for it follows from Ronan’s free construction [36] of buildings with no rank 3
residues of spherical type that two cones in� of the same type are not necessarily
isomorphic as graphs. In fact one can construct buildings in which there are
infinitely many pairwise non-isomorphic cones of a fixed type. However we note
that Proposition 3.4 still guarantees that there will be only finitely many distinct
cone types for the building.

4. Isotropic random walks on regular buildings

In this section we investigate the structure of isotropic random walks in the general
context of a regular building (not necessarily Fuchsian).

4.1. Definitions and transition operators. We will henceforth write .�; ı/ for
a thick regular building of type .W; S/. A random walk .Xn/n�0 on the set
� of chambers of the building .�; ı/ is isotropic if the transition probabilities
p.x; y/ D PŒXnC1 D y j Xn D x� of the walk satisfy

p.x; y/ D p.x0; y0/ whenever ı.x; y/ D ı.x0; y0/:

In other words, the probability of jumping from x to y in one step depends only
on the Weyl distance ı.x; y/. Thus an isotropic random walk is determined by the
probabilities

pw D PŒX1 2 �w.x/ j X0 D x�; so that p.x; y/ D pw=qw if ı.x; y/ D w;
(4.1)

and the transition operator of an isotropic random walk .Xn/n�0 on � with
governing probabilities (4.1) is given by

P D
X

w2W

pwPw ; (4.2)

where for each w 2 W , the operator Pw acts on the space of all functions
f W�! C by

Pwf .x/ D
1

qw

X

y2�w.x/

f .y/:
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For each n � 0 let

p.n/.x; y/ D PŒXn D y j X0 D x�:

Then P n D
P

w2W p
.n/
w Pw , where p.n/.x; y/ D p.n/

w =qw whenever ı.x; y/ D w.
The random walk .Xn/n�0 is irreducible if for every pair x; y 2 � there is

an integer n � 1 such that p.n/.x; y/ > 0. The spectral radius of an irreducible
random walk .Xn/n�0 with transition operator P is

%.P / D lim sup
n!1

.p.n/.x; y//1=n

(by irreducibility this value does not depend on the pair x; y 2 �).
We will assume that the random walk has bounded range (although most of

this section only requires a finite first moment assumption). Let L0 D max¹`.w/ j
pw > 0º, and so the largest possible jump of the random walk has length L0.

There is a beautiful algebraic structure underlying isotropic random walks. In
particular the geometry of the building implies that (see [33, Theorem 3.4])

PwPs D
´

Pws if `.ws/ D `.w/C 1;
q�1

s Pws C .1� q�1
s /Pw if `.ws/ D `.w/ � 1;

(4.3)

from which it immediately follows that the vector space A over C with basis
¹Pw j w 2 W º is an algebra under composition (called the Hecke algebra of
the building, cf. [33]). The transition operator P of a bounded range isotropic
random walk is an element of the Hecke algebra A.

The following interpretation of the structure constants in the Hecke algebra,
and the “distance regularity” statement (4.4) that follows from this interpretation,
will be crucial to our investigations.

Proposition 4.1. Let .�; ı/ be a regular locally finite building of type .W; S/ and
let u; v 2 W . Then

PuPv D
X

w2W

˛w
u;vPw ; where ˛w

u;v D
qw

quqv

j�u.x/ \�v�1.y/j

for any pair of chambers x; y 2 � with ı.x; y/ D w. In particular, the numbers

aw
u;v D j�u.x/ \�v.y/j with ı.x; y/ D w (4.4)

do not depend on the particular pair x; y 2 � with ı.x; y/ D w.

Proof. Since A is an algebra, we have PuPv D
P

w ˛
w
u;vPw for some numbers

˛w
u;v 2 C. Let y 2 �, and let ıy W� ! C be the Kronecker delta function. Then
Pwıy.x/ D q�1

w if y 2 �w.x/ and 0 otherwise, and a direct calculation shows
that PuPvıy.x/ D q�1

u q�1
v j�u.x/\�v�1.y/j, completing the proof (see also [33,

Proposition 3.9]). �
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Lemma 4.2. If ˛w
u;v ¤ 0 then w D uv0 for some v0 2 W with `.v0/ � `.v/.

Proof. We prove the lemma by induction on `.v/, with the base case `.v/ D 0

being trivial. Suppose that the result is true for `.v/ D k, and let s 2 S with
`.vs/ D `.v/C 1. Then by (4.3) and the induction hypothesis we have

PuPvs D PuPvPs D .PuPv/Ps D
X

z2W W`.z/�`.v/

˛uz
u;vPuzPs:

By (4.3) we have either PuzPs D Puzs (in the case that `.uzs/ D `.uz/ C 1), or
PuzPs D q�1

s Puzs C .1 � q�1
s /Puz (in the case that `.uzs/ D `.uz/ � 1). Since

`.z/ � `.v/ < `.vs/ and `.zs/ � `.z/ C 1 � `.v/ C 1 D `.vs/ we see that
PuPvs is a linear combination of the operators Puz0 with `.z0/ � `.vs/, hence the
result. �

4.2. Irreducibility and aperiodicity. Let P D
P

w2W pwPw be the transi-
tion operator of an isotropic random walk .Xn/n�0 on �. The support of P is
supp.P / D ¹w 2 W j pw > 0º.

Lemma 4.3. Let .Xn/n�0 be an isotropic random walk on a thick regular building
with transition operator P as in (4.2), and write P n D

P

w p
.n/
w Pw .

(1) If the support of P generatesW then .Xn/n�0 is irreducible.

(2) If .Xn/n�0 is irreducible then for each k > 0 there is Mk > 0 such that

p
.Mk/
w > 0 for all w 2 W with `.w/ � k.

(3) If .Xn/n�0 is irreducible, then .Xn/n�0 is aperiodic.

Proof. 1. Let x; y 2 �, and let A be an apartment containing x and y. Since
the support of P generates W there are elements w1; : : : ; wn 2 supp.P / such
that ı.x; y/ D w1w2 � � �wn. Let x0 D x and let x1; : : : ; xn 2 A be the unique
chambers of the apartment A with ı.x; xk/ D w1 � � �wk for k D 1; : : : ; n. In
particular, xn D y. Then, since x0; x1; : : : ; xk all lie in the apartment A, we have
ı.xk�1; xk/ D ı.x; xk�1/

�1ı.x; xk/ D wk. Thus p.xk�1; xk/ D pwk
=qwk

> 0,
and so

p.n/.x; y/ � p.x; x1/p.x1; x2/ � � �p.xn�1; y/ > 0;

showing that P is irreducible.
2. Suppose that .Xn/n�0 is irreducible. Thus for each s 2 S there is Ns � 1

such that p.Ns/
s > 0. The formula P 2

s D q�1
s I C .1 � q�1

s /Ps from (4.3) implies

that p.2Ns/
1 > 0 and p.2Ns/

s > 0. Thus setting N D 2
P

s2S Ns we have p.N /
1 > 0

and p.N /
s > 0 for all s 2 S . Thus takingMk D kN gives p.Mk/

w > 0 for all w 2 W
with `.w/ � k.
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3. Suppose that pw > 0, and let k D `.w/. By the previous part we have
p

.Mk/

w�1 > 0. If w D s1 � � � sk is reduced, then using (4.3) we have

PwPw�1 D Ps1
� � �Psk

Psk
� � �Ps1

D q�1
w I C � � � ;

where “C � � � ” is a nonnegative linear combination of the Pv with v 2 W .
Therefore

PMkC1 D PPMk D pwp
.Mk/

w�1 PwPw�1 C � � � D q�1
w pwp

.Mk/

w�1 I C � � � ;

and so p.MkC1/
1 > 0. Since we also have p.Mk/

1 > 0 the walk is aperiodic. �

Remark 4.4. If .Xn/n�0 is irreducible then it is not necessarily true that ¹w 2
W j pw > 0º generates W . For example if pw > 0 if and only if `.w/ D 2 then
the random walk .Xn/n�0 is irreducible. However by the deletion condition for
Coxeter groups, ¹w 2 W j `.w/ D 2º only generates the index 2 subgroup of all
even length elements of W .

4.3. The retracted walk. An indispensable technique in our analysis of isotropic
random walks .Xn/n�0 on .�; ı/ is to look at the image xXn D �.Xn/ of the random
walk under the canonical retraction �W�! W . In Proposition 4.5 below we show
that the stochastic process . xXn/n�0 on W is in fact a random walk on W , which
we call the retracted walk. However we note in advance that the retracted walk is
not W -invariant. That is, Np.wu;wv/ ¤ Np.u; v/ in general. However we we will
prove a more delicate invariance property in Proposition 4.7 later in this section.

Proposition 4.5. The isotropic random walk .Xn/n�0 is factorisable overW with
respect to the partition of� into sets�w.o/with w 2 W . Moreover, the transition
probabilities Np.u; v/ of the factor walk . xXn/n�0 (where xXn D �.Xn/) on W are
given by

Np.u; v/ D
X

w2W

au
v;wq

�1
w pw D q�1

u qv

X

w2W

˛u
v;w�1pw ;

where au
v;w � 0 and ˛u

v;w�1 � 0 are the numbers appearing in Proposition 4.1.

