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Abstract. Stackability for finitely presented groups consists of a dynamical system that

iteratively moves paths into a maximal tree in the Cayley graph. Combining with formal

language theoretic restrictions yields auto- or algorithmic stackability, which implies solv-

ability of the word problem. In this paper we give two new characterizations of the stackable

property for groups, and use these to show that every HNN extension of a stackable group

over finitely generated subgroups is stackable. We apply this to exhibit a wide range of

Dehn functions that are admitted by stackable and autostackable groups, as well as an ex-

ample of a stackable group with unsolvable word problem. We use similar methods to show

that there exist finitely presented metabelian groups that are non-constructible but admit an

autostackable structure.
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1. Introduction

Autostackability of finitely generated groups is a topological property of the Cay-
ley graph combined with formal language theoretic restrictions, which is an exten-
sion of the notions of automatic groups and groups with finite complete rewriting
systems, introduced by Brittenham, Hermiller and Holt in [8]. An autostackable
structure for a finitely generated group implies a finite presentation, a solution
to the word problem, and a recursive algorithm for building van Kampen dia-
grams [6]. Moreover, in contrast to automatic groups, Brittenham and Hermiller
together with Susse have shown that the class of autostackable groups includes
all fundamental groups of closed 3-manifolds [9], with Holt they have shown au-
tostackable examples of solvable groups that are not virtually nilpotent [7], and
with Johnson they show that Stallings’ non-FP3 group [8] is autostackable. In
analogy with the relationship between automatic and combable groups, removing
the formal language theoretic restriction gives the stackable property for finitely
generated groups, and stackability implies tame combability [5]. In this paper we
give two new characterizations of the stackability property, and determine closure
of stackability under HNN extensions. We then apply these results to a variety of
examples to exhibit stackable groups that are not algorithmically stackable and to
explore the Dehn functions of stackable, algorithmically stackable, and autostack-
able groups. In the last section we also show that nonconstructible metabelian
groups can be autostackable.

To make this more precise, let G be a group with a finite inverse-closed
generating set X , and let � D �.G;X/ be the associated Cayley graph. Denote

the set of directed edges in � by EE, and the set of directed edge paths by EP . For
each g 2 G and a 2 X , let eg;a denote the directed edge with initial vertex g,
terminal vertex ga, and label a; we view the two directed edges eg;a and ega;a�1

to have a single underlying undirected edge in �.

A flow function associated to a maximal tree T in � is a function ˆW EE ! EP
satisfying the properties that

(F1) for each edge e 2 EE, the pathˆ.e/ has the same initial and terminal vertices
as e;

(F2d) if the undirected edge underlying e lies in the tree T, then ˆ.e/ D e;

(F2r) the transitive closure <ˆ of the relation < on EE defined by

e0 < e whenever e0 lies on the path ˆ.e/ and the undirected edges
underlying both e and e0 do not lie in T,

is a well-founded strict partial ordering.
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The flow function is bounded if there is a constant k such that for all e 2 EE, the
path ˆ.e/ has length at most k. The map ˆ fixes the edges lying in the tree T and
describes a “flow” of the non-tree edges toward the tree (or toward the basepoint);
starting from a non-tree edge and iterating this function finitely many times results
in a path in the tree.

For each element g 2 G, let nf.g/ denote the label of the unique geodesic (i.e.,
without backtracking) path in the maximal tree T from the identity element " of
G to g, and let N D NT WD ¹nf.g/ j g 2 Gº denote the set of these (unique)
normal forms. We use functions that pass between paths and words by defining

labelW EP ! X� to be the function that maps each directed path to the word labeling

that path and defining pathWN � X� ! EP to be path.nf.g/; w/ WD the path in �

that starts at g and is labeled by w. Observe that path.N � X/ D EE.

Definition 1.1. [6, 7] Let G be a group with a finite inverse-closed generating

set X .

(i) The group G is stackable over X if there is a bounded flow function on a

maximal tree in the associated Cayley graph. The stacking map is

� WD label ıˆ ı pathWNT �X �! X�:

(ii) The groupG is algorithmically stackable overX ifG admits a bounded flow

function ˆ for which the graph

graph.�/ WD ¹.nf.g/; a; �.nf.g/; a// j g 2 G; a 2 Xº

of the stacking map � is decidable.

(iii) The groupG is autostackable overX if G has a bounded flow functionˆ for

which the graph of the associated stacking map is synchronously regular.

A stackable group G over a finite generating set A is finitely presented, with
finite presentation Rˆ D hX j ¹�.y; a/ D a j y 2 NT; a 2 Xºi (called the
stacking presentation) associated to the flow function ˆ.

Each of these three stackability properties can also be stated in terms of prefix-
rewriting systems. A stackable structure is equivalent to a bounded complete
prefix-rewriting system for G over X , for which the irreducible words are exactly
the elements of the set NT. A group is algorithmically stackable (respectively,
autostackable) if and only if it admits a decidable (respectively, synchronously
regular) bounded complete prefix-rewriting system [7]. (See Section 2 for defini-
tions of these terms.)

In Section 2, we begin with notation and definitions we will use throughout
the paper.

Section 3 contains several characterizations of stackability using properties of
their van Kampen diagrams, which we apply in our proofs in later sections of this
paper.
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Section 4 contains the proof of the following closure property for the class of
stackable groups with respect to HNN extensions.

Theorem 4.4. Let H be a stackable group, let A;B � H be finitely generated,

and let WA ! B be an isomorphism. Then the HNN extensionG D H� is also

stackable.

Corollary 4.6 addresses closure of auto- and algorithmic stackability of HNN
extensions with additional constraints. In the case of algorithmically stackable
groups, HNN extension closure can also be stated in terms of a decision problem.
For a group H with a finite inverse-closed generating set Y and subgroup A, the
subgroup membership problem is decidable if there is an algorithm that, upon
input of any word w over Y , determines whether or not w represents an element
of A.

Corollary 4.7. Let H be an algorithmically stackable group, let A;B � H be

finitely generated, and let  WA ! B be an isomorphism. Suppose further that

the subgroup membership problem is decidable for the subgroups A and B in H .

Then the HNN extension G D H� is also algorithmically stackable.

We give three applications of Theorem 4.4 in Section 5. In the first, we
apply Mihailova’s [17] construction of subgroups of direct products of free groups
with unsolvable subgroup membership problem, to show that stackability and
autostackability are not the same property.

Theorem 5.1. There exists a stackable group with unsolvable word problem, and

hence stackability does not imply algorithmic stackability.

Consequently the class of stackable groups includes groups whose Dehn func-
tion is not computable. Our second application is a proof that the hydra groups of
Dison and Riley [11] are algorithmically stackable, and consequently algorithmi-
cally stackable groups admit extremely large Dehn functions.

Theorem 5.2. The class of algorithmically stackable groups includes groups with

Dehn functions in each level of the Grzegorczyk hierarchy of primitive recursive

functions.

For the third application in Section 5, we we study the Baumslag–Gersten
group [2] (also known as the Baumslag group), which is a (nonmetabelian) HNN
extension of a Baumslag–Solitar group (which is autostackable [7]).

Theorem 5.3. The Baumslag–Gersten group ha; s j .sas�1/a.sa�1s�1/ D a2i is

autostackable.
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Platonov [18] (and in the case of the lower bound, Gersten [13]) has shown that
the Dehn function of the Baumslag–Gersten group is the nonelementary function
n ! tower2.log2.n//, where tower2.1/ D 2 and tower2.k/ D 2tower2.k�1/.
Although it is an open question whether the Baumslag–Gersten group, or any other
group with nonelementary Dehn function, can have a finite complete rewriting
system, these results show that groups with a bounded synchronously regular
complete prefix-rewriting system admit such Dehn functions.

Corollary 5.4. The class of autostackable groups includes groups with nonele-

mentary Dehn functions.

Finally, in Section 6, we consider metabelian groups. Groves and Smith [14]
showed that a metabelian group G has a finite complete rewriting system if and
only if G has the homological finiteness condition FP1, and also if and only
if G is constructible (that is, G can be obtained from finite groups by itera-
tively taking finite extensions, amalgamations, and finite rank HNN extensions).
Since synchronously regular bounded prefix-rewriting systems (i.e., autostack-
able structures) are an extension of finite complete rewriting systems, it is natural
to ask whether autostackability is also equivalent to FP1 and constructibility in
metabelian groups.

We consider Baumslag’s [3] example of a finitely presented metabelian group
whose commutator subgroup has infinite rank. This group is finitely presented,
and hence has homological type FP2, but the rank of the commutator subgroup
implies that the group is not constructible, and hence is not of type FP1. For
p < 1, the p-torsion analog of Baumslag’s metabelian group is the Diestel–
Leader group�3.p/, whose Cayley graph with respect to a certain finite generating
set is the Diestel–Leader graph DL3.p/; for details and more information, see the
paper of Stein, Taback, and Wong [19] and the references there. The Diestel–
Leader groups are finitely presented metabelian groups that are not of type FP3
(see [1]), and hence also are nonconstructible metabelian groups. Each of these
groups can be realized as an HNN extension, but since the base group of this
extension is not finitely generated, Theorem 4.4 of Section 4 does not apply in
this case, and new methods are developed in Section 6 to show the following.

Theorem 6.1. Baumslag’s metabelian group G1 D ha; s; t j as D ata; Œat ; a� D
1; Œs; t � D 1i is algorithmically stackable, and the Diestel–Leader torsion analogs

Gp D ha; s; t j as D ata; Œat ; a� D 1; Œs; t � D 1; ap D 1i with p 2 Z and p � 2

are autostackable.

This shows that there exist nonconstructible metabelian groups that admit a
synchronously regular bounded prefix-rewriting systems, giving a negative answer
to the question above.
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Corollary 6.2. The class of autostackable groups contains nonconstructible

metabelian groups.

The authors thank Tim Susse for helpful discussions and useful suggestions
during the course of this work.

2. Notation and background

Throughout this paper, let G be a group with a finite symmetric generating set X ;
that is, such that the generating set X is closed under inversion. Throughout the
paper we assume that no element of X represents the identity element of G.

Let X� denote the set of all words over X , and let XC denote the set of all
words except the empty word 1. A set N of normal forms for G overX is a subset
of X� such that the restriction of the canonical surjection �WX� ! G to N is a
bijection. As in Section 1, the symbol nf.g/ denotes the normal form for g 2 G.
By slight abuse of notation, we use the symbol nf.w/ to denote the normal form
for �.w/ whenever w 2 X�.

For a word w 2 X�, we write w�1 for the formal inverse of w in X�, and let
l.w/ denote the length of the word w. For words v; w 2 X�, we write v D w if v
and w are the same word in X�, and write v DG w if v and w represent the same
element of G.

Let " denote the identity ofG. For g; h 2 G, we use gh to denote the conjugate
hgh�1 of g.

A symmetrized presentation P D hX j Ri for G satisfies the properties that the
generating set X is symmetric and the set R of defining relations is closed under
inversion and cyclic conjugation. Let C be the Cayley 2-complex corresponding
to this presentation, whose 1-skeleton C 1 D � is the Cayley graph of G over A.
For g 2 G and x 2 X , let eg;x denote the edge of � labeled by x with initial
vertex g. We consider the two directed edges eg;x and egx;x�1 to have the same
underlying directed edge in � between the vertices g and gx.