Proof. Let u; v 2 W , and let x 2 �u.o/. Then by Proposition 4.1,
X

y2�v.o/

p.x; y/ D
X

w2W

X

y2�v.o/\�w.x/

p.x; y/

D
X

w2W

j�v.o/ \�w.x/jq�1
w pw

D
X

w2W

au
v;wq

�1
w pw :

This proves the first equality, and the final equality follows from the definitions of
the numbers au

v;w and ˛u
v;w�1 . �
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The following proposition tells us that the return probabilities for the random
walk .Xn/n�0 can be obtained from the return probabilities for the retracted walk
. xXn/n�0.

Proposition 4.6. Let P be an irreducible isotropic random walk on a regular
building .�; ı/ of type .W; S/, and let xP be the transition operator of the retracted
walk on .W; S/. Then

p.n/.o; o/ D Np.n/.1; 1/ for all n � 1;

and thus %. xP / D %.P /.

Proof. From Proposition 4.5 (applied to P n) we have

Np.n/.1; 1/ D
X

w2W

a1
1;wq

�1
w p.n/

w ;

and since a1
1;w D j�1.o/\�w.o/j D ıw;1 we have Np.n/.1; 1/ D p.n/

1 D p.n/.o; o/.

Since P and xP are irreducible it follows that %.P / D lim sup
n!1

.p.n/.o; o//1=n D

lim sup
n!1

. Np.n/.1; 1//1=n D %. xP /. �

The retracted walk is notW -invariant, however we have the following weaker
invariance property which roughly says that the transition probabilities of the
retracted walk in two cones of the same type are the same.

Proposition 4.7. Let T be a cone type of .W; S/ and w1; w2 2 W with T .w1/ D
T .w2/ D T. Then

Np.w1u;w1v/ D Np.w2u;w2v/ for all u 2 T and all v 2 IntL0
T D T n @L0

T:

Proof. By the formula for Np.�; �/ in Proposition 4.5 it is sufficient to show that

q�1
w1uqw1v˛

w1u

w1v;w�1 D q�1
w2uqw2v˛

w2u

w2v;w�1 whenever w 2 W is such that pw > 0:

First note that since u; v 2 T we have `.wiu/ D `.wi / C `.u/ and `.wiv/ D
`.wi /C `.v/ for each i D 1; 2, and therefore qwi u D qwi

qu and qwi v D qwi
qv for

each i D 1; 2. Therefore it is sufficient to show that

˛w1u
w1v;w D ˛w2u

w2v;w whenever `.w/ � L0 (4.5)

(we have replaced w by w�1, and noted that pw�1 > 0 implies that `.w/ � L0).
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Since `.w1v/ D `.w1/C `.v/ it follows from (4.3) and Proposition 4.1 that

Pw1vPw D Pw1
PvPw D Pw1

X

w 02W

˛w 0

v;wPw 0 D
X

w 02W

˛w 0

v;wPw1
Pw 0:

By Lemma 4.2 we see that if ˛w 0

v;w ¤ 0 then w0 D v Qw for some Qw with
`. Qw/ � `.w/, and therefore

d.v; w0/ D `.v�1w0/ D `. Qw/ � `.w/ � L0:

Thusw0 2 T (since v 2 Tn@L0
T), and therefore `.w1w

0/ D `.w1/C`.w0/, giving
Pw1

Pw 0 D Pw1w 0 . Thus

Pw1vPw D
X

w 02W

˛w 0

v;wPw1w 0: (4.6)

On the other hand we have

Pw1vPw D
X

w 002W

˛w 00

w1v;wPw 00 D
X

w 02W

˛w1w 0

w1v;wPw1w 0 : (4.7)

Comparing (4.6) and (4.7) and using the linear independenceof the operators gives

˛w1w 0

w1v;w D ˛w 0

v;w for all w;w0 2 W with `.w/ � L0:

The same formula holds with w1 replaced by w2, and (4.5) follows by taking
w0 D u. �

4.4. The spectral radius. In the following theorem we give a sufficient condition
for the spectral radius of an isotropic random walk on a regular building to have
spectral radius strictly less than 1. In fact we expect that every thick regular
building .�; ı/ of type .W; S/ with W infinite has �.P / < 1 for all irreducible
isotropic random walks P , however the lack of any group action on � makes
the proof of this intuitive statement not entirely obvious. The conclusion of the
following theorem is sufficient for our purposes.

Let .W; S/ be a Coxeter system, and let F D ¹I � S j WI is finiteº. For each
w 2 W , let R.w/ D ¹s 2 S j `.ws/ D `.w/� 1º be the right descent set of w. By
[1, Corollary 2.18] we have that R.w/ 2 F for all w 2 W .

Theorem 4.8. Let .W; S/ be a Coxeter system with W infinite and let .�; ı/ be a
regular building of type .W; S/. Let P be the transition operator of an irreducible
isotropic random walk on .�; ı/. If

X

s2SnI

qs � jI j for all I 2 F (4.8)

then %.P / < 1. In particular, if qs � jS j � 1 for all s 2 S then %.P / < 1.
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Proof. Suppose first that P is the simple random walk on �. Furthermore,
suppose first that strict inequality holds in (4.8) for all I 2 F, and let C D
minI2F.

P

s2SnI qs � jI j/=Q > 0 where Q D
P

s2S qs is the total number
of chambers adjacent to any given chamber. Let x 2 � and w D �.x/. Let
I D R.w/ 2 F. Let Yn D d.o; Xn/. Then

EŒYnC1 � Yn j Xn D x�
D PŒYnC1 � Yn D 1 j Xn D x� � PŒYnC1 � Yn D �1 j Xn D x�

D
P

s2SnI qs � jI j
Q

:

Thus EŒYnC1 � Yn j Xn� � C , and so the sequence Zn D Yn � Cn is a
submartingale with respect to .Xn/n�0. We have

p.n/.o; o/ D PŒYn D 0 j X0 D o� � PŒZn � �Cn j X0 D o� � e�C 2n=2

where the last inequality is Azuma’s Inequality. Thus %.P / � e�C 2=2 < 1.
We now briefly sketch the proof in the more general case where we do not

assume strict inequality in (4.8), with P still the simple random walk on �. Note
that the singleton I D ¹s0º is in F, and that

P

s¤s0 qs > jI j. It can be seen that there
is a number K > 0 such that for each chamber x 2 � there is an element x0 with
d.x; x0/ � K such thatR.�.x0// D ¹s0º. Using this fact, and looking at the .KC1/-
step walk PKC1, an argument analogous to the above, using a telescoping sum,
shows that EŒYnCKC1 � Yn j Xn� � C.1=Q/KC1, where C D

P

s¤s0 qs � 1 > 0.
The result now follows as above.

Now let P D
P

w2W pwPw be an arbitrary isotropic random walk on �. By

Lemma 4.3 there is N > 0 such that p.N /
s > 0 for all s 2 S . Thus, writing zP for

the simple random walk operator on �, we have

PN D b zP C
X

w2W

bwPw where b > 0 and bw � 0 for all w 2 W :

Since
P

w2W p
.N /
w D 1 we have b C

P

bw D 1. Since zP is symmetric we
have k zP k D %. zP / < 1 by the above argument (where kP k is the operator norm
of P W `2.�/! `2.�/). Thus, since kPwk � 1 for all w, we see that

%.P /N D %.PN / � kPNk � bk zP k C
X

w2W

bwkPwk < b C
X

w2W

bw D 1:

(The first equality holds since P is irreducible and aperiodic, see [49, Exer-
cise 1.10]). �
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Corollary 4.9. An isotropic random walk on any regular thick Fuchsian building
has spectral radius strictly less than 1.

Proof. Let .W; S/ be a Fuchsian Coxeter system. Any three distinct elements of
S generate an infinite group, and so jI j � 2 for all I 2 F. Thus if jS j � 4 we have

X

s2SnI

qs � 2jS n I j D 2.jS j � jI j/ � 2.4� 2/ D 4 > jI j for all I 2 F;

and so the result follows from Theorem 4.8. If jS j D 3 and jI j D 1 then
P

s2SnI qs � 4 > jI j, and if jS j D 3 and jI j D 2 then
P

s2SnI qs � 2 D jI j,
completing the proof. �

4.5. The path space. Let Tx � �N denote the space of all paths in � starting
at x 2 � (with jumps of any length allowed). More formally, the path space is
defined as the inverse limit

Tx D lim �T
n
x D

°


 2
Y

n�0

Tn
x

ˇ

ˇ

ˇ 
i D �ij .
j / for all i � j
±

where Tn
x D ¹xº��n�1 � �n is the space of all paths in� of length n�1 starting

at x 2 �, and �ij WTj
x ! Ti

x are the natural projections. From this description we
see (from Tychonoff’s Theorem) that Tx is a compact Hausdorff topological space.

In the case of a Cayley graph of a group, there is naturally an automorphism
of the graph taking any given vertex x to any other vertex y, and thus there is a
bijection  xy WTx ! Ty mapping paths based at x to “isomorphic” paths based
at y. In effect, this gives the intuition that random walks starting at x “behave
the same as” random walks starting at y. In our context there is typically not
an automorphism of � taking x to y, and so we need to work a little harder
to construct a suitable bijection  xy WTx ! Ty. The distance regularity of
Proposition 4.1 plays a crucial role here.