2.1. Diagrams. For an arbitrary wordw inX� that represents the trivial element
" of G, there is a van Kampen diagram � for w with respect to P. That is,
� is a finite, planar, contractible combinatorial 2-complex with edges directed
and labeled by elements of X , satisfying the properties that the boundary of � is
an edge path labeled by the word w starting at a basepoint vertex � and reading
counterclockwise, and every 2-cell in� has boundary labeled by an element ofR.
(Note that we do not assume that van Kampen diagrams in this paper are reduced;
that is, we allow adjacent 2-cells in � to be labeled by the same relator with
opposite orientations.)

For any van Kampen diagram � with basepoint �, let ��W� ! C denote a
cellular map such that ��.�/ D " and �� maps edges to edges preserving both
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label and direction. Given w 2 X�, we denote by w� the diagram obtained by
gluing the terminus of a path labeled by w to the basepoint � of �:

2.2. Rewriting systems and languages. The regular languages over a finite set
X are the subsets of X� obtained from the finite subsets of X� using finitely
many operations from among union, intersection, complement, concatenation
(S � T WD ¹vw j v 2 S and w 2 T º), and Kleene star (S0 WD ¹1º, Sn WD Sn�1 � S
and S� WD

S1
nD0 S

n). Equivalently, a subset L � X� is regular if there is a
monoid homomorphism  WX� ! M for some finite monoid M , such that L is
the preimage L D �1.S/ for a subset S of M . Also equivalently, a language
L � X� is regular if L is the language accepted by a finite state automaton.

A subset L � .X�/n is called a synchronously regular language if the padded
extension set ¹pad.w/ j w 2 Lº is a regular language over the finite alpha-
bet .X [ ¹$º/n (with $ … X) where pad.a1;1 � � �a1;m1

; : : : ; an;1 � � �an;mn
/ WD

..a1;1; : : : ; an;1/; : : : ; .a1;N ; : : : ; an;N // for N D max¹mi º whenever ai;j 2 X for
all 1 � i � n and 1 � j � mi and ai;j D $ otherwise.

The class of regular languages is closed under both image and preimage via
monoid homomorphisms and under quotients, and the class of synchronously reg-
ular languages is closed with respect to finite unions and intersections, Cartesian
products, and projection onto a single coordinate.

A language L � X� is decidable, also known as recursive, if there is a Turing
machine that, upon input of any word w over X , determines (in a finite amount
of time) whether or not w 2 L. The class of decidable languages is also closed
under union, intersection, complement, concatenation, Kleene star, and image via
monoid homomorphisms (that map nonempty words to nonempty words).

See [12] and [15] for more information about regular, synchronously regular,
and decidable languages.

A complete prefix-rewriting system for a group G consists of a set X and a
set of rules R � X� � X� (with each .u; v/ 2 R written u ! v) such that G is
presented (as a monoid) by G D MonhX j u D v whenever u ! v 2 Ri; and the
rewritings uy ! vy for all y 2 X� and u ! v in R satisfy:

(1) there is no infinite chain w ! x1 ! x2 ! � � � of rewritings, and

(2) each g 2 G is represented by exactly one irreducible word over X .

The prefix-rewriting system is bounded if X is finite and there is a constant k
such that for each pair .u; v/ in R there are words s; t; w 2 X� such that u D ws,
v D wt , and l.s/Cl.t / � k. The prefix-rewriting system is synchronously regular

if the set X is finite and the set of rules R is synchronously regular.
A finite complete rewriting system for a group G is a finite set R0 � X� � X�

presenting G as a monoid, such that the rewritings xuy ! xvy for all x; y 2 X�

and u ! v in R0 satisfy (1) and (2) above. Any finite complete rewriting system
R0 has an associated synchronously regular bounded complete prefix-rewriting
system given by R D ¹xu ! xv j x 2 X�; .u; v/ 2 R0º.
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3. The fully N-triangular and N-labeled properties

In this section we develop several conditions that are equivalent to stackability,
which will be used to simplify proofs in later sections of this paper.

Let G be a group with a finite symmetrized presentation P D hX j Ri. Let N
be a prefix-closed set of normal forms for G over X . For each element g in G,
let nf.g/ denote the element of N representing g. Let TN denote the tree in the
Cayley graph � for G over A consisting of the underlying undirected edges that
lie along paths from the identity vertex " labeled by elements of N.

Definition 3.1. We say that a van Kampen diagram � is N-triangular if @� is
labeled by a word of the form nf.g/xnf.gx/�1 with g 2 G and x 2 X . We refer
to the paths plower , px, pupper in @� labeled by nf.g/, x, and nf.gx/ as the lower

normal form, isolated edge, and upper normal form of �, respectively.

Definition 3.2. A N-triangular van Kampen diagram � is N-labeled if for every
vertex v in the 0-skeleton �.0/ of �, there is a path in � from the basepoint to v
labeled by the normal form nf.��.v//. In this case � determines a set of normal
forms starting at the basepoint, namely

nf.�/ WD ¹nf.��.v// j v 2 �.0/º:

If G is stackable over the normal form set N, with stacking relations contained
in R, then there is a recursive procedure for building van Kampen diagrams for
G over the presentation P; see [6] for details of this stacking procedure. In the
following recursive definition we describe a similar property.

Definition 3.3. Fully N-triangular diagrams are recursively defined as follows.
A diagram � is called

i) degenerate if � has no 2-dimensional cells;

ii) minimal if � has a single 2-dimensional cell � and px � @� ;

iii) fully N-triangular if � is either degenerate, minimal, or there is a 2-dimen-
sional cell � in � with px � @� , which we call the isolated cell, satisfying
the following property. If e1; : : : ; et are the successive edges of the path in
@� X px from the initial vertex to the terminus of the edge px , then for each
i D 1; : : : ; t there is a fully N-triangular van Kampen diagram �i � � hav-
ing ei as isolated edge and the same basepoint as �, such that

– for each i ,�i\�iC1 is both the upper normal form of�i and the lower
normal form of �iC1, and

– � is the disjoint union of the �i and � , with the �i glued along these
successive normal forms, and � glued to the �i along the edges ei .
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In this case, � determines a set of fully N-triangular van Kampen diagrams,
namely, the �i together with the set of fully N-triangular van Kampen diagrams
determined by them; we denote this set by ft.�/.

We note that every fully N-triangular van Kampen diagram is also N-labeled.
Also note that if w 2 X� and � is N-labeled or fully N-triangular, and moreover
if for every � 2 nf.�/ we have w� 2 N, then w� is also N-labeled or fully
N-triangular, respectively.

In the case that the group G is stackable with respect to N, let �g;x denote the
van Kampen diagram with boundary nf.g/xnf.gx/�1 obtained using the stacking
procedure. Given a directed edge eg;x of the Cayley graph �, if eg;x lies in the tree
TN, then �g;x is degenerate, and so is fully N-triangular. To check that for any
edge eg;x not in TN the diagram�g;x is fullyN-triangular, we note that the isolated
cell has boundaryˆ.eg;x/ and px, and the recursive property in Definition 3.3 iii)
holds true by induction using the partial order <ˆ on the set of recursive edges
given by the stacking system. In fact, if eh;y <ˆ eg;x, then eh;y is an edge needed
in the process to transform nf.g/x into its normal form in the stacking reduction
procedure, and �h;y 2 ft.�g;x/.

Definition 3.4. A stackable system of fully N-triangular van Kampen diagrams

(respect to P) is a set

S WD ¹�g;x j g 2 G; x 2 Xº

of fully N-triangular diagrams, one for each g 2 G and x 2 X , such that the
boundary of the diagram �g;x is labeled by nf.g/xnf.gx/�1, the diagram �g;x is
degenerate if and only if eg;x is in the tree TN, and whenever �g;x 2 S contains
more than one 2-cell, the associated subdiagrams �i in Definition 3.3 iii) also
belong to S.

Proposition 3.5. The following are equivalent for a finitely presented group

G D hX j Ri with a prefix-closed normal form set N over X :

i) G is stackable with respect to N.

ii) There is a stackable system of fully N-triangular van Kampen diagrams.

iii) For every g 2 G and x 2 X there is a fully N-triangular van Kampen

diagram�g;x with boundary nf.g/xnf.gx/�1.

iv) For everyw 2 N and x 2 X there is a N-labeled van Kampen diagram�0
w;x

with boundary wxnf.wx/�1.

Proof. The fact that i) implies ii) follows from the discussion above, and the
implications ii) H) iii) and iii) H) iv) are immediate. We prove the reverse
implications in the same order.
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Let � denote the Cayley graph of G with respect to the generating set X , and
let TN be the maximal tree in � traversed by paths starting at the identity vertex
and labeled by words in N.

First, assume ii) holds, and let S be the stackable system. If eg;x is in the tree
TN in �, let ˆ.eg;x/ WD eg;x. On the other hand, if eg;x does not lie in the tree TN

in � and �g;x is the associated van Kampen diagram in S, let ˆ.eg;x/ be the path
in � labeled by the word �.eg;x/ inX� such that �.eg;x/x

�1 labels the isolated cell
of �g;x. Note that this implies that �.eg;x/x

�1 is a relator, and thus the possible
lengths of the words �.eg;x/ are bounded. Now, we define a map � from the set of
directed edges in � X TN to Z

C by �.eg;x/ WD area of �g;x. Use the function �
and the usual ordering on Z to order the set of recursive edges; this gives a well-

founded ordering on EE such that e0 <ˆ e implies �.e0/ < �.e/. Thus the group is
stackable by Definition 1.1, and i) holds.

Next assume that iii) holds. For each directed edge eg;x of the Cayley graph,
let n.eg;x/ be the smallest area of a fully N-triangular van Kampen diagram with
boundary nf.g/xnf.gx/�1. We define a stackable system S of fully N-triangular
van Kampen diagrams by induction on n.eg;x/. To start, let S be the empty set.
Note that n.eg;x/ D 0 if and only if eg;x is in TN; in this case add a degenerate
diagram �.eg;x/ to S. Similarly, n.eg;x/ D 1 if and only if eg;x is not in TN and
there is a minimal van Kampen diagram for nf.g/xnf.gx/�1; place a choice of such
a diagram in S. Suppose now that n.eg;x/ > 1, and we have diagrams �g;x in .S/
corresponding to all directed edges with lower value for the function n. Let �0

be a fully N-triangular van Kampen diagram for eg;x with n.eg;x/ 2-cells. Using
Definition 3.3 iii), �0 is the disjoint union of a 2-cell � containing px and fully
N-triangular diagrams �i , with certain gluings. The isolated edge ei associated
with �i must satisfy n.ei / < n.eg;x/. For each i we replace the subdiagram�i of
�0 by the diagram in S with the same boundary label, to obtain a diagram �g;x;
add this diagram to S. Then S is a stackable system, completing the proof of ii).

Finally, assume that iv) holds. Then for each g 2 G and x 2 X , there is a N-
labeled van Kampen diagram with boundary label nf.g/xnf.gx/�1; from among
all such diagrams, let �0

nf.g/;x
be a diagram with the least possible number of

2-cells and let ˛.g; x/ denote this number. We show that for each g 2 G and
x 2 X there is a fully N-triangular van Kampen diagram �g;x with boundary
label nf.g/xnf.gx/�1 by induction on ˛.g; x/.