Proposition 4.10. For each x; y 2 � there is a bijection  xy WTx ! Ty such that
the following conditions hold.

(1) If 
D .x0; x1; x2; : : :/ 2 Tx and  xy.
/D .y0; y1; y2; : : :/, then ı.xi ; xiC1/D
ı.yi ; yiC1/ and ı.x; xi / D ı.y; yi/ for all i � 0.

(2) For all L � 0 and for all x; y of same cone type, if 
 D .x D x0; x1; x2; : : :/

and  xy.
/ D .y D y0; y1; y2; : : :/ and if xj 2 IntLC.x/ for some j � 0,
then yj 2 IntLC.y/.

(3) We have PxŒ.Xn/n�0 2 A� D PyŒ.Xn/n�0 2  xy.A/� for all measurable
A � Tx, where Px denotes the distribution of the isotropic random walk
.Xn/n�0 started at X0 D x 2 �.
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Proof. We inductively build bijections  n
xy WTn

x ! Tn
y satisfying part 1 of the

proposition (for 0 � i � n). The case n D 0 is trivial. Suppose that n
xy WTn

x ! Tn
y

has been constructed. For any finite path 
 D .x1; : : : ; xn/ and any point xnC1 we
define 
 ı xnC1 D .x1; : : : ; xn; xnC1/.

Write

TnC1
x D ¹
n ı xnC1 j 
n 2 Tn

x ; xnC1 2 �º
D

G

u;v2W

¹
n ı xnC1 j 
n 2 Tn
x ; xnC1 2 �u.x/ \�v.xn/º;

where 
n D .x0; : : : ; xn/. For each 
n 2 Tn
x , the set 
n ı ¹xnC1 j xnC1 2

�u.x/ \ �v.xn/º has cardinality aw
uv , where w D ı.x; xn/ (see Proposition 4.1).

We also have

TnC1
y D

G

u;v2W

¹ n
xy.
n/ � ynC1 j 
n 2 Tn

x ; ynC1 2 �u.y/ \�v.yn/º

where n
xy.
n/ D .y0; : : : ; yn/. For each 
n 2 Tn

x the set n
xy.
n/ı¹ynC1 j ynC1 2

�u.y/ \ �v.yn/º also has cardinality aw
uv since ı.y; yn/ D ı.x; xn/ D w (by the

induction hypothesis). Thus for each fixed 
n 2 Tn
x and each u; v 2 W we can

choose a bijection

�uv
xy Œ
n�W ¹xnC1 j xnC1 2 �u.x/\�v.xn/º �! ¹ynC1 j ynC1 2 �u.y/\�v.yn/º:

Thus for each 
n 2 Tn
x we obtain a bijection �xy Œ
n�W� ! � (depending on 
n)

by the rule

�xy Œ
n�.xnC1/ D �uv
xy Œ
n�.xnC1/ if xnC1 2 �u.x/ \�v.xn/:

Then define  nC1
xy WTnC1

x ! TnC1
y by

 nC1
xy .
nC1/ D  n

xy.
n/ ı �xy Œ
n�.xnC1/: (4.9)

By construction this bijection satisfies the conditions in part 1 of the proposition
for 0 � i � nC 1.

We now construct a bijection xy WTx ! Ty satisfying part 1 of the proposition.
For 
 D .
0; 
1; : : :/ 2 Tx let

 xy.
/ D . 0
xy.
0/;  

1
xy.
1/; : : :/:

By (4.9) we see that  xy.
/ 2 Ty for all 
 2 Tx, and hence  xy WTx ! Ty.
If  xy.
/ D  xy.


0/ then 
i D 
 0
i for all i � 0, and hence 
 D 
 0 and

so 
 is injective. To check surjectivity, if 
 D .
0; 
1; : : :/ 2 Ty then let

 0 D .. 0

xy/
�1.
0/; . 

1
xy/

�1.
1/; : : :/. Then 
 0 2 Tx (using (4.9)), and hence
 xy is surjective.
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It follows that  xy WTx ! Ty is a bijection satisfying the conditions in part 1
of the proposition. Then from Proposition 3.4 and Proposition 3.8 we have

@LC.x/ D ¹z 2 C.x/ j ı.x; z/ 2 @LT .�.x//º;

and part 2 of the proposition follows from this description. Since .Xn/n�0 is an
isotropic random walk part 1 of the proposition implies part 3. �

On occasion we will consider  xy as a bijection  xy WTn
x ! Tn

y for each fixed
n � 0 (that is, we write  xy in place of  n

xy).

4.6. Isotropic random walks and groups. The following proposition (cf. [10,
Lemma 8.1]) illustrates how isotropic random walks naturally arise from bi-
invariant probability measures on groups acting on buildings.

Proposition 4.11. Let G be a locally compact group acting transitively on a
regular building .�; ı/, and letB be the stabiliser in G of a fixed base chamber o.
Normalise the Haar measure on G so that B has measure 1. Let ' be the density
function of a B-bi-invariant probability measure on G. If the group B acts
transitively on each set �w.o/ with w 2 W , then the assignment

p.go; ho/ D '.g�1h/

for g; h 2 G defines an isotropic random walk on .�; ı/.

Proof. To check that p.�; �/ is well defined, suppose that g1o D go and h1o D ho.
Then g�1

1 g 2 B and h�1h1 2 B , and thus g�1
1 h1 2 Bg�1hB , and so '.g�1

1 h1/ D
'.g�1h/.

For each x 2 � use transitivity to fix an element gx 2 G with gxo D x. Then
G is the disjoint union of cosets gxB , x 2 �, and thus

X

y2�

p.x; y/ D
X

y2�

'.g�1
x gy/ D

X

y2�

Z

g�1
x gyB

'.g/ dg D
Z

G

'.g/ dg D 1:

Clearly p.gx; gy/ D p.x; y/ for all g 2 G and all x; y 2 �, and since B is
transitive on each set �w.o/ it follows that p.�; �/ is isotropic. �

Thus Theorems 1.1 and 1.2 give a rate of escape theorem and a central limit
theorem (with formulas for the speed and variance) for random walks induced
by B-bi-invariant measures on groups acting, as in Proposition 4.11, on Fuchsian
buildings, where B is the stabiliser of a chamber. The finite range assumption
amounts to assuming that the density function of the B-bi-invariant measure is
supported on finitely many B double cosets. An important example is the case
where G D G.Fq/ is a Fuchsian Kac–Moody group over a finite field Fq , acting
on its natural building G=B (as in Example 2.5), and thus Corollary 1.3 follows
from Proposition 4.11 and Theorems 1.1 and 1.2.
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5. Isotropic random walks on regular Fuchsian buildings

We now restrict our attention to irreducible isotropic random walks on a thick
regular Fuchsian building. Thus in this section .W; S/ denotes a Fuchsian Coxeter
system, .�; ı/ is a thick regular Fuchsian building of type .W; S/, and P D
P

w2W pwPw is the transition operator of an isotropic random walk .Xn/n�0 on�.
For the remainder of this section we fix a recurrent cone type T.

We will assume that .Xn/n�0 has bounded range. Thus there is a minimal
number L0 � 0 such that

pw ¤ 0 H) `.w/ � L0: (5.1)

It is sufficient to prove Theorems 1.1 and 1.2 under the assumption that ps > 0

for all s 2 S , and so there is an " > 0 such that

p.x; y/ > " whenever d.x; y/ D 1: (5.2)

To see this, note that by Lemma 4.3.2 there is an M � 1 such that the M -step
walk .XnM /n�0 satisfies p.M /

s > 0 for all s 2 S , and by the bounded range
assumption proving Theorems 1.1 and 1.2 for theM -step walk implies the theorems
for the 1-step walk .Xn/n�0. Thus, without loss of generality we will assume (5.2)
throughout this section.

5.1. Renewal times and the proofs of Theorems 1.1 and 1.2. In this section
we setup a renewal structure for isotropic random walks on Fuchsian buildings.
The main result is Theorem 5.5, which is the key ingredient in the proofs of our
rate of escape and central limit theorems. The proof of Theorem 5.5 will occupy
Sections 5.2 and 5.3.

We note that Theorems 1.1 and 1.2 can be proven by only developing a renewal
structure for the retracted random walk . xXn/n�0 onW . However here we will de-
velop a more satisfying picture by proving a renewal structure for the walk .Xn/n�0

on the building. This only requires a small amount more work, and in our opinion
is more natural.

We start by recalling the crucial fact that geodesics in a hyperbolic group
either stay within bounded distance of each other or diverge exponentially. More
precisely, there exists some exponential divergence function eWN0 ! R such that
the following holds: for all u 2 W and all geodesics 
1 from u to any v1 2 W and

2 from u to any v2 2 W and all r; R 2 N0 with RC r � min¹d.u; v1/; d.u; v2/º
and d.
1.R/; 
2.R// � e.0/, all paths starting in 
1.RC r/, visiting only vertices
in W n B.u; R C r/ and ending in 
2.R C r/ have length of at least e.r/. Here

i .n/ is the point on 
i at distance n 2 N0 to u. In particular, two geodesics that
have been at least e.0/ apart can never intersect again.
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Lemma 5.1. (c.f. [23, Lemma 2.4]) Let be u 2 W n ¹eº. Then the boundary
@1CW .u/ is contained in the union of two geodesic rays starting at u in the Coxeter
complex.

Proof. Since the Coxeter complex is homeomorphic to the hyperbolic disc, it can
be endowed with an orientation. Let r1; r2WN0 ! W be two infinite geodesic rays
in the Coxeter complex going through u which coincide up to u. Let c1 and c2

be the geodesic rays extracted from r1; r2 starting at u. Let V be a component
of W n ¹c1 [ c2º which does not contain e; here we identify c1 and c2 as the
sets of vertices which lie on the geodesics. Let us prove that V is contained in
CW .u/: let v 2 V , and let us consider a geodesic segment cv joining e to v.
Since the Coxeter complex is planar, Jordan Theorem implies that cv intersects
@V D ¹w1 2 V j there exists w2 2 W nV W d.w1; w2/ D 1º at some point w, hence
c1 or c2. Let us assume that it intersects c1. Since c1 is geodesic, we may replace
the portion of cv before w by c1: it follows that the concatenation of c1 up to w
and cv from w to v is geodesic; this implies that v 2 CW .u/.

By Arzelà–Ascoli theorem and the planarity of the Coxeter complex, we may
find two rays c` and cr going through u such that CW .u/ is the union of those rays
with all the components of their complement which do not contain e. �

Recall that we have fixed a recurrent cone type T, and we now fix some xT 2 �
with T .xT/ D T. Set L1 D max¹L0; e.0/º. In the following we will construct
some yT 2 IntL1

C�.xT/ such that C�.yT/ � IntL1
C�.xT/. Let us remark that

IntL1
C�.xT/ always contains at least one infinite connected component.

Lemma 5.2. Let be L � 1 and y 2 IntLC�.xT/. Then

d.y; @LC�.xT// D d.�.y/; @LCW .�.xT///:

Proof. Since retractions decrease the distance, and since we have the equality
�.@LC�.xT// D @LCW .�.xT// (see Proposition 3.8), we get d.y; @LC�.xT// �
d.�.y/; @LCW .�.xT///. It remains to show the other inequality to finish the proof.
For this purpose, take a path of length K D d.�.y/; @LCW .�.xT/// from �.y/ to
some v 2 @LCW .�.xT//, say the path .w0 D �.y/; w1; : : : ; wK D v/. We now
want to construct a path of length K from y to @LC�.xT/. Let A be an apartment
which contains o and y (and thus xT by (A3)). By Proposition 3.4 the retraction
� maps CA.xT/ isometrically onto CW .�.xT//. Therefore,

� D ..�jA/�1.w0/ D y; .�jA/�1.w1/; : : : ; .�jA/�1.v//

is a path of length K from y to z D .�jA/�1.v/ 2 @LCA.xT/. Now choose any
z0 2 A with d.z; z0/ D L and z0 … CA.xT/. Then �.z0/ … @LCW .�.xT// D
�.@LC�.xT//, and hence z0 … @LC�.xT/. That is, � is a path of length K in
A � � which connects y with @LC�.xT/. This finishes the proof. �
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The following lemma and its corollary will be used to construct yT.

Lemma 5.3. LetL � e.0/ and let u 2 W n¹eº be such that T .u/ D T. Then there
is some v 2 IntLCW .u/ such that T .v/ D T and CW .v/ � Int1CW .u/.

Proof. Let u 2 W n¹eºwith T .u/ D T. By Lemma 5.1 there are two geodesic rays

1; 
2 starting from e whose union contains @1CW .u/ and which coincide up to u.
Since T .u/ is recurrent we can choose any end � 2 @1CW .u/ which is different
from the ends described by 
1 and 
2. Let � be any geodesic ray which starts at e,
follows 
1 up to u and describes �. It follows that, for every i 2 ¹1; 2º, the distance
d.�.t/; 
i.t // cannot be bounded for t � 0. Hence, there are t1; t2 2 N such that
d.�.ti /; 
i .ti// � L C 1 � e.0/ C 1 implying that d.�.t/; 
i.t // � e.0/ C 1

for all t � max¹t1; t2º and all i 2 ¹1; 2º. That is, � and 
i , i 2 ¹1; 2º, diverge
exponentially. In particular, there must be some t0 � max¹t1; t2º such that
v0 D �.t0/ 2 IntLCW .u/ with T .v0/ being recurrent. Denote by 
 0

1 and 
 0
2 the

geodesic rays starting at e whose union contains @1CW .v
0/ and pass through v0.

Due to exponential divergence of 
i and 
 0
j , where i; j 2 ¹1; 2º, we have that


i .t / ¤ 
 0
j .t / for all t � t0. This yields CW .v

0/ � Int1.u/
The cone CW .v

0/ contains an element v with T .v/ D T, and since CW .v/ �
CW .v

0/ the result follows. �

We can iterate the last step by replacing the role of u by v. This leads then to
the following corollary.

Corollary 5.4. Let be u 2 W n ¹eº such that T .u/ D T. Then there is some
v 2 IntL1

CW .u/ such that T .v/ D T and CW .v/ � IntL1
CW .u/.

We now show how to construct yT: take an apartment A which contains o
and xT and recall that �jA denotes the restriction of � to A which becomes an
isomorphism mapping A onto W . We apply Corollary 5.4 on u D �jA.xT/ and
find some v 2 W such that CW .v/ � IntL1

CW .u/. Due to Proposition 3.8 and
Lemma 5.2 we then must have C�..�jA/�1.v// � IntL1

C�.xT/. Fix now for the
rest of this section such a chamber yT D .�jA/�1.v/ in dependence of xT, v and
A. Furthermore, fix a shortest path �T D ŒxT; x

.1/

T ; : : : ; x
.k�1/

T ; yT� from xT to
yT contained in C.xT/. Note that for x 2 � with T .x/ D T the bijection  xTx

maps �T onto a path from x to some y 2 IntL1
C.x/ contained in C�.x/ (see

Proposition 4.10.2).
We now give the definition of renewal times. For each x 2 � with T .x/ D T

let yTx be the set of all paths which start at x, initially follow

�x D . xTx.x
.1/

T
/;  xTx.x

.2/

T
/; : : : ;  xTx.yT//

and stay in IntL1
C.x/ afterwards forever. We define R0 D 0 and let

R1 D inf¹k � 0 j .Xi /i�k 2 yTXk
; T .Xk/ D Tº
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be the first time k 2 N that the random walk hits the root of a cone of type T, visits
consecutively  xTXk

.x
.1/

T
/;  xTXk

.x
.2/

T
/; : : : ;  xTXk

.yT/ and stays in IntL1
C.Xk/

afterwards forever. Inductively,

Rn D inf¹k > Rn�1 j .Xi /i�k 2 yTXk
; T .Xk/ D Tº: (5.3)

Recall the notion of random variables with exponential moments. A real
valued random variable Y has exponential moments if EŒexp.�Y /� <1 for some
� > 0, or equivalently, if there are positive constants C > 0 and c < 1 such that
PŒY D n� � Ccn for all n 2 N0.

Theorem 5.5. Let .Xn/n�0 be an isotropic random walk on a thick regular
Fuchsian building .�; ı/ with bounded range.

(1) The renewal times Rn are almost surely finite,

d.o; XRn
/ D

n
X

iD1

d.XRi�1
; XRi

/;

and .d.XRi�1
; XRi

//i�2 are i.i.d. random variables.

(2) The renewal time R1 and the increments .RiC1 � Ri / for i � 1 have
exponential moments. The same holds true for d.o; XR1

/ and d.XRi
; XRiC1

/

for i � 1.

The proof of Theorem 5.5 will be given in Sections 5.2 and 5.3. Assuming
Theorem 5.5 for the moment, one can now argue as in [23] (verbatim modulo
some notations) to prove our law of large numbers and central limit theorem.