Suppose that ˛.g; x/ D 0. Then the diagram �0
g;x is degenerate, and hence

fully N-triangular. In this case we can take �g;x WD �0
g;x.

Suppose next that n WD ˛.g; x/ > 0, and that for all g0 2 G and x0 2 X with
˛.g0; x0/ < n there is a fully N-triangular diagram bounded by nf.g0/x0nf.g0x0/�1.
Let �0 WD �0

nf.g/;x
and let � be the basepoint of �0.

Suppose that there is a word w 2 N that labels two paths p; p0 in �0 that start
at � and suppose that p and p0 can be factored as p D p1p2p3 and p0 D p1p

00

such that p2 is a nonempty edge path whose intersection with the path p0 consists
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exactly of the initial vertex i.p2/ and terminal vertex t .p2/ of p2. Since normal
forms in N label simple paths in the tree TN, they must also label simple paths
in any van Kampen diagram; hence i.p2/ ¤ t .p2/. Now we can factor the path
p0 D p1p

0
2p

0
3 such that p0

2 is another path in�0 from i.p2/ to t .p2/. Moreover we
can writew D w1w2w3 D w1w

0
2w

0
3 such that for each i the wordwi labels the path

pi and w0
i labels p0

i . The images of the paths p1p2 and p1p
0
2 under the map ��0

end at the same vertex in the Cayley graph, and so prefix closure (and uniqueness)
of the normal form set imply that w2 D w0

2. A similar argument shows that the
path p0

2 cannot intersect the path p except at the common endpoints of p2 and p0
2.

Hence the path p2p
0�1
2 is a simple loop in �0. By the Jordan Curve Theorem, this

loop separates the diagram�0 into two subsets. We remove the subdiagram of �0

contained inside this loop, and glue the two simple paths p2 and p0
2; this results in

a new van Kampen diagram�00 with the same basepoint and boundary. Moreover,
the diagram�00 is N-labeled, and contains fewer cells than�0; this contradicts our
choice of�0 D �0

g;x as aN-labeled triangular van Kampen diagram with minimal
number of 2-cells. Hence the set of edges that lie along paths in �0 starting at �
and labeled by elements of N must form a maximal tree, since a pair of such paths
cannot have prefixes that diverge and then merge.

If the edge eg;x lies in the tree TN, then either nf.gx/ D nf.g/x or nf.g/ D
nf.gx/x�1. There is a degenerate, and hence fully N-triangular, van Kampen di-
agram �g;x (= �0) consisting of a line segment labeled nf.gx/ or nf.g/, respec-
tively, in this case.

On the other hand, suppose that eg;x is not in TN. Note that �0 must contain
a 2-cell � with the isolated edge px in its boundary, since px is the only directed
edge in the path along @�0 mapped by ��0 to an edge outside of TN. If�0 contains
only one 2-cell, then �0 is minimal, and hence fully N-triangular. Suppose that
�0 contains more than one 2-cell. Let v0; v1; : : : ; vt be the successive vertices,
and e1; : : : et the successive edges, of the path in @� X px from the initial vertex
v0 to the terminal vertex vt of px. For each 0 � i � t , there is a unique path pi
from the basepoint � to vi that is labeled by a word in N. For each 0 � i < t , the
concatenated path li WD pieip

�1
iC1 is a loop in �0. Let qi be the maximal common

prefix of the pair of paths pi ; piC1; that is, pi D qiri and piC1 D qisi . If qi equals
one of the paths p1; piC1, then either qi D pi , ri is a constant path, and si D ei ,
or qi D piC1, ri D e�1

i , and si is constant; in both cases, the loop li follows a line
segment in�0 and returns along the same segment back to �, and we let�i be the
degenerate van Kampen diagram given by this line segment. On the other hand,
if qi is a proper subpath of both pi and piC1, then the fact that normal forms from
� label paths in a tree shows that the path rieis

�1
i is a simple loop in �0. Let Q�i

denote the 2-complex inside this loop (including the bounding loop), and let�0
i be

the subdiagram �0
i WD qi Q�i of �0 with the same basepoint �. Again applying the

fact that normal forms label paths from � that lie in a tree, for each vertex v of�0
i ,

the path in �0 from � to v must lie in �0
i ; hence �0

i is N-labeled triangular. Since
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the number of 2-cells in�0
i is at most n�1, by our inductive assumption there is a

fully N-triangular van Kampen diagram �i with the same boundary label as �0
i .

Now the diagram �g;x built from the disjoint union of the �i and � , glued
along the normal form paths pi and the edges ei , is a fully N-triangular van
Kampen diagram with boundary label nf.g/xnf.gx/�1, and therefore iii) holds.

�

4. HNN extensions and stackability

Throughout this section, let G D H� be the HNN-extension of the group H
with isomorphism  WA ! B between subgroups A and B and stable letter s.
Assume that H is finitely generated and let H D hY j RH i be a presentation for
H , where Y is a finite inverse closed generating set forH . Let X WD ¹s; s�1º [Y ,
and let �WX� ! G be the canonical surjection. Then G has the presentation

G D hX j RH ; ¹sas
�1 D  .a/ j a 2 Aºi: (1)

Notation 4.1. Let NH be a set of normal forms for H over Y . Let NH=A be a

subset of NH satisfying the properties that the composition NH=A
�

! H ! H=A

is a bijection and 1 2 NH=A, and similarly let NH=B � NH be a set of normal
forms for a set of coset representatives for B inH that contains 1. The Britton set

of normal forms [16, p. 181] for G is

NG WD ¹h1s
"1h2s

"2 : : : hns
"nh j n � 0; h 2 NH and "i D ˙1 for 1 � i � nI

if "i D C1 then hi 2 NH=B

and if "i D �1 then hi 2 NH=AI

and if "i D �"i�1 then hi ¤ 1ºI

that is, NG D .NH=As
�1 [ NH=Bs/

�
NH X

S

"2¹˙1ºX
�s"s�"X�. Given such a

word w D h1s
"1h2s

"2 : : : hns
"nh in NG , we define tl.w/ WD h1s

"1h2s
"2 : : : hns

"n

and hd.w/ WD h; we refer to these as the tail and head of w, respectively.

The following is immediate from the definition of Britton’s normal forms; we
will apply this in the proof of Theorem 4.4 below.

Lemma 4.2. Let w D h1s
"1h2s

"2 : : : hns
"nh 2 N and let � 2 N be a tail. If either

n D 0, h1 ¤ 1, or h1 D 1 and s"1 equals the last letter of � , we have �w 2 N.

Before proceeding to Theorem 4.4, we first need a result about changing
generating sets for stackable and autostackable groups.



HNN extensions and stackable groups 1135

Proposition 4.3. Let H be a stackable group with respect to an inverse-closed

generating set Y , and let Z be a finite inverse-closed subset ofH . ThenH is also

stackable with respect to the generating set Y [Z. Moreover, ifH is autostackable

over Y , then H is also autostackable over Y [ Z.

Proof. Let � WD �.H; Y / and � 0 WD �.H; Y [ Z/ be the Cayley graphs for H
over Y and Y [ Z, respectively. For each z 2 Z X Y , fix a word wz 2 Y � such
that z DH wz .

Let ˆ be a bounded flow function for H over the generating set Y , with
associated maximal tree T in �, normal form set N, and stacking function; � D
label ı ˆ ı pathWN � Y ! Y �. The tree T is also a maximal tree in � 0, and
the associated normal forms over Y [ Z is the same set N. Define the function
�0WN� Y [Z ! .Y [Z/� by �0.w; y/ WD �.w; y/ for all w 2 N and y 2 Y , and
�0.w; z/ WD wz for all w 2 N and z 2 Z X Y . Then �0 is a stacking function for
H over Y [Z, and ˆ0 WD path ı �0 ı label is a bounded flow function for H over
Y [Z.

In the case that H is autostackable over Y , and graph.�/ is synchronously
regular, we have

graph.�0/ D graph.�/ [
� S

z2ZXY N � ¹zº � ¹wzº
�

:

Since the class of synchronously regular languages is closed under projection on
the first coordinate, finite direct products, and finite unions, then graph.�0/ is also
synchronously regular, and so H is autostackable over Y [Z. �

Theorem 4.4. Let H be a stackable group, let A;B � H be finitely generated,

and let WA ! B be an isomorphism. Then the HNN extensionG D H� is also

stackable.

Proof. Suppose thatH is stackable with respect to a normal form set NH over an
inverse-closed generating set Y , and let hY j RH i be the finite stacking presen-
tation associated to the bounded flow function for H over Y . Let NH=A,NH=B be
subsets of NH (each containing 1) representing transversals of these subgroups.
Using the proof of Proposition 4.3, by possibly extending the flow function and
adding relators (of the form z D wz) to the presentation, we may assume that the
generating set Y contains a subset ZA which is an inverse-closed generating set
for A, as well as the subset ZB WD ¹ .a/ j a 2 ZAº of H , which generates B .
(Note that this does not affect the normal form sets NH , NH=A and NH=B .) Using
Proposition 3.5, for every wordw 2 NH and y 2 Y , we have a fully NH -triangular
van Kampen diagram �Hw;y over the stacking presentation for H .

Let NG be the Britton normal form set of Notation 4.1. Since the set NH is
prefix-closed, then the set

NG D .NH=As
�1 [ NH=Bs/

�
NH \

�

X� X
S

"2¹˙1ºX
�s"s�"X�

�
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is also prefix-closed. For all w 2 X�, let nf.w/ denote the normal form in NG of
the element of G represented by w. Let � WD �.G;X/ be the Cayley graph for G
over X WD Y [ ¹s˙1º, and let T be the maximal tree of � corresponding to the set
NG .

We will show that G is stackable with respect to NG by showing that over
the finite presentation in equation (1) there is a fully NG-triangular van Kampen
diagram �w;x with boundary label wxnf.wx/�1 for every normal form word
w 2 NG and generator x 2 X ; that is, we apply Proposition 3.5. We proceed
via several cases depending upon w and x; in each case, we have that fully NG-
triangular van Kampen diagrams have been constructed for the prior cases.

Case 1: x 2 Y . Let �H
hd.w/;x

be the fully NH -triangular van Kampen diagram

associated to hd.w/ and x. By Lemma 4.2, for all v 2 NH we have tl.w/v 2 NG .
Thus the diagram tl.w/�H

hd.w/;x
is a fully NG-triangular van Kampen diagram in

G, with boundary label wxnf.wx/�1.

Case 2: x D s˙1. The two cases x D s and x D s�1 are analogous, so we
assume that x D s and leave the case when x D s�1 to the reader.

Let SLB � Z�
B denote the set of shortlex normal forms forB over the generating

set ZB with respect to some total ordering of ZB . The element of H represented
by hd.w/ can be written hd.w/ DH uv for a unique u 2 NH=B and v 2 SLB .

We proceed by induction on the length of v. If v D 1, then either wx D ws 2
NG or else w ends with s�1; in either case, there is a degenerate van Kampen
diagram �w;x with boundary word wsnf.ws/�1.

Next suppose that l.v/ > 0 and that we have a fully NG-triangular van Kampen
diagram for nf.tl.w/uv0/snf.tl.w/uv0s/�1 for all v0 2 SLB with l.v0/ < l.v/. Write
v D v0b with v0 2 SLB and b 2 ZB . Let a 2 ZA be the letter satisfying  .a/ D b.

The normal form nf.wb�1/ is w0 WD tl.w/nf.uv0/; then since hd.w0/ DH uv0

and l.v0/ < l.v/, our inductive assumption implies that there is a fully NG-
triangular van Kampen diagram�2 with boundary word nf.wb�1/snf.wb�1s/�1.

nf.w
b

�1 sa/

nf.wb
�1s/

nf.wb�1/

w

a

s

b�1

s�2

�1

�3

Figure 1. The diagram �w;s .
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Applying Case 1, there are fullyNG-triangular diagrams�1 D tl.w/�H
hd.w/;b�1

and �3 D tl.wb�1s/�H
hd.wb�1s/;a

(see Figure 1). Gluing the diagrams �1; �2

along their (simple) boundary paths nf.wb�1/, and gluing the resulting diagram
with �3 along their nf.wb�1s/ paths, results in the subdiagram Q� of Figure 1 with
boundary label wb�1sa. We glue a single 2-cell with boundary label b�1sas�1 to
Q� along their b�1sa boundary paths; this yields a fullyNG-triangular van Kampen
diagram �w;x with boundary label wxnf.wx/�1. �

Remark 4.5. We record here, for later use, the result of Theorem 4.4 in terms of
stacking maps. Suppose that �H WNH � Y ! Y � is the stacking map associated
to the bounded flow function on H in Theorem 4.4. For each word w 2 NG

define transA.w/ and subA.w/ to be the unique elements of the transversal NH=A
and subgroup shortlex representatives SLA, respectively, such that hd.w/ DH

transA.w/subA.w/, and let last.subA.w// denote the last letter (in ZA) of the word
subA.w/. Similarly define transB.w/, subB.w/, and last.subB.w//. The stacking
map for G over X is the function �G WNG �X ! X� defined for all w 2 NG and
x 2 Y by

�G.w; x/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�H .hd.w/; x/ if x 2 Y;

x if x D s and hd.w/ D transB.w/

or x D s�1 and hd.w/ D transA.w/;

last.subB.w//
�1s �1.last.subB.w///

if x D s and hd.w/ ¤ transB.w/;

last.subA.w//
�1s�1 .last.subA.w///

if x D s�1 and hd.w/ ¤ transA.w/:

In the case that the graph of the stacking map �H for H is decidable or
synchronously regular, the proof of Theorem 4.4 does not show that the same
must hold for the graph of the stacking function �G . However, in many special
cases, this does hold.

Corollary 4.6. Let H be an autostackable [respectively, algorithmically stack-

able] group over an inverse-closed generating set Y . Let A � H be generated

by a finite inverse-closed set Z � Y with shortlex normal form set SLA (with re-

spect to some total ordering of Z), and let  WA ! H be a monomorphism with

 .Z/ � Y . Suppose further that there are regular [respectively, decidable] sub-

sets NH=A;NH= .A/ � NH , each containing 1, representing transversals of these

subgroups, and that for each z 2 Z and Qz 2  .Z/, the sets

Lz WD ¹w 2 NH j w DH transA.w/subA.w/

for some transA.w/ 2 NH=A and subA.w/ 2 SLA \Z�zº
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and

L0
Qz WD ¹w 2 NH j w DH trans .A/.w/sub .A/.w/

for some trans .A/.w/ 2 NH= .A/

and sub .A/.w/ 2  .SLA/ \  .Z/� Qzº

are also regular [respectively, decidable]. Then the HNN extension G D H� is

autostackable [respectively, algorithmically stackable].

Proof. We give the proof in the autostackable case; the algorithmically stackable
proof is similar. Let s 2 G be the stable letter of the HNN extension, and let
X D Y [ ¹s˙1º.

Let �H be the the stacking map for the autostackable structure for H , and let
�G be the stacking map forG from Remark 4.5. Now graph.�H / is synchronously
regular. Let proj1; proj3W .X

�/3 ! X� be the projection maps on the first and third
coordinates. Note that the normal form set forH is NH D proj1.graph.�H //, and
since synchronously regular languages are closed under projections, the set NH is
regular. The normal form set for G has the form NG D Tail � NH where

Tail WD .NH=As
�1 [ NH= .A/s/

� \
�

X� X
S

"2¹˙1ºX
�s"s�"X�

�

;

and so NG is built from regular languages using intersection, union, complemen-
tation, concatenation and Kleene star. (See Section 2 for properties of regular and
synchronously regular languages.) Hence NG also is a regular language.

The graph of �G can be written

graph.�G/ D
�

S

y2Y;v2proj3.graph.�H //L1 � ¹yº � ¹vº
�

�
S

"2¹˙1ºL2;" � ¹s"º � ¹s"º
�

�
S

Qz2 .Z/ L
0
3;Qz

� ¹sº � ¹Qz�1s �1. Qz/º
�

�
S

z2Z L3;z � ¹s�1º � ¹z�1s�1 .z/º
�

where

L1 D Tail � proj1.graph.�H / \ .X� � ¹yº � ¹vº//;

L2;1 D Tail � NH= .A/;

L2;�1 D Tail � NH=A;

L3;z D Tail � Lz;

L0
3;Qz D Tail � L0

Qz :

Again closure properties of regular and synchronously regular languages show
that each of these languages is regular, and hence so is graph.�G/. �



HNN extensions and stackable groups 1139

In the algorithmically stackable case, Corollary 4.6 can be rephrased in terms
of solvability of the subgroup membership problem.

Corollary 4.7. Let H be an algorithmically stackable group, let A;B � H be

finitely generated, and let  WA ! B be an isomorphism. Suppose further that

the subgroup membership problem is decidable for the subgroups A and B in H .

Then the HNN extension G D H� is also algorithmically stackable.

Proof. From Theorem 4.4 and Remark 4.5, there is a finite inverse-closed gener-
ating set Y for H containing a finite inverse-closed set Z of generators for A as
well as the generators  .Z/ of B D  .A/, and there is a stackable structure for
G D H� overX D Y [¹s˙1º with Britton normal form set NG , such that the as-
sociate stacking map is given in Remark 4.5. From Corollary 4.6, then, it suffices
to show that there are decidable transversals NH=A;NH=B � NH , each containing
1, such that the languages Lz and L0

Qz
of Corollary 4.6 are also decidable.

Let <SL denote the shortlex ordering on Y � corresponding to a total ordering
of Y . For each coset hA of H=A, let �hA denote the shortlex least word in NH

representing an element of hA, and let

NH=A D ¹�hA j hA 2 H=Aº:

Note that the empty word 1 is an element of NH=A.
In order to determine whether a given word w 2 Y � lies in NH=A, first

use decidability to determine whether w 2 NH . If not, then (halt and output)
w … NH=A; if so, we next enumerate the finite set S of elements of Y � satisfying
v <SL w for all v 2 S . For each word v 2 S , use decidability to determine whether
v 2 NH and use the solution of the subgroup membership problem to determine
whether v�1w 2 A. If there is a word v 2 S with v 2 NH and v�1w 2 A, then
w … NH=A; and if there is no such word in S , then w 2 NH=A. Hence NH=A is
decidable.

Next suppose that z 2 Z and consider the set of Corollary 4.6

Lz WD ¹u 2 NH j u DH �� for some � 2 NH=A and � 2 SLA \ Z�zº

where (as before) SLA is the set of shortlex normal forms for A over Z. The
algorithm to determine whether a given word w over Y lies in Lz also begins by
using decidability to determine whether w 2 NH , and if not, halts with w … Lz .
If w 2 NH , then we repeat the algorithm in the previous paragraph to compute
the word � 2 NH=A satisfying � D �wA; that is, �A D wA and so ��1w 2 A, and
moreover � �SL w is the shortlex least word with this property. Next enumerate
all words y0; y1; y2; : : : over Z in increasing shortlex order. Now since the word
��1w represents an element ofA, we have ��1w DH yj for some indices j ; we can
use the solution of the word problem from the algorithmically stackable structure
on H to determine the first index i for which ��1w DH yi . Then � WD yi 2 SLA
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and w DH �� . Now w 2 Lz if and only if yi ends with the letter z. Thus Lz is
also decidable.

A similar argument shows that the set

NH=B D ¹� 0
hB j hB 2 H=Bº;

where � 0
hB

denotes the shortlex least word in NH representing an element of hB ,
is decidable and contains 1, and for each Qz 2  .Z/ the set

L0
Qz WD ¹w 2 NH j w DH �� for some � 2 NH= .A/ and � 2  .SLA/ \  .Z/� Qzº

is also decidable. �

5. Applications and Dehn functions

In this section we give three applications of Theorem 4.4 and Corollaries 4.6
and 4.7, that give information on the Dehn functions of stackable, algorithmically
stackable, and autostackable groups.

5.1. Stackable versus autostackable. In the first application, we show that
stackability and autostackability are not the same property, and that the class of
stackable groups contains groups whose Dehn function is not computable.

Theorem 5.1. There exists a stackable group with unsolvable word problem, and

hence stackability does not imply algorithmic stackability.

Proof. Let C D hY j Ri be a finitely presented group with unsolvable word
problem. Let Y 0 be a copy of Y , and let H D F.Y / � F.Y 0/ be a direct copy of
the free groups generated by Y and Y 0. Also let �WF.Y / ! C and �0WF.Y 0/ ! C

be the quotient maps. Let A be the Mihailova subgroup

A D ¹.h; h0/ 2 H j �.h/ D �0.h0/º

associated to C . Mihailova [17] showed that the subgroup membership problem
for A in H is not decidable; that is, there does not exist an algorithm that upon
input of a wordw in the generating set .Y [Y 0/˙1 ofH , can determine whetherw
represents an element of the subgroupA. The groupA is finitely generated (see for
example the paper of Bogopolski and Ventura [4] for a discussion and recursive
presentation for this group); let Z be a finite generating set for A.
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To construct an HNN extension from this data, we let WA ! A be the identity
function on A, and let G D H� . Let zY WD Y [ Y 0 [ Z, and for each z 2 Z, let
wz 2 ..Y [ Y 0/˙1/� be a word satisfying z DH wz . Then

G D h zY [ ¹sº j Œy; y0� D 1 for all y 2 Y; y0 2 Y 0; and

z D wz and szs�1 D z for all z 2 Zi:

Since the groupH is a direct product of free groups,H is a stackable group. Now
Theorem 4.4 and Remark 4.5 show that G is a stackable group, with a stackable
structure over the generating set . zY [ ¹sº/˙1 yielding the above as the stacking
presentation.

If the word problem for G were to have a solution, then upon input of any
word sws�1w�1 with w 2 .Y [ Y 0/˙1 � � zY ˙1 �, the word problem algorithm
can determine whether or not sws�1w�1 DG ". However, sws�1w�1 DG " if
and only if w represents an element of the subgroup A in the domain of  . Hence
this solves subgroup membership as well, giving a contradiction. Since G does
not have solvable word problem, this stackable groupG cannot be algorithmically
stackable. �

5.2. Dehn functions for algorithmic stackability: Hydra groups. In our sec-
ond application, we show that Dehn functions of algorithmically stackable groups
can be extremely large.