Proof of Theorems 1.1 and 1.2. We content ourselves with giving the main idea
and refer to [23] for the technical details. The role of the cones in the definition
of the renewal times was that the trajectory of the walk observed at renewal times
is the “aligned” sum of i.i.d. pieces, Theorem 5.5; that is,

d.o; XRn
/ D

n
X

iD1

d.Ri�1; Ri/:

Now, the law of large numbers and central limit theorem for real-valued random
variables apply and the statements in Theorems 1.1 and 1.2 follow for the process
d.o; XRn

/. It remains therefore to control the distance or “error” between Xn and
the position of the last renewal before time n. More precisely, we define the last
renewal time before time n:

k.n/ D sup¹k j Rk � nº:
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We have that
n

k.n/
D n

Rk.n/

Rk.n/

k.n/
:

By the strong law of large numbers the second factor tends a.s. to EŒR2�R1�. For
the first factor we observe that Rk.n/ � n � Rk.n/C1, hence

lim sup
n!1

Rk.n/

n
� 1:

On the other hand, since n � k.n/ and .Rk.n/�Rk.n/C1/ have finite first moments,

lim
n!1

Rk.n/ �Rk.n/C1

n
D 0 a.s.

and hence

lim inf
n!1

Rk.n/

n
� lim inf

n!1

�Rk.n/ � Rk.n/C1

n

�

C Rk.n/C1

n
� 1:

Eventually, we have that

n

k.n/

a.s.����!
n!1

EŒR2 �R1� <1:

Denote
Mk D sup¹d.Zn; ZRk

/ j Rk � n � RkC1º; k � 1:
The random variables .Mk/k�1 form an i.i.d. sequence of random variables with
exponential moments. This is a consequence of the fact that d.XRiC1

; XRi
/ have

exponential moments, see [23, Corollary 4.2]. As a consequence we have that

lim
n!1

d.Zn; e/� d.ZRk.n/
; e/

n
� lim

k!1

Mk

k
D 0 a.s.:

Since the strong law of large numbers guarantees that

d.ZRk.n/
; e/

k.n/

a.s.����!
n!1

EŒd.ZR2
; ZR1

/�

we can conclude the proof of Theorem 1.1:

d.Zn; e/

n
D

d.Zn; e/� d.ZRk.n/
; e/

n
C
d.ZRk.n/

; e/

k.n/

k.n/

n
a.s.����!

n!1
0C EŒd.ZR2

; ZR1
/�

EŒR2 � R1�
:

The proof of Theorem 1.2 is more involved; we refer [23, Section 4.2] for the
remaining details. �
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5.2. Proof of Theorem 5.5.1. Recall that xXn D �.Xn/ denotes the retracted
walk on W and its transition probabilities are given by Np.u; v/ and its transition
operator is xP . This retracted walk is necessarily irreducible and aperiodic (P is
irreducible and thus aperiodic by Lemma 4.3). Proposition 4.6 and Corollary 4.9
give %. xP / D %.P / < 1

The retraction induces a probability measure on the space of trajectories T

in the underlying Coxeter group, we also denote this by P. Recall that by (5.2)
we have a uniform bound on the next neighbour one-step probabilities: we have
Np.u; v/ > " for all u; v 2 W with d.u; v/ D 1.

For each coneC.u/ in .W; S/ let @1C.u/ denote the closure ofC.u/ at infinity,
that is, in the Gromov hyperbolic compactification. If u 2 W has cone type T let
yTu be the set of all paths starting at u, initially following the path

�u D .�. xTu.x
.1/

T
//; �. xTu.x

.2/

T
//; : : : ; �. xTu.yT///; (5.4)

and staying in IntL1
C.u/ afterwards.

The invariance properties given in Propositions 4.7 and 4.10 induce the follow-
ing invariance property for the retracted walk.

Lemma 5.6. For all u; v 2 W with T .u/ D T .v/ D T and all measurable
sets A � yTu we have

PuŒ. xXn/n�0 2 A� D PvŒ. xXn/n�0 2 vu�1A�:

Since . xXn/n�0 is an irreducible Markov chain on a hyperbolic graph with
bounded range and spectral radius %. xP / < 1 the Markov chain . xXn/�0 converges
almost surely to a random point xX1 of the hyperbolic boundary @W ; since the
detailed structure of Gromov hyperbolic boundary is not needed for our purposes,
we refer e.g. to [49, Theorem 22.19] for further details. The harmonic measure �
is defined as the law of xX1. More precisely, it is the probability measure on the
hyperbolic boundary @W such that �.A/ D PŒ xX1 2 A� for each A � @W .

Lemma 5.7. The harmonic measure � of . xXn/n�0 is not concentrated on a finite
number of atoms.

Proof. Let us assume that � is concentrated on the finite set ¹�1; �2; : : : ; �kº � @W .
Let u 2 W be such that T .u/ D T and that �1 2 Int.@1C.u//. Then by the
definition of harmonic measure,

P1Œ xX1 D �1; xXn 2 C.u/ for all but finitely many n� D �.�1/ > 0:

Consequently there exists some v 2 C.u/ such that

PvŒ xX1 D �1; xXn 2 C.u/ for all n� > 0:
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Since there exists a path of positive probability inside C.u/ from u to v, we have

PuŒ xX1 D �1; xXn 2 C.u/ for all n� > 0:

As there are only a finite number of atoms and the automaton A.W; S/ is strongly
connected (Theorem 3.2), there exists somew 2 W with cone type T .u/ D T such
that @1C.w/ does not contain any of the atoms �1; : : : ; �k. However by Lemma 5.6
we have that there exists some �kC1 2 @1C.w/ such that

Pw Œ xX1 D �kC1; xXn 2 C.w/ for all n� > 0;

and so �kC1 is an atom, a contradiction. �

The next lemma will be crucial for our proofs.

Lemma 5.8. There exists a constant Npesc > 0 such that for all u 2 W with
T .u/ D T we have that

PuŒ. xXn/n�0 2 yTu� � Npesc:

Proof. First we claim that

Pw Œ xXn 2 C.w/ for all n� > 0 for all w 2 W with T .w/ D T: (5.5)

Due to strongly connectedness of the automaton A.W; S/ (see Theorem 3.2)
and by the definition of recurrent cone types there exists some R � 0 such
that the sphere S.1; R/ contains only elements whose cone types are recurrent.
Furthermore, by definition we have W n B.1; R � 1/ D

S

w 02S.1;R/ C.w
0/. By

Lemma 5.7 the support of � cannot be contained in the set of Gromov boundary
points determined by the finitely many geodesics (from Lemma 5.1) describing
the boundaries of the cones C.w0/ with w0 2 S.1; R/. Thus there exists some
v 2 S.1; R/ and some open set O � @1C.v/ such that PŒ xX1 2 O� > 0. On
the event that xX1 2 O , at some moment the random walk . xXn/ enters C.v/ and
never leaves it afterwards. If w 2 W with T .w/ D T, then the coneC.w/ contains
an element v1 with T .v1/ D T .v/ (since T is recurrent and A.W; S/ is strongly
connected). By (5.2) there is positive probability of walking from w to v1 via
a shortest path, and necessarily this path is contained in C.w/. Hence (5.5) is
established.

Let u 2 W with T .u/ D T, and let w D uı.xT; yT/. By the construction
in Section 5.1 we have T .w/ D T, and C.w/ � C.u/. By (5.2) there is positive
probability that the retracted random walk with X0 D u follows the path �u from
(5.4) initially, and so (5.5) implies the Lemma. �

Recall from Proposition 4.10.3 that for all x; y 2 � with T .x/ D T .y/, and all
subsets A � yTx, we have

Px Œ.Xn/n�0 2 A� D PyŒ.Xn/n�0 2  xy.A/�: (5.6)
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Lemma 5.9. There exists some constant pesc > 0 such that for all x 2 �

PxŒ.Xn/n�0 2 yTx� � pesc:

Proof. This is a consequence of Proposition 3.8 and Lemma 5.8. �

Proof of Theorem 5.5.1. This is an adaption of [23, Theorem 3.1]. We sketch the
proof and refer to [23] for the details. The fact that the Cannon automatonA.W; S/

is strongly connected implies that there exists some R 2 N such that for all
x 2 � the ball B.x; R/ contains at least one chamber of cone type T. This can be
extended to prove the following fact. Denote by yT.n/

x the set of y 2 � such that
there exists a path .x0; x1; x2; : : :/ 2 yTx such that xn D y. For x 2 �, denote the
first exit time of yTx by Dx D inf¹n � 1 j Xn 62 yT.n/

x º. Then there exists some
constant ph and some K such that for all choices of x 2 � and all y 2 IntL1

C.x/

we have

PxŒ¹T .Xn/ºKnD1 3 T� � ph and PyŒ¹T .Xn/ºKnD1 3 T j Dx D1� � ph:

Thus wherever the walk is it will reach a chamber x 2 � of cone type T after at
most K steps with some positive probability of at least ph. By Lemma 5.9, each
time the walk is at a chamber of cone type T it has a positive probability of at
least pesc to follow the walk  xTx.�T/ and to stay in the L1-interior of this cone
forever. If it does, this means that a renewal step was performed, and otherwise,
the walk exits this last cone. Now, again the walk will hit a chamber of cone type T

in at most K steps with probability at least ph and we continue as above until we
eventually performed one renewal step. Hence by induction, the random times Rn

are almost surely finite.
It is clear that d.o; XRn

/ D
Pn

iD1 d.XRi�1
; XRi

/, because the chambers
.XRn

/n�0 lie in a sequence of nested cones, and so there is a geodesic from
o D X0 toXRn

passing throughXR1
; XR2

; : : : ; XRn�1
. The fact that what happens

between two subsequent renewal times is independent is a consequence of the
following crucial property. For any x; y 2 � with cone type T and any A � yTx,
equation (5.6) implies that

PxŒ.Xn/n�0 2 A j Dx D1� D PyŒ.Xn/n�0 2  xy.A/ j Dy D1�:

Thus we may introduce a new probability measure: for A �  xo.yTx/ let

QTŒ.Xn/n�0 2 A� D PxŒ.Xn/n�0 2  ox.A/ j Dx D1�;

where x is of cone type T. Define the �-algebras

Gn D �.R1; : : : ; Rn; X0; : : : ; XRn
/; n � 1:
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Although the Rn’s are not stopping times, a check of the definition of conditional
probability yields the following “Markov property”: for any measurable set A �
 xo.yTx/ and any x 2 � of cone type T,

PxŒ.XRnCk/k�0 2  oXRn
.A/ j Gn� D QTŒ.Xk/k�0 2 A�

(see [23, Lemma 3.3] for details). Thus d..XRi�1
; XRi

//i�2 are i.i.d. random
variables. �

5.3. Proof of Theorem 5.5.2. As the Cayley graph of .W; S/ is planar, its Cayley
2-complex is such that the one skeleton is given by the Cayley graph and the 2-cells
are bounded by loops. These loops are described by the relations

s2 D 1 and .st/mst D 1 for all s; t 2 S with s ¤ t ;
where mst D mts 2 Z�2 [ ¹1º for all s ¤ t . Denote by k the maximal length of
all finite relations. Then, every loop in the Cayley 2-complex has length of at most
k. At various places, we will use the fact that the 2-complex is homeomorphic to
the hyperbolic disc and can be endowed with an orientation.