Theorem 5.2. The class of algorithmically stackable groups includes groups with

Dehn functions in each level of the Grzegorczyk hierarchy of primitive recursive

functions.

Proof. Dison and Riley [11] defined a family of groups �k (for k � 2), built by
HNN extensions, and showed that the Dehn function of�k is equivalent to the k-th
Ackerman function. In particular, for each integer k � 2, the group �k D Gk� k

is an HNN extension of a free-by-cyclic group

Gk D ha1; : : : ; ak; t j ta1t
�1 D a1; tai t

�1 D aiai�1 .i > 1/i

(known as a hydra group) with respect to the identity map  K WHk ! Hk on the
finitely generated (rank k free) subgroup Hk D ha1t

�1; : : : ; akt
�1i. Since the

class of algorithmically stackable groups is closed under extension [8], the group
Gk is algorithmically stackable. Theorem 4.4 shows that �k is also stackable.
Dison, Einstein and Riley [10, Theorem 3] have shown that for the subgroup Hk
ofGk , the subgroup membership problem is decidable. Then Corollary 4.7 shows
that �k is also algorithmically stackable. �
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5.3. Dehn functions for autostackability: The Baumslag–Gersten group. In
this third application we consider the Baumslag–Gersten group, also known as
Baumslag’s (nonmetabelian) group, which is presented by

G D ha; s j .sas�1/a.sa�1s�1/ D a2i D ha; t; s j tat�1 D a2; sas�1 D ti:

This group can be realized as an HNN extension G D H� where H is the
Baumslag–Solitar group H D BS.1; 2/ D ha; t j tat�1 D a2i and  W hai ! hti
is the map given by  .a/ D t . The group H is autostackable [6, 7], and so
Theorem 4.4 shows that G is stackable. We strengthen this result to show the
following.

Theorem 5.3. The Baumslag–Gersten group ha; s j .sas�1/a.sa�1s�1/ D a2i is

autostackable.

Proof. The Baumslag–Solitar group H D ha; t j tat�1 D a2i has a finite
complete rewriting system on the generating set Y D ¹a˙1; t˙1º given by

¹a"a�" ! 1; t "t�" ! 1; a2t ! ta; a�1t ! ata�1; a"t�1 ! t�1a2" j " 2 ¹˙1ºº;

and hence is autostackable [7]. The normal form set of this autostackable structure
is the regular language

NH D
�

¹t; at; t�1º� X
S

"2¹˙1º Y
�t "t�"Y �

�

.a� [ .a�1/�/

D Œ.t�1/� [ ..t�1/�at [ 1/.¹1; aº � t /��.a� [ .a�1/�/:

(That is,H is an HNN extension of the infinite cyclic group hai by the monomor-
phism hai ! hai defined by a 7! a2, and NH is the associated set of Britton
normal forms.)

Let A D hai and B D hti, subgroups of H , and let  WA ! B be the map
 .a/ D t , so that G D H� . Then the generating set Z WD ¹a˙1º for A and its
image  .Z/ D ¹t˙1º are both subsets of the generating set Y of H .

By Corollary 4.6, it now suffices to show that there are regular transversals for
these subgroups such that each of the languages Lz and L0

Qz
is regular.

Define

NH=A WD .t�1/� [ ..t�1/�at [ 1/.¹1; aº � t /�

and

NH=B WD a� [ .a�1/� [ t�1.t�1/� � .a.a2/� [ a�1.a�2/�/:

Then NH=A and NH=B are subsets of NH (each containing 1) that are transversals
for A and B inH , respectively. We note that NH=A and NH=B are built from finite
sets using unions, concatentations, and Kleene star, and so both of these sets are
also regular languages.
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The set of shortlex normal forms for elements of the subgroup A over the
generating set Z is SLA D a� [ .a�1/�, and similarly the shortlext normal forms
for B over  .Z/ is SLB D t� [ .t�1/�.

Let z 2 Z. Then z D a" for some " 2 ¹˙1º. Since NH D NH=ASLA, the
language La" satisfies

La" D ¹w 2 NH j w DH transA.w/subA.w/ for some transA.w/ 2 NH=A

and subA.w/ D a"i with i > 0º

D NH \ Y �a":

Then La" is an intersection of regular languages, and hence is also regular.
Next, for Qz 2  .Z/, we have Qz D t " with " 2 ¹˙1º. Suppose first that " D 1.

Then

L0
t D ¹w 2 NH j w DH transB.w/subB.w/ for some transB.w/ 2 NH= .A/

and sub.w/ D tk with k > 0º:

Suppose thatw 2 NH\Y �tY �; that is,w 2 ..t�1/�at[t /.¹1; aº�t /��.a�[.a�1/�/.
Then either w D t�iata"1 � � � ta"k ta`, or w D ta"1 � � � ta"k ta` for some i; k � 0,
"i 2 ¹0; 1º and ` 2 Z. Hence either transB.w/ D t�ia1C2"1C���C2k"kC2kC1` or

transB.w/ D a2"1C���C2k"kC2kC1` (respectively), and subB.w/ D tkC1. Since
k � 0, then last.sub.w// D t , and so w 2 L0

t . Hence L0
t � NH \ Y �tY �. On

the other hand, for any v 2 L0
t , we have v D nf.aj tk/ or v D nf.t�ia2jC1tk/ for

some i � 0, j 2 Z, and k > 0. Applying the rules of the rewriting system above,
then the normal form v must contain the letter t . That is,

L0
t D NH \ Y �tY �

and therefore this set is a regular language.
Finally we consider the set

L0
t�1 D ¹w 2 NH j w DH transB.w/subB.w/ for some transB.w/ 2 NH= .A/

and sub.w/ D t�i with i > 0º:

In this case we have

L0
t�1 D NH X .NH=B [ L0

t / D t�1.t�1/�..a2/� [ .a�2/�/;

and so L0
t�1 is also regular.

Corollary 4.6 now shows that G is autostackable. �

The following Corollary is now immediate from Theorem 5.3 and Platonov’s
proof that the Dehn function of the Baumslag–Gersten group is not elemen-
tary [18].

Corollary 5.4. The class of autostackable groups includes groups with nonele-

mentary Dehn functions.
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6. Autostackable metabelian groups

In this section we consider an infinite family of nonconstructible metabelian
groups. Let p 2 ¹n 2 Z j n � 2º [ ¹1º, and let

Gp D ha; s; t j ap D 1; Œat ; a� D 1; as D ata; Œs; t � D 1i;

where the case p D 1 means that no relation ap D 1 occurs. The group G1

is Baumslag’s metabelian group, which is introduced in [3], and for p < 1, the
torsion analog Gp of Baumslag’s metabelian group is the Diestel–Leader group
�3.p/ (which is also metabelian). Our objective in this section is to show in
Theorem 6.1 that G1 is algorithmically stackable and the groups Gp for p < 1
are autostackable.

We begin with a description of the subgroup structure of Gp, following [3].
Let Hp be the subgroup of Gp generated by Y D ¹a˙1; t˙1º. In his paper [3],
Baumslag showed that a consequence of the relations in the presentation above of

G1 is that Œat
i

; at
j

� D 1 for all i; j 2 Z. Moreover

Hp D ha; t j Œat
i

; at
j

� D 1 for all i; j 2 Z; ap D 1i

D
�

L

i2Zht iat�i i
�

Ì hti;

where ht iat�ii is isomorphic toZp for each i , hti Š Z, and t acts on
L

i2Zht iat�ii
conjugating the i-th summand to the .i C 1/-th summand; that is, Hp is the
(restricted) wreath product Hp D Zp o Z. (In the case that p D 2, the group
H2 is also known as the lamplighter group.) Let  WHp ! hata; ti � Hp be
the map defined by  .a/ D ata and  .t/ D t ; then the group Gp is the HNN
extension Gp D Hp� p

, and the generator s of Gp is the corresponding stable
letter.

The crucial difference with Theorem 4.4 is that in this case the groupHp is not
finitely presentable, so Hp cannot have a stackable structure. Despite this, there
are some analogies between the proofs of Theorems 4.4 and 6.1; in particular, the
Britton set of normal forms are used for the HNN extensions in both.

In order to describe the normal form set for Gp, and to streamline other parts
of the proof of Theorem 6.1, we also make use of an another way to view the
elements of this group. Using the isomorphism O� between

�
L

i2Zht iat�ii
�

and

Zp Œx;
1
x
� given by O�..t i1aˇ1 t�i1/ � � � .t inaˇn t�in// WD ˇ1x

i1 C � � � C ˇnx
in , there

are isomorphisms

O�WHp �! yHp WD Zp

�

x; 1
x

�

Ì hOti

and

O�WGp �! yGp WD
�

Zp

�

x; 1
x

�

Ì hOti
�

� O 
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(with O�.t/ WD Ot and O�.s/ WD Os) where the conjugation action of Ot on ZpŒx;
1
x
�

is multiplication by x, and the map O WHp ! h1 C xi Ì hOti is defined by
O .x0/ WD 1 C x and O .Ot / WD Ot ; that is, the conjugation action by the stable
letter Os on yHp is given by multiplication by 1 C x on the ZpŒx;

1
x
� subgroup and

fixes Ot .

Theorem 6.1. Baumslag’s metabelian group G1 D ha; s; t j as D ata; Œat ; a� D
1; Œs; t � D 1i is algorithmically stackable, and the Diestel–Leader torsion analogs

Gp D ha; s; t j as D ata; Œat ; a� D 1; Œs; t � D 1; ap D 1i with p 2 Z and p � 2

are autostackable.

Proof. Although we cannot directly apply Theorem 4.4, we will use roughly the
same ingredients in order to build a stacking system for the group Gp. Consider
the inverse closed generating set X D ¹a˙1; s˙1; t˙1º for Gp.

Step I. Normal forms and notation. In order to build a set of normal forms
for the group Hp, we use the isomorphism Hp Š yHp, and note that an arbitrary

element of yHp can be written uniquely in the form q.x/Otm where q.x/ 2 ZpŒx;
1
x
�

and m 2 Z. Let

NHp
WD ¹tm j m 2 Zº

[ ¹t ra˛r ta˛rC1 : : : ta˛l t�lCm j r; l; m 2 Z; r � l;

˛i 2 Zp for r � i � l;

and ˛r ; ˛l ¤ 0ºI

here (and throughout this proof) we write ˛i 2 Zp to mean that ˛i 2 Z in the case
that p D 1, and ˛i 2 ¹0; 1; : : : ; p � 1º if p is finite. Then the restriction of the
map O� to the set NHp

gives a bijection �WNHp
! yHp defined by �.tm/ WD Otm and

�.t ra˛r ta˛rC1 : : : ta˛l t�lCm/ WD .˛rx
r C ˛rC1x

rC1 C � � � C ˛lx
l /Otm;

where the integers r and l are the lowest and highest degrees of the polynomial in
the ZpŒx;

1
x
� subgroup, respectively, and hence NHp

is a set of normal forms for
Hp.

The HNN extensionGp D Hp� is strictly ascending, in that the isomorphism
 WA ! B of subgroups ofHp maps the full groupA D Hp to the proper subgroup
B D hata; ti. The set NH=A WD ¹1º � NHp

is a transversal for H=A. Under the
map O� the subgroup B is isomorphic to the split extension by Z D hOti of the ideal
I of ZpŒx; 1=x� generated by 1Cx. This implies thatH=B Š ZpŒx; 1=x�=I Š Zp ;

and the set

NH=B WD ¹aˇ j ˇ 2 Zpº
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is a set of normal forms of a set of representatives of the cosets of B in H . The
corresponding Britton normal form set for the HNN extension Gp is given by

NGp
WD ¹s�kaˇ1saˇ2s : : : saˇnsh j k; n � 0; ˇi 2 Zp for 1 � i � n;

ˇ1 ¤ 0 if both k > 0 and n > 0;

and h 2 NHp
º:

Given such a word u D s�kaˇ1saˇ2s : : : saˇnsh 2 NGp
, as in Notation 4.1 we

denote the tail and head of u as tl.u/ WD s�kaˇ1saˇ2s : : : saˇns and hd.u/ WD h,
respectively. Moreover, let qu.x/ 2 ZpŒx;

1
x
� andmu 2 Z be defined by qu D 0 and

�.hd.u// D Otmu in the case that hd.u/ is a power of t , and �.hd.u// D qu.x/Ot
mu

otherwise. Also in the latter case let ru and lu denote the lowest and highest
degrees, respectively, of monomials in qu.x/. Let ˛ru;u; : : : ; ˛lu;u (or ˛ru ; : : : ; ˛lu
when there is no ambiguity) denote the respective coefficients in the Laurent
polynomial qu. In the case that qu ¤ 0, note that ˛lu;u ¤ 0; in the remainder
of this proof, ˛lu;u D 0 implies the opposite case that qu D 0.

For all w 2 X�, let nf.w/ denote the normal form in NGp
of the element

of Gp represented by w. We note that the language NGp
is prefix-closed. Let

� WD �.Gp; X/ be the Cayley graph for Gp over X , let EE and EP be the sets
of directed edges and directed paths in �, and let T be the maximal tree of �
corresponding to the set NGp

. For all u 2 NGp
and z 2 X , let eu;z denote the

directed edge in � labeled by z with initial vertex labeled by the element of Gp
represented by u.

Step II. The stackable system of fully NGp
-triangular van Kampen diagrams

for p < 1. In this step we obtain the stackable structure in the case that p is
finite by applying Proposition 3.5 and showing that over the finite presentation

Gp D ha; s; t j ap D 1; Œat ; a� D 1; Œs; t � D 1; sa˛s�1 D ta˛t�1a˛;

sa˛t s�1 D a˛ta˛ .˛ 2 ¹1; : : : ; p � 1º/i;

there is a fully NGp
-triangular van Kampen diagram �u;z with boundary label

uznf.uz/�1 for every normal form word u 2 NGp
and generator z 2 X . We

proceed via several cases depending upon u and z; in each case, we have that fully
NGp

-triangular van Kampen diagrams have been constructed for the prior cases.

Also in each case we record the corresponding function ˆW EE ! EP on the edge
eu;z , and the algorithm to compute this function.

Case 1: z D t˙1. In this case, either the word ut˙1 is in normal form, or else
the word u ends with the letter t˙1. Thus there is a degenerate (and hence fully
NGp

-triangular) van Kampen diagram�u;z with boundary label uznf.uz/�1, and
ˆ.eu;z/ WD eu;z .
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Case 2: z D a˙1 and either qu.x/ D 0 or both qu.x/ ¤ 0 andmu � lu � 0

Case 2.1: qu.x/ ¤ 0 andmu�lu D 0. Then the word u ends with the suffix a˛lu

with ˛lu > 0, and the last letter of u is a. If either z D a�1 or else both z D a and
˛lu < p � 1, then again there is a degenerate diagram �u;z and ˆ.eu;z/ WD eu;z .
On the other hand, if z D a and ˛lu D p � 1, then we can factor u D u0ap�1 for
some u0 2 NGp

, and so there is a minimal diagram�u;z D u0�ap�1;a with a single

2-cell �ap�1;a with boundary label ap; in this case, ˆ.eu;z/ WD path.u; a�.p�1//.

Case 2.2: qu.x/ D 0 or both qu.x/ ¤ 0 and mu � lu > 0. That is,
either hd.u/ D tmu , or hd.u/ contains the letter a and ends with the letter
t . If z D a then uz 2 NGp

and there is a degenerate diagram �u;z; thus
ˆ.eu;z/ WD eu;z . If z D a�1, then nf.uz/ D uap�1 and there is a minimal diagram
�u;z D u�1;a�1 with a single 2-cell �1;a�1 with boundary label ap; in this case,
ˆ.eu;z/ WD path.u; ap�1/.

Case 3: z D a˙1, qu.x/ ¤ 0, and mu � lu D �1. Define ı 2 ¹˙1º by
z D aı . We begin the construction of the fully NGp

-triangular van Kampen dia-
gram�u;z with an isolated cell with one edge labeled z, and the remaining bound-
ary path in the other direction labeled ta�1t�1aı tat�1; that is, we takeˆ.eu;z/ WD
path.u; ta�1t�1aı tat�1/. By case 1, we already have fully NGp

-triangular dia-
grams �u;t , �nf.uta�1/;t�1 , �nf.uta�1t�1aı/;t , and �nf.uta�1t�1aıta/;t�1 . Hence in
order to show that we can complete this to a fully NGp

-triangular diagram, it suf-
fices to check that fullyNGp

-triangular diagrams have already been constructed for

the pairs .u1; a
�1/, .u2; a

ı/, and .u3; a/ where u1 D nf.ut/, u2 D nf.uta�1t�1/,
and u3 D nf.uta�1t�1aı t /:

Note that the word u ends with the suffix at�1. Then u1 is the prefix of u with
the last letter t�1 removed, and so u1 ends with the letter a. Hence �u1;a�1 was
built in case 2.1.

We prove that �u2;aı has already been constructed by induction on ˛lu;u (and

a prior case). The normal form u2 is obtained from u by removing the suffix at�1,
appending t�1, and possibly free reduction (in the case that ˛lu;u D 1 and either
lu > ru or lu D ru > 0); then either (hd.u2/ D t ru�1 and ˛lu2

;u2
D 0), or

(hd.u2/ contains the letter a and mu2
� lu2

D 0), or (hd.u2/ contains the letter a,
mu2

� lu2
D �1 and ˛lu2

;u2
< ˛lu;u). Hence the construction of �u2;aı follows

from case 2 or induction.
Writing u D tl.u/t rua˛ru;u � � � ta˛lu;ut�1, we have

u3 DGp
tl.u/t rua˛ru;u � � � ta˛lu;u�1t�1aı t

DGp
tl.u/.t rua˛ru;u t�ru/ � � � .t lua˛lu;u�1t�lu/.t lu�1aı t�.lu�1//t lu

DGp
tl.u/.t rua˛ru;u t�ru/ � � � .t lu�1a˛lu�1;uCı t�.lu�1//.t lua˛lu;u�1t�lu/t lu :
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Using the polynomial viewpoint, qu3
.x/ D qu.x/ C ıxlu�1 � xlu . Now either

hd.u3/ D tmu3 (if qu3
D 0), or mu3

� lu3
� 0 (otherwise); hence �u3;a was also

constructed in case 2.

Case 4: z D s�1 and tl.u/ does not have a suffix of the form as. Either
tl.u/ D s�k or tl.u/ D s or tl.u/ ends with s2; the property that we exploit in
this case is that for all of these options, we have tl.nf.tl.u/s�1h// D nf.tl.u/s�1/

and hd.nf.tl.u/s�1h// D nf.h/ for all h 2 ¹a˙1; t˙1º�. We proceed by induction
on the length l.hd.u// of the head of u.

Suppose first that l.hd.u// D 0. Since u D tl.u/, either u D s�k (with k � 0),
u D s, or u ends with s2. In all three of these options, there is a degenerate diagram
�u;z , and we set ˆ.eu;z/ WD eu;z .

Now suppose that l.hd.u// > 0, and write u D u0z0 where z0 2 ¹a; t˙1º.

If z0 D t ı with ı 2 ¹˙1º, then we begin the construction of the fully
NGp

-triangular van Kampen diagram �u;z with an isolated cell with one edge

labeled z, and the remaining boundary path in the other direction labeled t�ıs�1t ı ,
and hence set ˆ.eu;z/ WD path.u; t�ıs�1t ı/. Now fully NGp

-triangular van
Kampen diagrams �u;t�ı and �nf.ut�ıs�1/;tı are constructed in case 1, and since

nf.ut�ı/ D u0 satisfies l.u0/ D l.u/ � 1, the diagram �nf.ut�ı/;s�1 has been built
by induction.

On the other hand if z0 D a, we build �u;z starting with an isolated cell with
one edge labeled z, and the remaining boundary path in the other direction labeled
a�1s�1atat�1, and so ˆ.eu;z/ WD path.u; a�1s�1atat�1/. As usual, the required
fully NGp

-triangular subdiagrams with isolated edges labeled by t˙1 have been
built in case 1, and the degenerate diagram �u;a�1 is given in case 2.1. Since
nf.ua�1/ D u0 is a prefix of u, we again have built the diagram �nf.ua�1/;s�1 by
induction. So it suffices to show that fully NGp

-triangular van Kampen diagrams
have been built for the pairs .u1; a/, and .u2; a/, where u1 D nf.ua�1s�1/ and
u2 D nf.ua�1s�1at/.

Applying the property noted at the start of case 4, the normal form u1 satisfies
tl.u1/ D nf.tl.u/s�1/ and

hd.u1/ D nf.Œs.t rua˛ru;u t�ru/ � � � .t lua˛lu;u�1t�lu/s�1�t lu/:

In the polynomial view, conjugation by Os results in multiplication by 1 C x, and
so qu1

.x/ D Œqu.x/ � xlu �.1 C x/. Now mu1
D lu and lu1

� lu C 1, and so
mu1

� lu1
� �1. Hence the diagram �u1;a is constructed case 2 or 3.

A similar computation yields qu2
.x/ D Œqu.x/�x

lu �.1Cx/Cxlu , which also
has degree lu2

� lu C 1, and mu2
D lu C 1, and so mu2

� lu2
� 0. Hence the

diagram �u2;a is constructed in case 2.
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Case 5: z D s and hd.u/ 2 Im . Similar to the situation in case 4, a
property that we exploit in this case is that tl.nf.tl.u/sh// D nf.tl.u/s/ and
hd.nf.tl.u/sh// D nf.h/ for all h 2 ¹a˙1; t˙1º�.

Observe that hd.u/ 2 Im implies that qu.x/ D Oqu.x/.1 C x/ for some
Oqu.x/ 2 Zp

�

x; 1
x

�

such that either qu D Oqu D 0, or else jlu � ruj > 0 and

Oqu.x/ D ru;ux
ru C � � � C lu�1;ux

lu�1

with each i;u 2 Zp, and lu�1;u D ˛lu;u.

We proceed by induction on the number occt .u/ of occurrences of t˙1 in the
word hd.u/.