We make use of the following type of connectedness of spheres in Cayley
graphs. We give an adaption of the results in [2] and [19] to our setting. Define
the annulus

S.k/.w;K/ D ¹w0 2 W j K � k=2 � d.w;w0/ � KC k=2º; k; K 2 N0; w 2 W:

Lemma 5.10. LetK > k=2. Then there is a simple cycle in S.k/.w;K/ that forms
a simple closed curve around w in the Cayley 2-complex.

Proof. By planarity we can order the elements in the sphere S.w;K/ in clockwise
order and say that two elements are neighbors on the sphere if they are neighbors
in the ordering. Pick two neighbors u; v 2 S.w;K/. Since the Cayley graph is
one-ended and planar there exists a loop in the Cayley 2-complex that contains
u; v. Hence, d.u; v/ � k=2 and thus there exists a path in S.k/.w;K/ connecting
u and v. The concatenation of all paths connecting the neighbors is a cycle C
that is contained in S.k/.w;K/. Since K > k=2 every infinite path starting from
w intersects the cycle C . It is straightforward to see that the cycle C contains a
simple cycle as a subset that forms a simple closed curve around w in the Cayley
2-complex. �

The following proposition is a key ingredient in the proof of Theorem 5.5.2.
The result is a well-known fact for random walks on non-amenable groups, how-
ever in our case the retracted random walk is not group invariant.

Proposition 5.11. There exist C < 1 and � < 1 such that for any u 2 W n ¹eº
and all v 2 C.u/

F.u; v/ D PuŒ xXn D v for some n� � C�d.u;v/:
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Proof. FixK > k=2 and let w 2 W be such that d.1; w/ > KCk=2. Lemma 5.10
and the Jordan curve theorem yields now that S.k/.1; d.1; w// \ S.k/.w;K/ ¤ ;.
Let �C be a geodesic ray from 1 passing through w and �� be a geodesic
ray starting from 1 and not passing through S.k/.w;K/. Denote by N� the bi-
infinite path consisting of geodesics �C and ��. There are at least two points
v1; v2 2 S.k/.1; d.1; w// \ S.k/.w;K/ on different sides of N� , i.e. each path
between v1 and v2 has to cross �� or �C. We will make use of this fact later
in the proof.

Let 
 be a geodesic from 1 to v passing through u, and let d D d.u; v/.
Let D 2 N be such that D > 2e.0/ C 2k and e.D/ > 4e.0/ C 4k. For
i 2 ¹1; : : : ; bd=Dcº denote by ui D 
.d.1; u/C i �D/ and let B.ui ; 2e.0/C 2k/
the ball of radius 2e.0/C 2k around ui . We define

Bi D
[

w2B.ui ;2e.0/C2k/

C.w/

The boundary of Bi is given by @BiD¹w2Bi j there exists w02W n Bi Ww0�wº.

Claim. The boundaries @Bi ’s are disjoint.

Proof of the claim. The choice of D > 4e.0/ C 4k implies that the balls
B.ui ; 2e.0/C 2k/ are disjoint. Let us assume that there exists some w 2 @Bi \
@BiC1 for some i and show that this yields a contradiction. Denote by 
C a
geodesic continuation of 
 that is contained in all Bi ’s. Let 
� be a geodesic
ray emanating from 1 and not intersecting the @Bi ’s, and let N
 the bi-infinite path
consisting of the elements of 
C and 
�. Let 
1 be the geodesic from 1 to w that
maximises d.
1.t /; 


C.t // for all t � d.1; w/ among all geodesics from 1 to w;
this construction is well-defined since geodesics can only cross in vertices.

Our next step is to show that 
1 is sufficiently “far away” from ui . Due
to planarity, there exists a geodesic ray 
 0

1 starting from 1, that passes through
S.k/.1; d.1; ui // \ S.k/.ui ; 2e.0/C 3k=2/, and is between 
C and 
1. To see this,
take any w0

1 2 S.k/.1; d.1; ui// \ S.k/.ui ; 2e.0/ C 3k=2/ on the same side of N

as 
1. By maximality of 
1 the vertex w0

1 has to lie between 
1 and 
C. First,
choose a geodesic from 1 to w1 that lies in between 
C and 
1. Now, augment
this geodesic step by step (following some way in the automaton) till forever or
until one hits 
1 in which case we follow 
1 afterwards as long as we can, and then
continue to follow some path in the automaton. Since d.1; u1/�k=2 � d.1; w0

1/ �
d.1; u1/ C k=2 and d.u1; w

0
1/ � 2e.0/ C k we have that d.
 0

1.d.1; ui //; ui / �
2e.0/C k=2. The maximality of 
1 implies now that

d.
1.d.1; ui //; ui / � 2e.0/C k=2: (5.7)
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Since w 2 @BiC1 there exists a geodesic 
2 from 1 to w that passes through
B.ui ; 2e.0/ C 2k/. Denote by v a point in the intersection of 
2 and B.uiC1,
2e.0/C 2k/. We have

d.1; uiC1/ � 2e.0/� 2k � d.1; v/ � d.1; uiC1/C 2e.0/C 2k
and

d.v; uiC1/ � 2e.0/C 2k:
Therefore,

d.
2.d.1; uiC1/; 
.d.1; uiC1/// � 4e.0/C 4k:
Eventually, by the exponential divergence of geodesics and since e.D/ > 4e.0/C
4k we have that d.
.d.1; ui /; 
2.d.1; ui /// < e.0/. Inequality (5.7) implies now
that

d.
1.d.1; ui /; 
2.d.1; ui /// > e.0/;

and hence 
1 and 
2 diverge which contradicts the fact that they intersect in w.
This proves the claim.

We define the stopping times

�i D inf¹n � 0W xXn 2 Biº:
In order to walk from u to v the walk has to enter each Bi , and so we find that

F.u; v/ � PuŒ�1 <1; �2 <1; : : : ; �bd=Dc <1�:
Our proof strategy is now to prove that

PŒ�iC1 D1 j �i <1� � c for all i 2 ¹1; : : : ; bd=Dcº (5.8)

for some constant c > 0. An application of the strong Markov property yields
then that

F.u; v/ � PuŒ�1 <1; �2 <1; : : : ; �bd=Dc <1� � .1� c/bd=Dc;

which proves the claim. Therefore it remains to prove (5.8). Assume �i <1 and
denotew D xX�i

. Due to the connectivity of spheres there exists somew1 such that
e.0/Ck=2 � d.w;w1/ � e.0/C3k=2, d.1; w/�k=2 � d.1; w1/ � d.1; w/Ck=2
and w1 … Bi . Now, due to the fact that geodesics either stay at bounded distance
at most e.0/ or diverge, we find that C.w1/ does not intersect BiC1. Hence, a
walk started in w1 will stay with positive probability of at least Npesc in C.w1/ and
therefore will never visitBiC1. As the probability that a walk started inw will visit
w1 is bounded below by "e.0/C3k=2 we obtain (5.8) with c D "e.0/C3k=2 Npesc. �

For each u 2 W let

Du D inf¹n � 1 j xXn 62 �.yT.n/
x /º:

It is crucial to bound the moments of Du. In the following Ev denotes the
expectation given that xX0 D v, v 2 W .
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Lemma 5.12. There exist constants �D; KD such that for all u 2 W with T .u/ D
T we have

EvŒexp.�DDu/1¹Du<1º� � KD for all v 2 C.u/:

Proof. Since p.v; z/ � " whenever d.v; z/ D 1, [49, Lemma 8.1] guarantees the
existence of a constant A such that for all v; z 2 W we have

Np.n/.v; z/ � Ad.v;z/%. NP /n: (5.9)

We proceed with the tails of PvŒDu D n� for u such that T .u/ D T and v 2 C.u/.
Let ı > 0 to be chosen later, then

PvŒDu D nC 1�
� PvŒd.v; xXn/ � ın;Du D nC 1�C PvŒd.v; xXn/ � ın;Du D nC 1�:

(5.10)

We will make use of the fact that Du D n C 1 implies xXn 2 @2L1
C.u/ for n

sufficiently large. Due to the planarity of .W; S/we have that c.n/ D j@2L1
C.u/\

B.v; ın/j grows linearly in n. The first summand in inequality (5.10) can be
bounded as follows:

Pv

�

d.v; xXn/ � ın;Du D nC 1
�

� PvŒd.v; xXn/ � ın; xXn 2 @2L1
C.u/�

�
X

z2@2L1
C.u/\B.v;ın/

Np.n/.v; z/

�
X

z2@2L1
C.u/\B.v;ın/

Ad.v;z/%. NP /n

� c.n/max¹1; Aınº%. NP /n:

Choose ı > 0 sufficiently small so that the latter sum decays exponentially in n.
For the second summand in (5.10) we have

PvŒd.v; xXn/ � ın;Du D nC 1� �
X

z2@2L1
C.u/nB.v;ın/

F.v; z/ �
1

X

kDdıne

c.k/C�k;

which decays exponentially in n. The result follows. �

It turns out that in order to give a good estimate on the length of the time
intervals between renewal times, it suffices to control the tails of DxD inf¹n�1 j
Xn 62 yT.n/

x º on the event that Dx is finite. However, this can be achieved by
comparison with the retracted walk.