First suppose that occt .u/ D 0. Since qu.x/ is not a single monomial, hd.u/
cannot be a nontrivial power of a, and so hd.u/ D 1 and u D tl.u/. The normal
form nf.us/ is either us or the word u with a final letter s�1 removed. In this case
there is a degenerate diagram �u;z , and we set ˆ.eu;z/ WD eu;z .

Now suppose that occt .u/ > 0, and write u D u0z0 with u0 2 NGp
and

z0 2 ¹a; t˙1º.
If z0 D t ı with ı 2 ¹t˙1º, then as in case 4 we begin the diagram �u;z

with an isolated cell labeled by zt�ıs�1t ı and set ˆ.eu;z/ WD path.u; t�ıst ı/.
The required fully NGp

-triangular diagrams with isolated edges labeled t˙1 are
constructed in case 1, and �u0;z has already been built by induction.

Suppose instead that z0 D a. We build �u;z with an isolated cell labeled
zt�1a�˛lu;us�1a˛lu;u ta˛lu;u ; then ˆ.eu;z/ WD path.u; a�˛lu;ut�1a�˛lu;usa˛lu;ut /.
For all 0 � i � ˛lu;u � 1, the diagram is degenerate as in case 2.1 thus ˆ.u; z/ WD
eu;z . and by case 1 it remains to show that we have built fully NGp

-triangular
diagrams associated to the pairs .u1;i ; a

�1/, .u2; s/, and .u3;i ; a/ for 0 � i < ˛lu;u,
where u1;i D nf.ua�˛lu;u t�1a�i /, u2 D nf.ua�˛lu;ut�1a�˛lu;u/, and u3;i D
nf.ua�˛lu;ut�1a�˛lu;usai /.

Since qu ¤ 0, then jlu � ruj > 0 and we can write u D tl.u/u00aj ta˛lu;u

for some u00 2 NHp
, j 2 ¹0; 1; : : : ; p � 1º and ˛lu;u 2 ¹1; 2; : : : ; p � 1º such

that u00 does not end with a. Then u1;i D tl.u/u00a Q| where Q| 2 ¹0; : : : ; p � 1º and
Q| � j�i (modp). Thus either qu1;i

.x/ D 0, or else qu1;i
¤ 0 andmu1;i

�lu1;i
� 0,

and so �u1;i ;a
�1 is constructed in case 2.

Next note that qu2
D qu�˛lu;ux

lu�1.xC1/, and so hd.u2/ 2 Im and the pair
.u2; s/ satisfies case 5. Moreover, u2 D tl.u/u00a Q| where Q| � j � ˛lu;u (mod p),
and so occt .u2/ D occt .u/ � 1 < occt .u/. Hence the diagram �u2;s has already
been built by induction.

Applying the property noted at the beginning of case 5, we have that tl.u3;i / D
nf.tl.u/s/ and

hd.u3;i / D nf.Œs�1.t rua˛ru;u t�ru/ � � � .t lu�1a˛lu�1;u�˛lu;u t�.lu�1//s�

.t lu�1ai t�.lu�1//t lu�1/:
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In the polynomial viewpoint, conjugation by Os�1 is division by 1 C x, and so
qu3;i

D Oqu � ˛lu;ux
lu�1 C ixlu�1. Now either qu3;i

D 0 (in the case that i D 0

and qu D ˛lu;ux
lu�1.x C 1/) or else qu3;i

¤ 0 and lu3;i
� lu � 1 D mu3;i

(and so
mu3;i

� lu3;i
� 0). Thus the diagram �u3;i ;a is constructed in case 2.

Case 6: z D a˙1, qu.x/ ¤ 0, and mu � lu < �1. Write z D aı . The Laurent

polynomial qu.x/ D
Plu
iDru

˛i;ux
i can be written

qu.x/ D Oqu.x/.1C x/CRu

for some Laurent polynomial Oqu.x/ 2 ZpŒx;
1
x
� and Ru D qu.�1/ 2 Zp. Define

dı.u/ D .d1;ı.u/; d2;ı.u//

WD .jmu � luj; Ru � ı.�1/muC1/ 2 ¹i 2 N j i � 2º � ¹0; : : : ; p � 1º;

where we consider the element Ru � ı.�1/muC1 of Zp to be an integer in
¹0; : : : ; p � 1º � N0. Consider the lexicographic ordering � on the set ¹i 2 N j
i � 2º � ¹0; : : : ; p � 1º � N � N0 which is a well-founded strict partial ordering.
We proceed by (Noetherian) induction on this ordering on dı.u/.

For the base case, suppose that dı.u/ D .2; 0/. Then mu � lu D �2 and
qu.�1/ � ı.�1/muC1 D 0. We begin the diagram �u;z with an isolated cell
with an isolated edge labeled z, and edge path in the other direction labeled
ta�ı t�1saıs�1; that is, ˆ.eu;z/ WD path.u; ta�ı t�1saıs�1/: The subdiagrams
�u;t and �nf.uta�ı/;t�1 are constructed in case 1; there are four remaining subdia-
grams needed to build �u;z that we need to show have already been constructed:
�u1;a�ı , �u2;s , �u3;aı , and �u4;s�1 , where u1 D nf.ut/, u2 D nf.uta�ı t�1/,

u3 D nf.uta�ı t�1s/, and u4 D nf.uta�ı t�1saı/.

Since mu1
� lu1

D �1, the diagram �u1;a�ı is built in case 3.

The polynomial associated to u2 is qu2
.x/ D qu.x/� ıxmuC1, which satisfies

qu2
.�1/ D d2;ı.u/ D 0. Then 1 C x divides the Laurent polynomial qu2

and
hd.u2/ 2 Im . Hence the diagram �u2;s is built in case 5.

Next, as in case 5 we note that tl.u3/ D nf.tl.u/s/ and

hd.u3/ D nf.Œs�1.t rua˛ru;u t�ru/ � � � .t lua˛lu;u t�lu/.tmuC1a�ı t�.muC1//s�tmu/:

Then qu3
.x/ D .qu.x/ � ıxmuC1/=.x C 1/; since mu C 1 < lu, the degree of qu3

is lu3
D lu�1. Sincemu3

D mu, thenmu3
� lu3

D mu� luC1 D �1, and�u3;aı

is also constructed in case 3.

Finally, we also have tl.u4/ D nf.tl.u/s/, and so tl.u4/ cannot end with as.
Hence �u4;s�1 is constructed in case 4.

For the inductive step, suppose that dı.u/ � .2; 0/.
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Suppose further that d2;ı.u/ D 0 (and hence d1;ı.u/ D jmu� luj > 2). We fol-
low nearly the same proof as in the dı.u/ D .2; 0/ (base) case above; the isolated
cell of �u;z is labeled zsa�ıs�1taı t�1, and ˆ.eu;z/ WD path.u; ta�ı t�1saıs�1/:

The only differences with the proof of that base case is that the applications
of case 3 are replaced with induction. In particular, u1 satisfies mu1

� lu1
D

mu � lu C 1, implying that d1;ı.u1/ D jmu1
� lu1

j D jmu � luj C 1 < jmu � luj D
d1;ı.u/, and so dı.u1/ � dı.u/ and the construction of �u1;a�ı follows from in-
duction. Similarly the fact that mu3

� lu3
D mu � lu C 1 implies that �u3;aı is

built by induction.
On the other hand suppose that d2;ı.u/ > 0 and let � WD .�1/muC1: The

construction of �u;z begins with an isolated cell having isolated edge labeled z,
and edge path in the other direction labeled ta��t�1aı ta�t�1 then ˆ.eu;z/ WD
path.u; ta��t�1aı ta�t�1/. Applying case 1 to obtain the required (degenerate)
diagrams with isolated edges labeled t˙1, we have left to check whether the
following three fully NGp

-triangular diagrams �u1;a�� , � Qu2;aı and, � Qu3;a� have

already been constructed, where u1 D nf.ut/, Qu2 D nf.uta��t�1/, and Qu3 D
nf.uta��t�1aı t /.

Since d1;ı.u1/ D d1;ı.u/C 1, then �u1;a�� is constructed by case 3 or induc-
tion. Next q Qu2

.x/ D qu.x/� �xmuC1. Again using the fact thatmu C 1 < lu, then
q Qu2

.x/ ¤ 0, m Qu2
D mu, and l Qu2

D lu; hence d1;ı. Qu2/ D d1;ı.u/. Moreover,

d2;ı. Qu2/ D R Qu2
� ı.�1/m Qu2 D Ru � �.�1/muC1 � ı.�1/mu D d2;ı.u/ � 1:

Therefore the construction of � Qu2;aı follows from induction. Finally q Qu3
.x/ D

qu.x/ � �xmuC1 C ıxmu , m Qu3
D mu C 1, and l Qu3

D lu. Then d1;ı. Qu3/ < d1;ı.u/,
and again the construction of � Qu3;a� follows from induction.

Case 7: z D s�1 and tl.u/ has a suffix as. We proceed by induction on the
length l.hd.u//.

Suppose first that l.hd.u// D 0. Then there is a degenerate diagram �u;z and
ˆ.eu;z/ WD eu;z .

Suppose next that l.hd.u// > 0. Write u D u0z0 with u0 2 NGp
and

z0 2 ¹a; t˙1º.
If z0 D t ı with ı 2 ¹t˙1º, the construction and inductive proof are identical to

the z0 D t ı subcase of case 4, with ˆ.eu;z/ WD path.u; t�ıst ı/.
On the other hand suppose that z0 D a. We begin building �u;z with an iso-

lated cell labeled zta�1t�1a�1sa; that is, ˆ.eu; z/ WD path.u; a�1s�1atat�1/.
Now case 1 provides fully NGp

-triangular van Kampen diagrams � Ou;tı and
cases 2,3, and 6 provide fully NGp

-triangular van Kampen diagrams � Ou;aı

for all Ou 2 NGp
and ı 2 ¹˙1º, yielding diagrams �u;a�1 , �nf.ua�1s�1/;a,

�nf.ua�1s�1a/;t , �nf.ua�1s�1at/;a, and �nf.ua�1s�1ata/;t�1 . Since nf.ua�1/ D u0

satisfies l.hd.u0// D l.hd.u// � 1 < l.hd.u//, the diagram �nf.ua�1/;s�1 has also
already been constructed, by induction.
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Case 8: z D s and hd.u/ 62 Im . As in case 5, we proceed by induction on the
number occt .u/ of occurrences of t˙1 in hd.u/.

Suppose first that occt .u/ D 0. Then hd.u/ D a˛lu , and since hd.u/ … Im ,
then ˛lu > 0. In this case the word us is in normal form, and so we have
ˆ.eu;z/ WD eu;z .

Now suppose that occt .u/ > 0, and write u D u0z0 with u0 2 NGp
and

z0 2 ¹a; t˙1º.
If z0 D t ı with ı 2 ¹t˙1º, the construction of �u;z has isolated cell labeled

zt�ıs�1t ı , with ˆ.eu;z/ WD path.u; t�ıst ı/. Since nf.ut�ı/ D u0 satisfies
occt .u

0/ D occt .u/�1 < occt .u/, the diagram�u0;z has already been constructed
by induction.