Lemma 5.13. There exists constants �0
D; K

0
D such that for all x of type T we have

EyŒexp.�0
DDx/1¹Dx<1º� � K 0

D for all y 2 C.x/:
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Proof. Let u D �.x/, then due to Proposition 3.8 and Lemma 5.2 we have

¹Dx D kº D ¹Xk … yT.k/
x ; for all m < kWXm 2 yT.m/

x /º

� ¹ xXk … �.yT.k/
x /; for all m < kW xXm 2 �.yT.m/

x /º
D ¹Du D kº:

Hence, for all y 2 C.x/ and v D �.y/ we have that PyŒDx D k� � PvŒDu D k�

and the claim follows with Lemma 5.12. �

Proof of Theorem 5.5.2. The essential ingredients are Lemmata 5.9 and 5.13 and
the fact that Cannon automaton is strongly connected. Since the proof is analogous
to the proof of [23, Lemma 4.1] we only give a sketch of the arguments here. In
fact, the proof is a more quantitative analysis of the arguments given in the proof
of Theorem 5.5.1. Recall that wherever the walk is, it will reach a chamber of cone
type T after at most K steps with probability of at least ph. By Lemma 5.9, each
time the walk is at a chamber (in the L1-interior) of cone type T it has a positive
probability of at least pesc to perform a renewal step. If it does not perform a
renewal step, it takes the walk a random timeD to exit yT. Now, again the walk will
hit a chamber of cone type T in at mostK steps with probability of at least ph and
we continue as above until we eventually performed one renewal step. The time
until the walk does a renewal step can therefore be bounded by

PG
iD1Di where the

Di are i.i.d. copies ofD andG is a geometric random variable (independent of the
Di ’s) with success probability phpesc. Since the G and the Di ’s have exponential
moments one proves that

PG
iD1Di has exponential moments, too. �

Appendix A. Automata and the proof of Theorem 3.2

The automatic structure of Coxeter groups was first proven by Brink and Howlett
in [9] (see also [7, Chapter 4]). In this section we explicitly construct the Cannon
automaton for each Fuchsian Coxeter system, and deduce that these automata
are strongly connected (hence proving Theorem 3.2). We also envisage that our
explicit description of the automata will be useful for future work where precise
information regarding the automata is required.

It is convenient to divide the set of all Fuchsian Coxeter systems into 4 classes.
First consider triangle groups. Let .W; S/ be a triangle group generated by s; t; u.
Let a D mst , b D mtu, and c D mus , and rename the generators if necessary so
that a � b � c � 2. Then W is infinite if and only if (see Example 2.1)

.a; b; c/ 2 ¹.k1; k2; k3/; .k4; k5; 2/; .k6; 3; 2/ j
k1 � k2 � k3 � 3; k4 � k5 � 4; k6 � 6º:
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We partition the infinite triangle groups into 3 classes.

� Class I consists of those groups with a � b � c � 3.
� Class II consists of those groups with a � b � 4 and c D 2.
� Class III consists of those groups with a � 6, b D 3, and c D 2.

Note that the “root” of each class (that is, the group with a C b C c minimal) is
an affine triangle group: .a; b; c/ D .3; 3; 3/; .4; 4; 2/; .6; 3; 2/. All other infinite
triangle groups are Fuchsian.

The remaining Fuchsian Coxeter systems are those with jS j � 4. We call these
Fuchsian Coxeter systems of Class IV.

A.1. Preliminaries. Before constructing the automata, we give some general
background (see [24] for details). Let .W; S/ be a Fuchsian Coxeter complex (or
an affine triangle group). The conjugates of the generators S are called reflections.
Thus the set of all reflections is R D ¹wsw�1 j s 2 S;w 2 W º: Each reflection
r 2 R determines a wall (also called a hyperplane) Hr D ¹� 2 H2 j r� D �º
in H2 (or in R2 for Euclidean triangle groups).

Let H D ¹Hr j r 2 Rº be the set of all walls. Given a wall H 2 H we write
sH for the reflection in the wall H . Thus sH D r if H D Hr . More generally, if
H is the wall separating w from ws then sH D wsw�1.

Each wall H 2 H determines two (closed) half-spaces of the hyperbolic
disc H2. The positive side of H is the half-space HC which contains the identity
chamber 1, and the negative side of H is the half space H� which does not
contain 1. Alternatively, we have

HC D ¹w 2 W j `.sHw/ > `.w/º and H� D ¹w 2 W j `.sHw/ < `.w/º:
(A.1)

If w D s1 � � � s` is a reduced expression then for each 1 � k � ` the
element w is on the negative side of each wall Hrk

, where rk is the reflection
rk D s1 � � � sk�1sksk�1 � � � s1, and ¹Hrk

j k D 1; : : : ; `º is precisely the set of all
walls separating 1 from w.

Lemma A.1. WallsH;H 0 of a Fuchsian Coxeter system (or affine triangle group)
intersect if and only if the corresponding reflections sH and sH 0 generate a finite
group.

Proof. Suppose that the wallsH andH 0 intersect. IfH D H 0 then sH generates a
group of order 2, and ifH ¤ H 0 thenH andH 0 intersect at a single point x 2 H2

(or x 2 R2). By construction of the realisation there are only finitely many walls
through x, and the group generated by the reflections in these walls is a conjugate
of a finite standard parabolic subgroup. The group generated by sH and sH 0 is a
subgroup of this finite group, and is thus finite.
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On the other hand, if the reflections sH and sH 0 generate a finite group then by
[1, Proposition 2.87] the reflections sH and sH 0 both lie in a conjugate of a finite
parabolic subgroup. Therefore the walls H and H 0 intersect. �

The left descent set of w 2 W is

L.w/ D ¹s 2 S j `.sw/ D `.w/ � 1º:

Equivalently, L.w/ is the set of generators s 2 S for which there is a reduced
expression for w starting with the letter s. By [1, Corollary 2.18] the subgroup
of W generated by L.w/ is finite for each fixed w 2 W . Moreover, if v is an
element of the group generated by L.w/ then by [1, Proposition 2.17] there exists
an expression

w D vw0 with `.w/ D `.v/C `.w0/: (A.2)

A.2. Class I

Lemma A.2. Let .W; S/ be a Coxeter system and let s; t; u 2 S be distinct
generators. If mst ; mtu; mus � 3 then the subgroup of W generated by u and
t st is infinite.

Proof. Consider the wordwn D .tstu/n D t stutstutstu � � � t stu. Ifmst ; mtu > 3

then wn has no available Coxeter moves, and is thus reduced, and so the subgroup
generated by u and t st is infinite. In the cases that one or both of mst and mtu

are 3 then there are Coxeter moves available, although it is not hard to see that
no reduction in the length of wn is possible, and so the subgroup is finite in these
cases too. �

Lemma A.3. Let .W; S/ be a triangle group with S D ¹s; t; uº and 3 �
mst ; mtu; msu < 1. Let x be the longest element of Wst . Let v 2 Wst with
v … ¹x; 1º, and let v D s` � � � s1 be the unique reduced expression for v. Then

(1) T .vu/ D T .s1u/,
(2) T .xus/ D T .sus/ and T .xut/ D T .tut/.

Proof. 1. By symmetry we may suppose that s1 D s. We are required to show that
for each fixed w 2 W ,

vuw is reduced () suw is reduced:

It is clear that if vuw is reduced then suw is also reduced (since truncations
of reduced expressions are reduced). Suppose, for a contradiction, that suw
is reduced and that vuw is not reduced. Let 2 � k � ` be minimal subject
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to sk�1 � � � s1uw is reduced and sk � � � s1uw is not reduced. Since ¹sk�1; skº D
¹s; tº we see that s; t 2 L.sk�1 � � � s1uw/. Thus by (A.2) there is a reduced
expression for sk�1 � � � s1uw starting with any chosen reduced word in Wst . Since
`.sk�1 � � � s1/ � mst � 2 the word sk�1 � � � s1t s 2 Wst is reduced, and thus
sk�1 � � � s1uw D sk�1 � � � s1t sv0 for some v0 2 W (with the expressions on both
sides being reduced) and so uw D t sv0 (again with both expressions reduced).
Therefore the element uw D t sv0 lies on the negative side of the wallH separating
1 from u, and on the negative side of the wall H 0 separating t from t s, and so
H�[.H 0/� ¤ ;. The reflection in the hyperplaneH is sH D u, and the reflection
in the hyperplane H 0 is sH 0 D tut . Either H� � .H 0/�, or .H 0/� � H�, or H
and H 0 intersect. If H� � .H 0/� then u 2 .H 0/�, and so `.sH 0u/ < `.u/ D 1.
But sH 0u D t stu has length 4. Similarly, if .H 0/� � H� then t s 2 H� and so
`.sH t s/ < `.ts/ D 2, but sH t s D uts has length 3. ThereforeH andH 0 intersect,
and so by Lemma A.1 the group generated by sH D u and sH 0 D t st is finite,
contradicting Lemma A.2.