Suppose instead that z0 D a. Now hd.u/ D u00t ıa˛lu for some ı 2 ¹˙1º and
u00 2 NHp

. Again we recall that p < 1 in Step II, and so ˛lu 2 ¹1; 2; : : : ; p � 1º.
If ı D 1, we build �u;z with an isolated cell labeled zt�1a�˛lu s�1a˛lu ta˛lu ;

then ˆ.eu;z/ WD path.u; a�˛lu t�1a�˛lu sa˛lu t /. Cases 1,2,3, and 6 provide
fully NGp

-triangular van Kampen diagrams corresponding to the edges labeled

t˙1 and a˙1 along the boundary of this isolated cell. Now the normal form
Qu WD nf.ua�˛lu t�1a�˛lu / D nf.u00a�˛lu / is obtained from u00a�˛lu by possible
reduction modulo p of a final power of a; then Qu satisfies occt . Qu/ D occt .u/�1 <
occt .u/, and again induction applies to show that the diagram � Qu;s has already
been constructed.

If ı D �1, we build �u;z with an isolated cell labeled

za�˛lu t�1s�1a˛lu t�1a˛lu I

then ˆ.eu;z/ D path.u; a�˛lu ta�˛lu st�1a˛lu /. As before, cases 1,2,3, and 6
provide fully NGp

-triangular van Kampen diagrams corresponding to the edges

labeled t˙1 and a˙1. The normal form Ou WD nf.ua�˛lu ta�˛lu / D u00a�˛lu , and so
occt . Qu/ < occt .u/. Once again induction applies to show that the diagram � Ou;s

has already been constructed, as required.

Step III. Autostackability of Gp for p < 1. In this section again we consider
the p < 1 case. Throughout this step we will repeatedly apply the closure
properties of regular and synchronously regular languages discussed in Section 2.

Before analyzing the graph of the stacking map, we first discuss the set NGp

of normal forms. Let

Tail WD ¹s�kaˇ1saˇ2s : : : saˇns j k; n � 0; ˇi 2 Zp for 1 � i � n;

and ˇ1 ¤ 0 if both k > 0 and n > 0ºI

that is, Tail is the set of tails of elements of NGp
. Then

Tail D .s�1/�.¹1; a; a2; : : : ; ap�1ºs/� XX�s�1sX�
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is built from finite subsets of X� using concatenation, complement, and Kleene
star operations, and hence is a regular language. Similarly the normal form set
NHp

for Hp can be written

NHp
D .t� [ .t�1/�/.¹1; a; a2; : : : ; ap�1ºt /�

¹1; a; a2; : : : ; ap�1º.t� [ .t�1/�/ X X�¹t t�1; t�1tºX�

and so NHp
is also regular. Finally the normal form set NGp

is the concatenation
NGp

D Tail�NHp
of these two regular languages, and therefore NGp

is also regular.
The stacking map associated to the flow function ˆ in Step II of this proof is

given by

�.u; z/ WD
®

z if z D t˙1, (1)

from case 1,

�.u; z/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

z if z D a (2)

and u 2 Tail � .t�1/� [X�t [ .X�a XX�ap�1/,

a�.p�1/ if z D a and u 2 X�ap�1, (3)

z if z D a�1 and u 2 X�a, (4)

ap�1 if z D a�1 and u 2 Tail � .t�1/� [X�t , (5)

ta�1t�1aı tat�1 if z D aı ; ı 2 ¹˙1º, and u 2 X�at�1, (6)

ta�ı t�1saıs�1 if z D aı ; ı 2 ¹˙1º, u 2 X�aY �t�2; (7)

and qu.�1/ � ı.�1/muC1 � 0.mod p/,

ta��t�1aı ta�t�1 if z D aı ; ı 2 ¹˙1º, u 2 X�aY �t�2, (8)

qu.�1/ � ı.�1/muC1 6� 0.mod p/,

and � D .�1/muC1,

from cases 2, 3, and 6 (where we recall that Y D ¹a˙1; t˙1º),

�.u; z/ WD

8

ˆ

<

ˆ

:

z if z D s�1 and u 2 Tail, (9)

t�ıs�1t ı if z D s�1 and u 2 X�t ı , ı 2 ¹˙1º, (10)

a�1s�1atat�1 if z D s�1 and u 2 X�a, (11)

from cases 4 and 7, and

�.u; z/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

z if z D s and u 2 Tail � a�, (12)

t�ıst ı if z D s, and u 2 X�t ı , ı 2 ¹˙1º, (13)

a�˛t�1a�˛sa˛t if z D s, (14)

and u 2 X�ta˛, ˛ 2 ¹1; : : : ; p � 1º,

a�˛ta�˛st�1a˛ if z D s, (15)

and u 2 X�t�1a˛ , ˛ 2 ¹1; : : : ; p � 1º,

from cases 5 and 8.
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The graph graph.�/ of this function is a union of 15 languagesL1; : : : ; L15, one
for each of the pieces of this piecewise defined function. Each languageLi is either
a Cartesian product L0

i � ¹ziº � ¹wiº for some L0
i � X�, zi 2 X , and wi 2 X�, or

else is a finite union of such products; for example,L1 D
S

ı2¹˙1º L
0
1ı

�¹t ıº�¹t ıº,
and L0

1ı
D NGp

. Since a finite union of a Cartesian product of regular languages
is synchronously regular, it suffices to show that the sets L0

i are regular.
For thirteen of the languages, regularity of the setL0

i follows immediately from
that of NGp

and Tail, along with standard closure properties of regular languages.
In particular,

L0
1ı D NGp

;

L0
2 D NGp

\ .Tail � .t�1/� [X�t [ .X�a XX�ap�1//;

L0
3 D NGp

\X�ap�1;

L0
4 D NGp

\X�a;

L0
5 D NGp

\ Tail � .t�1/� [X�t;

L0
6ı D NGp

\X�at�1;

L0
9 D Tail;

L0
10ı D NGp

\X�t ı ;

L0
11 D NGp

\X�a;

L0
12 D Tail � a�;

L0
13ı D NGp

\X�t ı ;

L0
14˛ D NGp

\X�ta˛;

L0
15˛ D NGp

\X�t�1a˛;

for ı 2 ¹˙1º and ˛ 2 ¹1; : : : ; p � 1º.
The remaining two subsets L7; L8 of graph.�/ arise from case 6. The set L7

is the union of languages L0
7ı

� ¹aıº � ¹ta�ı t�1saıs�1º, and L8 is the union of

L0
8ı�

� ¹aıº � ¹ta��t�1aı ta�t�1º; for ı; � 2 ¹˙1º, where

L0
7ı D

S

�2¹˙1ºX
�aY �t�2 \ .Tail � .M� \Nı;�//

and

L0
8ı� D X�aY �t�2 \ .Tail � .M� \ .NHp

XNı;�///;
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such that

M� D ¹u 2 NHp
j .�1/muC1 D �º

and

Nı;� D ¹u 2 NHp
\ Y �aY �t�1 j qu.�1/ � ı�.mod p/º:

In order to show that L7 and L8 are synchronously regular, it suffices to show that
the languagesM� and Nı;� are regular.

For u 2 NHp
, the integer mu is the sum of the exponents of the letters t˙1

in u. That is, M1 is the set of words in NHp
with t -exponent sum odd, and M�1

is the set of words in NHp
with t -exponent sum even. Let  WY � ! Z=2 be the

monoid homomorphism to the finite monoid Z=2 defined by .a/ D .a�1/ D 0

and .t/ D .t�1/ D 1. The preimage sets �1.¹0º/ and �1.¹1º/ are regular sets
(see Section 2). Then M1 D NHp

\ �1.¹1º/ and M�1 D NHp
\ �1.¹0º/ are

intersections of regular languages, and henceM� is regular for � 2 ¹˙1º.

Given any u 2 NHp
\ Y �aY �t�1, as usual we write

qu.x/ D ˛ru;ux
ru C � � � C ˛lu;ux

lu ;

where u D t rua˛ru;u � � � ta˛lu;ut�luCmu . Then

qu.�1/ D .�1/ru.˛ru;u C � � � C ˛lu;u.�1/
lu�ru/:

Splitting this into separate cases depending upon whether ru is even or odd yields

Nı;� D Œ..t2/� [ .t�2/�/ zNı;�.t
�1/��[ Œ.t .t2/� [ t�1.t�2/�/ zN�ı;�.t

�1/��

where

zNı;� WD ¹a˛0 ta˛1 � � � ta˛l t�1 j 0 � l; ˛i 2 ¹0; 1; : : : ; p � 1º for 0 � i � l;

˛0; ˛l ¤ 0;

and ˛0 � ˛1 C � � � C .�1/˛l˛l � ı�.mod p/º:

We note that addition and subtraction in the finite group Z=pZ can be performed
by a finite state automaton (see [12] and [15] for details on finite state automata)
by encoding the group in the states of the automaton. It follows that the language
zNı;� is regular. Using the closure properties for regular languages, then Nı;� is
also regular.

We now have that all of the languages L1; : : : ; L15 are synchronously regular.
Therefore their union graph.�/ D

S15
iD1Li is also synchronously regular, as

required.
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Step IV. Algorithmically stackable system of fully NGp
-triangular van Kam-

pen diagrams for p D 1. In this part of the proof we consider the case that
p D 1. The construction of the flow function can be done in a very similar way
to the proofs in earlier steps so we leave the details to the reader and just state the
stacking map that one gets over the finite presentation

G1 D ha; s; t j ap D 1; Œat ; a� D 1; Œs; t � D 1; sas�1 D tat�1a; sats�1 D atai;

�.u; z/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ
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ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

z if z D t˙1;

z if z D a˙1

and u 2 Tail � .t�1/� [X�t [X�a˙1;

ta�"t�1aı ta"t�1 if z D aı ; ı; " 2 ¹˙1º; and u 2 X�a"t�1;

ta�ı t�1saıs�1 if z D aı ; ı 2 ¹˙1º; u 2 X�a˙1Y �t�2

and qu.�1/ � ı.�1/muC1 D 0;

ta��t�1aı ta�t�1 if z D aı ; ı 2 ¹˙1º; u 2 X�a˙1Y �t�2;

qu.�1/ � ı.�1/muC1 ¤ 0

and � D .�1/muC1 if qu.�1/ � ı.�1/muC1 > 0;

� D .�1/mu otherwise;

z if z D s�1 and u 2 Tail;

t�ıs�1t ı if z D s�1 and u 2 X�t ı ; ı 2 ¹˙1º;

a�ıs�1aı taı t�1 if z D s�1 and u 2 X�aı ; ı 2 ¹˙1º;

z if z D s and u 2 Tail � .a� [ .a�1/�/;

t�ıst ı if z D s and u 2 X�t ı ; ı 2 ¹˙1º;

a�ı t�1a�ısaı t if z D s and u 2 X�taı.aı/�; ı 2 ¹˙1º;

a�ı ta�ıst�1aı if z D s and u 2 X�t�1aı.aı/�; ı 2 ¹˙1º: �

Combining the results of Bartholdi, Neuhauser, and Woess [1], that the Diestel–
Leader groups in Theorem 6.1 are not of homological type FP3, and of Groves and
Smith [14], that the constructible metabelian groups are the metabelian groups of
type FP1, shows that these Diestel–Leader groups are not constructible. Thus the
following is immediate from Theorem 6.1.

Corollary 6.2. The class of autostackable groups contains nonconstructible

metabelian groups.
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