2. We show that T .xus/ D T .sus/. We are required to show that for each
fixed w 2 W ,

xusw is reduced () susw is reduced:

Choose the reduced expression x D s` � � � s1 with s1 D s. Thus the expression
susw can be regarded as a truncation of the expression xusw, and so it follows
that if the latter is reduced then the former is also reduced. Suppose, for a
contradiction, that susw is reduced and that xusw is not reduced. Let 2 � k � ` be
minimal subject to sk�1 � � � s1usw is reduced and sk � � � s1usw is not reduced. Then
¹s; tº 2 L.sk�1 � � � s1usw/ and so there is a reduced expression sk�1 � � � s1usw D
sk�1 � � � s1tv0 for some v0 2 W , and so usw D tv0 with both sides reduced. Hence,
as above, the group generated byusu and t is finite, contradicting Lemma A.2. �

Lemma A.3 completely determines the Cannon automaton for all triangle
groups in Class I. An illustration is given in Figure 3.

A.3. Class II. The proof of the following lemma, which determines the Cannon
automata for the Fuchsian triangle groups in Class II, is similar to the proof of
Lemma A.3 and the details are omitted.

Lemma A.4. Let .W; S/ be a triangle group with S D ¹s; t; uº. Suppose that
mst ; mtu > 4 and that msu D 2. Let x be the longest element of Wst . Let v 2 Wst

with v … ¹x; xsº, and write v D s` � � � s1 for the unique reduced expression for v.
Then

T .vu/ D T .s1u/; T .suts/ D T .sts/; T .sutu/ D T .utu/;
T .xsut/ D T .tut/; T .xutu/ D T .tutu/; T .xuts/ D T .sts/:
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If mst > 4 and mtu D 4 then the above formulae hold except for the last one, and
instead we have T .xutsu/ D T .tutus/, T .xutst/ D T .stst /, T .tutst/ D T .tst/,
T .tutusts/ D T .tsts/, T .tutustu/ D T .utu/, T .tus/ D T .us/, T .uts/ D
T .ts/, and T .utus/ D T .us/.

Writing x D sts � � � and y D tut � � � for the longest elements of Wst and Wtu

respectively, the automata for Class II Fuchsian Coxeter groups are illustrated in
Figures 4 and 5 (we make some choices for the parity of a D mst and b D mtu

for simplicity).

;
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Figure 3. Cannon automaton for Class I triangle groups.

Figure 3 depicts the Cannon automaton for Class I triangle groups. The
generators are labelled 1, 2, and 3, and the labels on the edges are indicated by
line styles, with 1 being solid, 2 being dashed, and 3 being dotted. The cone types
are given by the base element of a representative cone of that type. The cone types
in grey are duplicates, and the reader should instead imagine the arrow pointing
to the corresponding cone type in black. Finally, x D 121 : : : , y D 232 : : : and
z D 131 : : : are the longest elements of the parabolic subgroups W12, W23, and
W13 respectively.
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A.4. Class III. The proof of the following lemma, which determines the Cannon
automaton for the Fuchsian triangle groups in Class III, is similar to the proof of
Lemma A.3 and the details are omitted.

Lemma A.5. Let .W; S/ be a triangle group with S D ¹s; t; uº. Suppose that
mst > 6,mtu D 3, andmsu D 2. Let x be the longest element element ofWst . Let
v 2 Wst with v … ¹1; x; xs; xt; xtsº, and let v D s` � � � s1 be the unique reduced
expression for v. Then

T .vu/D T .s1u/; T .sutu/D T .tut/;

T .sutsu/D T .tuts/; T .sutst/D T .stst /;

T .utst/D T .tst/; T .tus/D T .su/;

T .tutstu/D T .tut/; T .tutstsu/D T .tuts/;

T .tutstst /D T .tstst /; T .xtsut/D T .tut/;

T .xtutst/D T .stst /; T .xutstu/D T .tut/;

T .xutstsu/D T .tuts/; T .xutstst /D T .ststst /;

T .xsut/D T .tut/:

An illustration of the resulting automaton is illustrated in Figure 6.

A.5. Class IV. The proof of the following lemma, which determines the Cannon
automata for the Fuchsian Coxeter groups in Class IV, is similar to the proof of
Lemma A.3 and the details are omitted.

Lemma A.6. Let .W; S/ be a Fuchsian Coxeter system, and let s; t; u 2 S be
pairwise distinct generators.

(1) If 2 � mst ; mtu <1 and mus D1 then for all v 2 Wst we have

T .vu/ D

8

<

:

T .u/ if `.vt/ D `.v/C 1;

T .tu/ if `.vt/ D `.v/ � 1:

(2) If 2 � mst < 1 and mtu D mus D 1 then for all v 2 Wst we have
T .vu/ D T .u/

The resulting automaton has vertices given by ¹T .w/ j w 2 Wº, where W is
the union of all finite parabolic subgroups:

W D W1;2 [W2;3 [ � � � [Wn�1;n [Wn;1;

where the generators are labelled 1; 2; : : : ; n.
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A.6. Proof of Theorem 3.2

Proof of Theorem 3.2. Consider Class I first. It is clear that the cone types ;, 1, 2
and 3 are not recurrent (in the notation of Figure 3, we will simply write w for the
cone type T .w/).

Suppose, without loss of generality, that m12 > 3. We first note that there is a
cycle

c D .12! 23! 31! 12! 121! 13! 32! 21! 212! 23! 31! 12/

containing all cone types w with `.w/ D 2 (it is important here that 121 and 212
are not the longest words of W12).

Now letw be a cone type other than ;, 1, 2, or 3. From any suchw there is a path

1 in the automaton to some cone typewijk where .i; j; k/ is some permutation of
the generating set .1; 2; 3/ and wij D ij i � � � is the longest element of Wij . Then

wijk ! jkj

!

8

ˆ

<

ˆ

:

j i if mjk > 3,

jkj i ! j ij ! jk if mjk D 3 and mij > 3,

jkj i ! j ij ! ij ik ! kik ! kj if mjk D mij D 3 and mik > 3;

and so in all cases there is a path 
2 from wijk to a cone type i 0j 0 of length 2, and
so there is a path 
1
2 from w to i 0j 0 in the automaton. Furthermore, there is a
path 
3 from some cone type i 00j 00 to w (because every reduced path in W must
pass through a word of length 2). Thus, using c, there is a loop 
 from 12 to 12
passing through w. This shows that w is recurrent, and readily implies that the
automaton is strongly connected.

Now consider Class II, and for simplicity consider the case of Figure 4, that is,
m12; m23 > 4 with m12 even and m23 odd (the other cases are similar). It is clear
that the cone types ;; 1; 2; 3; 12; 32 are not recurrent. We claim that all other cone
types are recurrent, and that the Cannon automaton is strongly connected. To see
this, consider the paths:


1 D .21! 212! � � � ! x1! x13! x3! x32! 121/;


2 D .121! 1212! � � � ! x ! x3! x32! 121/;


3 D .121! 23! 232! � � � ! y ! y1! y12! 323/;


4 D .323! 3232! � � � ! y3! y31! 212/;


5 D .212! 23! 13! 132! 323! 3232! 21/:

The concatenation 
 D 
1
2
3
4
5 is a loop visiting all cone types other than
;; 1; 2; 3; 12; 32, hence the result.
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We omit the details for Class III, and refer the reader to Lemma A.5 and
Figure 6. Finally, consider the groups in Class IV. Let 1; 2; : : : ; n be the generators
of W , arranged cyclically around the fundamental chamber. If n � 5, then for
each pair .i; i C 1/ there is a generator j with mi;j D 1 and miC1;j D 1, and
thus i ! j ! i C 1 in the automaton. Moreover, for any w 2 Wi;iC1 we have
w ! j . It follows that every node other than ; is recurrent, and moreover that the
automaton is strongly connected. If n D 4 then we may assume thatm12 � 3 (for if
mij D 2 for all i; j thenW is affine type zA1� zA1, where zA1 is the infinite dihedral
group). Then 21 ! 3 and 12 ! 4. Thus 1 ! 12 ! 4 ! 2 ! 21 ! 3 ! 1.
Again it follows that every node other than ; is recurrent, and that the automaton
is strongly connected. �

Remark A.7. The Cannon automata for the affine triangle groups .3; 3; 3/,
.4; 4; 2/ and .6; 3; 2/ are not strongly connected.
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